1
|
Silva G, Silva SSD, Guimarães DSPSF, Cruz MVD, Silveira LR, Rocha-Vieira E, Amorim FT, de Castro Magalhaes F. The dose-effect response of combined red and infrared photobiomodulation on insulin resistance in skeletal muscle cells. Biochem Biophys Rep 2024; 40:101831. [PMID: 39398538 PMCID: PMC11470420 DOI: 10.1016/j.bbrep.2024.101831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024] Open
Abstract
Obesity is a major public health problem and is a major contributor to the development of insulin resistance. In previous studies we observed that single-wavelength red or infrared photobiomodulation (PBM) improved insulin signaling in adipocytes and skeletal muscle of mice fed a high-fat diet, but information about the combination of different wavelengths, as well as the effect of different light doses (J/cm2) is lacking. Therefore, the aim of this study was to investigate the effects of different doses of dual-wavelength PBM on insulin signaling in muscle cell, and explore potential mechanisms involved. Mouse myoblasts (C2C12) were differentiated into myotubes and cultured in palmitic acid, sodium oleate and l-carnitine (PAL) to induce insulin resistance high or in glucose medium (CTRL). Then, they received SHAM treatment (lights off, 0 J/cm2) or PBM (660 + 850 nm; 2, 4 or 8 J/cm2). PAL induced insulin resistance (assessed by Akt phosphorylation at ser473), attenuated maximal citrate synthase activity, and increased the phosphorylation of c-Jun NH(2) terminal kinase (JNK) (T183/Y185). PBM at doses of 4 or 8 J/cm2 reversed these PAL-induced responses. Furthermore, at doses of 2, 4 or 8 J/cm2, PBM reversed the increase in mitofusin-2 content induced by PAL. In conclusion, the combination of dual-wavelength red and infrared PBM at doses of 4 and 8 J/cm2 improved intracellular insulin signaling in musculoskeletal cells, and this effect appears to involve the modulation of mitochondrial function and the attenuation of the activation of stress kinases.
Collapse
Affiliation(s)
- Gabriela Silva
- Multicentric Graduate Program in Physiological Sciences, Federal University of the Jequitinhonha and Mucuri Valleys – UFVJM. Rodovia MGT 367, KM 583, 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil
- Graduate Program in Health Sciences, Federal University of the Jequitinhonha and Mucuri Valleys – UFVJM. Rodovia MGT 367, KM 583, 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil
| | - Saulo Soares da Silva
- Instituto de Ciências e Tecnologia, Federal University of the Jequitinhonha and Mucuri Valleys – UFVJM. Rodovia MGT 367, KM 583, 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil
| | - Dimitrius Santiago Passos Simões Fróes Guimarães
- Centro de Pesquisa em Obesidade e Comorbidades - OCRC, Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas – UNICAMP. Rua Carl Von Linaeus, 2-238, Cidade Universitária, Campinas, SP, 13083-864, Brazil
| | - Marcos Vinicius da Cruz
- Centro de Pesquisa em Obesidade e Comorbidades - OCRC, Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas – UNICAMP. Rua Carl Von Linaeus, 2-238, Cidade Universitária, Campinas, SP, 13083-864, Brazil
| | - Leonardo Reis Silveira
- Centro de Pesquisa em Obesidade e Comorbidades - OCRC, Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas – UNICAMP. Rua Carl Von Linaeus, 2-238, Cidade Universitária, Campinas, SP, 13083-864, Brazil
| | - Etel Rocha-Vieira
- Multicentric Graduate Program in Physiological Sciences, Federal University of the Jequitinhonha and Mucuri Valleys – UFVJM. Rodovia MGT 367, KM 583, 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil
- Graduate Program in Health Sciences, Federal University of the Jequitinhonha and Mucuri Valleys – UFVJM. Rodovia MGT 367, KM 583, 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil
| | - Fabiano Trigueiro Amorim
- Department of Health, Exercise, and Sports Sciences, University of New Mexico – UNM. Johnson Center, B143 MSC04 2610, Albuquerque, New Mexico, 87131-0001, USA
| | - Flavio de Castro Magalhaes
- Multicentric Graduate Program in Physiological Sciences, Federal University of the Jequitinhonha and Mucuri Valleys – UFVJM. Rodovia MGT 367, KM 583, 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil
- Graduate Program in Health Sciences, Federal University of the Jequitinhonha and Mucuri Valleys – UFVJM. Rodovia MGT 367, KM 583, 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil
- Department of Health, Exercise, and Sports Sciences, University of New Mexico – UNM. Johnson Center, B143 MSC04 2610, Albuquerque, New Mexico, 87131-0001, USA
- Department of Physical Education, Federal University of the Jequitinhonha and Mucuri Valleys – UFVJM. Rodovia MGT 367, KM 583, 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil
| |
Collapse
|
2
|
Jahan F, Vasam G, Cariaco Y, Nik-Akhtar A, Green A, Menzies KJ, Bainbridge SA. NAD + depletion is central to placental dysfunction in an inflammatory subclass of preeclampsia. Life Sci Alliance 2024; 7:e202302505. [PMID: 39389781 PMCID: PMC11467044 DOI: 10.26508/lsa.202302505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024] Open
Abstract
Preeclampsia (PE) is a hypertensive disorder of pregnancy and a major cause of maternal/perinatal adverse health outcomes with no effective therapeutic strategies. Our group previously identified distinct subclasses of PE, one of which exhibits heightened placental inflammation (inflammation-driven PE). In non-pregnant populations, chronic inflammation is associated with decreased levels of cellular NAD+, a vitamin B3 derivative involved in energy metabolism and mitochondrial function. Interestingly, specifically in placentas from women with inflammation-driven PE, we observed the increased activity of NAD+-consuming enzymes, decreased NAD+ content, decreased expression of mitochondrial proteins, and increased oxidative damage. HTR8 human trophoblasts likewise demonstrated increased NAD+-dependent ADP-ribosyltransferase (ART) activity, coupled with decreased mitochondrial respiration rates and invasive function under inflammatory conditions. Such adverse effects were attenuated by boosting cellular NAD+ levels with nicotinamide riboside (NR). Finally, in an LPS-induced rat model of inflammation-driven PE, NR administration (200 mg/kg/day) from gestational days 1-19 prevented maternal hypertension and fetal/placental growth restriction, improved placental mitochondrial function, and reduced inflammation and oxidative stress. This study demonstrates the critical role of NAD+ in maintaining placental function and identifies NAD+ boosting as a promising preventative strategy for PE.
Collapse
Affiliation(s)
- Fahmida Jahan
- https://ror.org/03c4mmv16 Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Goutham Vasam
- https://ror.org/03c4mmv16 Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Yusmaris Cariaco
- https://ror.org/03c4mmv16 Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Abolfazl Nik-Akhtar
- https://ror.org/03c4mmv16 Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Alex Green
- https://ror.org/03c4mmv16 Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Keir J Menzies
- https://ror.org/03c4mmv16 Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- https://ror.org/03c4mmv16 Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
- https://ror.org/03c4mmv16 Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
| | - Shannon A Bainbridge
- https://ror.org/03c4mmv16 Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
- https://ror.org/03c4mmv16 Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
3
|
Mast HE, Blier PU, Ɖorđević M, Savković U, Holody CD, Bourque SL, Lemieux H. Selection for Late Reproduction Leads to Loss of Complex I Mitochondrial Capacity and Associated Increased Longevity in Seed Beetles. J Gerontol A Biol Sci Med Sci 2024; 79:glae208. [PMID: 39158488 PMCID: PMC11497162 DOI: 10.1093/gerona/glae208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Indexed: 08/20/2024] Open
Abstract
Mitochondria play a key role in aging. Here, we measured integrated mitochondrial functions in experimentally evolved lines of the seed beetle Acanthoscelides obtectus that were selected for early (E) or late (L) reproduction for nearly 4 decades. The 2 lines have markedly different lifespans (8 days and 13 days in the E and L lines, respectively). The contribution of the NADH pathway to maximal flux was lower in the L compared to the E beetles at young stages, associated with increased control by complex I. In contrast, the contribution of the Succinate pathway was higher in the L than in the E line, whereas the Proline pathway showed no differences between the lines. Our data suggest that selection of age at reproduction leads to a modulation of complex I activity in mitochondria and that mitochondria are a functional link between evolutionary and mechanistic theories of aging.
Collapse
Affiliation(s)
- Heather E Mast
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Pierre U Blier
- Département de Biologie, Université du Québec à Rimouski, Rimouski, Quebec, Canada
| | - Mirko Ɖorđević
- Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković” – National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Uroš Savković
- Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković” – National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Claudia D Holody
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Stephane L Bourque
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Hélène Lemieux
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
4
|
Hutchinson AJ, Staples JF, Gugleilmo CG. The mitochondrial physiology of torpor in ruby-throated hummingbirds, Archilochus colubris. J Exp Biol 2024; 227:jeb248027. [PMID: 39319364 DOI: 10.1242/jeb.248027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Hummingbirds save energy by facultatively entering torpor, but the physiological mechanisms underlying this metabolic suppression are largely unknown. We compared whole-animal and pectoralis mitochondrial metabolism between torpid and normothermic ruby-throated hummingbirds (Archilochus colubris). When fasting, hummingbirds were exposed to 10°C ambient temperature at night and they entered torpor; average body temperature decreased by nearly 25°C (from ∼37 to ∼13°C) and whole-animal metabolic rate (V̇O2) decreased by 95% compared with normothermia, a much greater metabolic suppression compared with that of mammalian daily heterotherms. We then measured pectoralis mitochondrial oxidative phosphorylation (OXPHOS) fueled by either carbohydrate or fatty acid substrates at both 39°C and 10°C in torpid and normothermic hummingbirds. Aside from a 20% decrease in electron transport system complex I-supported respiration with pyruvate, the capacity for OXPHOS at a common in vivo temperature did not differ in isolated mitochondria between torpor and normothermia. Similarly, the activities of pectoralis pyruvate dehydrogenase and 3-hydroxyacyl-CoA dehydrogenase did not differ between the states. Unlike heterothermic mammals, hummingbirds do not suppress muscle mitochondrial metabolism in torpor by active, temperature-independent mechanisms. Other mechanisms that may underly this impressive whole-animal metabolic suppression include decreasing ATP demand or relying on rapid passive cooling facilitated by the very small body size of A. colubris.
Collapse
Affiliation(s)
- Amalie J Hutchinson
- Department of Biology, The University of Western Ontario, London, ON, Canada, N6A 3K7
- Center for Animals on the Move, The University of Western Ontario, London, ON, Canada, N6A 3K7
| | - James F Staples
- Department of Biology, The University of Western Ontario, London, ON, Canada, N6A 3K7
| | - Christopher G Gugleilmo
- Department of Biology, The University of Western Ontario, London, ON, Canada, N6A 3K7
- Center for Animals on the Move, The University of Western Ontario, London, ON, Canada, N6A 3K7
| |
Collapse
|
5
|
Breese BC, Bailey SJ, Ferguson RA. Combined effect of sprint interval training and post-exercise blood flow restriction on muscle deoxygenation responses during ramp incremental cycling. Eur J Appl Physiol 2024:10.1007/s00421-024-05645-6. [PMID: 39438313 DOI: 10.1007/s00421-024-05645-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
PURPOSE This study investigated the effect of sprint-interval training combined with post-exercise blood flow restriction (i.e., SIT + BFR) on pulmonary gas exchange and microvascular deoxygenation responses during ramp incremental (RI) cycling. METHODS Nineteen healthy, untrained males (mean ± SD age: 24 ± 5 years; height: 178 ± 6 cm; body mass: 77.0 ± 10.7 kg) were assigned to receive 4 weeks of SIT or SIT + BFR. Before and after the intervention period, each participant completed a RI cycling test for determination of peak oxygen uptake (V ˙ O 2peak ) and the gas exchange threshold (GET) with deoxygenated heme (Δdeoxy[heme]) and tissue oxygenation index (TOI) measured by near-infrared spectroscopy (NIRS) in vastus lateralis (VL) muscle. RESULTS RelativeV ˙ O 2peak increased by 7% following both interventions (P ≤ 0.03). SIT + BFR increased peak Δdeoxy[heme] when normalized relative to leg arterial occlusion (PRE: 57.3 ± 13.0 vs. POST: 62.0 ± 13.2%; P = 0.009) whereas there was no significant difference following SIT (PRE: 64.9 ± 14.3 vs. POST: 71.4 ± 11.7%; P = 0.17). Likewise, TOI nadir decreased at exhaustion following SIT + BFR (PRE: 56.9 ± 9.1 vs. POST: 51.4 ± 9.2%; P = 0.002) but not after SIT (PRE: 58.5 ± 7.1 vs. POST: 56.3 ± 8.2%; P = 0.29). The absolute cycling power at the GET increased following SIT + BFR (PRE: 108 ± 13 vs. POST: 125 ± 17 W, P = 0.001) but was not significantly different following SIT (PRE: 112 ± 7 VS. POST: 116 ± 11 W, P = 0.54). CONCLUSION The addition of post-exercise BFR to SIT alters the mechanism underlying the enhancement inV ˙ O 2peak by increasing the peak rate of muscle fractional O2 extraction in previously untrained males.
Collapse
Affiliation(s)
- Brynmor C Breese
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK.
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough, LE11 3TU, UK
| | - Richard A Ferguson
- School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough, LE11 3TU, UK
| |
Collapse
|
6
|
Fang C, Du L, Gao S, Chen Y, Chen Z, Wu Z, Li L, Li J, Zeng X, Li M, Li Y, Tian X. Association between premature vascular smooth muscle cells senescence and vascular inflammation in Takayasu's arteritis. Ann Rheum Dis 2024; 83:1522-1535. [PMID: 38816066 PMCID: PMC11503059 DOI: 10.1136/ard-2024-225630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024]
Abstract
OBJECTIVES Arterial wall inflammation and remodelling are the characteristic features of Takayasu's arteritis (TAK). It has been proposed that vascular smooth muscle cells (VSMCs) are the main targeted cells of inflammatory damage and participate in arterial remodelling in TAK. Whether VSMCs are actively involved in arterial wall inflammation has not been elucidated. Studies have shown that cellular senescence in tissue is closely related to local inflammation persistence. We aimed to investigate whether VSMCs senescence contributes to vascular inflammation and the prosenescent factors in TAK. METHODS VSMCs senescence and senescence-associated secretory phenotype were detected by histological examination, bulk RNA-Seq and single-cell RNA-seq conducted on vascular surgery samples of TAK patients. The key prosenescent factors and the downstream signalling pathway were investigated in a series of in vitro and ex vivo experiments. RESULTS Histological findings, primary cell culture and transcriptomic analyses demonstrated that VSMCs of TAK patients had the features of premature senescence and contributed substantially to vascular inflammation by upregulating the expression of senescence-associated inflammatory cytokines. IL-6 was found to be the critical cytokine that drove VSMCs senescence and senescence-associated mitochondrial dysfunction in TAK. Mechanistically, IL-6-induced non-canonical mitochondrial localisation of phosphorylated STAT3 (Tyr705) prevented mitofusin 2 (MFN2) from proteasomal degradation, and subsequently promoted senescence-associated mitochondrial dysfunction and VSMCs senescence. Mitochondrial STAT3 or MFN2 inhibition ameliorated VSMCs senescence in ex vivo cultured arteries of TAK patients. CONCLUSIONS VSMCs present features of cellular senescence and are actively involved in vascular inflammation in TAK. Vascular IL-6-mitochondrial STAT3-MFN2 signalling is an important driver of VSMCs senescence.
Collapse
Affiliation(s)
- Chenglong Fang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Lihong Du
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Shang Gao
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuexin Chen
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zuoguan Chen
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhiyuan Wu
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Lili Li
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Jing Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Yongjun Li
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinping Tian
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| |
Collapse
|
7
|
Dobashi S, Yoshihara T, Ogura Y, Naito H. Normobaric hypoxia accelerates high-intensity intermittent training-induced mitochondrial biogenesis (PGC-1α)- and dynamics (OPA1)-related protein expressions in rat gastrocnemius muscle. J Physiol Biochem 2024:10.1007/s13105-024-01052-9. [PMID: 39422861 DOI: 10.1007/s13105-024-01052-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
High-intensity intermittent training (HIIT) in a normobaric hypoxic environment enhances exercise capacity, possibly by increasing the mitochondrial content in skeletal muscle; however, the molecular mechanisms underlying these adaptations are not well understood. Therefore, we investigated whether HIIT under normobaric hypoxia can enhance the expression of proteins involved in mitochondrial biogenesis and dynamics in rat gastrocnemius muscle. Five-week-old male Wistar rats (n = 24) were randomly assigned to the following four groups: (1) sedentary under normoxia (20.9% O2) (NS), (2) training under normoxia (NT), (3) sedentary under normobaric hypoxia (14.5% O2) (HS), and (4) training under normobaric hypoxia (HT). The training groups in both conditions were engaged in HIIT on a treadmill five to six days per week for nine weeks. From the fourth week of the training period, the group assigned to hypoxic conditions was exposed to normobaric hypoxia. Forty-eight hours after completing the final training session, gastrocnemius muscles were surgically removed, and mitochondrial enzyme activity and mitochondrial biogenesis and dynamics regulatory protein levels were determined. Citrate synthase (CS) activity and mitochondrial oxygen phosphorylation (OXPHOS) subunits in the gastrocnemius muscle in the HT significantly exceeded those in the other three groups. Moreover, the levels of a master regulator of mitochondrial biogenesis, peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), and a mitochondrial fusion-related protein, optic atrophy 1 (OPA1), were significantly increased by HIIT under normobaric hypoxia. Our data indicates that HIIT and normobaric hypoxia increase the expression of mitochondrial biogenesis- and dynamics-related proteins in skeletal muscles.
Collapse
Affiliation(s)
- Shohei Dobashi
- Graduate School of Health and Sports Science, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan
- Institute of Health and Sports Science & Medicine, Juntendo University, Chiba, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Toshinori Yoshihara
- Graduate School of Health and Sports Science, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan.
| | - Yuji Ogura
- Graduate School of Health and Sports Science, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan
- Department of Physiology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Hisashi Naito
- Graduate School of Health and Sports Science, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan
- Institute of Health and Sports Science & Medicine, Juntendo University, Chiba, Japan
| |
Collapse
|
8
|
Costa JSR, Silva G, Guimarães IC, Silva LFR, Silva SSD, Almeida JPDP, Coimbra CC, Parizotto NA, Gripp F, Dias-Peixoto MF, Esteves EA, Amorim FT, Ferraresi C, de Castro Magalhaes F. Photobiomodulation Enhances the Effect of Strength Training on Insulin Resistance Regardless of Exercise Volume in Mice Fed a High-Fat Diet. JOURNAL OF BIOPHOTONICS 2024:e202400274. [PMID: 39419755 DOI: 10.1002/jbio.202400274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
The aim was to investigate the effects of different volumes of strength training (ST) in association with photobiomodulation (PBMt) in mice fed a high-fat diet (HFD) on insulin resistance (IR). Male Swiss albino mice were fed HFD and performed high- or low-volume (one-third) ST (3 days/week), associated with PBMt (660 nm + 850 nm; ~42 J delivered) or not (lights off). ST improved IR, lowered visceral adiposity and circulating cytokines, and increased skeletal muscle hypertrophy and mitochondrial activity. The smaller volume of ST did not interfere with the improvement in IR, mitochondrial activity, or inflammatory profile, but exerted a smaller effect on visceral adiposity and skeletal muscle hypertrophy. Association with PBMt further improved IR, regardless of ST volume, although it did not affect adiposity, mitochondrial activity, and the inflammatory profile. Interestingly, PBMt positively affected quadriceps, but attenuated gluteus maximus hypertrophy. The association with PBMt induced greater improvement than ST alone.
Collapse
Affiliation(s)
- Juliana Sales Rodrigues Costa
- Multicentric Graduate Program in Physiological Sciences, Federal University of the Jequitinhonha and Mucuri Valleys - UFVJM, Diamantina, Minas Gerais, Brazil
| | - Gabriela Silva
- Multicentric Graduate Program in Physiological Sciences, Federal University of the Jequitinhonha and Mucuri Valleys - UFVJM, Diamantina, Minas Gerais, Brazil
- Graduate Program in Health Sciences, Federal University of the Jequitinhonha and Mucuri Valleys - UFVJM, Diamantina, Minas Gerais, Brazil
| | - Isabela Carvalho Guimarães
- Graduate Program in Health Sciences, Federal University of the Jequitinhonha and Mucuri Valleys - UFVJM, Diamantina, Minas Gerais, Brazil
| | - Luis Filipe Rocha Silva
- Graduate Program in Health Sciences, Federal University of the Jequitinhonha and Mucuri Valleys - UFVJM, Diamantina, Minas Gerais, Brazil
| | - Saulo Soares da Silva
- Instituto de Ciências e Tecnologia, Federal University of the Jequitinhonha and Mucuri Valleys - UFVJM, Diamantina, Minas Gerais, Brazil
| | - João Paulo de Paula Almeida
- Instituto de Ciências e Tecnologia, Federal University of the Jequitinhonha and Mucuri Valleys - UFVJM, Diamantina, Minas Gerais, Brazil
| | - Cândido Celso Coimbra
- Multicentric Graduate Program in Physiological Sciences, Federal University of the Jequitinhonha and Mucuri Valleys - UFVJM, Diamantina, Minas Gerais, Brazil
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Fernando Gripp
- Department of Physical Education, Federal University of the Jequitinhonha and Mucuri Valleys - Diamantina, Diamantina, Minas Gerais, Brazil
| | - Marco Fabrício Dias-Peixoto
- Multicentric Graduate Program in Physiological Sciences, Federal University of the Jequitinhonha and Mucuri Valleys - UFVJM, Diamantina, Minas Gerais, Brazil
- Graduate Program in Health Sciences, Federal University of the Jequitinhonha and Mucuri Valleys - UFVJM, Diamantina, Minas Gerais, Brazil
- Department of Physical Education, Federal University of the Jequitinhonha and Mucuri Valleys - Diamantina, Diamantina, Minas Gerais, Brazil
| | - Elizabethe Adriana Esteves
- Multicentric Graduate Program in Physiological Sciences, Federal University of the Jequitinhonha and Mucuri Valleys - UFVJM, Diamantina, Minas Gerais, Brazil
- Graduate Program in Health Sciences, Federal University of the Jequitinhonha and Mucuri Valleys - UFVJM, Diamantina, Minas Gerais, Brazil
- Department of Nutrition, Federal University of the Jequitinhonha and Mucuri Valleys - Diamantina, Diamantina, Minas Gerais, Brazil
| | - Fabiano Trigueiro Amorim
- Department of Health, Exercise, and Sports Sciences, University of New Mexico - UNM. Johnson Center, Albuquerque, New Mexico, USA
| | - Cleber Ferraresi
- Department of Physical Therapy, Federal University of Sao Carlos - UFSCAR. Rodovia Washington Luis, Km 235, Sao Carlos, Sao Paulo, Brazil
| | - Flavio de Castro Magalhaes
- Multicentric Graduate Program in Physiological Sciences, Federal University of the Jequitinhonha and Mucuri Valleys - UFVJM, Diamantina, Minas Gerais, Brazil
- Graduate Program in Health Sciences, Federal University of the Jequitinhonha and Mucuri Valleys - UFVJM, Diamantina, Minas Gerais, Brazil
- Department of Physical Education, Federal University of the Jequitinhonha and Mucuri Valleys - Diamantina, Diamantina, Minas Gerais, Brazil
- Department of Health, Exercise, and Sports Sciences, University of New Mexico - UNM. Johnson Center, Albuquerque, New Mexico, USA
| |
Collapse
|
9
|
Bautista NM, Herrera ND, Shadowitz E, Wearing OH, Cheviron ZA, Scott GR, Storz JF. Local adaptation, plasticity, and evolved resistance to hypoxic cold stress in high-altitude deer mice. Proc Natl Acad Sci U S A 2024; 121:e2412526121. [PMID: 39352929 PMCID: PMC11474095 DOI: 10.1073/pnas.2412526121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/20/2024] [Indexed: 10/04/2024] Open
Abstract
A fundamental question in evolutionary biology concerns the relative contributions of phenotypic plasticity vs. local adaptation (genotypic specialization) in enabling wide-ranging species to inhabit diverse environmental conditions. Here, we conduct a long-term hypoxia acclimation experiment to assess the relative roles of local adaptation and plasticity in enabling highland and lowland deer mice (Peromyscus maniculatus) to sustain aerobic thermogenesis at progressively increasing elevations. We assessed the relative physiological performance capacities of highland and lowland natives as they were exposed to progressive, stepwise increases in hypoxia, simulating the gradual ascent from sea level to an elevation of 6,000 m. The final elevation of 6,000 m far exceeds the highest attainable elevations within the species' range, and therefore tests the animals' ability to tolerate levels of hypoxia that surpass the prevailing conditions within their current distributional limits. Our results demonstrate that highland natives exhibit superior thermogenic capacities at the most severe levels of hypoxia, suggesting that the species' broad fundamental niche and its ability to inhabit such a broad range of elevational zones is attributable to genetically based local adaptation, including evolved changes in plasticity. Transcriptomic and physiological measurements identify evolved changes in the acclimation response to hypoxia that contribute to the enhanced thermogenic capacity of highland natives.
Collapse
Affiliation(s)
- Naim M. Bautista
- School of Biological Sciences, University of Nebraska, Lincoln, NE68588
| | | | - Ellen Shadowitz
- Department of Biology, McMaster University, Hamilton, ONL8S 4K1, Canada
| | - Oliver H. Wearing
- Department of Biology, McMaster University, Hamilton, ONL8S 4K1, Canada
| | | | - Graham R. Scott
- Department of Biology, McMaster University, Hamilton, ONL8S 4K1, Canada
| | - Jay F. Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE68588
| |
Collapse
|
10
|
Kumari S, Sadeesh EM. Comparative Assessment of Mitochondria Isolation Buffers for Optimizing Tissue-Specific Yields in Buffalo. Cells Tissues Organs 2024:1-13. [PMID: 39353407 DOI: 10.1159/000541733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024] Open
Abstract
INTRODUCTION Mitochondrial studies are crucial for assessing livestock health and performance. While extensive research has been done on cattle and pigs, the influence of mitochondria in Indian buffalo remains unexplored. Therefore, in order to understand functions of mitochondria, their energy-related processes, or any additional mitochondrial traits in buffaloes, it is imperative to isolate high-yield mitochondria with purity and functionality. Mitochondria are extracted by few conventional buffers. These buffers were previously characterized for their effectiveness in isolating mitochondria from rodent and human tissues. Therefore, the present study is to assess the performance of mitochondria isolation buffers specifically in buffalo tissues. METHODS The study involved isolation of mitochondria from four different tissues, i.e., liver, brain, heart and muscles of slaughtered buffalo (n = 3), using: (i) Tris-Mannitol buffer (ii) Tris-Sucrose buffer, and (iii) MOPS-Sucrose buffer. Buffer efficiency in preserving high fidelity during mitochondria isolation was assessed by comparison with Cayman's MitoCheck® Mitochondrial Isolation Kit (control). Further mitochondrial purity and functionality was assessed through comparative estimation of protein concentration and marker enzyme assays, respectively. RESULTS Our results revealed insights into the suitability of specific buffer for functional mitochondria isolation from specific type of buffalo tissue. Notably for obtaining high quality functional mitochondria from buffalo, MOPS-Sucrose buffer appeared optimal for soft tissues (liver and brain), while Tris-Mannitol buffer was efficient for hard tissues (muscles and heart). CONCLUSIONS Thus, our research highlights the influence of buffer composition and tissue-specific variations in buffer effectiveness on mitochondrial activity in different tissues, leading to improved mitochondrial isolation in buffalo.
Collapse
Affiliation(s)
- Sweta Kumari
- Laboratory of Mitochondrial Biology of Farm Animals, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - E M Sadeesh
- Laboratory of Mitochondrial Biology of Farm Animals, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
11
|
Noble RMN, Soni S, Liu SN, Rachid JJ, Mast HE, Wiedemeyer A, Holody CD, Mah R, Woodman AG, Ferdaoussi M, Lemieux H, Dyck JRB, Bourque SL. Maternal ketone supplementation throughout gestation improves neonatal cardiac dysfunction caused by perinatal iron deficiency. Clin Sci (Lond) 2024; 138:1249-1264. [PMID: 39288030 DOI: 10.1042/cs20241386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/02/2024] [Accepted: 09/17/2024] [Indexed: 09/19/2024]
Abstract
Iron deficiency (ID) is common during gestation and in early infancy and has been shown to adversely affect cardiac development and function, which could lead to lasting cardiovascular consequences. Ketone supplementation has been shown to confer cardioprotective effects in numerous disease models. Here, we tested the hypothesis that maternal ketone supplementation during gestation would mitigate cardiac dysfunction in ID neonates. Female Sprague-Dawley rats were fed an iron-restricted or iron-replete diet before and throughout pregnancy. Throughout gestation, iron-restricted dams were given either a daily subcutaneous injection of ketone solution (containing β-hydroxybutyrate [βOHB]) or saline (vehicle). Neonatal offspring cardiac function was assessed by echocardiography at postnatal days (PD)3 and 13. Hearts and livers were collected post-mortem for assessments of mitochondrial function and gene expression profiles of markers oxidative stress and inflammation. Maternal iron restriction caused neonatal anemia and asymmetric growth restriction at all time points assessed, and maternal βOHB treatment had no effect on these outcomes. Echocardiography revealed reduced ejection fraction despite enlarged hearts (relative to body weight) in ID offspring, resulting in impaired oxygen delivery, which was attenuated by maternal βOHB supplementation. Further, maternal ketone supplementation affected biochemical markers of mitochondrial function, oxidative stress and inflammation in hearts of neonates, implicating these pathways in the protective effects conferred by βOHB. In summary, βOHB supplementation confers protection against cardiac dysfunction in ID neonates and could have implications for the treatment of anemic babies.
Collapse
Affiliation(s)
- Ronan M N Noble
- Department of Pediatrics, University of Alberta, Edmonton, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Shubham Soni
- Department of Pediatrics, University of Alberta, Edmonton, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Si Ning Liu
- Department of Pediatrics, University of Alberta, Edmonton, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Jad-Julian Rachid
- Department of Pediatrics, University of Alberta, Edmonton, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Heather E Mast
- Faculty Saint-Jean, University of Alberta, Edmonton, AB, Canada
| | - Alyssa Wiedemeyer
- Department of Pediatrics, University of Alberta, Edmonton, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Claudia D Holody
- Department of Pediatrics, University of Alberta, Edmonton, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Richard Mah
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew G Woodman
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
- Department of Anesthesiology, University of Alberta, Edmonton, Canada
| | - Mourad Ferdaoussi
- Department of Pediatrics, University of Alberta, Edmonton, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Helene Lemieux
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada
- Faculty Saint-Jean, University of Alberta, Edmonton, AB, Canada
| | - Jason R B Dyck
- Department of Pediatrics, University of Alberta, Edmonton, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Stephane L Bourque
- Department of Pediatrics, University of Alberta, Edmonton, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
- Department of Anesthesiology, University of Alberta, Edmonton, Canada
| |
Collapse
|
12
|
Zhao YC, Gao BH. Integrative effects of resistance training and endurance training on mitochondrial remodeling in skeletal muscle. Eur J Appl Physiol 2024; 124:2851-2865. [PMID: 38981937 DOI: 10.1007/s00421-024-05549-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
Resistance training activates mammalian target of rapamycin (mTOR) pathway of hypertrophy for strength gain, while endurance training increases peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) pathway of mitochondrial biogenesis benefiting oxidative phosphorylation. The conventional view suggests that resistance training-induced hypertrophy signaling interferes with endurance training-induced mitochondrial remodeling. However, this idea has been challenged because acute leg press and knee extension in humans enhance both muscle hypertrophy and mitochondrial remodeling signals. Thus, we first examined the muscle mitochondrial remodeling and hypertrophy signals with endurance training and resistance training, respectively. In addition, we discussed the influence of resistance training on muscle mitochondria, demonstrating that the PGC-1α-mediated muscle mitochondrial adaptation and hypertrophy occur simultaneously. The second aim was to discuss the integrative effects of concurrent training, which consists of endurance and resistance training sessions on mitochondrial remodeling. The study found that the resistance training component does not reduce muscle mitochondrial remodeling signals in concurrent training. On the contrary, concurrent training has the potential to amplify skeletal muscle mitochondrial biogenesis compared to a single exercise model. Concurrent training involving differential sequences of resistance and endurance training may result in varied mitochondrial biogenesis signals, which should be linked to the pre-activation of mTOR or PGC-1α signaling. Our review proposed a mechanism for mTOR signaling that promotes PGC-1α signaling through unidentified pathways. This mechanism may be account for the superior muscle mitochondrial remodeling change following the concurrent training. Our review suggested an interaction between resistance training and endurance training in skeletal muscle mitochondrial adaptation.
Collapse
Affiliation(s)
- Yong-Cai Zhao
- College of Exercise and Health, Tianjin University of Sport, No. 16 Donghai Road, Jinghai District, Tianjin, 301617, China.
| | - Bing-Hong Gao
- School of Athletic Performance, Shanghai University of Sport, No. 399 Changhai Road, Yangpu District, Shanghai, 200438, China
| |
Collapse
|
13
|
Brandão SR, Oliveira PF, Guerra-Carvalho B, Reis-Mendes A, Neuparth MJ, Carvalho F, Ferreira R, Costa VM. Enduring metabolic modulation in the cardiac tissue of elderly CD-1 mice two months post mitoxantrone treatment. Free Radic Biol Med 2024; 223:199-211. [PMID: 39059512 DOI: 10.1016/j.freeradbiomed.2024.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Mitoxantrone (MTX) is a therapeutic agent used in the treatment of solid tumors and multiple sclerosis, recognized for its cardiotoxicity, with underlying molecular mechanisms not fully disclosed. The cardiotoxicity is influenced by risk factors, including age. Our study intended to assess the molecular effect of MTX on the cardiac muscle of old male CD-1 mice. Mice aged 19 months received a total cumulative dose of 4.5 mg/kg of MTX (MTX group) or saline solution (CTRL group). Two months post treatment, blood was collected, animals sacrificed, and the heart removed. MTX caused structural cardiac changes, which were accompanied by extracellular matrix remodeling, as indicated by the increased ratio between matrix metallopeptidase 2 and metalloproteinase inhibitor 2. At the metabolic level, decreased glycerol levels were found, together with a trend towards increased content of the electron transfer flavoprotein dehydrogenase. In contrast, lower glycolysis, given by the decreased content of glucose transporter GLUT4 and phosphofructokinase, seemed to occur. The findings suggest higher reliance on fatty acids oxidation, despite no major remodeling occurring at the mitochondrial level. Furthermore, the levels of glutamine and other amino acids (although to a lesser extent) were decreased, which aligns with decreased content of the E3 ubiquitin-protein ligase Atrogin-1, suggesting a decrease in proteolysis. As far as we know, this was the first study made in old mice with a clinically relevant dose of MTX, evaluating its long-term cardiac effects. Even two months after MTX exposure, changes in metabolic fingerprint occurred, highlighting enduring cardiac effects that may require clinical vigilance.
Collapse
Affiliation(s)
- Sofia Reis Brandão
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; LAQV - REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Pedro Fontes Oliveira
- LAQV - REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Bárbara Guerra-Carvalho
- LAQV - REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; ICBAS - School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal.
| | - Ana Reis-Mendes
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Maria João Neuparth
- Laboratory for Integrative and Translational Research in Population Health (ITR), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal.
| | - Félix Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Rita Ferreira
- LAQV - REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Vera Marisa Costa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
14
|
Cwerman-Thibault H, Malko-Baverel V, Le Guilloux G, Torres-Cuevas I, Ratcliffe E, Mouri D, Mignon V, Saubaméa B, Boespflug-Tanguy O, Gressens P, Corral-Debrinski M. Harlequin mice exhibit cognitive impairment, severe loss of Purkinje cells and a compromised bioenergetic status due to the absence of Apoptosis Inducing Factor. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167272. [PMID: 38897257 DOI: 10.1016/j.bbadis.2024.167272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
The functional integrity of the central nervous system relies on complex mechanisms in which the mitochondria are crucial actors because of their involvement in a multitude of bioenergetics and biosynthetic pathways. Mitochondrial diseases are among the most prevalent groups of inherited neurological disorders, affecting up to 1 in 5000 adults and despite considerable efforts around the world there is still limited curative treatments. Harlequin mice correspond to a relevant model of recessive X-linked mitochondrial disease due to a proviral insertion in the first intron of the Apoptosis-inducing factor gene, resulting in an almost complete depletion of the corresponding protein. These mice exhibit progressive degeneration of the retina, optic nerve, cerebellum, and cortical regions leading to irremediable blindness and ataxia, reminiscent of what is observed in patients suffering from mitochondrial diseases. We evaluated the progression of cerebellar degeneration in Harlequin mice, especially for Purkinje cells and its relationship with bioenergetics failure and behavioral damage. For the first time to our knowledge, we demonstrated that Harlequin mice display cognitive and emotional impairments at early stage of the disease with further deteriorations as ataxia aggravates. These functions, corresponding to higher-order cognitive processing, have been assigned to a complex network of reciprocal connections between the cerebellum and many cortical areas which could be dysfunctional in these mice. Consequently, Harlequin mice become a suitable experimental model to test innovative therapeutics, via the targeting of mitochondria which can become available to a large spectrum of neurological diseases.
Collapse
Affiliation(s)
| | | | | | - Isabel Torres-Cuevas
- Université Paris Cité, NeuroDiderot, Inserm, F-75019 Paris, France; Department of Physiology, University of Valencia, Vicent Andrés Estellés s/n, 46100 12 Burjassot, Spain
| | - Edward Ratcliffe
- Université Paris Cité, NeuroDiderot, Inserm, F-75019 Paris, France
| | - Djmila Mouri
- Université Paris Cité, NeuroDiderot, Inserm, F-75019 Paris, France
| | - Virginie Mignon
- Université de Paris, UMR-S 1144 Inserm, 75006 Paris, France; Université Paris Cité, Platform of Cellular and Molecular Imaging, US25 Inserm, UAR3612 CNRS, 75006 Paris, France
| | - Bruno Saubaméa
- Université de Paris, UMR-S 1144 Inserm, 75006 Paris, France
| | - Odile Boespflug-Tanguy
- Université Paris Cité, NeuroDiderot, Inserm, F-75019 Paris, France; Service de Neurologie et Maladies métaboliques, CHU Paris - Hôpital Robert Debré, F-75019 Paris, France
| | - Pierre Gressens
- Université Paris Cité, NeuroDiderot, Inserm, F-75019 Paris, France
| | | |
Collapse
|
15
|
Thoral E, Dawson NJ, Bettinazzi S, Rodríguez E. An evolving roadmap: using mitochondrial physiology to help guide conservation efforts. CONSERVATION PHYSIOLOGY 2024; 12:coae063. [PMID: 39252884 PMCID: PMC11381570 DOI: 10.1093/conphys/coae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024]
Abstract
The crucial role of aerobic energy production in sustaining eukaryotic life positions mitochondrial processes as key determinants of an animal's ability to withstand unpredictable environments. The advent of new techniques facilitating the measurement of mitochondrial function offers an increasingly promising tool for conservation approaches. Herein, we synthesize the current knowledge on the links between mitochondrial bioenergetics, ecophysiology and local adaptation, expanding them to the wider conservation physiology field. We discuss recent findings linking cellular bioenergetics to whole-animal fitness, in the current context of climate change. We summarize topics, questions, methods, pitfalls and caveats to help provide a comprehensive roadmap for studying mitochondria from a conservation perspective. Our overall aim is to help guide conservation in natural populations, outlining the methods and techniques that could be most useful to assess mitochondrial function in the field.
Collapse
Affiliation(s)
- Elisa Thoral
- Department of Biology, Section for Evolutionary Ecology, Lund University, Sölvegatan 37, Lund 223 62, Sweden
| | - Neal J Dawson
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Garscube Campus, Bearsden Road, Glasgow, G61 1QH , UK
| | - Stefano Bettinazzi
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, 99-105 Gower Street, WC1E 6BT, London, UK
| | - Enrique Rodríguez
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, 99-105 Gower Street, WC1E 6BT, London, UK
| |
Collapse
|
16
|
Reisman EG, Botella J, Huang C, Schittenhelm RB, Stroud DA, Granata C, Chandrasiri OS, Ramm G, Oorschot V, Caruana NJ, Bishop DJ. Fibre-specific mitochondrial protein abundance is linked to resting and post-training mitochondrial content in the muscle of men. Nat Commun 2024; 15:7677. [PMID: 39227581 PMCID: PMC11371815 DOI: 10.1038/s41467-024-50632-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 07/16/2024] [Indexed: 09/05/2024] Open
Abstract
Analyses of mitochondrial adaptations in human skeletal muscle have mostly used whole-muscle samples, where results may be confounded by the presence of a mixture of type I and II muscle fibres. Using our adapted mass spectrometry-based proteomics workflow, we provide insights into fibre-specific mitochondrial differences in the human skeletal muscle of men before and after training. Our findings challenge previous conclusions regarding the extent of fibre-type-specific remodelling of the mitochondrial proteome and suggest that most baseline differences in mitochondrial protein abundances between fibre types reported by us, and others, might be due to differences in total mitochondrial content or a consequence of adaptations to habitual physical activity (or inactivity). Most training-induced changes in different mitochondrial functional groups, in both fibre types, were no longer significant in our study when normalised to changes in markers of mitochondrial content.
Collapse
Affiliation(s)
- Elizabeth G Reisman
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Javier Botella
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia
- Metabolic Research Unit, School of Medicine and Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, VIC, Australia
| | - Cheng Huang
- Monash Proteomics & Metabolomics Facility, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics & Metabolomics Facility, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - David A Stroud
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Parkville, VIC, Australia
| | - Cesare Granata
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Institute for Clinical Diabetology, German, Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Owala S Chandrasiri
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia
| | - Georg Ramm
- Ramaciotti Centre for Cryo EM, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Viola Oorschot
- Ramaciotti Centre for Cryo EM, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Nikeisha J Caruana
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia.
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia.
| | - David J Bishop
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia.
| |
Collapse
|
17
|
Keshavan N, Rahman S. Natural history of deoxyguanosine kinase deficiency. Mol Genet Metab 2024; 143:108554. [PMID: 39079226 DOI: 10.1016/j.ymgme.2024.108554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 10/16/2024]
Abstract
BACKGROUND AND OBJECTIVES Deoxyguanosine kinase deficiency is one genetic cause of mtDNA depletion syndrome. Its major phenotypes include neonatal/infantile-onset hepatocerebral disease, isolated hepatic disease and myopathic disease. In this retrospective study, we seek to describe the natural history of deoxyguanosine kinase deficiency and identify any genotype-phenotype correlations. METHODS Retrospective literature search and collation of data from genetically confirmed cases of deoxyguanosine kinase deficiency. RESULTS 173 cases of DGUOK deficiency were identified. Neonatal/infantile-onset hepatocerebral disease accounted for 128 (74%) of cases. Isolated liver disease was seen in 36 (21%) and myopathic disease in 9 (5%) of cases. The most frequently involved systems were liver (98%), brain (75%), growth (46%) and gastrointestinal tract (26%). Infantile-onset disease typically presented with cholestatic jaundice and lactic acidosis. Neurological involvement included hypotonia, nystagmus and developmental delay with MRI brain abnormalities in about half of cases. Missense variants accounted for 48% of all pathogenic variants while variants resulting in truncated transcripts accounted for 39%. Prognosis was poor, especially for neonatal/ infantile-onset hepatocerebral disease for which 1 year survival was 11%. Twenty-three patients received liver transplants, of whom 12 died within 2 years of transplant. Patients with two truncating variants had a higher risk of death and were more likely to have the neonatal/infantile-onset hepatocerebral disease phenotype. No blood biomarker predictive of neurological involvement was identified. Earlier onset correlated with increased mortality. CONCLUSIONS There is a narrow window for therapeutic intervention. For the hepatocerebral disease phenotype, median age of onset was 1 month while the median age of death was 6.5 months implying rapid disease progression.
Collapse
Affiliation(s)
- Nandaki Keshavan
- Department of Metabolic Medicine, Great Ormond Street Hospital, Great Ormond Street, London WC1N 3JH, United Kingdom; UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom
| | - Shamima Rahman
- Department of Metabolic Medicine, Great Ormond Street Hospital, Great Ormond Street, London WC1N 3JH, United Kingdom; UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom.
| |
Collapse
|
18
|
Pelka EZ, Davis BR, McDaniel J. Sourcebook update: using near-infrared spectroscopy to assess skeletal muscle oxygen uptake. ADVANCES IN PHYSIOLOGY EDUCATION 2024; 48:566-572. [PMID: 38779745 DOI: 10.1152/advan.00047.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/16/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
Monitoring the metabolic cost or oxygen consumption associated with rest and exercise is crucial to understanding the impact of disease or physical training on the health of individuals. Traditionally, measuring the skeletal muscle oxygen cost associated with exercise/muscle contractions can be rather expensive or invasive (i.e., muscle biopsies). More recently, specific protocols designed around the use of near-infrared spectroscopy (NIRS) have been shown to provide a quick, noninvasive easy-to-use tool to measure skeletal muscle oxygen consumption ([Formula: see text]). However, the data and results from NIRS devices are often misunderstood. Thus the primary purpose of this sourcebook update is to provide several experimental protocols students can utilize to improve their understanding of NIRS technology, learn how to analyze results from NIRS devices, and better understand how muscle contraction intensity and type (isometric, concentric, or eccentric) influence the oxygen cost of muscle contractions.NEW & NOTEWORTHY Compared to traditional methods, near-infrared spectroscopy (NIRS) provides a relatively cheap and easy-to-use noninvasive technique to measure skeletal muscle oxygen uptake following exercise. This laboratory not only enables students to learn about the basics of NIRS and muscle energetics but also addresses more complex questions regarding skeletal muscle physiology.
Collapse
Affiliation(s)
- Edward Z Pelka
- Exercise Science and Exercise Physiology Program, Kent State University, Kent, Ohio, United States
| | - B Ryan Davis
- Exercise Science and Exercise Physiology Program, Kent State University, Kent, Ohio, United States
| | - John McDaniel
- Exercise Science and Exercise Physiology Program, Kent State University, Kent, Ohio, United States
| |
Collapse
|
19
|
Coulson SZ, Lyons SA, Robertson CE, Fabello B, Dessureault LM, McClelland GB. Regulation of muscle pyruvate dehydrogenase activity and fuel use during exercise in high-altitude deer mice. J Exp Biol 2024; 227:jeb246890. [PMID: 39054898 PMCID: PMC11418174 DOI: 10.1242/jeb.246890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Adult, lab-reared, highland deer mice acclimate to hypoxia by increasing reliance on carbohydrates to fuel exercise. Yet neither the underlying mechanisms for this shift in fuel use nor the impact of lifetime hypoxia exposure experienced in high alpine conditions, are fully understood. Thus, we assessed the use of fuel during exercise in wild highland deer mice running in their native environment. We examined a key step in muscle carbohydrate oxidation - the regulation of pyruvate dehydrogenase (PDH) - during exercise at altitude in wild highlanders and in first generation (G1) lab-born and -raised highlanders acclimated to normoxia or hypoxia. PDH activity was also determined in the gastrocnemius of G1 highlanders using an in situ muscle preparation. We found that wild highlanders had a high reliance on carbohydrates while running in their native environment, consistent with data from hypoxia-acclimated G1 highlanders. PDH activity in the gastrocnemius was similar post exercise between G1 and wild highlanders. However, when the gastrocnemius was stimulated at a light work rate in situ, PDH activity was higher in hypoxia-acclimated G1 highlanders and was associated with lower intramuscular lactate levels. These findings were supported by lower PDH kinase 2 protein production in hypoxia-acclimated G1 mice. Our findings indicate that adult phenotypic plasticity in response to low oxygen is sufficient to increase carbohydrate reliance during exercise in highland deer mice. Additionally, variation in PDH regulation with hypoxia acclimation contributes to shifts in whole-animal patterns of fuel use and is likely to improve exercise performance via elevated energy yield per mole of O2. .
Collapse
Affiliation(s)
- Soren Z. Coulson
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4K1
| | - Sulayman A. Lyons
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4K1
| | - Cayleih E. Robertson
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4K1
| | - Benjamin Fabello
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4K1
| | - Lauren M. Dessureault
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4K1
| | - Grant B. McClelland
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4K1
| |
Collapse
|
20
|
Cázares-Preciado JA, López-Arredondo A, Cruz-Cardenas JA, Luévano-Martínez LA, García-Rivas G, Prado-Garcia H, Brunck MEG. Metabolic features of neutrophilic differentiation of HL-60 cells in hyperglycemic environments. BMJ Open Diabetes Res Care 2024; 12:e004181. [PMID: 39122366 PMCID: PMC11409339 DOI: 10.1136/bmjdrc-2024-004181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
INTRODUCTION Chronic hyperglycemia affects neutrophil functions, leading to reduced pathogen killing and increased morbidity. This impairment has been directly linked to increased glycemia, however, how this specifically affects neutrophils metabolism and their differentiation in the bone marrow is unclear and difficult to study. RESEARCH DESIGN AND METHODS We used high-resolution respirometry to investigate the metabolism of resting and activated donor neutrophils, and flow cytometry to measure surface CD15 and CD11b expression. We then used HL-60 cells differentiated towards neutrophil-like cells in standard media and investigated the effect of doubling glucose concentration on differentiation metabolism. We measured the oxygen consumption rate (OCR), and the enzymatic activity of carnitine palmitoyl transferase 1 (CPT1) and citrate synthase during neutrophil-like differentiation. We compared the surface phenotype, functions, and OCR of neutrophil-like cells differentiated under both glucose concentrations. RESULTS Donor neutrophils showed significant instability of CD11b and OCR after phorbol 12-myristate 13-acetate stimulation at 3 hours post-enrichment. During HL-60 neutrophil-like cell differentiation, there was a significant increase in surface CD15 and CD11b expression together with the loss of mitochondrial mass. Differentiated neutrophil-like cells also exhibited higher CD11b expression and were significantly more phagocytic. In higher glucose media, we measured a decrease in citrate synthase and CPT1 activities during neutrophil-like differentiation. CONCLUSIONS HL-60 neutrophil-like differentiation recapitulated known molecular and metabolic features of human neutrophil differentiation. Increased glucose concentrations correlated with features described in hyperglycemic donor neutrophils including increased CD11b and phagocytosis. We used this model to describe metabolic features of neutrophil-like cell differentiation in hyperglycemia and show for the first time the downregulation of CPT1 and citrate synthase activity, independently of mitochondrial mass.
Collapse
Affiliation(s)
| | | | | | - Luis Alberto Luévano-Martínez
- Escuela de Medicina y Ciencias de La Salud, Tecnologico de Monterrey, Monterrey, Nuevo Leon, Mexico
- The Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Mexico
| | - Gerardo García-Rivas
- Escuela de Medicina y Ciencias de La Salud, Tecnologico de Monterrey, Monterrey, Nuevo Leon, Mexico
- The Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Mexico
| | - Heriberto Prado-Garcia
- Laboratorio de Onco-Inmunobiología, Departamento de Enfermedades Crónico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico, Mexico
| | - Marion E G Brunck
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, Nuevo Leon, Mexico
- The Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Mexico
| |
Collapse
|
21
|
Sartori LF, Tsemberis E, Hernandez T, Luchette K, Zhang D, Farooqi S, Bush J, McCann JC, Balamuth F, Weiss SL. Distinct mitochondrial respiration profiles in pediatric patients with febrile illness versus sepsis. Pediatr Res 2024:10.1038/s41390-024-03420-z. [PMID: 39095577 DOI: 10.1038/s41390-024-03420-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/06/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVE Mitochondrial dysfunction, linked to sepsis-related organ failure, is unknown in febrile illness. METHODS Prospective study of children in an Emergency Department (ED) with febrile illness or without infection (ED controls); secondary analysis of ICU patients with sepsis or without infection (ICU controls). Mitochondrial oxygen consumption measured in peripheral blood mononuclear cells using respirometry, with primary outcome of spare respiratory capacity (SRC). Mitochondrial content measured as citrate synthase (CS: febrile illness and ED controls) and mitochondrial to nuclear DNA ratio (mtDNA:nDNA: all groups). RESULTS SRC was lower in febrile illness (6.7 ± 3.0 pmol/sec/106 cells) and sepsis (5.7 ± 4.7) than ED/PICU controls (8.5 ± 3.7; both p < 0.05), but not different between febrile illness and sepsis (p = 0.26). Low SRC was driven by increased basal respiration in febrile illness and decreased maximal uncoupled respiration in sepsis. Differences were no longer significant after adjustment for patient demographics. Febrile illness demonstrated lower CS activity than ED controls (p = 0.07) and lower mtDNA:nDNA than both ED/PICU controls and sepsis (both p < 0.05). CONCLUSION Mitochondrial SRC was reduced in both febrile illness and sepsis, but due to distinct mitochondrial profiles and impacted by demographics. Further work is needed to determine if mitochondrial profiles could differentiate febrile illness from early sepsis. IMPACT STATEMENT Mitochondrial dysfunction has been linked to organ failure in sepsis, but whether mitochondrial alterations are evident in febrile illness without sepsis is unknown. In our study, while mitochondrial spare respiratory capacity (SRC), an index of cellular bioenergetic reserve under stress, was reduced in children with both febrile illness and sepsis compared to children without infections, low SRC was driven by increased basal respiration in febrile illness compared with decreased maximal uncoupled respiration in sepsis. Additional research is needed to understand if distinct mitochondrial profiles could be used to differentiate febrile illness from early sepsis in children.
Collapse
Affiliation(s)
- Laura F Sartori
- Department of Emergency Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Elena Tsemberis
- Department of Emergency Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Tyne Hernandez
- Department of Emergency Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Katherine Luchette
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Donglan Zhang
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Jenny Bush
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - John C McCann
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Fran Balamuth
- Department of Emergency Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Scott L Weiss
- Nemours Children's Health, Wilmington, DE, USA
- Sidney Kimmel Medical College - Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
22
|
Parenteau F, Denis A, Roberts M, Comtois AS, Bergdahl A. A polyphenol-rich cranberry supplement improves muscle oxidative capacity in healthy adults. Appl Physiol Nutr Metab 2024; 49:1047-1054. [PMID: 38626462 DOI: 10.1139/apnm-2023-0633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Cranberries are rich in polyphenols, have a high antioxidant capacity, and may protect against exercise-induced free radical production. Mitochondria are known producers of free radical in skeletal muscle, and preventing overproduction of radicals may be a viable approach to improve muscle health. This study aimed to investigate the effect of a polyphenol-rich cranberry extract (CE) on muscle oxidative capacity and oxygenation metrics in healthy active adults. 17 participants (9 males and 8 females) were tested at: (i) baseline, (ii) 2 h following an acute CE dose (0.7 g/kg of body mass), and (iii) after 4 weeks of daily supplement consumption (0.3 g/kg of body mass). At each time point, muscle oxidative capacity was determined using near-infrared spectroscopy to measure the recovery kinetics of muscle oxygen consumption following a 15-20 s contraction of the vastus lateralis. Cranberry supplementation over 28 days significantly improved muscle oxidative capacity (k-constant, 2.8 ± 1.8 vs. 3.9 ± 2.2; p = 0.02). This was supported by a greater rate of oxygen depletion during a sustained cuff occlusion (-0.04 ± 0.02 vs. -0.07 ± 0.03; p = 0.02). Resting muscle oxygen consumption was not affected by cranberry consumption. Our results suggest that cranberry supplementation may play a role in improving mitochondrial health, which could lead to better muscle oxidative capacity in healthy active adult populations.
Collapse
Affiliation(s)
- Francis Parenteau
- Department of Health, Kinesiology and Applied Physiology, Concordia University, Montréal, QC, Canada
| | - Antoine Denis
- Department of Health, Kinesiology and Applied Physiology, Concordia University, Montréal, QC, Canada
| | - Mary Roberts
- Department of Health, Kinesiology and Applied Physiology, Concordia University, Montréal, QC, Canada
| | - Alain Steve Comtois
- Département des Sciences de l'activité physique, Université du Québec à Montréal (UQAM), Montréal, QC, Canada
| | - Andreas Bergdahl
- Department of Health, Kinesiology and Applied Physiology, Concordia University, Montréal, QC, Canada
| |
Collapse
|
23
|
Hamilton K, Kilding AE, Plews DJ, Mildenhall MJ, Waldron M, Charoensap T, Cox TH, Brick MJ, Leigh WB, Maunder E. Durability of the moderate-to-heavy-intensity transition is related to the effects of prolonged exercise on severe-intensity performance. Eur J Appl Physiol 2024; 124:2427-2438. [PMID: 38546844 PMCID: PMC11322397 DOI: 10.1007/s00421-024-05459-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/06/2024] [Indexed: 08/16/2024]
Abstract
PURPOSE Power output at the moderate-to-heavy-intensity transition decreases during prolonged exercise, and resilience to this has been termed 'durability'. The purpose of this study was to assess the relationship between durability and the effect of prolonged exercise on severe-intensity performance, and explore intramuscular correlates of durability. METHODS On separate days, 13 well-trained cyclists and triathletes (V̇O2peak, 57.3 ± 4.8 mL kg-1 min-1; training volume, 12 ± 2.1 h week-1) undertook an incremental test and 5-min time trial (TT) to determine power output at the first ventilatory threshold (VT1) and severe-intensity performance, with and without 150-min of prior moderate-intensity cycling. A single resting vastus lateralis microbiopsy was obtained. RESULTS Prolonged exercise reduced power output at VT1 (211 ± 40 vs. 198 ± 39 W, ∆ -13 ± 16 W, ∆ -6 ± 7%, P = 0.013) and 5-min TT performance (333 ± 75 vs. 302 ± 63 W, ∆ -31 ± 41 W, ∆ -9 ± 10%, P = 0.017). The reduction in 5-min TT performance was significantly associated with durability of VT1 (rs = 0.719, P = 0.007). Durability of VT1 was not related to vastus lateralis carnosine content, citrate synthase activity, or complex I activity (P > 0.05). CONCLUSION These data provide the first direct support that durability of the moderate-to-heavy-intensity transition is an important performance parameter, as more durable athletes exhibited smaller reductions in 5-min TT performance following prolonged exercise. We did not find relationships between durability and vastus lateralis carnosine content, citrate synthase activity, or complex I activity.
Collapse
Affiliation(s)
- Kate Hamilton
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Andrew E Kilding
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Daniel J Plews
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | | | - Mark Waldron
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| | - Thanchanok Charoensap
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Tobias H Cox
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Matthew J Brick
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
- Orthosports North Harbour, AUT Millennium, Auckland, New Zealand
| | - Warren B Leigh
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
- Orthosports North Harbour, AUT Millennium, Auckland, New Zealand
| | - Ed Maunder
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand.
| |
Collapse
|
24
|
Liu Y, Sun L, Li Y, Holmes C. Mesenchymal stromal/stem cell tissue source and in vitro expansion impact extracellular vesicle protein and miRNA compositions as well as angiogenic and immunomodulatory capacities. J Extracell Vesicles 2024; 13:e12472. [PMID: 39092563 PMCID: PMC11294870 DOI: 10.1002/jev2.12472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/14/2024] [Indexed: 08/04/2024] Open
Abstract
Recently, therapies utilizing extracellular vesicles (EVs) derived from mesenchymal stromal/stem cells (MSCs) have begun to show promise in clinical trials. However, EV therapeutic potential varies with MSC tissue source and in vitro expansion through passaging. To find the optimal MSC source for clinically translatable EV-derived therapies, this study aims to compare the angiogenic and immunomodulatory potentials and the protein and miRNA cargo compositions of EVs isolated from the two most common clinical sources of adult MSCs, bone marrow and adipose tissue, across different passage numbers. Primary bone marrow-derived MSCs (BMSCs) and adipose-derived MSCs (ASCs) were isolated from adult female Lewis rats and expanded in vitro to the indicated passage numbers (P2, P4, and P8). EVs were isolated from the culture medium of P2, P4, and P8 BMSCs and ASCs and characterized for EV size, number, surface markers, protein content, and morphology. EVs isolated from different tissue sources showed different EV yields per cell, EV sizes, and protein yield per EV. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of proteomics data and miRNA seq data identified key proteins and pathways associated with differences between BMSC-EVs and ASC-EVs, as well as differences due to passage number. In vitro tube formation assays employing human umbilical vein endothelial cells suggested that both tissue source and passage number had significant effects on the angiogenic capacity of EVs. With or without lipopolysaccharide (LPS) stimulation, EVs more significantly impacted expression of M2-macrophage genes (IL-10, Arg1, TGFβ) than M1-macrophage genes (IL-6, NOS2, TNFα). By correlating the proteomics analyses with the miRNA seq analysis and differences observed in our in vitro immunomodulatory, angiogenic, and proliferation assays, this study highlights the trade-offs that may be necessary in selecting the optimal MSC source for development of clinical EV therapies.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Chemical & Biomedical Engineering, Florida A&M University‐Florida State University College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
| | - Li Sun
- Department of Chemical & Biomedical Engineering, Florida A&M University‐Florida State University College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
- Department of Biomedical Sciences, College of MedicineFlorida State UniversityTallahasseeFloridaUSA
| | - Yan Li
- Department of Chemical & Biomedical Engineering, Florida A&M University‐Florida State University College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
| | - Christina Holmes
- Department of Chemical & Biomedical Engineering, Florida A&M University‐Florida State University College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
| |
Collapse
|
25
|
Navarro CDC, Francisco A, Costa EFD, Dalla Costa AP, Sartori MR, Bizerra PFV, Salgado AR, Figueira TR, Vercesi AE, Castilho RF. Aging-dependent mitochondrial bioenergetic impairment in the skeletal muscle of NNT-deficient mice. Exp Gerontol 2024; 193:112465. [PMID: 38795789 DOI: 10.1016/j.exger.2024.112465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/02/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Overall health relies on features of skeletal muscle that generally decline with age, partly due to mechanisms associated with mitochondrial redox imbalance and bioenergetic dysfunction. Previously, aged mice genetically devoid of the mitochondrial NAD(P)+ transhydrogenase (NNT, encoded by the nicotinamide nucleotide transhydrogenase gene), an enzyme involved in mitochondrial NADPH supply, were shown to exhibit deficits in locomotor behavior. Here, by using young, middle-aged, and older NNT-deficient (Nnt-/-) mice and age-matched controls (Nnt+/+), we aimed to investigate how muscle bioenergetic function and motor performance are affected by NNT expression and aging. Mice were subjected to the wire-hang test to assess locomotor performance, while mitochondrial bioenergetics was evaluated in fiber bundles from the soleus, vastus lateralis and plantaris muscles. An age-related decrease in the average wire-hang score was observed in middle-aged and older Nnt-/- mice compared to age-matched controls. Although respiratory rates in the soleus, vastus lateralis and plantaris muscles did not significantly differ between the genotypes in young mice, the rates of oxygen consumption did decrease in the soleus and vastus lateralis muscles of middle-aged and older Nnt-/- mice. Notably, the soleus, which exhibited the highest NNT expression level, was the muscle most affected by aging, and NNT loss. Additionally, histology of the soleus fibers revealed increased numbers of centralized nuclei in older Nnt-/- mice, indicating abnormal morphology. In summary, our findings suggest that NNT expression deficiency causes locomotor impairments and muscle dysfunction during aging in mice.
Collapse
Affiliation(s)
- Claudia D C Navarro
- Department of Pathology, School of Medical Sciences, University of Campinas (UNICAMP), 13083 887 Campinas, SP, Brazil
| | - Annelise Francisco
- Department of Pathology, School of Medical Sciences, University of Campinas (UNICAMP), 13083 887 Campinas, SP, Brazil; Department of Experimental Medical Science, Faculty of Medicine, Lund University, 221 84 Lund, Sweden
| | - Ericka F D Costa
- Department of Pathology, School of Medical Sciences, University of Campinas (UNICAMP), 13083 887 Campinas, SP, Brazil
| | - Ana P Dalla Costa
- Department of Pathology, School of Medical Sciences, University of Campinas (UNICAMP), 13083 887 Campinas, SP, Brazil
| | - Marina R Sartori
- Department of Pathology, School of Medical Sciences, University of Campinas (UNICAMP), 13083 887 Campinas, SP, Brazil
| | - Paulo F V Bizerra
- Department of Pathology, School of Medical Sciences, University of Campinas (UNICAMP), 13083 887 Campinas, SP, Brazil
| | - Andréia R Salgado
- Multidisciplinary Center for Biological Investigation on Laboratory Animals Science, University of Campinas, Campinas, SP, Brazil
| | - Tiago R Figueira
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, 14040 900 Ribeirão Preto, SP, Brazil
| | - Anibal E Vercesi
- Department of Pathology, School of Medical Sciences, University of Campinas (UNICAMP), 13083 887 Campinas, SP, Brazil
| | - Roger F Castilho
- Department of Pathology, School of Medical Sciences, University of Campinas (UNICAMP), 13083 887 Campinas, SP, Brazil.
| |
Collapse
|
26
|
Bangsbo J. 10-20-30 exercise training improves fitness and health. Eur J Sport Sci 2024; 24:1162-1175. [PMID: 39031952 PMCID: PMC11295100 DOI: 10.1002/ejsc.12163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/10/2024] [Accepted: 06/23/2024] [Indexed: 07/22/2024]
Abstract
Intense interval exercise training has been shown to improve performance and health of untrained and trained people. However, due to the exercise intensity causing high-perceived exertion, the participants often do not wish to continue the training. The 10-20-30 training concept consists of low intensity for 30 s, 20 s at a moderate pace, and then 10 s with high intensity either running or cycling. A 10-20-30 training session consist of two to four 5-min blocks. The 10-20-30 training improved fitness and performance as well as lowered blood pressure and body fat of both untrained and trained individuals even with a significant reduction in the training volume. Similarly, hypertensive, diabetic, and asthmatic patients lowered body fat, improved fitness, and performance during a 10-20-30-training intervention period. In addition, hypertensive patients reduced systolic and diastolic blood pressure markedly with the 10-20-30 training twice a week for 8 weeks. Diabetic patients lowered long-term blood sugar (HbA1c), which did not occur with moderate-intensity exercise training. Furthermore, asthmatic patients improved their control of asthma and asthma-related quality of life with the 10-20-30 training. The adherence for the patient groups was high (>80%), and no adverse events were reported. Thus, the 10-20-30 training seems to be time efficient and feasible for untrained and trained individuals as well as patients and may be used in the prevention and treatment of noncommunicable diseases.
Collapse
Affiliation(s)
- Jens Bangsbo
- The August Krogh Section for Human PhysiologyDepartment of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
27
|
Takahashi K, Kitaoka Y, Hatta H. Better maintenance of enzymatic capacity and higher levels of substrate transporter proteins in skeletal muscle of aging female mice. Appl Physiol Nutr Metab 2024; 49:1100-1114. [PMID: 38710106 DOI: 10.1139/apnm-2024-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
This study investigated sex-specific differences in high-energy phosphate, glycolytic, and mitochondrial enzyme activities and also metabolite transporter protein levels in the skeletal muscles of adult (5 months old), middle-aged (12 months old), and advanced-aged (24 months old) mice. While gastrocnemius glycogen content increased with age regardless of sex, gastrocnemius triglyceride levels increased only in advanced-aged female mice. Aging decreased creatine kinase and adenylate kinase activities in the plantaris muscle of both sexes and in the soleus muscle of male mice but not in female mice. Irrespective of sex, phosphofructokinase and lactate dehydrogenase (LDH) activities decreased in the plantaris and soleus muscles. Additionally, hexokinase activity in the plantaris muscle and LDH activity in the soleus muscle decreased to a greater extent in aged male mice compared with those in aged female mice. Mitochondrial enzyme activities increased in the plantaris muscle of aged female mice but did not change in male mice. The protein content of the glucose transporter 4 in the aged plantaris muscle and fatty acid translocase/cluster of differentiation 36 increased in the aged plantaris and soleus muscles of both sexes, with a significantly higher content in female mice. These findings suggest that females possess a better ability to maintain metabolic enzyme activity and higher levels of metabolite transport proteins in skeletal muscle during aging, despite alterations in lipid metabolism. Our data provide a basis for studying muscle metabolism in the context of age-dependent metabolic perturbations and diseases that affect females and males differently.
Collapse
Affiliation(s)
- Kenya Takahashi
- Department of Sports Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Yu Kitaoka
- Department of Human Sciences, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama, Kanagawa 221-8686, Japan
| | - Hideo Hatta
- Department of Sports Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
28
|
Morla J, Salin K, Lassus R, Favre-Marinet J, Sentis A, Daufresne M. Multigenerational exposure to temperature influences mitochondrial oxygen fluxes in the Medaka fish (Oryzias latipes). Acta Physiol (Oxf) 2024; 240:e14194. [PMID: 38924292 DOI: 10.1111/apha.14194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 05/08/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
AIM Thermal sensitivity of cellular metabolism is crucial for animal physiology and survival under climate change. Despite recent efforts, effects of multigenerational exposure to temperature on the metabolic functioning remain poorly understood. We aimed at determining whether multigenerational exposure to temperature modulate the mitochondrial respiratory response of Medaka fish. METHODS We conducted a multigenerational exposure with Medaka fish reared multiple generations at 20 and 30°C (COLD and WARM fish, respectively). We then measured the oxygen consumption of tail muscle at two assay temperatures (20 and 30°C). Mitochondrial function was determined as the respiration supporting ATP synthesis (OXPHOS) and the respiration required to offset proton leak (LEAK(Omy)) in a full factorial design (COLD-20°C; COLD-30°C; WARM-20°C; WARM-30°C). RESULTS We found that higher OXPHOS and LEAK fluxes at 30°C compared to 20°C assay temperature. At each assay temperature, WARM fish had lower tissue oxygen fluxes than COLD fish. Interestingly, we did not find significant differences in respiratory flux when mitochondria were assessed at the rearing temperature of the fish (i.e., COLD-20°C vs. WARM -30°C). CONCLUSION The lower OXPHOS and LEAK capacities in warm fish are likely the result of the multigenerational exposure to warm temperature. This is consistent with a modulatory response of mitochondrial capacity to compensate for potential detrimental effects of warming on metabolism. Finally, the absence of significant differences in respiratory fluxes between COLD-20°C and WARM-30°C fish likely reflects an optimal respiration flux when organisms adapt to their thermal conditions.
Collapse
Affiliation(s)
- Julie Morla
- INRAE, Aix-Marseille University, UMR RECOVER, Aix-en-Provence, France
| | - Karine Salin
- Départment of Environment and Resources, IFREMER, Unité de Physiologie Fonctionnelle des Organismes Marins-LEMAR UMR 6530, BP70, Plouzané, France
| | - Rémy Lassus
- INRAE, Aix-Marseille University, UMR RECOVER, Aix-en-Provence, France
| | | | - Arnaud Sentis
- INRAE, Aix-Marseille University, UMR RECOVER, Aix-en-Provence, France
| | - Martin Daufresne
- INRAE, Aix-Marseille University, UMR RECOVER, Aix-en-Provence, France
| |
Collapse
|
29
|
Jeong I, Cho EJ, Yook JS, Choi Y, Park DH, Kang JH, Lee SH, Seo DY, Jung SJ, Kwak HB. Mitochondrial Adaptations in Aging Skeletal Muscle: Implications for Resistance Exercise Training to Treat Sarcopenia. Life (Basel) 2024; 14:962. [PMID: 39202704 PMCID: PMC11355854 DOI: 10.3390/life14080962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/13/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
Sarcopenia, the age-related decline in muscle mass and function, poses a significant health challenge as the global population ages. Mitochondrial dysfunction is a key factor in sarcopenia, as evidenced by the role of mitochondrial reactive oxygen species (mtROS) in mitochondrial biogenesis and dynamics, as well as mitophagy. Resistance exercise training (RET) is a well-established intervention for sarcopenia; however, its effects on the mitochondria in aging skeletal muscles remain unclear. This review aims to elucidate the relationship between mitochondrial dynamics and sarcopenia, with a specific focus on the implications of RET. Although aerobic exercise training (AET) has traditionally been viewed as more effective for mitochondrial enhancement, emerging evidence suggests that RET may also confer beneficial effects. Here, we highlight the potential of RET to modulate mtROS, drive mitochondrial biogenesis, optimize mitochondrial dynamics, and promote mitophagy in aging skeletal muscles. Understanding this interplay offers insights for combating sarcopenia and preserving skeletal muscle health in aging individuals.
Collapse
Affiliation(s)
- Ilyoung Jeong
- Program in Biomedical Science & Engineering, Department of Biomedical Science, Inha University, Incheon 22212, Republic of Korea; (I.J.); (E.-J.C.); (D.-H.P.); (J.-H.K.)
| | - Eun-Jeong Cho
- Program in Biomedical Science & Engineering, Department of Biomedical Science, Inha University, Incheon 22212, Republic of Korea; (I.J.); (E.-J.C.); (D.-H.P.); (J.-H.K.)
| | - Jang-Soo Yook
- Institute of Sports and Arts Convergence, Inha University, Incheon 22212, Republic of Korea; (J.-S.Y.); (Y.C.)
| | - Youngju Choi
- Institute of Sports and Arts Convergence, Inha University, Incheon 22212, Republic of Korea; (J.-S.Y.); (Y.C.)
- Institute of Specialized Teaching and Research, Inha University, Incheon 22212, Republic of Korea
| | - Dong-Ho Park
- Program in Biomedical Science & Engineering, Department of Biomedical Science, Inha University, Incheon 22212, Republic of Korea; (I.J.); (E.-J.C.); (D.-H.P.); (J.-H.K.)
- Institute of Sports and Arts Convergence, Inha University, Incheon 22212, Republic of Korea; (J.-S.Y.); (Y.C.)
- Department of Kinesiology, Inha University, Incheon 22212, Republic of Korea
| | - Ju-Hee Kang
- Program in Biomedical Science & Engineering, Department of Biomedical Science, Inha University, Incheon 22212, Republic of Korea; (I.J.); (E.-J.C.); (D.-H.P.); (J.-H.K.)
- Institute of Sports and Arts Convergence, Inha University, Incheon 22212, Republic of Korea; (J.-S.Y.); (Y.C.)
- Department of Pharmacology, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| | - Seok-Hun Lee
- Combat Institute of Australia, Leederville, WA 6007, Australia;
| | - Dae-Yun Seo
- Basic Research Laboratory, Department of Physiology, College of Medicine, Smart Marine Therapeutic Center, Cardiovascular and Metabolic Disease Core Research Support Center, Inje University, Busan 47392, Republic of Korea
| | - Su-Jeen Jung
- Department of Leisure Sports, Seoil University, Seoul 02192, Republic of Korea
| | - Hyo-Bum Kwak
- Program in Biomedical Science & Engineering, Department of Biomedical Science, Inha University, Incheon 22212, Republic of Korea; (I.J.); (E.-J.C.); (D.-H.P.); (J.-H.K.)
- Institute of Sports and Arts Convergence, Inha University, Incheon 22212, Republic of Korea; (J.-S.Y.); (Y.C.)
- Department of Kinesiology, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
30
|
Takemura A, Matsunaga Y, Shinya T, Matta H. Differential Mitochondrial Adaptation of the Slow and Fast Skeletal Muscles by Endurance Running Exercise in Streptozotocin-Induced Diabetic Mice. Physiol Res 2024; 73:369-379. [PMID: 39027954 PMCID: PMC11299777 DOI: 10.33549/physiolres.935183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 02/01/2024] [Indexed: 07/27/2024] Open
Abstract
The skeletal muscle is the main organ responsible for insulin action, and glucose disposal and metabolism. Endurance and/or resistance training raises the number of mitochondria in diabetic muscles. The details of these adaptations, including mitochondrial adaptations of the slow and fast muscles in diabetes, are unclear. This study aimed to determine whether exercise training in streptozotocin (STZ)-induced mice leads to differential adaptations in the slow and fast muscles, and improving glucose clearance. Eight-week-old mice were randomly distributed into normal control (CON), diabetes (DM), and diabetes and exercise (DM+Ex) groups. In the DM and DM+Ex groups, mice received a freshly prepared STZ (100 mg/kg) intraperitoneal injection on two consecutive days. Two weeks after the injection, the mice in the groups ran on a treadmill for 60 min at 20 m/min for a week and subsequently at 25 m/min for 5 weeks (5 days/week). The analyses indicated that running training at low speed (25 m/min) enhanced mitochondrial enzyme activity and expression of lactate and glucose transporters in the plantaris (low-oxidative) muscle that improved whole-body glucose metabolism in STZ-induced diabetic mice. There were no differences in glucose transporter expression levels in the soleus (high-oxidative) muscle. The endurance running exercise at 20-25 m/min was sufficient to induce mitochondrial adaptation in the low-oxidative muscles, but not in the high-oxidative muscles, of diabetic mice. In conclusion, the present study indicated that running training at 25 m/min improved glucose metabolism by increasing the mitochondrial enzyme activity and glucose transporter 4 and monocarboxylate transporter 4 protein contents in the low-oxidative muscles in STZ-induced diabetic mice.
Collapse
Affiliation(s)
- A Takemura
- Department of Sports Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan.
| | | | | | | |
Collapse
|
31
|
McKaige EA, Lee C, Calcinotto V, Giri S, Crawford S, McGrath MJ, Ramm G, Bryson-Richardson RJ. Mitochondrial abnormalities contribute to muscle weakness in a Dnajb6 deficient zebrafish model. Hum Mol Genet 2024; 33:1195-1206. [PMID: 38621658 PMCID: PMC11227618 DOI: 10.1093/hmg/ddae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/28/2024] [Accepted: 03/28/2024] [Indexed: 04/17/2024] Open
Abstract
Mutations in DNAJB6 are a well-established cause of limb girdle muscular dystrophy type D1 (LGMD D1). Patients with LGMD D1 develop progressive muscle weakness with histology showing fibre damage, autophagic vacuoles, and aggregates. Whilst there are many reports of LGMD D1 patients, the role of DNAJB6 in the muscle is still unclear. In this study, we developed a loss of function zebrafish model in order to investigate the role of Dnajb6. Using a double dnajb6a and dnajb6b mutant model, we show that loss of Dnajb6 leads to a late onset muscle weakness. Interestingly, we find that adult fish lacking Dnajb6 do not have autophagy or myofibril defects, however, they do show mitochondrial changes and damage. This study demonstrates that loss of Dnajb6 causes mitochondrial defects and suggests that this contributes to muscle weakness in LGMD D1. These findings expand our knowledge of the role of Dnajb6 in the muscle and provides a model to screen novel therapies for LGMD D1.
Collapse
Affiliation(s)
- Emily A McKaige
- School of Biological Sciences Monash University, 25 Rainforest Walk, Clayton, VIC 3800, Australia
| | - Clara Lee
- School of Biological Sciences Monash University, 25 Rainforest Walk, Clayton, VIC 3800, Australia
| | - Vanessa Calcinotto
- School of Biological Sciences Monash University, 25 Rainforest Walk, Clayton, VIC 3800, Australia
| | - Saveen Giri
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, 23 Innovation Walk, Clayton, VIC 3800, Australia
| | - Simon Crawford
- Monash Ramaciotti Centre for Cryo Electron Microscopy, Monash University, 15 Innovation Walk, Clayton, VIC 3800, Australia
| | - Meagan J McGrath
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, 23 Innovation Walk, Clayton, VIC 3800, Australia
| | - Georg Ramm
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, 23 Innovation Walk, Clayton, VIC 3800, Australia
- Monash Ramaciotti Centre for Cryo Electron Microscopy, Monash University, 15 Innovation Walk, Clayton, VIC 3800, Australia
| | | |
Collapse
|
32
|
Geiger C, Needhamsen M, Emanuelsson EB, Norrbom J, Steindorf K, Sundberg CJ, Reitzner SM, Lindholm ME. DNA methylation of exercise-responsive genes differs between trained and untrained men. BMC Biol 2024; 22:147. [PMID: 38965555 PMCID: PMC11225400 DOI: 10.1186/s12915-024-01938-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/14/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Physical activity is well known for its multiple health benefits and although the knowledge of the underlying molecular mechanisms is increasing, our understanding of the role of epigenetics in long-term training adaptation remains incomplete. In this intervention study, we included individuals with a history of > 15 years of regular endurance or resistance training compared to age-matched untrained controls performing endurance or resistance exercise. We examined skeletal muscle DNA methylation of genes involved in key adaptation processes, including myogenesis, gene regulation, angiogenesis and metabolism. RESULTS A greater number of differentially methylated regions and differentially expressed genes were identified when comparing the endurance group with the control group than in the comparison between the strength group and the control group at baseline. Although the cellular composition of skeletal muscle samples was generally consistent across groups, variations were observed in the distribution of muscle fiber types. Slow-twitch fiber type genes MYH7 and MYL3 exhibited lower promoter methylation and elevated expression in endurance-trained athletes, while the same group showed higher methylation in transcription factors such as FOXO3, CREB5, and PGC-1α. The baseline DNA methylation state of those genes was associated with the transcriptional response to an acute bout of exercise. Acute exercise altered very few of the investigated CpG sites. CONCLUSIONS Endurance- compared to resistance-trained athletes and untrained individuals demonstrated a different DNA methylation signature of selected skeletal muscle genes, which may influence transcriptional dynamics following a bout of acute exercise. Skeletal muscle fiber type distribution is associated with methylation of fiber type specific genes. Our results suggest that the baseline DNA methylation landscape in skeletal muscle influences the transcription of regulatory genes in response to an acute exercise bout.
Collapse
Affiliation(s)
- Carla Geiger
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Division of Physical Activity, Prevention and Cancer, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Medical School, Heidelberg University, Heidelberg, Germany
| | - Maria Needhamsen
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Eric B Emanuelsson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jessica Norrbom
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Karen Steindorf
- Division of Physical Activity, Prevention and Cancer, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Carl Johan Sundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Learning, Informatics, Management and Ethics, Karolinska Institutet, Stockholm, Sweden
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Stefan M Reitzner
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department for Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Malene E Lindholm
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
- Center for Inherited Cardiovascular Disease, School of Medicine, Stanford University, 870 Quarry Rd, Stanford, CA, 94305, USA.
| |
Collapse
|
33
|
Caswell AM, Tripp TR, Kontro H, Edgett BA, Wiley JP, Lun V, MacInnis MJ. The influence of sex, hemoglobin mass, and skeletal muscle characteristics on cycling critical power. J Appl Physiol (1985) 2024; 137:10-22. [PMID: 38779761 DOI: 10.1152/japplphysiol.00120.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/29/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Critical power (CP) represents an important threshold for exercise performance and fatiguability. We sought to determine the extent to which sex, hemoglobin mass (Hbmass), and skeletal muscle characteristics influence CP. Before CP determination (i.e., 3-5 constant work rate trials to task failure), Hbmass and skeletal muscle oxidative capacity (τ) were measured and vastus lateralis (VL) muscle biopsy samples were collected from 12 females and 12 males matched for aerobic fitness relative to fat-free mass (FFM) [means (SD); V̇o2max: 59.2 (7.7) vs. 59.5 (7.1) mL·kg·FFM-1·min-1, respectively]. Males had a significantly greater CP than females in absolute units [225 (28) vs. 170 (43) W; P = 0.001] but not relative to body mass [3.0 (0.6) vs. 2.7 (0.6) W·kg·BM-1; P = 0.267] or FFM [3.6 (0.7) vs. 3.7 (0.8) W·kg·FFM-1; P = 0.622]. Males had significantly greater W' (P ≤ 0.030) and greater Hbmass (P ≤ 0.016) than females, regardless of the normalization approach; however, there were no differences in mitochondrial protein content (P = 0.375), τ (P = 0.603), or MHC I proportionality (P = 0.574) between males and females. Whether it was expressed in absolute or relative units, CP was positively correlated with Hbmass (0.444 ≤ r ≤ 0.695; P < 0.05), mitochondrial protein content (0.413 ≤ r ≤ 0.708; P < 0.05), and MHC I proportionality (0.506 ≤ r ≤ 0.585; P < 0.05), and negatively correlated with τ when expressed in relative units only (-0.588 ≤ r ≤ -0.527; P < 0.05). Overall, CP was independent of sex, but variability in CP was related to Hbmass and skeletal muscle characteristics. The extent to which manipulations in these physiological parameters influence CP warrants further investigation to better understand the factors underpinning CP.NEW & NOTEWORTHY In males and females matched for aerobic fitness [maximal oxygen uptake normalized to fat-free mass (FFM)], absolute critical power (CP) was greater in males, but relative CP (per kilogram body mass or FFM) was similar between sexes. CP correlated with hemoglobin mass, mitochondrial protein content, myosin heavy chain type I proportion, and skeletal muscle oxidative capacity. These findings demonstrate the importance of matching sexes for aerobic fitness, but further experiments are needed to determine causality.
Collapse
Affiliation(s)
- Allison M Caswell
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Thomas R Tripp
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Hilkka Kontro
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Brittany A Edgett
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - J Preston Wiley
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Medicine Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Victor Lun
- Sport Medicine Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Martin J MacInnis
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
34
|
Eurén T, Gower B, Steneberg P, Wilson A, Edlund H, Chorell E. Myofiber-specific lipidomics unveil differential contributions to insulin sensitivity in individuals of African and European ancestry. Heliyon 2024; 10:e32456. [PMID: 38994058 PMCID: PMC11237840 DOI: 10.1016/j.heliyon.2024.e32456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 07/13/2024] Open
Abstract
Aims Individuals of African ancestry (AA) present with lower insulin sensitivity compared to their European counterparts (EA). Studies show ethnic differences in skeletal muscle fiber type (lower type I fibers in AA), muscle fat oxidation capacity (lower in AA), whilst no differences in total skeletal muscle lipids. However, skeletal muscle lipid subtypes have not been examined in this context. We hypothesize that lower insulin sensitivity in AA is due to a greater proportion of type II (non-oxidative) muscle fibers, and that this would result in an ancestry-specific association between muscle lipid subtypes and peripheral insulin sensitivity. To test this hypothesis, we examined the association between insulin sensitivity and muscle lipids in AA and EA adults, and in an animal model of insulin resistance with muscle-specific fiber types. Methods In this cross-sectional study, muscle biopsies were obtained from individuals with a BMI ranging from normal to overweight with AA (N = 24) and EA (N = 19). Ancestry was assigned via genetic admixture analysis; peripheral insulin sensitivity via hyperinsulinaemic-euglycemic clamp; and myofiber content via myosin heavy chain immunohistochemistry. Further, muscle types with high (soleus) and low (vastus lateralis) type I fiber content were obtained from high-fat diet-induced insulin resistant F1 mice and littermate controls. Insulin sensitivity in mice was assessed via intraperitoneal glucose tolerance test. Mass spectrometry (MS)-based lipidomics was used to measure skeletal muscle lipid. Results Compared to EA, AA had lower peripheral insulin sensitivity and lower oxidative type 1 myofiber content, with no differences in total skeletal muscle lipid content. Muscles with lower type I fiber content (AA and vastus from mice) showed lower levels of lipids associated with fat oxidation capacity, i.e., cardiolipins, triacylglycerols with low saturation degree and phospholipids, compared to muscles with a higher type 1 fiber content (EA and soleus from mice). Further, we found that muscle diacylglycerol content was inversely associated with insulin sensitivity in EA, who have more type I fiber, whereas no association was found in AA. Similarly, we found that insulin sensitivity in mice was associated with diacylglycerol content in the soleus (high in type I fiber), not in vastus (low in type I fiber).Conclusions; Our data suggest that the lipid contribution to altered insulin sensitivity differs by ethnicity due to myofiber composition, and that this needs to be considered to increase our understanding of underlying mechanisms of altered insulin sensitivity in different ethnic populations.
Collapse
Affiliation(s)
- Tova Eurén
- Public Health and Clinical Medicine, Umeå University, Sweden
| | - Barbara Gower
- Department of Nutrition Sciences, The University of Alabama at Birmingham, USA
| | - Pär Steneberg
- Department of Medical and Translational Biology, Umeå University, Sweden
| | - Andréa Wilson
- Public Health and Clinical Medicine, Umeå University, Sweden
| | - Helena Edlund
- Department of Medical and Translational Biology, Umeå University, Sweden
| | - Elin Chorell
- Public Health and Clinical Medicine, Umeå University, Sweden
| |
Collapse
|
35
|
Piel S, McManus MJ, Heye KN, Beaulieu F, Fazelinia H, Janowska JI, MacTurk B, Starr J, Gaudio H, Patel N, Hefti MM, Smalley ME, Hook JN, Kohli NV, Bruton J, Hallowell T, Delso N, Roberts A, Lin Y, Ehinger JK, Karlsson M, Berg RA, Morgan RW, Kilbaugh TJ. Effect of dimethyl fumarate on mitochondrial metabolism in a pediatric porcine model of asphyxia-induced in-hospital cardiac arrest. Sci Rep 2024; 14:13852. [PMID: 38879681 PMCID: PMC11180202 DOI: 10.1038/s41598-024-64317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/07/2024] [Indexed: 06/19/2024] Open
Abstract
Neurological and cardiac injuries are significant contributors to morbidity and mortality following pediatric in-hospital cardiac arrest (IHCA). Preservation of mitochondrial function may be critical for reducing these injuries. Dimethyl fumarate (DMF) has shown potential to enhance mitochondrial content and reduce oxidative damage. To investigate the efficacy of DMF in mitigating mitochondrial injury in a pediatric porcine model of IHCA, toddler-aged piglets were subjected to asphyxia-induced CA, followed by ventricular fibrillation, high-quality cardiopulmonary resuscitation, and random assignment to receive either DMF (30 mg/kg) or placebo for four days. Sham animals underwent similar anesthesia protocols without CA. After four days, tissues were analyzed for mitochondrial markers. In the brain, untreated CA animals exhibited a reduced expression of proteins of the oxidative phosphorylation system (CI, CIV, CV) and decreased mitochondrial respiration (p < 0.001). Despite alterations in mitochondrial content and morphology in the myocardium, as assessed per transmission electron microscopy, mitochondrial function was unchanged. DMF treatment counteracted 25% of the proteomic changes induced by CA in the brain, and preserved mitochondrial structure in the myocardium. DMF demonstrates a potential therapeutic benefit in preserving mitochondrial integrity following asphyxia-induced IHCA. Further investigation is warranted to fully elucidate DMF's protective mechanisms and optimize its therapeutic application in post-arrest care.
Collapse
Affiliation(s)
- Sarah Piel
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA.
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty of the Heinrich-Heine-University, Düsseldorf, Germany.
| | - Meagan J McManus
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Kristina N Heye
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Forrest Beaulieu
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Hossein Fazelinia
- Proteomics Core Facility, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Joanna I Janowska
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Bryce MacTurk
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Jonathan Starr
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Hunter Gaudio
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Nisha Patel
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Marco M Hefti
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Martin E Smalley
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Jordan N Hook
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Neha V Kohli
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - James Bruton
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Thomas Hallowell
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Nile Delso
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Anna Roberts
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Yuxi Lin
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Johannes K Ehinger
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Otorhinolaryngology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Otorhinolaryngology, Head and Neck Surgery, Skåne University Hospital, Lund, Sweden
| | | | - Robert A Berg
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Ryan W Morgan
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Todd J Kilbaugh
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, USA
| |
Collapse
|
36
|
Aisyah R, Kamesawa M, Horii M, Watanabe D, Yoshida Y, Miyata K, Kumrungsee T, Wada M, Yanaka N. Comparative study on muscle function in two different streptozotocin-induced diabetic models. Acta Diabetol 2024:10.1007/s00592-024-02311-3. [PMID: 38856757 DOI: 10.1007/s00592-024-02311-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/20/2024] [Indexed: 06/11/2024]
Abstract
AIMS Streptozotocin (STZ) is widely used to study diabetic complications. Owing to the nonspecific cytotoxicity of high-dose STZ, alternative models using moderate-dose or a combination of low-dose STZ and a high-fat diet have been established. This study aimed to investigate the effects of these models on muscle function. METHODS The muscle function of two STZ models using moderate-dose STZ (100 mg/kg, twice) and a combination of low-dose STZ and high-fat diet (50 mg/kg for 5 consecutive days + 45% high-fat diet) were examined using in vivo electrical stimulation. Biochemical and gene expression analysis were conducted on the skeletal muscles of the models immediately after the stimulation. RESULTS The contractile force did not differ significantly between the models compared to respective controls. However, the moderate-dose STZ model showed more severe fatigue and blunted exercise-induced glycogen degradation possibly thorough a downregulation of oxidative phosphorylation- and vasculature development-related genes expression. CONCLUSIONS Moderate-dose STZ model is suitable for fatigability assessment in diabetes and careful understanding on the molecular signatures of each model is necessary to guide the selection of suitable models to study diabetic myopathy.
Collapse
Affiliation(s)
- Rahmawati Aisyah
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Mion Kamesawa
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Mayu Horii
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Daiki Watanabe
- Graduate School of Humanities and Social Sciences, Hiroshima University, Hiroshima, 739-8521, Japan
- Graduate School of Sport and Health Sciences, Osaka University of Health and Sport Sciences, Osaka, 564-8565, Japan
| | - Yuki Yoshida
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Kenshu Miyata
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Thanutchaporn Kumrungsee
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Masanobu Wada
- Graduate School of Humanities and Social Sciences, Hiroshima University, Hiroshima, 739-8521, Japan
| | - Noriyuki Yanaka
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan.
| |
Collapse
|
37
|
Takahashi K, Kitaoka Y, Hatta H. Effects of endurance training under calorie restriction on energy substrate metabolism in mouse skeletal muscle and liver. J Physiol Sci 2024; 74:32. [PMID: 38849720 PMCID: PMC11157813 DOI: 10.1186/s12576-024-00924-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/24/2024] [Indexed: 06/09/2024]
Abstract
We investigated whether calorie restriction (CR) enhances metabolic adaptations to endurance training (ET). Ten-week-old male Institute of Cancer Research (ICR) mice were fed ad libitum or subjected to 30% CR. The mice were subdivided into sedentary and ET groups. The ET group performed treadmill running (20-25 m/min, 30 min, 5 days/week) for 5 weeks. We found that CR decreased glycolytic enzyme activity and monocarboxylate transporter (MCT) 4 protein content, while enhancing glucose transporter 4 protein content in the plantaris and soleus muscles. Although ET and CR individually increased citrate synthase activity in the plantaris muscle, the ET-induced increase in respiratory chain complex I protein content was counteracted by CR. In the soleus muscle, mitochondrial enzyme activity and protein levels were increased by ET, but decreased by CR. It has been suggested that CR partially interferes with skeletal muscle adaptation to ET.
Collapse
Affiliation(s)
- Kenya Takahashi
- Department of Sports Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| | - Yu Kitaoka
- Department of Human Sciences, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama, Kanagawa, 221-8686, Japan
| | - Hideo Hatta
- Department of Sports Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| |
Collapse
|
38
|
Amar D, Gay NR, Jimenez-Morales D, Jean Beltran PM, Ramaker ME, Raja AN, Zhao B, Sun Y, Marwaha S, Gaul DA, Hershman SG, Ferrasse A, Xia A, Lanza I, Fernández FM, Montgomery SB, Hevener AL, Ashley EA, Walsh MJ, Sparks LM, Burant CF, Rector RS, Thyfault J, Wheeler MT, Goodpaster BH, Coen PM, Schenk S, Bodine SC, Lindholm ME. The mitochondrial multi-omic response to exercise training across rat tissues. Cell Metab 2024; 36:1411-1429.e10. [PMID: 38701776 PMCID: PMC11152996 DOI: 10.1016/j.cmet.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/27/2023] [Accepted: 12/15/2023] [Indexed: 05/05/2024]
Abstract
Mitochondria have diverse functions critical to whole-body metabolic homeostasis. Endurance training alters mitochondrial activity, but systematic characterization of these adaptations is lacking. Here, the Molecular Transducers of Physical Activity Consortium mapped the temporal, multi-omic changes in mitochondrial analytes across 19 tissues in male and female rats trained for 1, 2, 4, or 8 weeks. Training elicited substantial changes in the adrenal gland, brown adipose, colon, heart, and skeletal muscle. The colon showed non-linear response dynamics, whereas mitochondrial pathways were downregulated in brown adipose and adrenal tissues. Protein acetylation increased in the liver, with a shift in lipid metabolism, whereas oxidative proteins increased in striated muscles. Exercise-upregulated networks were downregulated in human diabetes and cirrhosis. Knockdown of the central network protein 17-beta-hydroxysteroid dehydrogenase 10 (HSD17B10) elevated oxygen consumption, indicative of metabolic stress. We provide a multi-omic, multi-tissue, temporal atlas of the mitochondrial response to exercise training and identify candidates linked to mitochondrial dysfunction.
Collapse
Affiliation(s)
- David Amar
- Stanford University, Stanford, CA, USA; Insitro, San Francisco, CA, USA
| | | | | | | | | | | | | | - Yifei Sun
- Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | | | - David A Gaul
- Georgia Institute of Technology, Atlanta, GA, USA
| | | | | | - Ashley Xia
- National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | - Martin J Walsh
- Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Lauren M Sparks
- Translational Research Institute AdventHealth, Orlando, FL, USA
| | | | | | - John Thyfault
- University of Kansas Medical Center, Kansas City, KS, USA
| | | | | | - Paul M Coen
- Translational Research Institute AdventHealth, Orlando, FL, USA
| | - Simon Schenk
- University of California, San Diego, La Jolla, CA, USA
| | - Sue C Bodine
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | | |
Collapse
|
39
|
Stovickova L, Hansikova H, Hanzalova J, Musova Z, Semjonov V, Stovicek P, Hadzic H, Novotna L, Simcik M, Strnad P, Serbina A, Karamazovova S, Schwabova Paulasova J, Vyhnalek M, Krsek P, Zumrova A. Exploring mitochondrial biomarkers for Friedreich's ataxia: a multifaceted approach. J Neurol 2024; 271:3439-3454. [PMID: 38520521 PMCID: PMC11136723 DOI: 10.1007/s00415-024-12223-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 03/25/2024]
Abstract
This study presents an in-depth analysis of mitochondrial enzyme activities in Friedreich's ataxia (FA) patients, focusing on the Electron Transport Chain complexes I, II, and IV, the Krebs Cycle enzyme Citrate Synthase, and Coenzyme Q10 levels. It examines a cohort of 34 FA patients, comparing their mitochondrial enzyme activities and clinical parameters, including disease duration and cardiac markers, with those of 17 healthy controls. The findings reveal marked reductions in complexes II and, specifically, IV, highlighting mitochondrial impairment in FA. Additionally, elevated Neurofilament Light Chain levels and cardiomarkers were observed in FA patients. This research enhances our understanding of FA pathophysiology and suggests potential biomarkers for monitoring disease progression. The study underscores the need for further clinical trials to validate these findings, emphasizing the critical role of mitochondrial dysfunction in FA assessment and treatment.
Collapse
Affiliation(s)
- Lucie Stovickova
- Department of Paediatric Neurology, Second Faculty of Medicine, Charles University, Motol University Hospital, V Uvalu 84, 15006, Prague 5, Czech Republic.
- Centre of Hereditary Ataxias, Second Faculty of Medicine, An Official EFACTS Site, a Member of European Reference Network for Rare Neurological Diseases (ERN-RND), Charles University, Motol University Hospital, Prague 5, Czech Republic.
| | - Hana Hansikova
- Department of Paediatrics and Inherited Metabolic Disorders, First Medical Faculty, Charles University and General University Hospital in Prague, Prague 2, Czech Republic
| | - Jitka Hanzalova
- Department of Immunology, Second Faculty of Medicine, Charles University, Motol University Hospital, Prague 5, Czech Republic
| | - Zuzana Musova
- Department of Biology and Medical Genetics, Second Faculty of Medicine, Charles University, Motol University Hospital, Prague 5, Czech Republic
- Centre of Hereditary Ataxias, Second Faculty of Medicine, An Official EFACTS Site, a Member of European Reference Network for Rare Neurological Diseases (ERN-RND), Charles University, Motol University Hospital, Prague 5, Czech Republic
| | - Valerij Semjonov
- Department of Paediatrics, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | | | - Haris Hadzic
- Second Faculty of Medicine, Charles University, Prague 5, Czech Republic
| | - Ludmila Novotna
- Second Faculty of Medicine, Charles University, Prague 5, Czech Republic
| | - Martin Simcik
- Second Faculty of Medicine, Charles University, Prague 5, Czech Republic
| | - Pavel Strnad
- Second Faculty of Medicine, Charles University, Prague 5, Czech Republic
| | - Anastaziia Serbina
- Second Faculty of Medicine, Charles University, Prague 5, Czech Republic
| | - Simona Karamazovova
- Department of Neurology, Second Faculty of Medicine, Charles University, Motol University Hospital, Prague 5, Czech Republic
- Centre of Hereditary Ataxias, Second Faculty of Medicine, An Official EFACTS Site, a Member of European Reference Network for Rare Neurological Diseases (ERN-RND), Charles University, Motol University Hospital, Prague 5, Czech Republic
| | - Jaroslava Schwabova Paulasova
- Department of Neurology, Second Faculty of Medicine, Charles University, Motol University Hospital, Prague 5, Czech Republic
- Centre of Hereditary Ataxias, Second Faculty of Medicine, An Official EFACTS Site, a Member of European Reference Network for Rare Neurological Diseases (ERN-RND), Charles University, Motol University Hospital, Prague 5, Czech Republic
| | - Martin Vyhnalek
- Department of Neurology, Second Faculty of Medicine, Charles University, Motol University Hospital, Prague 5, Czech Republic
- Centre of Hereditary Ataxias, Second Faculty of Medicine, An Official EFACTS Site, a Member of European Reference Network for Rare Neurological Diseases (ERN-RND), Charles University, Motol University Hospital, Prague 5, Czech Republic
| | - Pavel Krsek
- Department of Paediatric Neurology, Second Faculty of Medicine, Charles University, Motol University Hospital, V Uvalu 84, 15006, Prague 5, Czech Republic
| | - Alena Zumrova
- Department of Paediatric Neurology, Second Faculty of Medicine, Charles University, Motol University Hospital, V Uvalu 84, 15006, Prague 5, Czech Republic
- Centre of Hereditary Ataxias, Second Faculty of Medicine, An Official EFACTS Site, a Member of European Reference Network for Rare Neurological Diseases (ERN-RND), Charles University, Motol University Hospital, Prague 5, Czech Republic
| |
Collapse
|
40
|
Yousef A, Sosnowski DK, Fang L, Legaspi RJ, Korodimas J, Lee A, Magor KE, Seubert JM. Cardioprotective response and senescence in aged sEH null female mice exposed to LPS. Am J Physiol Heart Circ Physiol 2024; 326:H1366-H1385. [PMID: 38578240 DOI: 10.1152/ajpheart.00706.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
Deterioration of physiological systems, like the cardiovascular system, occurs progressively with age impacting an individual's health and increasing susceptibility to injury and disease. Cellular senescence has an underlying role in age-related alterations and can be triggered by natural aging or prematurely by stressors such as the bacterial toxin lipopolysaccharide (LPS). The metabolism of polyunsaturated fatty acids by CYP450 enzymes produces numerous bioactive lipid mediators that can be further metabolized by soluble epoxide hydrolase (sEH) into diol metabolites, often with reduced biological effects. In our study, we observed age-related cardiac differences in female mice, where young mice demonstrated resistance to LPS injury, and genetic deletion or pharmacological inhibition of sEH using trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid attenuated LPS-induced cardiac dysfunction in aged female mice. Bulk RNA-sequencing analyses revealed transcriptomics differences in aged female hearts. The confirmatory analysis demonstrated changes to inflammatory and senescence gene markers such as Il-6, Mcp1, Il-1β, Nlrp3, p21, p16, SA-β-gal, and Gdf15 were attenuated in the hearts of aged female mice where sEH was deleted or inhibited. Collectively, these findings highlight the role of sEH in modulating the aging process of the heart, whereby targeting sEH is cardioprotective.NEW & NOTEWORTHY Soluble epoxide hydrolase (sEH) is an essential enzyme for converting epoxy fatty acids to their less bioactive diols. Our study suggests deletion or inhibition of sEH impacts the aging process in the hearts of female mice resulting in cardioprotection. Data indicate targeting sEH limits inflammation, preserves mitochondria, and alters cellular senescence in the aged female heart.
Collapse
Affiliation(s)
- Ala Yousef
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Deanna K Sosnowski
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Liye Fang
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Renald James Legaspi
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jacob Korodimas
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Andy Lee
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Katharine E Magor
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, Alberta, Canada
| | - John M Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
41
|
Lee MJC, Saner NJ, Ferri A, García-Domínguez E, Broatch JR, Bishop DJ. Delineating the contribution of ageing and physical activity to changes in mitochondrial characteristics across the lifespan. Mol Aspects Med 2024; 97:101272. [PMID: 38626488 DOI: 10.1016/j.mam.2024.101272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/18/2024]
Abstract
Ageing is associated with widespread physiological changes prominent within all tissues, including skeletal muscle and the brain, which lead to a decline in physical function. To tackle the growing health and economic burdens associated with an ageing population, the concept of healthy ageing has become a major research priority. Changes in skeletal muscle mitochondrial characteristics have been suggested to make an important contribution to the reductions in skeletal muscle function with age, and age-related changes in mitochondrial content, respiratory function, morphology, and mitochondrial DNA have previously been reported. However, not all studies report changes in mitochondrial characteristics with ageing, and there is increasing evidence to suggest that physical activity (or inactivity) throughout life is a confounding factor when interpreting age-associated changes. Given that physical activity is a potent stimulus for inducing beneficial adaptations to mitochondrial characteristics, delineating the influence of physical activity on the changes in skeletal muscle that occur with age is complicated. This review aims to summarise our current understanding and knowledge gaps regarding age-related changes to mitochondrial characteristics within skeletal muscle, as well as to provide some novel insights into brain mitochondria, and to propose avenues of future research and targeted interventions. Furthermore, where possible, we incorporate discussions of the modifying effects of physical activity, exercise, and training status, to purported age-related changes in mitochondrial characteristics.
Collapse
Affiliation(s)
- Matthew J-C Lee
- The Exercise Prescription Lab (EPL), Institute for Health and Sport (IHES), Victoria University, Melbourne, Victoria, Australia
| | - Nicholas J Saner
- The Exercise Prescription Lab (EPL), Institute for Health and Sport (IHES), Victoria University, Melbourne, Victoria, Australia
| | - Alessandra Ferri
- The Exercise Prescription Lab (EPL), Institute for Health and Sport (IHES), Victoria University, Melbourne, Victoria, Australia
| | - Esther García-Domínguez
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia; Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - James R Broatch
- The Exercise Prescription Lab (EPL), Institute for Health and Sport (IHES), Victoria University, Melbourne, Victoria, Australia
| | - David J Bishop
- The Exercise Prescription Lab (EPL), Institute for Health and Sport (IHES), Victoria University, Melbourne, Victoria, Australia.
| |
Collapse
|
42
|
Kleis-Olsen AS, Farlov JE, Petersen EA, Schmücker M, Flensted-Jensen M, Blom I, Ingersen A, Hansen M, Helge JW, Dela F, Larsen S. Metabolic flexibility in postmenopausal women: Hormone replacement therapy is associated with higher mitochondrial content, respiratory capacity, and lower total fat mass. Acta Physiol (Oxf) 2024; 240:e14117. [PMID: 38404156 DOI: 10.1111/apha.14117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 02/27/2024]
Abstract
AIM To investigate effects of hormone replacement therapy in postmenopausal women on factors associated with metabolic flexibility related to whole-body parameters including fat oxidation, resting energy expenditure, body composition and plasma concentrations of fatty acids, glucose, insulin, cortisol, and lipids, and for the mitochondrial level, including mitochondrial content, respiratory capacity, efficiency, and hydrogen peroxide emission. METHODS 22 postmenopausal women were included. 11 were undergoing estradiol and progestin treatment (HT), and 11 were matched non-treated controls (CONT). Peak oxygen consumption, maximal fat oxidation, glycated hemoglobin, body composition, and resting energy expenditure were measured. Blood samples were collected at rest and during 45 min of ergometer exercise (65% VO2peak). Muscle biopsies were obtained at rest and immediately post-exercise. Mitochondrial respiratory capacity, efficiency, and hydrogen peroxide emission in permeabilized fibers and isolated mitochondria were measured, and citrate synthase (CS) and 3-hydroxyacyl-CoA dehydrogenase (HAD) activity were assessed. RESULTS HT showed higher absolute mitochondrial respiratory capacity and post-exercise hydrogen peroxide emission in permeabilized fibers and higher CS and HAD activities. All respiration normalized to CS activity showed no significant group differences in permeabilized fibers or isolated mitochondria. There were no differences in resting energy expenditure, maximal, and resting fat oxidation or plasma markers. HT had significantly lower visceral and total fat mass compared to CONT. CONCLUSION Use of hormone therapy is associated with higher mitochondrial content and respiratory capacity and a lower visceral and total fat mass. Resting energy expenditure and fat oxidation did not differ between HT and CONT.
Collapse
Affiliation(s)
- A S Kleis-Olsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - J E Farlov
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - E A Petersen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - M Schmücker
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - M Flensted-Jensen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - I Blom
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - A Ingersen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - M Hansen
- Department of Public Health, Section of Sport Science, Aarhus University, Aarhus N, Denmark
| | - J W Helge
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - F Dela
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Geriatrics, Bispebjerg-Frederiksberg University Hospital, Copenhagen, Denmark
- Department of Human Physiology and Biochemistry, Riga Stradiņš University, Riga, Latvia
| | - S Larsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| |
Collapse
|
43
|
Chang EI, Stremming J, Knaub LA, Wesolowski SR, Rozance PJ, Sucharov CC, Reusch JE, Brown LD. Mitochondrial respiration is lower in the intrauterine growth-restricted fetal sheep heart. J Physiol 2024; 602:2697-2715. [PMID: 38743350 PMCID: PMC11325437 DOI: 10.1113/jp285496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 04/03/2024] [Indexed: 05/16/2024] Open
Abstract
Fetuses affected by intrauterine growth restriction have an increased risk of developing heart disease and failure in adulthood. Compared with controls, late gestation intrauterine growth-restricted (IUGR) fetal sheep have fewer binucleated cardiomyocytes, reflecting a more immature heart, which may reduce mitochondrial capacity to oxidize substrates. We hypothesized that the late gestation IUGR fetal heart has a lower capacity for mitochondrial oxidative phosphorylation. Left (LV) and right (RV) ventricles from IUGR and control (CON) fetal sheep at 90% gestation were harvested. Mitochondrial respiration (states 1-3, LeakOmy, and maximal respiration) in response to carbohydrates and lipids, citrate synthase (CS) activity, protein expression levels of mitochondrial oxidative phosphorylation complexes (CI-CV), and mRNA expression levels of mitochondrial biosynthesis regulators were measured. The carbohydrate and lipid state 3 respiration rates were lower in IUGR than CON, and CS activity was lower in IUGR LV than CON LV. However, relative CII and CV protein levels were higher in IUGR than CON; CV expression level was higher in IUGR than CON. Genes involved in lipid metabolism had lower expression in IUGR than CON. In addition, the LV and RV demonstrated distinct differences in oxygen flux and gene expression levels, which were independent from CON and IUGR status. Low mitochondrial respiration and CS activity in the IUGR heart compared with CON are consistent with delayed cardiomyocyte maturation, and CII and CV protein expression levels may be upregulated to support ATP production. These insights will provide a better understanding of fetal heart development in an adverse in utero environment. KEY POINTS: Growth-restricted fetuses have a higher risk of developing and dying from cardiovascular diseases in adulthood. Mitochondria are the main supplier of energy for the heart. As the heart matures, the substrate preference of the mitochondria switches from carbohydrates to lipids. We used a sheep model of intrauterine growth restriction to study the capacity of the mitochondria in the heart to produce energy using either carbohydrate or lipid substrates by measuring how much oxygen was consumed. Our data show that the mitochondria respiration levels in the growth-restricted fetal heart were lower than in the normally growing fetuses, and the expression levels of genes involved in lipid metabolism were also lower. Differences between the right and left ventricles that are independent of the fetal growth restriction condition were identified. These results indicate an impaired metabolic maturation of the growth-restricted fetal heart associated with a decreased capacity to oxidize lipids postnatally.
Collapse
Affiliation(s)
- Eileen I. Chang
- Department of Pediatrics, Section of Neonatology, Perinatal Research Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jane Stremming
- Department of Pediatrics, Section of Neonatology, Perinatal Research Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Leslie A. Knaub
- Department of Medicine, Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veterans Administration Medical Center, Aurora, Colorado, USA
| | - Stephanie R. Wesolowski
- Department of Pediatrics, Section of Neonatology, Perinatal Research Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Paul J. Rozance
- Department of Pediatrics, Section of Neonatology, Perinatal Research Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Carmen C. Sucharov
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Jane E.B. Reusch
- Department of Medicine, Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veterans Administration Medical Center, Aurora, Colorado, USA
| | - Laura D. Brown
- Department of Pediatrics, Section of Neonatology, Perinatal Research Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
44
|
Maunder E, King A, Rothschild JA, Brick MJ, Leigh WB, Hedges CP, Merry TL, Kilding AE. Locally applied heat stress during exercise training may promote adaptations to mitochondrial enzyme activities in skeletal muscle. Pflugers Arch 2024; 476:939-948. [PMID: 38446167 PMCID: PMC11139708 DOI: 10.1007/s00424-024-02939-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/22/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Abstract
There is some evidence for temperature-dependent stimulation of mitochondrial biogenesis; however, the role of elevated muscle temperature during exercise in mitochondrial adaptation to training has not been studied in humans in vivo. The purpose of this study was to determine the role of elevating muscle temperature during exercise in temperate conditions through the application of mild, local heat stress on mitochondrial adaptations to endurance training. Eight endurance-trained males undertook 3 weeks of supervised cycling training, during which mild (~ 40 °C) heat stress was applied locally to the upper-leg musculature of one leg during all training sessions (HEAT), with the contralateral leg serving as the non-heated, exercising control (CON). Vastus lateralis microbiopsies were obtained from both legs before and after the training period. Training-induced increases in complex I (fold-change, 1.24 ± 0.33 vs. 1.01 ± 0.49, P = 0.029) and II (fold-change, 1.24 ± 0.33 vs. 1.01 ± 0.49, P = 0.029) activities were significantly larger in HEAT than CON. No significant effects of training, or interactions between local heat stress application and training, were observed for complex I-V or HSP70 protein expressions. Our data provides partial evidence to support the hypothesis that elevating local muscle temperature during exercise augments training-induced adaptations to mitochondrial enzyme activity.
Collapse
Affiliation(s)
- Ed Maunder
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand.
| | - Andrew King
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Jeffrey A Rothschild
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Matthew J Brick
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
- Orthosports North Harbour, AUT Millennium, Auckland, New Zealand
| | - Warren B Leigh
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
- Orthosports North Harbour, AUT Millennium, Auckland, New Zealand
| | - Christopher P Hedges
- Discipline of Nutrition, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Troy L Merry
- Discipline of Nutrition, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Andrew E Kilding
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
45
|
Walter-Nuno AB, Taracena-Agarwal M, Oliveira MP, Oliveira MF, Oliveira PL, Paiva-Silva GO. Export of heme by the feline leukemia virus C receptor regulates mitochondrial biogenesis and redox balance in the hematophagous insect Rhodnius prolixus. FASEB J 2024; 38:e23691. [PMID: 38780525 DOI: 10.1096/fj.202301671rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 04/25/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Heme is a prosthetic group of proteins involved in vital physiological processes. It participates, for example, in redox reactions crucial for cell metabolism due to the variable oxidation state of its central iron atom. However, excessive heme can be cytotoxic due to its prooxidant properties. Therefore, the control of intracellular heme levels ensures the survival of organisms, especially those that deal with high concentrations of heme during their lives, such as hematophagous insects. The export of heme initially attributed to the feline leukemia virus C receptor (FLVCR) has recently been called into question, following the discovery of choline uptake by the same receptor in mammals. Here, we found that RpFLVCR is a heme exporter in the midgut of the hematophagous insect Rhodnius prolixus, a vector for Chagas disease. Silencing RpFLVCR decreased hemolymphatic heme levels and increased the levels of intracellular dicysteinyl-biliverdin, indicating heme retention inside midgut cells. FLVCR silencing led to increased expression of heme oxygenase (HO), ferritin, and mitoferrin mRNAs while downregulating the iron importers Malvolio 1 and 2. In contrast, HO gene silencing increased FLVCR and Malvolio expression and downregulated ferritin, revealing crosstalk between heme degradation/export and iron transport/storage pathways. Furthermore, RpFLVCR silencing strongly increased oxidant production and lipid peroxidation, reduced cytochrome c oxidase activity, and activated mitochondrial biogenesis, effects not observed in RpHO-silenced insects. These data support FLVCR function as a heme exporter, playing a pivotal role in heme/iron metabolism and maintenance of redox balance, especially in an organism adapted to face extremely high concentrations of heme.
Collapse
Affiliation(s)
- Ana Beatriz Walter-Nuno
- Instituto de Bioquimica Medica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Mabel Taracena-Agarwal
- Instituto de Bioquimica Medica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Matheus P Oliveira
- Instituto de Bioquimica Medica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcus F Oliveira
- Instituto de Bioquimica Medica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Pedro L Oliveira
- Instituto de Bioquimica Medica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Gabriela O Paiva-Silva
- Instituto de Bioquimica Medica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| |
Collapse
|
46
|
Artman JL, Wesolowski LT, Semanchik PL, Isles JK, Norton SA, White-Springer SH. Local and systemic responses to repeated gluteal muscle microbiopsies in mature sedentary horses. J Equine Vet Sci 2024; 136:105070. [PMID: 38642813 DOI: 10.1016/j.jevs.2024.105070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 04/22/2024]
Abstract
We aimed to test the hypothesis that repeated muscle collections would impact mitochondrial function, antioxidant status, and markers of inflammation and muscle damage. Twenty-six horses (8 geldings, 18 mares; mean ± SD 9.5 ± 3.5 y) had gluteus medius muscle biopsy samples collected at: 0 and 24h (n=7); 0 and 6h (n = 6); 0, 6, and 12h (n=7); or 0, 6, 12, and 24h (n=6). Blood was collected from all horses every 6h for 72h, starting 24h prior to the 0h muscle collection. Data were analyzed using mixed linear models. Muscle integrative (per mg tissue) electron transfer capacity of complex II decreased (P=0.004) and intrinsic (relative to citrate synthase (CS) activity) LEAK increased (P<0.03) from 0 to 6h but both returned to 0h levels by 12h. Activity of CS was greater at 0 than 12 and 24h (P≤0.02). Serum creatine kinase (CK) activity was similar from -24 through 0h but increased in all horses at 6h and remained elevated through 48h (P<0.05) though not above reference ranges. Whole blood superoxide dismutase activity fluctuated throughout the 72-h collection period (P=0.03) and serum cortisol concentration displayed a circadian pattern (P<0.0001) but neither were altered by muscle collections. No other variable, including muscle mitochondrial capacities and function, blood and muscle antioxidant status and concentrations of select cytokines, and serum amyloid A, differed by time or muscle collection. Repeated gluteal collections had limited short-term or no effect on physiological markers in unstressed, mature horses except serum CK activity, which should be interpreted with caution during repeated tissue collections.
Collapse
Affiliation(s)
- Jessica L Artman
- Department of Animal Science, Texas A&M University and AgriLife Research, 2471 TAMU, College Station, TX 77843, USA
| | - Lauren T Wesolowski
- Department of Animal Science, Texas A&M University and AgriLife Research, 2471 TAMU, College Station, TX 77843, USA
| | - Pier L Semanchik
- Department of Animal Science, Texas A&M University and AgriLife Research, 2471 TAMU, College Station, TX 77843, USA
| | - JadaLea K Isles
- Department of Animal Science, Texas A&M University and AgriLife Research, 2471 TAMU, College Station, TX 77843, USA
| | | | - Sarah H White-Springer
- Department of Animal Science, Texas A&M University and AgriLife Research, 2471 TAMU, College Station, TX 77843, USA; Department of Kinesiology and Sport Management, Texas A&M University, 2929 Research Pkwy College Station, TX 77843, USA.
| |
Collapse
|
47
|
Rhodes EM, Yap KN, Mesquita PHC, Parry HA, Kavazis AN, Krause JS, Hill GE, Hood WR. Flexibility underlies differences in mitochondrial respiratory performance between migratory and non-migratory White-crowned Sparrows (Zonotrichia leucophrys). Sci Rep 2024; 14:9456. [PMID: 38658588 PMCID: PMC11043447 DOI: 10.1038/s41598-024-59715-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
Migration is one of the most energy-demanding behaviors observed in birds. Mitochondria are the primary source of energy used to support these long-distance movements, yet how mitochondria meet the energetic demands of migration is scarcely studied. We quantified changes in mitochondrial respiratory performance in the White-crowned Sparrow (Zonotrichia leucophrys), which has a migratory and non-migratory subspecies. We hypothesized that the long-distance migratory Gambel's subspecies (Z. l. gambelii) would show higher mitochondrial respiratory performance compared to the non-migratory Nuttall's subspecies (Z. l. nuttalli). We sampled Gambel's individuals during spring pre-migration, active fall migration, and a period with no migration or breeding (winter). We sampled Nuttall's individuals during periods coinciding with fall migration and the winter period of Gambel's annual cycle. Overall, Gambel's individuals had higher citrate synthase, a proxy for mitochondrial volume, than Nuttall's individuals. This was most pronounced prior to and during migration. We found that both OXPHOS capacity (state 3) and basal respiration (state 4) of mitochondria exhibit high seasonal flexibility within Gambel's individuals, with values highest during active migration. These values in Nuttall's individuals were most similar to Gambel's individuals in winter. Our observations indicate that seasonal changes in mitochondrial respiration play a vital role in migration energetics.
Collapse
Affiliation(s)
- Emma M Rhodes
- Department of Biological Sciences, Auburn University, Auburn, USA.
| | - Kang Nian Yap
- Department of Biological Sciences, Auburn University, Auburn, USA
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Paulo H C Mesquita
- School of Kinesiology, Auburn University, Auburn, USA
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, USA
| | - Hailey A Parry
- School of Kinesiology, Auburn University, Auburn, USA
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, USA
| | | | | | - Geoffrey E Hill
- Department of Biological Sciences, Auburn University, Auburn, USA
| | - Wendy R Hood
- Department of Biological Sciences, Auburn University, Auburn, USA
| |
Collapse
|
48
|
Peden DL, Rogers R, Mitchell EA, Taylor SM, Bailey SJ, Ferguson RA. Skeletal muscle mitochondrial correlates of critical power and W' in healthy active individuals. Exp Physiol 2024. [PMID: 38593224 DOI: 10.1113/ep091835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
The asymptote (critical power; CP) and curvature constant (W') of the hyperbolic power-duration relationship can predict performance within the severe-intensity exercise domain. However, the extent to which these parameters relate to skeletal muscle mitochondrial content and respiratory function is not known. Fifteen males (peak O2 uptake, 52.2 ± 8.7 mL kg-1 min-1; peak work rate, 366 ± 40 W; and gas exchange threshold, 162 ± 41 W) performed three to five constant-load tests to task failure for the determination of CP (246 ± 44 W) and W' (18.6 ± 4.1 kJ). Skeletal muscle biopsies were obtained from the vastus lateralis to determine citrate synthase (CS) activity, as a marker of mitochondrial content, and the ADP-stimulated respiration (P) and maximal electron transfer (E) through mitochondrial complexes (C) I-IV. The CP was positively correlated with CS activity (absolute CP, r = 0.881, P < 0.001; relative CP, r = 0.751, P = 0.001). The W' was not correlated with CS activity (P > 0.05). Relative CP was positively correlated with mass-corrected CI + IIE (r = 0.659, P = 0.038), with absolute CP being inversely correlated with CS activity-corrected CIVE (r = -0.701, P = 0.024). Relative W' was positively correlated with CS activity-corrected CI + IIP (r = 0.713, P = 0.021) and the phosphorylation control ratio (r = 0.661, P = 0.038). There were no further correlations between CP or W' and mitochondrial respiratory variables. These findings support the assertion that skeletal muscle mitochondrial oxidative capacity is positively associated with CP and that this relationship is strongly determined by mitochondrial content.
Collapse
Affiliation(s)
- Donald L Peden
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Robert Rogers
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Emma A Mitchell
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Suzanne M Taylor
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Richard A Ferguson
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
49
|
Garrett EJ, Prasad SK, Schweizer RM, McClelland GB, Scott GR. Evolved changes in phenotype across skeletal muscles in deer mice native to high altitude. Am J Physiol Regul Integr Comp Physiol 2024; 326:R297-R310. [PMID: 38372126 PMCID: PMC11283899 DOI: 10.1152/ajpregu.00206.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/11/2024] [Accepted: 02/09/2024] [Indexed: 02/20/2024]
Abstract
The cold and hypoxic conditions at high altitude necessitate high metabolic O2 demands to support thermogenesis while hypoxia reduces O2 availability. Skeletal muscles play key roles in thermogenesis, but our appreciation of muscle plasticity and adaptation at high altitude has been hindered by past emphasis on only a small number of muscles. We examined this issue in deer mice (Peromyscus maniculatus). Mice derived from both high-altitude and low-altitude populations were born and raised in captivity and then acclimated as adults to normoxia or hypobaric hypoxia (12 kPa O2 for 6-8 wk). Maximal activities of citrate synthase (CS), cytochrome c oxidase (COX), β-hydroxyacyl-CoA dehydrogenase (HOAD), hexokinase (HK), pyruvate kinase (PK), and lactate dehydrogenase (LDH) were measured in 20 muscles involved in shivering, locomotion, body posture, ventilation, and mastication. Principal components analysis revealed an overall difference in muscle phenotype between populations but no effect of hypoxia acclimation. High-altitude mice had greater activities of mitochondrial enzymes and/or lower activities of PK or LDH across many (but not all) respiratory, limb, core and mastication muscles compared with low-altitude mice. In contrast, chronic hypoxia had very few effects across muscles. Further examination of CS in the gastrocnemius showed that population differences in enzyme activity stemmed from differences in protein abundance and mRNA expression but not from population differences in CS amino acid sequence. Overall, our results suggest that evolved increases in oxidative capacity across many skeletal muscles, at least partially driven by differences in transcriptional regulation, may contribute to high-altitude adaptation in deer mice.NEW & NOTEWORTHY Most previous studies of muscle plasticity and adaptation in high-altitude environments have focused on a very limited number of skeletal muscles. Comparing high-altitude versus low-altitude populations of deer mice, we show that a large number of muscles involved in shivering, locomotion, body posture, ventilation, and mastication exhibit greater mitochondrial enzyme activities in the high-altitude population. Therefore, evolved increases in mitochondrial oxidative capacity across skeletal muscles contribute to high-altitude adaptation.
Collapse
Affiliation(s)
- Emily J Garrett
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Srikripa K Prasad
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Rena M Schweizer
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States
- United States Department of Agriculture, Agricultural Research Service, Pollinating Insects Research Unit, Utah State University, Logan, Utah, United States
| | | | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
50
|
Mau T, Barnes HN, Blackwell TL, Kramer PA, Bauer SR, Marcinek DJ, Ramos SV, Forman DE, Toledo FGS, Hepple RT, Kritchevsky SB, Cummings SR, Newman AB, Coen PM, Cawthon PM. Lower muscle mitochondrial energetics is associated with greater phenotypic frailty in older women and men: the Study of Muscle, Mobility and Aging. GeroScience 2024; 46:2409-2424. [PMID: 37987886 PMCID: PMC10828481 DOI: 10.1007/s11357-023-01002-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/29/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Phenotypic frailty syndrome identifies older adults at greater risk for adverse health outcomes. Despite the critical role of mitochondria in maintaining cellular function, including energy production, the associations between muscle mitochondrial energetics and frailty have not been widely explored in a large, well-phenotyped, older population. METHODS The Study of Muscle, Mobility and Aging (SOMMA) assessed muscle energetics in older adults (N = 879, mean age = 76.3 years, 59.2% women). 31Phosporous magnetic resonance spectroscopy measured maximal production of adenosine triphosphate (ATPmax) in vivo, while ex vivo high-resolution respirometry of permeabilized muscle fibers from the vastus lateralis measured maximal oxygen consumption supported by fatty acids and complex I- and II-linked carbohydrates (e.g., Max OXPHOSCI+CII). Five frailty criteria, shrinking, weakness, exhaustion, slowness, and low activity, were used to classify participants as robust (0, N = 397), intermediate (1-2, N = 410), or frail (≥ 3, N = 66). We estimated the proportional odds ratio (POR) for greater frailty, adjusted for multiple potential confounders. RESULTS One-SD decrements of most respirometry measures (e.g., Max OXPHOSCI+CII, adjusted POR = 1.5, 95%CI [1.2,1.8], p = 0.0001) were significantly associated with greater frailty classification. The associations of ATPmax with frailty were weaker than those between Max OXPHOSCI+CII and frailty. Muscle energetics was most strongly associated with slowness and low physical activity components. CONCLUSIONS Our data suggest that deficits in muscle mitochondrial energetics may be a biological driver of frailty in older adults. On the other hand, we did observe differential relationships between measures of muscle mitochondrial energetics and the individual components of frailty.
Collapse
Affiliation(s)
- Theresa Mau
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, CA, USA.
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA.
| | - Haley N Barnes
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Terri L Blackwell
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Philip A Kramer
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Scott R Bauer
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
- Department of Medicine and Urology, University of California, San Francisco, CA, USA
- Division of General Internal Medicine, San Francisco VA Healthcare System, San Francisco, CA, USA
| | - David J Marcinek
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Sofhia V Ramos
- AdventHealth, Translational Research Institute, Orlando, FL, USA
| | - Daniel E Forman
- Department of Medicine-Division of Geriatrics and Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Geriatrics Research, Education, and Clinical Care (GRECC), VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Frederico G S Toledo
- Department of Medicine-Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Russell T Hepple
- Department of Physical Therapy, Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
| | - Stephen B Kritchevsky
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Steven R Cummings
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Anne B Newman
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Paul M Coen
- AdventHealth, Translational Research Institute, Orlando, FL, USA
| | - Peggy M Cawthon
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| |
Collapse
|