1
|
Chen X, Lv R, Li M, Zhang L, Sun Y, Cao N, Gu B. The serotonin(5-HT)2A receptor is involved in the hypersensitivity of bladder afferent neurons in cyclophosphamide-induced cystitis. Eur J Pharmacol 2024; 982:176909. [PMID: 39154826 DOI: 10.1016/j.ejphar.2024.176909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/14/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic bladder inflammation characterized by the main symptoms of urinary frequency, urgency, and pelvic pain. The hypersensitivity of bladder afferent neurons is considered a significant pathophysiologic mechanism in IC/PBS. Serotonin (5-HT, 5-hydroxytryptamine) receptors are known to be involved in the regulation of the micturition reflex and hyperalgesia, but the effect of 5-HT receptors on cystitis remains unknown. In this study, a rat model of interstitial cystitis induced by intraperitoneal injection of cyclophosphamide (CYP) was used to investigate the role of 5-HT receptors on cystitis. The histology and urodynamics exhibited chronic cystitis and overactive bladder in CYP-treated rats. Notably, among 5-HT1A, 5-HT2A and 5-HT7 receptors, the expression of 5-HT2A receptor was significantly increased in bladder afferent neurons in CYP-treated rats. Intrathecal administration of the 5-HT2A receptor antagonist M100907 could alleviate bladder overactivity and hyperalgesia in CYP-induced cystitis rats. Neuronal calcium imaging of bladder afferent neurons revealed increased calcium influx induced by the 5-HT2A receptor agonist or capsaicin in cystitis rats, which could be inhibited by M100907. Moreover, RNA sequencing indicated that differentially expressed genes were enriched in inflammation-related pathways and cellular calcium homeostasis. These findings suggest that the 5-HT2A receptor is involved in the hypersensitivity of bladder afferent neurons in CYP-induced cystitis, and M100907 could alleviate bladder overactivity and hyperalgesia in CYP-induced cystitis by inhibiting neuronal hypersensitivity in the afferent pathways. The 5-HT2A receptor may be a potential therapeutic target for the treatment of IC/BPS.
Collapse
MESH Headings
- Animals
- Cyclophosphamide
- Urinary Bladder/drug effects
- Urinary Bladder/innervation
- Urinary Bladder/pathology
- Urinary Bladder/metabolism
- Neurons, Afferent/metabolism
- Neurons, Afferent/drug effects
- Receptor, Serotonin, 5-HT2A/metabolism
- Rats
- Rats, Sprague-Dawley
- Cystitis/chemically induced
- Cystitis/metabolism
- Cystitis/pathology
- Female
- Hyperalgesia/chemically induced
- Hyperalgesia/metabolism
- Cystitis, Interstitial/chemically induced
- Cystitis, Interstitial/metabolism
- Cystitis, Interstitial/drug therapy
- Cystitis, Interstitial/pathology
- Serotonin 5-HT2 Receptor Antagonists/pharmacology
- Urinary Bladder, Overactive/chemically induced
- Urinary Bladder, Overactive/metabolism
- Urinary Bladder, Overactive/physiopathology
- Urinary Bladder, Overactive/drug therapy
- Disease Models, Animal
Collapse
Affiliation(s)
- Xun Chen
- Department of Urology, Shanghai Sixth's People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Lv
- Department of Urology, Shanghai Sixth's People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingzhuo Li
- Department of Urology, Shanghai Sixth's People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Zhang
- Department of Urology, Shanghai Sixth's People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yudong Sun
- Department of Urology, Shanghai Sixth's People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nailong Cao
- Department of Urology, Shanghai Sixth's People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Baojun Gu
- Department of Urology, Shanghai Sixth's People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Hamed YMF, Ghosh B, Marshall KL. PIEZO ion channels: force sensors of the interoceptive nervous system. J Physiol 2024; 602:4777-4788. [PMID: 38456626 DOI: 10.1113/jp284077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/08/2024] [Indexed: 03/09/2024] Open
Abstract
Many organs are designed to move: the heart pumps each second, the gastrointestinal tract squeezes and churns to digest food, and we contract and relax skeletal muscles to move our bodies. Sensory neurons of the peripheral nervous system detect signals from bodily tissues, including the forces generated by these movements, to control physiology. The processing of these internal signals is called interoception, but this is a broad term that includes a wide variety of both chemical and mechanical sensory processes. Mechanical senses are understudied, but rapid progress has been made in the last decade, thanks in part to the discovery of the mechanosensory PIEZO ion channels (Coste et al., 2010). The role of these mechanosensors within the interoceptive nervous system is the focus of this review. In defining the transduction molecules that govern mechanical interoception, we will have a better grasp of how these signals drive physiology.
Collapse
Affiliation(s)
- Yasmeen M F Hamed
- Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, Texas, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Britya Ghosh
- Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, Texas, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Kara L Marshall
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, USA
- Lead contact
| |
Collapse
|
3
|
Thai J, Fuller‐Jackson J, Ivanusic JJ. Using tissue clearing and light sheet fluorescence microscopy for the three-dimensional analysis of sensory and sympathetic nerve endings that innervate bone and dental tissue of mice. J Comp Neurol 2024; 532:e25582. [PMID: 38289188 PMCID: PMC10952626 DOI: 10.1002/cne.25582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/05/2023] [Accepted: 12/30/2023] [Indexed: 02/01/2024]
Abstract
Bone and dental tissues are richly innervated by sensory and sympathetic neurons. However, the characterization of the morphology, molecular phenotype, and distribution of nerves that innervate hard tissue has so far mostly been limited to thin histological sections. This approach does not adequately capture dispersed neuronal projections due to the loss of important structural information during three-dimensional (3D) reconstruction. In this study, we modified the immunolabeling-enabled imaging of solvent-cleared organs (iDISCO/iDISCO+) clearing protocol to image high-resolution neuronal structures in whole femurs and mandibles collected from perfused C57Bl/6 mice. Axons and their nerve terminal endings were immunolabeled with antibodies directed against protein gene product 9.5 (pan-neuronal marker), calcitonin gene-related peptide (peptidergic nociceptor marker), or tyrosine hydroxylase (sympathetic neuron marker). Volume imaging was performed using light sheet fluorescence microscopy. We report high-quality immunolabeling of the axons and nerve terminal endings for both sensory and sympathetic neurons that innervate the mouse femur and mandible. Importantly, we are able to follow their projections through full 3D volumes, highlight how extensive their distribution is, and show regional differences in innervation patterns for different parts of each bone (and surrounding tissues). Mapping the distribution of sensory and sympathetic axons, and their nerve terminal endings, in different bony compartments may be important in further elucidating their roles in health and disease.
Collapse
Affiliation(s)
- Jenny Thai
- Department of Anatomy and PhysiologyUniversity of MelbourneParkvilleVictoriaAustralia
| | | | - Jason J. Ivanusic
- Department of Anatomy and PhysiologyUniversity of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
4
|
Wiedmann NM, Fuller-Jackson JP, Osborne PB, Keast JR. An adeno-associated viral labeling approach to visualize the meso- and microanatomy of mechanosensory afferents and autonomic innervation of the rat urinary bladder. FASEB J 2024; 38:e23380. [PMID: 38102980 PMCID: PMC10789495 DOI: 10.1096/fj.202301113r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/04/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
The urinary bladder is supplied by a rich network of sensory and autonomic axons, commonly visualized by immunolabeling for neural markers. This approach demonstrates overall network patterning but is less suited to understanding the structure of individual motor and sensory terminals within these complex plexuses. There is a further limitation visualizing the lightly myelinated (A-delta) class of sensory axons that provides the primary mechanosensory drive for initiation of voiding. Whereas most unmyelinated sensory axons can be revealed by immunolabeling for specific neuropeptides, to date no unique neural marker has been identified to immunohistochemically label myelinated visceral afferents. We aimed to establish a non-surgical method to visualize and map myelinated afferents in the bladder in rats. We found that in rats, the adeno-associated virus (AAV), AAV-PHP.S, which shows a high tropism for the peripheral nervous system, primarily transduced myelinated dorsal root ganglion neurons, enabling us to identify the structure and regional distribution of myelinated (mechanosensory) axon endings within the muscle and lamina propria of the bladder. We further identified the projection of myelinated afferents within the pelvic nerve and lumbosacral spinal cord. A minority of noradrenergic and cholinergic neurons in pelvic ganglia were transduced, enabling visualization and regional mapping of both autonomic and sensory axon endings within the bladder. Our study identified a sparse labeling approach for investigating myelinated sensory and autonomic axon endings within the bladder and provides new insights into the nerve-bladder interface.
Collapse
Affiliation(s)
- Nicole M Wiedmann
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
| | | | - Peregrine B Osborne
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Janet R Keast
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
5
|
Clodfelder-Miller B, DeBerry JJ, Ness TJ. Urothelial bladder afferents selectively project to L6/S1 levels and are more peptidergic than those projecting to the T13/L1 levels in female rats. Heliyon 2023; 9:e18495. [PMID: 37534006 PMCID: PMC10392082 DOI: 10.1016/j.heliyon.2023.e18495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023] Open
Abstract
This neuroanatomical study in four, adult, Sprague-Dawley female rats quantified the number of Urothelial (labeled by intravesical DiI dye administration) and Non-Urothelial (labeled by intraparenchymal injection of Fast blue dye) bladder primary afferent neurons (bPANs) located in the T13, L1, L6 and S1 dorsal root ganglia. Additional immunohistochemical labeling using antibodies to detect either Substance P or CGRP further characterized the bPAN samples as peptidergic or non-peptidergic. Cell counts indicated that Urothelial bPANs were more common at the L6/S1 levels and more likely to be identified as peptidergic when compared with bPANs characterized at T13/L1 levels and with Non-Urothelial bPANs. These studies provide additional evidence that at least two distinct neuronal populations, with differing localization of sensory terminals, differing peptide content, and differing projections to the central nervous system, are responsible for bladder sensation.
Collapse
Affiliation(s)
- Buffie Clodfelder-Miller
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Jennifer J. DeBerry
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Timothy J. Ness
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, UK
| |
Collapse
|
6
|
Aresta Branco MSL, Gutierrez Cruz A, Borhani Peikani M, Mutafova-Yambolieva VN. Sensory Neurons, PIEZO Channels and PAC1 Receptors Regulate the Mechanosensitive Release of Soluble Ectonucleotidases in the Murine Urinary Bladder Lamina Propria. Int J Mol Sci 2023; 24:ijms24087322. [PMID: 37108490 PMCID: PMC10138949 DOI: 10.3390/ijms24087322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The urinary bladder requires adequate concentrations of extracellular adenosine 5'-triphosphate (ATP) and other purines at receptor sites to function properly. Sequential dephosphorylation of ATP to ADP, AMP and adenosine (ADO) by membrane-bound and soluble ectonucleotidases (s-ENTDs) is essential for achieving suitable extracellular levels of purine mediators. S-ENTDs, in particular, are released in the bladder suburothelium/lamina propria (LP) in a mechanosensitive manner. Using 1,N6-etheno-ATP (eATP) as substrate and sensitive HPLC-FLD methodology, we evaluated the degradation of eATP to eADP, eAMP and eADO in solutions that were in contact with the LP of ex vivo mouse detrusor-free bladders during filling prior to substrate addition. The inhibition of neural activity with tetrodotoxin and ω-conotoxin GVIA, of PIEZO channels with GsMTx4 and D-GsMTx4 and of the pituitary adenylate cyclase-activating polypeptide type I receptor (PAC1) with PACAP6-38 all increased the distention-induced but not spontaneous release of s-ENTDs in LP. It is conceivable, therefore, that the activation of these mechanisms in response to distention restricts the further release of s-ENTDs and prevents excessive hydrolysis of ATP. Together, these data suggest that afferent neurons, PIEZO channels, PAC1 receptors and s-ENTDs form a system that operates a highly regulated homeostatic mechanism to maintain proper extracellular purine concentrations in the LP and ensure normal bladder excitability during bladder filling.
Collapse
Affiliation(s)
- Mafalda S L Aresta Branco
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV 89557, USA
| | - Alejandro Gutierrez Cruz
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV 89557, USA
| | - Mahsa Borhani Peikani
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV 89557, USA
| | | |
Collapse
|
7
|
Ramsay S, Spencer NJ, Zagorodnyuk V. Endocannabinoids, anandamide and 2-AG, regulate mechanosensitivity of mucosal afferents in the Guinea pig bladder. Eur J Pharmacol 2023; 945:175624. [PMID: 36858341 DOI: 10.1016/j.ejphar.2023.175624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/01/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023]
Abstract
Bladder afferents play a crucial role in urine storage and voiding, and conscious sensations from the bladder. Endocannabinoids, anandamide (AEA) and 2-arachidonolylglycerol (2-AG), are endogenous ligands of G-protein coupled cannabinoid receptors 1 and 2 (CB1 and CB2) found in the CNS and peripheral organs. They also have off-target effects on some ligand- and voltage-gated channels. The aim of this study is to determine the role of AEA and 2-AG in regulation of mechanosensitivity of probable nociceptive neurons innervating the bladder - capsaicin-sensitive mucosal afferents. The activity of these afferents was determined by ex vivo single unit extracellular recordings in the guinea pig bladder. A stable analogue of anandamide, methanandamide (mAEA) evoked initial excitatory response of mucosal afferents followed by potentiation of their responses to mechanical stimulation. In the presence of TRPV1 antagonist (AMG9810), mAEA's effect on mechanosensitivity switched from excitatory to inhibitory. The inhibitory effect of mAEA is due to activation of both CB1 and CB2 cannabinoid receptors since it was abolished by combined application of selective CB1 (NESS0327) and CB2 (SR144528) antagonists. 2-AG application evoked a brief excitation of mucosal afferents, without potentiation of their mechanosensitivity, followed by the inhibition of their responses to mechanical stimulation. CB2 receptor antagonist, SR144528 abolished the inhibitory effect of 2-AG. Our data indicated that anandamide and 2-AG have opposite effects on mechanosensitivity of mucosal capsaicin-sensitive afferents in the guinea pig bladder; mAEA potentiated while 2-AG inhibited responses of mucosal afferents to mechanical stimulation. These findings are important for understanding of the role of endocannabinoids in regulating bladder sensation and function.
Collapse
Affiliation(s)
- Stewart Ramsay
- Discipline of Human Physiology, Flinders Health & Medical Research Institute, College of Medicine and Public Health, Flinders University, South Australia, Australia
| | - Nick J Spencer
- Discipline of Human Physiology, Flinders Health & Medical Research Institute, College of Medicine and Public Health, Flinders University, South Australia, Australia
| | - Vladimir Zagorodnyuk
- Discipline of Human Physiology, Flinders Health & Medical Research Institute, College of Medicine and Public Health, Flinders University, South Australia, Australia.
| |
Collapse
|
8
|
Ramsay S, Zagorodnyuk V. Role of circadian rhythms and melatonin in bladder function in heath and diseases. Auton Neurosci 2023; 246:103083. [PMID: 36871511 DOI: 10.1016/j.autneu.2023.103083] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023]
Abstract
The circadian system modulates all visceral organ physiological processes including urine storage and voiding. The "master clock" of the circadian system lies within suprachiasmatic nucleus of the hypothalamus while "peripheral clocks" are found in most peripheral tissue and organs, including the urinary bladder. Disruptions of circadian rhythms can cause organ malfunction and disorder or exacerbate pre-existing ones. It has been suggested that nocturia, which develops mostly in the elderly, could be a circadian-related disorder of the bladder. In the bladder, many types of gap junctions and ion channels in the detrusor, urothelium and sensory nerves are likely under strict local peripheral circadian control. The pineal hormone, melatonin, is a circadian rhythm synchroniser capable of controlling a variety of physiological processes in the body. Melatonin predominantly acts via the melatonin 1 and melatonin 2 G-protein coupled receptors expressed in the central nervous system, and many peripheral organs and tissues. Melatonin could be beneficial in the treatment of nocturia and other common bladder disorders. The ameliorating action of melatonin on bladder function is likely due to multiple mechanisms which include central effects on voiding and peripheral effects on the detrusor and bladder afferents. More studies are warranted to determine the precise mechanisms of circadian rhythm coordination of the bladder function and melatonin influences on the bladder in health and diseases.
Collapse
Affiliation(s)
- Stewart Ramsay
- Discipline of Human Physiology, Flinders Health & Medical Research Institute, College of Medicine and Public Health, Flinders University, South Australia, Australia
| | - Vladimir Zagorodnyuk
- Discipline of Human Physiology, Flinders Health & Medical Research Institute, College of Medicine and Public Health, Flinders University, South Australia, Australia.
| |
Collapse
|
9
|
Ramsay S, Keightley L, Brookes S, Zagorodnyuk V. TRPV1 and TRPM8 antagonists reduce cystitis-induced bladder hypersensitivity via inhibition of different sensitised classes of bladder afferents in guinea pigs. Br J Pharmacol 2022; 180:1482-1499. [PMID: 36549668 DOI: 10.1111/bph.16017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/25/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Interstitial cystitis (=painful bladder syndrome) is a chronic bladder syndrome characterised by pelvic and bladder pain, urinary frequency and urgency, and nocturia. Transient receptor potential (TRP) channels are an attractive target in reducing the pain associated with interstitial cystitis. The current study aims to determine the efficacy of combination of TRP vanilloid 1 (TRPV1) and TRP melastatin 8 (TRPM8) channel inhibition in reducing the pain associated with experimental cystitis in guinea pigs. EXPERIMENTAL APPROACH A novel animal model of non-ulcerative interstitial cystitis has been developed using protamine sulfate/zymosan in female guinea pigs. Continuous voiding cystometry was performed in conscious guinea pigs. Ex vivo "close-to-target" single unit extracellular recordings were made from fine branches of pelvic nerves entering the guinea pig bladder. Visceromotor responses in vivo were used to determine the effects of TRP channel antagonists on cystitis-induced bladder hypersensitivity. KEY RESULTS Protamine sulfate/zymosan treatment evoked mild inflammation in the bladder and increased micturition frequency in conscious animals. In cystitis, high threshold muscular afferents were sensitised via up-regulation of TRPV1 channels, high threshold muscular-mucosal afferents were sensitised via TRPM8 channels, and mucosal afferents by both. Visceromotor responses evoked by noxious bladder distension were significantly enhanced in cystitis and were returned to control levels upon administration of combination of low doses of TRPV1 and TRPM8 antagonists. CONCLUSIONS AND IMPLICATIONS The data demonstrate the therapeutic promises of combination of TRPV1 and TRPM8 antagonists for the treatment of bladder hypersensitivity in cystitis.
Collapse
Affiliation(s)
- Stewart Ramsay
- Discipline of Human Physiology, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Lauren Keightley
- Discipline of Human Physiology, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Simon Brookes
- Discipline of Human Physiology, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Vladimir Zagorodnyuk
- Discipline of Human Physiology, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
10
|
The T-type calcium channel Ca V 3.2 regulates bladder afferent responses to mechanical stimuli. Pain 2022; 164:1012-1026. [PMID: 36279179 PMCID: PMC10108591 DOI: 10.1097/j.pain.0000000000002795] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 09/09/2022] [Indexed: 11/06/2022]
Abstract
ABSTRACT The bladder wall is innervated by a complex network of afferent nerves that detect bladder stretch during filling. Sensory signals, generated in response to distension, are relayed to the spinal cord and brain to evoke physiological and painful sensations and regulate urine storage and voiding. Hyperexcitability of these sensory pathways is a key component in the development of chronic bladder hypersensitivity disorders including interstitial cystitis/bladder pain syndrome and overactive bladder syndrome. Despite this, the full array of ion channels that regulate bladder afferent responses to mechanical stimuli have yet to be determined. Here, we investigated the role of low-voltage-activated T-type calcium (Ca V 3) channels in regulating bladder afferent responses to distension. Using single-cell reverse-transcription polymerase chain reaction and immunofluorescence, we revealed ubiquitous expression of Ca V 3.2, but not Ca V 3.1 or Ca V 3.3, in individual bladder-innervating dorsal root ganglia neurons. Pharmacological inhibition of Ca V 3.2 with TTA-A2 and ABT-639, selective blockers of T-type calcium channels, dose-dependently attenuated ex-vivo bladder afferent responses to distension in the absence of changes to muscle compliance. Further evaluation revealed that Ca V 3.2 blockers significantly inhibited both low- and high-threshold afferents, decreasing peak responses to distension, and delayed activation thresholds, thereby attenuating bladder afferent responses to both physiological and noxious distension. Nocifensive visceromotor responses to noxious bladder distension in vivo were also significantly reduced by inhibition of Ca V 3 with TTA-A2. Together, these data provide evidence of a major role for Ca V 3.2 in regulating bladder afferent responses to bladder distension and nociceptive signalling to the spinal cord.
Collapse
|
11
|
Melatonin inhibits muscular-mucosal stretch-sensitive bladder afferents via the MT2 receptors. Sci Rep 2022; 12:17686. [PMID: 36271291 PMCID: PMC9586995 DOI: 10.1038/s41598-022-22705-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/18/2022] [Indexed: 01/18/2023] Open
Abstract
Melatonin is a circadian rhythm regulator capable of controlling a variety of physiological processes in the body. It predominantly acts via the melatonin 1 (MT1) and MT2 receptors expressed in the CNS neurons and peripheral organs and tissues. Melatonin can modulate urinary bladder function, however, to date it is not known if melatonin can regulate activity of sensory neurons innervating the bladder. Bladder afferents play an important role in urine storage and voiding. Therefore, this study aims to determine if melatonin can regulate mechanosensitivity of 2 major classes of sensory neurons in the guinea pig bladder: stretch-insensitive mucosal and low threshold stretch-sensitive muscular-mucosal afferents. The effects of melatonin on the mechanosensitivity of mucosal and muscular-mucosal afferents were measured ex vivo using single unit extracellular recording. Melatonin did not affect the responses of mucosal afferents to stroking of their receptive fields but did concentration-dependently, significantly inhibit 69% of muscular-mucosal afferents responses to stroking and bladder stretch. This inhibitory effect was not affected by the MT1 receptor antagonist, S26131 but was blocked by the selective MT2 receptor antagonists, K-185 and 4-P-PDOT. Forskolin significantly potentiated the responses of muscular-mucosal afferents to stroking and stretch, which were prevented by melatonin. These findings demonstrate a direct inhibitory effect of melatonin on the mechanosensitivity of low threshold stretch-sensitive muscular-mucosal bladder afferents acting via MT2 receptors, which is independent from its action on detrusor muscle. This may have important clinical implications for the treatment of many common bladder disorders including nocturia.
Collapse
|
12
|
Christie S, Zagorodnyuk V. Time-of-day dependent changes in guinea pig bladder afferent mechano-sensitivity. Sci Rep 2021; 11:19283. [PMID: 34588547 PMCID: PMC8481311 DOI: 10.1038/s41598-021-98831-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/08/2021] [Indexed: 01/03/2023] Open
Abstract
The voiding of urine has a clear circadian rhythm with increased voiding during active phases and decreased voiding during inactive phases. Bladder spinal afferents play a key role in the regulation of bladder storage and voiding, but it is unknown whether they exhibit themselves a potential circadian rhythm. Therefore, this study aimed to determine the mechano- and chemo- sensitivity of three major bladder afferent classes at two opposite day-night time points. Adult female guinea pigs underwent conscious voiding monitoring and bladder ex vivo single unit extracellular afferent recordings at 0300 h and 1500 h to determine day-night modulation of bladder afferent activity. All guinea pigs voided a higher amount of urine at 1500 h compared to 0300 h. This was due to an increased number of voids at 1500 h. The mechano-sensitivity of low- and high-threshold stretch-sensitive muscular-mucosal bladder afferents to mucosal stroking and stretch was significantly higher at 1500 h compared to 0300 h. Low-threshold stretch-insensitive mucosal afferent sensitivity to stroking was significantly higher at 1500 h compared to 0300 h. Further, the chemosensitivity of mucosal afferents to N-Oleoyl Dopamine (endogenous TRPV1 agonist) was also significantly increased at 1500 h compared to 0300 h. This data indicates that bladder afferents exhibit a significant time-of-day dependent variation in mechano-sensitivity which may influence urine voiding patterns. Further studies across a 24 h period are warranted to reveal potential circadian rhythm modulation of bladder afferent activity.
Collapse
Affiliation(s)
- Stewart Christie
- Discipline of Human Physiology, Flinders Health & Medical Research Institute, College of Medicine and Public Health, Flinders University, GPO Box 2100, Adelaide, SA, Australia
| | - Vladimir Zagorodnyuk
- Discipline of Human Physiology, Flinders Health & Medical Research Institute, College of Medicine and Public Health, Flinders University, GPO Box 2100, Adelaide, SA, Australia.
| |
Collapse
|
13
|
Christie S, Brookes S, Zagorodnyuk V. Endocannabinoids in Bladder Sensory Mechanisms in Health and Diseases. Front Pharmacol 2021; 12:708989. [PMID: 34290614 PMCID: PMC8287826 DOI: 10.3389/fphar.2021.708989] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/23/2021] [Indexed: 01/23/2023] Open
Abstract
The recent surge in research on cannabinoids may have been fueled by changes in legislation in several jurisdictions, and by approval for the use of cannabinoids for treatment of some chronic diseases. Endocannabinoids act largely, but not exclusively on cannabinoid receptors 1 and 2 (CBR1 and CBR2) which are expressed in the bladder mainly by the urothelium and the axons and endings of motor and sensory neurons. A growing body of evidence suggests that endocannabinoid system constitutively downregulates sensory bladder function during urine storage and micturition, under normal physiological conditions. Similarly, exogenous cannabinoid agonists have potent modulatory effects, as do inhibitors of endocannabinoid inactivation. Results suggest a high potential of cannabinoids to therapeutically ameliorate lower urinary tract symptoms in overactive bladder and painful bladder syndromes. At least part of this may be mediated via effects on sensory nerves, although actions on efferent nerves complicate interpretation. The sensory innervation of bladder is complex with at least eight classes identified. There is a large gap in our knowledge of the effects of endocannabinoids and synthetic agonists on different classes of bladder sensory neurons. Future studies are needed to reveal the action of selective cannabinoid receptor 2 agonists and/or peripherally restricted synthetic cannabinoid receptor 1 agonists on bladder sensory neurons in animal models of bladder diseases. There is significant potential for these novel therapeutics which are devoid of central nervous system psychotropic actions, and which may avoid many of the side effects of current treatments for overactive bladder and painful bladder syndromes.
Collapse
Affiliation(s)
| | | | - Vladimir Zagorodnyuk
- Discipline of Human Physiology, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
14
|
Daugherty SL, Beckel JM, Kim KA, Freeman BA, Liu J, Wang S, de Groat WC, Zhang X. TRP Channel Agonists Activate Different Afferent Neuromodulatory Mechanisms in Guinea Pig Urinary Bladder. Front Physiol 2021; 12:692719. [PMID: 34248678 PMCID: PMC8264756 DOI: 10.3389/fphys.2021.692719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/31/2021] [Indexed: 11/16/2022] Open
Abstract
Activation of TRP channels expressed in urinary bladder afferent nerves and urothelium releases neurotransmitters that influence bladder function. Experiments were undertaken to examine the mechanisms underlying effects of TRPA1 (allyl isothiocyanate, AITC), TRPV1 (capsaicin, CAPS), and TRPC (oleoyl-2-acetyl-sn-glycerol, OAG) agonists on guinea pig bladder activity. Effects of these agonists were compared with effects of nitro-oleic acid (OA-NO2), an electrophilic nitro-fatty acid, known to activate TRPV1, TRPA1 or TRPC channels in sensory neurons. AITC (100 μM) increased (231%) area of spontaneous bladder contractions (SBCs) an effect reduced by a TRPA1 antagonist (HC3-03001, HC3, 10 μM) and reversed to inhibition by indomethacin (INDO, 500 nM) a cyclooxygenase inhibitor. The post-INDO inhibitory effect of AITC was mimicked (39% depression) by calcitonin gene-related peptide (CGRP, 100 nM) and blocked by a CGRP antagonist (BIBN, 25 μM). CAPS (1 μM) suppressed SBCs by 30% in 81% of strips, an effect blocked by a TRPV1 antagonist (diarylpiperazine, 1 μM) or BIBN. SBCs were suppressed by OA-NO2 (30 μM, 21% in 77% of strips) or by OAG (50 μM, 30%) an effect blocked by BIBN. OA-NO2 effects were not altered by HC3 or diarylpiperazine. OA-NO2 also induced excitation in 23% of bladder strips. These observations raise the possibility that guinea pig bladder is innervated by at least two types of afferent nerves: [1] Type A express TRPA1 receptors that induce the release of prostaglandins and excite the detrusor, [2] Type B express TRPV1, TRPA1 and TRPC receptors and release CGRP that inhibits the detrusor.
Collapse
Affiliation(s)
- Stephanie L. Daugherty
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jonathan M. Beckel
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Kyoungeun A. Kim
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Bruce A. Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jiaxin Liu
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shaoyong Wang
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - William C. de Groat
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Xiulin Zhang
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
15
|
Sheetz T, Clemens JQ, Crescenze I. Neuroanatomy of Bladder Pain. CURRENT BLADDER DYSFUNCTION REPORTS 2021. [DOI: 10.1007/s11884-021-00629-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Christie S, Zagorodnyuk V. CB2 cannabinoid receptor agonist selectively inhibits the mechanosensitivity of mucosal afferents in the guinea pig bladder. Am J Physiol Renal Physiol 2021; 320:F859-F865. [PMID: 33749323 DOI: 10.1152/ajprenal.00065.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bladder afferents play a pivotal role in bladder function such as urine storage and micturition as well as conscious sensations such as urgency and pain. Endocannabinoids are ligands of cannabinoid 1 and 2 (CB1 and CB2) receptors but can influence the activity of a variety of G protein-coupled receptors as well as ligand-gated and voltage-gated channels. It is still not known which classes of bladder afferents are influenced by CB1 and CB2 receptor agonists. This study aimed to determine the role of CB2 receptors in two major classes of afferents in the guinea pig bladder: mucosal and muscular-mucosal. The mechanosensitivity of these two classes was determined by an ex vivo extracellular electrophysiological recording technique. A stable analog of endocannabinoid anandamide, methanandamide (mAEA), potentiated the mechanosensitivity of mucosal bladder afferents in response to stroking. In the presence of a transient receptor potential vanilloid 1 antagonist (capsazepine), the effect of mAEA switched from excitatory to inhibitory. A selective CB2 receptor agonist, 4-quinolone-3-carboxyamide (4Q3C), significantly inhibited the mechanosensitivity of mucosal bladder afferents to stroking. In the presence of a CB2 receptor antagonist, the inhibitory effect of 4Q3C was lost. mAEA and 4Q3C did not affect responses to stretch and/or mucosal stroking of muscular-mucosal afferents. Our findings revealed that agonists of CB2 receptors selectively inhibited the mechanosensitivity of capsaicin-sensitive mucosal bladder afferents but not muscular-mucosal afferents. This may have important implications for understanding of the role of endocannabinoids in modulating bladder function and sensation in health and diseases.NEW & NOTEWORTHY This article describes, for the first time, to our knowledge, the direct inhibitory effect of cannabinoid 2 receptor agonists on guinea pig mucosal bladder afferents. The cannabinoid 2 receptor is involved in pain and inflammation, suggesting that this may be a viable target for treatment of bladder disorders such as cystitis.
Collapse
Affiliation(s)
- Stewart Christie
- Discipline of Human Physiology, Flinders Health & Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Vladimir Zagorodnyuk
- Discipline of Human Physiology, Flinders Health & Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
17
|
PIEZO2 in sensory neurons and urothelial cells coordinates urination. Nature 2020; 588:290-295. [PMID: 33057202 PMCID: PMC7725878 DOI: 10.1038/s41586-020-2830-7] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/22/2020] [Indexed: 11/24/2022]
Abstract
Henry Miller stated that “to relieve a full bladder is one of the great human joys”. Urination is critically important in health, and ailments of the lower urinary tract (LUT) cause extensive pathological burden. Nevertheless, we take urination for granted, and in-depth mechanistic insight is lacking. We have witnessed advances in understanding the central circuitry in the brain that facilitates urination1–3. Beyond central control, micturition reflexes that govern urination are all initiated by peripheral mechanical stimuli such as bladder stretch and urethral flow4. Surprisingly, the mechanotransduction molecules and the cell types that function as the primary stretch and pressure detectors in the urinary tract are mostly unknown. We find that the mechanosensitive ion channel PIEZO2 is expressed in lower urinary tract tissues, where it is required for low-threshold bladder stretch sensing and urethral micturition reflexes. We show that PIEZO2 acts as a sensor in both the bladder urothelium and innervating sensory neurons. Importantly, both humans and mice lacking functional PIEZO2 have impaired bladder control, and humans report deficient bladder-filling sensation. This study pinpoints PIEZO2 as a key mechanosensor in urinary function. These findings enable future work that will unlock how urothelial cells and sensory neurons interact to control urination.
Collapse
|
18
|
Sharma H, Kyloh M, Brookes SJH, Costa M, Spencer NJ, Zagorodnyuk VP. Morphological and neurochemical characterisation of anterogradely labelled spinal sensory and autonomic nerve endings in the mouse bladder. Auton Neurosci 2020; 227:102697. [PMID: 32645688 DOI: 10.1016/j.autneu.2020.102697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 11/29/2022]
Abstract
The bladder is innervated by axons of sympathetic and parasympathetic efferent nerves, and by spinal afferent neurons. The objective was to characterise anatomically and immunohistochemically the terminal endings of sensory and autonomic motor nerve endings in wholemount preparations of the mouse bladder. We used both anterograde labelling of pelvic and hypogastric nerves ex vivo and anterograde labelling from lumbosacral dorsal root ganglia (DRG) in vivo in male and female mice. These were combined with immunohistochemistry for major markers of sensory, sympathetic and parasympathetic nerves. Selective labelling of spinal afferent endings following dextran biotin-labelling from DRGs in vivo showed no co-localisation of VAChT or TH in sensory terminals in the detrusor and suburothelial plexus. Biotinamide was applied ex vivo to nerve trunks arising in the pelvic ganglion and running towards the bladder. Among the filled axons, 38% of detrusor fibres and 47% of suburothelial axons were immunoreactive for calcitonin-gene related peptide (CGRP). Vesicular acetylcholine transporter (VAChT) immunoreactivity was present in 26% of both detrusor and suburothelial axons. For tyrosine hydroxylase (TH), the proportions were 15% and 17%, respectively. Three major morphological types of CGRP-immunoreactive nerve endings were distinguished in the bladder wall: simple, branching and complex. VAChT-immunoreactive parasympathetic axons had simple and branching endings; TH immunoreactive axons all had simple morphologies. Our findings revealed that different subtypes of sensory and autonomic nerve endings can be reliably identified by combining anterograde labelling ex vivo with specific immunohistochemical markers, although morphologically some of these types of endings were indistinguishable.
Collapse
Affiliation(s)
- Harman Sharma
- Discipline of Human Physiology, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Melinda Kyloh
- Discipline of Human Physiology, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Simon J H Brookes
- Discipline of Human Physiology, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Marcello Costa
- Discipline of Human Physiology, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Nick J Spencer
- Discipline of Human Physiology, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, Australia.
| | - Vladimir P Zagorodnyuk
- Discipline of Human Physiology, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, Australia.
| |
Collapse
|
19
|
Stenqvist J, Aronsson P, Carlsson T, Winder M, Tobin G. In vivo paracrine effects of ATP-induced urothelial acetylcholine in the rat urinary bladder. Auton Neurosci 2020; 227:102689. [PMID: 32473532 DOI: 10.1016/j.autneu.2020.102689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/13/2020] [Accepted: 05/20/2020] [Indexed: 01/23/2023]
Abstract
Mechanical stretch of the urothelium induces the release of ATP that activates bladder afferent nerves. In the rat urinary bladder, ATP is also a contractile co-transmitter in the parasympathetic innervation. In isolated preparations, ATP evokes a urothelial release of acetylcholine that substantially contributes to ATP-evoked contractile responses. Currently we aimed to further examine the interactions of ATP and acetylcholine in the rat urinary bladder in two in vivo models. In the whole bladder preparation, atropine reduced ATP-evoked responses by about 50% in intact but denervated bladders, while atropine had no effect after denudation of the urothelium. In a split bladder preparation, reflex-evoked responses of the contralateral half were studied by applying stimuli (agonists or stretch) to the ipsilateral half. Topical administration of ATP and methacholine as well as of stretch induced contralateral reflex-evoked contractions. While topical administration of atropine ipsilaterally reduced the ATP- and stretch-induced contralateral contractions by 27 and 39%, respectively, the P2X purinoceptor antagonist PPADS reduced them by 74 and 84%. In contrary, the muscarinic M2-(M4)-selective receptor antagonist methoctramine increased the responses by 38% (ATP) and 75% (stretch). Pirenzepine (M1-selective antagonist) had no effect on the reflex. In vitro, in the absence of the reflex, methoctramine did not affect the ATP-induced responses. It is concluded that urothelial ATP potently induces the micturition reflex and stimulates urothelial release of acetylcholine. Acetylcholine subsequently acts on afferents and on the detrusor muscle. While muscarinic M2 and/or M4 receptors in the sensory innervation exert inhibitory modulation, muscarinic M3 receptors cause excitation.
Collapse
Affiliation(s)
- Johanna Stenqvist
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 431, 405 30 Gothenburg, Sweden
| | - Patrik Aronsson
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 431, 405 30 Gothenburg, Sweden
| | - Thomas Carlsson
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 431, 405 30 Gothenburg, Sweden
| | - Michael Winder
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 431, 405 30 Gothenburg, Sweden
| | - Gunnar Tobin
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 431, 405 30 Gothenburg, Sweden.
| |
Collapse
|
20
|
Zagorodnyuk VP, Keightley LJ, Brookes SJH, Spencer NJ, Costa M, Nicholas SJ. Functional changes in low- and high-threshold afferents in obstruction-induced bladder overactivity. Am J Physiol Renal Physiol 2019; 316:F1103-F1113. [PMID: 30908933 DOI: 10.1152/ajprenal.00058.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Neural mechanisms of lower urinary tract symptoms in obstruction-induced bladder overactivity remain unclear. We made the first single unit recordings from different types of spinal afferents to determine the effects of bladder outlet obstruction in guinea pigs. A model of gradual bladder outlet obstruction in male guinea pigs was used to produce overactive bladder. Conscious voiding was assessed in metabolic cages, and micturition was recorded in anesthetized guinea pigs in vivo. Single unit extracellular recordings were made ex vivo from spinal afferent nerves in flat sheet preparations of the bladder. Guinea pigs with partially obstructed bladders showed a significant increase in conscious voiding frequency compared with sham-operated guinea pigs. Also, nonvoiding contractions increased significantly in both frequency and amplitude. Although spontaneous firing of low-threshold bladder afferents was increased, their stretch-induced firing was reduced. The proportion of capsaicin-sensitive low-threshold afferents increased in obstructed bladders. Interestingly, spontaneous and stretch-induced firing were both significantly increased in high-threshold afferents after obstruction. In summary, sensory signaling increased in the obstructed bladder during the filling phase. This is largely mediated by low-threshold stretch-sensitive afferents that are activated by increased local nonvoiding contractions. Increased spontaneous firing by high-threshold afferents also contributes. Our findings revealed a complex effect of bladder outlet obstruction on different types of bladder afferents that needs consideration for potential therapeutic targeting of lower urinary tract symptoms in obstruction-induced bladder overactivity.
Collapse
Affiliation(s)
- Vladimir P Zagorodnyuk
- Discipline of Human Physiology and Centre for Neuroscience, College of Medicine and Public Health, Flinders University of South Australia , Adelaide, South Australia
| | - Lauren J Keightley
- Discipline of Human Physiology and Centre for Neuroscience, College of Medicine and Public Health, Flinders University of South Australia , Adelaide, South Australia
| | - Simon J H Brookes
- Discipline of Human Physiology and Centre for Neuroscience, College of Medicine and Public Health, Flinders University of South Australia , Adelaide, South Australia
| | - Nick J Spencer
- Discipline of Human Physiology and Centre for Neuroscience, College of Medicine and Public Health, Flinders University of South Australia , Adelaide, South Australia
| | - Marcello Costa
- Discipline of Human Physiology and Centre for Neuroscience, College of Medicine and Public Health, Flinders University of South Australia , Adelaide, South Australia
| | - Sarah J Nicholas
- Discipline of Human Physiology and Centre for Neuroscience, College of Medicine and Public Health, Flinders University of South Australia , Adelaide, South Australia
| |
Collapse
|
21
|
Abstract
Most of us live blissfully unaware of the orchestrated function that our internal organs conduct. When this peace is interrupted, it is often by routine sensations of hunger and urge. However, for >20% of the global population, chronic visceral pain is an unpleasant and often excruciating reminder of the existence of our internal organs. In many cases, there is no obvious underlying pathological cause of the pain. Accordingly, chronic visceral pain is debilitating, reduces the quality of life of sufferers, and has large concomitant socioeconomic costs. In this review, we highlight key mechanisms underlying chronic abdominal and pelvic pain associated with functional and inflammatory disorders of the gastrointestinal and urinary tracts. This includes how the colon and bladder are innervated by specialized subclasses of spinal afferents, how these afferents become sensitized in highly dynamic signaling environments, and the subsequent development of neuroplasticity within visceral pain pathways. We also highlight key contributing factors, including alterations in commensal bacteria, altered mucosal permeability, epithelial interactions with afferent nerves, alterations in immune or stress responses, and cross talk between these two adjacent organs.
Collapse
Affiliation(s)
- Luke Grundy
- Visceral Pain Research Group, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, South Australia 5042, Australia; .,Centre for Nutrition and Gastrointestinal Diseases, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia 5000, Australia
| | - Andelain Erickson
- Visceral Pain Research Group, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, South Australia 5042, Australia; .,Centre for Nutrition and Gastrointestinal Diseases, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia 5000, Australia
| | - Stuart M Brierley
- Visceral Pain Research Group, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, South Australia 5042, Australia; .,Centre for Nutrition and Gastrointestinal Diseases, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia 5000, Australia
| |
Collapse
|
22
|
Grundy L, Caldwell A, Brierley SM. Mechanisms Underlying Overactive Bladder and Interstitial Cystitis/Painful Bladder Syndrome. Front Neurosci 2018; 12:931. [PMID: 30618560 PMCID: PMC6299241 DOI: 10.3389/fnins.2018.00931] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/27/2018] [Indexed: 12/18/2022] Open
Abstract
The bladder is innervated by extrinsic afferents that project into the dorsal horn of the spinal cord, providing sensory input to the micturition centers within the central nervous system. Under normal conditions, the continuous activation of these neurons during bladder distension goes mostly unnoticed. However, for patients with chronic urological disorders such as overactive bladder syndrome (OAB) and interstitial cystitis/painful bladder syndrome (IC/PBS), exaggerated bladder sensation and altered bladder function are common debilitating symptoms. Whilst considered to be separate pathological entities, there is now significant clinical and pre-clinical evidence that both OAB and IC/PBS are related to structural, synaptic, or intrinsic changes in the complex signaling pathways that mediate bladder sensation. This review discusses how urothelial dysfunction, bladder permeability, inflammation, and cross-organ sensitisation between visceral organs can regulate this neuroplasticity. Furthermore, we discuss how the emotional affective component of pain processing, involving dysregulation of the HPA axis and maladaptation to stress, anxiety and depression, can exacerbate aberrant bladder sensation and urological dysfunction. This review reveals the complex nature of urological disorders, highlighting numerous interconnected mechanisms in their pathogenesis. To find appropriate therapeutic treatments for these disorders, it is first essential to understand the mechanisms responsible, incorporating research from every level of the sensory pathway, from bladder to brain.
Collapse
Affiliation(s)
- Luke Grundy
- Visceral Pain Research Group, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, South Australian Health and Medical Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Ashlee Caldwell
- Visceral Pain Research Group, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, South Australian Health and Medical Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Stuart M. Brierley
- Visceral Pain Research Group, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, South Australian Health and Medical Research Institute, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
23
|
Translating peripheral bladder afferent mechanosensitivity to neuronal activation within the lumbosacral spinal cord of mice. Pain 2018; 160:793-804. [DOI: 10.1097/j.pain.0000000000001453] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
24
|
Umans BD, Liberles SD. Neural Sensing of Organ Volume. Trends Neurosci 2018; 41:911-924. [PMID: 30143276 PMCID: PMC6252275 DOI: 10.1016/j.tins.2018.07.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/11/2018] [Accepted: 07/12/2018] [Indexed: 01/04/2023]
Abstract
Many internal organs change volume periodically. For example, the stomach accommodates ingested food and drink, the bladder stores urine, the heart fills with blood, and the lungs expand with every breath. Specialized peripheral sensory neurons function as mechanoreceptors that detect tissue stretch to infer changes in organ volume and then relay this information to the brain. Central neural circuits process this information and evoke perceptions (satiety, nausea), control physiology (breathing, heart rate), and impact behavior (feeding, micturition). Yet, basic questions remain about how neurons sense organ distension and whether common sensory motifs are involved across organs. Here, we review candidate mechanosensory receptors, cell types, and neural circuits, focusing on the stomach, bladder, and airways. Understanding mechanisms of organ stretch sensation may provide new ways to treat autonomic dysfunction.
Collapse
Affiliation(s)
- Benjamin D Umans
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Stephen D Liberles
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
25
|
Spencer NJ, Greenheigh S, Kyloh M, Hibberd TJ, Sharma H, Grundy L, Brierley SM, Harrington AM, Beckett EA, Brookes SJ, Zagorodnyuk VP. Identifying unique subtypes of spinal afferent nerve endings within the urinary bladder of mice. J Comp Neurol 2017; 526:707-720. [DOI: 10.1002/cne.24362] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/07/2017] [Accepted: 11/16/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Nick J. Spencer
- College of Medicine and Public Health; Centre for Neuroscience, School of Medicine, Flinders University of South Australia; Adelaide South Australia Australia
| | - Sarah Greenheigh
- College of Medicine and Public Health; Centre for Neuroscience, School of Medicine, Flinders University of South Australia; Adelaide South Australia Australia
| | - Melinda Kyloh
- College of Medicine and Public Health; Centre for Neuroscience, School of Medicine, Flinders University of South Australia; Adelaide South Australia Australia
| | - Tim J. Hibberd
- College of Medicine and Public Health; Centre for Neuroscience, School of Medicine, Flinders University of South Australia; Adelaide South Australia Australia
| | - Harman Sharma
- College of Medicine and Public Health; Centre for Neuroscience, School of Medicine, Flinders University of South Australia; Adelaide South Australia Australia
| | - Luke Grundy
- College of Medicine and Public Health; Centre for Neuroscience, School of Medicine, Flinders University of South Australia; Adelaide South Australia Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine; University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), North Terrace; Adelaide South Australia Australia
| | - Stuart M. Brierley
- College of Medicine and Public Health; Centre for Neuroscience, School of Medicine, Flinders University of South Australia; Adelaide South Australia Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine; University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), North Terrace; Adelaide South Australia Australia
| | - Andrea M. Harrington
- College of Medicine and Public Health; Centre for Neuroscience, School of Medicine, Flinders University of South Australia; Adelaide South Australia Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine; University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), North Terrace; Adelaide South Australia Australia
| | | | - Simon J. Brookes
- College of Medicine and Public Health; Centre for Neuroscience, School of Medicine, Flinders University of South Australia; Adelaide South Australia Australia
| | - Vladimir P. Zagorodnyuk
- College of Medicine and Public Health; Centre for Neuroscience, School of Medicine, Flinders University of South Australia; Adelaide South Australia Australia
| |
Collapse
|
26
|
Ritter KE, Southard-Smith EM. Dynamic Expression of Serotonin Receptor 5-HT3A in Developing Sensory Innervation of the Lower Urinary Tract. Front Neurosci 2017; 10:592. [PMID: 28111539 PMCID: PMC5216032 DOI: 10.3389/fnins.2016.00592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/12/2016] [Indexed: 12/12/2022] Open
Abstract
Sensory afferent signaling is required for normal function of the lower urinary tract (LUT). Despite the wide prevalence of bladder dysfunction and pelvic pain syndromes, few effective treatment options are available. Serotonin receptor 5-HT3A is a known mediator of visceral afferent signaling and has been implicated in bladder function. However, basic expression patterns for this gene and others among developing bladder sensory afferents that could be used to inform regenerative efforts aimed at treating deficiencies in pelvic innervation are lacking. To gain greater insight into the molecular characteristics of bladder sensory innervation, we conducted a thorough characterization of Htr3a expression in developing and adult bladder-projecting lumbosacral dorsal root ganglia (DRG) neurons. Using a transgenic Htr3a-EGFP reporter mouse line, we identified 5-HT3A expression at 10 days post coitus (dpc) in neural crest derivatives and in 12 dpc lumbosacral DRG. Using immunohistochemical co-localization we observed Htr3a-EGFP expression in developing lumbosacral DRG that partially coincides with neuropeptides CGRP and Substance P and capsaicin receptor TRPV1. A majority of Htr3a-EGFP+ DRG neurons also express a marker of myelinated Aδ neurons, NF200. There was no co-localization of 5-HT3A with the TRPV4 receptor. We employed retrograde tracing in adult Htr3a-EGFP mice to quantify the contribution of 5-HT3A+ DRG neurons to bladder afferent innervation. We found that 5-HT3A is expressed in a substantial proportion of retrograde traced DRG neurons in both rostral (L1, L2) and caudal (L6, S1) axial levels that supply bladder innervation. Most bladder-projecting Htr3a-EGFP+ neurons that co-express CGRP, Substance P, or TRPV1 are found in L1, L2 DRG, whereas Htr3a-EGFP+, NF200+ bladder-projecting neurons are from the L6, S1 axial levels. Our findings contribute much needed information regarding the development of LUT innervation and highlight the 5-HT3A serotonin receptor as a candidate for future studies of neurally mediated bladder control.
Collapse
Affiliation(s)
- K Elaine Ritter
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine Nashville, TN, USA
| | - E Michelle Southard-Smith
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine Nashville, TN, USA
| |
Collapse
|
27
|
Nicholas S, Yuan SY, Brookes SJH, Spencer NJ, Zagorodnyuk VP. Hydrogen peroxide preferentially activates capsaicin-sensitive high threshold afferents via TRPA1 channels in the guinea pig bladder. Br J Pharmacol 2016; 174:126-138. [PMID: 27792844 DOI: 10.1111/bph.13661] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/22/2016] [Accepted: 10/19/2016] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE There is increasing evidence suggesting that ROS play a major pathological role in bladder dysfunction induced by bladder inflammation and/or obstruction. The aim of this study was to determine the effect of H2 O2 on different types of bladder afferents and its mechanism of action on sensory neurons in the guinea pig bladder. EXPERIMENTAL APPROACH 'Close-to-target' single unit extracellular recordings were made from fine branches of pelvic nerves entering the guinea pig bladder, in flat sheet preparations, in vitro. KEY RESULTS H2 O2 (300-1000 μM) preferentially and potently activated capsaicin-sensitive high threshold afferents but not low threshold stretch-sensitive afferents, which were only activated by significantly higher concentrations of hydrogen peroxide. The TRPV1 channel agonist, capsaicin, excited 86% of high threshold afferents. The TRPA1 channel agonist, allyl isothiocyanate and the TRPM8 channel agonist, icilin activated 72% and 47% of capsaicin-sensitive high threshold afferents respectively. The TRPA1 channel antagonist, HC-030031, but not the TRPV1 channel antagonist, capsazepine or the TRPM8 channel antagonist, N-(2-aminoethyl)-N-[[3-methoxy-4-(phenylmethoxy)phenyl]methyl]thiophene-2-carboxamide, significantly inhibited the H2 O2 -induced activation of high threshold afferents. Dimethylthiourea and deferoxamine did not significantly change the effect of H2 O2 on high threshold afferents. CONCLUSIONS AND IMPLICATIONS The findings show that H2 O2 , in the concentration range detected in inflammation or reperfusion after ischaemia, evoked long-lasting activation of the majority of capsaicin-sensitive high threshold afferents, but not low threshold stretch-sensitive afferents. The data suggest that the TRPA1 channels located on these capsaicin-sensitive afferent fibres are probable targets of ROS released during oxidative stress.
Collapse
Affiliation(s)
- S Nicholas
- Discipline of Human Physiology & Centre for Neuroscience, Flinders University of South Australia, Adelaide, SA, Australia
| | - S Y Yuan
- Discipline of Anatomy and Histology & Centre for Neuroscience, Flinders University of South Australia, Adelaide, SA, Australia
| | - S J H Brookes
- Discipline of Human Physiology & Centre for Neuroscience, Flinders University of South Australia, Adelaide, SA, Australia
| | - N J Spencer
- Discipline of Human Physiology & Centre for Neuroscience, Flinders University of South Australia, Adelaide, SA, Australia
| | - V P Zagorodnyuk
- Discipline of Human Physiology & Centre for Neuroscience, Flinders University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
28
|
Michel MC, Korstanje C. β3-Adrenoceptor agonists for overactive bladder syndrome: Role of translational pharmacology in a repositioning clinical drug development project. Pharmacol Ther 2016; 159:66-82. [PMID: 26808167 DOI: 10.1016/j.pharmthera.2016.01.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
β3-Adrenoceptor agonists were originally considered as a promising drug class for the treatment of obesity and/or type 2 diabetes. When these development efforts failed, they were repositioned for the treatment of the overactive bladder syndrome. Based on the example of the β3-adrenoceptor agonist mirabegron, but also taking into consideration evidence obtained with ritobegron and solabegron, we discuss challenges facing a translational pharmacology program accompanying clinical drug development for a first-in-class molecule. Challenges included generic ones such as ligand selectivity, species differences and drug target gene polymorphisms. Challenges that are more specific included changing concepts of the underlying pathophysiology of the target condition while clinical development was under way; moreover, a paucity of public domain tools for the study of the drug target and aspects of receptor agonists as drugs had to be addressed. Nonetheless, a successful first-in-class launch was accomplished. Looking back at this translational pharmacology program, we conclude that a specifically tailored and highly flexible approach is required. However, several of the lessons learned may also be applicable to translational pharmacology programs in other indications.
Collapse
Affiliation(s)
- Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany.
| | - Cees Korstanje
- Department of Drug Discovery Science & Management-Europe, Astellas Pharma Europe R&D, Leiden, The Netherlands
| |
Collapse
|
29
|
Takezawa K, Kondo M, Kiuchi H, Ueda N, Soda T, Fukuhara S, Takao T, Miyagawa Y, Tsujimura A, Matsumoto-Miyai K, Ishida Y, Negoro H, Ogawa O, Nonomura N, Shimada S. Authentic role of ATP signaling in micturition reflex. Sci Rep 2016; 6:19585. [PMID: 26795755 PMCID: PMC4726294 DOI: 10.1038/srep19585] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 12/15/2015] [Indexed: 01/23/2023] Open
Abstract
Adenosine triphosphate (ATP) is a signaling molecule that regulates cellular processes. Based on previous studies of bladder function over the past decade, bladder ATP signaling was thought to have an essential role in the normal micturition reflex. In this study, we performed detailed analyses of bladder function in purinergic receptor-deficient mice using the automated voided stain on paper method and video-urodynamics. Unexpectedly, a lack of P2X2 or P2X3 receptors did not affect bladder function under normal physiological conditions, indicating that bladder ATP signaling is not essential for normal micturition reflex. In contrast, we found that lipopolysaccharide (LPS) induced markedly high levels of ATP release from the urothelium. In addition, LPS-induced rapid bladder hyperactivity was attenuated in P2X2−/− and P2X3−/− mice. Contrary to the previous interpretation, our present findings indicate that bladder ATP signaling has a fundamental role in the micturition reflex, especially in bladder dysfunction, under pathological conditions. Therefore, the bladder ATP signaling pathway might be a highly promising therapeutic target for functional bladder disorders. This study newly defines an authentic role for bladder ATP signaling in the micturition reflex.
Collapse
Affiliation(s)
- Kentaro Takezawa
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan.,Department of Urology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Makoto Kondo
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Hiroshi Kiuchi
- Department of Urology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Norichika Ueda
- Department of Urology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Tetsuji Soda
- Department of Urology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Shinichiro Fukuhara
- Department of Urology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Tetsuya Takao
- Department of Urology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Yasushi Miyagawa
- Department of Urology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Akira Tsujimura
- Department of Urology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Kazumasa Matsumoto-Miyai
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Yusuke Ishida
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Hiromitsu Negoro
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Osamu Ogawa
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Shoichi Shimada
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| |
Collapse
|
30
|
Akino H. Spontaneous Contractile Activity of the Detrusor Muscle and Its Role in the Pathogenesis of Overactive Bladder Syndrome. Low Urin Tract Symptoms 2015; 4 Suppl 1:42-7. [PMID: 26676699 DOI: 10.1111/j.1757-5672.2011.00117.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There is accumulated evidence that spontaneous contractions (SCs) in the bladder wall are associated with afferent nerve firing in the bladder. The role of the urothelium in bladder sensation might be restricted to pathological conditions, such as interstitial cystitis or chemical cystitis in which the release of urothelium-derived mediators such as adenosine triphosphate is increased. Recent publications imply that SCs in bladders with detrusor overactivity due to spinal cord injury or bladder outlet obstruction are modulated by intracellular signal transduction mechanisms such as the RhoA/Rho-kinase pathway, denervation-supersensitivity to acetylcholine, changes in ion channel activity, enhanced gap-junctional intercellular communication, alterations in interstitial cells of Cajal, the actions of local mediators in the detrusor and the influence of the urothelium. Spontaneous contractions and possible consequent afferent nerve firing might participate in the generation of overactive bladder syndrome.
Collapse
Affiliation(s)
- Hironobu Akino
- Department of Urology, Medical Science, University of Fukui, Yoshida, Japan
| |
Collapse
|
31
|
Matsumoto-Miyai K, Yoshizumi M, Kawatani M. Regulatory Effects of 5-Hydroxytryptamine Receptors on Voiding Function. Adv Ther 2015; 32 Suppl 1:3-15. [PMID: 26391372 DOI: 10.1007/s12325-015-0240-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Indexed: 10/23/2022]
Abstract
UNLABELLED A growing body of evidence suggests that 5-hydroxytryptamine (5-HT; serotonin) has both physiological and pathological functions in the lower urinary tract. A wide variety of 5-HT receptor subtypes are variably expressed in different organs, both peripheral and central. On urinary bladder smooth muscle, 5-HT1A, 5-HT2, 5-HT3, and 5-HT7 subtypes could function as postjunctional receptors. Postjunctional 5-HT2 receptors induce detrusor contraction of the bladder body. 5-HT1A is suggested to have a similar effect to 5-HT2, while 5-HT3 might suppress detrusor contraction evoked by direct muscle stimulation. Postjunctional 5-HT7 is reported to induce relaxation of the bladder neck, which might be required for efficient voiding. 5-HT1A, 5-HT2A, 5-HT2C, 5-HT3, 5-HT4, and 5-HT7 subtypes also could act as prejunctional receptors in autonomic excitatory nerve terminals. 5-HT2A, 5-HT2C, 5-HT3, 5-HT4, and 5-HT7 subtypes facilitate the neurogenic contraction of the detrusor by enhancing cholinergic or purinergic transmission, whereas 5-HT1A receptors might inhibit the release of acetylcholine in the detrusor. Furthermore, 5-HT1D could be involved in the suppression of ATP release from the urothelium, aiding visceral sensation of the urinary bladder. In the central pathways controlling the micturition reflex, 5-HT1A, 5-HT2A, and 5-HT7 are involved in regulation of bladder and urethral sphincter activities. Their functions, especially that of 5-HT1A, vary in a species- and site (spinal or supraspinal)- dependent manner. In addition to urinary bladder, 5-HT could be involved in prostate contraction and cell proliferation. Evidence indicates that 5-HT receptor subtypes may be novel therapeutic targets for lower urinary tract symptoms. FUNDING Grants-in-Aid for Scientific Research (C) (KAKENHI 23590707, 24590722, and 26460694) from the Japan Society for the Promotion of Science.
Collapse
|
32
|
Chai TC, Russo A, Yu S, Lu M. Mucosal signaling in the bladder. Auton Neurosci 2015; 200:49-56. [PMID: 26422993 DOI: 10.1016/j.autneu.2015.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 08/27/2015] [Indexed: 01/09/2023]
Abstract
The bladder mucosa is comprised of the multilayered urothelium, lamina propria (LP), microvasculature, and smooth muscle fibers (muscularis mucosae). The muscularis mucosae is not always present in the mucosa, and its presence is related to the thickness of the LP. Since there are no mucus secreting cells, "mucosa" is an imprecise term. Nerve fibers are present in the LP of the mucosa. Efferent nerves mediate mucosal contractions which can be elicited by electrical field stimulation (EFS) and various agonists. The source of mucosal contractility is unknown, but may arise from the muscularis mucosae or myofibroblasts. EFS also increases frequency of mucosal venule contractions. Thus, efferent neural activity has multiple effects on the mucosa. Afferent activity has been measured when the mucosa is stimulated by mechanical and stretch stimuli from the luminal side. Nerve fibers have been shown to penetrate into the urothelium, allowing urothelial cells to interact with nerves. Myofibroblasts are specialized cells within the LP that generate spontaneous electrical activity which then can modulate both afferent and efferent neural activities. Thus mucosal signaling is defined as interactions between bladder autonomic nerves with non-neuronal cells within the mucosa. Mucosal signaling is likely to be involved in clinical functional hypersensory bladder disorders (e.g. overactive bladder, urgency, urgency incontinence, bladder pain syndrome) in which mechanisms are poorly understood despite high prevalence of these conditions. Targeting aberrant mucosal signaling could represent a new approach in treating these disorders.
Collapse
Affiliation(s)
- Toby C Chai
- Department of Urology, United States; Department of Obstetrics, Gynecology and Reproductive Science, Yale School of Medicine, New Haven, CT, United States.
| | - Andrea Russo
- Department of Obstetrics, Gynecology and Reproductive Science, Yale School of Medicine, New Haven, CT, United States
| | - Shan Yu
- Department of Urology, United States
| | - Ming Lu
- Department of Urology, United States
| |
Collapse
|
33
|
Forrest SL, Osborne PB, Keast JR. Characterization of axons expressing the artemin receptor in the female rat urinary bladder: a comparison with other major neuronal populations. J Comp Neurol 2014; 522:3900-27. [PMID: 25043933 DOI: 10.1002/cne.23648] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/01/2014] [Accepted: 07/02/2014] [Indexed: 12/12/2022]
Abstract
Artemin is a member of the glial cell line-derived neurotrophic factor (GDNF) family that has been strongly implicated in development and regeneration of autonomic nerves and modulation of nociception. Whereas other members of this family (GDNF and neurturin) primarily target parasympathetic and nonpeptidergic sensory neurons, the artemin receptor (GFRα3) is expressed by sympathetic and peptidergic sensory neurons that are also the primary sites of action of nerve growth factor, a powerful modulator of bladder nerves. Many bladder sensory neurons express GFRα3 but it is not known if they represent a specific functional subclass. Therefore, our initial aim was to map the distribution of GFRα3-immunoreactive (-IR) axons in the female rat bladder, using cryostat sections and whole wall thickness preparations. We found that GFRα3-IR axons innervated the detrusor, vasculature, and urothelium, but only part of this innervation was sensory. Many noradrenergic sympathetic axons innervating the vasculature were GFRα3-IR, but the noradrenergic innervation of the detrusor was GFRα3-negative. We also identified a prominent source of nonneuronal GFRα3-IR that is likely to be glial. Further characterization of bladder nerves revealed specific structural features of chemically distinct classes of axon terminals, and a major autonomic source of axons labeled with neurofilament-200, which is commonly used to identify myelinated sensory axons within organs. Intramural neurons were also characterized and quantified. Together, these studies reveal a diverse range of potential targets by which artemin could influence bladder function, nerve regeneration, and pain, and provide a strong microanatomical framework for understanding bladder physiology and pathophysiology.
Collapse
Affiliation(s)
- Shelley L Forrest
- Pain Management Research Institute and Kolling Institute, University of Sydney at Royal North Shore Hospital, Sydney, NSW, Australia
| | | | | |
Collapse
|
34
|
Ford AP, Undem BJ. The therapeutic promise of ATP antagonism at P2X3 receptors in respiratory and urological disorders. Front Cell Neurosci 2013; 7:267. [PMID: 24391544 PMCID: PMC3867694 DOI: 10.3389/fncel.2013.00267] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 12/03/2013] [Indexed: 01/23/2023] Open
Abstract
A sensory role for ATP was proposed long before general acceptance of its extracellular role. ATP activates and sensitizes signal transmission at multiple sites along the sensory axis, across multiple synapses. P2X and P2Y receptors mediate ATP modulation of sensory pathways and participate in dysregulation, where ATP action directly on primary afferent neurons (PANs), linking receptive field to CNS, has received much attention. Many PANs, especially C-fibers, are activated by ATP, via P2X3-containing trimers. P2X3 knock-out mice and knock-down in rats led to reduced nocifensive activity and visceral reflexes, suggesting that antagonism may offer benefit in sensory disorders. Recently, drug-like P2X3 antagonists, active in a many inflammatory and visceral pain models, have emerged. Significantly, these compounds have no overt CNS action and are inactive versus acute nociception. Selectively targeting ATP sensitization of PANs may lead to therapies that block inappropriate chronic signals at their source, decreasing drivers of peripheral and central wind-up, yet leaving defensive nociceptive and brain functions unperturbed. This article reviews this evidence, focusing on how ATP sensitization of PANs in visceral "hollow" organs primes them to chronic discomfort, irritation and pain (symptoms) as well as exacerbated autonomic reflexes (signs), and how the use of isolated organ-nerve preparations has revealed this mechanism. Urinary and airways systems share many features: dependence on continuous afferent traffic to brainstem centers to coordinate efferent autonomic outflow; loss of descending inhibitory influence in functional and sensory disorders; dependence on ATP in mediating sensory responses to diverse mechanical and chemical stimuli; a mechanistically overlapping array of existing medicines for pathological conditions. These similarities may also play out in terms of future treatment of signs and symptoms, in the potential for benefit of P2X3 antagonists.
Collapse
Affiliation(s)
| | - Bradley J Undem
- Allergy and Clinical Immunology, Johns Hopkins University School of Medicine Baltimore, MD, USA
| |
Collapse
|
35
|
Eastham JE, Gillespie JI. The concept of peripheral modulation of bladder sensation. Organogenesis 2013; 9:224-33. [PMID: 23917648 PMCID: PMC3896594 DOI: 10.4161/org.25895] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 07/17/2013] [Accepted: 07/23/2013] [Indexed: 01/23/2023] Open
Abstract
It is recognized that, as the bladder fills, there is a corresponding increase in sensation. This awareness of the volume in the bladder is then used in a complex decision making process to determine if there is a need to void. It is also part of everyday experience that, when the bladder is full and sensations strong, these sensations can be suppressed and the desire to void postponed. The obvious explanation for such altered perceptions is that they occur centrally. However, this may not be the only mechanism. There are data to suggest that descending neural influences and local factors might regulate the sensitivity of the systems within the bladder wall generating afferent activity. Specifically, evidence is accumulating to suggest that the motor-sensory system within the bladder wall is influenced in this way. The motor-sensory system, first described over 100 years ago, appears to be a key component in the afferent outflow, the afferent "noise," generated within the bladder wall. However, the presence and possible importance of this complex system in the generation of bladder sensation has been overlooked in recent years. As the bladder fills the motor activity increases, driven by cholinergic inputs and modulated, possibly, by sympathetic inputs. In this way information on bladder volume can be transmitted to the CNS. It can be argued that the ability to alter the sensitivity of the mechanisms generating the motor component of this motor-sensory system represents a possible indirect way to influence afferent activity and so the perception of bladder volume centrally. Furthermore, it is emerging that the apparent modulation of sensation by drugs to alleviate the symptoms of overactive bladder (OAB), the anti-cholinergics and the new generation of drugs the β 3 sympathomimetics, may be the result of their ability to modulate the motor component of the motor sensory system. The possibility of controlling sensation, physiologically and pharmacologically, by influencing afferent firing at its point of origin is a "new" concept in bladder physiology. It is one that deserves careful consideration as it might have wider implications for our understanding of bladder pathology and in the development of new therapeutic drugs. In this overview, evidence for the concept peripheral modulation of bladder afferent outflow is explored.
Collapse
Affiliation(s)
- Jane E Eastham
- Uro-physiology Research Group; The Dental and Medical School; Newcastle University; Newcastle upon Tyne, England
| | - James I Gillespie
- Uro-physiology Research Group; The Dental and Medical School; Newcastle University; Newcastle upon Tyne, England
| |
Collapse
|
36
|
Shapiro B, Redman TL, Zvara P. Effects of vitamin D analog on bladder function and sensory signaling in animal models of cystitis. Urology 2013; 81:466.e1-7. [PMID: 23374845 DOI: 10.1016/j.urology.2012.10.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 09/20/2012] [Accepted: 10/15/2012] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To measure the effects of nonhypercalcemic vitamin D receptor agonist elocalcitol on bladder function in rats with cyclophosphamide-induced cystitis and on bladder function and sensory nerve activity in a mouse with acetic acid-evoked bladder irritation. MATERIALS AND METHODS Female Wistar rats and male Balb/C mice were gavaged once daily with elocalcitol diluted in miglyol 812 (treatment group) or miglyol alone (control group). On experimental day 12, polyethylene tubing was implanted into the urinary bladder in all the animals. In the mice, a bipolar electrode was positioned under a single postganglionic bladder nerve. At 48 hours after surgery, bladder function was measured in awake, freely moving rats during bladder filling with 0.9% NaCl and both bladder function and sensory nerve activity was measured in awake, restrained mice during continuous intravesical infusion of 0.9% NaCl followed by 0.25% acetic acid. RESULTS In rats, the treatment group showed a significant increase in bladder capacity and decrease in number of nonvoiding bladder contractions. In mice, the filling pressure during saline infusion was similar in both groups; however, during acetic acid infusion, the average filling pressure was significantly increased (47%) in the control group but not in the elocalcitol treatment group. The firing rate at filling pressure for the treatment group was 3.6-fold and 2.7-fold lower than that in the control group during the saline and acetic acid infusion, respectively. CONCLUSION Oral treatment with elocalcitol suppressed signs of detrusor overactivity in both animal models and exerted strong suppressive effect on urinary bladder sensory signaling during filling in mice.
Collapse
Affiliation(s)
- Bennett Shapiro
- Division of Urology, Department of Surgery, University of Vermont, Burlington, VT 05405, USA
| | | | | |
Collapse
|
37
|
Leiria LO, Sollon C, Báu FR, Mónica FZ, D'Ancona CL, De Nucci G, Grant AD, Anhê GF, Antunes E. Insulin relaxes bladder via PI3K/AKT/eNOS pathway activation in mucosa: unfolded protein response-dependent insulin resistance as a cause of obesity-associated overactive bladder. J Physiol 2013; 591:2259-73. [PMID: 23478138 DOI: 10.1113/jphysiol.2013.251843] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We aimed to investigate the role of insulin in the bladder and its relevance for the development of overactive bladder (OAB) in insulin-resistant obese mice. Bladders from male individuals who were involved in multiple organ donations were used. C57BL6/J mice were fed with a high-fat diet for 10 weeks to induce insulin-resistant obesity. Concentration-response curves to insulin were performed in human and mouse isolated mucosa-intact and mucosa-denuded bladders. Cystometric study was performed in terminally anaesthetized mice. Western blot was performed in bladders to detect phosphorylated endothelial NO synthase (eNOS) (Ser1177) and the phosphorylated protein kinase AKT (Ser473), as well as the unfolded protein response (UPR) markers TRIB3, CHOP and ATF4. Insulin (1-100 nm) produced concentration-dependent mouse and human bladder relaxations that were markedly reduced by mucosal removal or inhibition of the PI3K/AKT/eNOS pathway. In mouse bladders, insulin produced a 3.0-fold increase in cGMP levels (P < 0.05) that was prevented by PI3K/AKT/eNOS pathway inhibition. Phosphoinositide 3-kinase (PI3K) inhibition abolished insulin-induced phosphorylation of AKT and eNOS in bladder mucosa. Obese mice showed greater voiding frequency and non-voiding contractions, indicating overactive detrusor smooth muscle. Insulin failed to relax the bladder or to increase cGMP in the obese group. Insulin-stimulated AKT and eNOS phosphorylation in mucosa was also impaired in obese mice. The UPR markers TRIB3, CHOP and ATF4 were increased in the mucosa of obese mice. The UPR inhibitor 4-phenyl butyric acid normalized all the functional and molecular parameters in obese mice. Our data show that insulin relaxes human and mouse bladder via activation of the PI3K/AKT/eNOS pathway in the bladder mucosa. Endoplasmic reticulum stress-dependent insulin resistance in bladder contributes to OAB in obese mice.
Collapse
Affiliation(s)
- Luiz O Leiria
- Department of Pharmacology and Division of Urology, Faculty of Medical Sciences, State University of Campinas, UNICAMP, Campinas São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Lu J, Xing J, Li J. Bradykinin B2 receptor contributes to the exaggerated muscle mechanoreflex in rats with femoral artery occlusion. Am J Physiol Heart Circ Physiol 2013; 304:H1166-74. [PMID: 23417862 DOI: 10.1152/ajpheart.00926.2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Static muscle contraction activates the exercise pressor reflex, which in turn increases sympathetic nerve activity (SNA) and blood pressure (BP). Bradykinin (BK) is considered as a muscle metabolite responsible for modulation of the sympathetic and cardiovascular responses to muscle contraction. Prior studies have suggested that kinin B2 receptor mediates the effects of BK on the reflex SNA and BP responses during stimulation of skeletal muscle afferents. In patients with peripheral artery disease and a rat model with femoral artery ligation, amplified SNA and BP responses to static exercise were observed. This dysfunction of the exercise pressor reflex has previously been shown to be mediated, in part, by muscle mechanoreflex overactivity. Thus, in this report, we determined whether kinin B2 receptor contributes to the augmented mechanoreflex activity in rats with 24 h of femoral artery occlusion. First, Western blot analysis was used to examine protein expression of B2 receptors in dorsal root ganglion tissues of control limbs and ligated limbs. Our data show that B2 receptor displays significant overexpression in ligated limbs as compared with control limbs (optical density: 0.94 ± 0.02 in control and 1.87 ± 0.08 after ligation, P < 0.05 vs. control; n = 6 in each group). Second, mechanoreflex was evoked by muscle stretch and the reflex renal SNA (RSNA) and mean arterial pressure (MAP) responses to muscle stretch were examined after HOE-140, a B2 receptors blocker, was injected into the arterial blood supply of the hindlimb muscles. The results demonstrate that the stretch-evoked reflex responses were attenuated by administration of HOE-140 in control rats and ligated rats; however, the attenuating effects of HOE-140 were significantly greater in ligated rats, i.e., after 5 μg/kg of HOE-140 RSNA and MAP responses evoked by 0.5 kg of muscle tension were attenuated by 43% and 25% in control vs. 54% and 34% in ligation (P < 0.05 vs. control group; n = 11 in each group). In contrast, there was no significant difference in B1 receptor expression in both experimental groups, and arterial injection of R-715, a B1 receptors blocker, had no significant effects on RSNA and MAP responses evoked by muscle stretch. Accordingly, results obtained from this study support our hypothesis that heightened kinin B2 receptor expression in the sensory nerves contributes to the exaggerated muscle mechanoreflex in rats with femoral artery occlusion.
Collapse
Affiliation(s)
- Jian Lu
- Penn State Heart and Vascular Institute, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | |
Collapse
|
39
|
Nandigama R, Ibañez-Tallon I, Lips K, Schwantes U, Kummer W, Bschleipfer T. Expression of nicotinic acetylcholine receptor subunit mRNA in mouse bladder afferent neurons. Neuroscience 2013; 229:27-35. [DOI: 10.1016/j.neuroscience.2012.10.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 09/21/2012] [Accepted: 10/29/2012] [Indexed: 12/14/2022]
|
40
|
Neuhaus J, Schwalenberg T. Intravesical treatments of bladder pain syndrome/interstitial cystitis. Nat Rev Urol 2012. [DOI: 10.1038/nrurol.2012.217] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
41
|
Kershen R, Mann-Gow T, Yared J, Stromberg I, Zvara P. Caffeine ingestion causes detrusor overactivity and afferent nerve excitation in mice. J Urol 2012; 188:1986-92. [PMID: 22999550 DOI: 10.1016/j.juro.2012.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Indexed: 11/30/2022]
Abstract
PURPOSE We examined the effect of caffeine (Sigma®) on voiding patterns in mice and characterized potential changes in bladder function and sensory signaling. MATERIALS AND METHODS A total of 12 mice were fed high dose (150 mg/kg) caffeine daily for 2 weeks. Micturition frequency and volume were recorded at baseline and at the end point. The effects of chronic low dose (10 mg/kg) caffeine on voiding patterns were examined in 7 mice, which were subsequently studied using awake cystometry. In a separate study to characterize the effects of acute caffeine consumption on bladder function and sensory signaling cystometry was performed in 6 mice. Bladder extracellular multifiber afferent signaling was recorded at baseline and 1 hour after feeding low dose caffeine. In a separate group of mice baseline cystometrograms were done using normal saline, followed by a caffeine filling solution. RESULTS Compared to pretreatment conditions, daily oral high dose caffeine resulted in a significant increase in average micturition frequency and a decreased average volume per void. In animals fed low dose caffeine cystometry demonstrated a statistically significant increase in filling and threshold bladder pressure compared to caffeine naïve animals. Acute low dose caffeine ingestion resulted in a significant increase in filling pressure, an increased frequency of nonvoiding bladder contractions, a decrease in cystometric capacity and a 7.2-fold increase in the average firing rate of afferent nerves during filling. Caffeine administered intravesically had no effect on cystometric parameters. CONCLUSIONS Oral caffeine administration results in detrusor overactivity and increased bladder sensory signaling in the mouse.
Collapse
Affiliation(s)
- Richard Kershen
- Division of Urology, Department of Surgery, University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | | | |
Collapse
|
42
|
Li Y, Xue L, Miao Q, Mao F, Yao L, Yuan J, Qin W, Zhao Y, Sun H, Liu F, Wang H. Expression and electrophysiological characteristics of P2X3receptors in interstitial cells of Cajal in rats with partial bladder outlet obstruction. BJU Int 2012; 111:843-51. [PMID: 22882254 DOI: 10.1111/j.1464-410x.2012.11408.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuxin Li
- Department of Urology; Xijing Hospital; Xi'an; China
| | - Li Xue
- Department of Urology; Xijing Hospital; Xi'an; China
| | - Qing Miao
- Institute of Meteria Medical; The Fourth Military Medical University; Xi'an; China
| | - Fengfeng Mao
- Laboratory Animal Centre; The Fourth Military Medical University; Xi'an; China
| | - Liping Yao
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases; The Fourth Military Medical University; Xi'an; China
| | - Jianlin Yuan
- Department of Urology; Xijing Hospital; Xi'an; China
| | - Weijun Qin
- Department of Urology; Xijing Hospital; Xi'an; China
| | - Yufeng Zhao
- Department of Experimental Basic Medicine; The Fourth Military Medical University; Xi'an; China
| | - Hang Sun
- Department of Urology; Xijing Hospital; Xi'an; China
| | - Fei Liu
- Department of Urology; Xijing Hospital; Xi'an; China
| | - He Wang
- Department of Urology; Xijing Hospital; Xi'an; China
| |
Collapse
|
43
|
PARK WH, GON KIM H. Low-Dose Anticholinergic Combination Therapy in Male Benign Prostatic Hyperplasia Patients with Overactive Bladder Symptoms. Low Urin Tract Symptoms 2012; 4 Suppl 1:102-9. [DOI: 10.1111/j.1757-5672.2011.00135.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Sadananda P, Kao FCL, Liu L, Mansfield KJ, Burcher E. Acid and stretch, but not capsaicin, are effective stimuli for ATP release in the porcine bladder mucosa: Are ASIC and TRPV1 receptors involved? Eur J Pharmacol 2012; 683:252-9. [PMID: 22421400 DOI: 10.1016/j.ejphar.2012.02.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 02/13/2012] [Accepted: 02/26/2012] [Indexed: 11/20/2022]
Abstract
Stretch-evoked ATP release from the bladder mucosa is a key event in signaling bladder fullness. Our aim was to examine whether acid and capsaicin can also release ATP and to determine the receptors involved, using agonists and antagonists at TRPV1 and acid-sensing ion channels (ASICs). Strips of porcine bladder mucosa were exposed to acid, capsaicin or stretch. Strip tension was monitored. Bath fluid was collected for ATP measurement. Gene expression of ASICs and TRPV1 in porcine bladders was quantified using quantitative real-time PCR (qRT-PCR). Stretch stimulus (150% of original length) repeatedly and significantly increased ATP release to approximately 45 times basal release. Acid (pH 6.5, 6.0, 5.6) contracted mucosal strips and also increased ATP release up to 30-fold, without evidence of desensitization. Amiloride (0.3 μM) reduced the acid-evoked ATP release by approximately 70%, while capsazepine (10 μM) reduced acid-evoked ATP release at pH 6.0 and pH 5.6 (by 68% and 61%, respectively). Capsaicin (0.1-10 μM) was ineffective in causing ATP release, and also failed to contract porcine mucosal or detrusor strips. Gene expression for ASIC1, ASIC2, ASIC3 and TRPV1 was seen in the lateral wall, dome, trigone and neck of both detrusor and mucosa. In conclusion, stretch and acid induce ATP release in the porcine bladder mucosa, but capsaicin is ineffective. The pig bladder is a well-known model for the human bladder, however these data suggest that it should be used with caution, particularly for TRPV1 related studies.
Collapse
Affiliation(s)
- Prajni Sadananda
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | | | | | |
Collapse
|
45
|
|
46
|
TRP channels in urinary bladder mechanosensation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:861-79. [PMID: 21290331 DOI: 10.1007/978-94-007-0265-3_45] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
47
|
Jiang W, Kirkup AJ, Grundy D. Mast cells drive mesenteric afferent signalling during acute intestinal ischaemia. J Physiol 2011; 589:3867-82. [PMID: 21669977 DOI: 10.1113/jphysiol.2011.209478] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Acute intestinal ischaemia stimulates visceral afferent nerves but the mechanisms responsible for this excitation are not fully understood. Mast cells may participate in this process as they are known to signal to mesenteric afferents during intestinal anaphylaxis and contribute to early inflammation and neuronal damage in response to cerebral ischaemia. We therefore hypothesised that mast cells are early responders to acute intestinal ischaemia and their activation initiates rapid signalling to the CNS via the excitation of mesenteric afferents. Primary afferent firing was recorded from a mesenteric nerve bundle supplying a segment of jejunum in anaesthetized adult rats. Acute focal ischaemia was produced by clamping theme senteric vessels for 8 min, and reperfusion followed removal of the vessel clip. Two episodes of ischaemia–reperfusion (I–R) separated by a 30 min interval were performed. Drugs or their vehicles were administered 10 min before the 2nd I–R episode. Ischaemia caused a reproducible, intense and biphasic afferent firing that was temporally dissociated from the concomitantly triggered complex pattern of intestinal motor activity. The L-type calcium channel blocker, nifedipine, significantly attenuated this afferent firing by a mechanism independent of its action on intestinal tone. Ischaemia-induced afferent firing was also abrogated by the mast cell stabilizer, doxantrazole, and the H1 histamine receptor antagonist, pyrilamine. In contrast, the nicotinic receptor antagonist, hexamethonium, and the N-type calcium channel toxin, ω-conotoxin GVIA, each reduced the ischaemia-evoked motor inhibition but not the concurrent afferent discharge. Similarly, the cyclooxygenase inhibitor, naproxen, had no effect on the ischaemic afferent response but reduced the intestinal tone shortly from the onset of ischaemia to the early period of reperfusion. These data support a critical role for mast cell-derived histamine in the direct chemoexcitation of mesenteric afferents during acute intestinal ischaemia, whereas enteric reflex mechanisms and cyclooxygenase products contribute primarily to ischaemia-induced changes in intestinal motility. Therefore, targeting mast cells may provide benefits in patients with abdominal pain resulting from an ischaemic insult to the gastrointestinal tract.
Collapse
Affiliation(s)
- Wen Jiang
- Department of Biomedical Science, Florey Building, Firth Court, University of Sheffield, Sheffield S10 2TN, UK
| | | | | |
Collapse
|
48
|
Bibliography. Female urology. Current world literature. Curr Opin Urol 2011; 21:343-6. [PMID: 21654401 DOI: 10.1097/mou.0b013e3283486a38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
De Wachter S. Afferent signaling from the bladder: Species differences evident from extracellular recordings of pelvic and hypogastric nerves. Neurourol Urodyn 2011; 30:647-52. [DOI: 10.1002/nau.21135] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
50
|
Functional Properties of Suburothelial Microvessels in the Rat Bladder. J Urol 2011; 185:2382-91. [DOI: 10.1016/j.juro.2011.02.046] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Indexed: 11/23/2022]
|