1
|
Zhao C, He L, Li L, Deng F, Zhang M, Wang C, Qiu J, Gao Q. Prenatal glucocorticoids exposure and adverse cardiovascular effects in offspring. Front Endocrinol (Lausanne) 2024; 15:1430334. [PMID: 39351527 PMCID: PMC11439645 DOI: 10.3389/fendo.2024.1430334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024] Open
Abstract
Glucocorticoids (GCs) are steroid hormones fundamental to the body's normal physiological functions and are pivotal in fetal growth and development. During gestation, the mother's cortisol concentration (active GCs) escalates to accommodate the requirements of fetal organ development and maturation. A natural placental GCs barrier, primarily facilitated by 11β hydroxysteroid dehydrogenase 2, exists between the mother and fetus. This enzyme transforms biologically active cortisol into biologically inactive corticosterone, thereby mitigating fetal GCs exposure. However, during pregnancy, the mother may be vulnerable to adverse factor exposures such as stress, hypoxia, caffeine, and synthetic GCs use. In these instances, maternal serum GCs levels may surge beyond the protective capacity of the placental GCs barrier. Moreover, these adverse factors could directly compromise the placental GCs barrier, resulting in excessive fetal exposure to GCs. It is well-documented that prenatal GCs exposure can detrimentally impact the offspring's cardiovascular system, particularly in relation to blood pressure, vascular function, and heart function. In this review, we succinctly delineate the alterations in GCs levels during pregnancy and the potential mechanisms driving these changes, and also analyze the possible causes of prenatal GCs exposure. Furthermore, we summarize the current advancements in understanding the adverse effects and mechanisms of prenatal GCs exposure on the offspring's cardiovascular system.
Collapse
Affiliation(s)
- Chenxuan Zhao
- Institute for Fetology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lei He
- Institute for Fetology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lingjun Li
- Institute for Fetology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fengying Deng
- Institute for Fetology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Meihua Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Changhong Wang
- Genetics and Prenatal Diagnosis Center, Fuyang People’s Hospital, Fuyang, China
| | - Junlan Qiu
- Department of Oncology and Hematology, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, China
| | - Qinqin Gao
- Institute for Fetology, First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
2
|
Cahill LS, Whitehead CL, Hobson SR, Stortz G, Kingdom JC, Baschat A, Murphy KE, Serghides L, Macgowan CK, Sled JG. Effect of maternal betamethasone administration on feto-placental vascular resistance in the mouse†. Biol Reprod 2020; 101:823-831. [PMID: 31318405 DOI: 10.1093/biolre/ioz128] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/10/2019] [Accepted: 05/15/2019] [Indexed: 12/24/2022] Open
Abstract
Antenatal corticosteroids are often administered to women at risk of preterm birth to accelerate fetal lung development; however, there is evidence that this treatment may adversely affect placental function in some fetuses. Our group has recently demonstrated that wave reflections in the umbilical artery (UA), measured using high-frequency ultrasound, are sensitive to placental vascular abnormalities. In the present study, we used this approach to investigate the effect of maternal administration of betamethasone, a clinically relevant corticosteroid, on the feto-placental vasculature of the mouse. Fetuses were assessed at embryonic day (E)15.5 and E17.5 in C57BL6/J mice. At both gestational ages, the UA diameter, UA blood flow, and the wave reflection coefficient were significantly elevated in the betamethasone-treated mice compared to vehicle-treated controls. These observations support the interpretation that placental vascular resistance dropped with betamethasone treatment to an extent that could not be explained by vasodilation of the UA alone. Consistent with clinical studies, the effect of betamethasone on UA end-diastolic velocity was heterogeneous. Our results suggest that UA wave reflections are more sensitive to acute changes in placental vascular resistance compared with the UA pulsatility index, and this technique may have clinical application to identify a favorable placental vascular response to fetal therapies such as antenatal corticosteroids, where the fetal heart rate is likely to vary.
Collapse
Affiliation(s)
- Lindsay S Cahill
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Sebastian R Hobson
- Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada
| | - Greg Stortz
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - John C Kingdom
- Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada
| | - Ahmet Baschat
- Centre for Fetal Therapy, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Kellie E Murphy
- Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada
| | - Lena Serghides
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Immunology and Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.,Women's College Research Institute, Women's College Hospital, Toronto, Ontario, Canada
| | - Christopher K Macgowan
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - John G Sled
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada.,Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Yang Y, Yang S, Jia Y, Yin C, Zhao R. Sex-biased transgenerational transmission of betaine-induced epigenetic modifications in glucocorticoid receptor gene and its down-stream BDNF/ERK pathway in rat hippocampus. Nutr Neurosci 2020; 25:746-757. [PMID: 32840180 DOI: 10.1080/1028415x.2020.1807711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Objectives: Glucocorticoid receptor (GR) expressed in hippocampus is critical for the homeostasis of stress responses and susceptible to epigenetic modulation caused by maternal factors. Here we show that maternal methyl nutrition causes sex-biased changes in hippocampal expression of GR exon 1 mRNA variants, associated with promoter DNA methylation, across two offspring generations in rats.Methods: Three-month-old female Sprague-Dawley rats (F0) were fed a diet supplemented with 1% betaine throughout the gestation and lactation. F0 dams and their F1 and F2 offspring of both sexes at weaning were used in the study.Results: A sex-specific transgenerational effect was observed. F2 females, but not males, followed the same pattern of their grand dams showing increased mRNA expression of total GR and its exons 1.4, 1.7, 1.10 and 1.11 variants coincided with promoter DNA hypomethylation in the hippocampus. However, F1 females, but not males, exhibited an opposite pattern, showing decreased expression of GR and its mRNA variants accompanied with promoter hypermethylation. The protein content of phospho-GR and BDNF/ERK in the hippocampus displayed the same sex and generation specificity.Discussion: These results indicate that maternal betaine exerts transgenerational effects on hippocampal GR expression and BDNF/ERK pathway in female rat offspring, with generation-dependent patterns of DNA methylation on alternative GR promoters.
Collapse
Affiliation(s)
- Yang Yang
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, People's Republic of China.,Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Shu Yang
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, People's Republic of China.,Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Yimin Jia
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, People's Republic of China.,Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Chao Yin
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, People's Republic of China.,Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Ruqian Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, People's Republic of China.,Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, People's Republic of China
| |
Collapse
|
4
|
van der Merwe JL, Sacco A, Toelen J, Deprest J. Long-term neuropathological and/or neurobehavioral effects of antenatal corticosteroid therapy in animal models: a systematic review. Pediatr Res 2020; 87:1157-1170. [PMID: 31822018 DOI: 10.1038/s41390-019-0712-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/12/2019] [Accepted: 11/23/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND Antenatal corticosteroids (ACSs) are recommended to all women at risk for preterm delivery; currently, there is controversy about the subsequent long-term neurocognitive sequelae. This systematic review summarizes the long-term neurodevelopmental outcomes after ACS therapy in animal models. METHODS An electronic search strategy incorporating MeSH and keywords was performed using all known literature databases and in accordance with PRISMA guidance (PROSPERO CRD42019119663). RESULTS Of the 669 studies identified, eventually 64 were included. The majority of studies utilized dexamethasone at relative high dosages and primarily involved rodents. There was a high risk of bias, mostly due to lack of randomization, allocation concealment, and blinding. The main outcomes reported on was neuropathological, particularly glucocorticoid receptor expression and neuron densities, and neurobehavior. Overall there was an upregulation of glucocorticoid receptors with lower neuron densities and a dysregulation of the dopaminergic and serotonergic systems. This coincided with various adverse neurobehavioral outcomes. CONCLUSIONS In animal models, ACSs consistently lead to deleterious long-term neurocognitive effects. This may be due to the specific agents, i.e., dexamethasone, or the repetitive/higher total dosing used. ACS administration varied significantly between studies and there was a high risk of bias. Future research should be standardized in well-characterized models.
Collapse
Affiliation(s)
- Johannes L van der Merwe
- Department of Development and Regeneration, Cluster Woman and Child, Faculty of Medicine, KU Leuven, Leuven, Belgium. .,Department of Obstetrics and Gynaecology, Fetal Medicine Unit, UZ Leuven, Leuven, Belgium.
| | - Adalina Sacco
- Institute for Women's Health, University College London, London, UK
| | - Jaan Toelen
- Department of Development and Regeneration, Cluster Woman and Child, Faculty of Medicine, KU Leuven, Leuven, Belgium.,Department of Pediatrics, Division Woman and Child, University Hospitals Leuven, Leuven, Belgium
| | - Jan Deprest
- Department of Development and Regeneration, Cluster Woman and Child, Faculty of Medicine, KU Leuven, Leuven, Belgium.,Department of Obstetrics and Gynaecology, Fetal Medicine Unit, UZ Leuven, Leuven, Belgium.,Institute for Women's Health, University College London, London, UK
| |
Collapse
|
5
|
Jeje SO, Adegbite LO, Akindele OO, Kunle-Alabi OT, Raji Y. Allium cepa Linn juice protect against alterations in reproductive functions induced by maternal dexamethsone treatment during lactation in male offspring of Wistar rats. Heliyon 2020; 6:e03872. [PMID: 32395653 PMCID: PMC7205748 DOI: 10.1016/j.heliyon.2020.e03872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/02/2019] [Accepted: 04/23/2020] [Indexed: 11/13/2022] Open
Abstract
Treatment with dams with dexamethasone during lactation has been reported to induce oxidative stress in the testis of the offspring. Allium cepa L (Red Onion) is known to be a potent free radical scavenger. The protective role of Allium cepa against oxidative stress induced in testis following treatment with dexamehasone during lactation in Wistar rats was assessed. Twenty female rats were assigned into four groups (n = 5) during lactation and they were treated as follows: Group 1 serve as Control (distilled water), Group 2, 3, and four were admistered dexamethasone (60 μg/kg), Allium cepa (5 ml/kg) and dexamethasone + Allium cepa respectively. Testicular descent, pubertal age, sperm quality indices, and serum hormonal profile were assessed as indices of reproductive function. Testicular malondialdehyde (MDA) reduced glutathione (GSH) as well as superoxide dismutase (SOD) and catalase activities were assessed as measures of oxidative stress. Results obtained showed that dexamethasone caused significant (P < 0.05) reduction in testes weights, indices of sperm quality, serum testosterone, FSH, LH levels and testicular antioxidant enzyme activities. There was significant delay (P < 0.05) in days of testes descent, preputial separation and increase in testicular MDA. However, maternal treatment with Allium cepa Linn juice significantly (P < 0.05) improved both indices of reproductive function and testicular antioxidant enzymes. These findings suggest that Allium cepa Linn has a protective effect against testicular oxidative stress and reproductive dysfunction following treatment of dams with dexamethasone during lactation.
Collapse
Affiliation(s)
- S O Jeje
- Laboratory for Reproductive Physiology and Developmental Programming, Department of Physiology, University of Ibadan, Ibadan, Nigeria.,Department of Physiology, School of Health and Health Technology, Federal University of Technology, AKure, Nigeria
| | - L O Adegbite
- Laboratory for Reproductive Physiology and Developmental Programming, Department of Physiology, University of Ibadan, Ibadan, Nigeria
| | - O O Akindele
- Laboratory for Reproductive Physiology and Developmental Programming, Department of Physiology, University of Ibadan, Ibadan, Nigeria
| | - O T Kunle-Alabi
- Laboratory for Reproductive Physiology and Developmental Programming, Department of Physiology, University of Ibadan, Ibadan, Nigeria
| | - Y Raji
- Laboratory for Reproductive Physiology and Developmental Programming, Department of Physiology, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
6
|
Sze Y, Brunton PJ. Sex, stress and steroids. Eur J Neurosci 2019; 52:2487-2515. [DOI: 10.1111/ejn.14615] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Ying Sze
- Centre for Discovery Brain Sciences University of Edinburgh Edinburgh UK
| | - Paula J. Brunton
- Centre for Discovery Brain Sciences University of Edinburgh Edinburgh UK
- Zhejiang University‐University of Edinburgh Joint Institute Haining Zhejiang China
| |
Collapse
|
7
|
Cardiovascular effects of prenatal stress-Are there implications for cerebrovascular, cognitive and mental health outcome? Neurosci Biobehav Rev 2019; 117:78-97. [PMID: 31708264 DOI: 10.1016/j.neubiorev.2018.05.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 01/17/2023]
Abstract
Prenatal stress programs offspring cognitive and mental health outcome. We reviewed whether prenatal stress also programs cardiovascular dysfunction which potentially modulates cerebrovascular, cognitive and mental health disorders. We focused on maternal stress and prenatal glucocorticoid (GC) exposure which have different programming effects. While maternal stress induced cortisol is mostly inactivated by the placenta, synthetic GCs freely cross the placenta and have different receptor-binding characteristics. Maternal stress, particularly anxiety, but not GC exposure, has adverse effects on maternal-fetal circulation throughout pregnancy, probably by co-activation of the maternal sympathetic nervous system, and by raising fetal catecholamines. Both effects may impair neurodevelopment. Experimental data also suggest that severe maternal stress and GC exposure during early and mid-gestation may increase the risk for cardiovascular disorders. Human data are scarce and especially lacking for older age. Programming mechanisms include aberrations in cardiac and kidney development, and functional changes in the renin-angiotensin-aldosterone-system, stress axis and peripheral and coronary vasculature. Adequate experimental or human studies examining the consequences for cerebrovascular, cognitive and mental disorders are unavailable.
Collapse
|
8
|
Matthews SG, McGowan PO. Developmental programming of the HPA axis and related behaviours: epigenetic mechanisms. J Endocrinol 2019; 242:T69-T79. [PMID: 30917340 DOI: 10.1530/joe-19-0057] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 03/27/2019] [Indexed: 12/22/2022]
Abstract
It has been approximately 30 years since the seminal discoveries of David Barker and his colleagues, and research is beginning to unravel the mechanisms that underlie developmental programming. The early environment of the embryo, foetus and newborn have been clearly linked to altered hypothalamic-pituitary-adrenal (HPA) function and related behaviours through the juvenile period and into adulthood. A number of recent studies have shown that these effects can pass across multiple generations. The HPA axis is highly responsive to the environment, impacts both central and peripheral systems and is critical to health in a wide variety of contexts. Mechanistic studies in animals are linking early exposures to adversity with changes in gene regulatory mechanisms, including modifications of DNA methylation and altered levels of miRNA. Similar associations are emerging from recent human studies. These findings suggest that epigenetic mechanisms represent a fundamental link between adverse early environments and developmental programming of later disease. The underlying biological mechanisms that connect the perinatal environment with modified long-term health outcomes represent an intensive area of research. Indeed, opportunities for early interventions must identify the relevant environmental factors and their molecular targets. This new knowledge will likely assist in the identification of individuals who are at risk of developing poor outcomes and for whom early intervention is most effective.
Collapse
Affiliation(s)
- Stephen G Matthews
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Departments of Obstetrics & Gynaecology and Medicine, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Patrick O McGowan
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Biological Sciences and Center for Environmental Epigenetics and Development, University of Toronto, Scarborough, Ontario, Canada
- Department of Cell and Systems Biology, Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Morrison JL, Botting KJ, Darby JRT, David AL, Dyson RM, Gatford KL, Gray C, Herrera EA, Hirst JJ, Kim B, Kind KL, Krause BJ, Matthews SG, Palliser HK, Regnault TRH, Richardson BS, Sasaki A, Thompson LP, Berry MJ. Guinea pig models for translation of the developmental origins of health and disease hypothesis into the clinic. J Physiol 2018; 596:5535-5569. [PMID: 29633280 PMCID: PMC6265540 DOI: 10.1113/jp274948] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/19/2018] [Indexed: 12/12/2022] Open
Abstract
Over 30 years ago Professor David Barker first proposed the theory that events in early life could explain an individual's risk of non-communicable disease in later life: the developmental origins of health and disease (DOHaD) hypothesis. During the 1990s the validity of the DOHaD hypothesis was extensively tested in a number of human populations and the mechanisms underpinning it characterised in a range of experimental animal models. Over the past decade, researchers have sought to use this mechanistic understanding of DOHaD to develop therapeutic interventions during pregnancy and early life to improve adult health. A variety of animal models have been used to develop and evaluate interventions, each with strengths and limitations. It is becoming apparent that effective translational research requires that the animal paradigm selected mirrors the tempo of human fetal growth and development as closely as possible so that the effect of a perinatal insult and/or therapeutic intervention can be fully assessed. The guinea pig is one such animal model that over the past two decades has demonstrated itself to be a very useful platform for these important reproductive studies. This review highlights similarities in the in utero development between humans and guinea pigs, the strengths and limitations of the guinea pig as an experimental model of DOHaD and the guinea pig's potential to enhance clinical therapeutic innovation to improve human health.
Collapse
Affiliation(s)
- Janna L. Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health ResearchUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Kimberley J. Botting
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Jack R. T. Darby
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health ResearchUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Anna L. David
- Research Department of Maternal Fetal Medicine, Institute for Women's HealthUniversity College LondonLondonUK
| | - Rebecca M. Dyson
- Department of Paediatrics & Child Health and Centre for Translational PhysiologyUniversity of OtagoWellingtonNew Zealand
| | - Kathryn L. Gatford
- Robinson Research Institute and Adelaide Medical SchoolUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Clint Gray
- Department of Paediatrics & Child Health and Centre for Translational PhysiologyUniversity of OtagoWellingtonNew Zealand
| | - Emilio A. Herrera
- Pathophysiology Program, Biomedical Sciences Institute (ICBM), Faculty of MedicineUniversity of ChileSantiagoChile
| | - Jonathan J. Hirst
- Mothers and Babies Research Centre, Hunter Medical Research Institute, School of Biomedical Sciences and PharmacyUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Bona Kim
- Department of PhysiologyUniversity of TorontoTorontoOntarioCanada
| | - Karen L. Kind
- School of Animal and Veterinary SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Bernardo J. Krause
- Division of Paediatrics, Faculty of MedicinePontificia Universidad Católica de ChileSantiagoChile
| | | | - Hannah K. Palliser
- Mothers and Babies Research Centre, Hunter Medical Research Institute, School of Biomedical Sciences and PharmacyUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Timothy R. H. Regnault
- Departments of Obstetrics and Gynaecology, Physiology and PharmacologyWestern University, and Children's Health Research Institute and Lawson Health Research InstituteLondonOntarioCanada
| | - Bryan S. Richardson
- Departments of Obstetrics and Gynaecology, Physiology and PharmacologyWestern University, and Children's Health Research Institute and Lawson Health Research InstituteLondonOntarioCanada
| | - Aya Sasaki
- Department of PhysiologyUniversity of TorontoTorontoOntarioCanada
| | - Loren P. Thompson
- Department of Obstetrics, Gynecology, and Reproductive SciencesUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Mary J. Berry
- Department of Paediatrics & Child Health and Centre for Translational PhysiologyUniversity of OtagoWellingtonNew Zealand
| |
Collapse
|
10
|
Cuffe JSM, Turton EL, Akison LK, Bielefeldt-Ohmann H, Moritz KM. Prenatal corticosterone exposure programs sex-specific adrenal adaptations in mouse offspring. J Endocrinol 2017; 232:37-48. [PMID: 27754933 DOI: 10.1530/joe-16-0417] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 10/17/2016] [Indexed: 01/05/2023]
Abstract
Maternal stress can impair foetal development and program sex-specific disease outcomes in offspring through the actions of maternally produced glucocorticoids, predominantly corticosterone (Cort) in rodents. We have demonstrated in mice that male but not female offspring prenatally exposed to Cort (33 µg/kg/h for 60 h beginning at E12.5) develop cardiovascular/renal dysfunction at 12 months. At 6 months of age, renal function was normal but male offspring had increased plasma aldosterone concentrations, suggesting that altered adrenal function may precede disease. This study investigated the long-term impact of prenatal exposure to Cort on adrenal growth, morphology and steroidogenic capacity as well as plasma Cort concentrations in offspring at postnatal day 30 (PN30), 6 months and 12 months of age. Prenatal Cort exposure decreased adrenal volume, particularly of the zona fasciculata, in male offspring at PN30 but increased both relative and absolute adrenal weight at 6 months of age. By 12 months of age, male Cort-exposed offspring had reduced absolute adrenal weight in association with increased adrenal plaque deposition (lipogenic pigmentation). Plasma Cort concentrations were elevated in male 6-month offspring but not at other ages. mRNA expression of Mc2r (ACTH receptor) was increased in males at PN30, and Cyp11a1 expression was decreased at 6 and 12 months of age. There were no changes in the adrenals of female Cort-exposed offspring. This study demonstrates that prenatal Cort exposure induces offspring adrenal gland dysfunction in an age- and sex-specific manner, which may contribute to long-term programmed disease in male offspring after maternal stress.
Collapse
Affiliation(s)
- J S M Cuffe
- School of Biomedical ScienceThe University of Queensland, St Lucia, Queensland, Australia
- School of Medical ScienceMenzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
| | - E L Turton
- School of Biomedical ScienceThe University of Queensland, St Lucia, Queensland, Australia
| | - L K Akison
- School of Biomedical ScienceThe University of Queensland, St Lucia, Queensland, Australia
| | - H Bielefeldt-Ohmann
- School of Veterinary ScienceThe University of Queensland, Gatton, Queensland, Australia
| | - K M Moritz
- School of Biomedical ScienceThe University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
11
|
Cheong JN, Cuffe JSM, Jefferies AJ, Anevska K, Moritz KM, Wlodek ME. Sex-Specific Metabolic Outcomes in Offspring of Female Rats Born Small or Exposed to Stress During Pregnancy. Endocrinology 2016; 157:4104-4120. [PMID: 27571133 DOI: 10.1210/en.2016-1335] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Low birth weight increases adult metabolic disease risk in both the first (F1) and second (F2) generation. Physiological stress during pregnancy in F1 females that were born small induces F2 fetal growth restriction, but the long-term metabolic health of these F2 offspring is unknown. Uteroplacental insufficiency (restricted) or sham (control) surgery was performed in F0 rats. F1 females (control, restricted) were allocated to unstressed or stressed pregnancies. F2 offspring exposed to maternal stress in utero had reduced birth weight. At 6 months, F2 stressed males had elevated fasting glucose. In contrast, F2 restricted males had reduced pancreatic β-cell mass. Interestingly, these metabolic deficits were not present at 12 month. F2 males had increased adrenal mRNA expression of steroidogenic acute regulatory protein and IGF-1 receptor when their mothers were born small or exposed to stress during pregnancy. Stressed control F2 males had increased expression of adrenal genes that regulate androgen signaling at 6 months, whereas expression increased in restricted male and female offspring at 12 months. F2 females from stressed mothers had lower area under the glucose curve during glucose tolerance testing at 12 months compared with unstressed females but were otherwise unaffected. If F1 mothers were either born small or exposed to stress during her pregnancy, F2 offspring had impaired physiological outcomes in a sex- and age-specific manner. Importantly, stress during pregnancy did not exacerbate disease risk in F2 offspring of mothers born small, suggesting that they independently program disease in offspring through different mechanisms.
Collapse
Affiliation(s)
- Jean N Cheong
- Department of Physiology (J.N.C., A.J.J., K.A., M.E.W.), Faculty of Medicine, Dentistry and Health Sciences, School of Biomedical Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia; School of Biomedical Sciences (J..S.M.C., K.M.M.), University of Queensland, St. Lucia, Queensland 4072, Australia; School of Medical Science (J.S.M.C.), Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport, Queensland 4222, Australia; and Department of Physiology (K.A.), Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - James S M Cuffe
- Department of Physiology (J.N.C., A.J.J., K.A., M.E.W.), Faculty of Medicine, Dentistry and Health Sciences, School of Biomedical Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia; School of Biomedical Sciences (J..S.M.C., K.M.M.), University of Queensland, St. Lucia, Queensland 4072, Australia; School of Medical Science (J.S.M.C.), Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport, Queensland 4222, Australia; and Department of Physiology (K.A.), Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Andrew J Jefferies
- Department of Physiology (J.N.C., A.J.J., K.A., M.E.W.), Faculty of Medicine, Dentistry and Health Sciences, School of Biomedical Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia; School of Biomedical Sciences (J..S.M.C., K.M.M.), University of Queensland, St. Lucia, Queensland 4072, Australia; School of Medical Science (J.S.M.C.), Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport, Queensland 4222, Australia; and Department of Physiology (K.A.), Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Kristina Anevska
- Department of Physiology (J.N.C., A.J.J., K.A., M.E.W.), Faculty of Medicine, Dentistry and Health Sciences, School of Biomedical Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia; School of Biomedical Sciences (J..S.M.C., K.M.M.), University of Queensland, St. Lucia, Queensland 4072, Australia; School of Medical Science (J.S.M.C.), Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport, Queensland 4222, Australia; and Department of Physiology (K.A.), Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Karen M Moritz
- Department of Physiology (J.N.C., A.J.J., K.A., M.E.W.), Faculty of Medicine, Dentistry and Health Sciences, School of Biomedical Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia; School of Biomedical Sciences (J..S.M.C., K.M.M.), University of Queensland, St. Lucia, Queensland 4072, Australia; School of Medical Science (J.S.M.C.), Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport, Queensland 4222, Australia; and Department of Physiology (K.A.), Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Mary E Wlodek
- Department of Physiology (J.N.C., A.J.J., K.A., M.E.W.), Faculty of Medicine, Dentistry and Health Sciences, School of Biomedical Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia; School of Biomedical Sciences (J..S.M.C., K.M.M.), University of Queensland, St. Lucia, Queensland 4072, Australia; School of Medical Science (J.S.M.C.), Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport, Queensland 4222, Australia; and Department of Physiology (K.A.), Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, 3086, Australia
| |
Collapse
|
12
|
A review of fundamental principles for animal models of DOHaD research: an Australian perspective. J Dev Orig Health Dis 2016; 7:449-472. [DOI: 10.1017/s2040174416000477] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Epidemiology formed the basis of ‘the Barker hypothesis’, the concept of ‘developmental programming’ and today’s discipline of the Developmental Origins of Health and Disease (DOHaD). Animal experimentation provided proof of the underlying concepts, and continues to generate knowledge of underlying mechanisms. Interventions in humans, based on DOHaD principles, will be informed by experiments in animals. As knowledge in this discipline has accumulated, from studies of humans and other animals, the complexity of interactions between genome, environment and epigenetics, has been revealed. The vast nature of programming stimuli and breadth of effects is becoming known. As a result of our accumulating knowledge we now appreciate the impact of many variables that contribute to programmed outcomes. To guide further animal research in this field, the Australia and New Zealand DOHaD society (ANZ DOHaD) Animals Models of DOHaD Research Working Group convened at the 2nd Annual ANZ DOHaD Congress in Melbourne, Australia in April 2015. This review summarizes the contributions of animal research to the understanding of DOHaD, and makes recommendations for the design and conduct of animal experiments to maximize relevance, reproducibility and translation of knowledge into improving health and well-being.
Collapse
|
13
|
Nemeth M, Pschernig E, Wallner B, Millesi E. Non-invasive cortisol measurements as indicators of physiological stress responses in guinea pigs. PeerJ 2016; 4:e1590. [PMID: 26839750 PMCID: PMC4734438 DOI: 10.7717/peerj.1590] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/21/2015] [Indexed: 12/19/2022] Open
Abstract
Non-invasive measurements of glucocorticoid (GC) concentrations, including cortisol and corticosterone, serve as reliable indicators of adrenocortical activities and physiological stress loads in a variety of species. As an alternative to invasive analyses based on plasma, GC concentrations in saliva still represent single-point-of-time measurements, suitable for studying short-term or acute stress responses, whereas fecal GC metabolites (FGMs) reflect overall stress loads and stress responses after a species-specific time frame in the long-term. In our study species, the domestic guinea pig, GC measurements are commonly used to indicate stress responses to different environmental conditions, but the biological relevance of non-invasive measurements is widely unknown. We therefore established an experimental protocol based on the animals' natural stress responses to different environmental conditions and compared GC levels in plasma, saliva, and fecal samples during non-stressful social isolations and stressful two-hour social confrontations with unfamiliar individuals. Plasma and saliva cortisol concentrations were significantly increased directly after the social confrontations, and plasma and saliva cortisol levels were strongly correlated. This demonstrates a high biological relevance of GC measurements in saliva. FGM levels measured 20 h afterwards, representing the reported mean gut passage time based on physiological validations, revealed that the overall stress load was not affected by the confrontations, but also no relations to plasma cortisol levels were detected. We therefore measured FGMs in two-hour intervals for 24 h after another social confrontation and detected significantly increased levels after four to twelve hours, reaching peak concentrations already after six hours. Our findings confirm that non-invasive GC measurements in guinea pigs are highly biologically relevant in indicating physiological stress responses compared to circulating levels in plasma in the short- and long-term. Our approach also underlines the importance of detailed investigations on how to use and interpret non-invasive measurements, including the determination of appropriate time points for sample collections.
Collapse
Affiliation(s)
- Matthias Nemeth
- Department of Behavioural Biology, University of Vienna , Vienna , Austria
| | | | - Bernard Wallner
- Department of Behavioural Biology, University of Vienna, Vienna, Austria; Department of Anthropology, University of Vienna, Vienna, Austria
| | - Eva Millesi
- Department of Behavioural Biology, University of Vienna , Vienna , Austria
| |
Collapse
|
14
|
Fishmeal supplementation during ovine pregnancy and lactation protects against maternal stress-induced programming of the offspring immune system. BMC Vet Res 2015; 11:266. [PMID: 26472344 PMCID: PMC4608120 DOI: 10.1186/s12917-015-0573-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 10/05/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Prenatally stressed offspring exhibit increased susceptibility to inflammatory disorders due to in utero programming. Research into the effects of n-3 PUFAs shows promising results for the treatment and prevention of these disorders. The purpose of this study was to investigate whether maternal fishmeal supplementation during pregnancy and lactation protects against programming of the offspring's immune response following simulated maternal infection. METHODS In order to accomplish this, 53 ewes were fed a diet supplemented with fishmeal (FM; rich in n-3 PUFA) or soybean meal (SM; rich in n-6 PUFAs) from day 100 of gestation (gd 100) through lactation. On gd135, half the ewes from each dietary group were challenged with either 1.2 μg/kg Escherichia coli lipopolysaccharide (LPS) endotoxin to simulate a bacterial infection, or saline as the control. At 4.5 months of age the offspring's dermal immune response was assessed by cutaneous hypersensitivity testing with ovalbumin (OVA) and candida albicans (CAA) 21 days after sensitization. Skinfold measurements were taken and serum blood samples were also collected to assess the primary and secondary antibody immune response. RESULTS Offspring born to SM + LPS mothers had a significantly greater change in skinfold thickness in response to both antigens as well as a greater secondary antibody response to OVA compared to all treatments. CONCLUSIONS Supplementation during pregnancy with FM appears to protect against adverse fetal programming that may occur during maternal infection and this may reduce the risk of atopic disease later in life.
Collapse
|
15
|
Jellyman JK, Valenzuela OA, Fowden AL. HORSE SPECIES SYMPOSIUM: Glucocorticoid programming of hypothalamic-pituitary-adrenal axis and metabolic function: Animal studies from mouse to horse1,2. J Anim Sci 2015; 93:3245-60. [DOI: 10.2527/jas.2014-8612] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- J. K. Jellyman
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502
| | - O. A. Valenzuela
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - A. L. Fowden
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| |
Collapse
|
16
|
The impact of maternal synthetic glucocorticoid administration in late pregnancy on fetal and early neonatal hypothalamic-pituitary-adrenal axes regulatory genes is dependent upon dose and gestational age at exposure. J Dev Orig Health Dis 2015; 4:77-89. [PMID: 25080184 DOI: 10.1017/s2040174412000591] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this study, we determined the gene and/or protein expression of hypothalamic-pituitary-adrenal (HPA) axis regulatory molecules following synthetic glucocorticoid exposures. Pregnant sheep received intramuscular saline or betamethasone (BET) injections at 104 (BET-1), 104 and 111(BET-2) or 104, 111 and 118 (BET-3) days of gestation (dG). Samples were collected at numerous time-points between 75 dG and 12 weeks postnatal age. In the BET-3 treatment group, fetal plasma cortisol levels were lower at 145 dG than controls and gestational length was lengthened significantly. The cortisol:adrenocorticotropic hormone (ACTH) ratio in fetal plasma of control and BET-3 fetuses rose significantly between132 and 145 dG, and remained elevated in lambs at 6 and 12 weeks of age; this rise was truncated at day 145 in fetuses of BET-3 treated mothers. After BET treatment, fetal and postnatal pituitary proopiomelanocortin mRNA levels were reduced from 109 dG to 12 weeks postnatal age; pituitary prohormone convertase 1 and 2 mRNA levels were reduced at 145 dG and postnatally; hypothalamic arginine vasopressin mRNA levels were lowered at all time-points, but corticotrophin-releasing hormone mRNA levels were reduced only in postnatal lambs. Maternal BET increased late fetal and/or postnatal adrenal mRNA levels of ACTH receptor and 3β hydroxysteroid dehydrogenase but decreased steroidogenic acute regulatory protein and P450 17-α hydroxylase. The altered mRNA levels of key HPA axis regulatory proteins after maternal BET injections suggests processes that may subserve long-term changes in HPA activity in later life after prenatal exposure to synthetic glucocorticoids.
Collapse
|
17
|
Abstract
Since their introduction more than forty years ago, antenatal glucocorticoids have become a cornerstone in the management of preterm birth and have been responsible for substantial reductions in neonatal mortality and morbidity. Clinical trials conducted over the past decade have shown that these benefits may be increased further through administration of repeat doses of antenatal glucocorticoids in women at ongoing risk of preterm and in those undergoing elective cesarean at term. At the same time, a growing body of experimental animal evidence and observational data in humans has linked fetal overexposure to maternal glucocorticoids with increased risk of cardiovascular, metabolic and other disorders in later life. Despite these concerns, and somewhat surprisingly, there has been little evidence to date from randomized trials of longer-term harm from clinical doses of synthetic glucocorticoids. However, with wider clinical application of antenatal glucocorticoid therapy there has been greater need to consider the potential for later adverse effects. This paper reviews current evidence for the short- and long-term health effects of antenatal glucocorticoids and discusses the apparent discrepancy between data from randomized clinical trials and other studies.
Collapse
|
18
|
Zambrano E, Nathanielsz PW. Mechanisms by which maternal obesity programs offspring for obesity: evidence from animal studies. Nutr Rev 2014; 71 Suppl 1:S42-54. [PMID: 24147924 DOI: 10.1111/nure.12068] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Maternal obesity can profoundly affect offspring phenotype and predisposition to obesity and metabolic disease. Carefully controlled studies in precocial and altricial mammalian species provide insights into the involved mechanisms. These include programming of hypothalamic appetite-regulating centers to increase orexigenic relative to anorexigenic drive; increasing maternal, fetal, and offspring adrenal and peripheral tissue glucocorticoid production; and increasing maternal oxidative stress. Outcomes often show offspring sex differences that may play a role in the differential susceptibility of males and females to later-life obesity and other related metabolic diseases.
Collapse
Affiliation(s)
- Elena Zambrano
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico
| | | |
Collapse
|
19
|
Vaughan OR, Sferruzzi-Perri AN, Coan PM, Fowden AL. Adaptations in placental phenotype depend on route and timing of maternal dexamethasone administration in mice. Biol Reprod 2013; 89:80. [PMID: 23986571 DOI: 10.1095/biolreprod.113.109678] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Synthetic glucocorticoids, like dexamethasone (dex), restrict growth of the fetus and program its adult physiology, in part by altering placental phenotype. The route and timing of dex administration determine the fetal and adult outcomes, but whether these factors affect placental phenotype remains unknown. This study compared placental morphology, amino acid transport, and gene expression in mice given dex orally or by subcutaneous injection over the periods of most rapid placental (Days [D] 11-16) or fetal (D14-19) growth (term is D21). Compared with untreated and saline-injected controls, both dex treatments reduced placental weight at D16 and 19 and fetal weight and total labyrinthine volume at D19 to a similar extent. Only oral dex treatment from D11 to D16 reduced labyrinthine fetal capillary volume on D16 and increased placental ¹⁴C-methylaminoisobutyric acid (MeAIB) clearance at D19, 3 days after treatment ended. Neither route of dex treatment altered placental expression of Slc38a, Hsd11b, or the glucocorticoid receptor, Nr3c1, at D16. In contrast, both routes of dex treatment from D14 to D19 increased placental Hsd11b2 expression and labyrinthine maternal vessel volume. Furthermore, injection per se altered placental expression of Nr3c1, Hsd11b1, and specific Slc38a isoforms in an age-related manner. Overall, MeAIB clearance was not related to Slc38a transporter expression but was correlated inversely with maternal corticosterone concentrations when dex was undetectable in maternal plasma at D19. The effects of dex on placental phenotype, therefore, depend on both the route and timing of administration and may relate to local glucocorticoid availability during and after the treatment period.
Collapse
Affiliation(s)
- Owen R Vaughan
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
20
|
Zuloaga DG, Siegel JA, Acevedo SF, Agam M, Raber J. Developmental methamphetamine exposure results in short- and long-term alterations in hypothalamic-pituitary-adrenal-axis-associated proteins. Dev Neurosci 2013; 35:338-46. [PMID: 23860125 DOI: 10.1159/000351278] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 04/11/2013] [Indexed: 11/19/2022] Open
Abstract
Developmental exposure to methamphetamine (MA) causes long-term behavioral and cognitive deficits. One pathway through which MA might induce these deficits is by elevating glucocorticoid levels. Glucocorticoid overexposure during brain development can lead to long-term disruptions in the hypothalamic-pituitary-adrenal (HPA) axis. These disruptions affect the regulation of stress responses and may contribute to behavioral and cognitive deficits reported following developmental MA exposure. Furthermore, alterations in proteins associated with the HPA axis, including vasopressin, oxytocin, and glucocorticoid receptors (GR), are correlated with disruptions in mood and cognition. We therefore hypothesized that early MA exposure will result in short- and long-term alterations in the expression of HPA axis-associated proteins. Male mice were treated with MA (5 mg/kg daily) or saline from postnatal day (P) 11 to P20. At P20 and P90, mice were perfused and their brains processed for vasopressin, oxytocin, and GR immunoreactivity within HPA axis-associated regions. At P20, there was a significant decrease in the number of vasopressin-immunoreactive cells and the area occupied by vasopressin immunoreactivity in the paraventricular nucleus (PVN) of MA-treated mice, but no difference in oxytocin immunoreactivity in the PVN, or GR immunoreactivity in the hippocampus or PVN. In the central nucleus of the amygdala, the area occupied by GR immunoreactivity was decreased by MA. At P90, the number of vasopressin-immunoreactive cells was still decreased, but the area occupied by vasopressin immunoreactivity no longer differed from saline controls. No effects of MA were found on oxytocin or GR immunoreactivity at P90. Thus developmental MA exposure has short- and long-term effects on vasopressin immunoreactivity and short-term effects on GR immunoreactivity.
Collapse
Affiliation(s)
- Damian G Zuloaga
- Department of Behavioral Neuroscience, Oregon Health and Science University Portland, Portland, OR 97239, USA.
| | | | | | | | | |
Collapse
|
21
|
Effects of antenatal corticosteroids on the hypothalamic-pituitary-adrenocortical axis of the fetus and newborn: experimental findings and clinical considerations. Am J Obstet Gynecol 2012; 207:446-54. [PMID: 22840973 DOI: 10.1016/j.ajog.2012.06.012] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 05/25/2012] [Accepted: 06/05/2012] [Indexed: 01/24/2023]
Abstract
The hypothalamic-pituitary-adrenocortical (HPA) axis is a major neuroendocrine pathway that modulates the stress response. The glucocorticoid, cortisol, is the principal end product of the HPA axis in humans and plays a fundamental role in maintaining homeostasis and in fetal maturation and development. Antenatal administration of synthetic glucocorticoids (GCs) accelerates fetal lung maturation and has significantly decreased neonatal mortality and morbidity in infants born before 34 weeks of gestation. Exposure to excess levels of endogenous GCs and exogenous GCs (betamethasone and dexamethasone) has been shown to alter the normal development trajectory. The development and regulation of the fetal HPA axis is discussed and the experimental animal evidence presented suggests long-term adverse consequences of altered HPA function. The clinical data in infants exposed to GCs also suggest altered HPA axis function over the short term. The longer-term consequences of antenatal GC exposure on HPA axis function and subtler neurodevelopmental outcomes including adaptation to stress, cognition, behavior, and the cardiovascular and immune responses are poorly understood. Emerging clinical strategies and interventions may help in the selection of mothers at risk for preterm delivery who would benefit from existing or future formulations of antenatal GCs with a reduction in the associated risk to the fetus and newborn. Detailed longitudinal long-term follow-up of those infants exposed to synthetic GCs are needed.
Collapse
|
22
|
Vaughan OR, Sferruzzi-Perri AN, Fowden AL. Maternal corticosterone regulates nutrient allocation to fetal growth in mice. J Physiol 2012; 590:5529-40. [PMID: 22930269 DOI: 10.1113/jphysiol.2012.239426] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Stresses during pregnancy that increase maternal glucocorticoids reduce birth weight in several species. However, the role of natural glucocorticoids in the mother in fetal acquisition of nutrients for growth remains unknown. This study aimed to determine whether fetal growth was reduced as a consequence of altered amino acid supply when mice were given corticosterone in their drinking water for 5 day periods in mid to late pregnancy (day, D, 11-16 or D14-19). Compared to controls drinking tap water, fetal weight was always reduced by corticosterone. At D16, corticosterone had no effect on materno-fetal transfer of [(14)C]methylaminoisobutyric acid (MeAIB), although placental MeAIB accumulation and expression of the Slc38a1 and Slc38a2 transporters were increased. However, at D19, 3 days after treatment ended, materno-fetal transfer of MeAIB was increased by 37% (P < 0.04). During treatment at D19, placental accumulation and materno-fetal transfer of MeAIB were reduced by 40% (P < 0.01), although expression of Slc38a1 was again elevated. Permanent reductions in placental vascularity occurred during the earlier but not the later period of treatment. Placental Hsd11b2 expression, which regulates feto-placental glucocorticoid bioavailability, was also affected by treatment at D19 only. Maternal corticosterone concentrations inversely correlated with materno-fetal MeAIB clearance and fetal weight at D19 but not D16. On D19, weight gain of the maternal carcass was normal during corticosterone treatment but reduced in those mice treated from D11 to D16, in which corticosterone levels were lowest. Maternal corticosterone is, therefore, a physiological regulator of the amino acid supply for fetal growth via actions on placental phenotype.
Collapse
Affiliation(s)
- Owen R Vaughan
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge CB2 3EG, UK.
| | | | | |
Collapse
|
23
|
Tomaszewska E, Dobrowolski P, Siwicki A. Maternal treatment with dexamethasone at minimal therapeutic doses inhibits neonatal bone development in a gender-dependent manner. Livest Sci 2012. [DOI: 10.1016/j.livsci.2012.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
24
|
Iqbal M, Moisiadis VG, Kostaki A, Matthews SG. Transgenerational effects of prenatal synthetic glucocorticoids on hypothalamic-pituitary-adrenal function. Endocrinology 2012; 153:3295-307. [PMID: 22564976 PMCID: PMC3413075 DOI: 10.1210/en.2012-1054] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Approximately 10% of pregnant women are at risk of preterm delivery and receive synthetic glucocorticoids (sGC) to promote fetal lung development. Studies have indicated that prenatal sGC therapy modifies hypothalamic-pituitary-adrenal (HPA) function in first-generation (F(1)) offspring. The objective of this study was to determine whether differences in HPA function and behavior are evident in the subsequent (F(2)) generation. Pregnant guinea pigs (F(0)) received betamethasone (BETA; 1 mg/kg) or saline on gestational d 40/41, 50/51, and 60/61. F(1) females were mated with control males to create F(2) offspring. HPA function was assessed in juvenile and adult F(2) offspring. Locomotor activity was assessed in juvenile offspring. Analysis of HPA-related gene expression was undertaken in adult hippocampi, hypothalami, and pituitaries. Locomotor activity was reduced in F(2) BETA males (P < 0.05). F(2) BETA offspring displayed blunted cortisol response to swim stress (P < 0.05). After dexamethasone challenge, F(2) BETA males and females displayed increased and decreased negative feedback, respectively. F(2) BETA females had reduced pituitary levels of proopiomelanocortin (and adrenocorticotropic hormone), and corticotropin-releasing hormone receptor mRNA and protein (P < 0.05). F(2) BETA males displayed increased hippocampal glucocorticoid receptor (P < 0.001), whereas in BETA females, hippocampal glucocorticoid receptor and mineralocorticoid receptor mRNA were decreased (P < 0.05). In conclusion, prenatal BETA treatment affects HPA function and behavior in F(2) offspring. In F(2) BETA females, pituitary function appears to be primarily affected, whereas hippocampal glucocorticoid feedback systems appear altered in both F(2) BETA males and females. These data have clinical implication given the widespread use of repeat course glucocorticoid therapy in the management of preterm labour.
Collapse
Affiliation(s)
- Majid Iqbal
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | | | | | | |
Collapse
|
25
|
Schöpper H, Klaus T, Palme R, Ruf T, Huber S. Sex-specific impact of prenatal stress on growth and reproductive parameters of guinea pigs. J Comp Physiol B 2012; 182:1117-27. [DOI: 10.1007/s00360-012-0680-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 05/24/2012] [Accepted: 05/26/2012] [Indexed: 11/29/2022]
|
26
|
Schöpper H, Palme R, Ruf T, Huber S. Effects of prenatal stress on hypothalamic-pituitary-adrenal (HPA) axis function over two generations of guinea pigs (Cavia aperea f. porcellus). Gen Comp Endocrinol 2012; 176:18-27. [PMID: 22202601 DOI: 10.1016/j.ygcen.2011.12.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 11/11/2011] [Accepted: 12/11/2011] [Indexed: 01/14/2023]
Abstract
Prenatal stress can alter hypothalamic-pituitary-adrenal axis function with potential consequences for later life. The aim of our study was to examine in guinea pigs (Cavia aperea f. porcellus) the effects of stress experienced during F0 pregnancy on glucocorticoid levels in plasma and feces, as well as challenge performance, in F1 offspring (n=44) and fecal glucocorticoid levels in F2 offspring (n=67). F1 animals were either born to F0 dams that had been stressed with strobe light during early to mid pregnancy, resulting in a short term increase but long-term down-regulation of maternal glucocorticoid levels, or to undisturbed F0 dams. The same stressor was used as a challenge for F1 offspring at age 26 days and around 100 days. Basal plasma cortisol concentrations during early F1 development, as well as overall glucocorticoid levels at challenge tests, were lower in F1 animals that were prenatally stressed than in control animals. Fecal cortisol metabolites were initially at lower levels in prenatally stressed F1 animals, relative to control animals, but shifted to higher levels around day 68, with an additional sex difference. Effects were also seen in the F2 generation, as male but not female offspring of prenatally stressed F1 animals had significantly higher levels of cortisol metabolites in feces after weaning. We conclude that stress exposure of F0 dams resulted in lower basal glucocorticoid levels in F1 offspring during the pre-pubertal phase and during stress exposure, but higher glucocorticoid levels in post-adolescent F1 animals. Also in males of F2 generation effects of stress exposure of F0 dams were detected.
Collapse
Affiliation(s)
- Hanna Schöpper
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Savoyenstrasse 1, 1160 Vienna, Austria.
| | | | | | | |
Collapse
|
27
|
Schwab M, Coksaygan T, Rakers F, Nathanielsz PW. Glucocorticoid exposure of sheep at 0.7 to 0.75 gestation augments late-gestation fetal stress responses. Am J Obstet Gynecol 2012; 206:253.e16-22. [PMID: 22192534 DOI: 10.1016/j.ajog.2011.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/24/2011] [Accepted: 11/11/2011] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Exposure to glucocorticoid levels inappropriately high for current maturation alters fetal hypothalamo-pituitary-adrenal axis (HPAA) development. In an established fetal sheep model, we determined whether clinical betamethasone doses used to accelerate fetal lung maturation have persistent effects on fetal HPAA hypotensive-stress responses. STUDY DESIGN Pregnant ewes received saline (n = 6) or betamethasone (n = 6); 2 × 110 μg/kg body weight doses injected 24 hours apart (106/107 and 112/113 days' gestational age, term 150 days). Basal adrenocorticotropin (ACTH) and cortisol and responses to fetal hypotension were measured before and 5 days after the first course and 14 days after the second course. RESULTS Basal ACTH and cortisol were similar with treatment. HPAA responses to hypotension increased after the second but not first course and ACTH/cortisol ratio increased indicating central HPAA effects. CONCLUSIONS Results demonstrate latency in the emergence of fetal HPAA hyperresponsiveness following betamethasone exposure that may explain hyperresponsiveness in full-term but not preterm neonates.
Collapse
Affiliation(s)
- Matthias Schwab
- Department of Neurology, Friedrich Schiller University, Jena, Germany.
| | | | | | | |
Collapse
|
28
|
Petropoulos S, Gibb W, Matthews SG. Glucocorticoid regulation of placental breast cancer resistance protein (Bcrp1) in the mouse. Reprod Sci 2011; 18:631-9. [PMID: 21602547 DOI: 10.1177/1933719110395399] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Placental breast cancer resistance protein (Bcrp1; encoded by the Abcg2 gene) limits maternal-fetal transplacental transfer of numerous endogenous and exogenous substrates; however, the regulation of placental Abcg2 and Bcrp1 and is not well understood. Placental Abcg2 messenger RNA (mRNA) levels decrease with advancing gestation in the mouse, and this corresponds to increasing levels of maternal and fetal plasma glucocorticoid. Glucocorticoids, including dexamethasone (DEX), downregulate Bcrp1 expression and function in both breast cancer cell lines and the blood-brain barrier in vitro; whether this occurs in the placenta is not known. The potential regulatory role of synthetic glucocorticoids on placental Bcrp1 is of interest, given that approximately 10% of pregnant women are treated with synthetic glucocorticoid for threatened preterm labor. We hypothesized that (1) exposure of pregnant mice to DEX will downregulate placental Abcg2 mRNA and Bcrp1 protein, and (2) results in increased fetal accumulation of [(3)H]mitoxantrone. Pregnant mice were treated with DEX (low-dose: 0.1 mg/kg or high-dose: 1 mg/kg) or vehicle (saline) from embryonic day (E) E9.5 to E15.5 or E12.5 to E18.5. In placentae derived from female fetuses, high-dose DEX significantly downregulated Abcg2 mRNA expression on E15.5 (P < .05) and significantly inhibited Bcrp1 function (P < .05). Similarly, high-dose DEX significantly inhibited Bcrp1 function in the placentae derived from male fetuses (P < .05). In conclusion, there is a dose-dependent regulatory effect of synthetic glucocorticoid on placental Abcg2 mRNA and Bcrp1 function in vivo. Further, it appears that, at the level of Abcg2 gene expression, the female-derived placentae are more susceptible to the effects of DEX than male placentae.
Collapse
Affiliation(s)
- Sophie Petropoulos
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
29
|
Kapoor A, Matthews SG. Testosterone is involved in mediating the effects of prenatal stress in male guinea pig offspring. J Physiol 2010; 589:755-66. [PMID: 21173081 PMCID: PMC3052442 DOI: 10.1113/jphysiol.2010.200543] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A link exists between stress during pregnancy and altered hypothalamic–pituitary–adrenal (HPA) activity and behaviour in children. In the guinea pig, male offspring born to mothers that were exposed to stress during pregnancy demonstrated increased anxiety, basal cortisol levels and decreased testosterone concentrations. Testosterone is known to inhibit HPA function and anxiety behaviours. Therefore, we hypothesized that restoring plasma testosterone would ameliorate the differences observed in HPA function and behaviour. Pregnant guinea pigs were exposed to a stressor during the period of rapid fetal brain growth (prenatal stress, PS) or left undisturbed (control, C). Behaviour in an open-field and prepulse inhibition (PPI) of the acoustic startle reflex (ASR) was assessed in juvenile offspring. In adulthood, male offspring were divided into four groups: Control + sham gonadectomy (GDX), control + GDX + testosterone replacement, PS + sham GDX and PS + GDX + testosterone. Male offspring were retested in the open-field and PPI. Basal HPA activity was also assessed. As juveniles, PS males exhibited significantly lower ASR (P < 0.05) and elevated PPI. In adulthood, PS male offspring exhibited significantly decreased PPI (P < 0.02) and this was reversed by administration of testosterone. We also found that adult PS offspring exhibited significantly less activity in the open-field (P < 0.05) and administration of testosterone increased ambulatory activity in PS animals. Basal plasma adrenocorticotrophin hormone (ACTH) levels were significantly greater in PS animals and there was a trend towards reversal by administration of testosterone in PS males. In conclusion, prenatal stress results in male guinea pig offspring that exhibit age-dependent differences in ambulatory activity, sensorimotor gating and HPA activity. In adulthood, the behavioural changes are reversed by replacement of plasma testosterone.
Collapse
Affiliation(s)
- Amita Kapoor
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
30
|
Rich-Edwards JW, Spiegelman D, Lividoti Hibert EN, Jun HJ, Todd TJ, Kawachi I, Wright RJ. Abuse in childhood and adolescence as a predictor of type 2 diabetes in adult women. Am J Prev Med 2010; 39:529-36. [PMID: 21084073 PMCID: PMC3003936 DOI: 10.1016/j.amepre.2010.09.007] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 09/01/2010] [Accepted: 09/01/2010] [Indexed: 10/18/2022]
Abstract
BACKGROUND Although child abuse is associated with obesity, it is not known whether early abuse increases risk of type 2 diabetes. PURPOSE To investigate associations of child and adolescent abuse with adult diabetes. METHODS Proportional hazards models were used to examine associations of lifetime abuse reported in 2001 with risk of diabetes from 1989 to 2005 among 67,853 women in the Nurses' Health Study II. Data were analyzed in 2009. RESULTS Child or teen physical abuse was reported by 54% and sexual abuse by 34% of participants. Models were adjusted for age, race, body type at age 5 years, and parental education and history of diabetes. Compared to women who reported no physical abuse, the hazards ratio (HR) was 1.03 (95% CI=0.91, 1.17) for mild physical abuse; 1.26 (1.14, 1.40) for moderate physical abuse; and 1.54 (1.34, 1.77) for severe physical abuse. Compared with women reporting no sexual abuse in childhood or adolescence, the HR was 1.16 (95% CI=1.05, 1.29) for unwanted sexual touching; 1.34 (1.13, 1.59) for one episode of forced sexual activity; and 1.69 (1.45, 1.97) for repeated forced sex. Adult BMI accounted for 60% (95% CI=32%, 87%) of the association of child and adolescent physical abuse and 64% (95% CI=38%, 91%) of the association of sexual abuse with diabetes. CONCLUSIONS Moderate to severe physical and sexual abuse in childhood and adolescence have dose-response associations with risk of type 2 diabetes among adult women. This excess risk is partially explained by the higher BMI of women with a history of early abuse.
Collapse
Affiliation(s)
- Janet W Rich-Edwards
- Connors Center for Women's Health and Gender Biology, Brigham and Women's Hospital/Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Schäffer L, Burkhardt T, Tomaske M, Schmidt S, Luzi F, Rauh M, Leone A, Beinder E. Effect of antenatal betamethasone administration on neonatal cardiac autonomic balance. Pediatr Res 2010; 68:286-91. [PMID: 20581746 DOI: 10.1203/pdr.0b013e3181ed0cf2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Beneficial effects of antenatal glucocorticoid treatment in pregnancies at risk for preterm delivery may entail long-term consequences for the establishment of sympathoadrenergic system balance. We analyzed the cardiac autonomic system activity in neonates with a single course of antenatal betamethasone (2 × 12 mg) treatment by calculating heart rate variability (HRV) time-domain parameters from 24 h ECG recordings and short-term frequency-domain parameters during infant active and resting states. In addition, resting and challenged salivary α-amylase levels were measured in 23 betamethasone-exposed neonates and compared with controls. Indicators for overall HRV (SDNN: p = 0.258; triangular index: p = 0.179) and sympathovagal balance [low- to high-frequency power (LF/HF): p = 0.82 (resting state)] were not significantly different in neonates of the betamethasone treatment group. Parameters mostly influenced by sympathetic activity [SD of the average of valid NN intervals (SDANN): p = 0.184 and SDs of all NN intervals (SDNNi): p = 0.784] and vagal tone [RMSSD: p = 1.0; NN50: p = 0.852; HF: p = 0.785 (resting state)] were unaltered. Resting α-amylase levels were not significantly different in the betamethasone treatment group (p = 0.304); however, α-amylase release after a neonatal challenge was slightly reduced (p = 0.045). Thus, cardiac autonomic balance seems to be preserved in neonates exposed to a single course of antenatal betamethasone treatment.
Collapse
Affiliation(s)
- Leonhard Schäffer
- Department of Obstetrics and Gynecology, University Hospital of Zürich, Zürich 8091, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Buhl ES, Jensen TK, Jessen N, Elfving B, Buhl CS, Kristiansen SB, Pold R, Solskov L, Schmitz O, Wegener G, Lund S, Petersen KF. Treatment with an SSRI antidepressant restores hippocampo-hypothalamic corticosteroid feedback and reverses insulin resistance in low-birth-weight rats. Am J Physiol Endocrinol Metab 2010; 298:E920-9. [PMID: 20103738 PMCID: PMC2867376 DOI: 10.1152/ajpendo.00606.2009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Low birth weight (LBW) is associated with type 2 diabetes and depression, which may be related to prenatal stress and insulin resistance as a result of chronic hypothalamic-pituitary-adrenal (HPA) axis hyperactivity. We examined whether treatment with a selective serotonin reuptake inhibitor [escitalopram (ESC)] could downregulate HPA axis activity and restore insulin sensitivity in LBW rats. After 4-5 wk of treatment, ESC-exposed LBW (SSRI-LBW) and saline-treated control and LBW rats (Cx and LBW) underwent an oral glucose tolerance test or a hyperinsulinemic euglycemic clamp to assess whole body insulin sensitivity. Hepatic phosphoenolpyruvate carboxykinase (PEPCK) mRNA expression and red skeletal muscle PKB Ser(473) phosphorylation were used to assess tissue-specific insulin sensitivity. mRNA expression of the hypothalamic mineralocorticoid receptor was fivefold upregulated in LBW (P < 0.05 vs. Cx), accompanied by increased corticosterone release during restraint stress and total 24-h urinary excretion (P < 0.05 vs. Cx), whole body insulin resistance (P < 0.001 vs. Cx), and impaired insulin suppression of hepatic PEPCK mRNA expression (P < 0.05 vs. Cx). Additionally, there was a tendency for reduced red muscle PKB Ser(473) phosphorylation. The ESC treatment normalized corticosterone secretion (P < 0.05 vs. LBW), whole body insulin sensitivity (P < 0.01) as well as postprandial suppression of hepatic mRNA PEPCK expression (P < 0.05), and red muscle PKB Ser(473) phosphorylation (P < 0.01 vs. LBW). We conclude that these data suggest that the insulin resistance and chronic HPA axis hyperactivity in LBW rats can be reversed by treatment with an ESC, which downregulates HPA axis activity, lowers glucocorticoid exposure, and restores insulin sensitivity in LBW rats.
Collapse
Affiliation(s)
- Esben S Buhl
- Department of Pharmacology, Wilhelm Meyers Allé, Bldg. 1240, Aarhus University, DK-8000 Aarhus C, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Dunn E, Kapoor A, Leen J, Matthews SG. Prenatal synthetic glucocorticoid exposure alters hypothalamic-pituitary-adrenal regulation and pregnancy outcomes in mature female guinea pigs. J Physiol 2010; 588:887-99. [PMID: 20064858 DOI: 10.1113/jphysiol.2009.182139] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Preterm delivery occurs in approximately 10% of all pregnancies. Prenatal exposure to synthetic glucocorticoids (sGCs) reduces the incidence of respiratory distress syndrome (RDS) in these babies. Therefore, administration of multiple courses of sGCs became common practice. Animal and human studies have demonstrated that multiple courses of sGCs can have long-term effects. While the majority of animal studies have been undertaken in male offspring, it is emerging that there are profound sex differences in the consequences of prenatal sGC exposure. To our knowledge, no studies have determined the effects of prenatal sGC exposure on hypothalamic-pituitary-adrenal (HPA) axis function in female offspring while accounting for reproductive cycle status, or determined if there are effects on pregnancy parameters. Pregnant guinea pigs were administered three courses of betamethasone (Beta), dexamethasone (Dex) or vehicle on gestational days 40/41, 50/51 and 60/61. In adulthood (age range: postnatal days 126-165), basal and activated HPA axis function were assessed at various stages of the reproductive cycle. The female offspring were then mated and underwent an undisturbed pregnancy. Females were killed in the luteal phase of the reproductive cycle following litter weaning, and molecular analysis undertaken. In the luteal phase, Beta-exposed females exhibited significantly lower basal salivary cortisol levels (P < 0.05). Dex-exposed females also exhibited significantly lower basal salivary cortisol levels during the luteal phase (P < 0.05), but increased basal salivary cortisol levels during the ostrous phase (P < 0.01). The Beta-exposed females exhibited increased glucocorticoid receptor (GR) mRNA expression in the CA1/2 region of the hippocampus (P < 0.05) and MC2R mRNA in the adrenal cortex (P < 0.05). The Dex-exposed animals exhibited higher hippocampal GR and mineralocorticoid receptor (MR) mRNA levels (P < 0.05). Beta-exposed females showed reduced fecundity (P < 0.05). In Dex-exposed females there was a lower male to female sex ratio. In conclusion, prenatal sGC exposure affects HPA axis activity, in a cycle-dependent manner, and long-term reproductive success. The clinical implications of the findings on endocrine function and pregnancy in females are profound and further follow-up is warranted in human cohorts. Furthermore, we have shown there are considerable difference in phenotypes between the Beta- and Dex-exposed females and the specific endocrine and maternal outcome is contingent on the specific sGCs administered during pregnancy.
Collapse
Affiliation(s)
- Elizabeth Dunn
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Sciences Building, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
34
|
Matthews SG, Phillips DIW. Minireview: transgenerational inheritance of the stress response: a new frontier in stress research. Endocrinology 2010; 151:7-13. [PMID: 19887563 DOI: 10.1210/en.2009-0916] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
It is well established in animal models that the prenatal environment can have a major impact on stress axis function throughout life. These changes can predispose to various metabolic, cardiovascular, and neurobiological pathophysiologies. Emerging evidence indicates that the same programming effects occur in humans. It is now becoming clear that the pathophysiological effects are not confined to the first-generation offspring and that there is transgenerational memory of fetal experience that can extend across multiple generations. The complex mechanisms by which transgenerational transmission of stress responsiveness occur are rapidly becoming a focus of investigation. Understanding these fundamental biological processes will allow for development of intervention strategies that prevent or reverse adverse programming of the stress response.
Collapse
Affiliation(s)
- Stephen G Matthews
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada.
| | | |
Collapse
|
35
|
Do Alterations in Placental 11β-Hydroxysteroid Dehydrogenase (11βHSD) Activities Explain Differences in Fetal Hypothalamic-Pituitary-Adrenal (HPA) Function Following Periconceptional Undernutrition or Twinning in Sheep? Reprod Sci 2009; 16:1201-12. [DOI: 10.1177/1933719109345162] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
36
|
Mildenhall L, Battin M, Bevan C, Kuschel C, Harding JE. Repeat prenatal corticosteroid doses do not alter neonatal blood pressure or myocardial thickness: randomized, controlled trial. Pediatrics 2009; 123:e646-52. [PMID: 19307271 DOI: 10.1542/peds.2008-1931] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE The goal was to determine whether repeat prenatal corticosteroid treatment alters blood pressure and myocardial wall thickness in neonates. METHODS A randomized, double-blind, placebo-controlled trial was performed in a tertiary perinatal center. Mothers with a singleton, twin, or triplet pregnancy, at a gestational age of <32 weeks, who had received initial treatment with corticosteroid > or =7 days earlier and who were considered to be at continued risk of preterm birth were assigned randomly to receive additional weekly betamethasone or placebo treatment. One hundred forty-five infants born to 120 women were studied. Blood pressure in the first 4 weeks after birth or until hospital discharge and interventricular septal thickness and left ventricular posterior wall thickness in diastole 48 to 72 hours after birth were measured. RESULTS There were no differences in mean, systolic, or diastolic blood pressures between infants in the placebo and repeat steroid groups. Blood pressures of infants in both groups were similar to published normal values. There were no differences between groups in interventricular septal thickness or left ventricular posterior wall thickness in diastole. In comparison with published normal ranges, however, 24% of infants had interventricular septal thickness and 32% of infants had left ventricular posterior wall thickness of >95th percentile. CONCLUSION Exposure to repeat prenatal corticosteroid treatment did not increase neonatal blood pressure or myocardial wall thickness in infants who remained at risk of very preterm birth > or =7 days after an initial course of corticosteroid treatment.
Collapse
Affiliation(s)
- Lindsay Mildenhall
- Newborn Services, Kidz First, Middlemore Hospital, Private Bag 93311, Otahuhu, Auckland, New Zealand.
| | | | | | | | | |
Collapse
|
37
|
Long-term effects of prenatal stress: Changes in adult cardiovascular regulation and sensitivity to stress. Neurosci Biobehav Rev 2009; 33:191-203. [DOI: 10.1016/j.neubiorev.2008.08.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 07/21/2008] [Accepted: 08/01/2008] [Indexed: 02/06/2023]
|
38
|
Kapoor A, Matthews SG. Prenatal stress modifies behavior and hypothalamic-pituitary-adrenal function in female guinea pig offspring: effects of timing of prenatal stress and stage of reproductive cycle. Endocrinology 2008; 149:6406-15. [PMID: 18755800 DOI: 10.1210/en.2008-0347] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Prenatal stress is associated with altered behavior and hypothalamic-pituitary-adrenal (HPA) axis function postnatally. Recent studies suggest that these outcomes are dependent on the timing of the prenatal stress. The majority of these studies have been carried out in male offspring. We hypothesized that a short period of prenatal stress would result in female offspring that exhibit differences in open-field behavior and HPA axis activity, but the outcome would depend on the timing of the prenatal stress and the stage of the reproductive cycle. Pregnant guinea pigs were exposed to a strobe light during the fetal brain growth spurt [gestational d 50-52 (PS50)] or during the period of rapid brain myelination [gestational d 60-62 (PS60)]. Open-field activity was assessed in juvenile and adult female offspring. HPA axis function was tested in adult offspring. All tests in adulthood were carried out during the estrous and luteal phases of the reproductive cycle to determine the effect of stage on HPA axis programming. Tissues were collected upon completion of the study for analysis by in situ hybridization. PS60 offspring exhibited decreased activity in an open field during the estrous phase of the reproductive cycle compared with control offspring. Both PS50 and PS60 offspring exhibited a lower salivary cortisol response to a stressor, only during the estrous phase. Consistent with the behavioral and endocrine data, PS60 females exhibited lower plasma estradiol levels, reduced ovary weight, and increased glucocorticoid receptor mRNA in the paraventricular nucleus. In conclusion, we have demonstrated that there are effects of prenatal stress on behavior and HPA axis functioning in female offspring but that the outcomes are dependent on the timing of the prenatal stress together with the status of the reproductive cycle.
Collapse
Affiliation(s)
- Amita Kapoor
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | | |
Collapse
|
39
|
Reznikov A, Nosenko N, Tarasenko L, Sinitsyn P, Polyakova L, Mishunina T. Neuroendocrine disorders in adult rats treated prenatally with hydrocortisone acetate. ACTA ACUST UNITED AC 2008; 60:489-97. [PMID: 18692998 DOI: 10.1016/j.etp.2008.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2007] [Accepted: 05/02/2008] [Indexed: 12/01/2022]
Abstract
We investigated the effects of hydrocortisone acetate administered to pregnant rats over the last gestational week on some neuroendocrine characteristics in adult female and male offspring. Prenatal glucocorticoid eliminated sex dimorphism of the neurons nuclei volumes in the medial preoptic area and the suprachiasmatic nuclei. There was no elevation of blood plasma corticosterone level after noradrenaline infusion into the third brain ventricle in experimental males; meanwhile, in females adrenocortical response was augmented. Male offspring exhibited a decrease of plasma corticosterone response to an acute stress (1h restraint) that was not accompanied by post-stress changes neither in the hypothalamic noradrenaline content nor hippocampal glutamate decarboxylase activity. On the contrary, moderate augmentation of adrenocortical stress reactivity and inhibitory effect of GABAergic system were found in females. It was concluded that exposure to prenatal glucocorticoid is able to alter development of the neuroendocrine systems related to reproduction and stress responses both in males and females and resulted in modification of its sex-dimorphic features in adult life.
Collapse
Affiliation(s)
- Alexander Reznikov
- Department of Endocrinology of Reproduction and Adaptation, V.P. Komissarenko Institute of Endocrinology and Metabolism, Kiev 04114, Ukraine.
| | | | | | | | | | | |
Collapse
|
40
|
Kapoor A, Leen J, Matthews SG. Molecular regulation of the hypothalamic-pituitary-adrenal axis in adult male guinea pigs after prenatal stress at different stages of gestation. J Physiol 2008; 586:4317-26. [PMID: 18635650 DOI: 10.1113/jphysiol.2008.153684] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Studies in humans and animals have demonstrated that maternal stress during fetal development can lead to altered hypothalamic-pituitary-adrenal (HPA) axis function and behaviour postnatally. We have previously shown adult male guinea pigs that were born to mothers exposed to a stressor during the phase of rapid fetal brain growth (gestational days (GD) 50, 51 and 52; prenatal stress (PS)50) exhibit significantly increased basal plasma cortisol levels. In contrast, male guinea pig offspring whose mothers were exposed to stress later in gestation (GD60, 61 and 62; PS60) exhibited a significantly higher plasma cortisol response to activation of the HPA axis. In the present study, we hypothesized that the endocrine changes in HPA axis function observed in male guinea pig offspring would be reflected by altered molecular regulation of the HPA axis. Corticosteroid receptors in the hippocampus, hypothalamus and pituitary were measured, as well as corticotropin-releasing hormone (CRH), pro-opiomelanocortin (POMC) and adrenal enzymes in the paraventricular nucleus, pituitary and adrenal cortex, respectively, by in situ hybridization and Western blot. PS50 male offspring exhibited a significant reduction in glucocorticoid receptor (GR) mRNA (P <0.01) in the CA3 region of the hippocampus and significantly increased POMC mRNA (P <0.05) in the pituitary, consistent with the increase in basal HPA axis activity observed. In line with elevated activity of the HPA axis, both PS50 and PS60 male offspring exhibited significantly higher steroidogenic factor (SF)-1 (P <0.001) and melanocortin 2 receptor (MC2-R) mRNA (P <0.001) in the adrenal cortex. This study demonstrates that short periods of prenatal stress during critical windows of neuroendocrine development affect the expression of key regulators of HPA axis activity leading to the changes in endocrine function observed in prenatally stressed male offspring. Further, these changes are dependent on the timing of the maternal stressor, a pattern that is emerging in human studies.
Collapse
Affiliation(s)
- Amita Kapoor
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
| | | | | |
Collapse
|
41
|
Xiao L, Chen Y. Culture condition and embryonic stage dependent silence of glucocorticoid receptor expression in hippocampal neurons. J Steroid Biochem Mol Biol 2008; 111:147-55. [PMID: 18625317 DOI: 10.1016/j.jsbmb.2008.03.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Accepted: 03/22/2008] [Indexed: 11/21/2022]
Abstract
Glucocorticoid (GC) plays a key role in controlling numerous cellular processes during embryogenesis and fetal development. The actions of glucocorticoids are mediated by interaction with their receptors. We previously reported that hippocampal neurons from embryonic day 18 (E18) rats showed silence of glucocorticoid receptor (GR) expression when cultured in serum-free condition. In this study, using western blot, immunofluorescence staining and real-time RT-PCR, we found that while this silence occurred in hippocampal neurons isolated from E16 and E18 rats, it did not happen in those from E20 and neonatal (P0) rats. And when cultured under serum-containing condition, none of them showed GR silence anymore. Corticosterone could not rescue the expression of GR in E16 and E18 neurons in serum-free condition, whereas adding of serum could induce the re-expression of the silenced GR. The absence of GR silence in P0 neurons was not due to the perturbation during parturition. Moreover, the unique expression profile of GR in protein and mRNA level was well reflected in the changes of GR function. These results suggested that under in vitro condition, serum was critical for the maintaining of GR expression in hippocampal neurons of early embryonic stages but less important in later developmental stages. Thus, our data implied that at different developmental stages, the expression of GR in hippocampal neurons might have different susceptibilities to environment changes and there might be a critical time window for the switching of such characteristics during development.
Collapse
Affiliation(s)
- Lin Xiao
- Institute of Neuroscience, Department of Neurobiology, Second Military Medical University, 800 XiangYin Road, Shanghai 200433, PR China
| | | |
Collapse
|
42
|
Michael AE, Papageorghiou AT. Potential significance of physiological and pharmacological glucocorticoids in early pregnancy. Hum Reprod Update 2008; 14:497-517. [DOI: 10.1093/humupd/dmn021] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
43
|
Bertram C, Khan O, Ohri S, Phillips DI, Matthews SG, Hanson MA. Transgenerational effects of prenatal nutrient restriction on cardiovascular and hypothalamic-pituitary-adrenal function. J Physiol 2008; 586:2217-29. [PMID: 18292131 DOI: 10.1113/jphysiol.2007.147967] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The perinatal environment is a powerful determinant of risk for developing disease in later life. Here, we have shown that maternal undernutrition causes dramatic changes in heart structure and hypothalamo-pituitary-adrenal (HPA) function across two generations. Pregnant guinea pigs were fed 70% of normal intake from gestational days 1-35 (early restriction; ER), or 36-70 (late restriction; LR). Female offspring (F(1)) were mated and fed ad libitum to create second generation (F(2)) offspring. Heart morphology, blood pressure, baroreceptor and HPA function were assessed in male F(1) and F(2) offspring. ER(F1) males exhibited elevated blood pressure, increased left ventricular (LV) wall thickness and LV mass. These LV effects were maintained in the ER(F2) offspring. Maternal undernutrition increased basal cortisol and altered HPA responsiveness to challenge in both generations; effects were greatest in LR groups. In conclusion, moderate maternal undernutrition profoundly modifies heart structure and HPA function in adult male offspring for two generations.
Collapse
Affiliation(s)
- Caroline Bertram
- 1Centre for Developmental Origins of Health and Disease, Princess Anne Hospital, Coxford Road, Southampton SO16 5YA, UK
| | | | | | | | | | | |
Collapse
|
44
|
Setiawan E, Jackson MF, MacDonald JF, Matthews SG. Effects of repeated prenatal glucocorticoid exposure on long-term potentiation in the juvenile guinea-pig hippocampus. J Physiol 2007; 581:1033-42. [PMID: 17412773 PMCID: PMC2170854 DOI: 10.1113/jphysiol.2006.127381] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Synthetic glucocorticoids (sGCs) are routinely used to treat women at risk of preterm labour to promote fetal lung maturation. There is now strong evidence that exposure to excess glucocorticoid during periods of rapid brain development has permanent consequences for endocrine function and behaviour in the offspring. Prenatal exposure to sGC alters the expression of N-methyl-D-aspartate receptor (NMDA-R) subunits in the fetal and neonatal hippocampus. Given the integral role of the NMDA-R in synaptic plasticity, we hypothesized that prenatal sGC exposure will have effects on hippocampal long-term potentiation (LTP) after birth. Further, this may occur in either the presence or absence of elevated cortisol concentrations, in vitro. Pregnant guinea-pigs were injected with betamethasone (Beta, 1 mg kg(-1)) or vehicle on gestational days (gd) 40, 41, 50, 51, 60 and 61 (term approximately 70 days), a regimen comparable to that given to pregnant women. On postnatal day 21, LTP was examined at Schaffer collateral synapses in the CA1 region of hippocampal slices prepared from juvenile animals exposed to betamethasone or vehicle, in utero. Subsequently, the acute glucocorticoid receptor (GR)- and mineralocorticoid receptor (MR)-dependent effects of cortisol (0.1-10 microM; bath applied 30 min before LTP induction) were examined. There was no effect of prenatal sGC treatment on LTP under basal conditions. The application of 10 microM cortisol depressed excitatory synaptic transmission in all treatment groups regardless of sex. Similarly, LTP was depressed by 10 microM cortisol in all groups, with the exception of Beta-exposed females, in which LTP was unaltered. Hippocampal MR and GR protein levels were increased in Beta-exposed females, but not in any other prenatal treatment group. This study reveals sex-specific effects of prenatal exposure to sGC on LTP in the presence of elevated cortisol, a situation that would occur in vivo during stress.
Collapse
Affiliation(s)
- Elaine Setiawan
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | | | | | | |
Collapse
|
45
|
Owen D, Matthews SG. Prenatal glucocorticoid exposure alters hypothalamic-pituitary-adrenal function in juvenile guinea pigs. J Neuroendocrinol 2007; 19:172-80. [PMID: 17280590 DOI: 10.1111/j.1365-2826.2006.01517.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The neurodevelopmental consequences of prenatal glucocorticoid exposure are not well-understood, particularly in species that give birth to neuroanatomically mature offspring. In the present study, we hypothesised that repeated prenatal glucocorticoid administration would alter hypothalamo-pituitary-adrenal (HPA) function in juvenile guinea pig offspring. Pregnant guinea pigs were injected with betamethasone (1 mg/kg) or vehicle on gestational days 40, 41, 50, 51, 60 and 61 (six doses). Prenatal glucocorticoid exposure abolished the pituitary-adrenal response to maternal separation in juvenile males, but had no effect in female offspring. Indeed, female offspring (vehicle and betamethasone) did not mount a significant HPA response to separation at 10 days of age. Although there were no effects of prenatal glucocorticoid exposure on hippocampal or hypothalamic corticosteroid receptor expression or corticotrophin-releasing factor (CRF) mRNA, there were significant effects in the pituitary and adrenal; again males were more affected than females. Prenatal glucocorticoid exposure increased pituitary pro-opiomelanocortin and CRF receptor mRNA, and markedly decreased adrenocortical CYP17 mRNA. In conclusion, repeated prenatal glucocorticoid exposure has profound influences on HPA function and regulation in the juvenile guinea pig, and this involves altered regulation at the level of the pituitary and adrenal cortex. Furthermore, juvenile males appear to be more vulnerable to the effects of prenatal glucocorticoid exposure than females.
Collapse
Affiliation(s)
- D Owen
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
46
|
Sloboda DM, Moss TJM, Li S, Doherty D, Nitsos I, Challis JRG, Newnham JP. Prenatal betamethasone exposure results in pituitary-adrenal hyporesponsiveness in adult sheep. Am J Physiol Endocrinol Metab 2007; 292:E61-70. [PMID: 16882931 DOI: 10.1152/ajpendo.00270.2006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fetal exposure to synthetic glucocorticoids in sheep results in increased fetal hypothalamic-pituitary-adrenal (HPA) activity persisting to one year of age. We aimed to determine the effects of single or repeated maternal or fetal betamethasone injections on offspring HPA activity at 2 and 3 yr of age and whether changes in adrenal mediators of steroidogenesis contribute to changes in pituitary-adrenal function. Pregnant ewes or their fetuses received either repeated intramuscular saline or betamethasone injections (0.5 mg/kg) at 104, 111, 118, and 124 days of gestation (dG) or a single betamethasone injection at 104 dG followed by saline at 111, 118, and 124 dG. Offspring were catheterized at 2 and 3 yr of age and given corticotrophin-releasing hormone + arginine vasopressin challenges. Adrenal tissue was collected for quantitative RT-PCR mRNA determination at 3.5 yr of age. In 2-yr-old offspring, maternal betamethasone injections did not alter basal ACTH or cortisol levels, but repeated injections elevated ACTH responses. At 3 yr of age, basal ACTH was elevated, and both basal and stimulated cortisol levels were suppressed by repeated maternal injections. Basal and stimulated cortisol-to-ACTH ratios and basal cortisol-to-cytochrome P-450 17alpha-hydroxylase (P450c17) mRNA ratios were suppressed by repeated injections. Repeated fetal betamethasone injections attenuated basal ACTH and cortisol levels in offspring at 2 but not 3 yr of age. Plasma changes were not associated with altered adrenal P450c17, ACTH receptor, beta-hydroxysteroid dehydrogenase, or glucocorticoid receptor mRNA levels. These data suggest that maternal, but not fetal, betamethasone administration results in adrenal suppression in adulthood.
Collapse
Affiliation(s)
- Deborah M Sloboda
- Forrest Fetal Research Scientist, School of Women's and Infants' Health, The Univ. of Western Australia, King Edward Memorial Hospital, Subiaco, Western Australia, Australia.
| | | | | | | | | | | | | |
Collapse
|
47
|
John CD, Theogaraj E, Christian HC, Morris JF, Smith SF, Buckingham JC. Time-specific effects of perinatal glucocorticoid treatment on anterior pituitary morphology, annexin 1 expression and adrenocorticotrophic hormone secretion in the adult female rat. J Neuroendocrinol 2006; 18:949-59. [PMID: 17076770 DOI: 10.1111/j.1365-2826.2006.01493.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Perinatal glucocorticoid (GC) treatment is increasingly associated with long-term disturbances in hypothalamo-pituitary-adrenocortical function. In the male rat, such treatment induces profound molecular, morphological and functional changes in the anterior pituitary gland at adulthood. To determine whether these effects are sex-specific, we have examined the effects of perinatal dexamethasone treatment on the female pituitary gland, focusing on (i) the integrity of the annexin 1 (ANXA1) dependent regulatory effects of GCs on adrenocorticotrophic hormone (ACTH) release and (ii) corticotroph and folliculo-stellate (FS) cell morphology. Dexamethasone was given to pregnant (gestational days 16-19) or lactating (days 1-7 post partum) rats via the drinking water (1 microg/ml); controls received normal drinking water. Pituitary tissue from the female offspring was examined ex vivo at adulthood (60-90 days). Both treatment regimes reduced the intracellular and cell surface ANXA1 expression, as determined by western blot analysis and quantitative immunogold electron microscopic histochemistry. In addition, they compromised the ability of dexamethasone to suppress the evoked release of ACTH from the excised tissue in vitro, a process which requires the translocation of ANXA1 from the cytoplasm to the cell surface of FS cells. Although neither treatment regime affected the number of FS cells or corticotrophs, both altered the subcellular morphology of these cells. Thus, prenatal dexamethasone treatment increased while neonatal treatment decreased FS cell size and cytoplasmic area. By contrast, corticotroph size was unaffected by either treatment, as also was the size of the secretory granules. Corticotroph granule density and margination were, however, increased markedly by the prenatal treatment, while the neonatal treatment had no effect on granule density but decreased granule margination. Thus, perinatal dexamethasone treatment exerts long-term effects on the female pituitary gland, altering gene expression, cell morphology and the ANXA1-dependent GC regulation of ACTH secretion. The changes are similar but not identical to those reported in the male.
Collapse
Affiliation(s)
- C D John
- Department of Cellular and Molecular Neuroscience, Division of Neuroscience and Mental Health, Imperial College London, Hammersmith Campus, London, UK
| | | | | | | | | | | |
Collapse
|
48
|
Iqbal U, Brien JF, Kapoor A, Matthews SG, Reynolds JN. Chronic prenatal ethanol exposure increases glucocorticoid-induced glutamate release in the hippocampus of the near-term foetal guinea pig. J Neuroendocrinol 2006; 18:826-34. [PMID: 17026532 DOI: 10.1111/j.1365-2826.2006.01479.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Exposure to high cortisol concentration can injure the developing brain, possibly via an excitotoxic mechanism involving glutamate (Glu). The present study tested the hypothesis that chronic prenatal ethanol exposure (CPEE) activates the foetal hypothalamic-pituitary-adrenal axis to produce high cortisol exposure in the foetal compartment and alters sensitivity to glucocorticoid-induced Glu release in the foetal hippocampus. Pregnant guinea pigs received daily oral administration of ethanol (4 g/kg maternal body weight/day) or isocaloric-sucrose/pair-feeding from gestational day (GD) 2 until GD 63 (term, approximately GD 68) at which time they were euthanised, 1 h after their final treatment. Adrenocorticotrophic hormone (ACTH) and cortisol concentrations were determined in foetal plasma. Basal and electrically stimulated Glu and gamma-aminobutyric acid (GABA) efflux in the presence or absence of dexamethasone (DEX), a selective glucocorticoid-receptor agonist, were determined ex vivo in foetal hippocampal slices. Glucocorticoid receptor (GR), mineralocorticoid receptor (MR) and N-methyl-D-aspartate (NMDA) receptor NR1 subunit mRNA expression were determined in situ in the hippocampus and dentate gyrus. In the near-term foetus, CPEE increased foetal plasma ACTH and cortisol concentrations. Electrically stimulated glutamate, but not GABA, release was increased in CPEE foetal hippocampal slices. Low DEX concentration (0.3 microM) decreased stimulated glutamate, but not GABA, release in both CPEE and control foetal hippocampal slices. High DEX concentration (3.0 microM) increased basal release of Glu, but not GABA, in CPEE foetal hippocampal slices. GR, but not MR, mRNA expression was elevated in the hippocampus and dentate gyrus, whereas NR1 mRNA expression was increased in the CA1 and CA3 fields of the foetal hippocampus. These data demonstrate that CPEE increases high glucocorticoid concentration-induced Glu release in the foetal hippocampus, presumably as a consequence of increased GR expression. These effects of CPEE, coupled with increased glutamate release and increased NMDA receptor expression, may predispose the near-term foetal hippocampus to GR and Glu-NMDA receptor-mediated neurodevelopmental toxicity.
Collapse
MESH Headings
- Adrenocorticotropic Hormone/blood
- Animals
- Central Nervous System Depressants/toxicity
- Electric Stimulation
- Ethanol/toxicity
- Female
- Fetus/drug effects
- Fetus/metabolism
- Glucocorticoids/metabolism
- Glutamic Acid/drug effects
- Glutamic Acid/metabolism
- Guinea Pigs
- Hippocampus/drug effects
- Hippocampus/metabolism
- Hydrocortisone/blood
- Hypothalamo-Hypophyseal System/drug effects
- Hypothalamo-Hypophyseal System/metabolism
- Maternal-Fetal Exchange
- Neurotoxins/toxicity
- Organ Culture Techniques
- Pituitary-Adrenal System/drug effects
- Pituitary-Adrenal System/metabolism
- Pregnancy
- RNA, Messenger/analysis
- Random Allocation
- Receptors, Glucocorticoid/drug effects
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Receptors, Mineralocorticoid/drug effects
- Receptors, Mineralocorticoid/genetics
- Receptors, Mineralocorticoid/metabolism
- Receptors, N-Methyl-D-Aspartate/drug effects
- Receptors, N-Methyl-D-Aspartate/metabolism
- Statistics, Nonparametric
- Toxicity Tests, Chronic
Collapse
Affiliation(s)
- U Iqbal
- Department of Pharmacology and Toxicology, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | |
Collapse
|
49
|
Kranendonk G, Hopster H, Fillerup M, Ekkel ED, Mulder EJH, Wiegant VM, Taverne MAM. Lower birth weight and attenuated adrenocortical response to ACTH in offspring from sows that orally received cortisol during gestation. Domest Anim Endocrinol 2006; 30:218-38. [PMID: 16107308 DOI: 10.1016/j.domaniend.2005.07.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 07/15/2005] [Accepted: 07/18/2005] [Indexed: 10/25/2022]
Abstract
Prenatal stress is known to affect several offspring characteristics, but its effects depend among other factors on the period of gestation in which it is applied. In the present study, oral administration of hydrocortisone-acetate (HCA) was used to elevate cortisol concentrations in pregnant sows to levels also observed after psychological stress. HCA was administered during three different periods of gestation (115 days in pigs): period 1: 21-50 (P1, n = 10), period 2: 51-80 (P2, n = 10) and period 3: 81-110 (P3, n = 10) days after insemination. Control sows (n = 11) received vehicle from 21-110 days after insemination. When P1-, P2- and P3-sows did not receive HCA, they also received vehicle. During gestation, weekly saliva samples were taken from the sows to determine salivary cortisol concentrations. Treatment effects on sow, litter and piglet characteristics were determined. In addition, two female piglets per litter were subjected to an ACTH-challenge test at 6 weeks of age to determine the adrenocortical response to ACTH. Pigs were slaughtered at 6 months of age and slaughter weight, back fat thickness and percentage of lean meat were analysed. During the period of treatment with HCA, salivary cortisol concentrations were increased in P1-, P2- and P3-sows compared to control sows (P < 0.01). The total number of piglets born per litter did not differ among treatment groups (P > 0.30), but pooled HCA-litters had a higher percentage of live born piglets (P < 0.05) and fewer mummies than control litters (P < 0.05). Gestation length did not differ among treatment groups (P = 0.21), but did affect treatment effects on birth weight. Overall, HCA-piglets weighed less at birth, and remained lighter until weaning (P < 0.05). The salivary cortisol concentrations after i.m. injection of ACTH (2.5 IU/kg) were lower in P1- and P3-piglets compared to control piglets. At slaughter, HCA-treatment indirectly decreased lean meat percentage and increased back fat thickness. In conclusion, elevated peripheral cortisol concentrations in pregnant sows affect both litter characteristics and piglet physiology, the latter depending on the period of gestation during which concentrations were elevated. Underlying mechanisms require further investigation.
Collapse
Affiliation(s)
- Godelieve Kranendonk
- Section Foetal and Perinatal Biology, Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
50
|
Kapoor A, Dunn E, Kostaki A, Andrews MH, Matthews SG. Fetal programming of hypothalamo-pituitary-adrenal function: prenatal stress and glucocorticoids. J Physiol 2006; 572:31-44. [PMID: 16469780 PMCID: PMC1779638 DOI: 10.1113/jphysiol.2006.105254] [Citation(s) in RCA: 415] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Prenatal stress (PS) and maternal exposure to exogenous glucocorticoids can lead to permanent modification of hypothalamo-pituitary-adrenal (HPA) function and stress-related behaviour. Both of these manipulations lead to increased fetal exposure to glucocorticoids. Glucocorticoids are essential for many aspects of normal brain development, but exposure of the fetal brain to an excess of glucocorticoids can have life-long effects on neuroendocrine function. Both endogenous glucocorticoid and synthetic glucocorticoid exposure have a number of rapid effects in the fetal brain, including modification of neurotransmitter systems and transcriptional machinery. Such fetal exposure permanently alters HPA function in prepubertal, postpubertal and ageing offspring, in a sex-dependent manner. Prenatal stress and exogenous glucocorticoid manipulation also lead to the modification of behaviour, brain and organ morphology, as well as altered regulation of other endocrine systems. It is also becoming increasingly apparent that the timing of exposure to PS or synthetic glucocorticoids has tremendous effects on the nature of the phenotypic outcome. Permanent changes in endocrine function will ultimately impact on health in both human and animal populations.
Collapse
Affiliation(s)
- Amita Kapoor
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|