1
|
Alkawadri T, Wong PY, Fong Z, Lundy FT, McGarvey LP, Hollywood MA, Thornbury KD, Sergeant GP. M2 Muscarinic Receptor-Dependent Contractions of Airway Smooth Muscle are Inhibited by Activation of β-Adrenoceptors. FUNCTION 2022; 3:zqac050. [PMID: 36325515 PMCID: PMC9617473 DOI: 10.1093/function/zqac050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 01/07/2023] Open
Abstract
Beta-adrenoceptor (β-AR) agonists inhibit cholinergic contractions of airway smooth muscle (ASM), but the underlying mechanisms are unclear. ASM cells express M3 and M2 muscarinic receptors, but the bronchoconstrictor effects of acetylcholine are believed to result from activation of M3Rs, while the role of the M2Rs is confined to offsetting β-AR-dependent relaxations. However, a profound M2R-mediated hypersensitization of M3R-dependent contractions of ASM was recently reported, indicating an important role for M2Rs in cholinergic contractions of ASM. Here, we investigated if M2R-dependent contractions of murine bronchial rings were inhibited by activation of β-ARs. M2R-dependent contractions were apparent at low frequency (2Hz) electric field stimulation (EFS) and short (10s) stimulus intervals. The β1-AR agonist, denopamine inhibited EFS-evoked contractions of ASM induced by reduction in stimulus interval from 100 to 10 s and was more effective at inhibiting contractions evoked by EFS at 2 than 20 Hz. Denopamine also abolished carbachol-evoked contractions that were resistant to the M3R antagonist 4-DAMP, similar to the effects of the M2R antagonists, methoctramine and AFDX-116. The inhibitory effects of denopamine on EFS-evoked contractions of ASM were smaller in preparations taken from M2R -/- mice, compared to wild-type (WT) controls. In contrast, inhibitory effects of the β3-AR agonist, BRL37344, on EFS-evoked contractions of detrusor strips taken from M2R -/- mice were greater than WT controls. These data suggest that M2R-dependent contractions of ASM were inhibited by activation of β1-ARs and that genetic ablation of M2Rs decreased the efficacy of β-AR agonists on cholinergic contractions.
Collapse
Affiliation(s)
- Tuleen Alkawadri
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, Co. Louth A91 K584, Ireland
| | - Pei Yee Wong
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, Co. Louth A91 K584, Ireland
| | - Zhihui Fong
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, Co. Louth A91 K584, Ireland
| | - Fionnuala T Lundy
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Lorcan P McGarvey
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Mark A Hollywood
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, Co. Louth A91 K584, Ireland
| | - Keith D Thornbury
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, Co. Louth A91 K584, Ireland
| | | |
Collapse
|
2
|
Alkawadri T, McGarvey LP, Mullins ND, Hollywood MA, Thornbury KD, Sergeant GP. Contribution of Postjunctional M2 Muscarinic Receptors to Cholinergic Nerve-Mediated Contractions of Murine Airway Smooth Muscle. FUNCTION (OXFORD, ENGLAND) 2021; 3:zqab053. [PMID: 35330928 PMCID: PMC8788713 DOI: 10.1093/function/zqab053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 01/07/2023]
Abstract
Postjunctional M2Rs on airway smooth muscle (ASM) outnumber M3Rs by a ratio of 4:1 in most species, however, it is the M3Rs that are thought to mediate the bronchoconstrictor effects of acetylcholine. In this study, we describe a novel and profound M2R-mediated hypersensitization of M3R-dependent contractions of ASM at low stimulus frequencies.. Contractions induced by 2Hz EFS were augmented by > 2.5-fold when the stimulus interval was reduced from 100 to 10 s. This effect was reversed by the M2R antagonists, methoctramine, and AFDX116, and was absent in M2R null mice. The M3R antagonist 4-DAMP abolished the entire response in both WT and M2R KO mice. The M2R-mediated potentiation of EFS-induced contractions was not observed when the stimulus frequency was increased to 20 Hz. A subthreshold concentration of carbachol enhanced the amplitude of EFS-evoked contractions in WT, but not M2R null mice. These data highlight a significant M2R-mediated potentiation of M3R-dependent contractions of ASM at low frequency stimulation that could be relevant in diseases such as asthma and COPD.
Collapse
Affiliation(s)
- Tuleen Alkawadri
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, Co. Louth, A91 K584, Ireland
| | - Lorcan P McGarvey
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, BT7 1NN, Northern Ireland
| | - N D Mullins
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, Co. Louth, A91 K584, Ireland
| | - Mark A Hollywood
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, Co. Louth, A91 K584, Ireland
| | - Keith D Thornbury
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, Co. Louth, A91 K584, Ireland
| | | |
Collapse
|
3
|
Role of Airway Smooth Muscle in Inflammation Related to Asthma and COPD. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:139-172. [PMID: 33788192 DOI: 10.1007/978-3-030-63046-1_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Airway smooth muscle contributes to both contractility and inflammation in the pathophysiology of asthma and COPD. Airway smooth muscle cells can change the degree of a variety of functions, including contraction, proliferation, migration, and the secretion of inflammatory mediators (phenotype plasticity). Airflow limitation, airway hyperresponsiveness, β2-adrenergic desensitization, and airway remodeling, which are fundamental characteristic features of these diseases, are caused by phenotype changes in airway smooth muscle cells. Alterations between contractile and hyper-contractile, synthetic/proliferative phenotypes result from Ca2+ dynamics and Ca2+ sensitization. Modulation of Ca2+ dynamics through the large-conductance Ca2+-activated K+ channel/L-type voltage-dependent Ca2+ channel linkage and of Ca2+ sensitization through the RhoA/Rho-kinase pathway contributes not only to alterations in the contractile phenotype involved in airflow limitation, airway hyperresponsiveness, and β2-adrenergic desensitization but also to alteration of the synthetic/proliferative phenotype involved in airway remodeling. These Ca2+ signal pathways are also associated with synergistic effects due to allosteric modulation between β2-adrenergic agonists and muscarinic antagonists. Therefore, airway smooth muscle may be a target tissue in the therapy for these diseases. Moreover, the phenotype changing in airway smooth muscle cells with focuses on Ca2+ signaling may provide novel strategies for research and development of effective remedies against both bronchoconstriction and inflammation.
Collapse
|
4
|
Abstract
Ca2+- and voltage-gated K+ channels of large conductance (BK channels) are expressed in a diverse variety of both excitable and inexcitable cells, with functional properties presumably uniquely calibrated for the cells in which they are found. Although some diversity in BK channel function, localization, and regulation apparently arises from cell-specific alternative splice variants of the single pore-forming α subunit ( KCa1.1, Kcnma1, Slo1) gene, two families of regulatory subunits, β and γ, define BK channels that span a diverse range of functional properties. We are just beginning to unravel the cell-specific, physiological roles served by BK channels of different subunit composition.
Collapse
Affiliation(s)
- Vivian Gonzalez-Perez
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| | - Christopher J Lingle
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| |
Collapse
|
5
|
Noda S, Suzuki Y, Yamamura H, Giles WR, Imaizumi Y. Roles of LRRC26 as an auxiliary γ1-subunit of large-conductance Ca 2+-activated K + channels in bronchial smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2020; 318:L366-L375. [PMID: 31800260 DOI: 10.1152/ajplung.00331.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In visceral smooth muscle cells (SMCs), the large-conductance Ca2+-activated K+ (BK) channel is one of the key elements underlying a negative feedback mechanism that is essential for the regulation of intracellular Ca2+ concentration. Although leucine-rich repeat-containing (LRRC) proteins have been identified as novel auxiliary γ-subunits of the BK channel (BKγ) in several cell types, its physiological roles in SMCs are unclear. The BKγ expression patterns in selected SM tissues were examined using real-time PCR analyses and Western blotting. The functional contribution of BKγ1 to BK channel activity was examined by whole cell patch-clamp in SMCs and heterologous expression systems. BKγ1 expression in mouse bronchial SMCs (mBSMCs) was higher than in other several SMC types. Coimmunoprecipitation and total internal reflection fluorescence imaging analyses revealed molecular interaction between BKα and BKγ1 in mBSMCs. Under voltage-clamp, steady-state activation of BK channel currents at pCa 8.0 in mBSMCs occurred in a voltage range comparable to that of reconstituted BKα/BKγ1 complex. However, this range was much more negative than in mouse aortic SMCs (mASMCs) or in HEK293 cells expressing BKα alone and β-subunit (BKβ1). Mallotoxin, a selective activator of BK channel that lacks BKγ1, dose-dependently activated BK currents in mASMCs but not in mBSMCs. The abundant expression of BKγ1 in mBSMCs extensively facilitates BK channel activity to keep the resting membrane potential at negative values and prevents contraction under physiological conditions.
Collapse
Affiliation(s)
- Sayuri Noda
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Yoshiaki Suzuki
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Hisao Yamamura
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Wayne R Giles
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Yuji Imaizumi
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
6
|
Abstract
Ca2+- and voltage-gated K+ channels of large conductance (BK channels) are expressed in a diverse variety of both excitable and inexcitable cells, with functional properties presumably uniquely calibrated for the cells in which they are found. Although some diversity in BK channel function, localization, and regulation apparently arises from cell-specific alternative splice variants of the single pore-forming α subunit ( KCa1.1, Kcnma1, Slo1) gene, two families of regulatory subunits, β and γ, define BK channels that span a diverse range of functional properties. We are just beginning to unravel the cell-specific, physiological roles served by BK channels of different subunit composition.
Collapse
Affiliation(s)
- Vivian Gonzalez-Perez
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| | - Christopher J Lingle
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| |
Collapse
|
7
|
Bradley E, Large RJ, Bihun VV, Mullins ND, Hollywood MA, Sergeant GP, Thornbury KD. Inhibitory effects of openers of large-conductance Ca 2+-activated K + channels on agonist-induced phasic contractions in rabbit and mouse bronchial smooth muscle. Am J Physiol Cell Physiol 2018; 315:C818-C829. [PMID: 30257105 DOI: 10.1152/ajpcell.00068.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Airway smooth muscle expresses abundant BKCa channels, but their role in regulating contractions remains controversial. This study examines the effects of two potent BKCa channel openers on agonist-induced phasic contractions in rabbit and mouse bronchi. First, we demonstrated the ability of 10 μM GoSlo-SR5-130 to activate BKCa channels in inside-out patches from rabbit bronchial myocytes, where it shifted the activation V1/2 by -88 ± 11 mV (100 nM Ca2+, n = 7). In mouse airway smooth muscle cells, GoSlo-SR5-130 dose dependently shifted V1/2 by 12-83 mV over a concentration range of 1-30 μM. Compound X, a racemic mixture of two enantiomers, reported to be potent BKCa channel openers, shifted V1/2 by 20-79 mV over a concentration range of 0.3-3 μM. In rabbit bronchial rings, exposure to histamine (1 μM) induced phasic contractions after a delay of ~35 min. These were abolished by GoSlo-SR5-130 (30 μM). Nifedipine (100 nM) and CaCCinhA01 (10 μM), a TMEM16A blocker, also abolished histamine-induced phasic contractions. In mouse bronchi, similar phasic contractions were evoked by exposure to U46619 (100 nM) and carbachol (100 nM). In each case, these were inhibited by concentrations of GoSlo-SR5-130 and compound X that shifted the activation V1/2 of BKCa channels in the order of -80 mV. In conclusion, membrane potential-dependent regulation of L-type Ca2+ channels appears to be important for histamine-, U46619-, and carbachol-induced phasic contractions in airway smooth muscle. Contractions can be abolished by BKCa channel openers, suggesting that these channels are potential targets for treating some causes of airway obstruction.
Collapse
Affiliation(s)
- Eamonn Bradley
- Smooth Muscle Research Centre, Dundalk Institute of Technology , Dundalk , Ireland
| | - Roddy J Large
- Smooth Muscle Research Centre, Dundalk Institute of Technology , Dundalk , Ireland
| | | | - Nicolas D Mullins
- Smooth Muscle Research Centre, Dundalk Institute of Technology , Dundalk , Ireland
| | - Mark A Hollywood
- Smooth Muscle Research Centre, Dundalk Institute of Technology , Dundalk , Ireland
| | - Gerard P Sergeant
- Smooth Muscle Research Centre, Dundalk Institute of Technology , Dundalk , Ireland
| | - Keith D Thornbury
- Smooth Muscle Research Centre, Dundalk Institute of Technology , Dundalk , Ireland
| |
Collapse
|
8
|
Semenov I, Brenner R. Voltage effects on muscarinic acetylcholine receptor-mediated contractions of airway smooth muscle. Physiol Rep 2018; 6:e13856. [PMID: 30187663 PMCID: PMC6125245 DOI: 10.14814/phy2.13856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/11/2018] [Accepted: 08/17/2018] [Indexed: 01/31/2023] Open
Abstract
Studies have shown that the activity of muscarinic receptors and their affinity to agonists are sensitive to membrane potential. It was reported that in airway smooth muscle (ASM) depolarization evoked by high K+ solution increases contractility through direct effects on M3 muscarinic receptors. In this study, we assessed the physiological relevance of voltage sensitivity of muscarinic receptors on ASM contractility. Our findings reveal that depolarization by high K+ solution induces contraction in intact mouse trachea predominantly through activation of acetylcholine release from embedded nerves, and to a lesser extent by direct effects on M3 receptors. We therefore devised a pharmacological approach to depolarize tissue to various extents in an organ bath preparation, and isolate contraction due exclusively to ASM muscarinic receptors within range of physiological voltages. Our results indicate that unliganded muscarinic receptors do not contribute to contraction regardless of voltage. Utilizing low K+ solution to hyperpolarize membrane potentials during contractions had no effect on liganded muscarinic receptor-evoked contractions, although it eliminated the contribution of voltage-gated calcium channels. However, we found that muscarinic signaling was potentiated by at least 42% at depolarizing voltages (average -12 mV) induced by high K+ solution (20 mmol/L K+ ). In summary, we conclude that contractions evoked by direct activation of muscarinic receptors have negligible sensitivity to physiological voltages. However, contraction activated by cholinergic stimulation can be potentiated by membrane potentials occurring beyond the physiological range of ASM.
Collapse
Affiliation(s)
- Iurii Semenov
- Frank Reidy Research Center for BioelectricsOld Dominion UniversityNorfolkVirginia
| | - Robert Brenner
- Department of Cell and Integrative PhysiologyUniversity of Texas Health Science Center San AntonioSan AntonioTexas
| |
Collapse
|
9
|
Kume H, Nishiyama O, Isoya T, Higashimoto Y, Tohda Y, Noda Y. Involvement of Allosteric Effect and K Ca Channels in Crosstalk between β₂-Adrenergic and Muscarinic M₂ Receptors in Airway Smooth Muscle. Int J Mol Sci 2018; 19:ijms19071999. [PMID: 29987243 PMCID: PMC6073859 DOI: 10.3390/ijms19071999] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/24/2018] [Accepted: 07/04/2018] [Indexed: 12/17/2022] Open
Abstract
To advance the development of bronchodilators for asthma and chronic obstructive pulmonary disease (COPD), this study was designed to investigate the mechanism of functional antagonism between β2-adrenergic and muscarinic M2 receptors, focusing on allosteric effects and G proteins/ion channels coupling. Muscarinic receptor antagonists (tiotropium, glycopyrronium, atropine) synergistically enhanced the relaxant effects of β2-adrenergic receptor agonists (procaterol, salbutamol, formoterol) in guinea pig trachealis. This crosstalk was inhibited by iberitoxin, a large-conductance Ca2+-activated K+ (KCa) channel inhibitor, whereas it was increased by verapamil, a L-type voltage-dependent Ca2+ (VDC) channel inhibitor; additionally, it was enhanced after tissues were incubated with pertussis or cholera toxin. This synergism converges in the G proteins (Gi, Gs)/KCa channel/VDC channel linkages. Muscarinic receptor antagonists competitively suppressed, whereas, β2-adrenergic receptor agonists noncompetitively suppressed muscarinic contraction. In concentration-inhibition curves for β2-adrenergic receptor agonists with muscarinic receptor antagonists, EC50 was markedly decreased, and maximal inhibition was markedly increased. Hence, muscarinic receptor antagonists do not bind to allosteric sites on muscarinic receptors. β2-Adrenergic receptor agonists bind to allosteric sites on these receptors; their intrinsic efficacy is attenuated by allosteric modulation (partial agonism). Muscarinic receptor antagonists enhance affinity and efficacy of β2-adrenergic action via allosteric sites in β2-adrenergic receptors (synergism). In conclusion, KCa channels and allosterism may be novel targets of bronchodilator therapy for diseases such as asthma and COPD.
Collapse
Affiliation(s)
- Hiroaki Kume
- Department of Respiratory Medicine and Allergology, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama 589-8511, Japan.
| | - Osamu Nishiyama
- Department of Respiratory Medicine and Allergology, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama 589-8511, Japan.
| | - Takaaki Isoya
- Department of Respiratory Medicine and Allergology, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama 589-8511, Japan.
| | - Yuji Higashimoto
- Department of Respiratory Medicine and Allergology, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama 589-8511, Japan.
| | - Yuji Tohda
- Department of Respiratory Medicine and Allergology, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama 589-8511, Japan.
| | - Yukihiro Noda
- Division of Clinical Sciences and Neuropsychopharmacology, Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan.
| |
Collapse
|
10
|
Chloroform Extract of Artemisia annua L. Relaxes Mouse Airway Smooth Muscle. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:9870414. [PMID: 29259649 PMCID: PMC5702405 DOI: 10.1155/2017/9870414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/06/2017] [Accepted: 10/10/2017] [Indexed: 11/18/2022]
Abstract
Artemisia annua L. belongs to the Asteraceae family, which is indigenous to China. It has valuable pharmacological properties, such as antimalarial, anti-inflammatory, and anticancer properties. However, whether it possesses antiasthma properties is unknown. In the current study, chloroform extract of Artemisia annua L. (CEAA) was prepared, and we found that CEAA completely eliminated acetylcholine (ACh) or high K+-elicited (80 mM) contractions of mouse tracheal rings (TRs). Patch-clamp technique and ion channel blockers were employed to explore the underlying mechanisms of the relaxant effect of CEAA. In whole-cell current recording, CEAA almost fully abolished voltage-dependent Ca2+ channel (VDCC) currents and markedly enhanced large conductance Ca2+-activated K+ (BK) channel currents on airway smooth muscle cells (ASMCs). In single channel current recording, CEAA increased the opening probability but had no effect on the single channel conductance of BK channels. However, under paxilline-preincubated (a selective BK channel blocker) conditions, CEAA only slightly increased BK channel currents. These results indicate that CEAA may contain active components with potent antiasthma activity. The abolished VDCCs by CEAA may mainly contribute to the underlying mechanism through which it acts as an effective antiasthmatic compound, but the enhanced BK currents might play a less important role in the antiasthmatic effects.
Collapse
|
11
|
Involvement of Ca 2+ Signaling in the Synergistic Effects between Muscarinic Receptor Antagonists and β₂-Adrenoceptor Agonists in Airway Smooth Muscle. Int J Mol Sci 2016; 17:ijms17091590. [PMID: 27657061 PMCID: PMC5037855 DOI: 10.3390/ijms17091590] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/02/2016] [Accepted: 09/08/2016] [Indexed: 12/25/2022] Open
Abstract
Long-acting muscarinic antagonists (LAMAs) and short-acting β2-adrenoceptor agonists (SABAs) play important roles in remedy for COPD. To propel a translational research for development of bronchodilator therapy, synergistic effects between SABAs with LAMAs were examined focused on Ca2+ signaling using simultaneous records of isometric tension and F340/F380 in fura-2-loaded tracheal smooth muscle. Glycopyrronium (3 nM), a LAMA, modestly reduced methacholine (1 μM)-induced contraction. When procaterol, salbutamol and SABAs were applied in the presence of glycopyrronium, relaxant effects of these SABAs are markedly enhanced, and percent inhibition of tension was much greater than the sum of those for each agent and those expected from the BI theory. In contrast, percent inhibition of F340/F380 was not greater than those values. Bisindolylmaleimide, an inhibitor of protein kinase C (PKC), significantly increased the relaxant effect of LAMA without reducing F340/F380. Iberiotoxin, an inhibitor of large-conductance Ca2+-activated K+ (KCa) channels, significantly suppressed the effects of these combined agents with reducing F340/F380. In conclusion, combination of SABAs with LAMAs synergistically enhances inhibition of muscarinic contraction via decreasing both Ca2+ sensitization mediated by PKC and Ca2+ dynamics mediated by KCa channels. PKC and KCa channels may be molecular targets for cross talk between β2-adrenoceptors and muscarinic receptors.
Collapse
|
12
|
Zhu Z, Tang J, Zhou X, Xiang S, Zhu X, Li N, Shi R, Zhong Y, Zhang L, Sun M, Xu Z. Roles of ion channels in regulation of acetylcholine-mediated vasoconstrictions in umbilical cords of rabbit/rats. Reprod Toxicol 2016; 65:95-103. [PMID: 27421582 DOI: 10.1016/j.reprotox.2016.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/31/2016] [Accepted: 07/08/2016] [Indexed: 12/25/2022]
Abstract
We recently demonstrated that acetylcholine (ACh) produced reliable vasoconstrictions in the umbilical cords. This study investigated the possible mechanisms with different antagonists. ACh-mediated vasoconstrictions were decreased by voltage-operated calcium (Ca2+) channels antagonist nifedipine or inositol-1,4,5-trisphosphate-mediated Ca2+ release antagonist 2-aminoethyl diphenylborinate, indicating that both extracellular and intracellular calcium modulated the ACh-stimulated umbilical contraction. Intracellular Ca2+ concentrations were increased simultaneously with vasoconstrictions by ACh in the umbilical vessels. Inhibiting large-conductance calcium-dependent potassium (BK) channels enhanced ACh-mediated contraction, whereas inhibiting voltage dependent potassium (K+), inward rectifier K+ and ATP-sensitive K+ channels had no effects. Incubation with specific K+ channel inhibitors showed that ACh suppressed BK currents rather than 4-aminopyridine-sensitive K+ channels currents. The results suggested that blood vessels in umbilical cords had special characteristics in response to cholinergic signals. ACh-stimulated umbilical vasoconstrictions were mediated via muscarinic receptor subtype 1/3-protein kinase C/cyclooxygenase-BK channel pathways.
Collapse
Affiliation(s)
- Zhoufeng Zhu
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jiaqi Tang
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Xiuwen Zhou
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Sharon Xiang
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China; Center for Perinatal Biology, Loma Linda University, Loma Linda, CA, USA
| | - Xiaolin Zhu
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Na Li
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Ruixiu Shi
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yuan Zhong
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Lubo Zhang
- Center for Perinatal Biology, Loma Linda University, Loma Linda, CA, USA
| | - Miao Sun
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Zhice Xu
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China; Center for Perinatal Biology, Loma Linda University, Loma Linda, CA, USA.
| |
Collapse
|
13
|
Kis A, Krick S, Baumlin N, Salathe M. Airway Hydration, Apical K(+) Secretion, and the Large-Conductance, Ca(2+)-activated and Voltage-dependent Potassium (BK) Channel. Ann Am Thorac Soc 2016; 13 Suppl 2:S163-8. [PMID: 27115952 PMCID: PMC5015721 DOI: 10.1513/annalsats.201507-405kv] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 09/08/2015] [Indexed: 01/20/2023] Open
Abstract
Large-conductance, calcium-activated, and voltage-gated K(+) (BK) channels are expressed in many tissues of the human body, where they play important roles in signaling not only in excitable but also in nonexcitable cells. Because BK channel properties are rendered in part by their association with four β and four γ subunits, their channel function can differ drastically, depending on in which cellular system they are expressed. Recent studies verify the importance of apically expressed BK channels for airway surface liquid homeostasis and therefore of their significant role in mucociliary clearance. Here, we review evidence that inflammatory cytokines, which contribute to airway diseases, can lead to reduced BK activity via a functional down-regulation of the γ regulatory subunit LRRC26. Therefore, manipulation of LRRC26 and pharmacological opening of BK channels represent two novel concepts of targeting epithelial dysfunction in inflammatory airway diseases.
Collapse
Affiliation(s)
- Adrian Kis
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Miami, Miami, Florida
| | - Stefanie Krick
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Miami, Miami, Florida
| | - Nathalie Baumlin
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Miami, Miami, Florida
| | - Matthias Salathe
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Miami, Miami, Florida
| |
Collapse
|
14
|
Azuma YT, Samezawa N, Nishiyama K, Nakajima H, Takeuchi T. Differences in time to peak carbachol-induced contractions between circular and longitudinal smooth muscles of mouse ileum. Naunyn Schmiedebergs Arch Pharmacol 2015; 389:63-72. [PMID: 26475617 DOI: 10.1007/s00210-015-1177-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/29/2015] [Indexed: 01/07/2023]
Abstract
The muscular layer in the GI tract consists of an inner circular muscular layer and an outer longitudinal muscular layer. Acetylcholine (ACh) is the representative neurotransmitter that causes contractions in the gastrointestinal tracts of most animal species. There are many reports of muscarinic receptor-mediated contraction of longitudinal muscles, but few studies discuss circular muscles. The present study detailed the contractile response in the circular smooth muscles of the mouse ileum. We used small muscle strips (0.2 mm × 1 mm) and large muscle strips (4 × 4 mm) isolated from the circular and longitudinal muscle layers of the mouse ileum to compare contraction responses in circular and longitudinal smooth muscles. The time to peak contractile responses to carbamylcholine (CCh) were later in the small muscle strips (0.2 × 1 mm) of circular muscle (5.7 min) than longitudinal muscles (0.4 min). The time to peak contractile responses to CCh in the large muscle strips (4 × 4 mm) were also later in the circular muscle (3.1 min) than the longitudinal muscle (1.4 min). Furthermore, a muscarinic M2 receptor antagonist and gap junction inhibitor significantly delayed the time to peak contraction of the large muscle strips (4 × 4 mm) from the circular muscular layer. Our findings indicate that muscarinic M2 receptors in the circular muscular layer of mouse ileum exert a previously undocumented function in gut motility via the regulation of gap junctions.
Collapse
|
15
|
Radulovic M, Anand P, Korsten MA, Gong B. Targeting Ion Channels: An Important Therapeutic Implication in Gastrointestinal Dysmotility in Patients With Spinal Cord Injury. J Neurogastroenterol Motil 2015; 21:494-502. [PMID: 26424038 PMCID: PMC4622131 DOI: 10.5056/jnm15061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 06/10/2015] [Accepted: 07/06/2015] [Indexed: 01/04/2023] Open
Abstract
Gastrointestinal (GI) dysmotility is a severe, and common complication in patients with spinal cord injury (SCI). Current therapeutic methods using acetylcholine analogs or laxative agents have unwanted side effects, besides often fail to have desired effect. Various ion channels such as ATP-sensitive potassium (KATP) channel, calcium ions (Ca2+)-activated potassium ions (K+) channels, voltage-sensitive Ca2+ channels and chloride ion (Cl−) channels are abundantly expressed in GI tissues, and play an important role in regulating GI motility. The release of neurotransmitters from the enteric nerve terminal, innervating GI interstitial cells of Cajal (ICC), and smooth muscle cells (SMC), causes inactivation of K+ and Cl− channels, increasing Ca2+ influx into cytoplasm, resulting in membrane depolarization and smooth muscle contraction. Thus, agents directly regulating ion channels activity either in ICC or in SMC may affect GI peristalsis and would be potential therapeutic target for the treatment of GI dysmotility with SCI.
Collapse
Affiliation(s)
- Miroslav Radulovic
- Department of Medicine Icahn School of Medicine at Mount Sinai, New York, NY, USA.,National Center of Excellence for the Medical Consequences of SCI, James J Peters Veteran Affairs Medical Center, Bronx, NY, USA
| | - Preeti Anand
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mark A Korsten
- Department of Medicine Icahn School of Medicine at Mount Sinai, New York, NY, USA.,National Center of Excellence for the Medical Consequences of SCI, James J Peters Veteran Affairs Medical Center, Bronx, NY, USA
| | - Bing Gong
- Department of Medicine Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
16
|
Kume H, Fukunaga K, Oguma T. Research and development of bronchodilators for asthma and COPD with a focus on G protein/KCa channel linkage and β2-adrenergic intrinsic efficacy. Pharmacol Ther 2015; 156:75-89. [PMID: 26432616 DOI: 10.1016/j.pharmthera.2015.09.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bronchodilators are used to improve symptoms and lung function in asthma and COPD. Airway smooth muscle tone is regulated by both muscarinic and β2-adrenergic receptor activity. Large-conductance Ca(2+)-activated K(+) (KCa) channels are activated by β2-adrenergic receptor agonists, via Gs, and suppressed by muscarinic receptor antagonists via Gi. This functional antagonism converges on the G protein/KCa channel linkages. Membrane potential regulated by KCa channels contributes to airway smooth muscle tension via Ca(2+) influx passing through voltage-dependent Ca(2+) (VDC) channels. The Gs/KCa/VDC channel linkage is a key process in not only physiological effects, but also in dysfunction of β2-adrenergic receptors and airway remodeling. Moreover, this pathway is involved in the synergistic effects between β2-adrenergic receptor agonists and muscarinic receptor antagonists. Intrinsic efficacy is also an important characteristic for both maintenance and loss of β2-adrenergic action. Allosteric modulators of G protein-coupled receptors contribute not only to this synergistic effect between β2-adrenergic and muscarinic M2 receptors, but also to intrinsic efficacy. The effects of weak partial agonists are suppressed by lowering receptor number, disordering receptor function, and enhancing functional antagonism; in contrast, those of full or strong partial agonists are not suppressed. Excessive exposure to full agonists causes β2-adrenergic desensitization; in contrast, exposure to partial agonists does not cause desensitization. Intrinsic efficacy may provide the rationale for the clinical use of β2-adrenergic receptor agonists in asthma and COPD. In conclusion, the G protein/KCa linkage and intrinsic efficacy (allosteric effects) may be therapeutic targets for research and development of novel agents against both airway obstruction and airway remodeling.
Collapse
Affiliation(s)
- Hiroaki Kume
- Department of Respiratory Medicine and Allergology, Kinki University Faculty of Medicine, Japan.
| | - Kentaro Fukunaga
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Japan
| | - Tetsuya Oguma
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Japan
| |
Collapse
|
17
|
Wei MY, Xue L, Tan L, Sai WB, Liu XC, Jiang QJ, Shen J, Peng YB, Zhao P, Yu MF, Chen W, Ma LQ, Zhai K, Zou C, Guo D, Qin G, Zheng YM, Wang YX, Ji G, Liu QH. Involvement of large-conductance Ca2+-activated K+ channels in chloroquine-induced force alterations in pre-contracted airway smooth muscle. PLoS One 2015; 10:e0121566. [PMID: 25822280 PMCID: PMC4378962 DOI: 10.1371/journal.pone.0121566] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 02/13/2015] [Indexed: 02/06/2023] Open
Abstract
The participation of large-conductance Ca2+ activated K+ channels (BKs) in chloroquine (chloro)-induced relaxation of precontracted airway smooth muscle (ASM) is currently undefined. In this study we found that iberiotoxin (IbTx, a selective inhibitor of BKs) and chloro both completely blocked spontaneous transient outward currents (STOCs) in single mouse tracheal smooth muscle cells, which suggests that chloro might block BKs. We further found that chloro inhibited Ca2+ sparks and caffeine-induced global Ca2+ increases. Moreover, chloro can directly block single BK currents completely from the intracellular side and partially from the extracellular side. All these data indicate that the chloro-induced inhibition of STOCs is due to the blockade of chloro on both BKs and ryanodine receptors (RyRs). We also found that low concentrations of chloro resulted in additional contractions in tracheal rings that were precontracted by acetylcholine (ACH). Increases in chloro concentration reversed the contractile actions to relaxations. In the presence of IbTx or paxilline (pax), BK blockers, chloro-induced contractions were inhibited, although the high concentrations of chloro-induced relaxations were not affected. Taken together, our results indicate that chloro blocks BKs and RyRs, resulting in abolishment of STOCs and occurrence of contraction, the latter will counteract the relaxations induced by high concentrations of chloro.
Collapse
Affiliation(s)
- Ming-Yu Wei
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Lu Xue
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Li Tan
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Wen-Bo Sai
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Xiao-Cao Liu
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Qiu-Ju Jiang
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Jinhua Shen
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Yong-Bo Peng
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Ping Zhao
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Meng-Fei Yu
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Weiwei Chen
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Li-Qun Ma
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Kui Zhai
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunbin Zou
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Donglin Guo
- Lankenau Institute for Medical Research & Main Line Health Heart Center, 100 Lancaster Avenue, Wynnewood, PA 19096, United States of America
| | - Gangjian Qin
- Department of Medicine-Cardiology, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States of America
| | - Yun-Min Zheng
- Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208, United States of America
| | - Yong-Xiao Wang
- Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208, United States of America
| | - Guangju Ji
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- * E-mail: (QHL); (GJ)
| | - Qing-Hua Liu
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
- * E-mail: (QHL); (GJ)
| |
Collapse
|
18
|
Bhattarai Y, Fernandes R, Kadrofske MM, Lockwood LR, Galligan JJ, Xu H. Western blot analysis of BK channel β1-subunit expression should be interpreted cautiously when using commercially available antibodies. Physiol Rep 2014; 2:2/10/e12189. [PMID: 25355855 PMCID: PMC4254108 DOI: 10.14814/phy2.12189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Large conductance Ca2+‐activated K+ (BK) channels consist of pore‐forming α‐ and accessory β‐subunits. There are four β‐subunit subtypes (β1–β4), BK β1‐subunit is specific for smooth muscle cells (SMC). Reduced BK β1‐subunit expression is associated with SMC dysfunction in animal models of human disease, because downregulation of BK β1‐subunit reduces channel activity and increases SMC contractility. Several anti‐BK β1‐subunit antibodies are commercially available; however, the specificity of most antibodies has not been tested or confirmed in the tissues from BK β1‐subunit knockout (KO) mice. In this study, we tested the specificity and sensitivity of six commercially available antibodies from five manufacturers. We performed western blot analysis on BK β1‐subunit enriched tissues (mesenteric arteries and colons) and non‐SM tissue (cortex of kidney) from wild‐type (WT) and BK β1‐KO mice. We found that antibodies either detected protein bands of the appropriate molecular weight in tissues from both WT and BK β1‐KO mice or failed to detect protein bands at the appropriate molecular weight in tissues from WT mice, suggesting that these antibodies may lack specificity for the BK β1‐subunit. The absence of BK β1‐subunit mRNA expression in arteries, colons, and kidneys from BK β1‐KO mice was confirmed by RT‐PCR analysis. We conclude that these commercially available antibodies might not be reliable tools for studying BK β1‐subunit expression in murine tissues under the denaturing conditions that we have used. Data obtained using commercially available antibodies should be interpreted cautiously. Our studies underscore the importance of proper negative controls in western blot analyses. Commercially available anti‐BK β1‐subunit antibodies either detected protein bands of the appropriate molecular weight in tissues from both WT and BK β1‐KO mice or failed to detect protein bands at the appropriate molecular weight in tissues from WT mice. These commercially available antibodies are not reliable tools for studying BK β1‐subunit expression in murine tissues. Data obtained using these antibodies should be interpreted cautiously.
Collapse
Affiliation(s)
- Yogesh Bhattarai
- Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Roxanne Fernandes
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Mark M Kadrofske
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, Michigan
| | - Lizbeth R Lockwood
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, Michigan
| | - James J Galligan
- Neuroscience Program, Michigan State University, East Lansing, Michigan Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Hui Xu
- Neuroscience Program, Michigan State University, East Lansing, Michigan Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
19
|
Brueggemann LI, Haick JM, Neuburg S, Tate S, Randhawa D, Cribbs LL, Byron KL. KCNQ (Kv7) potassium channel activators as bronchodilators: combination with a β2-adrenergic agonist enhances relaxation of rat airways. Am J Physiol Lung Cell Mol Physiol 2014; 306:L476-86. [PMID: 24441871 PMCID: PMC3949081 DOI: 10.1152/ajplung.00253.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 01/16/2014] [Indexed: 12/19/2022] Open
Abstract
KCNQ (Kv7 family) potassium (K(+)) channels were recently found in airway smooth muscle cells (ASMCs) from rodent and human bronchioles. In the present study, we evaluated expression of KCNQ channels and their role in constriction/relaxation of rat airways. Real-time RT-PCR analysis revealed expression of KCNQ4 > KCNQ5 > KCNQ1 > KCNQ2 > KCNQ3, and patch-clamp electrophysiology detected KCNQ currents in rat ASMCs. In precision-cut lung slices, the KCNQ channel activator retigabine induced a concentration-dependent relaxation of small bronchioles preconstricted with methacholine (MeCh; EC50 = 3.6 ± 0.3 μM). Bronchoconstriction was also attenuated in the presence of two other structurally unrelated KCNQ channel activators: zinc pyrithione (ZnPyr; 1 μM; 22 ± 7%) and 2,5-dimethylcelecoxib (10 μM; 24 ± 8%). The same three KCNQ channel activators increased KCNQ currents in ASMCs by two- to threefold. The bronchorelaxant effects of retigabine and ZnPyr were prevented by inclusion of the KCNQ channel blocker XE991. A long-acting β2-adrenergic receptor agonist, formoterol (10 nM), did not increase KCNQ current amplitude in ASMCs, but formoterol (1-1,000 nM) did induce a time- and concentration-dependent relaxation of rat airways, with a notable desensitization during a 30-min treatment or with repetitive treatments. Coadministration of retigabine (10 μM) with formoterol produced a greater peak and sustained reduction of MeCh-induced bronchoconstriction and reduced the apparent desensitization observed with formoterol alone. Our findings support a role for KCNQ K(+) channels in the regulation of airway diameter. A combination of a β2-adrenergic receptor agonist with a KCNQ channel activator may improve bronchodilator therapy.
Collapse
Affiliation(s)
- Lioubov I Brueggemann
- Dept. of Molecular Pharmacology & Therapeutics, Loyola Univ. Chicago, Stritch School of Medicine, 2160 S. First Ave., Bldg. 102, Rm. 3634, Maywood, IL 60153.
| | | | | | | | | | | | | |
Collapse
|
20
|
Wallace HL, Southern KW, Connell MG, Wray S, Burdyga T. Abnormal tracheal smooth muscle function in the CF mouse. Physiol Rep 2013; 1:e00138. [PMID: 24400140 PMCID: PMC3871453 DOI: 10.1002/phy2.138] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/03/2013] [Accepted: 10/04/2013] [Indexed: 12/29/2022] Open
Abstract
Increased airway smooth muscle (ASM) contractility is thought to underlie symptoms of airway hyperresponsiveness (AHR). In the cystic fibrosis (CF) airway, ASM anomalies have been reported, but have not been fully characterized and the underlying mechanisms are largely unknown. We examined ASM in an adult CF mouse tracheal ring preparation, and determined whether changes in contractility were associated with altered ASM morphology. We looked for inherent changes in the cellular pathways involved in contractility, and characterized trachea morphology in the adult trachea and in an embryonic lung culture model during development. Results showed that that there was a reduction in tracheal caliber in CF mice as indicated by a reduction in the number of cartilage rings; proximal cross-sectional areas of cftr (-/-) tracheas and luminal areas were significantly smaller, but there was no difference in the area or distribution of smooth muscle. Morphological differences observed in adult trachea were not evident in the embryonic lung at 11.5 days gestation or after 72 h in culture. Functional data showed a significant reduction in the amplitude and duration of contraction in response to carbachol (CCh) in Ca-free conditions. The reduction in contraction was agonist specific, and occurred throughout the length of the trachea. These data show that there is a loss in the contractile capacity of the CF mouse trachea due to downregulation of the pathway specific to acetylcholine (ACh) activation. This reduction in contraction is not associated with changes in the area or distribution of ASM.
Collapse
Affiliation(s)
- Helen L Wallace
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool Liverpool, U.K
| | - Kevin W Southern
- Department for Women's and Children's Health, Institute of Translational Medicine, University of Liverpool Liverpool, U.K
| | - Marilyn G Connell
- Department for Women's and Children's Health, Institute of Translational Medicine, University of Liverpool Liverpool, U.K
| | - Susan Wray
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool Liverpool, U.K
| | - Theodor Burdyga
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool Liverpool, U.K
| |
Collapse
|
21
|
Evseev AI, Semenov I, Archer CR, Medina JL, Dube PH, Shapiro MS, Brenner R. Functional effects of KCNQ K(+) channels in airway smooth muscle. Front Physiol 2013; 4:277. [PMID: 24109455 PMCID: PMC3791379 DOI: 10.3389/fphys.2013.00277] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/13/2013] [Indexed: 12/30/2022] Open
Abstract
KCNQ (Kv7) channels underlie a voltage-gated K+ current best known for control of neuronal excitability, and its inhibition by Gq/11-coupled, muscarinic signaling. Studies have indicated expression of KCNQ channels in airway smooth muscle (ASM), a tissue that is predominantly regulated by muscarinic receptor signaling. Therefore, we investigated the function of KCNQ channels in rodent ASM and their interplay with Gq/11-coupled M3 muscarinic receptors. Perforated-patch clamp of dissociated ASM cells detected a K+ current inhibited by the KCNQ antagonist, XE991, and augmented by the specific agonist, flupirtine. KCNQ channels begin to activate at voltages near resting potentials for ASM cells, and indeed XE991 depolarized resting membrane potentials. Muscarinic receptor activation inhibited KCNQ current weakly (~20%) at concentrations half-maximal for contractions. Thus, we were surprised to see that KCNQ had no affect on membrane voltage or muscle contractility following muscarinic activation. Further, M3 receptor-specific antagonist J104129 fumarate alone did not reveal KCNQ effects on muscarinic evoked depolarization or contractility. However, a role for KCNQ channels was revealed when BK-K+ channel activities are reduced. While KCNQ channels do control resting potentials, they appear to play a redundant role with BK calcium-activated K+ channels during ASM muscarinic signaling. In contrast to effect of antagonist, we observe that KCNQ agonist flupirtine caused a significant hyperpolarization and reduced contraction in vitro irrespective of muscarinic activation. Using non-invasive whole animal plethysmography, the clinically approved KCNQ agonist retigabine caused a transient reduction in indexes of airway resistance in both wild type and BK β1 knockout (KO) mice treated with the muscarinic agonist. These findings indicate that KCNQ channels can be recruited via agonists to oppose muscarinic evoked contractions and may be of therapeutic value as bronchodilators.
Collapse
Affiliation(s)
- Alexey I Evseev
- Department of Physiology, University of Texas Health Science Center at San Antonio San Antonio, TX, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Goldklang MP, Perez-Zoghbi JF, Trischler J, Nkyimbeng T, Zakharov SI, Shiomi T, Zelonina T, Marks AR, D'Armiento JM, Marx SO. Treatment of experimental asthma using a single small molecule with anti-inflammatory and BK channel-activating properties. FASEB J 2013; 27:4975-86. [PMID: 23995289 DOI: 10.1096/fj.13-235176] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Large conductance voltage- and calcium-activated potassium (BK) channels are highly expressed in airway smooth muscle (ASM). Utilizing the ovalbumin (OVA) and house dust mite (HDM) models of asthma in C57BL/6 mice, we demonstrate that systemic administration of the BK channel agonist rottlerin (5 μg/g) during the challenge period reduced methacholine-induced airway hyperreactivity (AHR) in OVA- and HDM-sensitized mice (47% decrease in peak airway resistance in OVA-asthma animals, P<0.01; 54% decrease in HDM-asthma animals, P<0.01) with a 35-40% reduction in inflammatory cells and 20-35% reduction in Th2 cytokines in bronchoalveolar lavage fluid. Intravenous rottlerin (5 μg/g) reduced AHR within 5 min in the OVA-asthma mice by 45% (P<0.01). With the use of an ex vivo lung slice technique, rottlerin relaxed acetylcholine-stimulated murine airway lumen area to 87 ± 4% of the precontracted area (P<0.01 vs. DMSO control). Rottlerin increased BK channel activity in human ASM cells (V50 shifted by 73.5±13.5 and 71.8±14.6 mV in control and asthmatic cells, respectively, both P<0.05 as compared with pretreatment) and reduced the frequency of acetylcholine-induced Ca(2+) oscillations in murine ex vivo lung slices. These findings suggest that rottlerin, with both anti-inflammatory and ASM relaxation properties, may have benefit in treating asthma.
Collapse
Affiliation(s)
- Monica P Goldklang
- 1S.O.M., Columbia University, 630 West 168th St., P&S 9-420, New York, NY 10032, USA. ; A.R.M., Columbia University, Russ Berrie Medical Science Pavilion, 1150 St. Nicholas Avenue, Room 520, New York, NY 10032, USA. E-mail:
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhang CH, Lifshitz LM, Uy KF, Ikebe M, Fogarty KE, ZhuGe R. The cellular and molecular basis of bitter tastant-induced bronchodilation. PLoS Biol 2013; 11:e1001501. [PMID: 23472053 PMCID: PMC3589262 DOI: 10.1371/journal.pbio.1001501] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 01/24/2013] [Indexed: 01/13/2023] Open
Abstract
Bitter tastants can activate bitter taste receptors on constricted smooth muscle cells to inhibit L-type calcium channels and induce bronchodilation. Bronchodilators are a standard medicine for treating airway obstructive diseases, and β2 adrenergic receptor agonists have been the most commonly used bronchodilators since their discovery. Strikingly, activation of G-protein-coupled bitter taste receptors (TAS2Rs) in airway smooth muscle (ASM) causes a stronger bronchodilation in vitro and in vivo than β2 agonists, implying that new and better bronchodilators could be developed. A critical step towards realizing this potential is to understand the mechanisms underlying this bronchodilation, which remain ill-defined. An influential hypothesis argues that bitter tastants generate localized Ca2+ signals, as revealed in cultured ASM cells, to activate large-conductance Ca2+-activated K+ channels, which in turn hyperpolarize the membrane, leading to relaxation. Here we report that in mouse primary ASM cells bitter tastants neither evoke localized Ca2+ events nor alter spontaneous local Ca2+ transients. Interestingly, they increase global intracellular [Ca2+]i, although to a much lower level than bronchoconstrictors. We show that these Ca2+ changes in cells at rest are mediated via activation of the canonical bitter taste signaling cascade (i.e., TAS2R-gustducin-phospholipase Cβ [PLCβ]- inositol 1,4,5-triphosphate receptor [IP3R]), and are not sufficient to impact airway contractility. But activation of TAS2Rs fully reverses the increase in [Ca2+]i induced by bronchoconstrictors, and this lowering of the [Ca2+]i is necessary for bitter tastant-induced ASM cell relaxation. We further show that bitter tastants inhibit L-type voltage-dependent Ca2+ channels (VDCCs), resulting in reversal in [Ca2+]i, and this inhibition can be prevented by pertussis toxin and G-protein βγ subunit inhibitors, but not by the blockers of PLCβ and IP3R. Together, we suggest that TAS2R stimulation activates two opposing Ca2+ signaling pathways via Gβγ to increase [Ca2+]i at rest while blocking activated L-type VDCCs to induce bronchodilation of contracted ASM. We propose that the large decrease in [Ca2+]i caused by effective tastant bronchodilators provides an efficient cell-based screening method for identifying potent dilators from among the many thousands of available bitter tastants. Bitter taste receptors (TAS2Rs), a G-protein-coupled receptor family long thought to be solely expressed in taste buds on the tongue, have recently been detected in airways. Bitter substances can activate TAS2Rs in airway smooth muscle to cause greater bronchodilation than β2 adrenergic receptor agonists, the most commonly used bronchodilators. However, the mechanisms underlying this bronchodilation remain elusive. Here we show that, in resting primary airway smooth muscle cells, bitter tastants activate a TAS2R-dependent signaling pathway that results in an increase in intracellular calcium levels, albeit to a level much lower than that produced by bronchoconstrictors. In bronchoconstricted cells, however, bitter tastants reverse the bronchoconstrictor-induced increase in calcium levels, which leads to the relaxation of smooth muscle cells. We find that this reversal is due to inhibition of L-type calcium channels. Our results suggest that under normal conditions, bitter tastants can activate TAS2Rs to modestly increase calcium levels, but that when smooth muscle cells are constricted, they can block L-type calcium channels to induce bronchodilation. We postulate that this novel mechanism could operate in other extraoral cells expressing TAS2Rs.
Collapse
Affiliation(s)
- Cheng-Hai Zhang
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Lawrence M. Lifshitz
- Biomedical Imaging Group, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Karl F. Uy
- Department of Surgery, Division of Thoracic Surgery, University of Massachusetts Memorial Medical Center, Worcester, Massachusetts, United States of America
| | - Mitsuo Ikebe
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Kevin E. Fogarty
- Biomedical Imaging Group, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Ronghua ZhuGe
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Biomedical Imaging Group, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
24
|
Yim PD, Gallos G, Perez-Zoghbi JF, Trice J, Zhang Y, Siviski M, Sonett J, Emala CW. Chloride channel blockers promote relaxation of TEA-induced contraction in airway smooth muscle. J Smooth Muscle Res 2013; 49:112-24. [PMID: 24662476 PMCID: PMC4131261 DOI: 10.1540/jsmr.49.112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 12/19/2013] [Indexed: 01/21/2023] Open
Abstract
Enhanced airway smooth muscle (ASM) contraction is an important component in the pathophysiology of asthma. We have shown that ligand gated chloride channels modulate ASM contractile tone during the maintenance phase of an induced contraction, however the role of chloride flux in depolarization-induced contraction remains incompletely understood. To better understand the role of chloride flux under these conditions, muscle force (human ASM, guinea pig ASM), peripheral small airway luminal area (rat ASM) and airway smooth muscle plasma membrane electrical potentials (human cultured ASM) were measured. We found ex vivo guinea pig airway rings, human ASM strips and small peripheral airways in rat lungs slices relaxed in response to niflumic acid following depolarization-induced contraction induced by K(+) channel blockade with tetraethylammonium chloride (TEA). In isolated human airway smooth muscle cells TEA induce depolarization as measured by a fluorescent indicator or whole cell patch clamp and this depolarization was reversed by niflumic acid. These findings demonstrate that ASM depolarization induced contraction is dependent on chloride channel activity. Targeting of chloride channels may be a novel approach to relax hypercontractile airway smooth muscle in bronchoconstrictive disorders.
Collapse
Affiliation(s)
- Peter D Yim
- Departments of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, NY USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Rothberg BS. The BK channel: a vital link between cellular calcium and electrical signaling. Protein Cell 2012; 3:883-92. [PMID: 22996175 PMCID: PMC4875380 DOI: 10.1007/s13238-012-2076-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 08/23/2012] [Indexed: 10/27/2022] Open
Abstract
Large-conductance Ca²⁺-activated K⁺ channels (BK channels) constitute an key physiological link between cellular Ca²⁺ signaling and electrical signaling at the plasma membrane. Thus these channels are critical to the control of action potential firing and neurotransmitter release in several types of neurons, as well as the dynamic control of smooth muscle tone in resistance arteries, airway, and bladder. Recent advances in our understanding of K⁺ channel structure and function have led to new insight toward the molecular mechanisms of opening and closing (gating) of these channels. Here we will focus on mechanisms of BK channel gating by Ca²⁺, transmembrane voltage, and auxiliary subunit proteins.
Collapse
Affiliation(s)
- Brad S Rothberg
- Department of Biochemistry, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
26
|
France M, Bhattarai Y, Galligan JJ, Xu H. Impaired propulsive motility in the distal but not proximal colon of BK channel β1-subunit knockout mice. Neurogastroenterol Motil 2012; 24:e450-9. [PMID: 22830588 PMCID: PMC3425659 DOI: 10.1111/j.1365-2982.2012.01981.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Large-conductance Ca(2+) -activated K(+) (BK) channels regulate smooth muscle tone. The BK channel β1-subunit increases Ca(2+) sensitivity of the α-subunit in smooth muscle. We studied β1-subunit knockout (KO) mice to determine if gastrointestinal (GI) motility was altered. METHODS Colonic and intestinal longitudinal muscle reactivity to bethanechol and colonic migrating motor complexes (CMMCs) were measured in vitro. Gastric emptying and small intestinal transit were measured in vivo. Colonic motility was assessed in vivo by measuring fecal output and glass bead expulsion time. Myoelectric activity of distal colon smooth muscle was measured in vitro using intracellular microelectrodes. KEY RESULTS Bethanechol-induced contractions were larger in the distal colon of β1-subunit KO compared to wild type (WT) mice; there were no differences in bethanechol reactivity in the duodenum, ileum, or proximal colon of WT vsβ1-subunit KO mice. There were more retrogradely propagated CMMCs in the distal colon of β1-subunit KO compared to WT mice. Gastrointestinal transit was unaffected by β1-subunit KO. Fecal output was decreased and glass bead expulsion times were increased in β1-subunit KO mice. Membrane potential of distal colon smooth muscle cells from β1-subunit KO mice was depolarized with higher action potential frequency compared to WT mice. Paxilline (BK channel blocker) depolarized smooth muscle cells and increased action potential frequency in WT distal colon. CONCLUSIONS & INFERENCES BK channels play a prominent role in smooth muscle function only in the distal colon of mice. Defects in smooth muscle BK channel function disrupt colonic motility causing constipation.
Collapse
Affiliation(s)
- Marion France
- The Neuroscience Program, Michigan State University, East Lansing, MI 48824 USA
| | - Yogesh Bhattarai
- The Neuroscience Program, Michigan State University, East Lansing, MI 48824 USA
| | - James J. Galligan
- The Neuroscience Program, Michigan State University, East Lansing, MI 48824 USA,Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824 USA
| | - Hui Xu
- The Neuroscience Program, Michigan State University, East Lansing, MI 48824 USA,Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
27
|
Abstract
We determined the contribution of vascular BK channels to endotoxin (lipopolysaccharide, LPS)-induced hypotension, organ damage, and mortality using smooth muscle BK channel deficiency (BK channel β1-subunit knockout, BK β1-KO) mice. BK β1-KO mice were more sensitive to LPS-induced mortality compared with wild-type mice. After LPS (20 mg/kg, intraperitoneally), BK β1-KO mice had a more rapid fall in heart rate and blood pressure (measured by radiotelemetry), shorter latency to mortality, and higher mortality rate than wild-type mice. Twenty-two hours after LPS treatment, wild-type and BK β1-KO mice had reduced norepinephrine reactivity and impaired constrictor responses to the BK channel blocker paxilline in mesenteric arteries in vitro and higher iNOS expression in the heart, but not in mesenteric arteries. Endotoxemic BK β1-KO mice also showed more severe lung and intestinal injury, higher myeloperoxidase activity and polymorphonuclear neutrophil infiltration in lung and liver. Endotoxemic BK β1-KO mice had higher plasma tumor necrosis factor α and interleukin 6 levels at 22 hours, but not 6 hours post-LPS. Exaggerated mortality in BK β1-KO mice also occurred in the cecal ligation/puncture model of septic shock. Reduced vascular BK channel function does not protect against hypotension in the early stage of septic shock; in the later stage, smooth muscle BK channel deficiency enhances organ damage and mortality.
Collapse
|
28
|
Wright DB, Tripathi S, Sikarwar A, Santosh KT, Perez-Zoghbi J, Ojo OO, Irechukwu N, Ward JPT, Schaafsma D. Regulation of GPCR-mediated smooth muscle contraction: implications for asthma and pulmonary hypertension. Pulm Pharmacol Ther 2012; 26:121-31. [PMID: 22750270 DOI: 10.1016/j.pupt.2012.06.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 06/15/2012] [Accepted: 06/18/2012] [Indexed: 11/28/2022]
Abstract
Contractile G-protein-coupled receptors (GPCRs) have emerged as key regulators of smooth muscle contraction, both under healthy and diseased conditions. This brief review will discuss some key topics and novel insights regarding GPCR-mediated airway and vascular smooth muscle contraction as discussed at the 7th International Young Investigators' Symposium on Smooth Muscle (2011, Winnipeg, Manitoba, Canada) and will in particular focus on processes driving Ca(2+)-mobilization and -sensitization.
Collapse
Affiliation(s)
- D B Wright
- Department of Asthma, Allergy, and Lung Biology, King's College, London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Semenov I, Herlihy JT, Brenner R. In vitro measurements of tracheal constriction using mice. J Vis Exp 2012:3703. [PMID: 22760068 DOI: 10.3791/3703] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Transgenic and knockout mice have been powerful tools for the investigation of the physiology and pathophysiology of airways(1,2). In vitro tensometry of isolated tracheal preparations has proven to be a useful assay of airway smooth muscle (ASM) contractile response in genetically modified mice. These in vitro tracheal preparations are relatively simple, provide a robust response, and retain both functional cholinergic nerve endings and muscle responses, even after long incubations. Tracheal tensometry also provides a functional assay to study a variety of second messenger signaling pathways that affect contraction of smooth muscle. Contraction in trachea is primarily mediated by parasympathetic, cholinergic nerves that release acetylcholine onto ASM (Figure 1). The major ASM acetylcholine receptors are muscarinic M2 and M3 which are G(i/o ;)and Gq coupled receptors, respectively(3,4,5). M3 receptors evoke contraction by coupling to Gq to activate phospholipase C, increase IP3 production and IP3-mediated calcium release from the sarcoplasmic reticulum(3,6,7). M2/G(i/o ;)signaling is believed to enhance contractions by inhibition of adenylate cyclase leading to a decrease in cAMP levels(5,8,9,10). These pathways constitute the so called "pharmaco-contraction coupling" of airway smooth muscle(11). In addition, cholinergic signaling through M2 receptors (and modulated by M3 signaling) involves pathways that depolarize the ASM which in turn activate L-type, voltage-dependent calcium channels (Figure 1) and calcium influx (so called "excitation-contraction coupling")(4,7). More detailed reviews on signaling pathways controlling airway constriction can be found(4,12). The above pathways appear to be conserved between mice and other species. However, mouse tracheas differ from other species in some signaling pathways. Most prominent is their lack of contractile response to histamine and adenosine(13,14), both well-known ASM modulators in humans and other species(5,15). Here we present protocols for the isolation of murine tracheal rings and the in vitro measurement of their contractile output. Included are descriptions of the equipment configuration, trachea ring isolation and contractile measurements. Examples are given for evoking contractions indirectly using high potassium stimulation of nerves and directly by depolarization of ASM muscle to activate voltage-dependent calcium influx (1. high K(+), Figure 1). In addition, methods are presented for stimulations of nerves alone using electric field stimulation (2. EFS, Figure 1), or for direct stimulation of ASM muscle using exogenous neurotransmitter applied to the bath (3. exogenous ACH, Figure 1). This flexibility and ease of preparation renders the isolated trachea ring model a robust and functional assay for a number of signaling cascades involved in airway smooth muscle contraction.
Collapse
Affiliation(s)
- Iurii Semenov
- Department of Physiology, UT Health Science Center, San Antonio, TX, USA
| | | | | |
Collapse
|