1
|
Toor RUAS, Burke PGR, Dempsey B, Sun QJ, Hildreth CM, Phillips JK, McMullan S. Role of the Kölliker-Fuse/parabrachial complex in the generation of postinspiratory vagal and sympathetic nerve activities and their recruitment by hypoxemic stimuli in the rat. J Neurophysiol 2024; 132:1496-1506. [PMID: 39356076 DOI: 10.1152/jn.00295.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/06/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024] Open
Abstract
In the rat, the activity of laryngeal adductor muscles, the crural diaphragm, and sympathetic vasomotor neurons is entrained to the postinspiratory (post-I) phase of the respiratory cycle, a mechanism thought to enhance cardiorespiratory efficiency. The identity of the central neurons responsible for transmitting respiratory activity to these outputs remains unresolved. Here we explore the contribution of the Kölliker-Fuse/parabrachial nuclei (KF-PBN) in the generation of post-I activity in vagal and sympathetic outputs under steady-state conditions and during acute hypoxemia, a condition that potently recruits post-I activity. In artificially ventilated, vagotomized, and urethane-anesthetized rats, bilateral KF-PBN inhibition by microinjection of the GABAA receptor agonist isoguvacine evoked stereotypical responses on respiratory pattern, characterized by a reduction in phrenic nerve burst amplitude, a modest lengthening of inspiratory time, and an increase in breath-to-breath variability, while post-I vagal nerve activity was abolished and post-I sympathetic nerve activity diminished. During acute hypoxemia, KF-PBN inhibition attenuated tachypneic responses and completely abolished post-I vagal activity while preserving respiratory-sympathetic coupling. Furthermore, KF-PBN inhibition disrupted the decline in respiratory frequency that normally follows resumption of oxygenation. These findings suggest that the KF-PBN is a critical hub for the distribution of post-I activities to vagal and sympathetic outputs and is an important contributor to the dynamic adjustments to respiratory patterns that occur in response to acute hypoxia. Although KF-PBN appears essential for post-I vagal activity, it only partially contributes to post-I sympathetic nerve activity, suggesting the contribution of multiple neural pathways to respiratory-sympathetic coupling.NEW & NOTEWORTHY Inhibition of neurons in the pontine Kölliker-Fuse/parabrachial complex (KF-PBN) differentially inhibited postinspiratory (post-I) activity in vagal and sympathetic outputs. The strong recruitment of post-I vagal activity that occurs in response to hypoxemia is selectively abolished by KF-PBN inhibition. This suggests that 1) post-I activity in vagal and sympathetic outputs may be generated by partially independent mechanisms and 2) neurons in the KF-PBN are a preeminent source of drive for the generation of eupneic post-I activity.
Collapse
Affiliation(s)
- Rahat Ul Ain Summan Toor
- Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie University, Sydney, Australia
| | - Peter G R Burke
- Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie University, Sydney, Australia
| | - Bowen Dempsey
- Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie University, Sydney, Australia
| | - Qi-Jian Sun
- Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie University, Sydney, Australia
| | - Cara M Hildreth
- Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie University, Sydney, Australia
| | - Jacqueline K Phillips
- Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie University, Sydney, Australia
| | - Simon McMullan
- Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie University, Sydney, Australia
| |
Collapse
|
2
|
Moss A, Kuttippurathu L, Srivastava A, Schwaber JS, Vadigepalli R. Dynamic dysregulation of transcriptomic networks in brainstem autonomic nuclei during hypertension development in the female spontaneously hypertensive rat. Physiol Genomics 2024; 56:283-300. [PMID: 38145287 PMCID: PMC11283910 DOI: 10.1152/physiolgenomics.00073.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023] Open
Abstract
Neurogenic hypertension stems from an imbalance in autonomic function that shifts the central cardiovascular control circuits toward a state of dysfunction. Using the female spontaneously hypertensive rat and the normotensive Wistar-Kyoto rat model, we compared the transcriptomic changes in three autonomic nuclei in the brainstem, nucleus of the solitary tract (NTS), caudal ventrolateral medulla, and rostral ventrolateral medulla (RVLM) in a time series at 8, 10, 12, 16, and 24 wk of age, spanning the prehypertensive stage through extended chronic hypertension. RNA-sequencing data were analyzed using an unbiased, dynamic pattern-based approach that uncovered dominant and several subtle differential gene regulatory signatures. Our results showed a persistent dysregulation across all three autonomic nuclei regardless of the stage of hypertension development as well as a cascade of transient dysregulation beginning in the RVLM at the prehypertensive stage that shifts toward the NTS at the hypertension onset. Genes that were persistently dysregulated were heavily enriched for immunological processes such as antigen processing and presentation, the adaptive immune response, and the complement system. Genes with transient dysregulation were also largely region-specific and were annotated for processes that influence neuronal excitability such as synaptic vesicle release, neurotransmitter transport, and an array of neuropeptides and ion channels. Our results demonstrate that neurogenic hypertension is characterized by brainstem region-specific transcriptomic changes that are highly dynamic with significant gene regulatory changes occurring at the hypertension onset as a key time window for dysregulation of homeostatic processes across the autonomic control circuits.NEW & NOTEWORTHY Hypertension is a major disease and is the primary risk factor for cardiovascular complications and stroke. The gene expression changes in the central nervous system circuits driving hypertension are understudied. Here, we show that coordinated and region-specific gene expression changes occur in the brainstem autonomic circuits over time during the development of a high blood pressure phenotype in a rat model of human essential hypertension.
Collapse
Affiliation(s)
- Alison Moss
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Lakshmi Kuttippurathu
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Ankita Srivastava
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - James S Schwaber
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| |
Collapse
|
3
|
Rassler B, Blinowska K, Kaminski M, Pfurtscheller G. Analysis of Respiratory Sinus Arrhythmia and Directed Information Flow between Brain and Body Indicate Different Management Strategies of fMRI-Related Anxiety. Biomedicines 2023; 11:biomedicines11041028. [PMID: 37189642 DOI: 10.3390/biomedicines11041028] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Background: Respiratory sinus arrhythmia (RSA) denotes decrease of cardiac beat-to-beat intervals (RRI) during inspiration and RRI increase during expiration, but an inverse pattern (termed negative RSA) was also found in healthy humans with elevated anxiety. It was detected using wave-by-wave analysis of cardiorespiratory rhythms and was considered to reflect a strategy of anxiety management involving the activation of a neural pacemaker. Results were consistent with slow breathing, but contained uncertainty at normal breathing rates (0.2–0.4 Hz). Objectives and methods: We combined wave-by-wave analysis and directed information flow analysis to obtain information on anxiety management at higher breathing rates. We analyzed cardiorespiratory rhythms and blood oxygen level-dependent (BOLD) signals from the brainstem and cortex in 10 healthy fMRI participants with elevated anxiety. Results: Three subjects with slow respiratory, RRI, and neural BOLD oscillations showed 57 ± 26% negative RSA and significant anxiety reduction by 54 ± 9%. Six participants with breathing rate of ~0.3 Hz showed 41 ± 16% negative RSA and weaker anxiety reduction. They presented significant information flow from RRI to respiration and from the middle frontal cortex to the brainstem, which may result from respiration-entrained brain oscillations, indicating another anxiety management strategy. Conclusion: The two analytical approaches applied here indicate at least two different anxiety management strategies in healthy subjects.
Collapse
|
4
|
Ostrowski D, Heesch CM, Kline DD, Hasser EM. Nucleus tractus solitarii is required for the development and maintenance of phrenic and sympathetic long-term facilitation after acute intermittent hypoxia. Front Physiol 2023; 14:1120341. [PMID: 36846346 PMCID: PMC9949380 DOI: 10.3389/fphys.2023.1120341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
Exposure to acute intermittent hypoxia (AIH) induces prolonged increases (long term facilitation, LTF) in phrenic and sympathetic nerve activity (PhrNA, SNA) under basal conditions, and enhanced respiratory and sympathetic responses to hypoxia. The mechanisms and neurocircuitry involved are not fully defined. We tested the hypothesis that the nucleus tractus solitarii (nTS) is vital to augmentation of hypoxic responses and the initiation and maintenance of elevated phrenic (p) and splanchnic sympathetic (s) LTF following AIH. nTS neuronal activity was inhibited by nanoinjection of the GABAA receptor agonist muscimol before AIH exposure or after development of AIH-induced LTF. AIH but not sustained hypoxia induced pLTF and sLTF with maintained respiratory modulation of SSNA. nTS muscimol before AIH increased baseline SSNA with minor effects on PhrNA. nTS inhibition also markedly blunted hypoxic PhrNA and SSNA responses, and prevented altered sympathorespiratory coupling during hypoxia. Inhibiting nTS neuronal activity before AIH exposure also prevented the development of pLTF during AIH and the elevated SSNA after muscimol did not increase further during or following AIH exposure. Furthermore, nTS neuronal inhibition after the development of AIH-induced LTF substantially reversed but did not eliminate the facilitation of PhrNA. Together these findings demonstrate that mechanisms within the nTS are critical for initiation of pLTF during AIH. Moreover, ongoing nTS neuronal activity is required for full expression of sustained elevations in PhrNA following exposure to AIH although other regions likely also are important. Together, the data indicate that AIH-induced alterations within the nTS contribute to both the development and maintenance of pLTF.
Collapse
Affiliation(s)
- Daniela Ostrowski
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States,Department of Biology, Truman State University, Kirksville, MO, United States
| | - Cheryl M. Heesch
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| | - David D. Kline
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States
| | - Eileen M. Hasser
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States,*Correspondence: Eileen M. Hasser,
| |
Collapse
|
5
|
Yao Y, Barger Z, Saffari Doost M, Tso CF, Darmohray D, Silverman D, Liu D, Ma C, Cetin A, Yao S, Zeng H, Dan Y. Cardiovascular baroreflex circuit moonlights in sleep control. Neuron 2022; 110:3986-3999.e6. [PMID: 36170850 DOI: 10.1016/j.neuron.2022.08.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/02/2022] [Accepted: 08/29/2022] [Indexed: 01/04/2023]
Abstract
Sleep disturbances are strongly associated with cardiovascular diseases. Baroreflex, a basic cardiovascular regulation mechanism, is modulated by sleep-wake states. Here, we show that neurons at key stages of baroreflex pathways also promote sleep. Using activity-dependent genetic labeling, we tagged neurons in the nucleus of the solitary tract (NST) activated by blood pressure elevation and confirmed their barosensitivity with optrode recording and calcium imaging. Chemogenetic or optogenetic activation of these neurons promoted non-REM sleep in addition to decreasing blood pressure and heart rate. GABAergic neurons in the caudal ventrolateral medulla (CVLM)-a downstream target of the NST for vasomotor baroreflex-also promote non-REM sleep, partly by inhibiting the sympathoexcitatory and wake-promoting adrenergic neurons in the rostral ventrolateral medulla (RVLM). Cholinergic neurons in the nucleus ambiguous-a target of the NST for cardiac baroreflex-promoted non-REM sleep as well. Thus, key components of the cardiovascular baroreflex circuit are also integral to sleep-wake brain-state regulation.
Collapse
Affiliation(s)
- Yuanyuan Yao
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Zeke Barger
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Mohammad Saffari Doost
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Chak Foon Tso
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Dana Darmohray
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Daniel Silverman
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Danqian Liu
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Chenyan Ma
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ali Cetin
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Shenqin Yao
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Yang Dan
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
6
|
Abstract
Much of biology is rhythmical and comprises oscillators that can couple. These have optimized energy efficiency and have been preserved during evolution. The respiratory and cardiovascular systems contain numerous oscillators, and importantly, they couple. This coupling is dynamic but essential for an efficient transmission of neural information critical for the precise linking of breathing and oxygen delivery while permitting adaptive responses to changes in state. The respiratory pattern generator and the neural network responsible for sympathetic and cardiovagal (parasympathetic) tone generation interact at many levels ensuring that cardiac output and regional blood flow match oxygen delivery to the lungs and tissues efficiently. The most classic manifestations of these interactions are respiratory sinus arrhythmia and the respiratory modulation of sympathetic nerve activity. These interactions derive from shared somatic and cardiopulmonary afferent inputs, reciprocal interactions between brainstem networks and inputs from supra-pontine regions. Disrupted respiratory-cardiovascular coupling can result in disease, where it may further the pathophysiological sequelae and be a harbinger of poor outcomes. This has been well documented by diminished respiratory sinus arrhythmia and altered respiratory sympathetic coupling in animal models and/or patients with myocardial infarction, heart failure, diabetes mellitus, and neurological disorders as stroke, brain trauma, Parkinson disease, or epilepsy. Future research needs to assess the therapeutic potential for ameliorating respiratory-cardiovascular coupling in disease.
Collapse
Affiliation(s)
- James P Fisher
- Manaaki Manawa-The Centre for Heart Research, Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, Auckland, New Zealand
| | - Tymoteusz Zera
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Julian F R Paton
- Manaaki Manawa-The Centre for Heart Research, Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
7
|
Guyenet PG, Stornetta RL. Rostral ventrolateral medulla, retropontine region and autonomic regulations. Auton Neurosci 2021; 237:102922. [PMID: 34814098 DOI: 10.1016/j.autneu.2021.102922] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022]
Abstract
The rostral half of the ventrolateral medulla (RVLM) and adjacent ventrolateral retropontine region (henceforth RVLMRP) have been divided into various sectors by neuroscientists interested in breathing or autonomic regulations. The RVLMRP regulates respiration, glycemia, vigilance and inflammation, in addition to blood pressure. It contains interoceptors that respond to acidification, hypoxia and intracranial pressure and its rostral end contains the retrotrapezoid nucleus (RTN) which is the main central respiratory chemoreceptor. Acid detection by the RTN is an intrinsic property of the principal neurons that is enhanced by paracrine influences from surrounding astrocytes and CO2-dependent vascular constriction. RTN mediates the hypercapnic ventilatory response via complex projections to the respiratory pattern generator (CPG). The RVLM contributes to autonomic response patterns via differential recruitment of several subtypes of adrenergic (C1) and non-adrenergic neurons that directly innervate sympathetic and parasympathetic preganglionic neurons. The RVLM also innervates many brainstem and hypothalamic nuclei that contribute, albeit less directly, to autonomic responses. All lower brainstem noradrenergic clusters including the locus coeruleus are among these targets. Sympathetic tone to the circulatory system is regulated by subsets of presympathetic RVLM neurons whose activity is continuously restrained by the baroreceptors and modulated by the respiratory CPG. The inhibitory input from baroreceptors and the excitatory input from the respiratory CPG originate from neurons located in or close to the rhythm generating region of the respiratory CPG (preBötzinger complex).
Collapse
Affiliation(s)
- Patrice G Guyenet
- University of Virginia School of Medicine, Department of Pharmacology, 1340 Jefferson Park Avenue, Charlottesville, VA 22908-0735, USA.
| | - Ruth L Stornetta
- University of Virginia School of Medicine, Department of Pharmacology, 1340 Jefferson Park Avenue, Charlottesville, VA 22908-0735, USA.
| |
Collapse
|
8
|
Rice D, Martinelli GP, Jiang W, Holstein GR, Rajguru SM. Pulsed Infrared Stimulation of Vertical Semicircular Canals Evokes Cardiovascular Changes in the Rat. Front Neurol 2021; 12:680044. [PMID: 34122320 PMCID: PMC8193737 DOI: 10.3389/fneur.2021.680044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 04/20/2021] [Indexed: 11/28/2022] Open
Abstract
A variety of stimuli activating vestibular end organs, including sinusoidal galvanic vestibular stimulation, whole body rotation and tilt, and head flexion have been shown to evoke significant changes in blood pressure (BP) and heart rate (HR). While a role for the vertical semicircular canals in altering autonomic activity has been hypothesized, studies to-date attribute the evoked BP and HR responses to the otolith organs. The present study determined whether unilateral activation of the posterior (PC) or anterior (AC) semicircular canal is sufficient to elicit changes in BP and/or HR. The study employed frequency-modulated pulsed infrared radiation (IR: 1,863 nm) directed via optical fibers to PC or AC of adult male Long-Evans rats. BP and HR changes were detected using a small-animal single pressure telemetry device implanted in the femoral artery. Eye movements evoked during IR of the vestibular endorgans were used to confirm the stimulation site. We found that sinusoidal IR delivered to either PC or AC elicited a rapid decrease in BP and HR followed by a stimulation frequency-matched modulation. The magnitude of the initial decrements in HR and BP did not correlate with the energy of the suprathreshold stimulus. This response pattern was consistent across multiple trials within an experimental session, replicable, and in most animals showed no evidence of habituation or an additive effect. Frequency modulated electrical current delivered to the PC and IR stimulation of the AC, caused decrements in HR and BP that resembled those evoked by IR of the PC. Frequency domain heart rate variability assessment revealed that, in most subjects, IR stimulation increased the low frequency (LF) component and decreased the high frequency (HF) component, resulting in an increase in the LF/HF ratio. This ratio estimates the relative contributions of sympathetic nervous system (SNS) and parasympathetic nervous system (PNS) activities. An injection of atropine, a muscarinic cholinergic receptor antagonist, diminished the IR evoked changes in HR, while the non-selective beta blocker propranolol eliminated changes in both HR and BP. This study provides direct evidence that activation of a single vertical semicircular canal is sufficient to activate and modulate central pathways that control HR and BP.
Collapse
Affiliation(s)
- Darrian Rice
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States
| | - Giorgio P Martinelli
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Weitao Jiang
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States
| | - Gay R Holstein
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Suhrud M Rajguru
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States.,Department of Otolaryngology, University of Miami, Miami, FL, United States
| |
Collapse
|
9
|
Gerlach DA, Manuel J, Hoff A, Kronsbein H, Hoffmann F, Heusser K, Ehmke H, Jordan J, Tank J, Beissner F. Medullary and Hypothalamic Functional Magnetic Imaging During Acute Hypoxia in Tracing Human Peripheral Chemoreflex Responses. Hypertension 2021; 77:1372-1382. [PMID: 33641354 DOI: 10.1161/hypertensionaha.120.16385] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Darius A Gerlach
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany (D.A.G., J.M., A.H., H.K., F.H., K.H., J.J., J.T.)
| | - Jorge Manuel
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany (D.A.G., J.M., A.H., H.K., F.H., K.H., J.J., J.T.).,Institute for Neuroradiology, Hannover Medical School, Germany (J.M., F.B.)
| | - Alex Hoff
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany (D.A.G., J.M., A.H., H.K., F.H., K.H., J.J., J.T.)
| | - Hendrik Kronsbein
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany (D.A.G., J.M., A.H., H.K., F.H., K.H., J.J., J.T.).,Institute of Cellular and Integrative Physiology, University Medical Center Eppendorf, Hamburg, Germany (H.K., H.E.)
| | - Fabian Hoffmann
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany (D.A.G., J.M., A.H., H.K., F.H., K.H., J.J., J.T.)
| | - Karsten Heusser
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany (D.A.G., J.M., A.H., H.K., F.H., K.H., J.J., J.T.)
| | - Heimo Ehmke
- Institute of Cellular and Integrative Physiology, University Medical Center Eppendorf, Hamburg, Germany (H.K., H.E.)
| | - Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany (D.A.G., J.M., A.H., H.K., F.H., K.H., J.J., J.T.).,Chair of Aerospace Medicine, University of Cologne, Germany (J.J.)
| | - Jens Tank
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany (D.A.G., J.M., A.H., H.K., F.H., K.H., J.J., J.T.)
| | - Florian Beissner
- Institute for Neuroradiology, Hannover Medical School, Germany (J.M., F.B.)
| |
Collapse
|
10
|
Yong SJ. Persistent Brainstem Dysfunction in Long-COVID: A Hypothesis. ACS Chem Neurosci 2021; 12:573-580. [PMID: 33538586 PMCID: PMC7874499 DOI: 10.1021/acschemneuro.0c00793] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/01/2021] [Indexed: 02/07/2023] Open
Abstract
Long-COVID is a postviral illness that can affect survivors of COVID-19, regardless of initial disease severity or age. Symptoms of long-COVID include fatigue, dyspnea, gastrointestinal and cardiac problems, cognitive impairments, myalgia, and others. While the possible causes of long-COVID include long-term tissue damage, viral persistence, and chronic inflammation, the review proposes, perhaps for the first time, that persistent brainstem dysfunction may also be involved. This hypothesis can be split into two parts. The first is the brainstem tropism and damage in COVID-19. As the brainstem has a relatively high expression of ACE2 receptor compared with other brain regions, SARS-CoV-2 may exhibit tropism therein. Evidence also exists that neuropilin-1, a co-receptor of SARS-CoV-2, may be expressed in the brainstem. Indeed, autopsy studies have found SARS-CoV-2 RNA and proteins in the brainstem. The brainstem is also highly prone to damage from pathological immune or vascular activation, which has also been observed in autopsy of COVID-19 cases. The second part concerns functions of the brainstem that overlap with symptoms of long-COVID. The brainstem contains numerous distinct nuclei and subparts that regulate the respiratory, cardiovascular, gastrointestinal, and neurological processes, which can be linked to long-COVID. As neurons do not readily regenerate, brainstem dysfunction may be long-lasting and, thus, is long-COVID. Indeed, brainstem dysfunction has been implicated in other similar disorders, such as chronic pain and migraine and myalgic encephalomyelitis or chronic fatigue syndrome.
Collapse
Affiliation(s)
- Shin Jie Yong
- Department of Biological
Sciences, Sunway University, Petaling Jaya, Selangor 47500, Malaysia
| |
Collapse
|
11
|
Guyenet PG, Stornetta RL, Souza GMPR, Abbott SBG, Brooks VL. Neuronal Networks in Hypertension: Recent Advances. Hypertension 2020; 76:300-311. [PMID: 32594802 DOI: 10.1161/hypertensionaha.120.14521] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurogenic hypertension is associated with excessive sympathetic nerve activity to the kidneys and portions of the cardiovascular system. Here we examine the brain regions that cause heightened sympathetic nerve activity in animal models of neurogenic hypertension, and we discuss the triggers responsible for the changes in neuronal activity within these regions. We highlight the limitations of the evidence and, whenever possible, we briefly address the pertinence of the findings to human hypertension. The arterial baroreflex reduces arterial blood pressure variability and contributes to the arterial blood pressure set point. This set point can also be elevated by a newly described cerebral blood flow-dependent and astrocyte-mediated sympathetic reflex. Both reflexes converge on the presympathetic neurons of the rostral medulla oblongata, and both are plausible causes of neurogenic hypertension. Sensory afferent dysfunction (reduced baroreceptor activity, increased renal, or carotid body afferent) contributes to many forms of neurogenic hypertension. Neurogenic hypertension can also result from activation of brain nuclei or sensory afferents by excess circulating hormones (leptin, insulin, Ang II [angiotensin II]) or sodium. Leptin raises blood vessel sympathetic nerve activity by activating the carotid bodies and subsets of arcuate neurons. Ang II works in the lamina terminalis and probably throughout the brain stem and hypothalamus. Sodium is sensed primarily in the lamina terminalis. Regardless of its cause, the excess sympathetic nerve activity is mediated to some extent by activation of presympathetic neurons located in the rostral ventrolateral medulla or the paraventricular nucleus of the hypothalamus. Increased activity of the orexinergic neurons also contributes to hypertension in selected models.
Collapse
Affiliation(s)
- Patrice G Guyenet
- From the Department of Pharmacology, University of Virginia, Charlottesville (P.G.G., R.L.S., G.M.P.R.S., S.B.G.A.)
| | - Ruth L Stornetta
- From the Department of Pharmacology, University of Virginia, Charlottesville (P.G.G., R.L.S., G.M.P.R.S., S.B.G.A.)
| | - George M P R Souza
- From the Department of Pharmacology, University of Virginia, Charlottesville (P.G.G., R.L.S., G.M.P.R.S., S.B.G.A.)
| | - Stephen B G Abbott
- From the Department of Pharmacology, University of Virginia, Charlottesville (P.G.G., R.L.S., G.M.P.R.S., S.B.G.A.)
| | - Virginia L Brooks
- Department of Chemical Physiology and Biochemistry, Oregon Health & Sciences University, Portland (V.L.B.)
| |
Collapse
|
12
|
Menuet C, Connelly AA, Bassi JK, Melo MR, Le S, Kamar J, Kumar NN, McDougall SJ, McMullan S, Allen AM. PreBötzinger complex neurons drive respiratory modulation of blood pressure and heart rate. eLife 2020; 9:57288. [PMID: 32538785 PMCID: PMC7326498 DOI: 10.7554/elife.57288] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/14/2020] [Indexed: 12/14/2022] Open
Abstract
Heart rate and blood pressure oscillate in phase with respiratory activity. A component of these oscillations is generated centrally, with respiratory neurons entraining the activity of pre-sympathetic and parasympathetic cardiovascular neurons. Using a combination of optogenetic inhibition and excitation in vivo and in situ in rats, as well as neuronal tracing, we demonstrate that preBötzinger Complex (preBötC) neurons, which form the kernel for inspiratory rhythm generation, directly modulate cardiovascular activity. Specifically, inhibitory preBötC neurons modulate cardiac parasympathetic neuron activity whilst excitatory preBötC neurons modulate sympathetic vasomotor neuron activity, generating heart rate and blood pressure oscillations in phase with respiration. Our data reveal yet more functions entrained to the activity of the preBötC, with a role in generating cardiorespiratory oscillations. The findings have implications for cardiovascular pathologies, such as hypertension and heart failure, where respiratory entrainment of heart rate is diminished and respiratory entrainment of blood pressure exaggerated.
Collapse
Affiliation(s)
- Clément Menuet
- Department of Physiology, University of Melbourne, Victoria, Australia.,Institut de Neurobiologie de la Méditerranée, INMED UMR1249, INSERM, Aix-Marseille Université, Marseille, France
| | - Angela A Connelly
- Department of Physiology, University of Melbourne, Victoria, Australia
| | - Jaspreet K Bassi
- Department of Physiology, University of Melbourne, Victoria, Australia
| | - Mariana R Melo
- Department of Physiology, University of Melbourne, Victoria, Australia
| | - Sheng Le
- Faculty of Medicine & Health Sciences, Macquarie University, NSW, Australia
| | - Jessica Kamar
- Department of Physiology, University of Melbourne, Victoria, Australia
| | - Natasha N Kumar
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, NSW, Australia
| | - Stuart J McDougall
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia
| | - Simon McMullan
- Faculty of Medicine & Health Sciences, Macquarie University, NSW, Australia
| | - Andrew M Allen
- Department of Physiology, University of Melbourne, Victoria, Australia.,Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Gagliuso AH, Chapman EK, Martinelli GP, Holstein GR. Vestibular neurons with direct projections to the solitary nucleus in the rat. J Neurophysiol 2019; 122:512-524. [PMID: 31166818 PMCID: PMC6734410 DOI: 10.1152/jn.00082.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023] Open
Abstract
Anterograde and retrograde tract tracing were combined with neurotransmitter and modulator immunolabeling to identify the chemical anatomy of vestibular nuclear neurons with direct projections to the solitary nucleus in rats. Direct, sparsely branched but highly varicose axonal projections from neurons in the caudal vestibular nuclei to the solitary nucleus were observed. The vestibular neurons giving rise to these projections were predominantly located in ipsilateral medial vestibular nucleus. The cell bodies were intensely glutamate immunofluorescent, and their axonal processes contained vesicular glutamate transporter 2, supporting the interpretation that the cells utilize glutamate for neurotransmission. The glutamate-immunofluorescent, retrogradely filled vestibular cells also contained the neuromodulator imidazoleacetic acid ribotide, which is an endogenous CNS ligand that participates in blood pressure regulation. The vestibulo-solitary neurons were encapsulated by axo-somatic GABAergic terminals, suggesting that they are under tight inhibitory control. The results establish a chemoanatomical basis for transient vestibular activation of the output pathways from the caudal and intermediate regions of the solitary nucleus. In this way, changes in static head position and movement of the head in space may directly influence heart rate, blood pressure, respiration, as well as gastrointestinal motility. This would provide one anatomical explanation for the synchronous heart rate and blood pressure responses observed after peripheral vestibular activation, as well as disorders ranging from neurogenic orthostatic hypotension, postural orthostatic tachycardia syndrome, and vasovagal syncope to the nausea and vomiting associated with motion sickness.NEW & NOTEWORTHY Vestibular neurons with direct projections to the solitary nucleus utilize glutamate for neurotransmission, modulated by imidazoleacetic acid ribotide. This is the first direct demonstration of the chemical neuroanatomy of the vestibulo-solitary pathway.
Collapse
Affiliation(s)
- Amelia H Gagliuso
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Emily K Chapman
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Giorgio P Martinelli
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Gay R Holstein
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
- Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
14
|
Pfurtscheller G, Rassler B, Schwerdtfeger AR, Klimesch W, Andrade A, Schwarz G, Thayer JF. "Switch-Off" of Respiratory Sinus Arrhythmia May Be Associated With the Activation of an Oscillatory Source (Pacemaker) in the Brain Stem. Front Physiol 2019; 10:939. [PMID: 31417413 PMCID: PMC6682698 DOI: 10.3389/fphys.2019.00939] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/09/2019] [Indexed: 11/19/2022] Open
Abstract
Recently, we reported on the unusual “switch-off” of respiratory sinus arrhythmia (RSA) by analyzing heart rate (HR) beat-to-beat interval (RRI) signals and respiration in five subjects during a potentially anxiety-provoking first-time functional magnetic resonance imaging (fMRI) scanning with slow spontaneous breathing waves (Rassler et al., 2018). This deviation from a fundamental physiological phenomenon is of interest and merits further research. Therefore, in this study, the interplay between blood-oxygen level-dependent (BOLD) activity in the cerebellum/brain stem, RRI, and respiration was probed. Both the cardiovascular and the respiratory centers are located in the medulla oblongata and pons, indicating that dominant slow rhythmic activity is present in the brain stem. The recording of BOLD signals provides a way to investigate associated neural activity fluctuation in the brain stem. We found slow spontaneous breathing waves associated with two types of slow BOLD oscillations with dominant frequencies at 0.10 and 0.15 Hz in the brain stem. Both BOLD oscillations were recorded simultaneously. One is hypothesized as vessel motion-based phenomenon (BOLDv) associated with the start of expiration; the other one as pattern associated with neural activity (BOLDn) acting as a driving force for spontaneous inspiration and RRI increase (unusual cessation of RSA) about 2–3 s after BOLDv. This time delay of 2–3 s corresponds to the neurovascular coupling time.
Collapse
Affiliation(s)
- Gert Pfurtscheller
- Institute of Neural Engineering, Graz University of Technology, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Beate Rassler
- Carl-Ludwig-Institute of Physiology, University of Leipzig, Leipzig, Germany
| | | | - Wolfgang Klimesch
- Centre of Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - Alexandre Andrade
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Gerhard Schwarz
- Division of Special Anaesthesiology, Pain and Intensive Care Medicine, Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Julian F Thayer
- Department of Psychological Science, The University of California, Irvine, CA, United States
| |
Collapse
|
15
|
Souza GMPR, Barnett WH, Amorim MR, Lima-Silveira L, Moraes DJA, Molkov YI, Machado BH. Pre- and post-inspiratory neurons change their firing properties in female rats exposed to chronic intermittent hypoxia. Neuroscience 2019; 406:467-486. [PMID: 30930131 DOI: 10.1016/j.neuroscience.2019.03.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 11/17/2022]
Abstract
Obstructive sleep apnea patients face episodes of chronic intermittent hypoxia (CIH), which has been suggested as a causative factor for increased sympathetic activity (SNA) and hypertension. Female rats exposed to CIH develop hypertension and exhibit changes in respiratory-sympathetic coupling, marked by an increase in the inspiratory modulation of SNA. We tested the hypothesis that enhanced inspiratory-modulation of SNA is dependent on carotid bodies (CBs) and are associated with changes in respiratory network activity. For this, in CIH-female rats we evaluated the effect of CBs ablation on respiratory-sympathetic coupling, recorded from respiratory neurons in the working heart-brainstem preparation and from NTS neurons in brainstem slices. CIH-female rats had an increase in peripheral chemoreflex response and in spontaneous excitatory neurotransmission in NTS. CBs ablation prevents the increase in inspiratory modulation of SNA in CIH-female rats. Pre-inspiratory/inspiratory (Pre-I/I) neurons of CIH-female rats have a reduced firing frequency. Post-inspiratory neurons are active for a longer period during expiration in CIH-female rats. Further, using the computational model of a brainstem respiratory-sympathetic network, we demonstrate that a reduction in Pre-I/I neuron firing frequency simulates the enhanced inspiratory SNA modulation in CIH-female rats. We conclude that changes in respiratory-sympathetic coupling in CIH-female rats is dependent on CBs and it is associated with changes in firing properties of specific respiratory neurons types.
Collapse
Affiliation(s)
- George M P R Souza
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - William H Barnett
- Department of Mathematics and Statistics & Neuroscience Institute, Georgia State University, Atlanta, GA, United States of America
| | - Mateus R Amorim
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ludmila Lima-Silveira
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Davi J A Moraes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Yaroslav I Molkov
- Department of Mathematics and Statistics & Neuroscience Institute, Georgia State University, Atlanta, GA, United States of America
| | - Benedito H Machado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
16
|
Benarroch EE. Control of the cardiovascular and respiratory systems during sleep. Auton Neurosci 2019; 218:54-63. [DOI: 10.1016/j.autneu.2019.01.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/28/2019] [Accepted: 01/28/2019] [Indexed: 01/01/2023]
|
17
|
Panteleev SS, Sivachenko IB, Lyubashina OA. The central effects of buspirone on abdominal pain in rats. Neurogastroenterol Motil 2018; 30:e13431. [PMID: 30101506 DOI: 10.1111/nmo.13431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/08/2018] [Accepted: 06/24/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND Buspirone, a partial agonist of the 5-HT1a receptor (5-HT1a R), owing to potential antinociceptive properties may be useful in treatment of abdominal pain in IBS patients. The pain-related effects of buspirone are mediated via the 5-HT1a Rs, specifically located within the ventrolateral medulla (VLM). The most animal studies of the 5-HT1a R involvement in pain control have been carried out with somatic behavioral tests. The 5-HT1a R contribution in visceral pain transmission within the VLM is unclear. The objective of our study was to evaluate the 5-HT1a R contribution in abdominal pain transmission within the VLM. METHODS Using animal model of abdominal pain (urethane-anaesthetized rats), based on the noxious colorectal distension (CRD) as pain stimulus we studied effects of buspirone (1.0-4.0 mg kg-1 , iv) on the CRD-induced VLM neuron and blood pressure responses as markers of abdominal pain before and after the 5-HT1a R blockade by antagonist, WAY 100,635. RESULTS The CRD induced a significant increase in VLM neuron activity up to 201.5 ± 18.0% and depressor reactions up to 68 ± 1.8% of baseline. Buspirone (1.0-4.0 mg kg-1 , iv) resulted in an inhibition of the CRD-induced neuron responses which were changed inversely with dose increase and decreased depressor reactions directly with dose increase. These effects were antagonized by intracerebroventricular WAY 100,635. CONCLUSION Buspirone exerts complex biphasic action on the pain-related VLM neuron activity inversely depending on dose. The final effect of buspirone depends on the functional balance between of activation the pre- and postsynaptic 5-HT1a Rs in mediating pain control networks.
Collapse
Affiliation(s)
- S S Panteleev
- Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russia.,Department of Neuropharmacology, Valdman Institute of Pharmacology, First Saint-Petersburg Pavlov State Medical University, Saint Petersburg, Russia
| | - I B Sivachenko
- Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russia
| | - O A Lyubashina
- Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russia.,Department of Neuropharmacology, Valdman Institute of Pharmacology, First Saint-Petersburg Pavlov State Medical University, Saint Petersburg, Russia
| |
Collapse
|
18
|
Zoccal DB, Silva JN, Barnett WH, Lemes EV, Falquetto B, Colombari E, Molkov YI, Moreira TS, Takakura AC. Interaction between the retrotrapezoid nucleus and the parafacial respiratory group to regulate active expiration and sympathetic activity in rats. Am J Physiol Lung Cell Mol Physiol 2018; 315:L891-L909. [PMID: 30188747 DOI: 10.1152/ajplung.00011.2018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The retrotrapezoid nucleus (RTN) contains chemosensitive cells that distribute CO2-dependent excitatory drive to the respiratory network. This drive facilitates the function of the respiratory central pattern generator (rCPG) and increases sympathetic activity. It is also evidenced that during hypercapnia, the late-expiratory (late-E) oscillator in the parafacial respiratory group (pFRG) is activated and determines the emergence of active expiration. However, it remains unclear the microcircuitry responsible for the distribution of the excitatory signals to the pFRG and the rCPG in conditions of high CO2. Herein, we hypothesized that excitatory inputs from chemosensitive neurons in the RTN are necessary for the activation of late-E neurons in the pFRG. Using the decerebrated in situ rat preparation, we found that lesions of neurokinin-1 receptor-expressing neurons in the RTN region with substance P-saporin conjugate suppressed the late-E activity in abdominal nerves (AbNs) and sympathetic nerves (SNs) and attenuated the increase in phrenic nerve (PN) activity induced by hypercapnia. On the other hand, kynurenic acid (100 mM) injections in the pFRG eliminated the late-E activity in AbN and thoracic SN but did not modify PN response during hypercapnia. Iontophoretic injections of retrograde tracer into the pFRG of adult rats revealed labeled phox2b-expressing neurons within the RTN. Our findings are supported by mathematical modeling of chemosensitive and late-E populations within the RTN and pFRG regions as two separate but interacting populations in a way that the activation of the pFRG late-E neurons during hypercapnia require glutamatergic inputs from the RTN neurons that intrinsically detect changes in CO2/pH.
Collapse
Affiliation(s)
- Daniel B Zoccal
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University , São Paulo , Brazil
| | - Josiane N Silva
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo , São Paulo , Brazil
| | - William H Barnett
- Deptartment of Mathematics and Statistics, Georgia State University , Atlanta, Georgia
| | - Eduardo V Lemes
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University , São Paulo , Brazil
| | - Barbara Falquetto
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo , São Paulo , Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University , São Paulo , Brazil
| | - Yaroslav I Molkov
- Deptartment of Mathematics and Statistics, Georgia State University , Atlanta, Georgia.,Neuroscience Institute, Georgia State University , Atlanta, Georgia
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo , São Paulo , Brazil
| | - Ana C Takakura
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo , São Paulo , Brazil
| |
Collapse
|
19
|
de Zambotti M, Trinder J, Silvani A, Colrain IM, Baker FC. Dynamic coupling between the central and autonomic nervous systems during sleep: A review. Neurosci Biobehav Rev 2018; 90:84-103. [PMID: 29608990 PMCID: PMC5993613 DOI: 10.1016/j.neubiorev.2018.03.027] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/16/2018] [Accepted: 03/24/2018] [Indexed: 12/19/2022]
Abstract
Sleep is characterized by coordinated cortical and cardiac oscillations reflecting communication between the central (CNS) and autonomic (ANS) nervous systems. Here, we review fluctuations in ANS activity in association with CNS-defined sleep stages and cycles, and with phasic cortical events during sleep (e.g., arousals, K-complexes). Recent novel analytic methods reveal a dynamic organization of integrated physiological networks during sleep and indicate how multiple factors (e.g., sleep structure, age, sleep disorders) affect "CNS-ANS coupling". However, these data are mostly correlational and there is a lack of clarity of the underlying physiology, making it challenging to interpret causality and direction of coupling. Experimental manipulations (e.g., evoking K-complexes or arousals) provide information on the precise temporal sequence of cortical-cardiac activity, and are useful for investigating physiological pathways underlying CNS-ANS coupling. With the emergence of new analytical approaches and a renewed interest in ANS and CNS communication during sleep, future work may reveal novel insights into sleep and cardiovascular interactions during health and disease, in which coupling could be adversely impacted.
Collapse
Affiliation(s)
| | - John Trinder
- Melbourne School of Psychological Sciences, University of Melbourne, Parkville, Victoria, Australia.
| | - Alessandro Silvani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy.
| | - Ian M Colrain
- Center for Health Sciences, SRI International, Menlo Park, CA, USA; Melbourne School of Psychological Sciences, University of Melbourne, Parkville, Victoria, Australia.
| | - Fiona C Baker
- Center for Health Sciences, SRI International, Menlo Park, CA, USA; Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
20
|
Possible Breathing Influences on the Control of Arterial Pressure After Sino-aortic Denervation in Rats. Curr Hypertens Rep 2018; 20:2. [PMID: 29356918 DOI: 10.1007/s11906-018-0800-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
PURPOSE OF REVIEW Surgical removal of the baroreceptor afferents [sino-aortic denervation (SAD)] leads to a lack of inhibitory feedback to sympathetic outflow, which in turn is expected to result in a large increase in mean arterial pressure (MAP). However, few days after surgery, the sympathetic nerve activity (SNA) and MAP of SAD rats return to a range similar to that observed in control rats. In this review, we present experimental evidence suggesting that breathing contributes to control of SNA and MAP following SAD.The purpose of this review was to discuss studies exploring SNA and MAP regulation in SAD rats, highlighting the possible role of breathing in the neural mechanisms of this modulation of SNA. RECENT FINDINGS Recent studies show that baroreceptor afferent stimulation or removal (SAD) results in changes in the respiratory pattern. Changes in the neural respiratory network and in the respiratory pattern must be considered among mechanisms involved in the modulation of the MAP after SAD.
Collapse
|
21
|
Amorim MR, Bonagamba LGH, Souza GMPR, Moraes DJA, Machado BH. Changes in the inspiratory pattern contribute to modulate the sympathetic activity in sino-aortic denervated rats. Exp Physiol 2017. [PMID: 28639723 DOI: 10.1113/ep086353] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
NEW FINDINGS What is the central question of this study? Sino-aortic denervated (SAD) rats present normal levels of sympathetic activity and mean arterial pressure. However, neural mechanisms regulating the sympathetic activity in the absence of arterial baroreceptors remain unclear. Considering that respiration modulates the sympathetic activity, we hypothesize that changes in the respiratory network contribute to keep the sympathetic outflow in the normal range after removal of arterial baroreceptors. What is the main finding and its importance? Despite longer inspiration observed in SAD rats, the respiratory-sympathetic coupling is working within a normal range of variation. These findings suggest that in the absence of arterial baroreceptors the respiratory modulation of sympathetic activity is maintained within the normal range. The activity of presympathetic neurons is under respiratory modulation, and changes in the central respiratory network may impact on the baseline sympathetic activity and mean arterial pressure. It is well known that after removal of baroreceptor afferents [sino-aortic denervation (SAD)], rats present an unexpected normal level of mean arterial pressure. We hypothesized that changes in the respiratory pattern and in the respiratory modulation of the sympathetic activity contribute to keep the sympathetic outflow within a normal range of variation in the absence of arterial baroreceptors in rats. To study these mechanisms, we recorded perfusion pressure and the activities of phrenic and thoracic sympathetic nerves in male juvenile rats using the working heart-brainstem preparation. The time of inspiration significantly increased in SAD rats, and this change was not dependent on the carotid bodies or on the vagal afferents. However, no changes were observed in the perfusion pressure or in the baseline thoracic sympathetic nerves in all phases of the respiratory cycle in SAD rats. Our data show that despite longer inspiratory activity, the baseline sympathetic activity is maintained at a normal level in SAD rats. These findings indicate that the respiratory-sympathetic coupling is normal after SAD and suggest that the respiratory modulation of sympathetic activity is maintained within the normal range after the removal of arterial baroreceptors.
Collapse
Affiliation(s)
- Mateus R Amorim
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Leni G H Bonagamba
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - George M P R Souza
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Davi J A Moraes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Benedito H Machado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
22
|
Dampney RAL. Resetting of the Baroreflex Control of Sympathetic Vasomotor Activity during Natural Behaviors: Description and Conceptual Model of Central Mechanisms. Front Neurosci 2017; 11:461. [PMID: 28860965 PMCID: PMC5559464 DOI: 10.3389/fnins.2017.00461] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/31/2017] [Indexed: 01/19/2023] Open
Abstract
The baroreceptor reflex controls arterial pressure primarily via reflex changes in vascular resistance, rather than cardiac output. The vascular resistance in turn is dependent upon the activity of sympathetic vasomotor nerves innervating arterioles in different vascular beds. In this review, the major theme is that the baroreflex control of sympathetic vasomotor activity is not constant, but varies according to the behavioral state of the animal. In contrast to the view that was generally accepted up until the 1980s, I argue that the baroreflex control of sympathetic vasomotor activity is not inhibited or overridden during behaviors such as mental stress or exercise, but instead is reset under those conditions so that it continues to be highly effective in regulating sympathetic activity and arterial blood pressure at levels that are appropriate for the particular ongoing behavior. A major challenge is to identify the central mechanisms and neural pathways that subserve such resetting in different states. A model is proposed that is capable of simulating the different ways in which baroreflex resetting is occurred. Future studies are required to determine whether this proposed model is an accurate representation of the central mechanisms responsible for baroreflex resetting.
Collapse
Affiliation(s)
- Roger A L Dampney
- Physiology, School of Medical Sciences, The University of SydneySydney, NSW, Australia
| |
Collapse
|
23
|
Menuet C, Le S, Dempsey B, Connelly AA, Kamar JL, Jancovski N, Bassi JK, Walters K, Simms AE, Hammond A, Fong AY, Goodchild AK, McMullan S, Allen AM. Excessive Respiratory Modulation of Blood Pressure Triggers Hypertension. Cell Metab 2017; 25:739-748. [PMID: 28215844 DOI: 10.1016/j.cmet.2017.01.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/09/2016] [Accepted: 01/28/2017] [Indexed: 02/07/2023]
Abstract
The etiology of hypertension, the world's biggest killer, remains poorly understood, with treatments targeting the established symptom, not the cause. The development of hypertension involves increased sympathetic nerve activity that, in experimental hypertension, may be driven by excessive respiratory modulation. Using selective viral and cell lesion techniques, we identify adrenergic C1 neurons in the medulla oblongata as critical for respiratory-sympathetic entrainment and the development of experimental hypertension. We also show that a cohort of young, normotensive humans, selected for an exaggerated blood pressure response to exercise and thus increased hypertension risk, has enhanced respiratory-related blood pressure fluctuations. These studies pinpoint a specific neuronal target for ameliorating excessive sympathetic activity during the developmental phase of hypertension and identify a group of pre-hypertensive subjects that would benefit from targeting these cells.
Collapse
Affiliation(s)
- Clément Menuet
- Department of Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Sheng Le
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Bowen Dempsey
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Angela A Connelly
- Department of Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jessica L Kamar
- Department of Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Nikola Jancovski
- Department of Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jaspreet K Bassi
- Department of Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Keryn Walters
- Department of Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Annabel E Simms
- Department of Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Andrew Hammond
- Department of Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Angelina Y Fong
- Department of Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ann K Goodchild
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Simon McMullan
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Andrew M Allen
- Department of Physiology, University of Melbourne, Parkville, VIC 3010, Australia; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
24
|
Molkov YI, Rubin JE, Rybak IA, Smith JC. Computational models of the neural control of breathing. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2016; 9. [PMID: 28009109 DOI: 10.1002/wsbm.1371] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 10/06/2016] [Accepted: 10/25/2016] [Indexed: 11/10/2022]
Abstract
The ongoing process of breathing underlies the gas exchange essential for mammalian life. Each respiratory cycle ensues from the activity of rhythmic neural circuits in the brainstem, shaped by various modulatory signals, including mechanoreceptor feedback sensitive to lung inflation and chemoreceptor feedback dependent on gas composition in blood and tissues. This paper reviews a variety of computational models designed to reproduce experimental findings related to the neural control of breathing and generate predictions for future experimental testing. The review starts from the description of the core respiratory network in the brainstem, representing the central pattern generator (CPG) responsible for producing rhythmic respiratory activity, and progresses to encompass additional complexities needed to simulate different metabolic challenges, closed-loop feedback control including the lungs, and interactions between the respiratory and autonomic nervous systems. The integrated models considered in this review share a common framework including a distributed CPG core network responsible for generating the baseline three-phase pattern of rhythmic neural activity underlying normal breathing. WIREs Syst Biol Med 2017, 9:e1371. doi: 10.1002/wsbm.1371 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Yaroslav I Molkov
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, USA
| | - Jonathan E Rubin
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ilya A Rybak
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Jeffrey C Smith
- Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
25
|
Souza GMPR, Bonagamba LGH, Amorim MR, Moraes DJA, Machado BH. Inspiratory modulation of sympathetic activity is increased in female rats exposed to chronic intermittent hypoxia. Exp Physiol 2016; 101:1345-1358. [DOI: 10.1113/ep085850] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 09/01/2016] [Indexed: 11/08/2022]
Affiliation(s)
- George Miguel P. R. Souza
- Department of Physiology; School of Medicine of Ribeirão Preto; University of São Paulo; Ribeirão Preto 14049-900 SP Brazil
| | - Leni G. H. Bonagamba
- Department of Physiology; School of Medicine of Ribeirão Preto; University of São Paulo; Ribeirão Preto 14049-900 SP Brazil
| | - Mateus R. Amorim
- Department of Physiology; School of Medicine of Ribeirão Preto; University of São Paulo; Ribeirão Preto 14049-900 SP Brazil
| | - Davi J. A. Moraes
- Department of Physiology; School of Medicine of Ribeirão Preto; University of São Paulo; Ribeirão Preto 14049-900 SP Brazil
| | - Benedito H. Machado
- Department of Physiology; School of Medicine of Ribeirão Preto; University of São Paulo; Ribeirão Preto 14049-900 SP Brazil
| |
Collapse
|
26
|
Moraes DJ, Bonagamba LG, da Silva MP, Mecawi AS, Antunes-Rodrigues J, Machado BH. Respiratory Network Enhances the Sympathoinhibitory Component of Baroreflex of Rats Submitted to Chronic Intermittent Hypoxia. Hypertension 2016; 68:1021-30. [DOI: 10.1161/hypertensionaha.116.07731] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/09/2016] [Indexed: 11/16/2022]
Abstract
Chronic intermittent hypoxia (CIH) produces respiratory-related sympathetic overactivity and hypertension in rats. In this study, we tested the hypothesis that the enhanced central respiratory modulation of sympathetic activity after CIH also decreases the sympathoinhibitory component of baroreflex of rats, which may contribute to the development of hypertension. Wistar rats were exposed to CIH or normoxia (control group) for 10 days. Phrenic nerve, thoracic sympathetic nerve, and neurons in the rostral ventrolateral medulla and caudal ventrolateral medulla were recorded in in situ preparations of rats. Baroreflex regulation of thoracic sympathetic nerve, rostral ventrolateral medulla, and caudal ventrolateral medulla neurons activities were evaluated in different phases of respiration in response to either aortic depressor nerve stimulation or pressure stimuli. CIH rats presented higher respiratory-related thoracic sympathetic nerve and rostral ventrolateral medulla presympathetic neurons activities at the end of expiration in relation to control rats, which are indexes of respiratory-related sympathetic overactivity. Baroreflex-evoked thoracic sympathetic nerve inhibition during expiration, but not during inspiration, was enhanced in CIH when compared with control rats. In addition, CIH selectively enhanced the expiratory-related baroreceptor inputs, probably through caudal ventrolateral medulla neurons, to the respiratory-modulated bulbospinal rostral ventrolateral medulla presympathetic neurons. These findings support the concept that the onset of hypertension, mediated by sympathetic overactivity, after 10 days of CIH is not secondary to a reduction in sympathoinhibitory component of baroreflex. Instead, it was observed an increase in the gain of sympathoinhibitory component in in situ preparations of rats, suggesting that changes in the respiratory-related sympathetic network after CIH also play a key role in preventing greater increase in arterial pressure.
Collapse
Affiliation(s)
- Davi J.A. Moraes
- From the Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Brazil
| | - Leni G.H. Bonagamba
- From the Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Brazil
| | - Melina P. da Silva
- From the Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Brazil
| | - André S. Mecawi
- From the Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Brazil
| | - José Antunes-Rodrigues
- From the Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Brazil
| | - Benedito H. Machado
- From the Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Brazil
| |
Collapse
|
27
|
de Brito Alves JL, Nogueira VO, Cavalcanti Neto MP, Leopoldino AM, Curti C, Colombari DSA, Colombari E, Wanderley AG, Leandro CG, Zoccal DB, Costa-Silva JH. Maternal protein restriction increases respiratory and sympathetic activities and sensitizes peripheral chemoreflex in male rat offspring. J Nutr 2015; 145:907-14. [PMID: 25934662 PMCID: PMC6619683 DOI: 10.3945/jn.114.202804] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 01/21/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Maternal protein restriction in rats increases the risk of adult offspring arterial hypertension through unknown mechanisms. OBJECTIVES The aims of the study were to evaluate the effects of a low-protein (LP) diet during pregnancy and lactation on baseline sympathetic and respiratory activities and peripheral chemoreflex sensitivity in the rat offspring. METHODS Wistar rat dams were fed a control [normal-protein (NP); 17% protein] or an LP (8% protein) diet during pregnancy and lactation, and their male offspring were studied at 30 d of age. Direct measurements of baseline arterial blood pressure (ABP), heart rate (HR), and respiratory frequency (Rf) as well as peripheral chemoreflex activation (potassium cyanide: 0.04%) were recorded in pups while they were awake. In addition, recordings of the phrenic nerve (PN) and thoracic sympathetic nerve (tSN) activities were obtained from the in situ preparations. Hypoxia-inducible factor 1α (HIF-1α) expression was also evaluated in carotid bifurcation through a Western blotting assay. RESULTS At 30 d of age, unanesthetized LP rats exhibited enhanced resting Rf (P = 0.001) and similar ABP and HR compared with the NP rats. Despite their similar baseline ABP values, LP rats exhibited augmented low-frequency variability (∼91%; P = 0.01). In addition, the unanesthetized LP rats showed enhanced pressor (P = 0.01) and tachypnoeic (P = 0.03) responses to peripheral chemoreflex activation. The LP rats displayed elevated baseline tSN activity (∼86%; P = 0.02) and PN burst frequency (45%; P = 0.01) and amplitude (53%; P = 0.001) as well as augmented sympathetic (P = 0.01) and phrenic (P = 0.04) excitatory responses to peripheral chemoreflex activation compared with the NP group. Furthermore, LP rats showed an increase of ∼100% in HIF-1α protein density in carotid bifurcation compared with NP rats. CONCLUSION Sympathetic-respiratory overactivity and amplified peripheral chemoreceptor responses, potentially through HIF-1α-dependent mechanisms, precede the onset of hypertension in juvenile rats exposed to protein undernutrition during gestation and lactation.
Collapse
Affiliation(s)
- José L de Brito Alves
- Department of Physical Education and Sport Sciences, Federal University of
Pernambuco, Vitoria de Santo Antão, Pernambuco, Brazil
| | - Viviane O Nogueira
- Department of Physical Education and Sport Sciences, Federal University of
Pernambuco, Vitoria de Santo Antão, Pernambuco, Brazil
| | - Marinaldo P Cavalcanti Neto
- Department of Physics and Chemistry, University of São Paulo, Ribeirão
Preto, São Paulo, Brazil,Department of Clinical Analyses, Toxicology and Food Sciences, School of
Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Andréia M Leopoldino
- Department of Physics and Chemistry, University of São Paulo, Ribeirão
Preto, São Paulo, Brazil,Department of Clinical Analyses, Toxicology and Food Sciences, School of
Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carlos Curti
- Department of Physics and Chemistry, University of São Paulo, Ribeirão
Preto, São Paulo, Brazil,Department of Clinical Analyses, Toxicology and Food Sciences, School of
Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Débora SA Colombari
- Department of Physiology and Pathology, School of Dentistry of Araraquara,
São Paulo State University, Araraquara, São Paulo, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry of Araraquara,
São Paulo State University, Araraquara, São Paulo, Brazil
| | - Almir G Wanderley
- Department of Physiology and Pharmacology, Federal University of Pernambuco,
Pernambuco, Brazil
| | - Carol G Leandro
- Department of Physical Education and Sport Sciences, Federal University of
Pernambuco, Vitoria de Santo Antão, Pernambuco, Brazil
| | - Daniel B Zoccal
- Department of Physiology and Pharmacology, Federal University of Pernambuco,
Pernambuco, Brazil
| | - João H Costa-Silva
- Department of Physical Education and Sport Sciences, Federal University of Pernambuco, Vitoria de Santo Antão, Pernambuco, Brazil;
| |
Collapse
|
28
|
Yamamoto K, Lalley P, Mifflin S. Acute intermittent optogenetic stimulation of nucleus tractus solitarius neurons induces sympathetic long-term facilitation. Am J Physiol Regul Integr Comp Physiol 2015; 308:R266-75. [PMID: 25519734 PMCID: PMC4329466 DOI: 10.1152/ajpregu.00381.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 12/10/2014] [Indexed: 11/22/2022]
Abstract
Acute intermittent hypoxia (AIH) induces sympathetic and phrenic long-term facilitation (LTF), defined as a sustained increase in nerve discharge. We investigated the effects of AIH and acute intermittent optogenetic (AIO) stimulation of neurons labeled with AAV-CaMKIIa, hChR2(H134R), and mCherry in the nucleus of the solitary tract (NTS) of anesthetized, vagotomized, and mechanically ventilated rats. We measured renal sympathetic nerve activity (RSNA), phrenic nerve activity (PNA), power spectral density, and coherence, and we made cross-correlation measurements to determine how AIO stimulation and AIH affected synchronization between PNA and RSNA. Sixty minutes after AIH produced by ventilation with 10% oxygen in balanced nitrogen, RSNA and PNA amplitude increased by 80% and by 130%, respectively (P < 0.01). Sixty minutes after AIO stimulation, RSNA and PNA amplitude increased by 60% and 100%, respectively, (P < 0.01). These results suggest that acute intermittent stimulation of NTS neurons can induce renal sympathetic and phrenic LTF in the absence of hypoxia or chemoreceptor afferent activation. We also found that while acute intermittent optogenetic and hypoxic stimulations increased respiration-related RSNA modulation (P < 0.01), they did not increase synchronization between central respiratory drive and RSNA. We conclude that mechanisms that induce LTF originate within the caudal NTS and extend to other interconnecting neuronal elements of the central nervous cardiorespiratory network.
Collapse
Affiliation(s)
- Kenta Yamamoto
- Department of Integrative Physiology, Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, Texas; and
| | - Peter Lalley
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Steve Mifflin
- Department of Integrative Physiology, Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, Texas; and
| |
Collapse
|
29
|
Abstract
Lung ventilation fluctuates widely with behavior but arterial PCO2 remains stable. Under normal conditions, the chemoreflexes contribute to PaCO2 stability by producing small corrective cardiorespiratory adjustments mediated by lower brainstem circuits. Carotid body (CB) information reaches the respiratory pattern generator (RPG) via nucleus solitarius (NTS) glutamatergic neurons which also target rostral ventrolateral medulla (RVLM) presympathetic neurons thereby raising sympathetic nerve activity (SNA). Chemoreceptors also regulate presympathetic neurons and cardiovagal preganglionic neurons indirectly via inputs from the RPG. Secondary effects of chemoreceptors on the autonomic outflows result from changes in lung stretch afferent and baroreceptor activity. Central respiratory chemosensitivity is caused by direct effects of acid on neurons and indirect effects of CO2 via astrocytes. Central respiratory chemoreceptors are not definitively identified but the retrotrapezoid nucleus (RTN) is a particularly strong candidate. The absence of RTN likely causes severe central apneas in congenital central hypoventilation syndrome. Like other stressors, intense chemosensory stimuli produce arousal and activate circuits that are wake- or attention-promoting. Such pathways (e.g., locus coeruleus, raphe, and orexin system) modulate the chemoreflexes in a state-dependent manner and their activation by strong chemosensory stimuli intensifies these reflexes. In essential hypertension, obstructive sleep apnea and congestive heart failure, chronically elevated CB afferent activity contributes to raising SNA but breathing is unchanged or becomes periodic (severe CHF). Extreme CNS hypoxia produces a stereotyped cardiorespiratory response (gasping, increased SNA). The effects of these various pathologies on brainstem cardiorespiratory networks are discussed, special consideration being given to the interactions between central and peripheral chemoreflexes.
Collapse
Affiliation(s)
- Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
30
|
Dick TE, Mims JR, Hsieh YH, Morris KF, Wehrwein EA. Increased cardio-respiratory coupling evoked by slow deep breathing can persist in normal humans. Respir Physiol Neurobiol 2014; 204:99-111. [PMID: 25266396 DOI: 10.1016/j.resp.2014.09.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 12/12/2022]
Abstract
Slow deep breathing (SDB) has a therapeutic effect on autonomic tone. Our previous studies suggested that coupling of the cardiovascular to the respiratory system mediates plasticity expressed in sympathetic nerve activity. We hypothesized that SDB evokes short-term plasticity of cardiorespiratory coupling (CRC). We analyzed respiratory frequency (fR), heart rate and its variability (HR&HRV), the power spectral density (PSD) of blood pressure (BP) and the ventilatory pattern before, during, and after a 20-min epoch of SDB. During SDB, CRC and the relative PSD of BP at fR increased; mean arterial pressure decreased; but HR varied; increasing (n = 3), or decreasing (n = 2) or remaining the same (n = 5). After SDB, short-term plasticity was not apparent for the group but for individuals differences existed between baseline and recovery periods. We conclude that a repeated practice, like pranayama, may strengthen CRC and evoke short-term plasticity effectively in a subset of individuals.
Collapse
Affiliation(s)
- Thomas E Dick
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States; Department of Neurosciences, Case Western Reserve University, Cleveland, OH, United States.
| | - Joseph R Mims
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Yee-Hsee Hsieh
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Kendall F Morris
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Erica A Wehrwein
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
31
|
Warren PM, Awad BI, Alilain WJ. Reprint of "Drawing breath without the command of effectors: the control of respiration following spinal cord injury". Respir Physiol Neurobiol 2014; 204:120-30. [PMID: 25266395 DOI: 10.1016/j.resp.2014.09.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The maintenance of blood gas and pH homeostasis is essential to life. As such breathing, and the mechanisms which control ventilation, must be tightly regulated yet highly plastic and dynamic. However, injury to the spinal cord prevents the medullary areas which control respiration from connecting to respiratory effectors and feedback mechanisms below the level of the lesion. This trauma typically leads to severe and permanent functional deficits in the respiratory motor system. However, endogenous mechanisms of plasticity occur following spinal cord injury to facilitate respiration and help recover pulmonary ventilation. These mechanisms include the activation of spared or latent pathways, endogenous sprouting or synaptogenesis, and the possible formation of new respiratory control centres. Acting in combination, these processes provide a means to facilitate respiratory support following spinal cord trauma. However, they are by no means sufficient to return pulmonary function to pre-injury levels. A major challenge in the study of spinal cord injury is to understand and enhance the systems of endogenous plasticity which arise to facilitate respiration to mediate effective treatments for pulmonary dysfunction.
Collapse
Affiliation(s)
- Philippa M Warren
- Department of Neurosciences, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109, USA
| | - Basem I Awad
- Department of Neurosciences, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109, USA; Department of Neurological Surgery, Mansoura University School of Medicine, Mansoura, Egypt
| | - Warren J Alilain
- Department of Neurosciences, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109, USA.
| |
Collapse
|
32
|
Zoccal DB, Furuya WI, Bassi M, Colombari DSA, Colombari E. The nucleus of the solitary tract and the coordination of respiratory and sympathetic activities. Front Physiol 2014; 5:238. [PMID: 25009507 PMCID: PMC4070480 DOI: 10.3389/fphys.2014.00238] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 06/09/2014] [Indexed: 12/15/2022] Open
Abstract
It is well known that breathing introduces rhythmical oscillations in the heart rate and arterial pressure levels. Sympathetic oscillations coupled to the respiratory activity have been suggested as an important homeostatic mechanism optimizing tissue perfusion and blood gas uptake/delivery. This respiratory-sympathetic coupling is strengthened in conditions of blood gas challenges (hypoxia and hypercapnia) as a result of the synchronized activation of brainstem respiratory and sympathetic neurons, culminating with the emergence of entrained cardiovascular and respiratory reflex responses. Studies have proposed that the ventrolateral region of the medulla oblongata is a major site of synaptic interaction between respiratory and sympathetic neurons. However, other brainstem regions also play a relevant role in the patterning of respiratory and sympathetic motor outputs. Recent findings suggest that the neurons of the nucleus of the solitary tract (NTS), in the dorsal medulla, are essential for the processing and coordination of respiratory and sympathetic responses to hypoxia. The NTS is the first synaptic station of the cardiorespiratory afferent inputs, including peripheral chemoreceptors, baroreceptors and pulmonary stretch receptors. The synaptic profile of the NTS neurons receiving the excitatory drive from afferent inputs is complex and involves distinct neurotransmitters, including glutamate, ATP and acetylcholine. In the present review we discuss the role of the NTS circuitry in coordinating sympathetic and respiratory reflex responses. We also analyze the neuroplasticity of NTS neurons and their contribution for the development of cardiorespiratory dysfunctions, as observed in neurogenic hypertension, obstructive sleep apnea and metabolic disorders.
Collapse
Affiliation(s)
- Daniel B Zoccal
- Department of Physiology and Pathology, School of Dentistry of Araraquara, São Paulo State University (UNESP) Araraquara, Brazil
| | - Werner I Furuya
- Department of Physiology and Pathology, School of Dentistry of Araraquara, São Paulo State University (UNESP) Araraquara, Brazil
| | - Mirian Bassi
- Department of Physiology and Pathology, School of Dentistry of Araraquara, São Paulo State University (UNESP) Araraquara, Brazil
| | - Débora S A Colombari
- Department of Physiology and Pathology, School of Dentistry of Araraquara, São Paulo State University (UNESP) Araraquara, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry of Araraquara, São Paulo State University (UNESP) Araraquara, Brazil
| |
Collapse
|
33
|
Furuya WI, Bassi M, Menani JV, Colombari E, Zoccal DB, Colombari DSA. Differential modulation of sympathetic and respiratory activities by cholinergic mechanisms in the nucleus of the solitary tract in rats. Exp Physiol 2014; 99:743-58. [DOI: 10.1113/expphysiol.2013.076794] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Werner I. Furuya
- Department of Physiology and Pathology; School of Dentistry; São Paulo State University; UNESP; Araraquara SP Brazil
| | - Mirian Bassi
- Department of Physiology and Pathology; School of Dentistry; São Paulo State University; UNESP; Araraquara SP Brazil
| | - José V. Menani
- Department of Physiology and Pathology; School of Dentistry; São Paulo State University; UNESP; Araraquara SP Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology; School of Dentistry; São Paulo State University; UNESP; Araraquara SP Brazil
| | - Daniel B. Zoccal
- Department of Physiology and Pathology; School of Dentistry; São Paulo State University; UNESP; Araraquara SP Brazil
| | - Débora S. A. Colombari
- Department of Physiology and Pathology; School of Dentistry; São Paulo State University; UNESP; Araraquara SP Brazil
| |
Collapse
|
34
|
Moraes DJA, Machado BH, Zoccal DB. Coupling of respiratory and sympathetic activities in rats submitted to chronic intermittent hypoxia. PROGRESS IN BRAIN RESEARCH 2014; 212:25-38. [PMID: 25194191 DOI: 10.1016/b978-0-444-63488-7.00002-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The respiratory modulation of sympathetic activity relies on the balance between excitatory and inhibitory inputs from the brainstem respiratory network to presympathetic neurons of the rostral ventrolateral medulla. This central respiratory-sympathetic contributes for the generation of respiratory-related rhythmical oscillations in heart rate and arterial pressure levels, whose functional effects on the blood gas exchange/perfusion and cardiac work remain to be elucidated. Herein, we discuss the experimental evidence describing the potential neural mechanisms underlying the entrainment between respiratory and sympathetic activities at baseline conditions as well as under conditions of metabolic challenges. We also discuss the possible implications of changes in the strength or pattern of the central respiratory-sympathetic coupling in the genesis of sympathetic overactivity and neurogenic hypertension, including that associated with the exposure to chronic intermittent hypoxia.
Collapse
Affiliation(s)
- Davi J A Moraes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Benedito H Machado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Daniel B Zoccal
- Department of Physiology and Pathology, Dentistry School of Araraquara, São Paulo State University, Araraquara, São Paulo, Brazil.
| |
Collapse
|
35
|
Molkov YI, Zoccal DB, Baekey DM, Abdala APL, Machado BH, Dick TE, Paton JFR, Rybak IA. Physiological and pathophysiological interactions between the respiratory central pattern generator and the sympathetic nervous system. PROGRESS IN BRAIN RESEARCH 2014; 212:1-23. [PMID: 25194190 DOI: 10.1016/b978-0-444-63488-7.00001-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Respiratory modulation seen in the sympathetic nerve activity (SNA) implies that the respiratory and sympathetic networks interact. During hypertension elicited by chronic intermittent hypoxia (CIH), the SNA displays an enhanced respiratory modulation reflecting strengthened interactions between the networks. In this chapter, we review a series of experimental and modeling studies that help elucidate possible mechanisms of sympatho-respiratory coupling. We conclude that this coupling significantly contributes to both the sympathetic baroreflex and the augmented sympathetic activity after exposure to CIH. This conclusion is based on the following findings. (1) Baroreceptor activation results in perturbation of the respiratory pattern via transient activation of postinspiratory neurons in the Bötzinger complex (BötC). The same BötC neurons are involved in the respiratory modulation of SNA, and hence provide an additional pathway for the sympathetic baroreflex. (2) Under hypercapnia, phasic activation of abdominal motor nerves (AbN) is accompanied by synchronous discharges in SNA due to the common source of this rhythmic activity in the retrotrapezoid nucleus (RTN). CIH conditioning increases the CO2 sensitivity of central chemoreceptors in the RTN which results in the emergence of AbN and SNA discharges under normocapnic conditions similar to those observed during hypercapnia in naïve animals. Thus, respiratory-sympathetic interactions play an important role in defining sympathetic output and significantly contribute to the sympathetic activity and hypertension under certain physiological or pathophysiological conditions, and the theoretical framework presented may be instrumental in understanding of malfunctioning control of sympathetic activity in a variety of disease states.
Collapse
Affiliation(s)
- Yaroslav I Molkov
- Department of Mathematical Sciences, Indiana University-Purdue University Indianapolis, IN, USA.
| | - Daniel B Zoccal
- Department of Physiology and Pathology, Dentistry School of Araraquara, São Paulo State University, Araraquara, São Paulo, Brazil
| | - David M Baekey
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Ana P L Abdala
- School of Physiology and Pharmacology, Bristol Heart Institute, University of Bristol, Bristol, UK
| | - Benedito H Machado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Thomas E Dick
- Departments of Medicine and Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Julian F R Paton
- School of Physiology and Pharmacology, Bristol Heart Institute, University of Bristol, Bristol, UK
| | - Ilya A Rybak
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
36
|
Abstract
There is increasing evidence that cardiovascular control during sleep is relevant for cardiovascular risk. This evidence warrants increased experimental efforts to understand the physiological mechanisms of such control. This review summarizes current knowledge on autonomic features of sleep states [non-rapid-eye-movement sleep (NREMS) and rapid-eye-movement sleep (REMS)] and proposes some testable hypotheses concerning the underlying neural circuits. The physiological reduction of blood pressure (BP) during the night (BP dipping phenomenon) is mainly caused by generalized cardiovascular deactivation and baroreflex resetting during NREMS, which, in turn, are primarily a consequence of central autonomic commands. Central commands during NREMS may involve the hypothalamic ventrolateral preoptic area, central thermoregulatory and central baroreflex pathways, and command neurons in the pons and midbrain. During REMS, opposing changes in vascular resistance in different regional beds have the net effect of increasing BP compared with that of NREMS. In addition, there are transient increases in BP and baroreflex suppression associated with bursts of brain and skeletal muscle activity during REMS. These effects are also primarily a consequence of central autonomic commands, which may involve the midbrain periaqueductal gray, the sublaterodorsal and peduncular pontine nuclei, and the vestibular and raphe obscurus medullary nuclei. A key role in permitting physiological changes in BP during sleep may be played by orexin peptides released by hypothalamic neurons, which target the postulated neural pathways of central autonomic commands during NREMS and REMS. Experimental verification of these hypotheses may help reveal which central neural pathways and mechanisms are most essential for sleep-related changes in cardiovascular function.
Collapse
Affiliation(s)
- Alessandro Silvani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy; and
| | | |
Collapse
|
37
|
King TL, Kline DD, Ruyle BC, Heesch CM, Hasser EM. Acute systemic hypoxia activates hypothalamic paraventricular nucleus-projecting catecholaminergic neurons in the caudal ventrolateral medulla. Am J Physiol Regul Integr Comp Physiol 2013; 305:R1112-23. [PMID: 24049118 DOI: 10.1152/ajpregu.00280.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hypoxia activates catecholamine neurons in the caudal ventrolateral medulla (CVLM). The hypothalamic paraventricular nucleus (PVN) modulates arterial chemoreflex responses and receives catecholaminergic projections from the CVLM, but it is not known whether the CVLM-PVN projection is activated by chemoreflex stimulation. We hypothesized that acute hypoxia (AH) activates PVN-projecting catecholaminergic neurons in the CVLM. Fluoro-Gold (2%, 60-90 nl) was microinjected into the PVN of rats to retrogradely label CVLM neurons. After recovery, conscious rats underwent 3 h of normoxia (21% O2, n = 4) or AH (12, 10, or 8% O2; n = 5 each group). We used Fos immunoreactivity as an index of CVLM neuronal activation and tyrosine hydroxylase (TH) immunoreactivity to identify catecholaminergic neurons. Positively labeled neurons were counted in six caudal-rostral sections containing CVLM. Hypoxia progressively increased the number of Fos-immunoreactive CVLM cells (21%, 19 ± 6; 12%, 49 ± 2; 10%, 117 ± 8; 8%, 179 ± 7; P < 0.001). Catecholaminergic cells colabeled with Fos immunoreactivity in the CVLM were observed following 12% O2, and further increases in hypoxia severity caused markedly more activation. PVN-projecting CVLM cells were activated following more severe hypoxia (10% and 8% O2). A large proportion (89 ± 3%) of all activated PVN-projecting CVLM neurons were catecholaminergic, regardless of hypoxia intensity. Data suggest that catecholaminergic, PVN-projecting CVLM neurons are particularly hypoxia-sensitive, and these neurons may be important in the cardiorespiratory and/or neuroendocrine responses elicited by the chemoreflex.
Collapse
Affiliation(s)
- T Luise King
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | | | | | | | | |
Collapse
|
38
|
Guyenet PG, Stornetta RL, Bochorishvili G, Depuy SD, Burke PGR, Abbott SBG. C1 neurons: the body's EMTs. Am J Physiol Regul Integr Comp Physiol 2013; 305:R187-204. [PMID: 23697799 DOI: 10.1152/ajpregu.00054.2013] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The C1 neurons reside in the rostral and intermediate portions of the ventrolateral medulla (RVLM, IVLM). They use glutamate as a fast transmitter and synthesize catecholamines plus various neuropeptides. These neurons regulate the hypothalamic pituitary axis via direct projections to the paraventricular nucleus and regulate the autonomic nervous system via projections to sympathetic and parasympathetic preganglionic neurons. The presympathetic C1 cells, located in the RVLM, are probably organized in a roughly viscerotopic manner and most of them regulate the circulation. C1 cells are variously activated by hypoglycemia, infection or inflammation, hypoxia, nociception, and hypotension and contribute to most glucoprivic responses. C1 cells also stimulate breathing and activate brain stem noradrenergic neurons including the locus coeruleus. Based on the various effects attributed to the C1 cells, their axonal projections and what is currently known of their synaptic inputs, subsets of C1 cells appear to be differentially recruited by pain, hypoxia, infection/inflammation, hemorrhage, and hypoglycemia to produce a repertoire of stereotyped autonomic, metabolic, and neuroendocrine responses that help the organism survive physical injury and its associated cohort of acute infection, hypoxia, hypotension, and blood loss. C1 cells may also contribute to glucose and cardiovascular homeostasis in the absence of such physical stresses, and C1 cell hyperactivity may contribute to the increase in sympathetic nerve activity associated with diseases such as hypertension.
Collapse
Affiliation(s)
- Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908-0735, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Garcia AJ, Koschnitzky JE, Dashevskiy T, Ramirez JM. Cardiorespiratory coupling in health and disease. Auton Neurosci 2013; 175:26-37. [PMID: 23497744 DOI: 10.1016/j.autneu.2013.02.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 01/21/2013] [Accepted: 02/08/2013] [Indexed: 10/27/2022]
Abstract
Cardiac and respiratory activities are intricately linked both functionally as well as anatomically through highly overlapping brainstem networks controlling these autonomic physiologies that are essential for survival. Cardiorespiratory coupling (CRC) has many potential benefits creating synergies that promote healthy physiology. However, when such coupling deteriorates autonomic dysautonomia may ensue. Unfortunately there is still an incomplete mechanistic understanding of both normal and pathophysiological interactions that respectively give rise to CRC and cardiorespiratory dysautonomia. Moreover, there is also a need for better quantitative methods to assess CRC. This review addresses the current understanding of CRC by discussing: (1) the neurobiological basis of respiratory sinus arrhythmia (RSA); (2) various disease states involving cardiorespiratory dysautonomia; and (3) methodologies measuring heart rate variability and RSA.
Collapse
Affiliation(s)
- Alfredo J Garcia
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | | | | | | |
Collapse
|
40
|
Freet CS, Stoner JF, Tang X. Baroreflex and chemoreflex controls of sympathetic activity following intermittent hypoxia. Auton Neurosci 2013; 174:8-14. [PMID: 23305890 DOI: 10.1016/j.autneu.2012.12.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 11/25/2012] [Accepted: 12/15/2012] [Indexed: 11/29/2022]
Abstract
There is a large amount of evidence linking obstructive sleep apnea (OSA), and the associated intermittent hypoxia that accompanies it, with the development of hypertension. For example, cross-sectional studies demonstrate that the prevalence of hypertension increases with the severity of OSA (Bixler et al., 2000; Grote et al., 2001) and an initial determination of OSA is associated with a three-fold increase for future hypertension (Peppard et al., 2000). Interestingly, bouts of intermittent hypoxia have also been shown to affect sympathetic output associated with the baroreflex and chemoreflex, important mechanisms in the regulation of arterial blood pressure. As such, the possibility exists that changes in the baroreflex and chemoreflex may contribute to the development of chronic hypertension observed in OSA patients. The aim of the current article is to briefly review the response of the baroreflex and chemoreflex to intermittent hypoxic exposure and to evaluate evidence for the hypothesis that modification of these autonomic reflexes may, at least in part, support the comorbidity observed between chronic hypertension and OSA.
Collapse
Affiliation(s)
- Christopher S Freet
- The Pennsylvania State University College of Medicine, Department of Neural and Behavioral Sciences, Hershey, PA 17033, USA.
| | | | | |
Collapse
|
41
|
Moraes DJ, Zoccal DB, Machado BH. Medullary Respiratory Network Drives Sympathetic Overactivity and Hypertension in Rats Submitted to Chronic Intermittent Hypoxia. Hypertension 2012; 60:1374-80. [DOI: 10.1161/hypertensionaha.111.189332] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Davi J.A. Moraes
- From the Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil (D.J.A.M., B.H.M.); Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil (D.B.Z.)
| | - Daniel B. Zoccal
- From the Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil (D.J.A.M., B.H.M.); Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil (D.B.Z.)
| | - Benedito H. Machado
- From the Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil (D.J.A.M., B.H.M.); Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil (D.B.Z.)
| |
Collapse
|
42
|
Ishizuka K, Satoh Y. The rostral parvicellular reticular formation neurons mediate lingual nerve input to the rostral ventrolateral medulla. Auton Neurosci 2012; 169:87-94. [PMID: 22633053 DOI: 10.1016/j.autneu.2012.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 04/06/2012] [Accepted: 05/03/2012] [Indexed: 10/28/2022]
Abstract
In rats that had been anesthetized by urethane-chloralose, we investigated whether neurons in the rostral part of the parvicellular reticular formation (rRFp) mediate lingual nerve input to the rostral ventrolateral medulla (RVLM), which is involved in somato-visceral sensory integration and in controlling the cardiovascular system. We determined the effect of the lingual nerve stimulation on activity of the rRFp neurons that were activated antidromically by stimulation of the RVLM. Stimulation of the lingual trigeminal afferent gave rise to excitatory effects (10/26, 39%), inhibitory effects (6/26, 22%) and no effect (10/26, 39%) on the RVLM-projecting rRFp neurons. About two-thirds of RVLM-projecting rRFp neurons exhibited spontaneous activity; the remaining one-third did not. A half (13/26) of RVLM-projecting rRFp neurons exhibited a pulse-related activity, suggesting that they receive a variety of peripheral and CNS inputs involved in cardiovascular function. We conclude that the lingual trigeminal input exerts excitatory and/or inhibitory effects on a majority (61%) of the RVLM-projecting rRFp neurons, and their neuronal activity may be involved in the cardiovascular responses accompanied by the defense reaction.
Collapse
Affiliation(s)
- Ken'Ichi Ishizuka
- Department of Physiology, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Niigata, 951-8580, Japan.
| | | |
Collapse
|
43
|
Morrey JD, Siddharthan V, Wang H, Hall JO. Respiratory insufficiency correlated strongly with mortality of rodents infected with West Nile virus. PLoS One 2012; 7:e38672. [PMID: 22719920 PMCID: PMC3375279 DOI: 10.1371/journal.pone.0038672] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 05/11/2012] [Indexed: 12/14/2022] Open
Abstract
West Nile virus (WNV) disease can be fatal for high-risk patients. Since WNV or its antigens have been identified in multiple anatomical locations of the central nervous system of persons or rodent models, one cannot know where to investigate the actual mechanism of mortality without careful studies in animal models. In this study, depressed respiratory functions measured by plethysmography correlated strongly with mortality. This respiratory distress, as well as reduced oxygen saturation, occurred beginning as early as 4 days before mortality. Affected medullary respiratory control cells may have contributed to the animals' respiratory insufficiency, because WNV antigen staining was present in neurons located in the ventrolateral medulla. Starvation or dehydration would be irrelevant in people, but could cause death in rodents due to lethargy or loss of appetite. Animal experiments were performed to exclude this possibility. Plasma ketones were increased in moribund infected hamsters, but late-stage starvation markers were not apparent. Moreover, daily subcutaneous administration of 5% dextrose in physiological saline solution did not improve survival or other disease signs. Therefore, infected hamsters did not die from starvation or dehydration. No cerebral edema was apparent in WNV- or sham-infected hamsters as determined by comparing wet-to-total weight ratios of brains, or by evaluating blood-brain-barrier permeability using Evans blue dye penetration into brains. Limited vasculitis was present in the right atrium of the heart of infected hamsters, but abnormal electrocardiograms for several days leading up to mortality did not occur. Since respiratory insufficiency was strongly correlated with mortality more than any other pathological parameter, it is the likely cause of death in rodents. These animal data and a poor prognosis for persons with respiratory insufficiency support the hypothesis that neurological lesions affecting respiratory function may be the primary cause of human WNV-induced death.
Collapse
Affiliation(s)
- John D Morrey
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, United States of America.
| | | | | | | |
Collapse
|
44
|
Moraes DJA, Dias MB, Cavalcanti-Kwiatkoski R, Machado BH, Zoccal DB. Contribution of the retrotrapezoid nucleus/parafacial respiratory region to the expiratory-sympathetic coupling in response to peripheral chemoreflex in rats. J Neurophysiol 2012; 108:882-90. [PMID: 22592303 DOI: 10.1152/jn.00193.2012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Central mechanisms of coupling between respiratory and sympathetic systems are essential for the entrainment between the enhanced respiratory drive and sympathoexcitation in response to hypoxia. However, the brainstem nuclei and neuronal network involved in these respiratory-sympathetic interactions remain unclear. Here, we evaluated whether the increase in expiratory activity and expiratory-modulated sympathoexcitation produced by the peripheral chemoreflex activation involves the retrotrapezoid nucleus/parafacial respiratory region (RTN/pFRG). Using decerebrated arterially perfused in situ rat preparations (60-80 g), we recorded the activities of thoracic sympathetic (tSN), phrenic (PN), and abdominal nerves (AbN) as well as the extracellular activity of RTN/pFRG expiratory neurons, and reflex responses to chemoreflex activation were evaluated before and after inactivation of the RTN/pFRG region with muscimol (1 mM). In the RTN/pFRG, we identified late-expiratory (late-E) neurons (n = 5) that were silent at resting but fired coincidently with the emergence of late-E bursts in AbN after peripheral chemoreceptor activation. Bilateral muscimol microinjections into the RTN/pFRG region (n = 6) significantly reduced basal PN frequency, mean AbN activity, and the amplitude of respiratory modulation of tSN (P < 0.05). With respect to peripheral chemoreflex responses, muscimol microinjections in the RTN/pFRG enhanced the PN inspiratory response, abolished the evoked late-E activity of AbN, but did not alter either the magnitude or pattern of the tSN reflex response. These findings indicate that the RTN/pFRG region is critically involved in the processing of the active expiratory response but not of the expiratory-modulated sympathetic response to peripheral chemoreflex activation of rat in situ preparations.
Collapse
Affiliation(s)
- Davi J A Moraes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | | | | |
Collapse
|
45
|
Korim WS, Egwuenu E, Fong AY, McMullan S, Cravo SL, Pilowsky PM. Noxious somatic stimuli diminish respiratory-sympathetic coupling by selective resetting of the respiratory rhythm in anaesthetized rats. Exp Physiol 2012; 97:1093-104. [PMID: 22581750 DOI: 10.1113/expphysiol.2012.066365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Noxious somatic stimulation evokes respiratory and autonomic responses. The mechanisms underlying the responses and the manner in which they are co-ordinated are still unclear. The effects of activation of somatic nociceptive fibres on lumbar sympathetic nerve activity at slow (2-10 Hz) and fast frequency bands (100-1000 Hz) and the effects on respiratory-sympathetic coupling are unknown. In anaesthetized, artificially ventilated Sprague-Dawley rats under neuromuscular blockade, ensemble averaging of sympathetic activity following high-intensity single-pulse stimulation of the sciatic nerve revealed two peaks (~140 and ~250 ms) that were present at similar latencies whether or not slow or fast band filtering was used. Additionally, in the slow band of both lumbar and splanchnic sympathetic nerve activity, a third peak with a very slow latency (~650 ms) was apparent. In the respiratory system, activation of the sciatic nerve decreased the expiratory period when the stimulus occurred during the first half of expiration, but increased the expiratory period if the stimulus was delivered in the second half of the expiratory phase. The phase shifting of the respiratory cycle also impaired the respiratory-sympathetic coupling in both splanchnic and lumbar sympathetic nerve activity in the subsequent respiratory cycle. The findings suggest that noxious somatosympathetic responses reduce the co-ordination between respiration and perfusion by resetting the respiratory pattern generator.
Collapse
Affiliation(s)
- Willian S Korim
- Australian School of Advanced Medicine, Macquarie University, Sydney, NSW, Australia
| | | | | | | | | | | |
Collapse
|
46
|
Le Mével JC, Lancien F, Mimassi N, Conlon JM. Brain neuropeptides in central ventilatory and cardiovascular regulation in trout. Front Endocrinol (Lausanne) 2012; 3:124. [PMID: 23115556 PMCID: PMC3483629 DOI: 10.3389/fendo.2012.00124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/01/2012] [Indexed: 12/20/2022] Open
Abstract
Many neuropeptides and their G-protein coupled receptors (GPCRs) are present within the brain area involved in ventilatory and cardiovascular regulation but only a few mammalian studies have focused on the integrative physiological actions of neuropeptides on these vital cardio-respiratory regulations. Because both the central neuroanatomical substrates that govern motor ventilatory and cardiovascular output and the primary sequence of regulatory peptides and their receptors have been mostly conserved through evolution, we have developed a trout model to study the central action of native neuropeptides on cardio-ventilatory regulation. In the present review, we summarize the most recent results obtained using this non-mammalian model with a focus on PACAP, VIP, tachykinins, CRF, urotensin-1, CGRP, angiotensin-related peptides, urotensin-II, NPY, and PYY. We propose hypotheses regarding the physiological relevance of the results obtained.
Collapse
Affiliation(s)
- Jean-Claude Le Mével
- INSERM UMR 1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, SFR ScInBioS, Faculté de Médecine et des Sciences de la Santé, Université Européenne de Bretagne, Université de Brest, CHU de BrestBrest, France
- *Correspondence: Jean-Claude Le Mével, INSERM UMR 1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, SFR ScInBioS, Faculté de Médecine et des Sciences de la Santé, Université Européenne de Bretagne, Université de Brest, CHU de Brest, 22 avenue Camille Desmoulins, CS 93837, 29238 Brest Cedex 3, France. e-mail:
| | - Frédéric Lancien
- INSERM UMR 1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, SFR ScInBioS, Faculté de Médecine et des Sciences de la Santé, Université Européenne de Bretagne, Université de Brest, CHU de BrestBrest, France
| | - Nagi Mimassi
- INSERM UMR 1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, SFR ScInBioS, Faculté de Médecine et des Sciences de la Santé, Université Européenne de Bretagne, Université de Brest, CHU de BrestBrest, France
| | - J. Michael Conlon
- Department of Biochemistry, Faculty of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates
| |
Collapse
|
47
|
Gaede AH, Pilowsky PM. Catestatin, a chromogranin A-derived peptide, is sympathoinhibitory and attenuates sympathetic barosensitivity and the chemoreflex in rat CVLM. Am J Physiol Regul Integr Comp Physiol 2011; 302:R365-72. [PMID: 22129620 DOI: 10.1152/ajpregu.00409.2011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hypertension is a major cause of morbidity. The neuropeptide catestatin [human chromogranin A-(352-372)] is a peptide product of the vesicular protein chromogranin A. Studies in the periphery and in vitro studies show that catestatin blocks nicotine-stimulated catecholamine release and interacts with β-adrenoceptors and histamine receptors. Catestatin immunoreactivity is present in the rostral ventrolateral medulla (RVLM), a key site for blood pressure control in the brain stem. Recently, we reported that microinjection of catestatin into the RVLM is sympathoexcitatory and increases barosensitivity. Here, we report the effects of microinjection of catestatin (1 mM, 50 nl) into the caudal ventrolateral medulla (CVLM) in urethane-anesthetized, bilaterally vagotomized, artificially ventilated Sprague-Dawley rats (n = 8). We recorded resting arterial pressure, splanchnic sympathetic nerve activity, phrenic nerve activity, heart rate, and measured cardiovascular homeostatic reflexes. Homeostatic reflexes were evaluated by measuring cardiovascular responses to carotid baroreceptor and peripheral chemoreceptor activation. Catestatin decreased basal levels of arterial pressure (-23 ± 4 mmHg), sympathetic nerve activity (-26.6 ± 5.7%), heart rate (-19 ± 5 bpm), and phrenic nerve amplitude (-16.8 ± 3.3%). Catestatin caused a 15% decrease in phrenic inspiratory period (T(i)) and a 16% increase in phrenic expiratory period (T(e)) but had no net effect on the phrenic interburst interval (T(tot)). Catestatin decreased sympathetic barosensitivity by 63.6% and attenuated the peripheral chemoreflex (sympathetic nerve response to brief hypoxia; range decreased 39.9%; slope decreased 30.1%). The results suggest that catestatin plays an important role in central cardiorespiratory control.
Collapse
Affiliation(s)
- Andrea H Gaede
- Australian School of Advanced Medicine, Macquarie University, North Ryde, NSW, Australia
| | | |
Collapse
|
48
|
Takakura AC, Moreira TS. Contribution of excitatory amino acid receptors of the retrotrapezoid nucleus to the sympathetic chemoreflex in rats. Exp Physiol 2011; 96:989-99. [DOI: 10.1113/expphysiol.2011.058842] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
49
|
Caudal nuclei of the rat nucleus of the solitary tract differentially innervate respiratory compartments within the ventrolateral medulla. Neuroscience 2011; 190:207-27. [PMID: 21704133 DOI: 10.1016/j.neuroscience.2011.06.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 05/27/2011] [Accepted: 06/01/2011] [Indexed: 12/15/2022]
Abstract
A substantial array of respiratory, cardiovascular, visceral and somatic afferents are relayed via the nucleus of the solitary tract (NTS) to the brainstem (and forebrain). Despite some degree of overlap within the NTS, specificity is maintained in central respiratory reflexes driven by second order afferent relay neurons in the NTS. While the topographic arrangement of respiratory-related afferents targeting the NTS has been extensively investigated, their higher order brainstem targets beyond the NTS has only rarely been defined with any precision. Nonetheless, the various brainstem circuits serving blood gas homeostasis and airway protective reflexes must clearly receive a differential innervation from the NTS in order to evoke stimulus appropriate behavioral responses. Accordingly, we have examined the question of which specific NTS nuclei project to particular compartments within the ventral respiratory column (VRC) of the ventrolateral medulla. Our analyses of NTS labeling after retrograde tracer injections in the VRC and the nearby neuronal groups controlling autonomic function indicate a significant distinction between projections to the Bötzinger complex and preBötzinger complex compared to the remainder of the VRC. Specifically, the caudomedial NTS, including caudal portions of the medial solitary nucleus and the commissural division of NTS project relatively densely to the region of the retrotrapezoid nucleus and rostral ventrolateral medullary nucleus as well as to the rostral ventral respiratory group while avoiding the intervening Bötzinger and preBötzinger complexes. Area postrema appears to demonstrate a pattern of projections similar to that of caudal medial and commissural NTS nuclei. Other, less pronounced differential projections of lateral NTS nuclei to the various VRC compartments are additionally noted.
Collapse
|
50
|
Molkov YI, Zoccal DB, Moraes DJA, Paton JFR, Machado BH, Rybak IA. Intermittent hypoxia-induced sensitization of central chemoreceptors contributes to sympathetic nerve activity during late expiration in rats. J Neurophysiol 2011; 105:3080-91. [PMID: 21471394 DOI: 10.1152/jn.00070.2011] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hypertension elicited by chronic intermittent hypoxia (CIH) is associated with elevated activity of the thoracic sympathetic nerve (tSN) that exhibits an enhanced respiratory modulation reflecting a strengthened interaction between respiratory and sympathetic networks within the brain stem. Expiration is a passive process except for special metabolic conditions such as hypercapnia, when it becomes active through phasic excitation of abdominal motor nerves (AbN) in late expiration. An increase in CO(2) evokes late-expiratory (late-E) discharges phase-locked to phrenic bursts with the frequency increasing quantally as hypercapnia increases. In rats exposed to CIH, the late-E discharges synchronized in AbN and tSN emerge in normocapnia. To elucidate the possible neural mechanisms underlying these phenomena, we extended our computational model of the brain stem respiratory network by incorporating a population of presympathetic neurons in the rostral ventrolateral medulla that received inputs from the pons, medullary respiratory compartments, and retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG). Our simulations proposed that CIH conditioning increases the CO(2) sensitivity of RTN/pFRG neurons, causing a reduction in both the CO(2) threshold for emerging the late-E activity in AbN and tSN and the hypocapnic threshold for apnea. Using the in situ rat preparation, we have confirmed that CIH-conditioned rats under normal conditions exhibit synchronized late-E discharges in AbN and tSN similar to those observed in control rats during hypercapnia. Moreover, the hypocapnic threshold for apnea was significantly lowered in CIH-conditioned rats relative to that in control rats. We conclude that CIH may sensitize central chemoreception and that this significantly contributes to the neural impetus for generation of sympathetic activity and hypertension.
Collapse
Affiliation(s)
- Yaroslav I Molkov
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| | | | | | | | | | | |
Collapse
|