1
|
Sánchez-Rosales AI, Posadas-Calleja JG, Serralde-Zúñiga AE, Quiroz-Olguín G. Nutritional interventions as modulators of the disease activity for idiopathic inflammatory myopathies: a scoping review. J Hum Nutr Diet 2024; 37:772-787. [PMID: 38324396 DOI: 10.1111/jhn.13287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 01/17/2024] [Indexed: 02/09/2024]
Abstract
Idiopathic inflammatory myopathies (IIMs) are chronic, autoimmune connective tissue diseases associated with significant morbidity and disability. Nutrients can activate the immune system and contribute to chronic low-grade inflammation (LGI). Chronic muscle inflammation leads to imbalanced pro-inflammatory and anti-inflammatory cytokines, causing inadequate nutrition, weight loss and muscle weakness during a negative cycle. Owing to its potential to modulate LGI in various diseases, the Mediterranean diet (Med Diet) has been extensively studied. This scoping review explores the nutritional implications and recommendations of the Med Diet as a treatment for immune-mediated diseases, focusing on the gaps in IIM nutritional interventions. A comprehensive literature search of the MEDLINE and EBSCO databases between September 2018 and December 2022 was performed. We identified that the Med Diet and its specific components, such as omega-3 (nω3) fatty acids, vitamin D and antioxidants, play a role in the dietary treatment of connective tissue-related autoimmune diseases. Nutritional interventions have demonstrated potential for modulating disease activity and warrant further exploration of IIMs through experimental studies. This review introduces a dietary therapeutic approach using the Med Diet and related compounds to regulate chronic inflammatory processes in IIMs. However, further clinical studies are required to evaluate the efficacy of the Med Diet in patients with IIMs. Emphasising a clinical-nutritional approach, this study encourages future research on the anti-inflammatory effects of the Med Diet on IIMs. This review highlights potential insights for managing and treating these conditions using a holistic approach.
Collapse
Affiliation(s)
- Abril I Sánchez-Rosales
- School of Public Health, Instituto Nacional de Salud Pública, Universidad No. 655, Colonia Santa María Ahuacatitlán, Cerrada Los Pinos y Caminera, Cuernavaca, Morelos, Mexico
| | | | - Aurora E Serralde-Zúñiga
- Clinical Nutrition Service, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Gabriela Quiroz-Olguín
- Clinical Nutrition Service, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| |
Collapse
|
2
|
Genserová L, Duška F, Krajčová A. β-hydroxybutyrate exposure restores mitochondrial function in skeletal muscle satellite cells of critically ill patients. Clin Nutr 2024; 43:1250-1260. [PMID: 38653008 DOI: 10.1016/j.clnu.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/17/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND & AIM Dysfunction of skeletal muscle satellite cells might impair muscle regeneration and prolong ICU-acquired weakness, a condition associated with disability and delayed death. This study aimed to elucidate the distinct metabolic effects of critical illness and β-OH-butyrate on satellite cells isolated from these patients. METHODS Satellite cells were extracted from vastus lateralis muscle biopsies of patients with ICU-acquired weakness (n = 10) and control group of healthy volunteers or patients undergoing elective hip replacement surgery (n = 10). The cells were exposed to standard culture media supplemented with β-OH-butyrate to assess its influence on cell proliferation by ELISA, mitochondrial functions by extracellular flux analysis, electron transport chain complexes by high resolution respirometry, and ROS production by confocal microscopy. RESULTS Critical illness led to a decline in maximal respiratory capacity, ATP production and glycolytic capacity and increased ROS production in ICU patients' cells. Notably, the function of complex II was impaired due to critical illness but restored to normal levels upon exposure to β-OH-butyrate. While β-OH-butyrate significantly reduced ROS production in both control and ICU groups, it had no significant impact on global mitochondrial functions. CONCLUSION Critical illness induces measurable bioenergetic dysfunction of skeletal muscle satellite cells. β-OH-butyrate displayed a potential in rectifying complex II dysfunction caused by critical illness and this warrants further exploration.
Collapse
Affiliation(s)
- Lucie Genserová
- Department of Internal Medicine of the Third Faculty of Medicine, Královské Vinohrady University Hospital, Charles University, Prague, Czech Republic; Department of Anaesthesia and Intensive Care of the Third Faculty of Medicine, Královské Vinohrady University Hospital, OXYLAB-Laboratory for Mitochondrial Physiology, Charles University, Prague, Czech Republic
| | - František Duška
- Department of Anaesthesia and Intensive Care of the Third Faculty of Medicine, Královské Vinohrady University Hospital, OXYLAB-Laboratory for Mitochondrial Physiology, Charles University, Prague, Czech Republic
| | - Adéla Krajčová
- Department of Anaesthesia and Intensive Care of the Third Faculty of Medicine, Královské Vinohrady University Hospital, OXYLAB-Laboratory for Mitochondrial Physiology, Charles University, Prague, Czech Republic.
| |
Collapse
|
3
|
Seifi S, Nazari SE, Avan A, Khalili-Tanha N, Asgharzadeh F, Babaei F, Khalili-Tanha G, Asghari SZ, Darroudi M, Ferns GA, Marjani A, Khazaei M. The therapeutic potential of angiotensin-converting enzyme inhibitor enalapril to ameliorate muscle atrophy in a murine model. EXCLI JOURNAL 2024; 23:600-611. [PMID: 38887391 PMCID: PMC11180954 DOI: 10.17179/excli2023-6822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/04/2024] [Indexed: 06/20/2024]
Abstract
Muscle atrophy due to limb immobilization and inactivity is a common consequence of many diseases and treatment processes. One of the systems activated in inflammatory conditions is the renin-angiotensin system (RAS). The present study was conducted with the aim of investigating the effects of one of the angiotensin-converting enzyme (ACE) inhibitors, enalapril, on improving muscle atrophy caused by immobility. The study was conducted in three groups: a control, an atrophy, and an atrophy group treated with enalapril on Balb/c mice. After tying a splint to cause atrophy in one of the legs, daily treatment with enalapril intraperitoneally (dissolved in DMSO) at a dose of 10 mg/kg/day was done for 7 days. On the eighth day, the splint was opened and half of the mice were evaluated. Then, in the recovery phase, treatment with enalapril was continued in the remaining mice for 10 days without a splint. At the end of each phase, the mice were examined for the muscle strength of the lower limb muscles, and histological and biochemical analyses were subsequently carried out. The tissue level of the oxidative stress index MDA was evaluated, which showed a significantly lower level in the enalapril group compared to the atrophy group (*P<0.1). Also, inflammatory factors in the enalapril group showed a decrease compared to the atrophy group. The strength of four limbs in the mice of the treatment group (-18.36 ± 1.70 %) was significantly higher than that of the atrophy group (-30.33 ± 3 %) at the end of the atrophy phase and also after 10 days of recovery. The results suggest that the use of enalapril that reduces the activation of angiotensin II-dependent pro-oxidant and pro-inflammatory pathways may improve the functional disorder and muscle necrosis in the murine model of muscle atrophy.
Collapse
Affiliation(s)
- Sima Seifi
- Metabolic Disorders Research Center, Department of Biochemistry and Biophysics, Golestan University of Medical Sciences Gorgan, Golestan Province, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Elnaz Nazari
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nima Khalili-Tanha
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fereshteh Asgharzadeh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Babaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazaleh Khalili-Tanha
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyyedeh Zahra Asghari
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdieh Darroudi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A. Ferns
- Brighton & Sussex Medical School, Department of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Abdoljalal Marjani
- Metabolic Disorders Research Center, Department of Biochemistry and Biophysics, Golestan University of Medical Sciences Gorgan, Golestan Province, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Elkrief D, Matusovsky O, Cheng YS, Rassier DE. From amino-acid to disease: the effects of oxidation on actin-myosin interactions in muscle. J Muscle Res Cell Motil 2023; 44:225-254. [PMID: 37805961 DOI: 10.1007/s10974-023-09658-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/15/2023] [Indexed: 10/10/2023]
Abstract
Actin-myosin interactions form the basis of the force-producing contraction cycle within the sarcomere, serving as the primary mechanism for muscle contraction. Post-translational modifications, such as oxidation, have a considerable impact on the mechanics of these interactions. Considering their widespread occurrence, the explicit contributions of these modifications to muscle function remain an active field of research. In this review, we aim to provide a comprehensive overview of the basic mechanics of the actin-myosin complex and elucidate the extent to which oxidation influences the contractile cycle and various mechanical characteristics of this complex at the single-molecule, myofibrillar and whole-muscle levels. We place particular focus on amino acids shown to be vulnerable to oxidation in actin, myosin, and some of their binding partners. Additionally, we highlight the differences between in vitro environments, where oxidation is controlled and limited to actin and myosin and myofibrillar or whole muscle environments, to foster a better understanding of oxidative modification in muscle. Thus, this review seeks to encompass a broad range of studies, aiming to lay out the multi layered effects of oxidation in in vitro and in vivo environments, with brief mention of clinical muscular disorders associated with oxidative stress.
Collapse
Affiliation(s)
- Daren Elkrief
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Oleg Matusovsky
- Department of Kinesiology and Physical Education, McGill University, Montreal, QC, Canada
| | - Yu-Shu Cheng
- Department of Kinesiology and Physical Education, McGill University, Montreal, QC, Canada
| | - Dilson E Rassier
- Department of Physiology, McGill University, Montreal, QC, Canada.
- Department of Kinesiology and Physical Education, McGill University, Montreal, QC, Canada.
- Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
5
|
Rajagopal K, Vijayan D, Thomas SM. Association of SOFA Score with Severity of Muscle Wasting in Critically Ill Patients: A Prospective Observational Study. Indian J Crit Care Med 2023; 27:743-747. [PMID: 37908434 PMCID: PMC10613861 DOI: 10.5005/jp-journals-10071-24540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 08/21/2023] [Indexed: 11/02/2023] Open
Abstract
Background Muscle wasting is a frequent complication in critically ill patients. This study aimed to evaluate whether muscle wasting occurs in these patients and its association with the severity of the disease. Materials and methods This was a prospective, observational study including 50 patients admitted to the multidisciplinary ICU of a tertiary care hospital. Using a linear ultrasound probe, the thickness of the rectus femoris was measured on day 1 of admission and repeated at the same point on day 7. Sequential organ failure assessment (SOFA) scores were calculated daily during the study period. The highest SOFA score during this period was recorded. The mean difference in the thickness of the rectus femoris between day 1 and day 7 was used to predict the occurrence of muscle wasting and the correlation between this difference and the highest SOFA score was analyzed. Results The mean thickness of the rectus femoris on day 1 was 1.32 + 0.06 cm and on day 7 was 1.16 + 0.08 cm. The mean difference was found to be 0.16 cm (p < 0.01). There was a statistically significant difference in the thickness of the rectus femoris between day 1 and day 7. It was found to have a positive correlation with the highest SOFA score r = 0.886 (p < 0.01). Conclusion This study demonstrates that there is significant muscle wasting in critically ill patients and this positively correlates with the severity of illness. Our study also highlights the role of bedside ultrasound in detecting muscle wasting. How to cite this article Rajagopal K, Vijayan D, Thomas SM. Association of SOFA Score with Severity of Muscle Wasting in Critically Ill Patients: A Prospective Observational Study. Indian J Crit Care Med 2023;27(10):743-747.
Collapse
Affiliation(s)
- Kiran Rajagopal
- Department of Critical Care, Sree Gokulam Medical College & Research Foundation, Nellanad, Kerala, India
| | - Deepak Vijayan
- Department of Critical Care, KIMS HEALTH, Thiruvananthapuram, Kerala, India
| | - Sujith M Thomas
- Department of Critical Care, St. Gregorios Medical Mission Multi-specialty, Hospital, Parumala, Kerala, India
| |
Collapse
|
6
|
Shi H, Li F, Zhang F, Wei X, Liu C, Duan R. An electrical stimulation intervention protocol to prevent disuse atrophy and muscle strength decline: an experimental study in rat. J Neuroeng Rehabil 2023; 20:84. [PMID: 37386493 PMCID: PMC10311794 DOI: 10.1186/s12984-023-01208-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 06/19/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Skeletal muscle is negatively impacted by conditions such as spaceflight or prolonged bed rest, resulting in a dramatic decline in muscle mass, maximum contractile force, and muscular endurance. Electrical stimulation (ES) is an essential tool in neurophysiotherapy and an effective means of preventing skeletal muscle atrophy and dysfunction. Historically, ES treatment protocols have used either low or high frequency electrical stimulation (LFES/HFES). However, our study tests the use of a combination of different frequencies in a single electrical stimulation intervention in order to determine a more effective protocol for improving both skeletal muscle strength and endurance. METHODS An adult male SD rat model of muscle atrophy was established through 4 weeks of tail suspension (TS). To investigate the effects of different frequency combinations, the experimental animals were treated with low (20 Hz) or high (100 Hz) frequency before TS for 6 weeks, and during TS for 4weeks. The maximum contraction force and fatigue resistance of skeletal muscle were then assessed before the animals were sacrificed. The muscle mass, fiber cross-sectional area (CSA), fiber type and related protein expression were examined and analyzed to gain insights into the mechanisms by which the ES intervention protocol used in this study regulates muscle strength and endurance. RESULTS After 4 weeks of unloading, the soleus muscle mass and fiber CSA decreased by 39% and 58% respectively, while the number of glycolytic muscle fibers increased by 21%. The gastrocnemius muscle fibers showed a 51% decrease in CSA, with a 44% decrease in single contractility and a 39% decrease in fatigue resistance. The number of glycolytic muscle fibers in the gastrocnemius also increased by 29%. However, the application of HFES either prior to or during unloading showed an improvement in muscle mass, fiber CSA, and oxidative muscle fibers. In the pre-unloading group, the soleus muscle mass increased by 62%, while the number of oxidative muscle fibers increased by 18%. In the during unloading group, the soleus muscle mass increased by 29% and the number of oxidative muscle fibers increased by 15%. In the gastrocnemius, the pre-unloading group showed a 38% increase in single contractile force and a 19% increase in fatigue resistance, while in the during unloading group, a 21% increase in single contractile force and a 29% increase in fatigue resistance was observed, along with a 37% and 26% increase in the number of oxidative muscle fibers, respectively. The combination of HFES before unloading and LFES during unloading resulted in a significant elevation of the soleus mass by 49% and CSA by 90%, with a 40% increase in the number of oxidative muscle fibers in the gastrocnemius. This combination also resulted in a 66% increase in single contractility and a 38% increase in fatigue resistance. CONCLUSION Our results indicated that using HFES before unloading can reduce the harmful effects of muscle unloading on the soleus and gastrocnemius muscles. Furthermore, we found that combining HFES before unloading with LFES during unloading was more effective in preventing muscle atrophy in the soleus and preserving the contractile function of the gastrocnemius muscle.
Collapse
Affiliation(s)
- Haiwang Shi
- Lab of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Fan Li
- Lab of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Fulong Zhang
- Lab of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Xiaobei Wei
- Lab of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Chengyi Liu
- Lab of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Rui Duan
- Lab of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China.
| |
Collapse
|
7
|
Bennett JL, Pratt AG, Dodds R, Sayer AA, Isaacs JD. Rheumatoid sarcopenia: loss of skeletal muscle strength and mass in rheumatoid arthritis. Nat Rev Rheumatol 2023; 19:239-251. [PMID: 36801919 DOI: 10.1038/s41584-023-00921-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2023] [Indexed: 02/19/2023]
Abstract
Sarcopenia, a disorder that involves the generalized loss of skeletal muscle strength and mass, was formally recognized as a disease by its inclusion in the International Classification of Diseases in 2016. Sarcopenia typically affects older people, but younger individuals with chronic disease are also at risk. The risk of sarcopenia is high (with a prevalence of ≥25%) in individuals with rheumatoid arthritis (RA), and this rheumatoid sarcopenia is associated with increased likelihood of falls, fractures and physical disability, in addition to the burden of joint inflammation and damage. Chronic inflammation mediated by cytokines such as TNF, IL-6 and IFNγ contributes to aberrant muscle homeostasis (for instance, by exacerbating muscle protein breakdown), and results from transcriptomic studies have identified dysfunction of muscle stem cells and metabolism in RA. Progressive resistance exercise is an effective therapy for rheumatoid sarcopenia but it can be challenging or unsuitable for some individuals. The unmet need for anti-sarcopenia pharmacotherapies is great, both for people with RA and for otherwise healthy older adults.
Collapse
Affiliation(s)
- Joshua L Bennett
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
- NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle upon Tyne, UK.
- Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| | - Arthur G Pratt
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Richard Dodds
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle upon Tyne, UK
| | - Avan A Sayer
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle upon Tyne, UK
| | - John D Isaacs
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle upon Tyne, UK
- Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
8
|
Le H, Rai V, Agrawal DK. Cholesterol: An Important Determinant of Muscle Atrophy in Astronauts. JOURNAL OF BIOTECHNOLOGY AND BIOMEDICINE 2023; 6:67-79. [PMID: 37006714 PMCID: PMC10062007 DOI: 10.26502/jbb.2642-91280072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Since cholesterol is not routinely measured in astronauts before and after their return from space, there is no data on the role of blood cholesterol level in muscle atrophy and microgravity. Since the first moon landing, aerospace medicine became outdated and has not pushed boundaries like its rocket engineering counterpart. Since the 2019 astronaut twin study, there has yet to be another scientific breakthrough for aerospace medicine. Microgravity-induced muscle atrophy is the most known consequence of spaceflight. Yet, so far, there is no therapeutic solution to prevent it or any real efforts in understanding it on a cellular or molecular level. The most obvious reason to this unprecedented level of research is due to the small cohort of astronauts. With the establishment of private space industries and exponential recruitment of astronauts, there is more reason to push forward spaceflight-related health guidelines and ensure the safety of the brave humans who risk their lives for the progression of mankind. Spaceflight is considered the most challenging job and the failure to prevent injury or harm should be considered reckless negligence by the institutions that actively prevented sophistication of aerospace medicine. In this critical review, role of cholesterol is analyzed across the NASA-established parameters of microgravity-induced muscle atrophy with a focus on potential therapeutic targets for research.
Collapse
Affiliation(s)
- Hoangvi Le
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91766, USA
| | - Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91766, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91766, USA
| |
Collapse
|
9
|
Toth MJ, Savage PD, Voigt TB, Anair BM, Bunn JY, Smith IB, Tourville TW, Blankstein M, Stevens-Lapsley J, Nelms NJ. Effects of total knee arthroplasty on skeletal muscle structure and function at the cellular, organellar, and molecular levels. J Appl Physiol (1985) 2022; 133:647-660. [PMID: 35900327 PMCID: PMC9467475 DOI: 10.1152/japplphysiol.00323.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/11/2022] [Accepted: 07/20/2022] [Indexed: 11/22/2022] Open
Abstract
Total knee arthroplasty (TKA) is an important treatment option for knee osteoarthritis (OA) that improves self-reported pain and physical function, but objectively measured physical function typically remains reduced for years after surgery due, in part, to precipitous reductions in lower extremity neuromuscular function early after surgery. The present study examined intrinsic skeletal muscle adaptations during the first 5 weeks post-TKA to identify skeletal muscle attributes that may contribute to functional disability. Patients with advanced stage knee OA were evaluated prior to TKA and 5 weeks after surgery. Biopsies of the vastus lateralis were performed to assess muscle fiber size, contractility, and mitochondrial content, along with assessments of whole muscle size and function. TKA was accompanied by marked reductions in whole muscle size and strength. At the fiber (i.e., cellular) level, TKA caused profound muscle atrophy that was approximately twofold higher than that observed at the whole muscle level. TKA markedly reduced muscle fiber force production, contractile velocity, and power production, with force deficits persisting in myosin heavy chain (MHC) II fibers after expression relative to fiber size. Molecular level assessments suggest reduced strongly bound myosin-actin cross bridges and myofilament lattice stiffness as a mechanism underlying reduced force per unit fiber size. Finally, marked reductions in mitochondrial content were apparent and more prominent in the subsarcolemmal compartment. Our study represents the most comprehensive evaluation of skeletal muscle cellular adaptations to TKA and uncovers novel effects of TKA on muscle fiber size and intrinsic contractility early after surgery that may contribute to functional disability.NEW & NOTEWORTHY We report the first evaluation of the effects of total knee arthroplasty (TKA) on skeletal muscle at the cellular and subcellular levels. We found marked effects of TKA to cause skeletal muscle fiber atrophy and contractile dysfunction in older adults, as well as molecular mechanisms underlying impaired contractility. Our results reveal profound effects of TKA on muscle fiber size and intrinsic contractility early after surgery that may contribute to functional disability.
Collapse
Affiliation(s)
- Michael J Toth
- Department of Medicine, College of Medicine, University of Vermont, Burlington, Vermont
- Department of Orthopedics and Rehabilitation, College of Medicine, University of Vermont, Burlington, Vermont
| | - Patrick D Savage
- Department of Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Thomas B Voigt
- Department of Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Bradley M Anair
- Department of Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Janice Y Bunn
- Department of Medical Biostatistics, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, Vermont
- Department of Mathematics and Statistics, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, Vermont
| | - Isaac B Smith
- Department of Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Timothy W Tourville
- Department of Orthopedics and Rehabilitation, College of Medicine, University of Vermont, Burlington, Vermont
- Department of Rehabilitation and Movement Science, College of Nursing and Health Sciences, University of Vermont, Burlington, Vermont
| | - Michael Blankstein
- Department of Orthopedics and Rehabilitation, College of Medicine, University of Vermont, Burlington, Vermont
| | - Jennifer Stevens-Lapsley
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- VA Eastern Colorado Geriatric Research Education and Clinical Center, Aurora, Colorado
| | - Nathaniel J Nelms
- Department of Orthopedics and Rehabilitation, College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
10
|
Graham ZA, DeBerry JJ, Cardozo CP, Bamman MM. SS-31 does not prevent or reduce muscle atrophy 7 days after a 65 kdyne contusion spinal cord injury in young male mice. Physiol Rep 2022; 10:e15266. [PMID: 35611788 PMCID: PMC9131615 DOI: 10.14814/phy2.15266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 05/02/2023] Open
Abstract
Spinal cord injury (SCI) leads to major reductions in function, independent living, and quality of life. Disuse and paralysis from SCI leads to rapid muscle atrophy, with chronic muscle loss likely playing a role in the development of the secondary metabolic disorders often seen in those with SCI. Muscle disuse is associated with mitochondrial dysfunction. Previous evidence has suggested targeting the mitochondria with the tetrapeptide SS-31 is beneficial for muscle health in preclinical models that lead to mitochondrial dysfunction, such as cast immobilization or burn injury. We gave young male mice a sham (n = 8) or 65 kdyne thoracic contusion SCI with (n = 9) or without (n = 9) daily administration of 5.0 mg/kg SS-31. Hindlimb muscle mass and muscle bundle respiration were measured at 7 days post-SCI and molecular targets were investigated using immunoblotting, RT-qPCR, and metabolomics. SS-31 did not preserve body mass or hindlimb muscle mass 7 days post-SCI. SS-31 had no effect on soleus or plantaris muscle bundle respiration. SCI was associated with elevated levels of protein carbonylation, led to reduced protein expression of activated DRP1 and reductions in markers of mitochondrial fusion. SS-31 administration did result in reduced total DRP1 expression, as well as greater expression of inhibited DRP1. Gene expression of proinflammatory cytokines and their receptors were largely stable across groups, although SS-31 treatment led to greater mRNA expression of IL1B, TNF, and TNFRSF12A. In summation, SS-31 was not an efficacious treatment acutely after a moderate thoracic contusion SCI in young male mice.
Collapse
Affiliation(s)
- Zachary A. Graham
- Research ServiceBirmingham VA Medical CenterBirminghamAlabamaUSA
- Department of Cell, Developmental, and Integrative BiologyUABBirminghamAlabamaUSA
| | - Jennifer J. DeBerry
- Department of Anesthesiology and Perioperative MedicineUABBirminghamAlabamaUSA
| | - Christopher P. Cardozo
- Center for the Medical Consequences of Spinal Cord InjuryBronxNew YorkUSA
- Medical ServiceJames J. Peters VA Medical CenterBronxNew YorkUSA
- Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Marcas M. Bamman
- Research ServiceBirmingham VA Medical CenterBirminghamAlabamaUSA
- Department of Cell, Developmental, and Integrative BiologyUABBirminghamAlabamaUSA
- UAB Center for Exercise MedicineBirminghamAlabamaUSA
- Florida Institute for Human and Machine CognitionPensacolaFloridaUSA
| |
Collapse
|
11
|
Oliver CE, Patel H, Hong J, Carter J, Kraus WE, Huffman KM, Truskey GA. Tissue engineered skeletal muscle model of rheumatoid arthritis using human primary skeletal muscle cells. J Tissue Eng Regen Med 2022; 16:128-139. [PMID: 34781416 PMCID: PMC9487182 DOI: 10.1002/term.3266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 10/15/2021] [Accepted: 11/05/2021] [Indexed: 02/03/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease primarily targeting the joints. Autoreactive immune cells involved in RA affect other tissues, including skeletal muscle. Patients with RA experience diminished physical function, limited mobility, reduced muscle function, chronic pain, and increased mortality. To explore the impact of RA on skeletal muscle, we engineered electrically responsive, contractile human skeletal muscle constructs (myobundles) using primary skeletal muscle cells isolated from the vastus lateralis muscle of 11 RA patients (aged 57-74) and 10 aged healthy donors (aged 55-76), as well as from the hamstring muscle of six young healthy donors (less than 18 years of age) as a benchmark. Since all patients were receiving treatment for the disease, RA disease activity was mild. In 2D culture, RA myoblast purity, growth rate, and senescence were not statistically different than aged controls; however, RA myoblast purity showed greater variance compared to controls. Surprisingly, in 3D culture, contractile force production by RA myobundles was greater compared to aged controls. In support of this finding, assessment of RA myofiber maturation showed increased area of sarcomeric α-actinin (SAA) expression over time compared to aged controls. Furthermore, a linear regression test indicated a positive correlation between SAA protein levels and tetanus force production in RA and controls. Our findings suggest that medications prescribed to RA patients may maintain-or even enhance-muscle function, and this effect is retained and observed in in vitro culture. Future studies regarding the effects of RA therapeutics on RA skeletal muscle, in vivo and in vitro, are warranted.
Collapse
Affiliation(s)
| | - Hailee Patel
- Department of Biomedical Engineering, Duke University
| | - James Hong
- Department of Biomedical Engineering, Duke University
| | | | | | - Kim M. Huffman
- Department of Medicine, Duke University School of Medicine
| | | |
Collapse
|
12
|
Torres W, Chávez-Castillo M, Peréz-Vicuña JL, Carrasquero R, Díaz MP, Gomez Y, Ramírez P, Cano C, Rojas-Quintero J, Chacín M, Velasco M, de Sanctis JB, Bermudez V. Potential role of bioactive lipids in rheumatoid arthritis. Curr Pharm Des 2021; 27:4434-4451. [PMID: 34036919 DOI: 10.2174/1381612827666210525164734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 04/08/2021] [Indexed: 11/22/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease, which involves a pathological inflammatory response against articular cartilage in multiple joints throughout the body. It is a complex disorder associated with comorbidities such as depression, lymphoma, osteoporosis and cardiovascular disease (CVD), which significantly deteriorate patients' quality of life and prognosis. This has ignited a large initiative to elucidate the physiopathology of RA, aiming to identify new therapeutic targets and approaches in its multidisciplinary management. Recently, various lipid bioactive products have been proposed to have an essential role in this process; including eicosanoids, specialized pro-resolving mediators, phospholipids/sphingolipids, and endocannabinoids. Dietary interventions using omega-3 polyunsaturated fatty acids or treatment with synthetic endocannabinoids agonists have been shown to significantly ameliorate RA symptoms. Indeed, the modulation of lipid metabolism may be crucial in the pathophysiology and treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Wheeler Torres
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - Mervin Chávez-Castillo
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - José L Peréz-Vicuña
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - Rubén Carrasquero
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - María P Díaz
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - Yosselin Gomez
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - Paola Ramírez
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - Clímaco Cano
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - Joselyn Rojas-Quintero
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston. 0
| | - Maricarmen Chacín
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla. Colombia
| | - Manuel Velasco
- Universidad Central de Venezuela, Escuela de Medicina José María Vargas, Caracas. Venezuela
| | - Juan Bautista de Sanctis
- Institute of Molecular and Translational Medicine. Faculty of Medicine and Dentistry. Palacky University. Czech Republic
| | - Valmore Bermudez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla. Colombia
| |
Collapse
|
13
|
Cheng AJ, Ström J, Hwee DT, Malik FI, Westerblad H. Fast skeletal muscle troponin activator CK-2066260 mitigates skeletal muscle weakness independently of the underlying cause. J Cachexia Sarcopenia Muscle 2020; 11:1747-1757. [PMID: 32954682 PMCID: PMC7749611 DOI: 10.1002/jcsm.12624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 08/08/2020] [Accepted: 08/23/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Muscle weakness is a common symptom in numerous diseases and a regularly occurring problem associated with ageing. Prolonged low-frequency force depression (PLFFD) is a form of exercise-induced skeletal muscle weakness observed after exercise. Three different intramuscular mechanisms underlying PLFFD have been identified: decreased sarcoplasmic reticulum Ca2+ release, decreased myofibrillar Ca2+ sensitivity, and myofibrillar dysfunction. We here used these three forms of PLFFD as models to study the effectiveness of a fast skeletal muscle troponin activator, CK-2066260, to mitigate muscle weakness. METHODS Experiments were performed on intact single muscle fibres or fibre bundles from mouse flexor digitorum brevis, which were stimulated with electrical current pulses, while force and the free cytosolic [Ca2+ ] ([Ca2+ ]i ) were measured. PLFFD was induced by three different stimulation protocols: (i) repeated isometric contractions at low intensity (350 ms tetani given every 5 s for 100 contractions); (ii) repeated isometric contractions at high intensity (250 ms tetani given every 0.5 s for 300 contractions); and (iii) repeated eccentric contractions (350 ms tetani with 20% length increase given every 20 s for 10 contractions). The extent and cause of PLFFD were assessed by comparing the force-[Ca2+ ]i relationship at low (30 Hz) and high (120 Hz) stimulation frequencies before (control) and 30 min after induction of PLFFD, and after an additional 5 min of rest in the presence of CK-2066260 (10 μM). RESULTS Prolonged low-frequency force depression following low-intensity and high-intensity fatiguing contractions was predominantly due to decreased sarcoplasmic reticulum Ca2+ release and decreased myofibrillar Ca2+ sensitivity, respectively. CK-2066260 exposure resulted in marked increases in 30 Hz force from 52 ± 16% to 151 ± 13% and from 6 ± 4% to 98 ± 40% of controls with low-intensity and high-intensity contractions, respectively. Following repeated eccentric contractions, PLFFD was mainly due to myofibrillar dysfunction, and it was not fully reversed by CK-2066260 with 30 Hz force increasing from 48 ± 8% to 76 ± 6% of the control. CONCLUSIONS The fast skeletal muscle troponin activator CK-2066260 effectively mitigates muscle weakness, especially when it is caused by impaired activation of the myofibrillar contractile machinery due to either decreased sarcoplasmic reticulum Ca2+ release or reduced myofibrillar Ca2+ sensitivity.
Collapse
Affiliation(s)
- Arthur J Cheng
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Canada
| | - Jennifer Ström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Darren T Hwee
- Research and Early Development, Cytokinetics, Inc., South San Francisco, CA, USA
| | - Fady I Malik
- Research and Early Development, Cytokinetics, Inc., South San Francisco, CA, USA
| | - Håkan Westerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Çolak R, Ağaşcıoğlu E, Çakatay U. "Live High Train Low" Hypoxic Training Enhances Exercise Performance with Efficient Redox Homeostasis in Rats' Soleus Muscle. High Alt Med Biol 2020; 22:77-86. [PMID: 32960081 DOI: 10.1089/ham.2020.0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Çolak, Rıdvan, Eda Ağaşcıoğlu, and Ufuk Çakatay. "Live high train low" hypoxic training enhances exercise performance with efficient redox homeostasis in rats' soleus muscle. High Alt Med Biol. 22:77-86, 2021. Background: Different types of hypoxic training have been performed to improve exercise performance. Although both "live high train high" and "live high train low" techniques are commonly performed, it is still obscure as to which one is more beneficial. Materials and Methods: Eight-week-old male Sprague-Dawley rats were randomly divided into aforementioned experimental groups. After a familiarization exercise (4-week, ∼15-30 minutes/day) at normoxia, all rats exercised (4-week, ∼35 minutes/day) at hypoxia with their pre-evaluated maximal aerobic velocity test. The soleus was extracted after the test following 2 days of resting. Results: The live high trained low group displayed better performance than the live high trained high (p = 0.031) and the live low trained low (p = 0.017) groups. Redox status biomarkers were higher in the live high trained high group except for thiols, which were illustrated with no difference among the groups. Further, contrary to total and protein thiols (r = 0.57, p = 0.037; r = 0.55, p = 0.042 respectively), other redox status biomarkers were observed to be negatively correlated to exercise performance. Conclusions: The live high trained low group could consume more oxygen during exercise, which might lead to having a better chance to ensure cellular redox homeostasis. Therefore, this group could ensure an optimum exercise performance and anabolic metabolism.
Collapse
Affiliation(s)
- Rıdvan Çolak
- Department of Physical Education and Sports, Ardahan University, Ardahan, Turkey
| | - Eda Ağaşcıoğlu
- Department of Recreation, Faculty of Sports Sciences, Lokman Hekim University, Ankara, Turkey
| | - Ufuk Çakatay
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
15
|
Roy A, Sharma AK, Nellore K, Narkar VA, Kumar A. TAK1 preserves skeletal muscle mass and mitochondrial function through redox homeostasis. FASEB Bioadv 2020; 2:538-553. [PMID: 32923988 PMCID: PMC7475301 DOI: 10.1096/fba.2020-00043] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/01/2020] [Accepted: 06/29/2020] [Indexed: 12/19/2022] Open
Abstract
Skeletal muscle atrophy is debilitating consequence of a large number of chronic disease states, aging, and disuse conditions. Skeletal muscle mass is regulated through coordinated activation of a number of signaling cascades. Transforming growth factor-β activated kinase 1 (TAK1) is a central kinase that mediates the activation of multiple signaling pathways in response to various growth factors, cytokines, and microbial products. Accumulating evidence suggests that TAK1 promotes skeletal muscle growth and essential for the maintenance of muscle mass in adults. Targeted inactivation of TAK1 leads to severe muscle wasting and kyphosis in mice. However, the mechanisms by which TAK1 prevents loss of muscle mass remain poorly understood. Through generation of inducible skeletal muscle-specific Tak1-knockout mice, we demonstrate that targeted ablation of TAK1 disrupts redox signaling leading to the accumulation of reactive oxygen species and loss of skeletal muscle mass and contractile function. Suppression of oxidative stress using Trolox improves muscle contractile function and inhibits the activation of catabolic signaling pathways in Tak1-deficient muscle. Moreover, Trolox inhibits the activation of ubiquitin-proteasome system and autophagy markers in skeletal muscle of Tak1-deficient mice. Furthermore, inhibition of oxidative stress using Trolox prevents the slow-to-fast type fiber transition and improves mitochondrial respiration in skeletal muscle of Tak1-deficient mice. Overall, our results demonstrate that TAK1 maintains skeletal muscle mass and health through redox homeostasis.
Collapse
Affiliation(s)
- Anirban Roy
- Department of Anatomical Sciences and NeurobiologyUniversity of Louisville School of MedicineLouisvilleKYUSA
- Department of Pharmacological and Pharmaceutical SciencesUniversity of Houston College of PharmacyHoustonTXUSA
| | - Aditya K. Sharma
- Department of Anatomical Sciences and NeurobiologyUniversity of Louisville School of MedicineLouisvilleKYUSA
- Department of Pharmacological and Pharmaceutical SciencesUniversity of Houston College of PharmacyHoustonTXUSA
| | - Kushal Nellore
- Department of Anatomical Sciences and NeurobiologyUniversity of Louisville School of MedicineLouisvilleKYUSA
| | - Vihang A Narkar
- Center for Metabolic and Degenerative DiseasesInstitute of Molecular MedicineThe University of Texas McGovern Medical SchoolHoustonTXUSA
| | - Ashok Kumar
- Department of Anatomical Sciences and NeurobiologyUniversity of Louisville School of MedicineLouisvilleKYUSA
- Department of Pharmacological and Pharmaceutical SciencesUniversity of Houston College of PharmacyHoustonTXUSA
| |
Collapse
|
16
|
Brownstein CG, Daguenet E, Guyotat D, Millet GY. Chronic fatigue in myelodysplastic syndromes: Looking beyond anemia. Crit Rev Oncol Hematol 2020; 154:103067. [PMID: 32739782 DOI: 10.1016/j.critrevonc.2020.103067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/10/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022] Open
Abstract
Chronic fatigue is the most common and severe symptom in myelodysplastic syndromes (MDS) and has a strong negative association with health-related quality of life (HRQoL). Despite anemia being the most common objective manifestation of MDS, and the associated link between anemia and fatigue, evidence on treatments which temporarily mitigate anemia is equivocal regarding the effects on fatigue. Furthermore, previous work has found weak associations between anemia and chronic fatigue in MDS. As such, given that improving HRQoL is one of the primary treatment aims in MDS, further work is required to identify other potential contributors to chronic fatigue in these patients. In addition to anemia, MDS is associated with numerous other deviations in physiological homeostasis and has negative psychological consequences with links to chronic fatigue. Accordingly, the present review provides several potential aetiologic agents relevant to chronic fatigue in MDS which can be used to guide future research in this field.
Collapse
Affiliation(s)
- Callum G Brownstein
- Univ Lyon, UJM-Saint-Etienne, Inter-University Laboratory of Human Movement Biology, EA 7424, F-42023, Saint-Etienne, France.
| | - Elisabeth Daguenet
- Lucien Neuwirth Cancer Institute, Hematology and Cell Therapy, F-42271 Saint-Priest-en-Jarez, France; Lucien Neuwirth Cancer Institute, Research and Teaching Department, F-42271 Saint-Priest-en-Jarez, France
| | - Denis Guyotat
- Lucien Neuwirth Cancer Institute, Hematology and Cell Therapy, F-42271 Saint-Priest-en-Jarez, France; UMR 5239 Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure, Lyon, France
| | - Guillaume Y Millet
- Univ Lyon, UJM-Saint-Etienne, Inter-University Laboratory of Human Movement Biology, EA 7424, F-42023, Saint-Etienne, France; Institut Universitaire de France (IUF), France
| |
Collapse
|
17
|
Alfaro GF, Novak TE, Rodning SP, Moisá SJ. Preconditioning beef cattle for long-duration transportation stress with rumen-protected methionine supplementation: A nutrigenetics study. PLoS One 2020; 15:e0235481. [PMID: 32614880 PMCID: PMC7332072 DOI: 10.1371/journal.pone.0235481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/16/2020] [Indexed: 01/03/2023] Open
Abstract
In general, beef cattle long-distance transportation from cow-calf operations to feedlots or from feedlots to abattoirs is a common situation in the beef industry. The aim of this study was to determine the effect of rumen-protected methionine (RPM) supplementation on a proposed gene network for muscle fatigue, creatine synthesis (CKM), and reactive oxygen species (ROS) metabolism after a transportation simulation in a test track. Angus × Simmental heifers (n = 18) were stratified by body weight (408 ± 64 kg; BW) and randomly assigned to dietary treatments: 1) control diet (CTRL) or 2) control diet + 8 gr/hd/day of top-dressed rumen-protected methionine (RPM). After an adaptation period to Calan gates, animals received the mentioned dietary treatment consisting of Bermuda hay ad libitum and a soy hulls and corn gluten feed based supplement. After 45 days of supplementation, animals were loaded onto a trailer and transported for 22 hours (long-term transportation). Longissimus muscle biopsies, BW and blood samples were obtained on day 0 (Baseline), 43 (Pre-transport; PRET), and 46 (Post-transport; POST). Heifers' average daily gain did not differ between baseline and PRET. Control heifer's shrink was 10% of BW while RPM heifers shrink was 8%. Serum cortisol decreased, and glucose and creatine kinase levels increased after transportation, but no differences were observed between treatments. Messenger RNA was extracted from skeletal muscle tissue and gene expression analysis was performed by RT-qPCR. Results showed that AHCY and DNMT3A (DNA methylation), SSPN (Sarcoglycan complex), and SOD2 (Oxidative Stress-ROS) were upregulated in CTRL between baseline and PRET and, decreased between pre and POST while they remained constant for RPM. Furthermore, CKM was not affected by treatments. In conclusion, RPM supplementation may affect ROS production and enhance DNA hypermethylation, after a long-term transportation.
Collapse
Affiliation(s)
- Gastón F. Alfaro
- Department of Animal Sciences, Auburn University, Auburn, AL, United States of America
| | - Taylor E. Novak
- Department of Animal Sciences, Auburn University, Auburn, AL, United States of America
| | - Soren P. Rodning
- Department of Animal Sciences, Auburn University, Auburn, AL, United States of America
| | - Sonia J. Moisá
- Department of Animal Sciences, Auburn University, Auburn, AL, United States of America
| |
Collapse
|
18
|
Is Mitochondrial Oxidative Stress the Key Contributor to Diaphragm Atrophy and Dysfunction in Critically Ill Patients? Crit Care Res Pract 2020; 2020:8672939. [PMID: 32377432 PMCID: PMC7191397 DOI: 10.1155/2020/8672939] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/10/2020] [Accepted: 03/27/2020] [Indexed: 02/08/2023] Open
Abstract
Diaphragm dysfunction is prevalent in the progress of respiratory dysfunction in various critical illnesses. Respiratory muscle weakness may result in insufficient ventilation, coughing reflection suppression, pulmonary infection, and difficulty in weaning off respirators. All of these further induce respiratory dysfunction and even threaten the patients' survival. The potential mechanisms of diaphragm atrophy and dysfunction include impairment of myofiber protein anabolism, enhancement of myofiber protein degradation, release of inflammatory mediators, imbalance of metabolic hormones, myonuclear apoptosis, autophagy, and oxidative stress. Among these contributors, mitochondrial oxidative stress is strongly implicated to play a key role in the process as it modulates diaphragm protein synthesis and degradation, induces protein oxidation and functional alteration, enhances apoptosis and autophagy, reduces mitochondrial energy supply, and is regulated by inflammatory cytokines via related signaling molecules. This review aims to provide a concise overview of pathological mechanisms of diaphragmatic dysfunction in critically ill patients, with special emphasis on the role and modulating mechanisms of mitochondrial oxidative stress.
Collapse
|
19
|
Diaphragm weakness and proteomics (global and redox) modifications in heart failure with reduced ejection fraction in rats. J Mol Cell Cardiol 2020; 139:238-249. [PMID: 32035137 DOI: 10.1016/j.yjmcc.2020.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/02/2020] [Accepted: 02/03/2020] [Indexed: 12/16/2022]
Abstract
Inspiratory dysfunction occurs in patients with heart failure with reduced ejection fraction (HFrEF) in a manner that depends on disease severity and by mechanisms that are not fully understood. In the current study, we tested whether HFrEF effects on diaphragm (inspiratory muscle) depend on disease severity and examined putative mechanisms for diaphragm abnormalities via global and redox proteomics. We allocated male rats into Sham, moderate (mHFrEF), or severe HFrEF (sHFrEF) induced by myocardial infarction and examined the diaphragm muscle. Both mHFrEF and sHFrEF caused atrophy in type IIa and IIb/x fibers. Maximal and twitch specific forces (N/cm2) were decreased by 19 ± 10% and 28 ± 13%, respectively, in sHFrEF (p < .05), but not in mHFrEF. Global proteomics revealed upregulation of sarcomeric proteins and downregulation of ribosomal and glucose metabolism proteins in sHFrEF. Redox proteomics showed that sHFrEF increased reversibly oxidized cysteine in cytoskeletal and thin filament proteins and methionine in skeletal muscle α-actin (range 0.5 to 3.3-fold; p < .05). In conclusion, fiber atrophy plus contractile dysfunction caused diaphragm weakness in HFrEF. Decreased ribosomal proteins and heighted reversible oxidation of protein thiols are candidate mechanisms for atrophy or anabolic resistance as well as loss of specific force in sHFrEF.
Collapse
|
20
|
Owen AM, Patel SP, Smith JD, Balasuriya BK, Mori SF, Hawk GS, Stromberg AJ, Kuriyama N, Kaneki M, Rabchevsky AG, Butterfield TA, Esser KA, Peterson CA, Starr ME, Saito H. Chronic muscle weakness and mitochondrial dysfunction in the absence of sustained atrophy in a preclinical sepsis model. eLife 2019; 8:e49920. [PMID: 31793435 PMCID: PMC6890461 DOI: 10.7554/elife.49920] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/19/2019] [Indexed: 02/07/2023] Open
Abstract
Chronic critical illness is a global clinical issue affecting millions of sepsis survivors annually. Survivors report chronic skeletal muscle weakness and development of new functional limitations that persist for years. To delineate mechanisms of sepsis-induced chronic weakness, we first surpassed a critical barrier by establishing a murine model of sepsis with ICU-like interventions that allows for the study of survivors. We show that sepsis survivors have profound weakness for at least 1 month, even after recovery of muscle mass. Abnormal mitochondrial ultrastructure, impaired respiration and electron transport chain activities, and persistent protein oxidative damage were evident in the muscle of survivors. Our data suggest that sustained mitochondrial dysfunction, rather than atrophy alone, underlies chronic sepsis-induced muscle weakness. This study emphasizes that conventional efforts that aim to recover muscle quantity will likely remain ineffective for regaining strength and improving quality of life after sepsis until deficiencies in muscle quality are addressed.
Collapse
Affiliation(s)
- Allison M Owen
- Aging and Critical Care Research LaboratoryUniversity of KentuckyLexingtonUnited States
- Department of PhysiologyUniversity of KentuckyLexingtonUnited States
- Department of SurgeryUniversity of KentuckyLexingtonUnited States
| | - Samir P Patel
- Department of PhysiologyUniversity of KentuckyLexingtonUnited States
- Spinal Cord and Brain Injury Research CenterUniversity of KentuckyLexingtonUnited States
| | - Jeffrey D Smith
- Department of Biosystems and Agricultural EngineeringUniversity of KentuckyLexingtonUnited States
- Center for Muscle BiologyUniversity of KentuckyLexingtonUnited States
| | - Beverly K Balasuriya
- Aging and Critical Care Research LaboratoryUniversity of KentuckyLexingtonUnited States
- Department of SurgeryUniversity of KentuckyLexingtonUnited States
| | - Stephanie F Mori
- Aging and Critical Care Research LaboratoryUniversity of KentuckyLexingtonUnited States
- Department of SurgeryUniversity of KentuckyLexingtonUnited States
| | - Gregory S Hawk
- Department of StatisticsUniversity of KentuckyLexingtonUnited States
| | | | - Naohide Kuriyama
- Department of Anesthesia, Critical Care and Pain MedicineMassachusetts General Hospital, Shriners Hospitals for Children, Harvard Medical SchoolCharlestownUnited States
| | - Masao Kaneki
- Department of Anesthesia, Critical Care and Pain MedicineMassachusetts General Hospital, Shriners Hospitals for Children, Harvard Medical SchoolCharlestownUnited States
| | - Alexander G Rabchevsky
- Department of PhysiologyUniversity of KentuckyLexingtonUnited States
- Spinal Cord and Brain Injury Research CenterUniversity of KentuckyLexingtonUnited States
| | - Timothy A Butterfield
- Department of PhysiologyUniversity of KentuckyLexingtonUnited States
- Center for Muscle BiologyUniversity of KentuckyLexingtonUnited States
| | - Karyn A Esser
- Department of PhysiologyUniversity of KentuckyLexingtonUnited States
- Center for Muscle BiologyUniversity of KentuckyLexingtonUnited States
- Department of Physiology and Functional GenomicsUniversity of FloridaGainesvilleUnited States
| | - Charlotte A Peterson
- Department of PhysiologyUniversity of KentuckyLexingtonUnited States
- Center for Muscle BiologyUniversity of KentuckyLexingtonUnited States
- Department of Rehabilitation SciencesUniversity of KentuckyLexingtonUnited States
| | - Marlene E Starr
- Aging and Critical Care Research LaboratoryUniversity of KentuckyLexingtonUnited States
- Department of SurgeryUniversity of KentuckyLexingtonUnited States
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonUnited States
| | - Hiroshi Saito
- Aging and Critical Care Research LaboratoryUniversity of KentuckyLexingtonUnited States
- Department of PhysiologyUniversity of KentuckyLexingtonUnited States
- Department of SurgeryUniversity of KentuckyLexingtonUnited States
- Markey Cancer CenterUniversity of KentuckyLexingtonUnited States
| |
Collapse
|
21
|
Yamada T, Ashida Y, Tatebayashi D, Himori K. Myofibrillar function differs markedly between denervated and dexamethasone-treated rat skeletal muscles: Role of mechanical load. PLoS One 2019; 14:e0223551. [PMID: 31596883 PMCID: PMC6785062 DOI: 10.1371/journal.pone.0223551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/24/2019] [Indexed: 01/24/2023] Open
Abstract
Although there is good evidence to indicate a major role of intrinsic impairment of the contractile apparatus in muscle weakness seen in several pathophysiological conditions, the factors responsible for control of myofibrillar function are not fully understood. To investigate the role of mechanical load in myofibrillar function, we compared the skinned fiber force between denervated (DEN) and dexamethasone-treated (DEX) rat skeletal muscles with or without neuromuscular electrical stimulation (ES) training. DEN and DEX were induced by cutting the sciatic nerve and daily injection of dexamethasone (5 mg/kg/day) for 7 days, respectively. For ES training, plantarflexor muscles were electrically stimulated to produce four sets of five isometric contractions each day. In situ maximum torque was markedly depressed in the DEN muscles compared to the DEX muscles (-74% vs. -10%), whereas there was not much difference in the degree of atrophy in gastrocnemius muscles between DEN and DEX groups (-24% vs. -17%). Similar results were obtained in the skinned fiber preparation, with a greater reduction in maximum Ca2+-activated force in the DEN than in the DEX group (-53% vs. -16%). Moreover, there was a parallel decline in myosin heavy chain (MyHC) and actin content per muscle volume in DEN muscles, but not in DEX muscles, which was associated with upregulation of NADPH oxidase (NOX) 2, neuronal nitric oxide synthase (nNOS), and endothelial NOS expression, translocation of nNOS from the membrane to the cytosol, and augmentation of mRNA levels of muscle RING finger protein 1 (MuRF-1) and atrogin-1. Importantly, mechanical load evoked by ES protects against DEN- and DEX-induced myofibrillar dysfunction and these molecular alterations. Our findings provide novel insights regarding the difference in intrinsic contractile properties between DEN and DEX and suggest an important role of mechanical load in preserving myofibrillar function in skeletal muscle.
Collapse
Affiliation(s)
- Takashi Yamada
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
- * E-mail:
| | - Yuki Ashida
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Daisuke Tatebayashi
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Koichi Himori
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| |
Collapse
|
22
|
Polyphenol-Enriched Plum Extract Enhances Myotubule Formation and Anabolism while Attenuating Colon Cancer-induced Cellular Damage in C2C12 Cells. Nutrients 2019; 11:nu11051077. [PMID: 31096595 PMCID: PMC6566394 DOI: 10.3390/nu11051077] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/08/2019] [Accepted: 05/11/2019] [Indexed: 02/07/2023] Open
Abstract
Preventing muscle wasting in certain chronic diseases including cancer is an ongoing challenge. Studies have shown that polyphenols derived from fruits and vegetables shows promise in reducing muscle loss in cellular and animal models of muscle wasting. We hypothesized that polyphenols derived from plums (Prunus domestica) could have anabolic and anti-catabolic benefits on skeletal muscle. The effects of a polyphenol-enriched plum extract (PE60) were evaluated in vitro on C2C12 and Colon-26 cancer cells. Data were analyzed using a one-way ANOVA and we found that treatment of myocytes with plum extract increased the cell size by ~3-fold (p < 0.05) and stimulated myoblast differentiation by ~2-fold (p < 0.05). Plum extract induced total protein synthesis by ~50% (p < 0.05), reduced serum deprivation-induced total protein degradation by ~30% (p < 0.05), and increased expression of Insulin-Like Growth Factor-1 (IGF-1) by ~2-fold (p < 0.05). Plum extract also reduced tumor necrosis factor α (TNFα)-induced nuclear factor κB (NFκB) activation by 80% (p < 0.05) in A549/NF-κB-luc cells. In addition, plum extract inhibited the growth of Colon-26 cancer cells, and attenuated cytotoxicity in C2C12 myoblasts induced by soluble factors released from Colon-26 cells. In conclusion, our data suggests that plum extract may have pluripotent health benefits on muscle, due to its demonstrated ability to promote myogenesis, stimulate muscle protein synthesis, and inhibit protein degradation. It also appears to protect muscle cell from tumor-induced cytotoxicity.
Collapse
|
23
|
Liu L, Li TM, Liu XR, Bai YP, Li J, Tang N, Wang XB. MicroRNA-140 inhibits skeletal muscle glycolysis and atrophy in endotoxin-induced sepsis in mice via the WNT signaling pathway. Am J Physiol Cell Physiol 2019; 317:C189-C199. [PMID: 31042421 DOI: 10.1152/ajpcell.00419.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sepsis is a systemic inflammatory response syndrome resulting from infection. This study aimed at exploring the role of microRNA-140 (miR-140) in septic mice. Wnt family member 11 (WNT11) was verified to be a target gene of miR-140 after bioinformatic prediction and dual luciferase reporter gene assay. Importantly, miR-140 negatively regulated WNT11. We initially induced the model of sepsis by endotoxin, and then ectopic expression and knockdown experiments were performed to explore the functional role of miR-140 in sepsis. Additionally, cross-sectional areas of muscle fiber, lactic acid production, 3-methylhistidine (3-MH) and tyrosine (Tyr) production in extensor digitorium longus (EDL) muscles, and serum levels of inflammatory factors were examined. The effect of miR-140 on the expression of WNT signaling pathway-related and apoptosis-related factors in skeletal muscle tissue was determined. The experimental results indicated that upregulated miR-140 or silenced WNT11 increased cross-sectional areas of muscle fiber while decreasing lactic acid production, skeletal muscle cell apoptosis [corresponding to downregulated B cell lymphoma 2 (Bcl-2)-associated X protein (Bax) and caspase-3 and upregulated Bcl-2], and the proteolytic rate of Tyr and 3-MH. Also, overexpressed miR-140 or silenced WNT11 reduced inflammation as reflected by decreased serum levels of IL-6, IL-10, and TNF-α. Furthermore, overexpression of miR-140 was shown to suppress the activation of the WNT signaling pathway, accompanied by decreased expression of WNT11, β-catenin, and GSK-3β. Taken together, upregulation of miR-140 could potentially inhibit skeletal muscle lactate release, an indirect measure of glycolysis, and atrophy in septic mice through suppressing the WNT signaling pathway via inhibiting WNT11 expression.
Collapse
Affiliation(s)
- Li Liu
- Department of Anesthesiology, The First Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Tian-Mei Li
- Department of Anesthesiology, The First Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Xue-Ru Liu
- Department of Anesthesiology, The First Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Yi-Ping Bai
- Department of Anesthesiology, The First Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Jie Li
- Department of Anesthesiology, The First Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Ni Tang
- Department of Anesthesiology, The First Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Xiao-Bin Wang
- Department of Anesthesiology, The First Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| |
Collapse
|
24
|
Redox Status and Muscle Pathology in Rheumatoid Arthritis: Insights from Various Rat Hindlimb Muscles. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2484678. [PMID: 31049128 PMCID: PMC6458950 DOI: 10.1155/2019/2484678] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/21/2018] [Accepted: 01/29/2019] [Indexed: 12/20/2022]
Abstract
Due to atrophy, muscle weakness is a common occurrence in rheumatoid arthritis (RA). The majority of human studies are conducted on the vastus lateralis muscle—a muscle with mixed fiber type—but little comparative data between multiple muscles in either rodent or human models are available. The current study therefore assessed both muscle ultrastructure and selected redox indicators across various muscles in a model of collagen-induced rheumatoid arthritis in female Sprague-Dawley rats. Only three muscles, the gastrocnemius, extensor digitorum longus (EDL), and soleus, had lower muscle mass (38%, 27%, and 25% loss of muscle mass, respectively; all at least P < 0.01), while the vastus lateralis muscle mass was increased by 35% (P < 0.01) in RA animals when compared to non-RA controls. However, all four muscles exhibited signs of deterioration indicative of rheumatoid cachexia. Cross-sectional area was similarly reduced in gastrocnemius, EDL, and soleus (60%, 58%, and 64%, respectively; all P < 0.001), but vastus lateralis (22% smaller, P < 0.05) was less affected, while collagen deposition was significantly increased in muscles. This pathology was associated with significant increases in tissue levels of reactive oxygen species (ROS) in all muscles except the vastus lateralis, while only the gastrocnemius had significantly increased levels of lipid peroxidation (TBARS) and antioxidant activity (FRAP). Current data illustrates the differential responses of different skeletal muscles of the hindlimb to a chronic inflammatory challenge both in terms of redox changes and resistance to cachexia.
Collapse
|
25
|
VanderVeen BN, Fix DK, Montalvo RN, Counts BR, Smuder AJ, Murphy EA, Koh HJ, Carson JA. The regulation of skeletal muscle fatigability and mitochondrial function by chronically elevated interleukin-6. Exp Physiol 2019; 104:385-397. [PMID: 30576589 DOI: 10.1113/ep087429] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/18/2018] [Indexed: 12/15/2022]
Abstract
NEW FINDINGS What is the central question of this study? Interleukin-6 has been associated with muscle mass and metabolism in both physiological and pathological conditions. A causal role for interleukin-6 in the induction of fatigue and disruption of mitochondrial function has not been determined. What is the main finding and its importance? We demonstrate that chronically elevated interleukin-6 increased skeletal muscle fatigability and disrupted mitochondrial content and function independent of changes in fibre type and mass. ABSTRACT Interleukin-6 (IL-6) can initiate intracellular signalling in skeletal muscle by binding to the IL-6-receptor and interacting with the transmembrane gp130 protein. Circulating IL-6 has established effects on skeletal muscle mass and metabolism in both physiological and pathological conditions. However, the effects of circulating IL-6 on skeletal muscle function are not well understood. The purpose of this study was to determine whether chronically elevated systemic IL-6 was sufficient to disrupt skeletal muscle force, fatigue and mitochondrial function. Additionally, we examined the role of muscle gp130 signalling during overexpression of IL-6. Systemic IL-6 overexpression for 2 weeks was achieved by electroporation of an IL-6 overexpression plasmid or empty vector into the quadriceps of either C57BL/6 (WT) or skeletal muscle gp130 knockout (KO) male mice. Tibialis anterior muscle in situ functional properties and mitochondrial respiration were determined. Interleukin-6 accelerated in situ skeletal muscle fatigue in the WT, with a 18.5% reduction in force within 90 s of repeated submaximal contractions and a 7% reduction in maximal tetanic force after 5 min. There was no difference between fatigue in the KO and KO+IL-6. Interleukin-6 reduced WT muscle mitochondrial respiratory control ratio by 36% and cytochrome c oxidase activity by 42%. Interleukin-6 had no effect on either KO respiratory control ratio or cytochrome c oxidase activity. Interleukin-6 also had no effect on body weight, muscle mass or tetanic force in either genotype. These results provide evidence that 2 weeks of elevated systemic IL-6 is sufficient to increase skeletal muscle fatigability and decrease muscle mitochondrial content and function, and these effects require muscle gp130 signalling.
Collapse
Affiliation(s)
- Brandon N VanderVeen
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
| | - Dennis K Fix
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
| | - Ryan N Montalvo
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
| | - Brittany R Counts
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
| | - Ashley J Smuder
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
| | - E Angela Murphy
- Department of Pathology, Microbiology & Immunology, University of South Carolina School of Medicine, Columbia, SC, 29209, USA
| | - Ho-Jin Koh
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
| | - James A Carson
- College of Health Professions, Department of Physical Therapy, University of Tennessee Health Sciences Center, Memphis, TN, 38163, USA
| |
Collapse
|
26
|
Hanaoka BY, Ithurburn MP, Rigsbee CA, Bridges SL, Moellering DR, Gower B, Bamman M. Chronic Inflammation in Rheumatoid Arthritis and Mediators of Skeletal Muscle Pathology and Physical Impairment: A Review. Arthritis Care Res (Hoboken) 2019; 71:173-177. [PMID: 30295435 DOI: 10.1002/acr.23775] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 10/02/2018] [Indexed: 12/13/2022]
|
27
|
Abstract
Many diseases are related to age, among these neurodegeneration is particularly important. Alzheimer's disease Parkinson's and Glaucoma have many common pathogenic events including oxidative damage, Mitochondrial dysfunction, endothelial alterations and changes in the visual field. These are well known in the case of glaucoma, less in the case of neurodegeneration of the brain. Many other molecular aspects are common, such as the role of endoplasmic reticulum autophagy and neuronal apoptosis while others have been neglected due to lack of space such as inflammatory cytokine or miRNA. Moreover, the loss of specific neuronal populations, the induction of similar mechanisms of cell injury and the deposition of protein aggregates in specific anatomical areas are very similar events between these diseases. Intracellular and/or extracellular accumulation of protein aggregates is a key feature of many neurodegenerative disorders. The existence of abnormal protein aggregates has been documented in the RGCs of glaucomatous patients such as the anomalous Tau protein or the β-amyloid accumulations. Intra-cell catabolic processes also appear to be common in both glaucoma and neurodegeneration. They also help us to understand how the basis between these diseases is common and how the visual aspects can be a serious problem for those who are affected.
Collapse
Affiliation(s)
- Sergio Claudio Saccà
- Department of Head/Neck Pathologies, St Martino Hospital, Ophthalmology Unit, Genoa, Italy.
| | - Carlo Alberto Cutolo
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Science, University of Genoa, Policlinico San Martino Hospital, Eye Clinic Genoa, Genoa, Italy
| | - Tommaso Rossi
- Department of Head/Neck Pathologies, St Martino Hospital, Ophthalmology Unit, Genoa, Italy
| |
Collapse
|
28
|
Gorgey AS, Witt O, O’Brien L, Cardozo C, Chen Q, Lesnefsky EJ, Graham ZA. Mitochondrial health and muscle plasticity after spinal cord injury. Eur J Appl Physiol 2018; 119:315-331. [DOI: 10.1007/s00421-018-4039-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 11/22/2018] [Indexed: 01/15/2023]
|
29
|
Abstract
BACKGROUND Understanding soccer players' match-related fatigue and recovery profiles likely helps with developing conditioning programs that increase team performance and reduce injuries and illnesses. In order to improve match recovery (the return-to-play process and ergogenic interventions) it is also pivotal to determine if match simulation protocols and actual match-play lead to similar responses. OBJECTIVES (1) To thoroughly describe the development of fatigue during actual soccer match play and its recovery time course in terms of physiological, neuromuscular, technical, biochemical and perceptual responses, and (2) to determine similarities of recovery responses between actual competition (11 vs. 11) and match simulations. METHODS A first screening phase consisted of a systematic search on PubMed (MEDLINE) and SportDiscus databases until March 2016. Inclusion criteria were: longitudinal study with soccer players; match or validated protocol; duration > 45 min; and published in English. RESULTS A total of 77 eligible studies (n = 1105) were used to compute 1196 effect sizes (ES). Half-time assessments revealed small to large alterations in immunological parameters (e.g. leukocytes, ES = 1.9), a moderate decrement in insulin concentration (ES = - 0.9) and a small to moderate impairment in lower-limb muscle function (ES = - 0.5 to - 0.7) and physical performance measures (e.g. linear sprint, ES = - 0.3 to - 1.0). All the systematically analyzed fatigue-related markers were substantially altered at post-match. Hamstrings force production capacity (ES = - 0.7), physical performance (2-4%, ES = 0.3-0.5), creatine kinase (CK, ES = 0.4), well-being (ES = 0.2-0.4) and delayed onset muscle soreness (DOMS, ES = 0.6-1.3) remained substantially impaired at G + 72 h. Compared to simulation protocols, 11 vs. 11 match format (CK, ES = 1.8) induced a greater magnitude of change in muscle damage (i.e. CK, ES = 1.8 vs. 0.7), inflammatory (IL-6, ES = 2.6 vs. 1.1) and immunological markers and DOMS (ES = 1.5 vs. 0.7) than simulation protocols at post-assessments. Neuromuscular performances at post-match did not differ between protocols. CONCLUSION While some parameters are fully recovered (e.g. hormonal and technical), our systematic review shows that a period of 72 h post-match play is not long enough to completely restore homeostatic balance (e.g. muscle damage, physical and well-being status). The extent of the recovery period post-soccer game cannot consist of a 'one size fits all approach'. Additionally, the 'real match' (11 vs. 11 format) likely induces greater magnitudes of perceptual (DOMS) and biochemical alterations (e.g. muscle damage), while neuromuscular alterations were essentially similar. Overall, coaches must adjust the structure and content of the training sessions during the 72-h post-match intervention to effectively manage the training load within this time-frame.
Collapse
|
30
|
Oliveira JRS, Mohamed JS, Myers MJ, Brooks MJ, Alway SE. Effects of hindlimb suspension and reloading on gastrocnemius and soleus muscle mass and function in geriatric mice. Exp Gerontol 2018; 115:19-31. [PMID: 30448397 DOI: 10.1016/j.exger.2018.11.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 11/09/2018] [Accepted: 11/14/2018] [Indexed: 12/21/2022]
Abstract
Reloading of atrophied muscles after hindlimb suspension (HLS) can induce muscle injury and prolong recovery after disuse in old rats, especially in fast contracting muscles. Less is known about the responses in mice and whether fast and slow muscles from geriatric mice will respond in a similar fashion to HLS unloading and recovery (HLS + R). Furthermore, while slow muscles undergo atrophy with disuse, they typically are more resistant to sarcopenia than fast contracting muscles. Geriatric (28 mo. of age) male C57BL/6 mice were randomly placed into 3 groups. These included HLS for 14 days n = 9, and HLS followed by 14 days of reloading recovery (HLS + R; n = 9), or normal ambulatory cage controls (n = 9). Control mice were not exposed to unloading. Electrically evoked maximal muscle function was assessed in vivo in anesthetized mice at baseline, after 14 days of HLS or HLS + R. As expected, HLS significantly reduced body weight, wet weight of gastrocnemius and soleus muscles and in vivo maximal force. There were no differences in vivo fatigability of the plantar flexor muscles and overall fiber size. There were only minor fiber type distribution and frequency distribution of fiber sizes that differ between HLS + R and control gastrocnemius and soleus muscles. Soleus muscle wet weight had recovered to control levels after reloading, but type I/IIA fibers in the soleus muscles were significantly smaller after HLS + R than control muscles. In contrast, gastrocnemius muscle wet weight did not recover to control levels after reloading. Plantar flexion muscle force (primarily influenced by the gastrocnemius muscles) did not recover in HLS + R conditions as compared to HLS conditions and both were lower than control force production signaling for apoptosis, autophagy and anabolic markers were not different between control and HLS + R gastrocnemius and soleus muscles in geriatric mice. These results suggest that molecular signaling does not explain attenuated ability to regain muscle wet weight, fiber size or muscle force production after HLS in geriatric mice. It is possible that fluid shifts, reduced blood flow, or shortened muscle fibers which failed to regain control lengths contributed to the attenuation of muscle wet weight after HLS and reloading and this affected force production. Further work is needed to determine if altered/loss of neural activity contributed to the inability of geriatric mice to regain gastrocnemius muscle weight and function after HLS and reloading.
Collapse
Affiliation(s)
- João Ricardhis S Oliveira
- Interuniversity Exchange Undergraduate Program, CAPES Foundation, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil; Laboratory of Muscle Biology and Sarcopenia, Division of Exercise Physiology, Dept. of Human Performance & Applied Exercise Science, West Virginia University School of Medicine, Morgantown, WV 26506, United States of America
| | - Junaith S Mohamed
- Department of Clinical Laboratory Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, United States of America; Laboratory of Muscle Biology and Sarcopenia, Division of Exercise Physiology, Dept. of Human Performance & Applied Exercise Science, West Virginia University School of Medicine, Morgantown, WV 26506, United States of America
| | - Matthew J Myers
- Laboratory of Muscle Biology and Sarcopenia, Division of Exercise Physiology, Dept. of Human Performance & Applied Exercise Science, West Virginia University School of Medicine, Morgantown, WV 26506, United States of America
| | - Matthew J Brooks
- Laboratory of Muscle Biology and Sarcopenia, Division of Exercise Physiology, Dept. of Human Performance & Applied Exercise Science, West Virginia University School of Medicine, Morgantown, WV 26506, United States of America
| | - Stephen E Alway
- Dept. of Physical Therapy, College of Health Professions, University of Tennessee Health Sciences Center, Memphis, TN 38163, United States of America; Department of Physiology, College of Medicine, University of Tennessee Health Sciences Center, Memphis, TN 38163, United States of America; Laboratory of Muscle Biology and Sarcopenia, Division of Exercise Physiology, Dept. of Human Performance & Applied Exercise Science, West Virginia University School of Medicine, Morgantown, WV 26506, United States of America.
| |
Collapse
|
31
|
Yamada T, Himori K, Tatebayashi D, Yamada R, Ashida Y, Imai T, Akatsuka M, Masuda Y, Kanzaki K, Watanabe D, Wada M, Westerblad H, Lanner JT. Electrical Stimulation Prevents Preferential Skeletal Muscle Myosin Loss in Steroid-Denervation Rats. Front Physiol 2018; 9:1111. [PMID: 30147660 PMCID: PMC6097132 DOI: 10.3389/fphys.2018.01111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/24/2018] [Indexed: 12/16/2022] Open
Abstract
Severe muscle weakness concomitant with preferential depletion of myosin has been observed in several pathological conditions. Here, we used the steroid-denervation (S-D) rat model, which shows dramatic decrease in myosin content and force production, to test whether electrical stimulation (ES) treatment can prevent these deleterious changes. S-D was induced by cutting the sciatic nerve and subsequent daily injection of dexamethasone for 7 days. For ES treatment, plantarflexor muscles were electrically stimulated to produce four sets of five isometric contractions each day. Plantarflexor in situ isometric torque, muscle weight, skinned muscle fiber force, and protein and mRNA expression were measured after the intervention period. ES treatment partly prevented the S-D-induced decreases in plantarflexor in situ isometric torque and muscle weight. ES treatment fully prevented S-D-induced decreases in skinned fiber force and ratio of myosin heavy chain (MyHC) to actin, as well as increases in the reactive oxygen/nitrogen species-generating enzymes NADPH oxidase (NOX) 2 and 4, phosphorylation of p38 MAPK, mRNA expression of the muscle-specific ubiquitin ligases muscle ring finger-1 (MuRF-1) and atrogin-1, and autolyzed active calpain-1. Thus, ES treatment is an effective way to prevent muscle impairments associated with loss of myosin.
Collapse
Affiliation(s)
- Takashi Yamada
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Koichi Himori
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Daisuke Tatebayashi
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Ryotaro Yamada
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Yuki Ashida
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Tomihiro Imai
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Masayuki Akatsuka
- Department of Intensive Care Medicine, Sapporo Medical University, Sapporo, Japan
| | - Yoshiki Masuda
- Department of Intensive Care Medicine, Sapporo Medical University, Sapporo, Japan
| | - Keita Kanzaki
- Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, Kurashiki, Japan
| | - Daiki Watanabe
- School of Life Sciences, La Trobe University, Melbourne, VIC, Australia
| | - Masanobu Wada
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashihiroshima, Japan
| | - Håkan Westerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Johanna T Lanner
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
32
|
Caveolae-mediated effects of TNF-α on human skeletal muscle cells. Exp Cell Res 2018; 370:623-631. [PMID: 30031131 DOI: 10.1016/j.yexcr.2018.07.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 01/09/2023]
Abstract
Chronic diseases are characterized by the production of pro-inflammatory cytokines such than TNF-α and are frequently correlated with muscle wasting conditions. Among the pleiotropic effects of TNF-α within the cell, its binding to TNFR1 receptor has been shown to activate sphingomyelinases leading to the production of ceramides. Sphingomyelinases and TNF receptor have been localized within caveolae which are specialized RAFT enriched in cholesterol and sphingolipids. Because of their inverted omega shape, maintained by the oligomerization of specialized proteins, caveolins and cavins, caveolae serve as membrane reservoir therefore providing mechanical protection to plasma membranes. Although sphingolipids metabolites, caveolins and TNF-α/TNFR1 have been shown to independently interfere with muscle physiology, no data have clearly demonstrated their concerted action on muscle cell regeneration. In this context, our study aimed at studying the molecular mechanisms induced by TNF-α at the level of caveolae in LHCN-M2 human muscle satellite cells. Here we showed that TNF-α-induced production of ROS and nSMase activation requires caveolin. More strikingly, we have demonstrated that TNF-α induces the formation of additional caveolae at the plasma membrane of myoblasts. Furthermore, TNF-α prevents myoblast fusion suggesting that inflammation could modulate caveolae organization/function and satellite cell function.
Collapse
|
33
|
Brooks MJ, Hajira A, Mohamed JS, Alway SE. Voluntary wheel running increases satellite cell abundance and improves recovery from disuse in gastrocnemius muscles from mice. J Appl Physiol (1985) 2018; 124:1616-1628. [PMID: 29470148 PMCID: PMC6032091 DOI: 10.1152/japplphysiol.00451.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 01/18/2018] [Accepted: 02/21/2018] [Indexed: 02/04/2023] Open
Abstract
Reloading of atrophied muscles after hindlimb suspension unloading (HSU) can induce injury and prolong recovery. Low-impact exercise, such as voluntary wheel running, has been identified as a nondamaging rehabilitation therapy in rodents, but its effects on muscle function, morphology, and satellite cell activity after HSU are unclear. This study tested the hypothesis that low-impact wheel running would increase satellite cell proliferation and improve recovery of muscle structure and function after HSU in mice. Young adult male and female C57BL/6 mice ( n = 6/group) were randomly placed into five groups. These included HSU without recovery (HSU), normal ambulatory recovery for 14 days after HSU (HSU+NoWR), and voluntary wheel running recovery for 14 days after HSU (HSU+WR). Two control groups were used: nonsuspended mouse cage controls (Control) and voluntary wheel running controls (ControlWR). Satellite cell activation was evaluated by providing mice 5-bromo-2'-deoxyuridine (BrdU) in their drinking water. As expected, HSU significantly reduced in vivo maximal force, decreased in vivo fatigability, and decreased type I and IIa myosin heavy chain (MHC) abundance in plantarflexor muscles. HSU+WR mice significantly improved plantarflexor fatigue resistance, increased type I and IIa MHC abundance, increased fiber cross-sectional area, and increased the percentage of type I and IIA muscle fibers in the gastrocnemius muscle. HSU+WR mice also had a significantly greater percentage of BrdU-positive and Pax 7-positive nuclei inside muscle fibers and a greater MyoD-to-Pax 7 protein ratio compared with HSU+NoWR mice. The mechanotransduction protein Yes-associated protein (YAP) was elevated with reloading after HSU, but HSU+WR mice had lower levels of the inactive phosphorylated YAPserine127, which may have contributed to increased satellite cell activation with reloading after HSU. These results indicate that voluntary wheel running increased YAP signaling and satellite cell activity after HSU and this was associated with improved recovery. NEW & NOTEWORTHY Although satellite cell involvement in muscle remodeling has been challenged, the data in this study suggest that voluntary wheel running increased satellite cell activity and suppressed Yes-associated protein (YAP) protein relative to no wheel running and this was associated with improved muscle recovery of force, fatigue resistance, expression of type I myosin heavy chain, and greater fiber cross-sectional area after disuse.
Collapse
Affiliation(s)
- Matthew J Brooks
- Laboratory of Muscle Biology and Sarcopenia, Division of Exercise Physiology, Department of Human Performance and Applied Exercise Science, West Virginia University School of Medicine , Morgantown, West Virginia
| | - Ameena Hajira
- Laboratory of Muscle Biology and Sarcopenia, Division of Exercise Physiology, Department of Human Performance and Applied Exercise Science, West Virginia University School of Medicine , Morgantown, West Virginia
| | - Junaith S Mohamed
- Laboratory of Muscle Biology and Sarcopenia, Division of Exercise Physiology, Department of Human Performance and Applied Exercise Science, West Virginia University School of Medicine , Morgantown, West Virginia
| | - Stephen E Alway
- Laboratory of Muscle Biology and Sarcopenia, Division of Exercise Physiology, Department of Human Performance and Applied Exercise Science, West Virginia University School of Medicine , Morgantown, West Virginia
- Department of Physical Therapy, College of Health Professions and Department of Physiology, College of Medicine, University of Tennessee Health Sciences Center , Memphis, Tennessee
| |
Collapse
|
34
|
Diaphragm abnormalities in heart failure and aging: mechanisms and integration of cardiovascular and respiratory pathophysiology. Heart Fail Rev 2018; 22:191-207. [PMID: 27000754 DOI: 10.1007/s10741-016-9549-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inspiratory function is essential for alveolar ventilation and expulsive behaviors that promote airway clearance (e.g., coughing and sneezing). Current evidence demonstrates that inspiratory dysfunction occurs during healthy aging and is accentuated by chronic heart failure (CHF). This inspiratory dysfunction contributes to key aspects of CHF and aging cardiovascular and pulmonary pathophysiology including: (1) impaired airway clearance and predisposition to pneumonia; (2) inability to sustain ventilation during physical activity; (3) shallow breathing pattern that limits alveolar ventilation and gas exchange; and (4) sympathetic activation that causes cardiac arrhythmias and tissue vasoconstriction. The diaphragm is the primary inspiratory muscle; hence, its neuromuscular integrity is a main determinant of the adequacy of inspiratory function. Mechanistic work within animal and cellular models has revealed specific factors that may be responsible for diaphragm neuromuscular abnormalities in CHF and aging. These include phrenic nerve and neuromuscular junction alterations as well as intrinsic myocyte abnormalities, such as changes in the quantity and quality of contractile proteins, accelerated fiber atrophy, and shifts in fiber type distribution. CHF, aging, or CHF in the presence of aging disturbs the dynamics of circulating factors (e.g., cytokines and angiotensin II) and cell signaling involving sphingolipids, reactive oxygen species, and proteolytic pathways, thus leading to the previously listed abnormalities. Exercise-based rehabilitation combined with pharmacological therapies targeting the pathways reviewed herein hold promise to treat diaphragm abnormalities and inspiratory muscle dysfunction in CHF and aging.
Collapse
|
35
|
Diaphragm Muscle Weakness Following Acute Sustained Hypoxic Stress in the Mouse Is Prevented by Pretreatment with N-Acetyl Cysteine. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4805493. [PMID: 29670681 PMCID: PMC5836441 DOI: 10.1155/2018/4805493] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 10/29/2017] [Accepted: 12/12/2017] [Indexed: 12/18/2022]
Abstract
Oxygen deficit (hypoxia) is a major feature of cardiorespiratory diseases characterized by diaphragm dysfunction, yet the putative role of hypoxic stress as a driver of diaphragm dysfunction is understudied. We explored the cellular and functional consequences of sustained hypoxic stress in a mouse model. Adult male mice were exposed to 8 hours of normoxia, or hypoxia (FiO2 = 0.10) with or without antioxidant pretreatment (N-acetyl cysteine, 200 mg/kg i.p.). Ventilation and metabolism were measured. Diaphragm muscle contractile function, myofibre size and distribution, gene expression, protein signalling cascades, and oxidative stress (TBARS) were determined. Hypoxia caused pronounced diaphragm muscle weakness, unrelated to increased respiratory muscle work. Hypoxia increased diaphragm HIF-1α protein content and activated MAPK, mTOR, Akt, and FoxO3a signalling pathways, largely favouring protein synthesis. Hypoxia increased diaphragm lipid peroxidation, indicative of oxidative stress. FoxO3 and MuRF-1 gene expression were increased. Diaphragm 20S proteasome activity and muscle fibre size and distribution were unaffected by acute hypoxia. Pretreatment with N-acetyl cysteine substantially enhanced cell survival signalling, prevented hypoxia-induced diaphragm oxidative stress, and prevented hypoxia-induced diaphragm dysfunction. Hypoxia is a potent driver of diaphragm weakness, causing myofibre dysfunction without attendant atrophy. N-acetyl cysteine protects the hypoxic diaphragm and may have application as a potential adjunctive therapy.
Collapse
|
36
|
Hindi SM, Sato S, Xiong G, Bohnert KR, Gibb AA, Gallot YS, McMillan JD, Hill BG, Uchida S, Kumar A. TAK1 regulates skeletal muscle mass and mitochondrial function. JCI Insight 2018; 3:98441. [PMID: 29415881 DOI: 10.1172/jci.insight.98441] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/04/2018] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle mass is regulated by a complex array of signaling pathways. TGF-β-activated kinase 1 (TAK1) is an important signaling protein, which regulates context-dependent activation of multiple intracellular pathways. However, the role of TAK1 in the regulation of skeletal muscle mass remains unknown. Here, we report that inducible inactivation of TAK1 causes severe muscle wasting, leading to kyphosis, in both young and adult mice.. Inactivation of TAK1 inhibits protein synthesis and induces proteolysis, potentially through upregulating the activity of the ubiquitin-proteasome system and autophagy. Phosphorylation and enzymatic activity of AMPK are increased, whereas levels of phosphorylated mTOR and p38 MAPK are diminished upon inducible inactivation of TAK1 in skeletal muscle. In addition, targeted inactivation of TAK1 leads to the accumulation of dysfunctional mitochondria and oxidative stress in skeletal muscle of adult mice. Inhibition of TAK1 does not attenuate denervation-induced muscle wasting in adult mice. Finally, TAK1 activity is highly upregulated during overload-induced skeletal muscle growth, and inactivation of TAK1 prevents myofiber hypertrophy in response to functional overload. Overall, our study demonstrates that TAK1 is a key regulator of skeletal muscle mass and oxidative metabolism.
Collapse
Affiliation(s)
| | - Shuichi Sato
- Department of Anatomical Sciences and Neurobiology
| | | | | | | | | | | | | | - Shizuka Uchida
- Cardiovascular Innovation Institute, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Ashok Kumar
- Department of Anatomical Sciences and Neurobiology
| |
Collapse
|
37
|
Mechanisms Explaining Muscle Fatigue and Muscle Pain in Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): a Review of Recent Findings. Curr Rheumatol Rep 2017; 19:1. [PMID: 28116577 DOI: 10.1007/s11926-017-0628-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Here, we review potential causes of muscle dysfunction seen in many patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) such as the effects of oxidative and nitrosative stress (O&NS) and mitochondrial impairments together with reduced heat shock protein production and a range of metabolic abnormalities. RECENT FINDINGS Several studies published in the last few years have highlighted the existence of chronic O&NS, inflammation, impaired mitochondrial function and reduced heat shock protein production in many patients with ME/CFS. These studies have also highlighted the detrimental effects of chronically elevated O&NS on muscle functions such as reducing the time to muscle fatigue during exercise and impairing muscle contractility. Mechanisms have also been revealed by which chronic O&NS and or impaired heat shock production may impair muscle repair following exercise and indeed the adaptive responses in the striated muscle to acute and chronic increases in physical activity. The presence of chronic O&NS, low-grade inflammation and impaired heat shock protein production may well explain the objective findings of increased muscle fatigue, impaired contractility and multiple dimensions of exercise intolerance in many patients with ME/CFS.
Collapse
|
38
|
Annetta MG, Pittiruti M, Silvestri D, Grieco DL, Maccaglia A, La Torre MF, Magarelli N, Mercurio G, Caricato A, Antonelli M. Ultrasound assessment of rectus femoris and anterior tibialis muscles in young trauma patients. Ann Intensive Care 2017; 7:104. [PMID: 28986861 PMCID: PMC5630542 DOI: 10.1186/s13613-017-0326-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 09/30/2017] [Indexed: 02/08/2023] Open
Abstract
Purpose Quantitative and qualitative changes of skeletal muscle are typical and early findings in trauma patients, being possibly associated with functional impairment. Early assessment of muscle changes—as evaluated by muscle ultrasonography—could yield important information about patient’s outcome. Methods In this prospective observational study, we used ultrasonography to evaluate the morphological changes of rectus femoris (RF) and anterior tibialis (AT) muscles in a group of young, previously healthy trauma patients on enteral feeding. Results We studied 38 severely injured patients (median Injury Severity Score = 34; median age = 40 y.o.) over the course of the ICU stay up to 3 weeks after trauma. We found a progressive loss of muscle mass from day 0 to day 20, that was more relevant for the RF (45%) than for the AT (22%); this was accompanied by an increase in echogenicity (up to 2.5 by the Heckmatt Scale, where normal echogenicity = 1), which is an indicator of myofibers depletion. Conclusions Ultrasound evaluation of skeletal muscles is inexpensive, noninvasive, simple and easily repeatable. By this method, we were able to quantify the morphological changes of skeletal muscle in trauma patients. Further studies may rely on this technicque to evaluate the impact of different therapeutic strategies on muscle wasting.
Collapse
Affiliation(s)
- Maria Giuseppina Annetta
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario 'A.Gemelli', Largo A.Gemelli, 8, 00168, Rome, Italy
| | - Mauro Pittiruti
- Department of Surgery, Fondazione Policlinico Universitario 'A.Gemelli', Rome, Italy
| | - Davide Silvestri
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario 'A.Gemelli', Largo A.Gemelli, 8, 00168, Rome, Italy
| | - Domenico Luca Grieco
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario 'A.Gemelli', Largo A.Gemelli, 8, 00168, Rome, Italy.
| | - Alessio Maccaglia
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario 'A.Gemelli', Largo A.Gemelli, 8, 00168, Rome, Italy
| | | | - Nicola Magarelli
- Department of Radiology, Fondazione Policlinico Universitario 'A.Gemelli', Rome, Italy
| | - Giovanna Mercurio
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario 'A.Gemelli', Largo A.Gemelli, 8, 00168, Rome, Italy
| | - Anselmo Caricato
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario 'A.Gemelli', Largo A.Gemelli, 8, 00168, Rome, Italy
| | - Massimo Antonelli
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario 'A.Gemelli', Largo A.Gemelli, 8, 00168, Rome, Italy
| |
Collapse
|
39
|
Secretory sphingomyelinase (S-SMase) activity is elevated in patients with rheumatoid arthritis. Clin Rheumatol 2017; 37:1395-1399. [PMID: 28914380 DOI: 10.1007/s10067-017-3824-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/31/2017] [Accepted: 09/04/2017] [Indexed: 10/18/2022]
Abstract
The goals of this study were to determine if secretory sphingomyelinase (S-SMase) activity is elevated in patients with rheumatoid arthritis (RA) compared to control subjects and to examine the relationships of S-SMase activity with functional status, quality of life, and RA disease activity measurements. We collected data on 33 patients who were diagnosed with RA and 17 non-RA controls who were comparable in terms of age, sex, and race. Demographic, clinical data and self-reported measures of fatigue, pain, and physical function were obtained directly from patients and controls. RA patients also completed quantitative joint assessment using a 28-joint count and functional status and quality of life assessment using the Modified Health Assessment Questionnaire (MHAQ). Archived serum samples were used to analyze retrospectively serum S-SMase activity in patients and controls. The mean serum S-SMase activity was 1.4-fold higher in patients with RA (RA 2.8 ± 1.0 nmol/ml/h vs. controls 2.0 ± 0.8 nmol/ml/h; p = 0.014). Spearman's rho correlations between S-SMase activity and oxidant activity, markers of inflammation and endothelial activation with the exception of P-selectin (rho = 0.40, p = 0.034), measures of disease activity, functional status, and quality of life were not statistically significant in patients with RA. We confirmed that S-SMase activity is higher among RA patients compared to controls, as in other acute and chronic inflammatory diseases. Future studies can build on the present findings to understand more fully the biologic role(s) of S-SMase activity in RA.
Collapse
|
40
|
Yamada T, Steinz MM, Kenne E, Lanner JT. Muscle Weakness in Rheumatoid Arthritis: The Role of Ca 2+ and Free Radical Signaling. EBioMedicine 2017; 23:12-19. [PMID: 28781131 PMCID: PMC5605300 DOI: 10.1016/j.ebiom.2017.07.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/13/2017] [Accepted: 07/24/2017] [Indexed: 02/07/2023] Open
Abstract
In addition to the primary symptoms arising from inflammatory processes in the joints, muscle weakness is commonly reported by patients with rheumatoid arthritis (RA). Muscle weakness not only reduces the quality of life for the affected patients, but also dramatically increases the burden on society since patients' work ability decreases. A 25–70% reduction in muscular strength has been observed in pateints with RA when compared with age-matched healthy controls. The reduction in muscle strength is often larger than what could be explained by the reduction in muscle size in patients with RA, which indicates that intracellular (intrinsic) muscle dysfunction plays an important role in the underlying mechanism of muscle weakness associated with RA. In this review, we highlight the present understanding of RA-associated muscle weakness with special focus on how enhanced Ca2 + release from the ryanodine receptor and free radicals (reactive oxygen/nitrogen species) contributes to muscle weakness, and recent developments of novel therapeutic interventions. Muscle weakness is commonly reported by patients with rheumatoid arthritis (RA). Intrinsic muscle weakness is important in the underlying mechanisms of muscle weakness associated with rheumatoid arthritis. Enhanced Ca2 + release and peroxynitrite-induced stress contributes to RA-induced muscle weakness.
Collapse
Affiliation(s)
- Takashi Yamada
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Maarten M Steinz
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ellinor Kenne
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Johanna T Lanner
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
41
|
Hong Y, Kim H, Lee S, Jin Y, Choi J, Lee SR, Chang KT, Hong Y. Role of melatonin combined with exercise as a switch-like regulator for circadian behavior in advanced osteoarthritic knee. Oncotarget 2017; 8:97633-97647. [PMID: 29228639 PMCID: PMC5722591 DOI: 10.18632/oncotarget.19276] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 05/12/2017] [Indexed: 01/17/2023] Open
Abstract
Here, we show the role of melatonin combined with or without exercise as a determinant of multicellular behavior in osteoarthritis. We address the relationship between the molecular components governing local circadian clock and changes in the osteoarthritic musculoskeletal axis. Melatonin was injected subcutaneously in animals with advanced knee osteoarthritis (OA) for 4 weeks. Concurrently, moderate treadmill exercise was applied for 30 min/day. Morphometric, histological, and gene/protein-level analyses were performed in the cartilage, synovium, bone, and gastrocnemius muscle. Primary cultured chondrocytes repeatedly exposed to TNF-α were used in an in vitro study. The symptoms of OA include gait disturbance, osteophyte formation, and abnormal metabolism of the extracellular matrix (ECM) of the cartilage. Low-level expression of clock genes was accompanied by aberrant changes in cartilage specimens. Nanomolar doses of melatonin restored the expression of clock-controlled genes and corrected the abnormal chondrocyte phenotype. Melatonin combined with or without exercise prevented periarticular muscle damage as well as cartilage degeneration. But prolonged melatonin administration promoted the proteolytic cleavage of RANKL protein in the synovium, leading to severe subchondral bone erosion. These musculoskeletal changes apparently occurred via the regulation of molecular clock components, suggesting a role of melatonin as a switch-like regulator for the OA phenotype.
Collapse
Affiliation(s)
- Yunkyung Hong
- Department of Physical Therapy, College of Biomedical Science & Engineering, Inje University, Gimhae, Korea.,Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, Korea.,Biohealth Products Research Center (BPRC), Inje University, Gimhae, Korea.,Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae, Korea
| | - Hyunsoo Kim
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, Korea
| | - Seunghoon Lee
- Department of Physical Therapy, College of Biomedical Science & Engineering, Inje University, Gimhae, Korea.,Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, Korea.,Biohealth Products Research Center (BPRC), Inje University, Gimhae, Korea.,Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae, Korea
| | - Yunho Jin
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, Korea.,Biohealth Products Research Center (BPRC), Inje University, Gimhae, Korea.,Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae, Korea
| | - Jeonghyun Choi
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, Korea.,Biohealth Products Research Center (BPRC), Inje University, Gimhae, Korea.,Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae, Korea
| | - Sang-Rae Lee
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Korea
| | - Kyu-Tae Chang
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Korea
| | - Yonggeun Hong
- Department of Physical Therapy, College of Biomedical Science & Engineering, Inje University, Gimhae, Korea.,Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, Korea.,Biohealth Products Research Center (BPRC), Inje University, Gimhae, Korea.,Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae, Korea
| |
Collapse
|
42
|
Himori K, Tatebayashi D, Kanzaki K, Wada M, Westerblad H, Lanner JT, Yamada T. Neuromuscular electrical stimulation prevents skeletal muscle dysfunction in adjuvant-induced arthritis rat. PLoS One 2017. [PMID: 28636643 PMCID: PMC5479592 DOI: 10.1371/journal.pone.0179925] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Skeletal muscle weakness is a prominent feature in patients with rheumatoid arthritis (RA). In this study, we investigated whether neuromuscular electrical stimulation (NMES) training protects against skeletal muscle dysfunction in rats with adjuvant-induced arthritis (AIA). AIA was produced by intraarticular injection of complete Freund’s adjuvant into the knees of Wistar rats. For NMES training, dorsiflexor muscles were stimulated via a surface electrode (0.5 ms pulse, 50 Hz, 2 s on/4 s off). NMES training was performed every other day for three weeks and consisted of three sets produced at three min intervals. In each set, the electrical current was set to achieve 60% of the initial maximum isometric torque and the current was progressively increased to maintain this torque; stimulation was stopped when the 60% torque could no longer be maintained. After the intervention period, extensor digitorum longus (EDL) muscles were excised and used for physiological and biochemical analyses. There was a reduction in specific force production (i.e. force per cross-sectional area) in AIA EDL muscles, which was accompanied by aggregation of the myofibrillar proteins actin and desmin. Moreover, the protein expressions of the pro-oxidative enzymes NADPH oxidase, neuronal nitric oxide synthase, p62, and the ratio of the autophagosome marker LC3bII/LC3bI were increased in AIA EDL muscles. NMES training prevented all these AIA-induced alterations. The present data suggest that NMES training prevents AIA-induced skeletal muscle weakness presumably by counteracting the formation of actin and desmin aggregates. Thus, NMES training can be an effective treatment for muscle dysfunction in patients with RA.
Collapse
Affiliation(s)
- Koichi Himori
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Daisuke Tatebayashi
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Keita Kanzaki
- Faculty of Health and Welfare Science, Okayama Prefectural University, Soja, Okayama, Japan
| | - Masanobu Wada
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi Hiroshima, Japan
| | - Håkan Westerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Johanna T. Lanner
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Takashi Yamada
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
- * E-mail:
| |
Collapse
|
43
|
See KC, Lim TK. Shooting for the bull's eye in septic shock. J Thorac Dis 2017; 9:1463-1465. [PMID: 28740659 DOI: 10.21037/jtd.2017.05.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kay Choong See
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Division of Respiratory & Critical Care Medicine, University Medicine Cluster, National University Hospital, Singapore, Singapore
| | - Tow Keang Lim
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Division of Respiratory & Critical Care Medicine, University Medicine Cluster, National University Hospital, Singapore, Singapore
| |
Collapse
|
44
|
Grassi B, Majerczak J, Bardi E, Buso A, Comelli M, Chlopicki S, Guzik M, Mavelli I, Nieckarz Z, Salvadego D, Tyrankiewicz U, Skórka T, Bottinelli R, Zoladz JA, Pellegrino MA. Exercise training in Tgα q*44 mice during the progression of chronic heart failure: cardiac vs. peripheral (soleus muscle) impairments to oxidative metabolism. J Appl Physiol (1985) 2017; 123:326-336. [PMID: 28522765 DOI: 10.1152/japplphysiol.00342.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 12/16/2022] Open
Abstract
Cardiac function, skeletal (soleus) muscle oxidative metabolism, and the effects of exercise training were evaluated in a transgenic murine model (Tgαq*44) of chronic heart failure during the critical period between the occurrence of an impairment of cardiac function and the stage at which overt cardiac failure ensues (i.e., from 10 to 12 mo of age). Forty-eight Tgαq*44 mice and 43 wild-type FVB controls were randomly assigned to control groups and to groups undergoing 2 mo of intense exercise training (spontaneous running on an instrumented wheel). In mice evaluated at the beginning and at the end of training we determined: exercise performance (mean distance covered daily on the wheel); cardiac function in vivo (by magnetic resonance imaging); soleus mitochondrial respiration ex vivo (by high-resolution respirometry); muscle phenotype [myosin heavy chain (MHC) isoform content; citrate synthase (CS) activity]; and variables related to the energy status of muscle fibers [ratio of phosphorylated 5'-AMP-activated protein kinase (AMPK) to unphosphorylated AMPK] and mitochondrial biogenesis and function [peroxisome proliferative-activated receptor-γ coactivator-α (PGC-1α)]. In the untrained Tgαq*44 mice functional impairments of exercise performance, cardiac function, and soleus muscle mitochondrial respiration were observed. The impairment of mitochondrial respiration was related to the function of complex I of the respiratory chain, and it was not associated with differences in CS activity, MHC isoforms, p-AMPK/AMPK, and PGC-1α levels. Exercise training improved exercise performance and cardiac function, but it did not affect mitochondrial respiration, even in the presence of an increased percentage of type 1 MHC isoforms. Factors "upstream" of mitochondria were likely mainly responsible for the improved exercise performance.NEW & NOTEWORTHY Functional impairments in exercise performance, cardiac function, and soleus muscle mitochondrial respiration were observed in transgenic chronic heart failure mice, evaluated in the critical period between the occurrence of an impairment of cardiac function and the terminal stage of the disease. Exercise training improved exercise performance and cardiac function, but it did not affect the impaired mitochondrial respiration. Factors "upstream" of mitochondria, including an enhanced cardiovascular O2 delivery, were mainly responsible for the functional improvement.
Collapse
Affiliation(s)
- Bruno Grassi
- Department of Medicine, University of Udine, Udine, Italy; .,Institute of Bioimaging and Molecular Physiology, National Research Council, Milan, Italy
| | - Joanna Majerczak
- Department of Muscle Physiology, Faculty of Rehabilitation, University School of Physical Education, Krakow, Poland
| | - Eleonora Bardi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Alessia Buso
- Department of Medicine, University of Udine, Udine, Italy
| | - Marina Comelli
- Department of Medicine, University of Udine, Udine, Italy
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University Medical College, Krakow, Poland.,Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Magdalena Guzik
- Department of Muscle Physiology, Faculty of Rehabilitation, University School of Physical Education, Krakow, Poland
| | - Irene Mavelli
- Department of Medicine, University of Udine, Udine, Italy
| | - Zenon Nieckarz
- Institute of Physics, Jagiellonian University, Krakow, Poland; and
| | - Desy Salvadego
- Department of Medicine, University of Udine, Udine, Italy
| | - Urszula Tyrankiewicz
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - Tomasz Skórka
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | | | - Jerzy A Zoladz
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University Medical College, Krakow, Poland
| | | |
Collapse
|
45
|
Cunha TF, Bechara LRG, Bacurau AVN, Jannig PR, Voltarelli VA, Dourado PM, Vasconcelos AR, Scavone C, Ferreira JCB, Brum PC. Exercise training decreases NADPH oxidase activity and restores skeletal muscle mass in heart failure rats. J Appl Physiol (1985) 2017; 122:817-827. [DOI: 10.1152/japplphysiol.00182.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 12/23/2016] [Accepted: 01/12/2017] [Indexed: 11/22/2022] Open
Abstract
We have recently demonstrated that NADPH oxidase hyperactivity, NF-κB activation, and increased p38 phosphorylation lead to atrophy of glycolytic muscle in heart failure (HF). Aerobic exercise training (AET) is an efficient strategy to counteract skeletal muscle atrophy in this syndrome. Therefore, we tested whether AET would regulate muscle redox balance and protein degradation by decreasing NADPH oxidase hyperactivity and reestablishing NF-κB signaling, p38 phosphorylation, and proteasome activity in plantaris muscle of myocardial infarcted-induced HF (MI) rats. Thirty-two male Wistar rats underwent MI or fictitious surgery (SHAM) and were randomly assigned into untrained (UNT) and trained (T; 8 wk of AET on treadmill) groups. AET prevented HF signals and skeletal muscle atrophy in MI-T, which showed an improved exercise tolerance, attenuated cardiac dysfunction and increased plantaris fiber cross-sectional area. To verify the role of inflammation and redox imbalance in triggering protein degradation, circulating TNF-α levels, NADPH oxidase profile, NF-κB signaling, p38 protein levels, and proteasome activity were assessed. MI-T showed a reduced TNF-α levels, NADPH oxidase activity, and Nox2 mRNA expression toward SHAM-UNT levels. The rescue of NADPH oxidase activity induced by AET in MI rats was paralleled by reducing nuclear binding activity of the NF-κB, p38 phosphorylation, atrogin-1, mRNA levels, and 26S chymotrypsin-like proteasome activity. Taken together our data provide evidence for AET improving plantaris redox homeostasis in HF associated with a decreased NADPH oxidase, redox-sensitive proteins activation, and proteasome hyperactivity further preventing atrophy. These data reinforce the role of AET as an efficient therapy for muscle wasting in HF. NEW & NOTEWORTHY This study demonstrates, for the first time, the contribution of aerobic exercise training (AET) in decreasing muscle NADPH oxidase activity associated with reduced reactive oxygen species production and systemic inflammation, which diminish NF-κB overactivation, p38 phosphorylation, and ubiquitin proteasome system hyperactivity. These molecular changes counteract plantaris atrophy in trained myocardial infarction-induced heart failure rats. Our data provide new evidence into how AET may regulate protein degradation and thus prevent skeletal muscle atrophy.
Collapse
Affiliation(s)
- Telma F. Cunha
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Luiz R. G. Bechara
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Aline V. N. Bacurau
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Paulo R. Jannig
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | | | - Paulo M. Dourado
- Heart Institute, Faculty of Medicine, University of Sao Paulo, São Paulo, Brazil
| | - Andrea R. Vasconcelos
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil; and
| | - Cristóforo Scavone
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil; and
| | | | - Patricia C. Brum
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
46
|
Himori K, Abe M, Tatebayashi D, Lee J, Westerblad H, Lanner JT, Yamada T. Superoxide dismutase/catalase mimetic EUK-134 prevents diaphragm muscle weakness in monocrotalin-induced pulmonary hypertension. PLoS One 2017; 12:e0169146. [PMID: 28152009 PMCID: PMC5289453 DOI: 10.1371/journal.pone.0169146] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 12/12/2016] [Indexed: 11/18/2022] Open
Abstract
Patients with pulmonary hypertension (PH) suffer from inspiratory insufficiency, which has been associated with intrinsic contractile dysfunction in diaphragm muscle. Here, we examined the role of redox stress in PH-induced diaphragm weakness by using the novel antioxidant, EUK-134. Male Wistar rats were randomly divided into control (CNT), CNT + EUK-134 (CNT + EUK), monocrotaline-induced PH (PH), and PH + EUK groups. PH was induced by a single intraperitoneal injection of monocrotaline (60 mg/kg body weight). EUK-134 (3 mg/kg body weight/day), a cell permeable mimetic of superoxide dismutase (SOD) and catalase, was daily intraperitoneally administered starting one day after induction of PH. After four weeks, diaphragm muscles were excised for mechanical and biochemical analyses. There was a decrease in specific tetanic force in diaphragm bundles from the PH group, which was accompanied by increases in: protein expression of NADPH oxidase 2/gp91phox, SOD2, and catalase; 3-nitrotyrosine content and aggregation of actin; glutathione oxidation. Treatment with EUK-134 prevented the force decrease and the actin modifications in PH diaphragm bundles. These data show that redox stress plays a pivotal role in PH-induced diaphragm weakness. Thus, antioxidant treatment can be a promising strategy for PH patients with inspiratory failure.
Collapse
Affiliation(s)
- Koichi Himori
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Masami Abe
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Daisuke Tatebayashi
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Jaesik Lee
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Håkan Westerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Johanna T. Lanner
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Takashi Yamada
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
- * E-mail:
| |
Collapse
|
47
|
Dos Santos C, Hussain SNA, Mathur S, Picard M, Herridge M, Correa J, Bain A, Guo Y, Advani A, Advani SL, Tomlinson G, Katzberg H, Streutker CJ, Cameron JI, Schols A, Gosker HR, Batt J. Mechanisms of Chronic Muscle Wasting and Dysfunction after an Intensive Care Unit Stay. A Pilot Study. Am J Respir Crit Care Med 2016; 194:821-830. [PMID: 27058306 DOI: 10.1164/rccm.201512-2344oc] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
RATIONALE Critical illness survivors often experience permanent functional disability due to intensive care unit (ICU)-acquired weakness. The mechanisms responsible for long-term weakness persistence versus resolution are unknown. OBJECTIVES To delineate cellular mechanisms underlying long-term weakness persistence in ICU survivors. METHODS We conducted a nested, prospective study of critically ill patients mechanically ventilated for 7 days or longer. The patients were recruited from the RECOVER program and serially assessed over 6 months after ICU discharge. Twenty-seven of 82 patients consented to participate; 15 and 11 patients were assessed at 7 days and 6 months after ICU discharge, respectively. MEASUREMENTS AND MAIN RESULTS We assessed motor functional capacity, quadriceps size, strength, and voluntary contractile capacity and performed electromyography, nerve conduction studies, and vastus lateralis biopsies for histologic, cellular, and molecular analyses. Strength and quadriceps cross-sectional areas were decreased 7 days after ICU discharge. Weakness persisted to 6 months and correlated with decreased function. Quadriceps atrophy resolved in 27% patients at 6 months. Muscle mass reconstitution did not correlate with resolution of weakness, owing to persistent impaired voluntary contractile capacity. Compared with Day 7, increased ubiquitin-proteasome system-mediated muscle proteolysis, inflammation, and decreased mitochondrial content all normalized at 6 months. Autophagy markers were normal at 6 months. Patients with sustained atrophy had decreased muscle progenitor (satellite) cell content. CONCLUSIONS Long-term weakness in ICU survivors results from heterogeneous muscle pathophysiology with variable combinations of muscle atrophy and impaired contractile capacity. These findings are not explained by ongoing muscle proteolysis, inflammation, or diminished mitochondrial content. Sustained muscle atrophy is associated with decreased satellite cell content and compromised muscle regrowth, suggesting impaired regenerative capacity.
Collapse
Affiliation(s)
- Claudia Dos Santos
- 1 Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.,2 Division of Critical Care Medicine, Department of Medicine
| | - Sabah N A Hussain
- 3 Department of Critical Care, McGill University Health Centre, and Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada
| | | | - Martin Picard
- 5 Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania
| | - Margaret Herridge
- 2 Division of Critical Care Medicine, Department of Medicine.,6 Division of Critical Care Medicine, University Health Network, Toronto, Ontario, Canada; and
| | - Judy Correa
- 1 Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | | | - Yeting Guo
- 3 Department of Critical Care, McGill University Health Centre, and Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada
| | - Andrew Advani
- 1 Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.,8 Department of Medicine
| | - Suzanne L Advani
- 1 Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.,8 Department of Medicine
| | | | | | - Catherine J Streutker
- 1 Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.,10 Department of Laboratory Medicine and Pathobiology, and
| | - Jill I Cameron
- 11 Department of Occupational Science and Occupational Therapy, University of Toronto, Toronto, Ontario, Canada
| | - Annemie Schols
- 12 Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Harry R Gosker
- 12 Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Jane Batt
- 1 Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.,7 Division of Respirology, Department of Medicine
| | | | | | | |
Collapse
|
48
|
Powers SK, Morton AB, Ahn B, Smuder AJ. Redox control of skeletal muscle atrophy. Free Radic Biol Med 2016; 98:208-217. [PMID: 26912035 PMCID: PMC5006677 DOI: 10.1016/j.freeradbiomed.2016.02.021] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/11/2016] [Accepted: 02/17/2016] [Indexed: 12/24/2022]
Abstract
Skeletal muscles comprise the largest organ system in the body and play an essential role in body movement, breathing, and glucose homeostasis. Skeletal muscle is also an important endocrine organ that contributes to the health of numerous body organs. Therefore, maintaining healthy skeletal muscles is important to support overall health of the body. Prolonged periods of muscle inactivity (e.g., bed rest or limb immobilization) or chronic inflammatory diseases (i.e., cancer, kidney failure, etc.) result in skeletal muscle atrophy. An excessive loss of muscle mass is associated with a poor prognosis in several diseases and significant muscle weakness impairs the quality of life. The skeletal muscle atrophy that occurs in response to inflammatory diseases or prolonged inactivity is often associated with both oxidative and nitrosative stress. In this report, we critically review the experimental evidence that provides support for a causative link between oxidants and muscle atrophy. More specifically, this review will debate the sources of oxidant production in skeletal muscle undergoing atrophy as well as provide a detailed discussion on how reactive oxygen species and reactive nitrogen species modulate the signaling pathways that regulate both protein synthesis and protein breakdown.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, United States.
| | - Aaron B Morton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, United States
| | - Bumsoo Ahn
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, United States
| | - Ashley J Smuder
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, United States
| |
Collapse
|
49
|
Maffei M, Barone I, Scabia G, Santini F. The Multifaceted Haptoglobin in the Context of Adipose Tissue and Metabolism. Endocr Rev 2016; 37:403-16. [PMID: 27337111 DOI: 10.1210/er.2016-1009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Obesity is a low chronic inflammatory state because several inflammatory factors are increased in obese subjects, this having important implications for the onset of obesity-associated complications. The source of most of these inflammatory molecules is white adipose tissue (WAT), which upon excessive weight gain, becomes infiltrated with macrophages and lymphocytes and undergoes important changes in its gene expression. Haptoglobin (Hp), a typical marker of inflammation in clinical practice, main carrier of free hemoglobin, and long known to be part of the hepatic acute phase response, perfectly sits in the intersection between obesity and inflammation: it is expressed by adipocytes and its abundance in WAT and in plasma positively relates to the degree of adiposity. In the present review, we will analyze causes and consequences of Hp expression and regulation in WAT and how these relate to the obesity/inflammation paradigm and comorbidities.
Collapse
Affiliation(s)
- Margherita Maffei
- Institute of Clinical Physiology (M.M.), Italian National Research Council, 56124 Pisa, Italy; Laboratory of Neurobiology (I.B.), Scuola Normale Superiore, 56100 Pisa, Italy; and Obesity Center at the Endocrinology Unit (M.M., I.B., G.S., F.S.), Pisa University-Hospital Department of Clinical and Experimental Medicine, 56124 Pisa, Italy
| | - Ilaria Barone
- Institute of Clinical Physiology (M.M.), Italian National Research Council, 56124 Pisa, Italy; Laboratory of Neurobiology (I.B.), Scuola Normale Superiore, 56100 Pisa, Italy; and Obesity Center at the Endocrinology Unit (M.M., I.B., G.S., F.S.), Pisa University-Hospital Department of Clinical and Experimental Medicine, 56124 Pisa, Italy
| | - Gaia Scabia
- Institute of Clinical Physiology (M.M.), Italian National Research Council, 56124 Pisa, Italy; Laboratory of Neurobiology (I.B.), Scuola Normale Superiore, 56100 Pisa, Italy; and Obesity Center at the Endocrinology Unit (M.M., I.B., G.S., F.S.), Pisa University-Hospital Department of Clinical and Experimental Medicine, 56124 Pisa, Italy
| | - Ferruccio Santini
- Institute of Clinical Physiology (M.M.), Italian National Research Council, 56124 Pisa, Italy; Laboratory of Neurobiology (I.B.), Scuola Normale Superiore, 56100 Pisa, Italy; and Obesity Center at the Endocrinology Unit (M.M., I.B., G.S., F.S.), Pisa University-Hospital Department of Clinical and Experimental Medicine, 56124 Pisa, Italy
| |
Collapse
|
50
|
Emanuele Bianchi V, Falcioni G. Reactive oxygen species, health and longevity. AIMS MOLECULAR SCIENCE 2016. [DOI: 10.3934/molsci.2016.4.479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|