1
|
Johnson NA, Dickenson JA, MacKenzie BW, Isakovich R, Kalker A, Bouten J, Strzalkowski ND, Harman TS, Holmström P, Kunwar AJ, Thakur N, Dhungel S, Sherpa N, Bigham AW, Brutsaert TD, Day TA. Comparing integrative ventilatory and renal acid-base acclimatization in lowlanders and Tibetan highlanders during ascent to 4,300 m. Proc Natl Acad Sci U S A 2025; 122:e2412561121. [PMID: 39793031 PMCID: PMC11725942 DOI: 10.1073/pnas.2412561121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/02/2024] [Indexed: 01/12/2025] Open
Abstract
With over 14 million people living above 3,500 m, the study of acclimatization and adaptation to high altitude in human populations is of increasing importance, where exposure to high altitude (HA) imposes a blood oxygenation and acid-base challenge. A sustained and augmented hypoxic ventilatory response protects oxygenation through ventilatory acclimatization, but elicits hypocapnia and respiratory alkalosis. A subsequent renally mediated compensatory metabolic acidosis corrects pH toward baseline values, with a high degree of interindividual variability. Differential renal compensation between acclimatizing lowlanders (LL) and Tibetan highlanders (TH; Sherpa) with ascent was previously unknown. We assessed ventilatory and renal acclimatization between unacclimatized LL and TH during incremental ascent from 1,400 m to 4,300 m in age- and sex-matched groups of 15-LL (8F) and 14-TH (7F) of confirmed Tibetan ancestry. We compared respiratory and renally mediated blood acid-base acclimatization (PCO2, [HCO3-], pH) in both groups before (1,400 m) and following day 8 to 9 of incremental ascent to 4,300 m. We found that following ascent to 4,300 m, LL had significantly lower PCO2 (P <0.0001) and [HCO3-] (P <0.0001), and higher pH (P = 0.0037) than 1,400 m, suggesting respiratory alkalosis and only partial renal compensation. Conversely, TH had significantly lower PCO2 (P < 0.0001) and [HCO3-] (P < 0.0001), but unchanged pH (P = 0.1), suggesting full renal compensation, with significantly lower PCO2 (P = 0.01), [HCO3-] (P < 0.0001) and pH (P = 0.005) than LL at 4,300 m. This demonstration of differential integrative respiratory-renal responses between acclimatizing LL and TH may indicate selective pressure on TH, and highlights the important role of the kidneys in acclimatization.
Collapse
Affiliation(s)
- Nicole A. Johnson
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, ABT3E 6K6, Canada
| | - Jessica A. Dickenson
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, ABT3E 6K6, Canada
| | - Benjamin W.L. MacKenzie
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, ABT3E 6K6, Canada
| | - Rodion Isakovich
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, ABT3E 6K6, Canada
| | - Anne Kalker
- Radboud University Medical Center, Nijmegen6525 XZ, Netherlands
| | - Janne Bouten
- Department of Movement and Sports Sciences, Ghent University, Ghent29000, Belgium
- Laboratory of Sport, Expertise and Performance, French Institute of Sport (INSEP), Paris75012, France
| | - Nicholas D.J. Strzalkowski
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, ABT3E 6K6, Canada
| | - Taylor S. Harman
- Department of Exercise Science, Syracuse University, Syracuse, NY13210
| | - Pontus Holmström
- Department of Health Sciences, Mid Sweden University, Östersund831 25, Sweden
| | - Ajaya J. Kunwar
- Kathmandu Center for Genomics and Research Laboratory, Global Hospital, Lalitpur44700, Nepal
| | - Nilam Thakur
- Kathmandu Center for Genomics and Research Laboratory, Global Hospital, Lalitpur44700, Nepal
| | - Sunil Dhungel
- College of Medicine, Nepalese Army Institute of Health Sciences, Kathmandu44600, Nepal
- Medical University of the Americas, Charlestown, Nevis, Saint Kitts and Nevis, West Indies, KN0802
| | - Nima Sherpa
- Glory of Nepal Travels and Tours, Kathmandu44600, Nepal
| | - Abigail W. Bigham
- Department of Anthropology, University of Los Angeles, Los Angeles, CA90095
| | - Tom D. Brutsaert
- Department of Exercise Science, Syracuse University, Syracuse, NY13210
| | - Trevor A. Day
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, ABT3E 6K6, Canada
| |
Collapse
|
2
|
Ferretti G, Strapazzon G. A revision of maximal oxygen consumption and exercise capacity at altitude 70 years after the first climb of Mount Everest. J Physiol 2024; 602:5419-5433. [PMID: 38299739 DOI: 10.1113/jp285606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/03/2024] [Indexed: 02/02/2024] Open
Abstract
On the 70th anniversary of the first climb of Mount Everest by Edmund Hillary and Tensing Norgay, we discuss the physiological bases of climbing Everest with or without supplementary oxygen. After summarizing the data of the 1953 expedition and the effects of oxygen administration, we analyse the reasons why Reinhold Messner and Peter Habeler succeeded without supplementary oxygen in 1978. The consequences of this climb for physiology are briefly discussed. An overall analysis of maximal oxygen consumption (V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ ) at altitude follows. In this section, we discuss the reasons for the non-linear fall ofV ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ at altitude, we support the statement that it is a mirror image of the oxygen equilibrium curve, and we propose an analogue of Hill's model of the oxygen equilibrium curve to analyse theV ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ fall. In the following section, we discuss the role of the ventilatory and pulmonary resistances to oxygen flow in limitingV ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ , which becomes progressively greater while moving toward higher altitudes. On top of Everest, these resistances provide most of theV ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ limitation, and the oxygen equilibrium curve and the respiratory system provide linear responses. This phenomenon is more accentuated in athletes with elevatedV ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ , due to exercise-induced arterial hypoxaemia. The large differences inV ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ that we observe at sea level disappear at altitude. There is no need for a very highV ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ at sea level to climb the highest peaks on Earth.
Collapse
Affiliation(s)
- Guido Ferretti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giacomo Strapazzon
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
- SIMeM Italian Society of Mountain Medicine, Padova, Italy
| |
Collapse
|
3
|
Webb KL, Gorman EK, Morkeberg OH, Klassen SA, Regimbal RJ, Wiggins CC, Joyner MJ, Hammer SM, Senefeld JW. The relationship between hemoglobin and
V
˙
O
2
m
a
x
: A systematic review and meta-analysis. PLoS One 2023; 18:e0292835. [PMID: 37824583 PMCID: PMC10569622 DOI: 10.1371/journal.pone.0292835] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 09/29/2023] [Indexed: 10/14/2023] Open
Abstract
OBJECTIVE There is widespread agreement about the key role of hemoglobin for oxygen transport. Both observational and interventional studies have examined the relationship between hemoglobin levels and maximal oxygen uptake (V ˙ O 2 m a x ) in humans. However, there exists considerable variability in the scientific literature regarding the potential relationship between hemoglobin andV ˙ O 2 m a x . Thus, we aimed to provide a comprehensive analysis of the diverse literature and examine the relationship between hemoglobin levels (hemoglobin concentration and mass) andV ˙ O 2 m a x (absolute and relativeV ˙ O 2 m a x ) among both observational and interventional studies. METHODS A systematic search was performed on December 6th, 2021. The study procedures and reporting of findings followed Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Article selection and data abstraction were performed in duplicate by two independent reviewers. Primary outcomes were hemoglobin levels andV ˙ O 2 m a x values (absolute and relative). For observational studies, meta-regression models were performed to examine the relationship between hemoglobin levels andV ˙ O 2 m a x values. For interventional studies, meta-analysis models were performed to determine the change inV ˙ O 2 m a x values (standard paired difference) associated with interventions designed to modify hemoglobin levels orV ˙ O 2 m a x . Meta-regression models were then performed to determine the relationship between a change in hemoglobin levels and the change inV ˙ O 2 m a x values. RESULTS Data from 384 studies (226 observational studies and 158 interventional studies) were examined. For observational data, there was a positive association between absoluteV ˙ O 2 m a x and hemoglobin levels (hemoglobin concentration, hemoglobin mass, and hematocrit (P<0.001 for all)). Prespecified subgroup analyses demonstrated no apparent sex-related differences among these relationships. For interventional data, there was a positive association between the change of absoluteV ˙ O 2 m a x (standard paired difference) and the change in hemoglobin levels (hemoglobin concentration (P<0.0001) and hemoglobin mass (P = 0.006)). CONCLUSION These findings suggest thatV ˙ O 2 m a x values are closely associated with hemoglobin levels among both observational and interventional studies. Although our findings suggest a lack of sex differences in these relationships, there were limited studies incorporating females or stratifying results by biological sex.
Collapse
Affiliation(s)
- Kevin L. Webb
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Ellen K. Gorman
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Olaf H. Morkeberg
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Stephen A. Klassen
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Riley J. Regimbal
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Chad C. Wiggins
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Michael J. Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Shane M. Hammer
- Department of Kinesiology, Applied Health, and Recreation, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Jonathon W. Senefeld
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
4
|
André M, Brucato N, Plutniak S, Kariwiga J, Muke J, Morez A, Leavesley M, Mondal M, Ricaut FX. Phenotypic differences between highlanders and lowlanders in Papua New Guinea. PLoS One 2021; 16:e0253921. [PMID: 34288918 PMCID: PMC8294550 DOI: 10.1371/journal.pone.0253921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/16/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Altitude is one of the most demanding environmental pressures for human populations. Highlanders from Asia, America and Africa have been shown to exhibit different biological adaptations, but Oceanian populations remain understudied [Woolcock et al., 1972; Cotes et al., 1974; Senn et al., 2010]. We tested the hypothesis that highlanders phenotypically differ from lowlanders in Papua New Guinea, as a result of inhabiting the highest mountains in Oceania for at least 20,000 years. MATERIALS AND METHODS We collected data for 13 different phenotypes related to altitude for 162 Papua New Guineans living at high altitude (Mont Wilhelm, 2,300-2,700 m above sea level (a.s.l.) and low altitude (Daru, <100m a.s.l.). Multilinear regressions were performed to detect differences between highlanders and lowlanders for phenotypic measurements related to body proportions, pulmonary function, and the circulatory system. RESULTS Six phenotypes were significantly different between Papua New Guinean highlanders and lowlanders. Highlanders show shorter height (p-value = 0.001), smaller waist circumference (p-value = 0.002), larger Forced Vital Capacity (FVC) (p-value = 0.008), larger maximal (p-value = 3.20e -4) and minimal chest depth (p-value = 2.37e -5) and higher haemoglobin concentration (p-value = 3.36e -4). DISCUSSION Our study reports specific phenotypes in Papua New Guinean highlanders potentially related to altitude adaptation. Similar to other human groups adapted to high altitude, the evolutionary history of Papua New Guineans appears to have also followed an adaptive biological strategy for altitude.
Collapse
Affiliation(s)
- Mathilde André
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Tartumaa, Estonia
| | - Nicolas Brucato
- Laboratoire Évolution and Diversité Biologique (EDB UMR5174), Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS, Toulouse, France
| | - Sébastien Plutniak
- Laboratoire Travaux et Recherches Archéologiques sur les Cultures, les Espaces et les Sociétés (TRACES, UMR 5608), Université Toulouse Jean Jaurès, Maison de la Recherche, Toulouse, France
| | - Jason Kariwiga
- Strand of Anthropology, Sociology and Archaeology, School of Humanities & Social Sciences, University of Papua New Guinea, National Capital District, Papua New Guinea
- School of Social Science, University of Queensland, Australia, St Lucia, Australia
| | - John Muke
- Social Research Institute Ltd, Port Moresby, Papua New Guinea
| | - Adeline Morez
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Matthew Leavesley
- Strand of Anthropology, Sociology and Archaeology, School of Humanities & Social Sciences, University of Papua New Guinea, National Capital District, Papua New Guinea
- ARC Centre of Excellence for Australian Biodiversity and Heritage, College of Arts, Society and Education, James Cook University, Cairns, Australia
| | - Mayukh Mondal
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Tartumaa, Estonia
| | - François-Xavier Ricaut
- Laboratoire Évolution and Diversité Biologique (EDB UMR5174), Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS, Toulouse, France
| |
Collapse
|
5
|
Aebi MR, Bourdillon N, Kunz A, Bron D, Millet GP. Specific effect of hypobaria on cerebrovascular hypercapnic responses in hypoxia. Physiol Rep 2021; 8:e14372. [PMID: 32097541 PMCID: PMC7058173 DOI: 10.14814/phy2.14372] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/21/2020] [Indexed: 12/14/2022] Open
Abstract
It remains unknown whether hypobaria plays a role on cerebrovascular reactivity to CO2 (CVR). The present study evaluated the putative effect of hypobaria on CVR and its influence on cerebral oxygen delivery (cDO2) in five randomized conditions (i.e., normobaric normoxia, NN, altitude level of 440 m; hypobaric hypoxia, HH at altitude levels of 3,000 m and 5,500 m; normobaric hypoxia, NH, altitude simulation of 5,500 m; and hypobaric normoxia, HN). CVR was assessed in nine healthy participants (either students in aviation or pilots) during a hypercapnic test (i.e., 5% CO2). We obtained CVR by plotting middle cerebral artery velocity versus end‐tidal CO2 pressure (PETCO2) using a sigmoid model. Hypobaria induced an increased slope in HH (0.66 ± 0.33) compared to NH (0.35 ± 0.19) with a trend in HN (0.46 ± 0.12) compared to NN (0.23 ± 0.12, p = .069). PETCO2 was decreased (22.3 ± 2.4 vs. 34.5 ± 2.8 mmHg and 19.9 ± 1.3 vs. 30.8 ± 2.2 mmHg, for HN vs. NN and HH vs. NH, respectively, p < .05) in hypobaric conditions when compared to normobaric conditions with comparable inspired oxygen pressure (141 ± 1 vs. 133 ± 3 mmHg and 74 ± 1 vs. 70 ± 2 mmHg, for NN vs. HN and NH vs. HH, respectively) During hypercapnia, cDO2 was decreased in 5,500 m HH (p = .046), but maintained in NH when compared to NN. To conclude, CVR seems more sensitive (i.e., slope increase) in hypobaric than in normobaric conditions. Moreover, hypobaria potentially affected vasodilation reserve (i.e., MCAv autoregulation) and brain oxygen delivery during hypercapnia. These results are relevant for populations (i.e., aviation pilots; high‐altitude residents as miners; mountaineers) occasionally exposed to hypobaric normoxia.
Collapse
Affiliation(s)
- Mathias R Aebi
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.,Aeromedical Center (AeMC), Swiss Air Force, Dübendorf, Switzerland
| | - Nicolas Bourdillon
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.,Becare SA, Renens, Switzerland
| | - Andres Kunz
- Aeromedical Center (AeMC), Swiss Air Force, Dübendorf, Switzerland
| | - Denis Bron
- Aeromedical Center (AeMC), Swiss Air Force, Dübendorf, Switzerland
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
6
|
Duperly J, Serrato M, Forero NI, Jimenez-Mora MA, Mendivil CO, Lobelo F. Validation of Maximal, Submaximal, and Nonexercise Indirect
V
˙
O 2max Estimations at 2600 m Altitude. High Alt Med Biol 2020; 21:135-143. [PMID: 32069437 DOI: 10.1089/ham.2019.0097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aim: To study the criterion validity of three indirect maximal oxygen uptake (V ˙ O2max) assessment equations at altitude. Methods: We studied 64 young adults (53% men) at Bogota, Colombia (2600 m altitude). DirectV ˙ O2max was measured by indirect calorimetry using a maximal incremental treadmill protocol. IndirectV ˙ O2max was estimated by two exercise field tests (the 20-m shuttle-run test [20-MST] and the 2-km walking test (UKK)) and one nonexercise method (the perceived functional ability-physical activity rating questionnaire [PFA-PAR]). Altitude-adjusted PFA-PAR was estimated as a 13% linear reduction in PFA-PAR. We calculated Lin concordance coefficients (LCC) and standard error of the estimates (SEEs), and we performed Bland-Altman analyses for each indirect method. Results: MeanV ˙ O2max was 41.2 ± 5.8 mL/kg/min in men and 32.2 ± 3.6 mL/kg/min in women. We found the highest agreement with directV ˙ O2max for the 20-MST (LCC = 0.79, SEE = 3.91 mL/kg/min), followed in order by the altitude-adjusted PFA-PAR (LCC = 0.71, SEE = 4.12 mL/kg/min), the UKK (LCC = 0.67, SEE = 5.48 mL/kg/min), and the unadjusted PFA-PAR (LCC = 0.57, SEE = 4.75 mL/kg/min). The unadjusted PFA-PAR tended to overestimateV ˙ O2max, but Bland-Altman analysis showed that this bias disappeared after altitude adjustment. Conclusion: Several maximal, submaximal, and nonexercise methods provide estimates ofV ˙ O2max with acceptable validity for use in epidemiological studies of populations living at moderate altitude.
Collapse
Affiliation(s)
- John Duperly
- School of Medicine, Universidad de los Andes, Bogotá, Colombia
- Department of Internal Medicine, Institute of Exercise Medicine and Rehabilitation, Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | - Mauricio Serrato
- Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
- Ministerio del Deporte, Bogotá, Colombia
| | | | | | - Carlos O Mendivil
- School of Medicine, Universidad de los Andes, Bogotá, Colombia
- Section of Endocrinology, Department of Internal Medicine, Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | - Felipe Lobelo
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
- Exercise is Medicine Global Research and Collaboration Center, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Ogawa T, Nagao M, Fujii N, Nishiyasu T. Effect of inspiratory muscle-loaded exercise training on peak oxygen uptake and ventilatory response during incremental exercise under normoxia and hypoxia. BMC Sports Sci Med Rehabil 2020; 12:25. [PMID: 32322396 PMCID: PMC7161168 DOI: 10.1186/s13102-020-00172-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 03/25/2020] [Indexed: 11/29/2022]
Abstract
Background Although numerous studies have reported the effect of inspiratory muscle training for improving exercise performance, the outcome of whether exercise performance is improved by inspiratory muscle training is controversial. Therefore, this study investigated the influence of inspiratory muscle-loaded exercise training (IMLET) on peak oxygen uptake (VO2peak), respiratory responses, and exercise performance under normoxic (N) and hypoxic (H) exercise conditions. We hypothesised that IMLET enhances respiratory muscle strength and improves respiratory response, thereby improving VO2peak and work capacity under H condition. Methods Sixteen university track runners (13 men and 3 women) were randomly assigned to the IMLET (n = 8) or exercise training (ET) group (n = 8). All subjects underwent 4 weeks of 20-min 60% VO2peak cycling exercise training, thrice per week. IMLET loaded 50% of maximal inspiratory pressure during exercise. At pre- and post-training periods, subjects performed exhaustive incremental cycling under normoxic (N; 20.9 ± 0%) and hypoxic (H; 15.0 ± 0.1%) conditions. Results Although maximal inspiratory pressure (PImax) significantly increased after training in both groups, the extent of PImax increase was significantly higher in the IMLET group (from 102 ± 20 to 145 ± 26 cmH2O in IMLET; from 111 ± 23 to 127 ± 23 cmH2O in ET; P < 0.05). In both groups, VO2peak and maximal work load (Wmax) similarly increased both under N and H conditions after training (P < 0.05). Further, the extent of Wmax decrease under H condition was lower in the IMLET group at post-training test than at pre-training (from − 14.7 ± 2.2% to − 12.5 ± 1.7%; P < 0.05). Maximal minute ventilation in both N and H conditions increased after training than in the pre-training period. Conclusions Our IMLET enhanced the respiratory muscle strength, and the decrease in work capacity under hypoxia was reduced regardless of the increase in VO2peak.
Collapse
Affiliation(s)
- Takeshi Ogawa
- 1Division of Art, Music, and Physical Education, Osaka Kyoiku University, Kashiwara, Osaka, Japan
| | - Maiko Nagao
- 1Division of Art, Music, and Physical Education, Osaka Kyoiku University, Kashiwara, Osaka, Japan
| | - Naoto Fujii
- 2Faculty of Health and Sport Sciences in University of Tsukuba, Tsukuba, Japan
| | - Takeshi Nishiyasu
- 2Faculty of Health and Sport Sciences in University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
8
|
Bhandari S, Cavalleri GL. Population History and Altitude-Related Adaptation in the Sherpa. Front Physiol 2019; 10:1116. [PMID: 31555147 PMCID: PMC6722185 DOI: 10.3389/fphys.2019.01116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 08/12/2019] [Indexed: 12/29/2022] Open
Abstract
The first ascent of Mount Everest by Tenzing Norgay and Sir Edmund Hillary in 1953 brought global attention to the Sherpa people and human performance at altitude. The Sherpa inhabit the Khumbu Valley of Nepal, and are descendants of a population that has resided continuously on the Tibetan plateau for the past ∼25,000 to 40,000 years. The long exposure of the Sherpa to an inhospitable environment has driven genetic selection and produced distinct adaptive phenotypes. This review summarizes the population history of the Sherpa and their physiological and genetic adaptation to hypoxia. Genomic studies have identified robust signals of positive selection across EPAS1, EGLN1, and PPARA, that are associated with hemoglobin levels, which likely protect the Sherpa from altitude sickness. However, the biological underpinnings of other adaptive phenotypes such as birth weight and the increased reproductive success of Sherpa women are unknown. Further studies are required to identify additional signatures of selection and refine existing Sherpa-specific adaptive phenotypes to understand how genetic factors have underpinned adaptation in this population. By correlating known and emerging signals of genetic selection with adaptive phenotypes, we can further reveal hypoxia-related biological mechanisms of adaptation. Ultimately this work could provide valuable information regarding treatments of hypoxia-related illnesses including stroke, heart failure, lung disease and cancer.
Collapse
Affiliation(s)
- Sushil Bhandari
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Gianpiero L Cavalleri
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
9
|
Gassmann M, Mairbäurl H, Livshits L, Seide S, Hackbusch M, Malczyk M, Kraut S, Gassmann NN, Weissmann N, Muckenthaler MU. The increase in hemoglobin concentration with altitude varies among human populations. Ann N Y Acad Sci 2019; 1450:204-220. [PMID: 31257609 DOI: 10.1111/nyas.14136] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/02/2019] [Accepted: 05/16/2019] [Indexed: 02/06/2023]
Abstract
Decreased oxygen availability at high altitude requires physiological adjustments allowing for adequate tissue oxygenation. One such mechanism is a slow increase in the hemoglobin concentration ([Hb]) resulting in elevated [Hb] in high-altitude residents. Diagnosis of anemia at different altitudes requires reference values for [Hb]. Our aim was to establish such values based on published data of residents living at different altitudes by applying meta-analysis and multiple regressions. Results show that [Hb] is increased in all high-altitude residents. However, the magnitude of increase varies among the regions analyzed and among ethnic groups within a region. The highest increase was found in residents of the Andes (1 g/dL/1000 m), but this increment was smaller in all other regions of the world (0.6 g/dL/1000 m). While sufficient data exist for adult males and females showing that sex differences in [Hb] persist with altitude, data for infants, children, and pregnant women are incomplete preventing such analyses. Because WHO reference values were originally based on [Hb] of South American people, we conclude that individual reference values have to be defined for ethnic groups to reliably diagnose anemia and erythrocytosis in high-altitude residents. Future studies need to test their applicability for children of different ages and pregnant women.
Collapse
Affiliation(s)
- Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,Universidad Peruana Cayetano Heredia (UPCH), Lima, Peru
| | - Heimo Mairbäurl
- Translational Lung Research Center Heidelberg (TLRC), the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Leonid Livshits
- Institute of Veterinary Physiology, Vetsuisse Faculty and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Svenja Seide
- Institute of Medical Biometry and Informatics (IMBI), University Hospital Heidelberg, Heidelberg, Germany
| | - Matthes Hackbusch
- Institute of Medical Biometry and Informatics (IMBI), University Hospital Heidelberg, Heidelberg, Germany
| | - Monika Malczyk
- Excellence Cluster Cardiopulmonary System, Justus-Liebig-University Giessen, University of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Heidelberg, Germany
| | - Simone Kraut
- Excellence Cluster Cardiopulmonary System, Justus-Liebig-University Giessen, University of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Heidelberg, Germany
| | - Norina N Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Norbert Weissmann
- Excellence Cluster Cardiopulmonary System, Justus-Liebig-University Giessen, University of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Heidelberg, Germany
| | - Martina U Muckenthaler
- Pediatric Hematology, Oncology and Immunology, University Hospital Heidelberg, Molecular Medicine Partnership Unit, University of Heidelberg, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research, Heidelberg, Germany
| |
Collapse
|
10
|
Ogawa T, Fujii N, Kurimoto Y, Nishiyasu T. Effect of hypobaria on maximal ventilation, oxygen uptake, and exercise performance during running under hypobaric normoxic conditions. Physiol Rep 2019; 7:e14002. [PMID: 30756526 PMCID: PMC6372535 DOI: 10.14814/phy2.14002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 11/24/2022] Open
Abstract
During exposure to high altitude, hypoxia develops because of reductions in barometric pressure and partial pressure of O2 . Although several studies have examined the effects of hypoxia on exercise performance and physiological responses, such as maximal minute ventilation ( V · Emax ) and maximal oxygen uptake ( V · O2max ), how barometric pressure reduction (hypobaria) modulates them remains largely unknown. In this study, 11 young men performed incremental treadmill running tests to exhaustion under three conditions chosen at random: normobaric normoxia (NN; 763 ± 5 mmHg of barometric pressure, equivalent to sea level), hypobaric hypoxia (HH; 492 ± 1 mmHg of barometric pressure, equivalent to 3500 m above sea level (m a.s.l.)), and hypobaric normoxia (HN; 492 ± 1 mmHg of barometric pressure while breathing 32.2 ± 0.1% O2 to match the inspiratory O2 content under NN). V · Emax was higher in HN than in NN (160.9 ± 10.7 vs. 150.7 ± 10.0 L min-1 , P < 0.05). However, no differences in V · O2max and arterial oxyhemoglobin saturation were observed between NN and HN (all P > 0.05). Time to exhaustion was longer in HN than in NN (932 ± 83 vs. 910 ± 79 s, P < 0.05). These results suggest that reduced air density during exposure to an altitude of 3500 m a.s.l. increases maximal ventilation and extends time to exhaustion without affecting oxygen consumption or arterial oxygen saturation.
Collapse
Affiliation(s)
- Takeshi Ogawa
- Department of Physical EducationOsaka Kyoiku UniversityKashiwaraOsakaJapan
| | - Naoto Fujii
- Faculty of Health and Sports ScienceUniversity of TsukubaTsukubaJapan
| | - Yasuhiro Kurimoto
- Faculty of Health and Sports ScienceUniversity of TsukubaTsukubaJapan
| | - Takeshi Nishiyasu
- Faculty of Health and Sports ScienceUniversity of TsukubaTsukubaJapan
| |
Collapse
|
11
|
Mourot L. Limitation of Maximal Heart Rate in Hypoxia: Mechanisms and Clinical Importance. Front Physiol 2018; 9:972. [PMID: 30083108 PMCID: PMC6064954 DOI: 10.3389/fphys.2018.00972] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/02/2018] [Indexed: 12/17/2022] Open
Abstract
The use of exercise intervention in hypoxia has grown in popularity amongst patients, with encouraging results compared to similar intervention in normoxia. The prescription of exercise for patients largely rely on heart rate recordings (percentage of maximal heart rate (HRmax) or heart rate reserve). It is known that HRmax decreases with high altitude and the duration of the stay (acclimatization). At an altitude typically chosen for training (2,000-3,500 m) conflicting results have been found. Whether or not this decrease exists or not is of importance since the results of previous studies assessing hypoxic training based on HR may be biased due to improper intensity. By pooling the results of 86 studies, this literature review emphasizes that HRmax decreases progressively with increasing hypoxia. The dose–response is roughly linear and starts at a low altitude, but with large inter-study variabilities. Sex or age does not seem to be a major contributor in the HRmax decline with altitude. Rather, it seems that the greater the reduction in arterial oxygen saturation, the greater the reduction in HRmax, due to an over activity of the parasympathetic nervous system. Only a few studies reported HRmax at sea/low level and altitude with patients. Altogether, due to very different experimental design, it is difficult to draw firm conclusions in these different clinical categories of people. Hence, forthcoming studies in specific groups of patients are required to properly evaluate (1) the HRmax change during acute hypoxia and the contributing factors, and (2) the physiological and clinical effects of exercise training in hypoxia with adequate prescription of exercise training intensity if based on heart rate.
Collapse
Affiliation(s)
- Laurent Mourot
- EA 3920 Prognostic Markers and Regulatory Factors of Cardiovascular Diseases and Exercise Performance, Health, Innovation Platform, University of Franche-Comté, Besançon, France.,Tomsk Polytechnic University, Tomsk, Russia
| |
Collapse
|
12
|
Gonggalanzi, Labasangzhu, Bjertness E, Wu T, Stigum H, Nafstad P. Acute mountain sickness, arterial oxygen saturation and heart rate among Tibetan students who reascend to Lhasa after 7 years at low altitude: a prospective cohort study. BMJ Open 2017; 7:e016460. [PMID: 28698346 PMCID: PMC5726117 DOI: 10.1136/bmjopen-2017-016460] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Objectives The aim of the present study was to estimate the incidence of acute mountain sickness (AMS) and address the changes in arterial oxygen saturation (SaO2) and heart rate (HR) in native Tibetans who reascend to the high-altitude city of Lhasa (3658 m) after a 7-year stay at low altitude. Methods We followed two cohorts of students aged 17–21 years (859 Native Tibetan and 801 Han Chinese), travelling from lowland China until 3 days after their arrival in highland city of Lhasa. Questionnaire information of the symptoms of AMS using the Lake Louise Scoring System, resting SaO2 and HR were assessed both before leaving the lowland and after arriving in Lhasa. Linear regression was performed to compare changes in SaO2 and HR levels from low to high altitude in Tibetan and Han Chinese. Results New cases of AMS occurred in only 1.2% (95% CI 0.4% to 2.0%) of the Tibetan students who came to Lhasa by train compared with 32.7% (95% CI 28.0% to 37.3%) and 42.9% (95% CI 38.0% to 47.7%) of the Han Chinese students who came to Lhasa by train and by air, respectively. Tibetan students had less changes in SaO2 (−2.95 percentage points, 95% CI −3.24% to −2.65%) and HR (10.89 beats per minute (bpm), 95% CI 9.62 to 12.16 bpm) from low to high altitude compared with Han Chinese students, although measurements did not differ between the two groups when measured at low altitude. Conclusions Healthy Tibetans are mostly protected against AMS and primarily maintain their good adaptation to high altitude, even after a long period of stay at low altitude.
Collapse
Affiliation(s)
- Gonggalanzi
- Tibet University Medical College, Tibet, China
| | - Labasangzhu
- Tibet University Medical College, Tibet, China
| | - Espen Bjertness
- Tibet University Medical College, Tibet, China.,Faculty of Medicine,University of Oslo, Oslo, Norway
| | - Tianyi Wu
- Tibet University Medical College, Tibet, China.,National Key Laboratory of High-Altitude Medicine, Xining, Qinghai, China
| | - Hein Stigum
- Faculty of Medicine,University of Oslo, Oslo, Norway.,Division of Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
| | - Per Nafstad
- Faculty of Medicine,University of Oslo, Oslo, Norway.,Division of Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
13
|
MEDEX2015: Greater Sea-Level Fitness Is Associated with Lower Sense of Effort During Himalayan Trekking Without Worse Acute Mountain Sickness. High Alt Med Biol 2017; 18:152-162. [DOI: 10.1089/ham.2016.0088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
14
|
Why Are High-Altitude Natives So Strong at Altitude? Maximal Oxygen Transport to the Muscle Cell in Altitude Natives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017. [PMID: 27343089 DOI: 10.1007/978-1-4899-7678-9_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
In hypoxia aerobic exercise performance of high-altitude natives is suggested to be superior to that of lowlanders; i.e., for a given altitude natives are reported to have higher maximal oxygen uptake (VO2max). The likely basis for this is a higher pulmonary diffusion capacity, which in turn ensures higher arterial O2 saturation (SaO2) and therefore also potentially a higher delivery of O2 to the exercising muscles. This review focuses on O2 transport in high-altitude Aymara. We have quantified femoral artery O2 delivery, arterial O2 extraction and calculated leg VO2 in Aymara, and compared their values with that of acclimatizing Danish lowlanders. All subjects were studied at 4100 m. At maximal exercise SaO2 dropped tremendously in the lowlanders, but did not change in the Aymara. Therefore arterial O2 content was also higher in the Aymara. At maximal exercise however, fractional O2 extraction was lower in the Aymara, and the a-vO2 difference was similar in both populations. The lower extraction levels in the Aymara were associated with lower muscle O2 conductance (a measure of muscle diffusion capacity). At any given submaximal exercise intensity, leg VO2 was always of similar magnitude in both groups, but at maximal exercise the lowlanders had higher leg blood flow, and hence also higher maximum leg VO2. With the induction of acute normoxia fractional arterial O2 extraction fell in the highlanders, but remained unchanged in the lowlanders. Hence high-altitude natives seem to be more diffusion limited at the muscle level as compared to lowlanders. In conclusion Aymara preserve very high SaO2 during hypoxic exercise (likely due to a higher lung diffusion capacity), but the effect on VO2max is reduced by a lower ability to extract O2 at the muscle level.
Collapse
|
15
|
Brutsaert T. Why Are High Altitude Natives So Strong at High Altitude? Nature vs. Nurture: Genetic Factors vs. Growth and Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 903:101-12. [PMID: 27343091 DOI: 10.1007/978-1-4899-7678-9_7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Among high-altitude natives there is evidence of a general hypoxia tolerance leading to enhanced performance and/or increased capacity in several important domains. These domains likely include an enhanced physical work capacity, an enhanced reproductive capacity, and an ability to resist several common pathologies of chronic high-altitude exposure. The "strength" of the high-altitude native in this regard may have both a developmental and a genetic basis, although there is better evidence for the former (developmental effects) than for the latter. For example, early-life hypoxia exposure clearly results in lung growth and remodeling leading to an increased O2 diffusing capacity in adulthood. Genetic research has yet to reveal a population genetic basis for enhanced capacity in high-altitude natives, but several traits are clearly under genetic control in Andean and Tibetan populations e.g., resting and exercise arterial O2 saturation (SaO2). This chapter reviews the effects of nature and nurture on traits that are relevant to the process of gas exchange, including pulmonary volumes and diffusion capacity, the maximal oxygen consumption (VO2max), the SaO2, and the alveolar-arterial oxygen partial pressure difference (A-aDO2) during exercise.
Collapse
Affiliation(s)
- Tom Brutsaert
- Department of Exercise Science, Syracuse University, Syracuse, NY, USA.
| |
Collapse
|
16
|
Integrative Conductance of Oxygen During Exercise at Altitude. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 903:395-408. [PMID: 27343110 DOI: 10.1007/978-1-4899-7678-9_26] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the oxygen (O2) cascade downstream steps can never achieve higher flows of O2 than the preceding ones. At the lung the transfer of O2 is determined by the O2 gradient between the alveolar space and the lung capillaries and the O2 diffusing capacity (DLO2). While DLO2 may be increased several times during exercise by recruiting more lung capillaries and by increasing the oxygen carrying capacity of blood due to higher peripheral extraction of O2, the capacity to enhance the alveolocapillary PO2 gradient is more limited. The transfer of oxygen from the alveolar space to the hemoglobin (Hb) must overcome first the resistance offered by the alveolocapillary membrane (1/DM) and the capillary blood (1/θVc). The fractional contribution of each of these two components to DLO2 remains unknown. During exercise these resistances are reduced by the recruitment of lung capillaries. The factors that reduce the slope of the oxygen dissociation curve of the Hb (ODC) (i.e., lactic acidosis and hyperthermia) increase 1/θVc contributing to limit DLO2. These effects are accentuated in hypoxia. Reducing the size of the active muscle mass improves pulmonary gas exchange during exercise and reduces the rightward shift of the ODC. The flow of oxygen from the muscle capillaries to the mitochondria is pressumably limited by muscle O2 conductance (DmcO2) (an estimation of muscle oxygen diffusing capacity). However, during maximal whole body exercise in normoxia, a higher flow of O2 is achieved at the same pressure gradients after increasing blood [Hb], implying that in healthy humans exercising in normoxia there is a functional reserve in DmcO2. This conclusion is supported by the fact that during small muscle exercise in chronic hypoxia, peak exercise DmcO2 is similar to that observed during exercise in normoxia despite a markedly lower O2 pressure gradient driving diffusion.
Collapse
|
17
|
Kiyamu M, León-Velarde F, Rivera-Chira M, Elías G, Brutsaert TD. Developmental Effects Determine Submaximal Arterial Oxygen Saturation in Peruvian Quechua. High Alt Med Biol 2015; 16:138-46. [PMID: 25977978 DOI: 10.1089/ham.2014.1126] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Kiyamu, Melisa, Fabiola León-Velarde, María Rivera-Chira, Gianpietro Elías, and Tom D. Brutsaert. Developmental effects determine submaximal arterial oxygen saturation in Peruvian Quechua. High Alt Med Biol 16, 138-146, 2015.--Andean high altitude natives show higher arterial oxygen saturation (Sao(2)) during exercise in hypoxia, compared to acclimatized sojourners. In order to evaluate the effects of life-long exposure to high altitude on Sao(2), we studied two groups of well-matched, self-identified Peruvian Quechua natives who differed in their developmental exposure to hypoxia before and after a 2-month training period. Male and female volunteers (18-35 years) were recruited in Lima, Peru (150 m). The two groups were: a) Individuals who were born and raised at sea-level (BSL, n=34) and b) Individuals who were born and raised at high altitude (BHA, n=32), but who migrated to sea-level as adults (>16 years old). Exercise testing was conducted using a submaximal exercise protocol in normobaric hypoxia in Lima (BP=750 mmHg, Fio(2)=0.12), in order to measure Sao(2) (%), ventilation (VE L/min) and oxygen consumption (Vo(2), L/min). Repeated-measures ANOVA, controlling for VE/VO(2) (L/min) and sex during the submaximal protocol showed that BHA maintained higher Sao(2) (%) compared to BSL at all workloads before (p=0.005) and after training (p=0.017). As expected, both groups showed a decrease in Sao(2) (%) (p<0.001), as workload increased. Resting Sao(2) levels were not found to be different between groups. The results suggest that developmental exposure to altitude contributes to the maintenance of higher Sao(2) levels during submaximal exercise at hypoxia.
Collapse
Affiliation(s)
- Melisa Kiyamu
- 1 Departamento de Ciencias Biológicas y Fisiológicas, Universidad Peruana Cayetano Heredia , Urb. San Martín de Porres, Peru
| | - Fabiola León-Velarde
- 1 Departamento de Ciencias Biológicas y Fisiológicas, Universidad Peruana Cayetano Heredia , Urb. San Martín de Porres, Peru
| | - María Rivera-Chira
- 1 Departamento de Ciencias Biológicas y Fisiológicas, Universidad Peruana Cayetano Heredia , Urb. San Martín de Porres, Peru
| | - Gianpietro Elías
- 1 Departamento de Ciencias Biológicas y Fisiológicas, Universidad Peruana Cayetano Heredia , Urb. San Martín de Porres, Peru
| | - Tom D Brutsaert
- 2 Department of Exercise Science, Syracuse University , Syracuse, New York
| |
Collapse
|
18
|
Kiyamu M, Rivera-Chira M, Brutsaert TD. Aerobic capacity of Peruvian Quechua: a test of the developmental adaptation hypothesis. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2014; 156:363-73. [PMID: 25385548 DOI: 10.1002/ajpa.22655] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/22/2014] [Indexed: 12/31/2022]
Abstract
High altitude natives are reported to have outstanding work capacity in spite of the challenge of oxygen transport and delivery in hypoxia. To evaluate the developmental effect of lifelong exposure to hypoxia on aerobic capacity, VO2peak was measured on two groups of Peruvian Quechua subjects (18-35 years), who differed in their developmental exposure to altitude. Male and female volunteers were recruited in Lima, Peru (150 m), and were divided in two groups, based on their developmental exposure to hypoxia, those: a) Born at sea-level individuals (BSL), with no developmental exposure to hypoxia (n = 34) and b) Born at high-altitude individuals (BHA) with full developmental exposure to hypoxia (n = 32), but who migrated to sea-level as adults (>16-years-old). Tests were conducted both in normoxia (BP = 750 mm Hg) and normobaric hypoxia at sea-level (BP = 750 mm Hg, FiO2 = 0.12, equivalent to 4,449 m), after a 2-month training period (in order to control for initial differences in physical fitness) at sea-level. BHA had a significantly higher VO2peak at hypoxia (40.31 ± 1.0 ml/min/kg) as compared to BSL (35.78 ± 0.96 ml/min/kg, P = 0.001), adjusting for sex. The decrease of VO2peak at HA relative to SL (ΔVO2peak ) was not different between groups, controlling for baseline levels (VO2peak at sea-level) and sex (BHA = 0.35 ± 0.04 l/min, BSL = 0.44 ± 0.04 l/min; P = 0.12). Forced vital capacity (controlling for height) and the residuals of VO2peak (controlling for weight) had a significant association in the BHA group only (r = 0.155; P = 0.031). In sum, results indicate that developmental exposure to altitude constitutes an important factor to determine superior exercise performance.
Collapse
Affiliation(s)
- Melisa Kiyamu
- Departamento de Ciencias Biológicas y Fisiológicas, Universidad Peruana Cayetano Heredia, Lima, Perú
| | | | | |
Collapse
|
19
|
Gilbert-Kawai ET, Milledge JS, Grocott MP, Martin DS. King of the Mountains: Tibetan and Sherpa Physiological Adaptations for Life at High Altitude. Physiology (Bethesda) 2014; 29:388-402. [DOI: 10.1152/physiol.00018.2014] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Anecdotal evidence surrounding Tibetans' and Sherpas' exceptional tolerance to hypobaric hypoxia has been recorded since the beginning of high-altitude exploration. These populations have successfully lived and reproduced at high altitude for hundreds of generations with hypoxia as a constant evolutionary pressure. Consequently, they are likely to have undergone natural selection toward a genotype (and phenotype) tending to offer beneficial adaptation to sustained hypoxia. With the advent of translational human hypoxic research, in which genotype/phenotype studies of healthy individuals at high altitude may be of benefit to hypoxemic critically ill patients in a hospital setting, high-altitude natives may provide a valuable and intriguing model. The aim of this review is to provide a comprehensive summary of the scientific literature encompassing Tibetan and Sherpa physiological adaptations to a high-altitude residence. The review demonstrates the extent to which evolutionary pressure has refined the physiology of this high-altitude population. Furthermore, although many physiological differences between highlanders and lowlanders have been found, it also suggests many more potential avenues of investigation.
Collapse
Affiliation(s)
- Edward T. Gilbert-Kawai
- University College London Centre for Altitude Space and Extreme Environment Medicine, UCLH NIHR Biomedical Research Centre, Institute of Sport and Exercise Health, London, United Kingdom
- University College London Division of Surgery and Interventional Science, Royal Free Hospital, London, United Kingdom
- University College Hospital London NIHR Biomedical Research Centre, London, United Kingdom
| | - James S. Milledge
- University College London Centre for Altitude Space and Extreme Environment Medicine, UCLH NIHR Biomedical Research Centre, Institute of Sport and Exercise Health, London, United Kingdom
| | - Michael P.W. Grocott
- University College London Centre for Altitude Space and Extreme Environment Medicine, UCLH NIHR Biomedical Research Centre, Institute of Sport and Exercise Health, London, United Kingdom
- University College Hospital London NIHR Biomedical Research Centre, London, United Kingdom
- Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, University of Southampton, Southampton, United Kingdom
- Anaesthesia and Critical Care Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom; and
- Southampton NIHR Respiratory Biomedical Research Unit, Southampton, United Kingdom
| | - Daniel S. Martin
- University College London Centre for Altitude Space and Extreme Environment Medicine, UCLH NIHR Biomedical Research Centre, Institute of Sport and Exercise Health, London, United Kingdom
- University College London Division of Surgery and Interventional Science, Royal Free Hospital, London, United Kingdom
- University College Hospital London NIHR Biomedical Research Centre, London, United Kingdom
| |
Collapse
|
20
|
Ferretti G. Maximal oxygen consumption in healthy humans: theories and facts. Eur J Appl Physiol 2014; 114:2007-36. [PMID: 24986693 DOI: 10.1007/s00421-014-2911-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/12/2014] [Indexed: 12/17/2022]
Abstract
This article reviews the concept of maximal oxygen consumption ([Formula: see text]) from the perspective of multifactorial models of [Formula: see text] limitation. First, I discuss procedural aspects of [Formula: see text] measurement: the implications of ramp protocols are analysed within the theoretical work of Morton. Then I analyse the descriptive physiology of [Formula: see text], evidencing the path that led to the view of monofactorial cardiovascular or muscular [Formula: see text] limitation. Multifactorial models, generated by the theoretical work of di Prampero and Wagner around the oxygen conductance equation, represented a radical change of perspective. These models are presented in detail and criticized with respect to the ensuing experimental work. A synthesis between them is proposed, demonstrating how much these models coincide and converge on the same conclusions. Finally, I discuss the cases of hypoxia and bed rest, the former as an example of the pervasive effects of the shape of the oxygen equilibrium curve, the latter as a neat example of adaptive changes concerning the entire respiratory system. The conclusion is that the concept of cardiovascular [Formula: see text] limitation is reinforced by multifactorial models, since cardiovascular oxygen transport provides most of the [Formula: see text] limitation, at least in normoxia. However, the same models show that the role of peripheral resistances is significant and cannot be neglected. The role of peripheral factors is greater the smaller is the active muscle mass. In hypoxia, the intervention of lung resistances as limiting factors restricts the role played by cardiovascular and peripheral factors.
Collapse
Affiliation(s)
- Guido Ferretti
- Département des Neurosciences Fondamentales, Université de Genève, 1 Rue Michel Servet, 1211, Geneva 4, Switzerland,
| |
Collapse
|
21
|
Kayser B. Pro: All dwellers at high altitude are persons of impaired physical and mental powers. High Alt Med Biol 2014; 14:205-7. [PMID: 24067175 DOI: 10.1089/ham.2013.1045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Bengt Kayser
- Institute of Sports Sciences of the University of Lausanne , Lausanne, Switzerland
| |
Collapse
|
22
|
Cerretelli P. Career perspective: Paolo Cerretelli. EXTREME PHYSIOLOGY & MEDICINE 2013; 2:13. [PMID: 24438551 PMCID: PMC3710087 DOI: 10.1186/2046-7648-2-13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 03/28/2013] [Indexed: 11/30/2022]
Abstract
This article is an autobiographical account of my career as a human physiologist. I have spent 55 years traversing mountains, continents, seas, and skies, carrying out research in the laboratories of several international institutions as well as in the field. My scientific roots, approach to the mountains and altitude populations, both in Europe and in Asia, together with an account of my experimental studies at altitude, including extreme conditions, shall be presented together with pertinent occasional reflections of a personal nature.
Collapse
Affiliation(s)
- Paolo Cerretelli
- Istituto di Bioimmagini e Fisiologia Molecolare del Consiglio Nazionale delle Ricerche (C,N,R,), via Fratelli Cervi, 93, Segrate, Milan 20090, Italy.
| |
Collapse
|
23
|
Gussoni M, Scorciapino MA, Vezzoli A, Anedda R, Greco F, Ceccarelli M, Casu M. Structural characterization of recombinant human myoglobin isoforms by 1H and 129Xe NMR and molecular dynamics simulations. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1919-29. [DOI: 10.1016/j.bbapap.2011.06.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/22/2011] [Accepted: 06/27/2011] [Indexed: 10/18/2022]
|
24
|
Luo Y, Gao W, Liu F, Gao Y. Mitochondrial nt3010G-nt3970C haplotype is implicated in high-altitude adaptation of Tibetans. ACTA ACUST UNITED AC 2011; 22:181-90. [DOI: 10.3109/19401736.2011.632771] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
|
26
|
Zhang J, Yan X, Shi J, Gong Q, Weng X, Liu Y. Structural modifications of the brain in acclimatization to high-altitude. PLoS One 2010; 5:e11449. [PMID: 20625426 PMCID: PMC2897842 DOI: 10.1371/journal.pone.0011449] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 06/11/2010] [Indexed: 12/30/2022] Open
Abstract
Adaptive changes in respiratory and cardiovascular responses at high altitude (HA) have been well clarified. However, the central mechanisms underlying HA acclimatization remain unclear. Using voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) with fractional anisotropy (FA) calculation, we investigated 28 Han immigrant residents (17–22 yr) born and raised at HA of 2616–4200 m in Qinghai-Tibetan Plateau for at least 17 years and who currently attended college at sea-level (SL). Their family migrated from SL to HA 2–3 generations ago and has resided at HA ever since. Control subjects were matched SL residents. HA residents (vs. SL) showed decreased grey matter volume in the bilateral anterior insula, right anterior cingulate cortex, bilateral prefrontal cortex, left precentral cortex, and right lingual cortex. HA residents (vs. SL) had significantly higher FA mainly in the bilateral anterior limb of internal capsule, bilateral superior and inferior longitudinal fasciculus, corpus callosum, bilateral superior corona radiata, bilateral anterior external capsule, right posterior cingulum, and right corticospinal tract. Higher FA values in those regions were associated with decreased or unchanged radial diffusivity coinciding with no change of longitudinal diffusivity in HA vs. SL group. Conversely, HA residents had lower FA in the left optic radiation and left superior longitudinal fasciculus. Our data demonstrates that HA acclimatization is associated with brain structural modifications, including the loss of regional cortical grey matter accompanied by changes in the white matter, which may underlie the physiological adaptation of residents at HA.
Collapse
Affiliation(s)
- Jiaxing Zhang
- Laboratory for Higher Brain Function, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.
| | | | | | | | | | | |
Collapse
|
27
|
Calbet JAL, Lundby C. Air to Muscle O2Delivery during Exercise at Altitude. High Alt Med Biol 2009; 10:123-34. [DOI: 10.1089/ham.2008.1099] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- José A. L. Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Spain
- Copenhagen Muscle Research Centre, Copenhagen, Denmark
| | - Carsten Lundby
- Copenhagen Muscle Research Centre, Copenhagen, Denmark
- Department of Sport Science, University of Århus, Århus, Denmark
| |
Collapse
|
28
|
Brutsaert TD. Do high-altitude natives have enhanced exercise performance at altitude? Appl Physiol Nutr Metab 2008; 33:582-92. [PMID: 18461115 DOI: 10.1139/h08-009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Natives of high altitude (HA) may have enhanced physical work capacity in hypoxia due to growth and development at altitude or, in the case of indigenous Andean and Himalayan residents, due to population genetic factors that determine higher limits to exercise performance. There is a growing scientific literature in support of both hypotheses, although the specific developmental vs. genetic origins of putative population trait differences remain obscure. Considering whole-body measures of exercise performance, a review of the literature suggests that indigenous HA natives have higher mean maximal oxygen consumption (VO(2) (max)) in hypoxia and smaller VO(2) (max) decrement with increasing hypoxia. At present, there is insufficient information to conclude that HA natives have enhanced work economy or greater endurance capacity, although for the former a number of studies indicate that this may be the case for Tibetans. At the physiological level, supporting the hypothesis of enhanced pulmonary gas exchange efficiency, HA natives have smaller alveolar-arterial oxygen partial pressure difference ((A-a)DO(2)), lower pulmonary ventilation (VE), and likely higher arterial O(2) saturation (SaO(2)) during exercise. At the muscle level, a handful of studies show no differences in fiber-type distributions, capillarity, oxidative enzymes, or the muscle response to training. At the metabolic level, a few studies suggest differences in lactate production/removal and (or) lactate buffering capacity, but more work is needed in this area.
Collapse
Affiliation(s)
- Tom D Brutsaert
- Department of Anthropology, State University of New York at Albany, Albany, NY 12222, USA.
| |
Collapse
|
29
|
Law A, Rodway GW. Trekking and Climbing in the Solukhumbu District of Nepal: Impact on Socioeconomic Status and Health of Lowland Porters. Wilderness Environ Med 2008; 19:210-7. [DOI: 10.1580/07-weme-we-174.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
30
|
Brutsaert TD. Population genetic aspects and phenotypic plasticity of ventilatory responses in high altitude natives. Respir Physiol Neurobiol 2007; 158:151-60. [PMID: 17400521 DOI: 10.1016/j.resp.2007.03.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 02/26/2007] [Accepted: 03/03/2007] [Indexed: 11/21/2022]
Abstract
Highland natives show unique breathing patterns and ventilatory responses at altitude, both at rest and during exercise. For many ventilatory traits, there is also significant variation between highland native groups, including indigenous populations in the Andes and Himalaya, and more recent altitude arrivals in places like Colorado. This review summarizes the literature in this area with some focus on partitioning putative population genetic differences from differences acquired through lifelong exposure to hypoxia. Current studies suggest that Tibetans have high resting ventilation (V (E)), and a high hypoxic ventilatory response (HVR), similar to altitude acclimatized lowlanders. Andeans, in contrast, show low resting V (E) and a low or "blunted" HVR, with little evidence that these traits are acquired via lifelong exposure. Resting V (E) of non-indigenous altitude natives is not well documented, but lifelong hypoxic exposure almost certainly blunts HVR in these groups through decreased chemosensitivity to hypoxia in a process known as hypoxic desensitization (HD). Together, these studies suggest that the time course of ventilatory response, and in particular the origin or absence of HD, depends on population genetic background i.e., the allele or haplotype frequencies that characterize a particular population. During exercise, altitude natives have lower V (E) compared to acclimatized lowland controls. Altitude natives also have smaller alveolar-arterial partial pressure differences P(AO2) - P(aO2) during exercise suggesting differences in gas exchange efficiency. Small P(AO2) - P(aO2) in highland natives of Colorado underscores the likely importance of developmental adaptation to hypoxia affecting structural/functional aspects of gas exchange with resultant changes in breathing pattern. However, in Andeans, at least, there is also evidence that low exercise V (E) is determined by genetic background affecting ventilatory control independent of gas exchange. Additional studies are needed to elucidate the effects of gene, environment, and gene-environment interaction on these traits, and these effects are likely to differ widely between altitude native populations.
Collapse
Affiliation(s)
- Tom D Brutsaert
- Department of Anthropology, 1400 Washington Ave., The University at Albany, SUNY, Albany, NY 12222, United States.
| |
Collapse
|
31
|
Hsia CCW, Johnson RL, McDonough P, Dane DM, Hurst MD, Fehmel JL, Wagner HE, Wagner PD. Residence at 3,800-m altitude for 5 mo in growing dogs enhances lung diffusing capacity for oxygen that persists at least 2.5 years. J Appl Physiol (1985) 2007; 102:1448-55. [PMID: 17218427 DOI: 10.1152/japplphysiol.00971.2006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mammals native to high altitude (HA) exhibit larger lung volumes than their lowland counterparts. To test the hypothesis that adaptation induced by HA residence during somatic maturation improves pulmonary gas exchange in adulthood, male foxhounds born at sea level (SL) were raised at HA (3,800 m) from 2.5 to 7.5 mo of age and then returned to SL prior to somatic maturity while their littermates were simultaneously raised at SL. Following return to SL, all animals were trained to run on a treadmill; gas exchange and hemodynamics were measured 2.5 years later at rest and during exercise while breathing 21% and 13% O(2). The multiple inert gas elimination technique was employed to estimate ventilation-perfusion (Va/Q) distributions and lung diffusing capacity for O(2) (Dl(O(2))). There were no significant intergroup differences during exercise breathing 21% O(2). During exercise breathing 13% O(2), peak O(2) uptake and Va/Q distributions were similar between groups but arterial pH, base excess, and O(2) saturation were higher while peak lactate concentration was lower in animals raised at HA than at SL. At a given exercise intensity, alveolar-arterial O(2) tension gradient (A-aDo(2)) attributable to diffusion limitation was lower while Dlo(2) was 12-25% higher in HA-raised animals. Mean systemic arterial blood pressure was also lower in HA-raised animals; mean pulmonary arterial pressures were similar. We conclude that 5 mo of HA residence during maturation enhances long-term gas exchange efficiency and Dl(O(2)) without impacting Va/Q inequality during hypoxic exercise at SL.
Collapse
Affiliation(s)
- Connie C W Hsia
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, TX 75390-9034, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Marconi C, Marzorati M, Cerretelli P. Work capacity of permanent residents of high altitude. High Alt Med Biol 2006; 7:105-15. [PMID: 16764524 DOI: 10.1089/ham.2006.7.105] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tibetan and Andean natives at altitude have allegedly a greater work capacity and stand fatigue better than acclimatized lowlanders. The principal aim of the present review is to establish whether convincing experimental evidence supports this belief and, should this be the case, to analyze the possible underlying mechanisms. The superior work capacity of high altitude natives is not based on differences in maximum aerobic power (V(O2 peak)), mL kg(-1)min(-1)). In fact, average V (O2 peak) of both Tibetan and Andean natives at altitude is only slightly, although not significantly, higher than that of Asian or Caucasian lowlanders resident for more than 1 yr between 3400 and 4700 m (Tibetans, n = 152, vs. Chinese Hans, n = 116: 42.4 +/- 3.4 vs. 39.2 +/- 2.6 mL kg(-1)min(-1), mean +/- SE; Andeans, n = 116, vs. Caucasians, n = 70: 47.1 +/- 1.7 vs. 41.6 +/- 1.2 mL kg(-1)min(-1)). However, compared to acclimatized lowlanders, Tibetans appear to be characterized by a better economy of cycling, walking, and running on a treadmill. This is possibly due to metabolic adaptations, such as increased muscle myoglobin content and antioxidant defense. All together, the latter changes may enhance the efficiency of the muscle oxidative metabolic machinery, thereby supporting a better prolonged submaximal performance capacity compared to lowlanders, despite equal V(O2 peak). With regard to Andeans, data on exercise efficiency is scanty and controversial and, at present, no conclusion can be drawn as to the origin of their superior performance.
Collapse
|
33
|
Minetti AE, Formenti F, Ardigò LP. Himalayan porter's specialization: metabolic power, economy, efficiency and skill. Proc Biol Sci 2006; 273:2791-7. [PMID: 17015318 PMCID: PMC1635507 DOI: 10.1098/rspb.2006.3653] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Accepted: 06/14/2006] [Indexed: 11/12/2022] Open
Abstract
Carrying heavy loads in the Himalayan region is a real challenge. Porters face extreme ranges in terrain condition, path steepness, altitude hypoxia and climate for 6-8h a day, many months a year, since they were boys. It has been previously shown that, when carrying loads on level terrain, porters' metabolic economy is higher than in Caucasians but the reasons are still unknown. We monitored Nepalese porters both during 90 km trekking in Khumbu Valley and at two different altitudes (3490 and 5050 m above sea-level), where they were compared to Caucasian mountaineers during (22%) gradient walking. Both subject groups carried a load of up to 90% body mass. The remarkably higher performance of porters during uphill locomotion (+60% in speed, +39% mechanical power) is only partly explained by the lower cost of loaded walking (-20%), being also the result of a better cardio-circulatory adaptation to altitude, which generates a higher mass-specific metabolic power (+30%). Consequently, Nepalese porters show higher efficiency, both during uphill and downhill loaded walking. Their higher economy on steep paths cannot be ascribed to a better exchange between potential and kinetic energy, as in our experiments the body centre of mass travelled monotonically uphill (or downhill). A different oscillation pattern of the loaded head-trunk segment, together with the analysis of the different components of the mechanical work during load carrying, suggests that achieved motor skills in balancing the loaded body segment above the hip could play a role in determining the better economy of porters.
Collapse
Affiliation(s)
- Alberto E Minetti
- Faculty of Medicine, Institute of Human Physiology, University of Milan, Milan 20133, Italy.
| | | | | |
Collapse
|
34
|
Abstract
Since the beginning of the Himalayan climbing era, the anecdotal extraordinary physical performance at high altitude of Sherpas and Tibetans has intrigued scientists interested in altitude adaptation. These ethnic groups may have been living at high altitude for longer than any other population, and the hypothesis of a possible evolutionary genetic adaptation to altitude makes sense. Reviewed here is the evidence as to whether Tibetans are indeed better adapted for life and work at high altitude as compared to other populations and, if so, whether this better adaptation might be inborn. Tibetans, compared to lowlanders, maintain higher arterial oxygen saturation at rest and during exercise and show less loss of aerobic performance with increasing altitude. Tibetans have greater hypoxic and hypercapnic ventilatory responsiveness, larger lungs, better lung function, and greater lung diffusing capacity than lowlanders. Blood hemoglobin concentration is lower in Tibetans than in lowlanders or Andeans living at similar altitudes. Tibetans develop only minimal hypoxic pulmonary hypertension and have higher levels of exhaled nitric oxide than lowlanders or Andeans. Tibetans' sleep quality at altitude is better and they desaturate less at night. Several of these findings are also found in Tibetans born at low altitude when exposed for the first time to high altitude once adult. In conclusion, Tibetans indeed seem better adapted to life and work at high altitude, and this superior adaptation may very well be inborn, even though its exact genetic basis remains to be elucidated.
Collapse
Affiliation(s)
- Tianyi Wu
- National Key Laboratory of High Altitude Medicine, Department of Hypoxic Physiology and Mountain Medicine, High Altitude Medical Research Institute, Xining, Qinghai, P. R. China
| | | |
Collapse
|
35
|
Gushulak BD, MacPherson DW. The basic principles of migration health: population mobility and gaps in disease prevalence. Emerg Themes Epidemiol 2006; 3:3. [PMID: 16674820 PMCID: PMC1513225 DOI: 10.1186/1742-7622-3-3] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Accepted: 05/04/2006] [Indexed: 11/11/2022] Open
Abstract
Currently, migrants and other mobile individuals, such as migrant workers and asylum seekers, are an expanding global population of growing social, demographic and political importance. Disparities often exist between a migrant population's place of origin and its destination, particularly with relation to health determinants. The effects of those disparities can be observed at both individual and population levels. Migration across health and disease disparities influences the epidemiology of certain diseases globally and in nations receiving migrants. While specific disease-based outcomes may vary between migrant group and location, general epidemiological principles may be applied to any situation where numbers of individuals move between differences in disease prevalence. Traditionally, migration health activities have been designed for national application and lack an integrated international perspective. Present and future health challenges related to migration may be more effectively addressed through collaborative global undertakings. This paper reviews the epidemiological relationships resulting from health disparities bridged by migration and describes the growing role of migration and population mobility in global disease epidemiology. The implications for national and international health policy and program planning are presented.
Collapse
Affiliation(s)
- Brian D Gushulak
- Migration Health Consultants, Inc., Vienna, Austria/Cheltenham, Ontario, Canada
| | - Douglas W MacPherson
- Migration Health Consultants, Inc., Vienna, Austria/Cheltenham, Ontario, Canada
- Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
36
|
Marconi C, Marzorati M, Sciuto D, Ferri A, Cerretelli P. Economy of locomotion in high-altitude Tibetan migrants exposed to normoxia. J Physiol 2005; 569:667-75. [PMID: 16179365 PMCID: PMC1464256 DOI: 10.1113/jphysiol.2005.094979] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
High-altitude Tibetans undergo a pattern of adaptations to chronic hypoxia characterized, among others, by a more efficient aerobic performance compared with acclimatized lowlanders. To test whether such changes may persist upon descent to moderate altitude, oxygen uptake of 17 male Tibetan natives lifelong residents at 3500-4500 m was assessed within 1 month upon migration to 1300 m. Exercise protocols were: 5 min treadmill walking at 6 km h(-1) on increasing inclines from +5 to +15% and 5 min running at 10 km h(-1) on a +5% grade. The data (mean +/- S.E.M.) were compared with those obtained on Nepali lowlanders. When walking on +10, +12.5 and +15% inclines, net V(O2) of Tibetans was 25.2 +/- 0.7, 29.1 +/- 1.1 and 31.3 +/- 0.9 ml kg(-1) min(-1), respectively, i.e. 8, 10 and 13% less (P < 0.05) than that of Nepali. At the end of the heaviest load, blood lactate concentration was lower in Tibetans than in Nepali (6.0 +/- 0.9 versus 8.9 +/- 0.6 mM; P < 0.05). During running, V(O2) of Tibetans was 35.1 +/- 0.8 versus 39.3 +/- 0.7 ml kg(-1) min(-1) (i.e. 11% less; P < 0.01). In conclusion, during submaximal walking and running at 1300 m, Tibetans are still characterized by lower aerobic energy expenditure than control subjects that is not accounted for by differences in mechanical power output and/or compensated for by anaerobic glycolysis. These findings indicate that chronic hypoxia induces metabolic adaptations whose underlying mechanisms still need to be elucidated, that persist for at least 1 month upon descent to moderate altitude.
Collapse
Affiliation(s)
- Claudio Marconi
- IBFM--National Research Council and Department of Sciences and Biomedical Technologies, University of Milano, Milan, Italy.
| | | | | | | | | |
Collapse
|
37
|
Severinghaus JW. Sightings. High Alt Med Biol 2004. [DOI: 10.1089/1527029041352027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|