1
|
Olivero G, Grilli M, Marchi M, Pittaluga A. Metamodulation of presynaptic NMDA receptors: New perspectives for pharmacological interventions. Neuropharmacology 2023; 234:109570. [PMID: 37146939 DOI: 10.1016/j.neuropharm.2023.109570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
Metamodulation shifted the scenario of the central neuromodulation from a simplified unimodal model to a multimodal one. It involves different receptors/membrane proteins physically associated or merely colocalized that act in concert to control the neuronal functions influencing each other. Defects or maladaptation of metamodulation would subserve neuropsychiatric disorders or even synaptic adaptations relevant to drug dependence. Therefore, this "vulnerability" represents a main issue to be deeply analyzed to predict its aetiopathogenesis, but also to propose targeted pharmaceutical interventions. The review focusses on presynaptic release-regulating NMDA receptors and on some of the mechanisms of their metamodulation described in the literature. Attention is paid to the interactors, including both ionotropic and metabotropic receptors, transporters and intracellular proteins, which metamodulate their responsiveness in physiological conditions but also undergo adaptation that are relevant to neurological dysfunctions. All these structures are attracting more and more the interest as promising druggable targets for the treatment of NMDAR-related central diseases: these substances would not exert on-off control of the colocalized NMDA receptors (as usually observed with NMDAR full agonists/antagonists), but rather modulate their functions, with the promise of limiting side effects that would favor their translation from preclinic to clinic.
Collapse
Affiliation(s)
- Guendalina Olivero
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - Massimo Grilli
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 16148, Genoa, Italy.
| | - Mario Marchi
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - Anna Pittaluga
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 16148, Genoa, Italy
| |
Collapse
|
2
|
Jovanovic S, Milenkovic I. Purinergic Modulation of Activity in the Developing Auditory Pathway. Neurosci Bull 2020; 36:1285-1298. [PMID: 33040238 DOI: 10.1007/s12264-020-00586-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022] Open
Abstract
Purinergic P2 receptors, activated by endogenous ATP, are prominently expressed on neuronal and non-neuronal cells during development of the auditory periphery and central auditory neurons. In the mature cochlea, extracellular ATP contributes to ion homeostasis, and has a protective function against noise exposure. Here, we focus on the modulation of activity by extracellular ATP during early postnatal development of the lower auditory pathway. In mammals, spontaneous patterned activity is conveyed along afferent auditory pathways before the onset of acoustically evoked signal processing. During this critical developmental period, inner hair cells fire bursts of action potentials that are believed to provide a developmental code for synaptic maturation and refinement of auditory circuits, thereby establishing a precise tonotopic organization. Endogenous ATP-release triggers such patterned activity by raising the extracellular K+ concentration and contributes to firing by increasing the excitability of auditory nerve fibers, spiral ganglion neurons, and specific neuron types within the auditory brainstem, through the activation of diverse P2 receptors. We review recent studies that provide new models on the contribution of purinergic signaling to early development of the afferent auditory pathway. Further, we discuss potential future directions of purinergic research in the auditory system.
Collapse
Affiliation(s)
- Sasa Jovanovic
- School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany
| | - Ivan Milenkovic
- School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany.
| |
Collapse
|
3
|
A Role of Low-Density Lipoprotein Receptor-Related Protein 4 (LRP4) in Astrocytic Aβ Clearance. J Neurosci 2020; 40:5347-5361. [PMID: 32457076 DOI: 10.1523/jneurosci.0250-20.2020] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/10/2020] [Accepted: 05/16/2020] [Indexed: 01/28/2023] Open
Abstract
Amyloid-β (Aβ) deposition occurs years before cognitive symptoms appear and is considered a cause of Alzheimer's disease (AD). The imbalance of Aβ production and clearance leads to Aβ accumulation and Aβ deposition. Increasing evidence indicates an important role of astrocytes, the most abundant cell type among glial cells in the brain, in Aβ clearance. We explored the role of low-density lipoprotein receptor-related protein 4 (LRP4), a member of the LDLR family, in AD pathology. We show that Lrp4 is specifically expressed in astrocytes and its levels in astrocytes were higher than those of Ldlr and Lrp1, both of which have been implicated in Aβ uptake. LRP4 was reduced in postmortem brain tissues of AD patients. Genetic deletion of the Lrp4 gene augmented Aβ plaques in 5xFAD male mice, an AD mouse model, and exacerbated the deficits in neurotransmission, synchrony between the hippocampus and PFC, and cognition. Mechanistically, LRP4 promotes Aβ uptake by astrocytes likely by interacting with ApoE. Together, our study demonstrates that astrocytic LRP4 plays an important role in Aβ pathology and cognitive function.SIGNIFICANCE STATEMENT This study investigates how astrocytes, a type of non-nerve cells in the brain, may contribute to Alzheimer's disease (AD) development. We demonstrate that the low-density lipoprotein receptor-related protein 4 (LRP4) is reduced in the brain of AD patients. Mimicking the reduced levels in an AD mouse model exacerbates cognitive impairment and increases amyloid aggregates that are known to damage the brain. We show that LRP4 could promote the clearance of amyloid protein by astrocytes. Our results reveal a previously unappreciated role of LRP4 in AD development.
Collapse
|
4
|
Hackett TA. Adenosine A 1 Receptor mRNA Expression by Neurons and Glia in the Auditory Forebrain. Anat Rec (Hoboken) 2018; 301:1882-1905. [PMID: 30315630 PMCID: PMC6282551 DOI: 10.1002/ar.23907] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 12/05/2017] [Accepted: 01/10/2018] [Indexed: 12/30/2022]
Abstract
In the brain, purines such as ATP and adenosine can function as neurotransmitters and co‐transmitters, or serve as signals in neuron–glial interactions. In thalamocortical (TC) projections to sensory cortex, adenosine functions as a negative regulator of glutamate release via activation of the presynaptic adenosine A1 receptor (A1R). In the auditory forebrain, restriction of A1R‐adenosine signaling in medial geniculate (MG) neurons is sufficient to extend LTP, LTD, and tonotopic map plasticity in adult mice for months beyond the critical period. Interfering with adenosine signaling in primary auditory cortex (A1) does not contribute to these forms of plasticity, suggesting regional differences in the roles of A1R‐mediated adenosine signaling in the forebrain. To advance understanding of the circuitry, in situ hybridization was used to localize neuronal and glial cell types in the auditory forebrain that express A1R transcripts (Adora1), based on co‐expression with cell‐specific markers for neuronal and glial subtypes. In A1, Adora1 transcripts were concentrated in L3/4 and L6 of glutamatergic neurons. Subpopulations of GABAergic neurons, astrocytes, oligodendrocytes, and microglia expressed lower levels of Adora1. In MG, Adora1 was expressed by glutamatergic neurons in all divisions, and subpopulations of all glial classes. The collective findings imply that A1R‐mediated signaling broadly extends to all subdivisions of auditory cortex and MG. Selective expression by neuronal and glial subpopulations suggests that experimental manipulations of A1R‐adenosine signaling could impact several cell types, depending on their location. Strategies to target Adora1 in specific cell types can be developed from the data generated here. Anat Rec, 301:1882–1905, 2018. © 2018 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.
Collapse
Affiliation(s)
- Troy A Hackett
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
5
|
Oshima-Takago T, Takago H. NMDA receptor-dependent presynaptic inhibition at the calyx of Held synapse of rat pups. Open Biol 2018; 7:rsob.170032. [PMID: 28747405 PMCID: PMC5541344 DOI: 10.1098/rsob.170032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/04/2017] [Indexed: 12/26/2022] Open
Abstract
N-Methyl-d-aspartate receptors (NMDARs) play diverse roles in synaptic transmission, synaptic plasticity, neuronal development and neurological diseases. In addition to their postsynaptic expression, NMDARs are also expressed in presynaptic terminals at some central synapses, and their activation modulates transmitter release. However, the regulatory mechanisms of NMDAR-dependent synaptic transmission remain largely unknown. In the present study, we demonstrated that activation of NMDARs in a nerve terminal at a central glutamatergic synapse inhibits presynaptic Ca2+ currents (ICa) in a GluN2C/2D subunit-dependent manner, thereby decreasing nerve-evoked excitatory postsynaptic currents. Neither presynaptically loaded fast Ca2+ chelator BAPTA nor non-hydrolysable GTP analogue GTPγS affected NMDAR-mediated ICa inhibition. In the presence of a glutamate uptake blocker, the decline in ICa amplitude evoked by repetitive depolarizing pulses at 20 Hz was attenuated by an NMDAR competitive antagonist, suggesting that endogenous glutamate has a potential to activate presynaptic NMDARs. Moreover, NMDA-induced inward currents at a negative holding potential (−80 mV) were abolished by intra-terminal loading of the NMDAR open channel blocker MK-801, indicating functional expression of presynaptic NMDARs. We conclude that presynaptic NMDARs can attenuate glutamate release by inhibiting voltage-gated Ca2+ channels at a relay synapse in the immature rat auditory brainstem.
Collapse
Affiliation(s)
- Tomoko Oshima-Takago
- Department of Rehabilitation for Sensory Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Saitama 359-8555, Japan.,Department of Neurophysiology, University of Tokyo Graduate School of Medicine, Tokyo 113-0033, Japan
| | - Hideki Takago
- Department of Rehabilitation for Sensory Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Saitama 359-8555, Japan .,Department of Neurophysiology, University of Tokyo Graduate School of Medicine, Tokyo 113-0033, Japan.,Department of Otolaryngology, Tokyo Medical and Dental University Graduate School, Tokyo 113-8510, Japan
| |
Collapse
|
6
|
Lujan B, Kushmerick C, Banerjee TD, Dagda RK, Renden R. Glycolysis selectively shapes the presynaptic action potential waveform. J Neurophysiol 2016; 116:2523-2540. [PMID: 27605535 DOI: 10.1152/jn.00629.2016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/05/2016] [Indexed: 11/22/2022] Open
Abstract
Mitochondria are major suppliers of cellular energy in neurons; however, utilization of energy from glycolysis vs. mitochondrial oxidative phosphorylation (OxPhos) in the presynaptic compartment during neurotransmission is largely unknown. Using presynaptic and postsynaptic recordings from the mouse calyx of Held, we examined the effect of acute selective pharmacological inhibition of glycolysis or mitochondrial OxPhos on multiple mechanisms regulating presynaptic function. Inhibition of glycolysis via glucose depletion and iodoacetic acid (1 mM) treatment, but not mitochondrial OxPhos, rapidly altered transmission, resulting in highly variable, oscillating responses. At reduced temperature, this same treatment attenuated synaptic transmission because of a smaller and broader presynaptic action potential (AP) waveform. We show via experimental manipulation and ion channel modeling that the altered AP waveform results in smaller Ca2+ influx, resulting in attenuated excitatory postsynaptic currents (EPSCs). In contrast, inhibition of mitochondria-derived ATP production via extracellular pyruvate depletion and bath-applied oligomycin (1 μM) had no significant effect on Ca2+ influx and did not alter the AP waveform within the same time frame (up to 30 min), and the resultant EPSC remained unaffected. Glycolysis, but not mitochondrial OxPhos, is thus required to maintain basal synaptic transmission at the presynaptic terminal. We propose that glycolytic enzymes are closely apposed to ATP-dependent ion pumps on the presynaptic membrane. Our results indicate a novel mechanism for the effect of hypoglycemia on neurotransmission. Attenuated transmission likely results from a single presynaptic mechanism at reduced temperature: a slower, smaller AP, before and independent of any effect on synaptic vesicle release or receptor activity.
Collapse
Affiliation(s)
- Brendan Lujan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Christopher Kushmerick
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil; and
| | - Tania Das Banerjee
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Ruben K Dagda
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Robert Renden
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada;
| |
Collapse
|
7
|
Synaptic plasticity in the auditory system: a review. Cell Tissue Res 2015; 361:177-213. [PMID: 25896885 DOI: 10.1007/s00441-015-2176-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/18/2015] [Indexed: 01/19/2023]
Abstract
Synaptic transmission via chemical synapses is dynamic, i.e., the strength of postsynaptic responses may change considerably in response to repeated synaptic activation. Synaptic strength is increased during facilitation, augmentation and potentiation, whereas a decrease in synaptic strength is characteristic for depression and attenuation. This review attempts to discuss the literature on short-term and long-term synaptic plasticity in the auditory brainstem of mammals and birds. One hallmark of the auditory system, particularly the inner ear and lower brainstem stations, is information transfer through neurons that fire action potentials at very high frequency, thereby activating synapses >500 times per second. Some auditory synapses display morphological specializations of the presynaptic terminals, e.g., calyceal extensions, whereas other auditory synapses do not. The review focuses on short-term depression and short-term facilitation, i.e., plastic changes with durations in the millisecond range. Other types of short-term synaptic plasticity, e.g., posttetanic potentiation and depolarization-induced suppression of excitation, will be discussed much more briefly. The same holds true for subtypes of long-term plasticity, like prolonged depolarizations and spike-time-dependent plasticity. We also address forms of plasticity in the auditory brainstem that do not comprise synaptic plasticity in a strict sense, namely short-term suppression, paired tone facilitation, short-term adaptation, synaptic adaptation and neural adaptation. Finally, we perform a meta-analysis of 61 studies in which short-term depression (STD) in the auditory system is opposed to short-term depression at non-auditory synapses in order to compare high-frequency neurons with those that fire action potentials at a lower rate. This meta-analysis reveals considerably less STD in most auditory synapses than in non-auditory ones, enabling reliable, failure-free synaptic transmission even at frequencies >100 Hz. Surprisingly, the calyx of Held, arguably the best-investigated synapse in the central nervous system, depresses most robustly. It will be exciting to reveal the molecular mechanisms that set high-fidelity synapses apart from other synapses that function much less reliably.
Collapse
|
8
|
Wall MJ, Richardson MJE. Localized adenosine signaling provides fine-tuned negative feedback over a wide dynamic range of neocortical network activities. J Neurophysiol 2014; 113:871-82. [PMID: 25392170 DOI: 10.1152/jn.00620.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Although the patterns of activity produced by neocortical networks are now better understood, how these states are activated, sustained, and terminated still remains unclear. Negative feedback by the endogenous neuromodulator adenosine may potentially play an important role, as it can be released by activity and there is dense A1 receptor expression in the neocortex. Using electrophysiology, biosensors, and modeling, we have investigated the properties of adenosine signaling during physiological and pathological network activity in rat neocortical slices. Both low- and high-rate network activities were reduced by A1 receptor activation and enhanced by block of A1 receptors, consistent with activity-dependent adenosine release. Since the A1 receptors were neither saturated nor completely unoccupied during either low- or high-rate activity, adenosine signaling provides a negative-feedback mechanism with a wide dynamic range. Modeling and biosensor experiments show that during high-rate activity increases in extracellular adenosine concentration are highly localized and are uncorrelated over short distances that are certainly<500 μm. Modeling also predicts that the slow rise of the purine waveform cannot be from diffusion from distal release sites but more likely results from uptake and metabolism. The inability to directly measure adenosine release during low-rate activity, although it is present, is probably a consequence of small localized increases in adenosine concentration that are rapidly diminished by diffusion and active removal mechanisms. Saturation of such removal mechanisms when higher concentrations of adenosine are released results in the accumulation of inosine, explaining the strong purine signal during high-rate activity.
Collapse
Affiliation(s)
- Mark J Wall
- School of Life Sciences, University of Warwick, Coventry, United Kingdom; and
| | | |
Collapse
|
9
|
Wang T, Rusu SI, Hruskova B, Turecek R, Borst JGG. Modulation of synaptic depression of the calyx of Held synapse by GABA(B) receptors and spontaneous activity. J Physiol 2013; 591:4877-94. [PMID: 23940376 DOI: 10.1113/jphysiol.2013.256875] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The calyx of Held synapse of the medial nucleus of the trapezoid body is a giant axosomatic synapse in the auditory brainstem, which acts as a relay synapse showing little dependence of its synaptic strength on firing frequency. The main mechanism that is responsible for its resistance to synaptic depression is its large number of release sites with low release probability. Here, we investigated the contribution of presynaptic GABA(B) receptors and spontaneous activity to release probability both in vivo and in vitro in young-adult mice. Maximal activation of presynaptic GABA(B) receptors by baclofen reduced synaptic output by about 45% in whole-cell voltage clamp slice recordings, which was accompanied by a reduction in short-term depression. A similar reduction in transmission was observed when baclofen was applied in vivo by microiontophoresis during juxtacellular recordings using piggyback electrodes. No significant change in synaptic transmission was observed during application of the GABA(B) receptor antagonist CGP54626 both during in vivo and slice recordings, suggesting a low ambient GABA concentration. Interestingly, we observed that synapses with a high spontaneous frequency showed almost no synaptic depression during auditory stimulation, whereas synapses with a low spontaneous frequency did depress during noise bursts. Our data thus suggest that spontaneous firing can tonically reduce release probability in vivo. In addition, our data show that the ambient GABA concentration in the auditory brainstem is too low to activate the GABA(B) receptor at the calyx of Held significantly, but that activation of GABA(B) receptors can reduce sound-evoked synaptic depression.
Collapse
Affiliation(s)
- Tiantian Wang
- J. G. G. Borst: Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
10
|
Tsentsevitsky A, Kovyazina I, Nikolsky E, Bukharaeva E, Giniatullin R. Redox-sensitive synchronizing action of adenosine on transmitter release at the neuromuscular junction. Neuroscience 2013; 248:699-707. [PMID: 23806718 DOI: 10.1016/j.neuroscience.2013.05.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/13/2013] [Accepted: 05/30/2013] [Indexed: 12/20/2022]
Abstract
The kinetics of neurotransmitter release was recognized recently as an important contributor to synaptic efficiency. Since adenosine is the ubiquitous modulator of presynaptic release in peripheral and central synapses, in the current project we studied the action of this purine on the timing of acetylcholine quantal release from motor nerve terminals in the skeletal muscle. Using extracellular recording from frog neuromuscular junction we tested the action of adenosine on the latencies of single quantal events in the pro-oxidant and antioxidant conditions. We found that adenosine, in addition to previously known inhibitory action on release probability, also synchronized release by removing quantal events with long latencies. This action of adenosine on release timing was abolished by oxidants whereas in the presence of the antioxidant the synchronizing action of adenosine was further enhanced. Interestingly, unlike the timing of release, the inhibitory action of adenosine on release probability was redox-independent. Modulation of release timing by adenosine was mediated by purinergic A1 receptors as it was eliminated by the specific A1 antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) and mimicked by the specific A1 agonist N(6)-cyclopentyl-adenosine. Consistent with data obtained from dispersion of single quantal events, adenosine also reduced the rise-time of multiquantal synaptic currents. The latter effect was reproduced in the model based on synchronizing effect of adenosine on release timing. Thus, adenosine which is generated at the neuromuscular junction from the breakdown of the co-transmitter ATP induces the synchronization of quantal events. The effect of adenosine on release timing should preserve the fidelity of synaptic transmission via "cost-effective" use of less transmitter quanta. Our findings also revealed important crosstalk between purinergic and redox modulation of synaptic processes which could take place in the elderly or in neuromuscular diseases associated with oxidative stress like lateral amyotrophic sclerosis.
Collapse
Affiliation(s)
- A Tsentsevitsky
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111, Russia
| | | | | | | | | |
Collapse
|
11
|
Wall MJ, Dale N. Neuronal transporter and astrocytic ATP exocytosis underlie activity-dependent adenosine release in the hippocampus. J Physiol 2013; 591:3853-71. [PMID: 23713028 DOI: 10.1113/jphysiol.2013.253450] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The neuromodulator adenosine plays an important role in many physiological and pathological processes within the mammalian CNS. However, the precise mechanisms of how the concentration of extracellular adenosine increases following neural activity remain contentious. Here we have used microelectrode biosensors to directly measure adenosine release induced by focal stimulation in stratum radiatum of area CA1 in mouse hippocampal slices. Adenosine release was both action potential and Ca²⁺ dependent and could be evoked with low stimulation frequencies and small numbers of stimuli. Adenosine release required the activation of ionotropic glutamate receptors and could be evoked by local application of glutamate receptor agonists. Approximately 40% of stimulated-adenosine release occurred by translocation of adenosine via equilibrative nucleoside transporters (ENTs). This component of release persisted in the presence of the gliotoxin fluoroacetate and thus results from the direct release of adenosine from neurons. A reduction of adenosine release in the presence of NTPDase blockers, in slices from CD73(-/-) and dn-SNARE mice, provides evidence that a component of adenosine release arises from the extracellular metabolism of ATP released from astrocytes. This component of release appeared to have slower kinetics than the direct ENT-mediated release of adenosine. These data suggest that activity-dependent adenosine release is surprisingly complex and, in the hippocampus, arises from at least two distinct mechanisms with different cellular sources.
Collapse
Affiliation(s)
- Mark J Wall
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.
| | | |
Collapse
|
12
|
Ciruela F, Fernández-Dueñas V, Llorente J, Borroto-Escuela D, Cuffí ML, Carbonell L, Sánchez S, Agnati LF, Fuxe K, Tasca CI. G protein-coupled receptor oligomerization and brain integration: focus on adenosinergic transmission. Brain Res 2012; 1476:86-95. [PMID: 22575562 DOI: 10.1016/j.brainres.2012.04.056] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Accepted: 04/30/2012] [Indexed: 10/28/2022]
Abstract
The control of glutamatergic corticostriatal transmission is essential for the induction and expression of plasticity mechanisms in the striatum, a phenomenon thickly regulated by G protein-coupled receptors (GPCRs). Interestingly, in addition to dopamine receptors, adenosine and metabotropic glutamate receptors also play a key role in striatal functioning. The existence of a supramolecular organization (i.e. oligomer) containing dopamine, adenosine and metabotropic glutamate receptors in the striatal neurons is now being widely accepted by the scientific community. Indeed, these oligomers may enhance the diversity and performance by which extracellular striatal signals are transferred to the G-proteins in the process of receptor transduction, and also may allow unpredictable receptor-receptor allosteric regulations. Overall, here we want to review how formations of adenosine, dopamine and metabotropic glutamate receptors-containing oligomers impinge into striatal functioning in both normal and pathological conditions. This article is part of a Special Issue entitled: Brain Integration.
Collapse
Affiliation(s)
- Francisco Ciruela
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, Universitat de Barcelona, L'Hospitalet de Llobregat, 08907 Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Abstract
The calyx of Held is an axosomatic terminal in the auditory brainstem that has attracted anatomists because of its giant size and physiologists because of its accessibility to patch-clamp recordings. The calyx allows the principal neurons in the medial nucleus of the trapezoid body (MNTB) to provide inhibition that is both well timed and sustained to many other auditory nuclei. The special adaptations that allow the calyx to drive its principal neuron even when frequencies are high include a large number of release sites with low release probability, a large readily releasable pool, fast presynaptic calcium clearance and little delayed release, a large quantal size, and fast AMPA-type glutamate receptors. The transformation from a synapse that is unremarkable except for its giant size into a fast and reliable auditory relay happens in just a few days. In rodents this transformation is essentially ready when hearing starts.
Collapse
Affiliation(s)
- J Gerard G Borst
- Department of Neuroscience, Erasmus MC, University Medical Center, 3015 GE Rotterdam, The Netherlands.
| | | |
Collapse
|
15
|
Klyuch BP, Dale N, Wall MJ. Receptor-mediated modulation of activity-dependent adenosine release in rat cerebellum. Neuropharmacology 2011; 62:815-24. [PMID: 21933676 DOI: 10.1016/j.neuropharm.2011.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 08/16/2011] [Accepted: 09/06/2011] [Indexed: 12/17/2022]
Abstract
Although the neuromodulator adenosine plays an important role in many central nervous system physiological and pathological processes, the properties and mechanisms of extracellular adenosine production are still unclear. In previous work, we determined that two forms of adenosine release can be evoked in the molecular layer of the cerebellum: one independent of ionotropic glutamate receptor activation (evoked by a train of stimuli) and one mainly dependent on the activation of ionotropic glutamate receptors (evoked by a single stimulus in 4-aminopyridine). Here we have investigated how these different forms of adenosine release are modulated by metabotropic receptors (A(1), GABA(B) and mGlu4). Although both types of adenosine release are inhibited by the activation of metabotropic receptors, single stimulus-evoked release was much more potently inhibited suggesting differential coupling between receptors and adenosine release mechanisms. Metabotropic receptor antagonists revealed that endogenous A(1) receptor activation plays the major role in controlling adenosine release and determine the relationship between stimulus strength and adenosine release. The major mechanism of modulation is through control of ionotropic glutamate receptor activation with block of metabotropic receptors inducing glutamate receptor-dependent adenosine release. In contrast to metabotropic receptor agonists, which inhibit adenylyl cyclase, activation of adenylyl cyclase (with forskolin) increased both glutamate receptor-dependent and independent adenosine release. This is the first time that the control of adenosine release by endogenous modulators has been studied and like classical neurotransmitters, adenosine release is controlled by an interplay of presynaptic modulators. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.
Collapse
Affiliation(s)
- Boris P Klyuch
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | | |
Collapse
|
16
|
Yang K, Ma H. Blockade of GABA(B) receptors facilitates evoked neurotransmitter release at spinal dorsal horn synapse. Neuroscience 2011; 193:411-20. [PMID: 21807068 DOI: 10.1016/j.neuroscience.2011.07.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 06/13/2011] [Accepted: 07/21/2011] [Indexed: 12/18/2022]
Abstract
Metabotropic GABA type B (GABA(B)) receptors are abundantly expressed in the rat spinal dorsal horn. Activation of GABA(B) receptors by exogenous agonists inhibits synaptic transmission, which is believed to underlie the GABA(B) receptor-mediated analgesia. However, little effort has been made to test whether endogenous GABA might also mediate inhibition by acting on GABA(B) receptors. In this study, whole-cell recording techniques were employed to study the effect of endogenous GABA on GABA(B) receptors in substantia gelatinosa (SG) neurons in adult rat spinal cord slices. In current-clamp mode, blockade of GABA(B) receptors by their selective antagonist 3-[[[(3,4-dichlorophenyl)methyl]amino]propyl] (diethoxy-methyl) phosphinic acid (CGP 52432) facilitated presynaptic stimulation-induced action potential discharge and increased amplitude of postsynaptic potentials (PSPs), meaning a GABA(B) receptor-mediated inhibition of SG neuron excitability. In voltage-clamp mode, blockade of GABA(B) receptors increased the amplitude of evoked excitatory postsynaptic currents (eEPSCs) and decreased paired-pulse ratio, indicating a presynaptic CGP 52432 action. Primary afferent Aδ or C fiber-evoked EPSCs were also facilitated by CGP 52432 application. Amplitudes of evoked GABAergic and glycinergic inhibitory postsynaptic currents (eIPSCs) were enhanced by GABA(B) receptor blockade. The facilitation of amplitude persisted in the presence of a specific GABA transporter 1 (GAT-1) blocker, tiagabine, or GAT-2/3 blocker SNAP5114. However, blockade of GABA(B) receptors had no effect on action potential-independent miniature EPSCs (mEPSCs), miniature IPSCs (mIPSCs), or membrane conductance. Taken together, these results suggest that endogenous GABA modulates evoked synaptic transmission in SG neurons by acting on GABA(B) receptors. This GABA(B) receptor-mediated homeostatic regulation of neuronal excitability and neurotransmitter release might contribute to modulation of nociception in spinal dorsal horn.
Collapse
Affiliation(s)
- K Yang
- Department of Biomedical Sciences, University of Maryland Dental School, Baltimore, MD 21201, USA.
| | | |
Collapse
|
17
|
A population of immature cerebellar parallel fibre synapses are insensitive to adenosine but are inhibited by hypoxia. Neuropharmacology 2011; 61:880-8. [PMID: 21693125 DOI: 10.1016/j.neuropharm.2011.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 03/09/2011] [Accepted: 06/06/2011] [Indexed: 12/20/2022]
Abstract
The purine adenosine plays an important role in a number of physiological and pathological processes and is neuroprotective during hypoxia and ischemia. The major effect of adenosine is to suppress network activity via the activation of A(1) receptors. Here we report that in immature cerebellar slices, the activation of A(1) receptors has variable effects on parallel fibre synaptic transmission, ranging from zero depression to an almost complete abolition of transmission. Concentration-response curves suggest that the heterogeneity of inhibition stems from differences in A(1) receptor properties which could include coupling to downstream effectors. There is less variation in the effects of adenosine at parallel fibre synapses in slices from older rats and thus adenosine signalling appears developmentally regulated. In the cerebellum, hypoxia increases the concentration of extracellular adenosine leading to the activation of A(1) receptors (at adenosine-sensitive parallel fibre synapses) and the suppression of glutamate release. It would be predicted that the synapses that were insensitive to adenosine would be less depressed by hypoxia and thus maintain function during metabolic stress. However those synapses which were insensitive to adenosine were rapidly inhibited by hypoxia via a mechanism which was not reversed by blocking A(1) receptors. Thus another mechanism must be responsible for the hypoxia-mediated depression at these synapses. These different mechanisms of depression may be important for cell survival and for maintenance of cerebellar function following oxygen starvation.
Collapse
|
18
|
Kopp-Scheinpflug C, Steinert JR, Forsythe ID. Modulation and control of synaptic transmission across the MNTB. Hear Res 2011; 279:22-31. [PMID: 21397677 DOI: 10.1016/j.heares.2011.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 02/04/2011] [Accepted: 02/27/2011] [Indexed: 12/13/2022]
Abstract
The aim of this review is to consider the various forms and functions of transmission across the calyx of Held/MNTB synapse and how its modulation might contribute to auditory processing. The calyx of Held synapse is the largest synapse in the mammalian brain which uses the conventional excitatory synaptic transmitter, glutamate. It is sometimes portrayed as the 'ultimate' in synaptic signalling: it is a synaptic relay in which a single axon forms one synaptic terminal onto one specific target neuron. Questions that are often raised are: "Why does such a large and secure synapse need any form of modulation? Surely it is built simply to guarantee firing an action potential in the target neuron? If this synapse is so secure, why is a synapse needed at all?" Investigating these questions explains some general limitations of transmission at synapses and provides insight into the ionic basis of neuronal function by bringing together in vivo and in vitro approaches. We will start by defining the firing behaviour of MNTB neurons in vitro (in response to synaptic stimulation or current injection) and in vivo (in response to sound) and examining the reasons for different types of firing under the two conditions. Then we will consider some of the mechanisms by which transmission can be regulated. We will finish by discussing the following hypothesis: modulation and adaptation of presynaptic and postsynaptic conductances at the calyx of Held relay synapse are aimed at maximising the security of sound onset encoding while providing secondary information on frequency spectrum, harmonic envelope and duration of sound throughout the later part of the response.
Collapse
Affiliation(s)
- Cornelia Kopp-Scheinpflug
- Neurotoxicity at the Synaptic Interface, MRC Toxicology Unit, Hodgkin Bldg, University of Leicester, Leicester LE1 9HN, UK
| | | | | |
Collapse
|
19
|
Ciruela F, Gómez-Soler M, Guidolin D, Borroto-Escuela DO, Agnati LF, Fuxe K, Fernández-Dueñas V. Adenosine receptor containing oligomers: their role in the control of dopamine and glutamate neurotransmission in the brain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1245-55. [PMID: 21316336 DOI: 10.1016/j.bbamem.2011.02.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 02/02/2011] [Accepted: 02/05/2011] [Indexed: 02/05/2023]
Abstract
While the G protein-coupled receptor (GPCR) oligomerization has been questioned during the last fifteen years, the existence of a multi-receptor complex involving direct receptor-receptor interactions, called receptor oligomers, begins to be widely accepted. Eventually, it has been postulated that oligomers constitute a distinct functional form of the GPCRs with essential receptorial features. Also, it has been proven, under certain circumstances, that the GPCR oligomerization phenomenon is crucial for the receptor biosynthesis, maturation, trafficking, plasma membrane diffusion, and pharmacology and signalling. Adenosine receptors are GPCRs that mediate the physiological functions of adenosine and indeed these receptors do also oligomerize. Accordingly, adenosine receptor oligomers may improve the molecular mechanism by which extracellular adenosine signals are transferred to the G proteins in the process of receptor transduction. Importantly, these adenosine receptor-containing oligomers may allow not only the control of the adenosinergic function but also the fine-tuning modulation of other neurotransmitter systems (i.e. dopaminergic and glutamatergic transmission). Overall, we underscore here recent significant developments based on adenosine receptor oligomerization that are essential for acquiring a better understanding of neurotransmission in the central nervous system under normal and pathological conditions.
Collapse
Affiliation(s)
- Francisco Ciruela
- Departament de Patologia i Terapèutica Experimental, Universitat de Barcelona, 08097 L'Hospitalet de Llobregat, Spain.
| | | | | | | | | | | | | |
Collapse
|
20
|
Halassa MM. Thalamocortical dynamics of sleep: roles of purinergic neuromodulation. Semin Cell Dev Biol 2011; 22:245-51. [PMID: 21329763 DOI: 10.1016/j.semcdb.2011.02.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Revised: 01/13/2011] [Accepted: 02/07/2011] [Indexed: 01/12/2023]
Abstract
Thalamocortical dynamics, the millisecond to second changes in activity of thalamocortical circuits, are central to perception, action and cognition. Generated by local circuitry and sculpted by neuromodulatory systems, these dynamics reflect the expression of vigilance states. In sleep, thalamocortical dynamics are thought to mediate "offline" functions including memory consolidation and synaptic scaling. Here, I discuss thalamocortical sleep dynamics and their modulation by the ascending arousal system and locally released neurochemicals. I focus on modulation of these dynamics by electrically silent astrocytes, highlighting the role of purinergic signaling in this glial form of communication. Astrocytes modulate cortical slow oscillations, sleep behavior, and sleep-dependent cognitive function. The discovery that astrocytes can modulate sleep dynamics and sleep-related behaviors suggests a new way of thinking about the brain, in which integrated circuits of neurons and glia control information processing and behavioral output.
Collapse
Affiliation(s)
- Michael M Halassa
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, United States.
| |
Collapse
|
21
|
Cechova S, Elsobky AM, Venton BJ. A1 receptors self-regulate adenosine release in the striatum: evidence of autoreceptor characteristics. Neuroscience 2010; 171:1006-15. [PMID: 20933584 PMCID: PMC2991493 DOI: 10.1016/j.neuroscience.2010.09.063] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 09/28/2010] [Accepted: 09/30/2010] [Indexed: 11/23/2022]
Abstract
Adenosine A(1) receptors are inhibitory G-protein coupled receptors that presynaptically regulate neurotransmitter release, but their role in self-regulating adenosine release is not known. In this study, we examined the modulation of evoked adenosine and dopamine efflux by A(1) receptors and studied whether D(1) receptors mediate these effects. Fast-scan cyclic voltammetry at carbon-fiber microelectrodes was used for the simultaneous detection of adenosine and dopamine efflux on a subsecond time scale. Short electrical stimulation trains delivered to the substantia nigra (60 pulses, 60 Hz) were used to evoke dopamine and adenosine release in the striatum. The adenosine A(1) receptor agonist N(6)-cyclopentyladenosine (CPA, 1 mg/kg, i.p.) decreased both adenosine and dopamine efflux, although the effect for adenosine occurred more quickly than for dopamine. The A(1) antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 6 mg/kg, i.p.) increased stimulated adenosine release. The effects of CPA were partially attenuated by the dopamine D(1) receptor antagonist SCH-23390. Thus, A(1) and D(1) receptors have a synergistic interaction that modulates both stimulated adenosine and dopamine. The decrease in adenosine is not a downstream effect of lowered dopamine release, as decreasing dopamine synthesis and release with α-methyl-p-tyrosine or increasing release with haloperidol had no effect on adenosine release. This study shows that A(1) receptors have some characteristics of an autoreceptor, including self-regulation of adenosine release.
Collapse
Affiliation(s)
| | | | - B. Jill Venton
- Author of correspondence: Dept. of Chemistry, Univ. of Virginia, P.O. Box 400319, Charlottesville, Virginia 22904, phone: 434-243-2132, fax: 434-924-3710,
| |
Collapse
|
22
|
Momiyama T. Developmental increase in D1-like dopamine receptor-mediated inhibition of glutamatergic transmission through P/Q-type channel regulation in the basal forebrain of rats. Eur J Neurosci 2010; 32:579-90. [PMID: 20718855 DOI: 10.1111/j.1460-9568.2010.07306.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Whole-cell patch-clamp recordings of non-N-methyl-d-aspartate glutamatergic excitatory postsynaptic currents (EPSCs) were carried out from cholinergic neurons in slices of basal forebrain (BF) of developing rats aged 21-42 postnatal days to elucidate postnatal developmental change in Ca(2+) channel subtypes involved in the transmission as well as that in dopamine D(1)-like receptor-mediated presynaptic inhibition. The amplitude of EPSCs was inhibited by bath application of omega-conotoxin GVIA (omega-CgTX; 3 microM) or omega-agatoxin-TK (omega-Aga-TK; 200 nM) throughout the age range examined, suggesting that multiple types of Ca(2+) channel are involved in the transmission. The EPSC fraction reduced by omega-CgTX decreased with age, whereas that reduced by omega-Aga-TK increased. Inhibition of the EPSCs by a D(1)-like receptor agonist, SKF 81297 (SKF; 30 microM) increased with age in parallel with the increase in omega-Aga-TK-induced inhibition. An activator of the adenylyl cyclase (AC) pathway, forskolin (FK; 10 microM) inhibited the EPSCs, and FK-induced inhibition also increased with age in parallel with the increase in SKF-induced inhibition. Throughout the age range examined, SKF showed no further inhibitory effect on the EPSCs after omega-Aga-TK- or FK-induced effect had reached steady-state. These findings suggest that D(1)-like receptor-mediated presynaptic inhibition of glutamate release onto cholinergic BF neurons increases with age, and that the change is coupled with a developmental increase in the contribution of P/Q-type Ca(2+) channels as well as a developmental increase in AC pathway contribution.
Collapse
Affiliation(s)
- Toshihiko Momiyama
- Division of Cerebral Structure, National Institute for Physiological Sciences, Okazaki 444-8787, Japan.
| |
Collapse
|
23
|
Nakamura PA, Cramer KS. Formation and maturation of the calyx of Held. Hear Res 2010; 276:70-8. [PMID: 21093567 DOI: 10.1016/j.heares.2010.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Revised: 11/03/2010] [Accepted: 11/10/2010] [Indexed: 11/24/2022]
Abstract
Sound localization requires precise and specialized neural circuitry. A prominent and well-studied specialization is found in the mammalian auditory brainstem. Globular bushy cells of the ventral cochlear nucleus (VCN) project contralaterally to neurons of the medial nucleus of the trapezoid body (MNTB), where their large axons terminate on cell bodies of MNTB principal neurons, forming the calyces of Held. The VCN-MNTB pathway is necessary for the accurate computation of interaural intensity and time differences; MNTB neurons provide inhibitory input to the lateral superior olive, which compares levels of excitation from the ipsilateral ear to levels of tonotopically matched inhibition from the contralateral ear, and to the medial superior olive, where precise inhibition from MNTB neurons tunes the delays of binaural excitation. Here we review the morphological and physiological aspects of the development of the VCN-MNTB pathway and its calyceal termination, along with potential mechanisms that give rise to its precision. During embryonic development, VCN axons grow towards the midline, cross the midline into the region of the presumptive MNTB and then form collateral branches that will terminate in calyces of Held. In rodents, immature calyces of Held appear in MNTB during the first few days of postnatal life. These calyces mature morphologically and physiologically over the next three postnatal weeks, enabling fast, high fidelity transmission in the VCN-MNTB pathway.
Collapse
Affiliation(s)
- Paul A Nakamura
- Department of Neurobiology and Behavior, University of California, Irvine, 2205 McGaugh Hall, Irvine, CA 92697-4550, USA
| | | |
Collapse
|
24
|
Klyuch BP, Richardson MJE, Dale N, Wall MJ. The dynamics of single spike-evoked adenosine release in the cerebellum. J Physiol 2010; 589:283-95. [PMID: 21078589 DOI: 10.1113/jphysiol.2010.198986] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The purine adenosine is a potent neuromodulator in the brain, with roles in a number of diverse physiological and pathological processes. Modulators such as adenosine are difficult to study as once released they have a diffuse action (which can affect many neurones) and, unlike classical neurotransmitters, have no inotropic receptors. Thus rapid postsynaptic currents (PSCs) mediated by adenosine (equivalent to mPSCs) are not available for study. As a result the mechanisms and properties of adenosine release still remain relatively unclear. We have studied adenosine release evoked by stimulating the parallel fibres in the cerebellum. Using adenosine biosensors combined with deconvolution analysis and mathematical modelling, we have characterised the release dynamics and diffusion of adenosine in unprecedented detail. By partially blocking K+ channels, we were able to release adenosine in response to a single stimulus rather than a train of stimuli. This allowed reliable sub-second release of reproducible quantities of adenosine with stereotypic concentration waveforms that agreed well with predictions of a mathematical model of purine diffusion. We found no evidence for ATP release and thus suggest that adenosine is directly released in response to parallel fibre firing and does not arise from extracellular ATP metabolism. Adenosine release events showed novel short-term dynamics, including facilitated release with paired stimuli at millisecond stimulation intervals but depletion-recovery dynamics with paired stimuli delivered over minute time scales. These results demonstrate rich dynamics for adenosine release that are placed, for the first time, on a quantitative footing and show strong similarity with vesicular exocytosis.
Collapse
Affiliation(s)
- Boris P Klyuch
- Department of Biological Sciences, University of Warwick, Coventry, UK
| | | | | | | |
Collapse
|
25
|
Developmental shift to a mechanism of synaptic vesicle endocytosis requiring nanodomain Ca2+. Nat Neurosci 2010; 13:838-44. [PMID: 20562869 DOI: 10.1038/nn.2576] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 05/12/2010] [Indexed: 11/08/2022]
Abstract
Ca(2+) is thought to be essential for the exocytosis and endocytosis of synaptic vesicles. However, the manner in which Ca(2+) coordinates these processes remains unclear, particularly at mature synapses. Using membrane capacitance measurements from calyx of Held nerve terminals in rats, we found that vesicle endocytosis is initiated primarily in Ca(2+) nanodomains around Ca(2+) channels, where exocytosis is triggered. Bulk Ca(2+) outside of the domain could also be involved in endocytosis at immature synapses, although only after extensive exocytosis at more mature synapses. This bulk Ca(2+)-dependent endocytosis required calmodulin and calcineurin activation at immature synapses, but not at more mature synapses. Similarly, GTP-independent endocytosis, which occurred after extensive exocytosis at immature synapses, became negligible after maturation. We propose that nanodomain Ca(2+) simultaneously triggers exocytosis and endocytosis of synaptic vesicles and that the molecular mechanisms underlying Ca(2+)-dependent endocytosis undergo major developmental changes at this fast central synapse.
Collapse
|
26
|
Wall M, Dale N. Activity-dependent release of adenosine: a critical re-evaluation of mechanism. Curr Neuropharmacol 2010; 6:329-37. [PMID: 19587854 PMCID: PMC2701281 DOI: 10.2174/157015908787386087] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 07/18/2008] [Accepted: 07/31/2008] [Indexed: 12/13/2022] Open
Abstract
Adenosine is perhaps the most important and universal modulator in the brain. The current consensus is that it is primarily produced in the extracellular space from the breakdown of previously released ATP. It is also accepted that it can be released directly, as adenosine, during pathological events primarily by equilibrative transport. Nevertheless, there is a growing realization that adenosine can be rapidly released from the nervous system in a manner that is dependent upon the activity of neurons. We consider three competing classes of mechanism that could explain neuronal activity dependent adenosine release (exocytosis of ATP followed by extracellular conversion to adenosine; exocytotic release of an unspecified transmitter followed by direct non-exocytotic adenosine release from an interposed cell; and direct exocytotic release of adenosine) and outline discriminatory experimental tests to decide between them. We review several examples of activity dependent adenosine release and explore their underlying mechanisms where these are known. We discuss the limits of current experimental techniques in definitively discriminating between the competing models of release, and identify key areas where technologies need to advance to enable definitive discriminatory tests. Nevertheless, within the current limits, we conclude that there is evidence for a mechanism that strongly resembles direct exocytosis of adenosine underlying at least some examples of neuronal activity dependent adenosine release.
Collapse
Affiliation(s)
- Mark Wall
- The Neuroscience Research Group, Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | |
Collapse
|
27
|
Müller J, Reyes-Haro D, Pivneva T, Nolte C, Schaette R, Lübke J, Kettenmann H. The principal neurons of the medial nucleus of the trapezoid body and NG2(+) glial cells receive coordinated excitatory synaptic input. ACTA ACUST UNITED AC 2009; 134:115-27. [PMID: 19635853 PMCID: PMC2717692 DOI: 10.1085/jgp.200910194] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Glial cell processes are part of the synaptic structure and sense spillover of transmitter, while some glial cells can even receive direct synaptic input. Here, we report that a defined type of glial cell in the medial nucleus of the trapezoid body (MNTB) receives excitatory glutamatergic synaptic input from the calyx of Held (CoH). This giant glutamatergic terminal forms an axosomatic synapse with a single principal neuron located in the MNTB. The NG2 glia, as postsynaptic principal neurons, establish synapse-like structures with the CoH terminal. In contrast to the principal neurons, which are known to receive excitatory as well as inhibitory inputs, the NG2 glia receive mostly, if not exclusively, α-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid receptor–mediated evoked and spontaneous synaptic input. Simultaneous recordings from neurons and NG2 glia indicate that they partially receive synchronized spontaneous input. This shows that an NG2+ glial cell and a postsynaptic neuron share presynaptic terminals.
Collapse
Affiliation(s)
- Jochen Müller
- Zelluläre Neurowissenschaften, Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Ciruela F, Albergaria C, Soriano A, Cuffí L, Carbonell L, Sánchez S, Gandía J, Fernández-Dueñas V. Adenosine receptors interacting proteins (ARIPs): Behind the biology of adenosine signaling. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1798:9-20. [PMID: 19883624 DOI: 10.1016/j.bbamem.2009.10.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 09/26/2009] [Accepted: 10/27/2009] [Indexed: 01/18/2023]
Abstract
Adenosine is a well known neuromodulator in the central nervous system. As a consequence, adenosine can be beneficial in certain disorders and adenosine receptors will be potential targets for therapy in a variety of diseases. Adenosine receptors are G protein-coupled receptors, and are also expressed in a large variety of cells and tissues. Using these receptors as a paradigm of G protein-coupled receptors, the present review focus on how protein-protein interactions might contribute to neurotransmitter/neuromodulator regulation, based on the fact that accessory proteins impinge on the receptor/G protein interaction and therefore modulate receptor functioning. Besides affecting receptor signaling, these accessory components also play a key role in receptor trafficking, internalization and desensitization, as it will be reviewed here. In conclusion, the finding of an increasing number of adenosine receptors interacting proteins, and specially the molecular and functional integration of these accessory proteins into receptorsomes, will open new perspectives in the understanding of particular disorders where these receptors have been proved to be involved.
Collapse
Affiliation(s)
- Francisco Ciruela
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina-Bellvitge, Pavelló de Govern, Universitat de Barcelona, 08907 L'Hospitalet del Llobregat, Barcelona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Atterbury A, Wall MJ. Adenosine signalling at immature parallel fibre-Purkinje cell synapses in rat cerebellum. J Physiol 2009; 587:4497-508. [PMID: 19651764 DOI: 10.1113/jphysiol.2009.176420] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The purine adenosine is an extracellular signalling molecule involved in a large number of physiological and pathological conditions throughout the mammalian brain. However little is known about how adenosine release and its subsequent clearance change during brain development. We have combined electrophysiology and microelectrode biosensor measurements to investigate the properties of adenosine signalling at early stages of cerebellar development, when parallel fibre-Purkinje cell synapses have recently been formed (postnatal days 9-12). At this stage of development, we could detect little or no inhibitory A(1) receptor tone in basal conditions and during trains of stimuli. Addition of pharmacological agents, to inhibit adenosine clearance, had only minor effects on synaptic transmission suggesting that under basal conditions, the concentration of adenosine moving in and out of the extracellular space is small. Active adenosine release was stimulated with hypoxia and trains of electrical stimuli. Although hypoxia released significant concentrations of adenosine, the release was delayed and slow. No adenosine release could be detected following electrical stimulation in the molecular layer. In conclusion, at this stage of development, although adenosine receptors and the mechanisms of adenosine clearance are present there is very little adenosine release.
Collapse
Affiliation(s)
- Alison Atterbury
- Neuroscience Group, Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | |
Collapse
|
30
|
Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron 2009; 61:213-9. [PMID: 19186164 DOI: 10.1016/j.neuron.2008.11.024] [Citation(s) in RCA: 619] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 11/25/2008] [Accepted: 11/25/2008] [Indexed: 11/24/2022]
Abstract
Astrocytes modulate neuronal activity by releasing chemical transmitters via a process termed gliotransmission. The role of this process in the control of behavior is unknown. Since one outcome of SNARE-dependent gliotransmission is the regulation of extracellular adenosine and because adenosine promotes sleep, we genetically inhibited the release of gliotransmitters and asked if astrocytes play an unsuspected role in sleep regulation. Inhibiting gliotransmission attenuated the accumulation of sleep pressure, assessed by measuring the slow wave activity of the EEG during NREM sleep, and prevented cognitive deficits associated with sleep loss. Since the sleep-suppressing effects of the A1 receptor antagonist CPT were prevented following inhibition of gliotransmission and because intracerebroventricular delivery of CPT to wild-type mice mimicked the transgenic phenotype, we conclude that astrocytes modulate the accumulation of sleep pressure and its cognitive consequences through a pathway involving A1 receptors.
Collapse
|
31
|
Yum DS, Cho JH, Choi IS, Nakamura M, Lee JJ, Lee MG, Choi BJ, Choi JK, Jang IS. Adenosine A1 receptors inhibit GABAergic transmission in rat tuberomammillary nucleus neurons. J Neurochem 2008; 106:361-71. [PMID: 18397365 DOI: 10.1111/j.1471-4159.2008.05400.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The adenosinergic modulation of GABAergic spontaneous miniature inhibitory postsynaptic currents (mIPSCs) was investigated in mechanically dissociated rat tuberomammillary nucleus (TMN) neurons using a conventional whole-cell patch clamp technique. Adenosine (100 microM) reversibly decreased mIPSC frequency without affecting the current amplitude, indicating that adenosine acts presynaptically to decrease the probability of spontaneous GABA release. The adenosine action on GABAergic mIPSC frequency was completely blocked by 1 microM DPCPX, a selective A(1) receptor antagonist, and mimicked by 1 microM CPA, a selective A(1) receptor agonist. This suggests that presynaptic A(1) receptors were responsible for the adenosine-mediated inhibition of GABAergic mIPSC frequency. CPA still decreased GABAergic mIPSC frequency even either in the presence of 200 microM Cd(2+), a general voltage-dependent Ca(2+) channel blocker, or in the Ca(2+)-free external solution. However, the inhibitory effect of CPA on GABAergic mIPSC frequency was completely occluded by 1 mM Ba(2+), a G-protein coupled inwardly rectifying K(+) (GIRK) channel blocker. In addition, the CPA-induced decrease in mIPSC frequency was completely occluded by either 100 microM SQ22536, an adenylyl cyclase (AC) inhibitor, or 1 muM KT5720, a specific protein kinase A (PKA) inhibitor. The results suggest that the activation of presynaptic A(1) receptors decreases spontaneous GABAergic transmission onto TMN neurons via the modulation of GIRK channels as well as the AC/cAMP/PKA signal transduction pathway. This adenosine A(1) receptor-mediated modulation of GABAergic transmission onto TMN neurons may play an important role in the fine modulation of the excitability of TMN histaminergic neurons as well as the regulation of sleep-wakefulness.
Collapse
Affiliation(s)
- Do-Seop Yum
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Koike-Tani M, Kanda T, Saitoh N, Yamashita T, Takahashi T. Involvement of AMPA receptor desensitization in short-term synaptic depression at the calyx of Held in developing rats. J Physiol 2008; 586:2263-75. [PMID: 18339695 DOI: 10.1113/jphysiol.2007.142547] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Paired-pulse facilitation (PPF) and depression (PPD) are forms of short-term plasticity that are generally thought to reflect changes in transmitter release probability. However, desensitization of postsynaptic AMPA receptors (AMPARs) significantly contributes to PPD at many glutamatergic synapses. To clarify the involvement of AMPAR desensitization in synaptic PPD, we compared PPD with AMPAR desensitization, induced by paired-pulse glutamate application in patches excised from postsynaptic cells at the calyx of Held synapse of developing rats. We found that AMPAR desensitization contributed significantly to PPD before the onset of hearing (P10-12), but that its contribution became negligible after hearing onset. During postnatal development (P7-21) the recovery of AMPARs from desensitization became faster. Concomitantly, glutamate sensitivity of AMPAR desensitization declined. Single-cell reverse transcription-polymerase chain reaction (RT-PCR) analysis indicated a developmental decline of GluR1 expression that correlated with speeding of the recovery of AMPARs from desensitization. Transmitter release probability declined during the second postnatal week (P7-14). Manipulation of the extracellular Ca2+/Mg2+ ratio, to match release probability at P7-8 and P13-15 synapses, revealed that the release probability is also an important factor determining the involvement of AMPAR desensitization in PPD. We conclude that the extent of involvement of AMPAR desensitization in short-term synaptic depression is determined by both pre- and postsynaptic mechanisms.
Collapse
Affiliation(s)
- Maki Koike-Tani
- Doshisha University Faculty of Life and Medical Sciences, 619-0225, Japan
| | | | | | | | | |
Collapse
|
33
|
Nakamura T, Yamashita T, Saitoh N, Takahashi T. Developmental changes in calcium/calmodulin-dependent inactivation of calcium currents at the rat calyx of Held. J Physiol 2008; 586:2253-61. [PMID: 18238813 DOI: 10.1113/jphysiol.2007.142521] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Ca2+-binding to calmodulin (CaM) causes facilitation and/or inactivation of recombinant Ca2+ channels. At the rat calyx of Held, before hearing onset, presynaptic Ca2+ currents (IpCa) undergo Ca2+/CaM-dependent inactivation during repetitive activation at around 1 Hz, implying that this may be a major cause of short-term synaptic depression. However, it remains open whether the Ca2+/CaM-dependent inactivation of IpCa persists in more mature animals. To address this question, we tested the effect of CaM inhibitors on the activity-dependent modulation of IpCa in calyces, before (postnatal day (P) 7-9) and after (P13-15) hearing onset. Our results indicate that the CaM-dependent IpCa inactivation during low-frequency stimulation, and the ensuing synaptic depression, occur only at calyces in the prehearing period. However, CaM immunoreactivity in P8 and P14 calyces was equally strong. Even at P13-15, high frequency stimulation (200-500 Hz) could induce IpCa inactivation, which was attenuated by EGTA (10 mM) or a CaM inhibitor peptide loaded into the terminal. Furthermore, the CaM inhibitor peptide attenuated a transient facilitation of IpCa preceding inactivation observed at 500 Hz stimulation, whereas it had no effect on sustained IpCa facilitations during trains of 50-200 Hz stimulation. These results suggest that the Ca2+/CaM-dependent IpCa modulation requires a high intraterminal Ca2+ concentration, which can be attained at immature calyces during low frequency stimulation, but only during unusually high frequency stimulation at calyceal terminals in the posthearing period.
Collapse
Affiliation(s)
- Takeshi Nakamura
- Doshisha University, Faculty of Life and Medical Sciences, Kyoto 619-0225, Japan
| | | | | | | |
Collapse
|
34
|
Abstract
G-proteins (guanine nucleotide-binding proteins) are membrane-attached proteins composed of three subunits, alpha, beta, and gamma. They transduce signals from G-protein coupled receptors (GPCRs) to target effector proteins. The agonistactivated receptor induces a conformational change in the G-protein trimer so that the alpha-subunit binds GTP in exchange for GDP and alpha-GTP, and betagamma-subunits separate to interact with the target effector. Effector-interaction is terminated by the alpha-subunit GTPase activity, whereby bound GTP is hydrolyzed to GDP. This is accelerated in situ by RGS proteins, acting as GTPase-activating proteins (GAPs). Galpha-GDP and Gbetagamma then reassociate to form the Galphabetagamma trimer. G-proteins primarily involved in the modulation of neurotransmitter release are G(o), G(q) and G(s). G(o) mediates the widespread presynaptic auto-inhibitory effect of many neurotransmitters (e.g., via M2/M4 muscarinic receptors, alpha(2) adrenoreceptors, micro/delta opioid receptors, GABAB receptors). The G(o) betagamma-subunit acts in two ways: first, and most ubiquitously, by direct binding to CaV2 Ca(2+) channels, resulting in a reduced sensitivity to membrane depolarization and reduced Ca(2+) influx during the terminal action potential; and second, through a direct inhibitory effect on the transmitter release machinery, by binding to proteins of the SNARE complex. G(s) and G(q) are mainly responsible for receptor-mediated facilitatory effects, through activation of target enzymes (adenylate cyclase, AC and phospholipase-C, PLC respectively) by the GTP-bound alpha-subunits.
Collapse
Affiliation(s)
- David A Brown
- Department of Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.
| | | |
Collapse
|
35
|
Inchauspe CG, Forsythe ID, Uchitel OD. Changes in synaptic transmission properties due to the expression of N-type calcium channels at the calyx of Held synapse of mice lacking P/Q-type calcium channels. J Physiol 2007; 584:835-51. [PMID: 17823210 PMCID: PMC2277003 DOI: 10.1113/jphysiol.2007.139683] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
P/Q-type and N-type calcium channels mediate transmitter release at rapidly transmitting central synapses, but the reasons for the specific expression of one or the other in each particular synapse are not known. Using whole-cell patch clamping from in vitro slices of the auditory brainstem we have examined presynaptic calcium currents (I(pCa)) and glutamatergic excitatory postsynaptic currents (EPSCs) at the calyx of Held synapse from transgenic mice in which the alpha(1A) pore-forming subunit of the P/Q-type Ca(2+) channels is ablated (KO). The power relationship between Ca(2+) influx and quantal output was studied by varying the number of Ca(2+) channels engaged in triggering release. Our results have shown that more overlapping Ca(2+) channel domains are required to trigger exocytosis when N-type replace P/Q-type calcium channels suggesting that P/Q type Ca(2+) channels are more tightly coupled to synaptic vesicles than N-type channels, a hypothesis that is verified by the decrease in EPSC amplitudes in KO synapses when the slow Ca(2+) buffer EGTA-AM was introduced into presynaptic calyces. Significant alterations in short-term synaptic plasticity were observed. Repetitive stimulation at high frequency generates short-term depression (STD) of EPSCs, which is not caused by presynaptic Ca(2+) current inactivation neither in WT or KO synapses. Recovery after STD is much slower in the KO than in the WT mice. Synapses from KO mice exhibit reduced or no EPSC paired-pulse facilitation and absence of facilitation in their presynaptic N-type Ca(2+) currents. Simultaneous pre- and postsynaptic double patch recordings indicate that presynaptic Ca(2+) current facilitation is the main determinant of facilitation of transmitter release. Finally, KO synapses reveal a stronger modulation of transmitter release by presynaptic GTP-binding protein-coupled receptors (gamma-aminobutyric acid type B receptors, GABA(B), and adenosine). In contrast, metabotropic glutamate receptors (mGluRs) are not functional at the synapses of these mice. These experiments reinforce the idea that presynaptic Ca(2+) channels expression may be tuned for speed and modulatory control through differential subtype expression.
Collapse
Affiliation(s)
- Carlota González Inchauspe
- Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | | | | |
Collapse
|
36
|
Gundlfinger A, Bischofberger J, Johenning FW, Torvinen M, Schmitz D, Breustedt J. Adenosine modulates transmission at the hippocampal mossy fibre synapse via direct inhibition of presynaptic calcium channels. J Physiol 2007; 582:263-77. [PMID: 17478533 PMCID: PMC2075290 DOI: 10.1113/jphysiol.2007.132613] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The modulation of synaptic transmission by presynaptic ionotropic and metabotropic receptors is an important means to control and dynamically adjust synaptic strength. Even though synaptic transmission and plasticity at the hippocampal mossy fibre synapse are tightly controlled by presynaptic receptors, little is known about the downstream signalling mechanisms and targets of the different receptor systems. In the present study, we identified the cellular signalling cascade by which adenosine modulates mossy fibre synaptic transmission. By means of electrophysiological and optical recording techniques, we found that adenosine activates presynaptic A1 receptors and reduces Ca2+ influx into mossy fibre terminals. Ca2+ currents are directly modulated via a membrane-delimited pathway and the reduction of presynaptic Ca2+ influx can explain the inhibition of synaptic transmission. Specifically, we found that adenosine modulates both P/Q- and N-type presynaptic voltage-dependent Ca2+ channels and thereby controls transmitter release at the mossy fibre synapse.
Collapse
Affiliation(s)
- A Gundlfinger
- Neurowissenschaftliches Forschungszentrum der Charité, Universitätsmedizin Berlin, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Xu J, He L, Wu LG. Role of Ca(2+) channels in short-term synaptic plasticity. Curr Opin Neurobiol 2007; 17:352-9. [PMID: 17466513 DOI: 10.1016/j.conb.2007.04.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 04/17/2007] [Indexed: 10/23/2022]
Abstract
Repetitive nerve activity induces various forms of short-term synaptic plasticity that have important computational roles in neuronal networks. Several forms of short-term plasticity are caused largely by changes in transmitter release, but the mechanisms that underlie these changes in the release process have been difficult to address. Recent studies of a giant synapse - the calyx of Held - have shed new light on this issue. Recordings of Ca(2+) currents or Ca(2+) concentrations at nerve terminals reveal that regulation of presynaptic Ca(2+) channels has a significant role in three important forms of short-term plasticity: short-term depression, facilitation and post-tetanic potentiation.
Collapse
Affiliation(s)
- Jianhua Xu
- National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
38
|
Wall MJ, Dale N. Auto-inhibition of rat parallel fibre-Purkinje cell synapses by activity-dependent adenosine release. J Physiol 2007; 581:553-65. [PMID: 17347275 PMCID: PMC2075183 DOI: 10.1113/jphysiol.2006.126417] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Adenosine is an important signalling molecule involved in a large number of physiological functions. In the brain these processes are as diverse as sleep, memory, locomotion and neuroprotection during episodes of ischaemia and hypoxia. Although the actions of adenosine, through cell surface G-protein-coupled receptors, are well characterized, in many cases the sources of adenosine and mechanisms of release have not been defined. Here we demonstrate the activity-dependent release of adenosine in the cerebellum using a combination of electrophysiology and biosensors. Short trains of electrical stimuli delivered to the molecular layer in vitro, release adenosine via a process that is both TTX and Ca2+ sensitive. As ATP release cannot be detected, adenosine must either be released directly or rapidly produced by highly localized and efficient extracellular ATP breakdown. Since adenosine release can be modulated by receptors that act on parallel fibre–Purkinje cell synapses, we suggest that the parallel fibres release adenosine. This activity-dependent adenosine release exerts feedback inhibition of parallel fibre–Purkinje cell transmission. Spike-mediated adenosine release from parallel fibres will thus powerfully regulate cerebellar circuit output.
Collapse
Affiliation(s)
- Mark J Wall
- Neuroscience Group, Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| | | |
Collapse
|
39
|
Momiyama T, Fukazawa Y. D1-like dopamine receptors selectively block P/Q-type calcium channels to reduce glutamate release onto cholinergic basal forebrain neurones of immature rats. J Physiol 2007; 580:103-17. [PMID: 17234695 PMCID: PMC2075417 DOI: 10.1113/jphysiol.2006.125724] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Whole-cell patch-clamp recordings of non-NMDA glutamatergic EPSCs were made from identified cholinergic neurones in slices of basal forebrain (BF) of young rats (P13-P18), to investigate the subtypes of calcium channels involved in dopamine D(1)-like receptor-mediated presynaptic inhibition of the EPSCs. The BF cholinergic neurones were pre-labelled by intracerebroventricular injection of a fluorescent marker, Cy3-192IgG. A D(1)-like receptor agonist, SKF 81297 (30 microM) suppressed the EPSCs reversibly by about 30%, and this inhibition was reproducible. Calcium channel subtypes involved in the glutamatergic transmission were elucidated using selective Ca(2+) channel blockers. The N-type Ca(2+) channel blocker omega-conotoxin (omega-CgTX, 3 microM) suppressed the EPSCs by 57.5%, whereas the P/Q-type channel selective blocker omega-agatoxin-TK (omega-Aga-TK, 200 nM) suppressed the EPSCs by 68.9%. Simultaneous application of both blockers suppressed the EPSCs by 96.1%. The R-type Ca(2+) channel blocker SNX-482 (300 nM) suppressed the EPSCs by 18.4%, whereas nifedipine, the L-type Ca(2+) channel blocker (10 microM), had little effect. In the presence of omega-Aga-TK, SKF 81297, a dopamine D(1)-like receptor agonist, had no effect on the EPSCs. On the other hand, SKF 81297 could still inhibit the EPSCs in the presence of either omega-CgTX, SNX-482 or nifedipine. SKF 81297 had no further effect on the EPSCs when external Ca(2+) concentration was raised to 7.2 mM in the presence of omega-Aga-TK, but could still inhibit the EPSCs in high Ca(2+) solution after omega-CgTX application. Forskolin (FK, 10 microM), an activator of adenylyl cyclase pathway, suppressed the EPSCs, and the FK-induced effect was mostly blocked in the presence of omega-Aga-TK but not that of omega-CgTX. These results suggest that D(1)-like receptor activation selectively blocks P/Q-type calcium channels to reduce glutamate release onto BF cholinergic neurones.
Collapse
Affiliation(s)
- Toshihiko Momiyama
- Division of Cerebral Structure, National Institute for Physiological Sciences, Okazaki 444-8787, Japan.
| | | |
Collapse
|
40
|
Mizutani H, Hori T, Takahashi T. 5-HT1Breceptor-mediated presynaptic inhibition at the calyx of Held of immature rats. Eur J Neurosci 2006; 24:1946-54. [PMID: 17067296 DOI: 10.1111/j.1460-9568.2006.05063.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
5-hydroxytryptamine (5-HT) inhibits transmitter release via activating GTP-binding proteins, but the target of 5-HT receptors in the nerve terminal is not determined. We addressed this question at the calyx of Held synapse in the brainstem slice of immature rats. Bath-application of 5-HT attenuated the amplitude of nerve-evoked excitatory postsynaptic currents (EPSCs) associated with an increase in the paired-pulse ratio, whereas it had no effect on the amplitude of spontaneous miniature EPSCs. The 5-HT1B receptor agonist CP93129 mimicked the inhibitory effect of 5-HT, but the 5-HT1A agonist (R)-(+)-8-hydroxy-DPAT (8-OHDPAT) had no effect. The 5-HT1B receptor antagonist NAS-181 blocked the inhibitory effect of 5-HT. These results suggest that 5-HT activated 5-HT1B receptors in calyceal nerve terminals, thereby inhibiting transmitter release. In direct whole-cell recordings from calyceal nerve terminals, 5-HT attenuated voltage-dependent Ca2+ currents, but had no effect on voltage-dependent K+ currents. When EPSCs were evoked by presynaptic Ca2+ currents during simultaneous pre- and postsynaptic recordings, the magnitude of the 5-HT-induced inhibition of Ca2+ currents fully explained that of EPSCs. Upon repetitive applications, 5-HT showed tachyphylaxis, with its effect on both EPSCs and presynaptic Ca2+ currents becoming weaker in the second application. 1,2-bis(o-aminophenoxy)ethane-N-N'-N'-N'-tetraacetic acid (BAPTA; 10 mm) loaded into the nerve terminal abolished this tachyphylaxis. The presynaptic inhibitory effect of 5-HT was prominent at postnatal day 5, but became weaker as animals matured. We conclude that activation of 5-HT1B receptors inhibits voltage-gated Ca2+ channels, thereby inhibiting transmitter release at immature calyceal nerve terminals, and that 5-HT1B receptors undergo Ca2+-dependent tachyphylaxis on repetitive activations.
Collapse
Affiliation(s)
- Haruo Mizutani
- Department of Neurophysiology, University of Tokyo Graduate School of Medicine, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
41
|
Abstract
The calyx of Held is a large glutamatergic synapse in the mammalian auditory brainstem. By using brain slice preparations, direct patch-clamp recordings can be made from the nerve terminal and its postsynaptic target (principal neurons of the medial nucleus of the trapezoid body). Over the last decade, this preparation has been increasingly employed to investigate basic presynaptic mechanisms of transmission in the central nervous system. We review here the background to this preparation and summarise key findings concerning voltage-gated ion channels of the nerve terminal and the ionic mechanisms involved in exocytosis and modulation of transmitter release. The accessibility of this giant terminal has also permitted Ca(2+)-imaging and -uncaging studies combined with electrophysiological recording and capacitance measurements of exocytosis. Together, these studies convey the panopoly of presynaptic regulatory processes underlying the regulation of transmitter release, its modulatory control and short-term plasticity within one identified synaptic terminal.
Collapse
Affiliation(s)
- Ralf Schneggenburger
- Laboratory of Synaptic Mechanisms, Ecole Polytechnique Fédérale de Lausanne (EPFL), Brain Mind Institute, Bâtiment AAB, Station 15, CH-1015 Lausanne, Switzerland.
| | | |
Collapse
|
42
|
Moulder KL, Meeks JP, Mennerick S. Homeostatic regulation of glutamate release in response to depolarization. Mol Neurobiol 2006; 33:133-53. [PMID: 16603793 DOI: 10.1385/mn:33:2:133] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Revised: 11/30/1999] [Accepted: 08/04/2005] [Indexed: 11/11/2022]
Abstract
Proper nervous system function requires a balance between excitation and inhibition. Systems of homeostasis may have evolved in neurons to help maintain or restore balance between excitation and inhibition, presumably because excessive excitation can cause dysfunction and cell death. This article reviews evidence for homeostatic mechanisms within the hippocampus that lead to differential regulation of glutamate and gamma-aminobutyric acid release in response to conditions of excess depolarization. We recently found differential effects on glutamate release at the level of action potential coupling to transmitter release, vesicular release probability, and vesicle availability. Such differential regulation may help to prevent excitotoxicity and runaway excitation.
Collapse
Affiliation(s)
- Krista L Moulder
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | | | | |
Collapse
|
43
|
Wong AYC, Billups B, Johnston J, Evans RJ, Forsythe ID. Endogenous activation of adenosine A1 receptors, but not P2X receptors, during high-frequency synaptic transmission at the calyx of Held. J Neurophysiol 2006; 95:3336-42. [PMID: 16481462 DOI: 10.1152/jn.00694.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation of presynaptic receptors plays an important role in modulation of transmission at many synapses, particularly during high-frequency trains of stimulation. Adenosine-triphosphate (ATP) is coreleased with several neurotransmitters and acts at presynaptic sites to reduce transmitter release; such presynaptic P2X receptors occur at inhibitory and excitatory terminals in the medial nucleus of the trapezoid body (MNTB). We have investigated the mechanism of purinergic modulation during high-frequency repetitive stimulation at the calyx of Held synapse. Suppression of calyceal excitatory postsynaptic currents (EPSCs) by ATP and ATPgammaS (100 microM) was mimicked by adenosine application and was blocked by DPCPX (10 microM), indicating mediation by adenosine A1 receptors. DPCPX enhanced EPSC amplitudes during high-frequency synaptic stimulation, suggesting that adenosine has a physiological role in modulating transmission at the calyx. The Luciferin-Luciferase method was used to probe for endogenous ATP release (at 37 degrees C), but no release was detected. Blockers of ectonucleotidases also had no effect on endogenous synaptic depression, suggesting that it is adenosine acting on A1 receptors, rather than degradation of released ATP, which accounts for presynaptic purinergic suppression of synaptic transmission during physiological stimulus trains at this glutamatergic synapse.
Collapse
Affiliation(s)
- Adrian Y C Wong
- Department of Cell Physiology and Pharmacology, University of Leicester, United Kingdom
| | | | | | | | | |
Collapse
|
44
|
Noriyama Y, Ogawa Y, Yoshino H, Yamashita M, Kishimoto T. Dopamine profoundly suppresses excitatory transmission in neonatal rat hippocampus via phosphatidylinositol-linked D1-like receptor. Neuroscience 2006; 138:475-85. [PMID: 16406680 DOI: 10.1016/j.neuroscience.2005.11.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Revised: 11/09/2005] [Accepted: 11/20/2005] [Indexed: 11/17/2022]
Abstract
Dopamine modulates synaptic transmission in various brain regions. The disorder of dopamine system may be related to neurodevelopmental dysfunction. However, the action of dopamine on synaptic transmission during development is largely unknown. We studied the effect of dopamine on GABAergic and glutamatergic transmission in neonatal rat hippocampus from the early period of synapse formation by whole-cell patch-clamp recordings from CA1 pyramidal cells. Dopamine (100 muM) profoundly decreased the amplitude of GABA(A) receptor-mediated postsynaptic currents (GABA(A)-PSCs) to 32.2+/-5.4% (mean+/-S.E.M., EC(50): 2.9 muM) in the first postnatal week, when GABA provides excitatory drive. Dopamine also decreased the amplitude of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated excitatory postsynaptic currents (EPSCs) to 29.1+/-2.7% (EC(50): 18.7 muM) in the second postnatal week, when glutamate responses first appear. The dopamine-induced inhibition declined after these periods and became only partial after postnatal day 30. Further we identified the receptor subtype involved in the dopamine-induced inhibition as phosphatidylinositol-linked D1-like receptor, since 6-chloro-2,3,4,5-tetrahydro-3-methyl-1-(3-methylphenyl)-1H-3-benzazepine-7,8-diol hydrobromide (SKF 83959), a selective agonist for phosphatidylinositol-linked D1-like receptor, clearly mimicked the action of dopamine, and 1-[6-[((17beta)-3-methoxyestra-1,3,5[10]-trien-17-yl)amino]hexyl]-1H-pyrrole-2,5-dione (U-73122), an inhibitor of phospholipase C, significantly reduced the dopamine-induced inhibition. Dopamine did not change the response to puff-applied GABA or kainic acid, nor the amplitude of miniature GABA(A)-PSCs or miniature EPSCs. These results suggest that the activation of phosphatidylinositol-linked D1-like receptor profoundly suppresses the excitatory transmission during the early period of synapse formation in the developing hippocampus by presynaptic mechanisms. This study firstly demonstrates the effect of phosphatidylinositol-linked D1-like receptor on synaptic transmission.
Collapse
Affiliation(s)
- Y Noriyama
- Department of Psychiatry, Nara Medical University, Shijo-cho 840, Kashihara 634-8521, Japan
| | | | | | | | | |
Collapse
|
45
|
Fontanez DE, Porter JT. Adenosine A1 receptors decrease thalamic excitation of inhibitory and excitatory neurons in the barrel cortex. Neuroscience 2005; 137:1177-84. [PMID: 16343787 PMCID: PMC3698575 DOI: 10.1016/j.neuroscience.2005.10.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Revised: 10/17/2005] [Accepted: 10/17/2005] [Indexed: 11/29/2022]
Abstract
Caffeine is consumed worldwide to enhance wakefulness, but the cellular mechanisms are poorly understood. Caffeine blocks adenosine receptors suggesting that adenosine decreases cortical arousal. Given the widespread innervation of the cerebral cortex by thalamic fibers, adenosine receptors on thalamocortical terminals could provide an efficient method of limiting thalamic activation of the cortex. Using a mouse thalamocortical slice preparation and whole-cell patch clamp recordings, we examined whether thalamocortical terminals are modulated by adenosine receptors. Bath application of adenosine decreased excitatory postsynaptic currents elicited by stimulation of the ventrobasal thalamus. Thalamocortical synapses onto inhibitory and excitatory neurons were equally affected by adenosine. Adenosine also increased the paired pulse ratio and the coefficient of variation of the excitatory postsynaptic currents, suggesting that adenosine decreased glutamate release. The inhibition produced by adenosine was reversed by a selective antagonist of adenosine A1 receptors (8-cyclopentyltheophylline) and mimicked by a selective A1 receptor agonist (N6-cyclopentyladenosine). Our results indicate that thalamocortical excitation is regulated by presynaptic adenosine A1 receptors and provide a mechanism by which increased adenosine levels can directly reduce cortical excitability.
Collapse
Affiliation(s)
- D E Fontanez
- Department of Physiology and Pharmacology, Ponce School of Medicine, PO Box 7004, Ponce, Puerto Rico 00732
| | | |
Collapse
|
46
|
Takahashi T. Dynamic aspects of presynaptic calcium currents mediating synaptic transmission. Cell Calcium 2005; 37:507-11. [PMID: 15820400 DOI: 10.1016/j.ceca.2005.01.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2004] [Accepted: 01/06/2005] [Indexed: 10/25/2022]
Abstract
Ca2+ entry through voltage-gated Ca2+ channels (VGCC) triggers transmitter release. Direct recording of Ca2+ currents from the calyx of Held nerve terminal revealed that presynaptic VGCCs undergo various modulations via presynaptic G protein-coupled receptors (GPCRs), Ca2+-binding proteins and a developmental switch of their alpha1 subunits. Dynamic changes of presynaptic VGCCs alter synaptic efficacy, thereby contributing to a variety of modulations of the CNS function.
Collapse
Affiliation(s)
- Tomoyuki Takahashi
- Department of Neurophysiology, University of Tokyo Graduate School of Medicine, Tokyo 113-0033, Japan.
| |
Collapse
|
47
|
Franco R, Ciruela F, Casadó V, Cortes A, Canela EI, Mallol J, Agnati LF, Ferré S, Fuxe K, Lluis C. Partners for adenosine A1 receptors. J Mol Neurosci 2005; 26:221-32. [PMID: 16012195 DOI: 10.1385/jmn:26:2-3:221] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
G protein-coupled receptors (GPCRs) are targets for therapy in a variety of neurological diseases. Using adenosine A1 receptors (A1Rs) as paradigm of GPCRs, this review focuses on how protein-protein interactions, from monomers to heteromers, can contribute to hormone/neurotransmitter/neuromodulator regulation. The interaction of A1Rs with other membrane receptors, enzymes, and adaptor and scaffolding proteins is relevant for receptor traffic, internalization, and desensitization, and A1Rs are extremely important in driving signaling through different intracellular pathways. There is even the possibility of linking together GPCR heteromeric complexes with ion channel receptors in a receptor mosaic that might have special integrative value and might constitute the molecular basis for learning and memory.
Collapse
Affiliation(s)
- Rafael Franco
- Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Renden R, Taschenberger H, Puente N, Rusakov DA, Duvoisin R, Wang LY, Lehre KP, von Gersdorff H. Glutamate transporter studies reveal the pruning of metabotropic glutamate receptors and absence of AMPA receptor desensitization at mature calyx of Held synapses. J Neurosci 2005; 25:8482-97. [PMID: 16162930 PMCID: PMC3375655 DOI: 10.1523/jneurosci.1848-05.2005] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 06/29/2005] [Accepted: 07/21/2005] [Indexed: 11/21/2022] Open
Abstract
We examined the effect of glutamate transporter blockade at the calyx of Held synapse. In immature synapses [defined as postnatal day 8 (P8) to P10 rats], transporter blockade causes tonic activation of NMDA receptors and strong inhibition of the AMPA receptor-mediated EPSC amplitude. EPSC inhibition was blocked with a metabotropic glutamate receptor (mGluR) antagonist [1 microm LY341495 (2S-2-amino-2-(1S,2S-2-carboxycycloprop-1-yl)-3-(xanth-9-yl)propanoic acid)], suggesting that elevated resting glutamate concentration specifically activates group II and group III mGluRs. Using mGluR subtype-specific agonists and antagonists, we determined that increased glutamate activates presynaptic mGluR2/3 and mGluR8 receptors but not mGluR4, although this receptor is present. Surprisingly, in older animals (P16-P18), transporter blockade had no effect on EPSC amplitude because of a developmental downregulation of group II/III mGluR activation in rats and mice. In contrast to other CNS synapses, we observed no effect of transporter blockade on EPSC decay kinetics, although expression of glutamate transporters was strong in nearby glial processes at both P9 and P17. Finally, using a low-affinity AMPA receptor antagonist (gamma-D-glutamylglycine), we show that desensitization occurs at P8-P10 but is absent at P16-P18, even during trains of high-frequency (100-300 Hz) stimulation. We suggest that diffusion and transporter activation are insufficient to clear synaptically released glutamate at immature calyces, resulting in significant desensitization. Thus, mGluRs may be expressed in the immature calyx to help limit glutamate release. In the more mature calyx, there is a far smaller diffusional barrier attributable to the highly fenestrated synaptic terminal morphology, so AMPA receptor desensitization is avoided and mGluR-mediated inhibition is not necessary.
Collapse
Affiliation(s)
- Robert Renden
- The Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Schneggenburger R, Neher E. Presynaptic calcium and control of vesicle fusion. Curr Opin Neurobiol 2005; 15:266-74. [PMID: 15919191 DOI: 10.1016/j.conb.2005.05.006] [Citation(s) in RCA: 238] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Accepted: 05/05/2005] [Indexed: 10/25/2022]
Abstract
Vesicle fusion and transmitter release at synapses is driven by a highly localized Ca2+ signal that rapidly builds up around open Ca2+-channels at and near presynaptic active zones. It has been difficult to estimate the amplitude and the kinetics of this 'microdomain' signal by direct Ca2+-imaging approaches. Recently, Ca2+ uncaging at large CNS synapses, among them the calyx of Held, has shown that the intrinsic cooperativity of Ca2+ in inducing vesicle fusion is high, with 4-5 Ca2+ ions needed to trigger vesicle fusion. Given the Ca2+-sensitivity of vesicle fusion as determined by Ca2+-uncaging, it was found that a surprisingly small (10-25 microM) and brief (<1 ms) local Ca2+ signal is sufficient to achieve the amount, and the kinetics of the physiological transmitter release. The high cooperativity of Ca2+ in inducing vesicle fusion and the non-saturation of the Ca2+-sensor for vesicle fusion renders small changes of the local Ca2+-signal highly effective in changing the release probability; an insight that is important for our understanding of short-term modulation of synaptic strength.
Collapse
Affiliation(s)
- Ralf Schneggenburger
- AG Synaptische Dynamik & Modulation and Abt. Membranbiophysik, Max-Planck-Institut für biophysikalische Chemie, Am Fassberg 11, D-37077 Göttingen, Germany.
| | | |
Collapse
|
50
|
Sela R, Segel L, Parnas I, Parnas H. Release of Neurotransmitter Induced by Ca2+-Uncaging: Reexamination of the Ca-Voltage Hypothesis for Release. J Comput Neurosci 2005; 19:5-20. [PMID: 16133822 DOI: 10.1007/s10827-005-0187-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2004] [Revised: 11/02/2004] [Accepted: 11/04/2004] [Indexed: 10/25/2022]
Abstract
The primacy of Ca2+ in controlling the amount of released neurotransmitter is well established. However, it is not yet clear what controls the time-course (initiation and termination) of release. Various experiments indicated that the time-course is controlled by membrane potential per se. Consequently the phenomenological Ca-Voltage-Hypothesis (CVH) was formulated. The CVH was later embodied in a molecular level mathematical model, whose key predictions were affirmed experimentally. Nonetheless, the single most important basis for the CVH, namely that depolarization per se is needed to induce physiological phasic release, was challenged by two major experimental findings. (i) Release was induced by Ca2+ alone by means of Ca2+-uncaging. (ii) There was at most a small additional effect when depolarization was applied after release was induced by Ca2+-uncaging. Point (i) was dealt with previously, but additional conclusions are drawn here. Here we concentrate on (ii) and show that the experimental results can be fully accounted for by the molecular level CVH model, with essentially the same parameters.
Collapse
Affiliation(s)
- Rotem Sela
- Department of Neurobiology, Hebrew University, Jerusalem, 91904, Israel
| | | | | | | |
Collapse
|