1
|
Brandão SR, Lazzari E, Vitorino R, Meroni G, Reis-Mendes A, Neuparth MJ, Amado F, Carvalho F, Ferreira R, Costa VM. Comprehensive ubiquitome analysis reveals persistent mitochondrial remodeling disruptions from doxorubicin-induced cardiotoxicity in aged CD-1 male mice. Arch Toxicol 2025:10.1007/s00204-025-04006-2. [PMID: 40035845 DOI: 10.1007/s00204-025-04006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 02/19/2025] [Indexed: 03/06/2025]
Abstract
Doxorubicin (DOX)-associated cardiotoxicity is characterized by long-term manifestations, whose mechanisms remain incompletely understood, and is exacerbated by various risk factors, with age being a prominent contributor. The objective of this study was to assess the enduring cardiac molecular impacts of DOX in old CD-1 male mice, focusing on ubiquitinated proteins. At 19 months of age, DOX group received a cumulative dose of 9.0 mg/kg of DOX, while control animals got saline solution. Animals were sacrificed 2 months after the administration. DOX induced heart structural changes and increased proteolytic activity. Additionally, increased protein ubiquitination was observed in DOX group, despite the decreased content of the E3 ubiquitin-protein ligase Atrogin-1. A search of poly-ubiquitinated proteins, enriched by tandem ubiquitin-binding entities (TUBEs), showed increased poly-ubiquitination of proteins associated with sarcomere organization and mitochondrial metabolism processes by DOX. Increased mitochondrial density inferred by higher citrate synthase activity was found in DOX group. Moreover, decreased biogenesis and auto(mito)phagy occurred in DOX animals, proven by decreased peroxisome proliferator-activated receptor γ coactivator 1 α, Beclin1 and microtubule-associated protein light chain 3 content. These findings indicate a reduction in mitochondrial biogenesis and accumulation of dysfunctional mitochondria in the aged heart, along with elevated levels of poly-ubiquitinated proteins after DOX treatment. Thus, the disruption of mitochondrial remodeling and impaired protein ubiquitination emerge as enduring consequences of DOX-induced cardiotoxicity, persisting for even 2 months after DOX exposure. This underscores the long-lasting impact of DOX, with significant effects continuing beyond the period of administration, which advocates for longer clinical surveillance.
Collapse
Affiliation(s)
- Sofia Reis Brandão
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Elisa Lazzari
- Molecular Genetics Lab, Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Rui Vitorino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
- Institute of Biomedicine (Ibimed), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
- Department of Surgery and Physiology, Faculty of Medicine, UnIC@RISE, University of Porto, 4200-319, Porto, Portugal
| | - Germana Meroni
- Molecular Genetics Lab, Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Ana Reis-Mendes
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Maria João Neuparth
- Laboratory for Integrative and Translational Research in Population Health (ITR), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto, 4200-450, Porto, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116, Gandra, Portugal
| | - Francisco Amado
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Félix Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Vera Marisa Costa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| |
Collapse
|
2
|
Breese BC, Bailey SJ, Ferguson RA. Combined effect of sprint interval training and post-exercise blood flow restriction on muscle deoxygenation responses during ramp incremental cycling. Eur J Appl Physiol 2025; 125:851-868. [PMID: 39438313 DOI: 10.1007/s00421-024-05645-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
PURPOSE This study investigated the effect of sprint-interval training combined with post-exercise blood flow restriction (i.e., SIT + BFR) on pulmonary gas exchange and microvascular deoxygenation responses during ramp incremental (RI) cycling. METHODS Nineteen healthy, untrained males (mean ± SD age: 24 ± 5 years; height: 178 ± 6 cm; body mass: 77.0 ± 10.7 kg) were assigned to receive 4 weeks of SIT or SIT + BFR. Before and after the intervention period, each participant completed a RI cycling test for determination of peak oxygen uptake (V ˙ O 2peak ) and the gas exchange threshold (GET) with deoxygenated heme (Δdeoxy[heme]) and tissue oxygenation index (TOI) measured by near-infrared spectroscopy (NIRS) in vastus lateralis (VL) muscle. RESULTS RelativeV ˙ O 2peak increased by 7% following both interventions (P ≤ 0.03). SIT + BFR increased peak Δdeoxy[heme] when normalized relative to leg arterial occlusion (PRE: 57.3 ± 13.0 vs. POST: 62.0 ± 13.2%; P = 0.009) whereas there was no significant difference following SIT (PRE: 64.9 ± 14.3 vs. POST: 71.4 ± 11.7%; P = 0.17). Likewise, TOI nadir decreased at exhaustion following SIT + BFR (PRE: 56.9 ± 9.1 vs. POST: 51.4 ± 9.2%; P = 0.002) but not after SIT (PRE: 58.5 ± 7.1 vs. POST: 56.3 ± 8.2%; P = 0.29). The absolute cycling power at the GET increased following SIT + BFR (PRE: 108 ± 13 vs. POST: 125 ± 17 W, P = 0.001) but was not significantly different following SIT (PRE: 112 ± 7 VS. POST: 116 ± 11 W, P = 0.54). CONCLUSION The addition of post-exercise BFR to SIT alters the mechanism underlying the enhancement inV ˙ O 2peak by increasing the peak rate of muscle fractional O2 extraction in previously untrained males.
Collapse
Affiliation(s)
- Brynmor C Breese
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK.
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough, LE11 3TU, UK
| | - Richard A Ferguson
- School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough, LE11 3TU, UK
| |
Collapse
|
3
|
Dimitrijevs P, Freiliba I, Pčolkins A, Leja M, Arsenyan P. Total cardiolipin levels in gastric and colon cancer: evaluating the prognostic potential. Lipids Health Dis 2025; 24:76. [PMID: 40016755 PMCID: PMC11866619 DOI: 10.1186/s12944-025-02499-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/19/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Cardiolipin (CL) is a signature phospholipid of mitochondria that maintains the integrity of mitochondrial membrane and supports proper mitochondrial function. Alterations in CL level and composition can impair or, conversely, improve mitochondrial function and bioenergetics, both of which are critical for cancer metabolism. However, conflicting reports on CL levels across different cancer types and limited research using human patient samples limit our understanding of its diagnostic potential. METHODS This cross-sectional study explores CL concentrations in gastric and colon cancer tissues using a CL-specific fluorescent probe MitoCLue and compares them to adjacent healthy tissues. RESULTS In gastric cancer, CL levels showed no significant differences between tumor and healthy tissues, suggesting that metabolic shifts in gastric cancer do not affect total CL content. In contrast, colon cancer tissues exhibited a significant 33% increase in CL levels, indicating mitochondrial adaptation and/or increase in mitochondrial mass in colon cancer. No associations were found between CL levels and patient demographic factors; although a weak correlation with body mass index was noted. CONCLUSION We successfully applied MitoCLue to quantitatively assess the total CL level in healthy and tumor tissues from patients with gastric or colon cancer. The distinct CL levels in gastric and colon cancer suggest that there are cancer-type specific mitochondrial adaptations, reflecting unique bioenergetic demands and metabolic reprogramming pathways. While a 33% increase in CL levels was observed in colon cancer tissues compared to healthy adjacent tissues, this modest variation may limit its utility as a standalone biomarker.
Collapse
Affiliation(s)
- Pavels Dimitrijevs
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV1006, Latvia.
| | - Ilona Freiliba
- Institute of Clinical and Preventive Medicine, University of Latvia, Gaiļezera 1, Riga, LV1079, Latvia
- Riga East University Hospital, Hipokrata 2, Riga, LV1038, Latvia
| | - Andrejs Pčolkins
- Institute of Clinical and Preventive Medicine, University of Latvia, Gaiļezera 1, Riga, LV1079, Latvia
- Riga East University Hospital, Hipokrata 2, Riga, LV1038, Latvia
| | - Marcis Leja
- Institute of Clinical and Preventive Medicine, University of Latvia, Gaiļezera 1, Riga, LV1079, Latvia
- Riga East University Hospital, Hipokrata 2, Riga, LV1038, Latvia
| | - Pavel Arsenyan
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV1006, Latvia.
| |
Collapse
|
4
|
Falabella M, Pizzamiglio C, Tabara LC, Munro B, Abdel-Hamid MS, Sonmezler E, Macken WL, Lu S, Tilokani L, Flannery PJ, Patel N, Pope SAS, Heales SJR, Hammadi DBH, Alston CL, Taylor RW, Lochmuller H, Woodward CE, Labrum R, Vandrovcova J, Houlden H, Chronopoulou E, Pierre G, Maroofian R, Hanna MG, Taanman JW, Hiz S, Oktay Y, Zaki MS, Horvath R, Prudent J, Pitceathly RDS. Biallelic PTPMT1 variants disrupt cardiolipin metabolism and lead to a neurodevelopmental syndrome. Brain 2025; 148:647-662. [PMID: 39279645 PMCID: PMC11788212 DOI: 10.1093/brain/awae268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 06/03/2024] [Accepted: 07/15/2024] [Indexed: 09/18/2024] Open
Abstract
Primary mitochondrial diseases (PMDs) are among the most common inherited neurological disorders. They are caused by pathogenic variants in mitochondrial or nuclear DNA that disrupt mitochondrial structure and/or function, leading to impaired oxidative phosphorylation (OXPHOS). One emerging subcategory of PMDs involves defective phospholipid metabolism. Cardiolipin, the signature phospholipid of mitochondria, resides primarily in the inner mitochondrial membrane, where it is biosynthesized and remodelled via multiple enzymes and is fundamental to several aspects of mitochondrial biology. Genes that contribute to cardiolipin biosynthesis have recently been linked with PMD. However, the pathophysiological mechanisms that underpin human cardiolipin-related PMDs are not fully characterized. Here, we report six individuals, from three independent families, harbouring biallelic variants in PTPMT1, a mitochondrial tyrosine phosphatase required for de novo cardiolipin biosynthesis. All patients presented with a complex, neonatal/infantile onset neurological and neurodevelopmental syndrome comprising developmental delay, microcephaly, facial dysmorphism, epilepsy, spasticity, cerebellar ataxia and nystagmus, sensorineural hearing loss, optic atrophy and bulbar dysfunction. Brain MRI revealed a variable combination of corpus callosum thinning, cerebellar atrophy and white matter changes. Using patient-derived fibroblasts and skeletal muscle tissue, combined with cellular rescue experiments, we characterized the molecular defects associated with mutant PTPMT1 and confirmed the downstream pathogenic effects that loss of PTPMT1 has on mitochondrial structure and function. To further characterize the functional role of PTPMT1 in cardiolipin homeostasis, we created a ptpmt1 knockout zebrafish. This model had abnormalities in body size, developmental alterations, decreased total cardiolipin levels and OXPHOS deficiency. Together, these data indicate that loss of PTPMT1 function is associated with a new autosomal recessive PMD caused by impaired cardiolipin metabolism, highlighting the contribution of aberrant cardiolipin metabolism towards human disease and emphasizing the importance of normal cardiolipin homeostasis during neurodevelopment.
Collapse
Affiliation(s)
- Micol Falabella
- Department of Neuromuscular Diseases, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Chiara Pizzamiglio
- Department of Neuromuscular Diseases, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Luis Carlos Tabara
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Benjamin Munro
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 3EB, UK
| | - Mohamed S Abdel-Hamid
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo 12622, Egypt
| | - Ece Sonmezler
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylül University, Izmir 35340, Turkey
| | - William L Macken
- Department of Neuromuscular Diseases, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Shanti Lu
- Department of Neuromuscular Diseases, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Lisa Tilokani
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Padraig J Flannery
- Neurogenetics Unit, Rare and Inherited Disease Laboratory, North Thames Genomic Laboratory Hub, London WC1N 3BH, UK
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Nina Patel
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
- Neurometabolic Unit, The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Simon A S Pope
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
- Neurometabolic Unit, The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Simon J R Heales
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
- Neurometabolic Unit, The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Dania B H Hammadi
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Charlotte L Alston
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders of Adults and Children, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders of Adults and Children, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Hanns Lochmuller
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa ON K1H 8L1, Canada
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa ON K1Y 4E9, Canada
- Department of Neuropediatrics and Muscle Disorders, Medical Center—University of Freiburg, Faculty of Medicine, Freiburg 79106, Germany
- Centro Nacional de Análisis Genómico (CNAG), Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain
| | - Cathy E Woodward
- Neurogenetics Unit, Rare and Inherited Disease Laboratory, North Thames Genomic Laboratory Hub, London WC1N 3BH, UK
| | - Robyn Labrum
- Neurogenetics Unit, Rare and Inherited Disease Laboratory, North Thames Genomic Laboratory Hub, London WC1N 3BH, UK
| | - Jana Vandrovcova
- Department of Neuromuscular Diseases, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Henry Houlden
- Department of Neuromuscular Diseases, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Efstathia Chronopoulou
- Department of Inherited Metabolic Disease, Division of Women's and Children's Services, University Hospitals Bristol NHS Foundation Trust, Bristol BS1 3NU, UK
| | - Germaine Pierre
- Department of Inherited Metabolic Disease, Division of Women's and Children's Services, University Hospitals Bristol NHS Foundation Trust, Bristol BS1 3NU, UK
| | - Reza Maroofian
- Department of Neuromuscular Diseases, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Michael G Hanna
- Department of Neuromuscular Diseases, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Jan-Willem Taanman
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Semra Hiz
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir 35340, Turkey
- Department of Pediatric Neurology, Faculty of Medicine, Dokuz Eylül University, Izmir 35340, Turkey
| | - Yavuz Oktay
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylül University, Izmir 35340, Turkey
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir 35340, Turkey
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo 12311, Egypt
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 3EB, UK
| | - Julien Prudent
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Robert D S Pitceathly
- Department of Neuromuscular Diseases, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| |
Collapse
|
5
|
Tong W, Allison BJ, Brain KL, Patey OV, Niu Y, Botting KJ, Ford SG, Garrud TA, Wooding PFB, Lyu Q, Zhang L, Ma J, Sowton AP, O'Brien KA, Cindrova-Davies T, Yung HW, Burton GJ, Murray AJ, Giussani DA. Placental mitochondrial metabolic adaptation maintains cellular energy balance in pregnancy complicated by gestational hypoxia. J Physiol 2025. [PMID: 39868991 DOI: 10.1113/jp287897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/18/2024] [Indexed: 01/28/2025] Open
Abstract
The mechanisms that drive placental dysfunction in pregnancies complicated by hypoxia and fetal growth restriction remain poorly understood. Changes to mitochondrial respiration contribute to cellular dysfunction in conditions of hypoxia and have been implicated in the pathoaetiology of pregnancy complications, such as pre-eclampsia. We used bespoke isobaric hypoxic chambers and a combination of functional, molecular and imaging techniques to study cellular metabolism and mitochondrial dynamics in sheep undergoing hypoxic pregnancy. We show that hypoxic pregnancy in sheep triggers a shift in capacity away from β-oxidation and complex I-mediated respiration, while maintaining total oxidative phosphorylation capacity. There are also complex-specific changes to electron transport chain composition and a switch in mitochondrial dynamics towards fission. Hypoxic placentas show increased activation of the non-canonical mitochondrial unfolded protein response pathway and enhanced insulin like growth factor 2 signalling. Combined, therefore, the data show that the hypoxic placenta undergoes significant metabolic and morphological adaptations to maintain cellular energy balance. Chronic hypoxia during pregnancy in sheep activated placental mitochondrial stress pathways, leading to alterations in mitochondrial respiration, mitochondrial energy metabolism and mitochondrial dynamics, as seen in the placenta of women with pre-eclampsia. KEY POINTS: Hypoxia shifts mitochondrial respiration away from β-oxidation and complex I. Complex-specific changes occur in the electron transport chain composition. Activation of the non-canonical mitochondrial unfolded protein response pathway is heightened in hypoxic placentas. Enhanced insulin like growth factor 2 signalling is observed in hypoxic placentas. Hypoxic placentas undergo significant functional adaptations for energy balance.
Collapse
Affiliation(s)
- Wen Tong
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Strategic Research Initiative in Reproduction, University of Cambridge, Cambridge, UK
| | - Beth J Allison
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Kirsty L Brain
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Olga V Patey
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Youguo Niu
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Strategic Research Initiative in Reproduction, University of Cambridge, Cambridge, UK
- Cardiovascular Strategic Research Initiative, University of Cambridge, Cambridge, UK
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Kimberley J Botting
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Strategic Research Initiative in Reproduction, University of Cambridge, Cambridge, UK
- Cardiovascular Strategic Research Initiative, University of Cambridge, Cambridge, UK
| | - Sage G Ford
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Tess A Garrud
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Peter F B Wooding
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Qiang Lyu
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Lin Zhang
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Jin Ma
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Alice P Sowton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Katie A O'Brien
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Tereza Cindrova-Davies
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Strategic Research Initiative in Reproduction, University of Cambridge, Cambridge, UK
| | - Hong Wa Yung
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Strategic Research Initiative in Reproduction, University of Cambridge, Cambridge, UK
| | - Graham J Burton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Strategic Research Initiative in Reproduction, University of Cambridge, Cambridge, UK
| | - Andrew J Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Cardiovascular Strategic Research Initiative, University of Cambridge, Cambridge, UK
| | - Dino A Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Strategic Research Initiative in Reproduction, University of Cambridge, Cambridge, UK
- Cardiovascular Strategic Research Initiative, University of Cambridge, Cambridge, UK
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
6
|
Yoo Y, Yeon M, Yoon MS, Seo YK. Role of cardiolipin in skeletal muscle function and its therapeutic implications. Cell Commun Signal 2025; 23:36. [PMID: 39833875 PMCID: PMC11749404 DOI: 10.1186/s12964-025-02032-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
Cardiolipin, a unique phospholipid predominantly present in the inner mitochondrial membrane, is critical for maintaining mitochondrial integrity and function. Its dimeric structure and role in supporting mitochondrial dynamics, energy production, and mitophagy make it indispensable for skeletal muscle health. This review provides a comprehensive overview of cardiolipin biosynthesis, remodeling processes, and essential functions within mitochondria. We explore the influences of cardiolipin on the stability of the mitochondrial complexes, cristae formation, and calcium handling, all of which are vital for efficient oxidative phosphorylation and muscle contraction. Skeletal muscle, with its high energy demands, is particularly dependent on cardiolipin for optimal performance. We discuss the impact of aging on cardiolipin levels, which correlates with a decline in mitochondrial function and muscle mass, contributing to conditions such as sarcopenia. Furthermore, we examined the relationship between cardiolipin and endurance exercise, highlighting the effects of exercise-induced increase in cardiolipin levels on the improvement of mitochondrial function and muscle health. The role of Crls1 in cardiolipin synthesis has been emphasized as a potential therapeutic target for the treatment of sarcopenia. Increasing cardiolipin levels through gene therapy, pharmacological interventions, or specific exercise and nutritional strategies holds promise for mitigating muscle atrophy and promoting muscle regeneration. By focusing on the multifaceted role of cardiolipin in mitochondria and muscle health, we aimed to provide new insights into therapeutic approaches for enhancing muscle function and combating age-related muscle decline.
Collapse
Affiliation(s)
- Youngbum Yoo
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - MyeongHoon Yeon
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Mee-Sup Yoon
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon, 21999, Republic of Korea.
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea.
| | - Young-Kyo Seo
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
- School of Medicine, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
7
|
Pesta D, Anadol-Schmitz E, Sarabhai T, Op den Kamp Y, Gancheva S, Trinks N, Zaharia OP, Mastrototaro L, Lyu K, Habets I, Op den Kamp-Bruls YMH, Dewidar B, Weiss J, Schrauwen-Hinderling V, Zhang D, Gaspar RC, Strassburger K, Kupriyanova Y, Al-Hasani H, Szendroedi J, Schrauwen P, Phielix E, Shulman GI, Roden M. Determinants of increased muscle insulin sensitivity of exercise-trained versus sedentary normal weight and overweight individuals. SCIENCE ADVANCES 2025; 11:eadr8849. [PMID: 39742483 DOI: 10.1126/sciadv.adr8849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/26/2024] [Indexed: 01/03/2025]
Abstract
The athlete's paradox states that intramyocellular triglyceride accumulation associates with insulin resistance in sedentary but not in endurance-trained humans. Underlying mechanisms and the role of muscle lipid distribution and composition on glucose metabolism remain unclear. We compared highly trained athletes (ATHL) with sedentary normal weight (LEAN) and overweight-to-obese (OVWE) male and female individuals. This observational study found that ATHL show higher insulin sensitivity, muscle mitochondrial content, and capacity, but lower activation of novel protein kinase C (nPKC) isoforms, despite higher diacylglycerol concentrations. Notably, sedentary but insulin sensitive OVWE feature lower plasma membrane-to-mitochondria sn-1,2-diacylglycerol ratios. In ATHL, calpain-2, which cleaves nPKC, negatively associates with PKCε activation and positively with insulin sensitivity along with higher GLUT4 and hexokinase II content. These findings contribute to explaining the athletes' paradox by demonstrating lower nPKC activation, increased calpain, and mitochondrial partitioning of bioactive diacylglycerols, the latter further identifying an obesity subtype with increased insulin sensitivity (NCT03314714).
Collapse
Affiliation(s)
- Dominik Pesta
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Centre for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Evrim Anadol-Schmitz
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
| | - Theresia Sarabhai
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | - Yvo Op den Kamp
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Sofiya Gancheva
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | - Nina Trinks
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
| | - Oana-Patricia Zaharia
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | - Lucia Mastrototaro
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
| | - Kun Lyu
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Ivo Habets
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Yvonne M H Op den Kamp-Bruls
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Bedair Dewidar
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
| | - Jürgen Weiss
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Vera Schrauwen-Hinderling
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Dongyan Zhang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | | | - Klaus Strassburger
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Yuliya Kupriyanova
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
| | - Hadi Al-Hasani
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
| | - Patrick Schrauwen
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- Leiden University Medical Center, Clinical Epidemiology, Leiden, Netherlands
| | - Esther Phielix
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Gerald I Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
8
|
Arellano‐García LI, Milton‐Laskibar I, Martínez JA, Arán‐González M, Portillo MP. Comparative effects of viable Lactobacillus rhamnosus GG and its heat-inactivated paraprobiotic in the prevention of high-fat high-fructose diet-induced non-alcoholic fatty liver disease in rats. Biofactors 2025; 51:e2116. [PMID: 39135211 PMCID: PMC11680974 DOI: 10.1002/biof.2116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/29/2024] [Indexed: 12/29/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most prevalent chronic liver alterations worldwide, being gut microbiota dysbiosis one of the contributing factors to its development. The aim of this research is to compare the potential effects of a viable probiotic (Lactobacillus rhamnosus GG) with those exerted by its heat-inactivated paraprobiotic counterpart in a dietary rodent model of NAFLD. The probiotic administration effectively prevented the hepatic lipid accumulation induced by a high-fat high-fructose diet feeding, as demonstrated by chemical (lower TG content) and histological (lower steatosis grade and lobular inflammation) analyses. This effect was mainly mediated by the downregulation of lipid uptake (FATP2 protein expression) and upregulating liver TG release to bloodstream (MTTP activity) in rats receiving the probiotic. By contrast, the effect of the paraprobiotic preventing diet-induced liver lipid accumulation was milder, and mainly derived from the downregulation of hepatic de novo lipogenesis (SREBP-1c protein expression and FAS activity) and TG assembly (DGAT2 and AQP9 protein expression). The obtained results demonstrate that under these experimental conditions, the effects induced by the administration of viable L. rhamnosus GG preventing liver lipid accumulation in rats fed a diet rich in saturated fat and fructose differ from those induced by its heat-inactivated paraprobiotic counterpart.
Collapse
Affiliation(s)
- Laura Isabel Arellano‐García
- Nutrition and Obesity Group, Department of Pharmacy and Food Sciences, Faculty of Pharmacy and Lucio Lascaray Research CentreUniversity of the Basque Country (UPV/EHU)Vitoria‐GasteizSpain
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos IIIMadridSpain
| | - Iñaki Milton‐Laskibar
- Nutrition and Obesity Group, Department of Pharmacy and Food Sciences, Faculty of Pharmacy and Lucio Lascaray Research CentreUniversity of the Basque Country (UPV/EHU)Vitoria‐GasteizSpain
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos IIIMadridSpain
- BIOARABA Health Research InstituteVitoria‐GasteizSpain
| | - J. Alfredo Martínez
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos IIIMadridSpain
- Precision Nutrition and Cardiometabolic Health, IMDEA‐Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, Spanish National Research CouncilMadridSpain
| | - Miguel Arán‐González
- Unidad de Gestión Clínica de Anatomía Patológica de GuipúzcoaHospital Universitario DonostiaSan SebastiánSpain
| | - María P. Portillo
- Nutrition and Obesity Group, Department of Pharmacy and Food Sciences, Faculty of Pharmacy and Lucio Lascaray Research CentreUniversity of the Basque Country (UPV/EHU)Vitoria‐GasteizSpain
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos IIIMadridSpain
- BIOARABA Health Research InstituteVitoria‐GasteizSpain
| |
Collapse
|
9
|
O'Reilly CL, Bodine SC, Miller BF. Current limitations and future opportunities of tracer studies of muscle ageing. J Physiol 2025; 603:7-15. [PMID: 38051758 PMCID: PMC11150331 DOI: 10.1113/jp285616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023] Open
Affiliation(s)
- Colleen L O'Reilly
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Sue C Bodine
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Oklahoma City Veterans Association, Oklahoma City, OK, USA
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Oklahoma City Veterans Association, Oklahoma City, OK, USA
| |
Collapse
|
10
|
Paquin F, Cristescu ME, Blier PU, Lemieux H, Dufresne F. Cumulative effects of mutation accumulation on mitochondrial function and fitness. Mitochondrion 2025; 80:101976. [PMID: 39486563 DOI: 10.1016/j.mito.2024.101976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/10/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
The impact of mutations on the mitochondria deserves specific interest due to the crucial role played by these organelles on numerous cellular functions. This study examines the effects of repeated bottlenecks on mitochondrial function and fitness. Daphnia pulex mutation accumulation lines (MA) lines were maintained for over 120 generations under copper and no copper conditions. Following the MA propagation, Daphnia from MA lines were raised under optimal and high temperatures for two generations before assessing mitochondrial and phenotypic traits. Spontaneous mutation accumulation under copper led to a later age at maturity and lowered fecundity in the MA lines. Mitochondrial respiration was found to be 10% lower in all mutation accumulation (MA) lines as compared to the non-MA control. MtDNA copy number was elevated in MA lines compared to the control under optimal temperature suggesting a compensatory mechanism. Three MA lines propagated under low copper had very low mtDNA copy number and fitness, suggesting mutations might have affected genes involved in mtDNA replication or mitochondrial biogenesis. Overall, our study suggests that mutation accumulation had an impact on life history traits, mtDNA copy number, and mitochondrial respiration. Some phenotypic effects were magnified under high temperatures. MtDNA copy number appears to be an important mitigation factor to allow mitochondria to cope with mutation accumulation up to a certain level beyond which it can no longer compensate.
Collapse
Affiliation(s)
- Frédérique Paquin
- Département de biologie, Université du Québec à Rimouski, 300 allée des ursulines, Rimouski, Québec G5L 3A1, Canada
| | - Melania E Cristescu
- Department of Biology, McGill University, 1205 Docteur Penfield, Montréal, Québec H3A 1B1, Canada
| | - Pierre U Blier
- Département de biologie, Université du Québec à Rimouski, 300 allée des ursulines, Rimouski, Québec G5L 3A1, Canada
| | - Hélène Lemieux
- Department of Medicine, Women and Children Research Health Institute, University of Alberta, Edmonton, Alberta T6C 4G9, Canada
| | - France Dufresne
- Département de biologie, Université du Québec à Rimouski, 300 allée des ursulines, Rimouski, Québec G5L 3A1, Canada.
| |
Collapse
|
11
|
Holody CD, Woodman AG, Nie C, Liu SN, Young D, Wiedemeyer A, Carpenter R, Noble RMN, Graf D, Dufour A, Lemieux H, Bourque SL. Perinatal iron deficiency alters the cardiac proteome and mitochondrial function in neonatal offspring. Am J Physiol Heart Circ Physiol 2025; 328:H101-H112. [PMID: 39570196 DOI: 10.1152/ajpheart.00412.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/21/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024]
Abstract
Iron deficiency (ID) is common during gestation and early infancy and can alter developmental trajectories with lasting consequences on cardiovascular health. Iron plays a critical role in systemic oxygen transport (via hemoglobin) and aerobic respiration (as a component of mitochondrial complexes). Perinatal ID has been shown to cause cardiac dysfunction in neonates, but the mechanisms underlying these changes have not been characterized. Here, we examined the effects of perinatal ID on cardiac mitochondrial function in rats in the early postnatal period. Female rats were fed an iron-restricted or iron-replete diet before and during pregnancy. Offspring hearts were collected postmortem for quantitative shotgun proteomic analysis [postnatal days (PD) 0 and 28] and mitochondrial function was assessed by high-resolution respirometry (at PD 0, 14, and 28). Markers of oxidative stress were measured by fluorescence microscopy and assessment of antioxidant gene expression profiles. Both male and female ID pups had reduced body weight and increased relative heart weights at all time points assessed, despite recovering from anemia by PD28. Proteomics analysis revealed dysregulation of mitochondrial proteins by ID, and these differences were most pronounced in males. In male hearts, ID increased mitochondrial content and decreased normalized mitochondrial respiration through the NADH-pathway, succinate-pathway, and fatty acid oxidation (FAO)-pathway. In conclusion, ID causes changes in cardiac mitochondrial function in neonates, which may reflect inadequate or maladaptive compensation during the transition from intrauterine to extrauterine life. Furthermore, the results presented herein, which were stratified by offspring sex, underscore the need for follow-up studies to directly assess differences in how male and female offspring cope with ID as a perinatal stressor.NEW & NOTEWORTHY Iron deficiency (ID) is the most common nutritional deficiency worldwide and is highly prevalent among pregnant women and young children. ID causes changes in mitochondrial protein expression and function in neonatal hearts, which may contribute to functional impairments. Improving cardiac energy metabolism may represent a novel approach to improve short- and long-term outcomes in infants affected by ID, but sex of the neonate may be an important determinant of treatment efficacy.
Collapse
Affiliation(s)
- Claudia D Holody
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew G Woodman
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Chunpeng Nie
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Si Ning Liu
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Daniel Young
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Alyssa Wiedemeyer
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Rowan Carpenter
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
| | - Ronan M N Noble
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Daniel Graf
- School of Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Antoine Dufour
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Hélène Lemieux
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Stephane L Bourque
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
12
|
Ellett MD, Daniels KM, Hanigan MD, Corl BA, Perez-Hernandez G, Parsons CLM, Melvin JA, Fausnacht DW, McMillan RP, Baumgard LH, Rhoads RP. Tissue-specific responses to oxidative fuel source preference during heat stress in lactating dairy cows. JDS COMMUNICATIONS 2025; 6:160-164. [PMID: 39877174 PMCID: PMC11770320 DOI: 10.3168/jdsc.2024-0631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/30/2024] [Indexed: 01/31/2025]
Abstract
Prolonged exposure to high environmental temperatures results in an accumulated heat load that induces a heat stress (HS) response in dairy cattle. Heat stress compromises dairy farm profitability by reducing milk yield, altering milk composition, and hindering reproductive performance. The ability to alternate between carbohydrate and lipid sources for energy production is termed metabolic flexibility (Met Flex). The objective of this study was to evaluate the Met Flex of mammary, muscle, and liver tissue in lactating dairy cows under HS and thermoneutral (TN) conditions. Sixteen Holstein cows were assigned to 1 of 2 treatment groups: pair-feeding in TN conditions (PFTN) or HS conditions. All cows experienced a 4-d TN period with ad libitum intake followed by a 4-d treatment period. Heat stress cows were exposed to a temperature-humidity index (THI) ranging from 76 to 80 and the PFTN cows were exposed to a THI of 64. Milk production and health data were recorded twice daily. Semitendinosus biopsies were obtained on d 4 of each period and postmortem mammary and liver samples were obtained on d 4 of period 2. All tissue samples were assayed for Met Flex. Activity of mitochondrial (Mit) enzymes were assessed in skeletal muscle only. Four days of HS decreased milk yield, altered milk composition, and increased respiration rate and rectal temperatures. No differences in Met Flex were observed in mammary or liver tissue during period 2. However, HS, but not PFTN conditions, lowered Met Flex of skeletal muscle by 18.3% when compared with TN ad libitum feed intake conditions of period 1. No treatment differences were observed in skeletal muscle Mit enzyme activity indicating the decrease in Met Flex occurred independently of changes in Mit function. The reduction in Met Flex of skeletal muscle during HS may contribute to reduced milk yield and warrants further investigation.
Collapse
Affiliation(s)
- M D Ellett
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061
| | - K M Daniels
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061
| | - M D Hanigan
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061
| | - B A Corl
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061
| | | | - C L M Parsons
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061
| | - J A Melvin
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061
| | - D W Fausnacht
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061
- Department of Biology, Ferrum College, Ferrum, VA 24088
| | - R P McMillan
- Virginia Tech Metabolism Core, Virginia Tech, Blacksburg, VA 24061
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - R P Rhoads
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061
| |
Collapse
|
13
|
Rhodes EM, Yap KN, Hill GE, Hood WR. A Comparison of the Mitochondrial Performance between Migratory and Sedentary Mimid Thrushes. Integr Comp Biol 2024; 64:1859-1870. [PMID: 39122659 DOI: 10.1093/icb/icae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/19/2024] [Accepted: 07/14/2024] [Indexed: 08/12/2024] Open
Abstract
Birds exhibit a variety of migration strategies. Because sustained flapping flight requires the production of elevated levels of energy compared to typical daily activities, migratory birds are well-documented to have several physiological adaptations to support the energy demands of migration. However, even though mitochondria are the source of ATP that powers flight, the respiratory performance of the mitochondria is almost unstudied in the context of migration. We hypothesized that migratory species would have higher mitochondrial respiratory performance during migration compared to species that do not migrate. To test this hypothesis, we compared variables related to mitochondrial respiratory function between two confamilial bird species-the migratory Gray Catbird (Dumetella carolinensis) and the non-migratory Northern Mockingbird (Mimus polyglottos). Birds were captured at the same location along the Alabama Gulf Coast, where we assumed that Gray Catbirds were migrants and where resident Northern Mockingbirds live year-round. We found a trend in citrate synthase activity, which suggests that Gray Catbirds have a greater mitochondrial volume in their pectoralis muscle, but we observed no other differences in mitochondrial respiration or complex enzymatic activities between individuals from the migrant vs. the non-migrant species. However, when we assessed the catbirds included in our study using well-established indicators of migratory physiology, birds fell into two groups: a group with physiological parameters indicating a physiology of birds engaged in migration and a group with the physiology of birds not migrating. Thus, our comparison included catbirds that appeared to be outside of migratory condition. When we compared the mitochondrial performance of these three groups, we found that the mitochondrial respiratory capacity of migrating catbirds was very similar to that of Northern Mockingbirds, while the catbirds judged to be not migrating were lowest. One explanation for these observations is these species display very different daily flight behaviors. While the mockingbirds we sampled were not breeding nor migrating, they are highly active birds, living in the open and engaging in flapping flights throughout each day. In contrast, Gray Catbirds live in shrubs and fly infrequently when not migrating. Such differences in baseline energy needs likely confounded our attempt to study adaptations to migration.
Collapse
Affiliation(s)
- Emma M Rhodes
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Kang Nian Yap
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Geoffrey E Hill
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Wendy R Hood
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
14
|
Hood WR. Mechanisms that Alter Capacity for Adenosine Triphosphate Production and Oxidative Phosphorylation: Insights from Avian Migration. Integr Comp Biol 2024; 64:1811-1825. [PMID: 38844402 DOI: 10.1093/icb/icae065] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/06/2024] [Accepted: 05/30/2024] [Indexed: 12/21/2024] Open
Abstract
Avian migration is among the most energetically demanding feats observed in animals. Studies evaluating the physiological underpinnings of migration have repeatedly shown that migratory birds display numerous adaptations that ultimately supply the flight muscle mitochondria with abundant fuel and oxygen during long-distance flights. To make use of this high input, the organs and mitochondria of migrants are predicted to display several traits that maximize their capacity to produce adenosine triphosphate (ATP). This review aims to introduce readers to several mechanisms by which organs and mitochondria can alter their capacity for oxidative phosphorylation and ATP production. The role of organ size, mitochondrial volume, substrate, and oxygen delivery to the electron transport system are discussed. A central theme of this review is the role of changes in electron chain complex activity, mitochondrial morphology and dynamics, and supercomplexes in allowing avian migrants and other taxa to alter the performance of the electron transport system with predictable shifts in demand. It is my hope that this review will serve as a springboard for future studies exploring the mechanisms that alter bioenergetic capacity across animal species.
Collapse
Affiliation(s)
- Wendy R Hood
- Department of Biological Sciences, Auburn University, 101 Life Sciences Building, Auburn, AL 36849, USA
| |
Collapse
|
15
|
Tannous C, Ghali R, Karoui A, Habeichi NJ, Amin G, Booz GW, Mericskay M, Refaat M, Zouein FA. Nicotinamide Riboside Supplementation Restores Myocardial Nicotinamide Adenine Dinucleotide Levels, Improves Survival, and Promotes Protective Environment Post Myocardial Infarction. Cardiovasc Drugs Ther 2024; 38:1385-1396. [PMID: 37999834 DOI: 10.1007/s10557-023-07525-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
AIMS Myocardial infarction (MI) is a major cause of death. Nicotinamide adenine dinucleotide (NAD+) is a coenzyme in oxidative phosphorylation and substrate of sirtuins and poly-ADP ribose polymerases, enzymes critical for cardiac remodeling post-MI. Decreased NAD+ is reported in several heart failure models with paradoxically an upregulation of nicotinamide riboside kinase 2, which uses nicotinamide riboside (NR) as substrate in an NAD+ biosynthetic pathway. We hypothesized that stimulating nicotinamide riboside kinase 2 pathway by NR supplementation exerts cardioprotective effects. METHODS AND RESULTS MI was induced by LAD ligation in 2-3-month-old male mice. NR was administered daily (1 µmole/g body weight) over 7 days. RT-PCR showed a 60-fold increase in nicotinamide riboside kinase 2 expression 4 days post-MI with a 60% drop in myocardial NAD+ and overall survival of 61%. NR restored NAD+ levels and improved survival to 92%. Assessment of respiration in cardiac fibers revealed mitochondrial dysfunction post-MI, and NR improved complexes II and IV activities and citrate synthase activity, a measure of mitochondrial content. Additionally, NR reduced elevated PARP1 levels and activated a type 2 cytokine milieu in the damaged heart, consistent with reduced early inflammatory and pro-fibrotic response. CONCLUSION Our data show that nicotinamide riboside could be useful for MI management.
Collapse
Affiliation(s)
- Cynthia Tannous
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut Medical Center, Riad El-Solh, Beirut, 1107 2020, Lebanon
- Department of Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Université Paris-Saclay, Inserm, 17 avenue des Sciences, 91 400, Orsay, France
- The Cardiovascular, Renal and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, Beirut, Lebanon
| | - Rana Ghali
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut Medical Center, Riad El-Solh, Beirut, 1107 2020, Lebanon
- The Cardiovascular, Renal and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, Beirut, Lebanon
| | - Ahmed Karoui
- Department of Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Université Paris-Saclay, Inserm, 17 avenue des Sciences, 91 400, Orsay, France
| | - Nada J Habeichi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut Medical Center, Riad El-Solh, Beirut, 1107 2020, Lebanon
- Department of Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Université Paris-Saclay, Inserm, 17 avenue des Sciences, 91 400, Orsay, France
- The Cardiovascular, Renal and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, Beirut, Lebanon
- MatriceLab Innove Laboratory, Immeuble Les Gemeaux, 2 Rue Antoine Etex, 94000 Creteil, France
| | - Ghadir Amin
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut Medical Center, Riad El-Solh, Beirut, 1107 2020, Lebanon
- The Cardiovascular, Renal and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, Beirut, Lebanon
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - George W Booz
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Mathias Mericskay
- Department of Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Université Paris-Saclay, Inserm, 17 avenue des Sciences, 91 400, Orsay, France.
| | - Marwan Refaat
- Department of Cardiovascular Medicine, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut Medical Center, Riad El-Solh, Beirut, 1107 2020, Lebanon.
- Department of Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Université Paris-Saclay, Inserm, 17 avenue des Sciences, 91 400, Orsay, France.
- The Cardiovascular, Renal and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, Beirut, Lebanon.
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
16
|
Silva G, Silva SSD, Guimarães DSPSF, Cruz MVD, Silveira LR, Rocha-Vieira E, Amorim FT, de Castro Magalhaes F. The dose-effect response of combined red and infrared photobiomodulation on insulin resistance in skeletal muscle cells. Biochem Biophys Rep 2024; 40:101831. [PMID: 39398538 PMCID: PMC11470420 DOI: 10.1016/j.bbrep.2024.101831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024] Open
Abstract
Obesity is a major public health problem and is a major contributor to the development of insulin resistance. In previous studies we observed that single-wavelength red or infrared photobiomodulation (PBM) improved insulin signaling in adipocytes and skeletal muscle of mice fed a high-fat diet, but information about the combination of different wavelengths, as well as the effect of different light doses (J/cm2) is lacking. Therefore, the aim of this study was to investigate the effects of different doses of dual-wavelength PBM on insulin signaling in muscle cell, and explore potential mechanisms involved. Mouse myoblasts (C2C12) were differentiated into myotubes and cultured in palmitic acid, sodium oleate and l-carnitine (PAL) to induce insulin resistance high or in glucose medium (CTRL). Then, they received SHAM treatment (lights off, 0 J/cm2) or PBM (660 + 850 nm; 2, 4 or 8 J/cm2). PAL induced insulin resistance (assessed by Akt phosphorylation at ser473), attenuated maximal citrate synthase activity, and increased the phosphorylation of c-Jun NH(2) terminal kinase (JNK) (T183/Y185). PBM at doses of 4 or 8 J/cm2 reversed these PAL-induced responses. Furthermore, at doses of 2, 4 or 8 J/cm2, PBM reversed the increase in mitofusin-2 content induced by PAL. In conclusion, the combination of dual-wavelength red and infrared PBM at doses of 4 and 8 J/cm2 improved intracellular insulin signaling in musculoskeletal cells, and this effect appears to involve the modulation of mitochondrial function and the attenuation of the activation of stress kinases.
Collapse
Affiliation(s)
- Gabriela Silva
- Multicentric Graduate Program in Physiological Sciences, Federal University of the Jequitinhonha and Mucuri Valleys – UFVJM. Rodovia MGT 367, KM 583, 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil
- Graduate Program in Health Sciences, Federal University of the Jequitinhonha and Mucuri Valleys – UFVJM. Rodovia MGT 367, KM 583, 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil
| | - Saulo Soares da Silva
- Instituto de Ciências e Tecnologia, Federal University of the Jequitinhonha and Mucuri Valleys – UFVJM. Rodovia MGT 367, KM 583, 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil
| | - Dimitrius Santiago Passos Simões Fróes Guimarães
- Centro de Pesquisa em Obesidade e Comorbidades - OCRC, Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas – UNICAMP. Rua Carl Von Linaeus, 2-238, Cidade Universitária, Campinas, SP, 13083-864, Brazil
| | - Marcos Vinicius da Cruz
- Centro de Pesquisa em Obesidade e Comorbidades - OCRC, Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas – UNICAMP. Rua Carl Von Linaeus, 2-238, Cidade Universitária, Campinas, SP, 13083-864, Brazil
| | - Leonardo Reis Silveira
- Centro de Pesquisa em Obesidade e Comorbidades - OCRC, Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas – UNICAMP. Rua Carl Von Linaeus, 2-238, Cidade Universitária, Campinas, SP, 13083-864, Brazil
| | - Etel Rocha-Vieira
- Multicentric Graduate Program in Physiological Sciences, Federal University of the Jequitinhonha and Mucuri Valleys – UFVJM. Rodovia MGT 367, KM 583, 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil
- Graduate Program in Health Sciences, Federal University of the Jequitinhonha and Mucuri Valleys – UFVJM. Rodovia MGT 367, KM 583, 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil
| | - Fabiano Trigueiro Amorim
- Department of Health, Exercise, and Sports Sciences, University of New Mexico – UNM. Johnson Center, B143 MSC04 2610, Albuquerque, New Mexico, 87131-0001, USA
| | - Flavio de Castro Magalhaes
- Multicentric Graduate Program in Physiological Sciences, Federal University of the Jequitinhonha and Mucuri Valleys – UFVJM. Rodovia MGT 367, KM 583, 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil
- Graduate Program in Health Sciences, Federal University of the Jequitinhonha and Mucuri Valleys – UFVJM. Rodovia MGT 367, KM 583, 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil
- Department of Health, Exercise, and Sports Sciences, University of New Mexico – UNM. Johnson Center, B143 MSC04 2610, Albuquerque, New Mexico, 87131-0001, USA
- Department of Physical Education, Federal University of the Jequitinhonha and Mucuri Valleys – UFVJM. Rodovia MGT 367, KM 583, 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil
| |
Collapse
|
17
|
Mohr M, Aragón Vela J, Skoradal MB, Thomassen M, Skriver SA, Hansen M, Fatouros IG, Krustrup P, Nordsborg NB. Exercise Training Counteracts Compromised Mitochondrial Capacity Induced by Energy Restriction in Prediabetics in a Sex-Dependent Manner. Scand J Med Sci Sports 2024; 34:e14768. [PMID: 39604207 DOI: 10.1111/sms.14768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/05/2024] [Accepted: 11/10/2024] [Indexed: 11/29/2024]
Abstract
The objective of this randomized controlled trial was to examine if exercise training can counteract energy restriction-induced impairment of mitochondrial capacity in skeletal muscle of 55-70-years people with prediabetes and metabolic syndrome. The potential impact of sex was explored. Fifty sedentary men and women with prediabetes and metabolic syndrome (age: 61 ± 6 (±SD) years, BMI: 29.6 ± 4.7 kg·m-2, body fat content: 37.5% ± 8.2% and VO2max: 22.3 ± 5.7 mL·min-1·kg-1) were randomized to either exercise training and dietary advice (EX-DI) or dietary advice only (DI). Dietary advice aimed to induce weight loss and improve glycemic control. Exercise consisted of 32 ± 2 mixed 30-60 min training sessions with recreational small-sided soccer distributed across 16 weeks. Maximal activity and protein abundance of key regulatory mitochondrial enzymes were determined in m. vastus lateralis pre- and post-intervention. Muscle glycogen content was also determined. Dietary advice only (DI), impaired (p < 0.001) citrate synthase (CS), and 3-hydroxyacyl-CoA dehydrogenase (HAD) maximal activity by 18% ± 43% and 23% ± 19%, respectively. When combined with exercise training, no dietary impairment of CS or HAD maximal activity was detectable. Superoxide dismutase 2 (SOD2) and CS protein expression also declined (p < 0.05) in DI and remained unchanged in EX-DI. In terms of sex differences, a decrease in maximal CS activity in both EX-DI and DI was observed exclusively in men (all p < 0.05). In conclusion, 16 weeks of exercise training counteracts energy restriction-induced impairment in skeletal mitochondrial function in 55- to 70-year-old women and men with prediabetes and metabolic syndrome.
Collapse
Affiliation(s)
- Magni Mohr
- Centre of Health Sciences, Faculty of Health Science, University of the Faroe Islands, Tórshavn, Faroe Islands
- Department of Sports Science and Clinical Biomechanics, SDU Sport and Health Sciences Cluster (SHSC), Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Jerónimo Aragón Vela
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - May-Britt Skoradal
- Centre of Health Sciences, Faculty of Health Science, University of the Faroe Islands, Tórshavn, Faroe Islands
| | - Martin Thomassen
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - Søren Andersen Skriver
- Department of Public Health, Research Unit for Exercise Biology, Aarhus University, Aarhus, Denmark
| | - Mette Hansen
- Department of Public Health, Research Unit for Exercise Biology, Aarhus University, Aarhus, Denmark
| | - Ioannis G Fatouros
- Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Peter Krustrup
- Department of Sports Science and Clinical Biomechanics, SDU Sport and Health Sciences Cluster (SHSC), Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Odense, Denmark
| | - Nikolai B Nordsborg
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Mesquita PHC, Rhodes EM, Yap KN, Mueller BJ, Hill GE, Hood WR, Kavazis AN. Mitochondrial remodelling supports migration in white-crowned sparrows ( Zonotrichia leucophrys). Proc Biol Sci 2024; 291:20242409. [PMID: 39657813 PMCID: PMC11631445 DOI: 10.1098/rspb.2024.2409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024] Open
Abstract
The migratory movements undertaken by birds are among the most energetically demanding behaviours observed in nature. Mitochondria are the source of aerobic energy production on which migration depends, but a key component of mitochondrial function, mitochondrial remodelling, has not been investigated in the context of bird migration. We measured markers of mitochondrial remodelling in the skeletal muscles of the Gambel's (migratory) and Nuttall's (non-migratory) white-crowned sparrows within and outside migratory periods. Gambel's were collected in (i) a non-migration period (baseline), (ii) preparation to depart for spring migration (pre-migration) and (iii) active autumn migration (mid-migration). Nuttall's were collected at timepoints corresponding to baseline and mid-migration in Gambel's. Across all sampling periods, we found that migratory birds had greater mitochondrial remodelling compared with non-migratory birds. Furthermore, birds from the migratory population also displayed flexibility, increasing several markers of mitochondrial remodelling (e.g. NRF1, OPA1 and Drp1) pre- and during migration. Further, the greater levels of mitochondrial remodelling and its upregulation during migration were specific to the pectoralis muscle used in flapping flight. Our study is the first to show that mitochondrial remodelling supports migration in Gambel's white-crowned sparrows, indicating a highly specific and efficient phenotype supporting the increased energetic demands of migration.
Collapse
Affiliation(s)
- Paulo H. C. Mesquita
- School of Kinesiology, Auburn University, Auburn, AL36849, USA
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Emma M. Rhodes
- Department of Biological Sciences, Auburn University, Auburn, AL36849, USA
| | - Kang Nian Yap
- Department of Biological Sciences, Auburn University, Auburn, AL36849, USA
- Department of Biology, Norwegian University of Science and Technology, Trondheim7491, Norway
| | | | - Geoffrey E. Hill
- Department of Biological Sciences, Auburn University, Auburn, AL36849, USA
| | - Wendy R. Hood
- Department of Biological Sciences, Auburn University, Auburn, AL36849, USA
| | | |
Collapse
|
19
|
L'Honoré T, Mégevand L, Hermet S, M'colo ZA, Farcy E, Bertin L, Cadière A, Lignot JH, Sucré E. A multi-scale integrative approach to study the impact of a common pesticide, the dimethoate, on a mangrove fiddler crab Tubuca urvillei. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64656-64674. [PMID: 39546245 DOI: 10.1007/s11356-024-35489-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Abstract
At land-sea interface, mangroves are likely to be exposed to pesticides due to agricultural run-offs. In Mayotte Island (Comoros archipelago, Mozambique Channel), dimethoate (DMT) is found in high concentrations in tomatoes, but no data confirm its presence in mangroves. We aimed at screening the presence of DMT in three mangroves of Mayotte at different levels (highest point above crops, village, upstream mangrove, downstream mangrove) and assessing the impact of DMT coupled with reduced salinity on mangrove crab physiology. To do so, we performed 24-h exposures at sublethal concentrations (10 and 100 µg L-1) corresponding to 100 × and 1000 × the environmental standard (no data exist on environmental concentrations), in seawater (SW) and diluted SW (dSW). We exposed male fiddler crab Tubuca urvillei, one of the most common fiddler crabs living in mangrove areas regularly flooded and exposed to agricultural run-offs. Different physiological endpoints were considered: behaviour, acetylcholinesterase (AChE) activity, muscle energy metabolism, DNA oxidative damage and osmoregulatory capacity using hemolymph samples, posterior gills and claw muscle. We confirmed the presence of DMT in one mangrove and the effect of pesticide exposure at the different endpoints. Changes in behavioural and physiological parameters highlighted in this study could warn us of recent pesticide use upstream and help us understand past or future community-level changes in mangrove ecosystems affected by pesticide inputs.
Collapse
Affiliation(s)
- Thibaut L'Honoré
- Université de Mayotte, 8 Rue de L'Université, BP 53, 97660, Dembeni, Mayotte, France.
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Montpellier, France.
| | - Laura Mégevand
- Université de Mayotte, 8 Rue de L'Université, BP 53, 97660, Dembeni, Mayotte, France
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Sophie Hermet
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Zaïnabou Ali M'colo
- Université de Mayotte, 8 Rue de L'Université, BP 53, 97660, Dembeni, Mayotte, France
| | - Emilie Farcy
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Léandre Bertin
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Axelle Cadière
- Univ. Nimes, UPR CHROME, Rue du Dr G. Salan, 30021, Nimes Cedex 1, France
| | | | - Elliott Sucré
- Université de Mayotte, 8 Rue de L'Université, BP 53, 97660, Dembeni, Mayotte, France
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| |
Collapse
|
20
|
Jahan F, Vasam G, Cariaco Y, Nik-Akhtar A, Green A, Menzies KJ, Bainbridge SA. NAD + depletion is central to placental dysfunction in an inflammatory subclass of preeclampsia. Life Sci Alliance 2024; 7:e202302505. [PMID: 39389781 PMCID: PMC11467044 DOI: 10.26508/lsa.202302505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024] Open
Abstract
Preeclampsia (PE) is a hypertensive disorder of pregnancy and a major cause of maternal/perinatal adverse health outcomes with no effective therapeutic strategies. Our group previously identified distinct subclasses of PE, one of which exhibits heightened placental inflammation (inflammation-driven PE). In non-pregnant populations, chronic inflammation is associated with decreased levels of cellular NAD+, a vitamin B3 derivative involved in energy metabolism and mitochondrial function. Interestingly, specifically in placentas from women with inflammation-driven PE, we observed the increased activity of NAD+-consuming enzymes, decreased NAD+ content, decreased expression of mitochondrial proteins, and increased oxidative damage. HTR8 human trophoblasts likewise demonstrated increased NAD+-dependent ADP-ribosyltransferase (ART) activity, coupled with decreased mitochondrial respiration rates and invasive function under inflammatory conditions. Such adverse effects were attenuated by boosting cellular NAD+ levels with nicotinamide riboside (NR). Finally, in an LPS-induced rat model of inflammation-driven PE, NR administration (200 mg/kg/day) from gestational days 1-19 prevented maternal hypertension and fetal/placental growth restriction, improved placental mitochondrial function, and reduced inflammation and oxidative stress. This study demonstrates the critical role of NAD+ in maintaining placental function and identifies NAD+ boosting as a promising preventative strategy for PE.
Collapse
Affiliation(s)
- Fahmida Jahan
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Goutham Vasam
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Yusmaris Cariaco
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Abolfazl Nik-Akhtar
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Alex Green
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Keir J Menzies
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
| | - Shannon A Bainbridge
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
21
|
Hunter‐Manseau F, Cormier SB, Strang R, Pichaud N. Fasting as a precursor to high-fat diet enhances mitochondrial resilience in Drosophila melanogaster. INSECT SCIENCE 2024; 31:1770-1788. [PMID: 38514255 PMCID: PMC11632299 DOI: 10.1111/1744-7917.13355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 03/23/2024]
Abstract
Changes in diet type and nutrient availability can impose significant environmental stress on organisms, potentially compromising physiological functions and reproductive success. In nature, dramatic fluctuations in dietary resources are often observed and adjustments to restore cellular homeostasis are crucial to survive this type of stress. In this study, we exposed male Drosophila melanogaster to two modulated dietary treatments: one without a fasting period before exposure to a high-fat diet and the other with a 24-h fasting period. We then investigated mitochondrial metabolism and molecular responses to these treatments. Exposure to a high-fat diet without a preceding fasting period resulted in disrupted mitochondrial respiration, notably at the level of complex I. On the other hand, a short fasting period before the high-fat diet maintained mitochondrial respiration. Generally, transcript abundance of genes associated with mitophagy, heat-shock proteins, mitochondrial biogenesis, and nutrient sensing pathways increased either slightly or significantly following a fasting period and remained stable when flies were subsequently put on a high-fat diet, whereas a drastic decrease of almost all transcript abundances was observed for all these pathways when flies were exposed directly to a high-fat diet. Moreover, mitochondrial enzymatic activities showed less variation after the fasting period than the treatment without a fasting period. Overall, our study sheds light on the mechanistic protective effects of fasting prior to a high-fat diet and highlights the metabolic flexibility of Drosophila mitochondria in response to abrupt dietary changes and have implication for adaptation of species to their changing environment.
Collapse
Affiliation(s)
- Florence Hunter‐Manseau
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNew BrunswickCanada
- New Brunswick Centre for Precision MedicineMonctonNew BrunswickCanada
| | - Simon B. Cormier
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNew BrunswickCanada
- New Brunswick Centre for Precision MedicineMonctonNew BrunswickCanada
| | - Rebekah Strang
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNew BrunswickCanada
- New Brunswick Centre for Precision MedicineMonctonNew BrunswickCanada
| | - Nicolas Pichaud
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNew BrunswickCanada
- New Brunswick Centre for Precision MedicineMonctonNew BrunswickCanada
| |
Collapse
|
22
|
Ge X, Wang Z, Song Y, Meng H. Effect of bariatric surgery on mitochondrial remodeling in human skeletal muscle: a narrative review. Front Endocrinol (Lausanne) 2024; 15:1488715. [PMID: 39655345 PMCID: PMC11625573 DOI: 10.3389/fendo.2024.1488715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024] Open
Abstract
In the context of obesity epidemic as a major global public health challenge, bariatric surgery stands out for its significant and long-lasting effectiveness in addressing severe obesity and its associated comorbidities. Skeletal muscle mitochondrial function, which is crucial for maintaining metabolic health, tends to deteriorate with obesity. This review summarized current evidence on the effects of bariatric surgery on skeletal muscle mitochondrial function, with a focus on mitochondrial content, mitochondrial dynamics, mitochondrial respiration and mitochondrial markers in glucolipid metabolism. In conclusion, bariatric surgery impacts skeletal muscle through pathways related to mitochondrial function and induces mitochondrial remodeling in skeletal muscle in various aspects. Future studies should focus on standardized methodologies, larger sample sizes, and better control of confounding factors to further clarify the role of mitochondrial remodeling in the therapeutic benefits of bariatric surgery.
Collapse
Affiliation(s)
- Xiaochuan Ge
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
- Key Laboratory of Sports and Physical Fitness of the Ministry of Education, Beijing Sport University, Beijing, China
| | - Zhe Wang
- Department of General Surgery & Obesity and Metabolic Disease Center, China-Japan Friendship Hospital, Beijing, China
| | - Yafeng Song
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
- Key Laboratory of Sports and Physical Fitness of the Ministry of Education, Beijing Sport University, Beijing, China
| | - Hua Meng
- Department of General Surgery & Obesity and Metabolic Disease Center, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
23
|
Sukumar VK, Tai YK, Chan CW, Iversen JN, Wu KY, Fong CHH, Lim JSJ, Franco-Obregón A. Brief Magnetic Field Exposure Stimulates Doxorubicin Uptake into Breast Cancer Cells in Association with TRPC1 Expression: A Precision Oncology Methodology to Enhance Chemotherapeutic Outcome. Cancers (Basel) 2024; 16:3860. [PMID: 39594815 PMCID: PMC11592624 DOI: 10.3390/cancers16223860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/04/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: Doxorubicin (DOX) is commonly used as a chemotherapeutic agent for the treatment of breast cancer. Nonetheless, its systemic delivery via intravenous injection and toxicity towards healthy tissues commonly result in a broad range of detrimental side effects. Breast cancer severity was previously shown to be correlated with TRPC1 channel expression that conferred upon it enhanced vulnerability to pulsed electromagnetic field (PEMF) therapy. PEMF therapy was also previously shown to enhance breast cancer cell vulnerability to DOX in vitro and in vivo that correlated with TRPC1 expression and mitochondrial respiratory rates. Methods: DOX uptake was assessed by measuring its innate autofluorescence within murine 4T1 or human MCF7 breast cancer cells following magnetic exposure. Cellular vulnerability to doxorubicin uptake was assessed by monitoring mitochondrial activity and cellular DNA content. Results: Here, we demonstrate that 10 min of PEMF exposure could augment DOX uptake into 4T1 and MCF7 breast cancer cells. DOX uptake could be increased by TRPC1 overexpression, whereas inhibiting the activity of TRPC1 channels with SKF-96356 or genetic knockdown, precluded DOX uptake. PEMF exposure enhances DOX-mediated killing of breast cancer cells, reducing the IC50 value of DOX by half, whereas muscle cells, representative of collateral tissues, were less sensitive to PEMF-enhanced DOX-mediated cytotoxicity. Vesicular loading of DOX correlated with TRPC1 expression. Conclusions: This study presents a novel TRPC1-mediated mechanism through which PEMF therapy may enhance DOX cytotoxicity in breast cancer cells, paving the way for the development of localized non-invasive PEMF platforms to improve cancer outcomes with lower systemic levels of DOX.
Collapse
Affiliation(s)
- Viresh Krishnan Sukumar
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; (V.K.S.); (J.S.J.L.)
- BICEPS Lab (Biolonic Currents Electromagnetic Pulsing Systems), National University of Singapore, Singapore 117599, Singapore; (J.N.I.); (K.Y.W.); (C.H.H.F.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Yee Kit Tai
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; (V.K.S.); (J.S.J.L.)
- BICEPS Lab (Biolonic Currents Electromagnetic Pulsing Systems), National University of Singapore, Singapore 117599, Singapore; (J.N.I.); (K.Y.W.); (C.H.H.F.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Ching Wan Chan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Jan Nikolas Iversen
- BICEPS Lab (Biolonic Currents Electromagnetic Pulsing Systems), National University of Singapore, Singapore 117599, Singapore; (J.N.I.); (K.Y.W.); (C.H.H.F.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Kwan Yu Wu
- BICEPS Lab (Biolonic Currents Electromagnetic Pulsing Systems), National University of Singapore, Singapore 117599, Singapore; (J.N.I.); (K.Y.W.); (C.H.H.F.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Charlene Hui Hua Fong
- BICEPS Lab (Biolonic Currents Electromagnetic Pulsing Systems), National University of Singapore, Singapore 117599, Singapore; (J.N.I.); (K.Y.W.); (C.H.H.F.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Joline Si Jing Lim
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; (V.K.S.); (J.S.J.L.)
- Experimental Therapeutics Programme, Cancer Science Institute, Singapore 117599, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University Singapore, Singapore 119228, Singapore
- Department of Haematology-Oncology, National University Cancer Institute, National University Hospital, Singapore 119074, Singapore
| | - Alfredo Franco-Obregón
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; (V.K.S.); (J.S.J.L.)
- BICEPS Lab (Biolonic Currents Electromagnetic Pulsing Systems), National University of Singapore, Singapore 117599, Singapore; (J.N.I.); (K.Y.W.); (C.H.H.F.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| |
Collapse
|
24
|
DiLeo MR, Hall RE, Vellers HL, Daniels CL, Levitt DE. Alcohol Alters Skeletal Muscle Bioenergetic Function: A Scoping Review. Int J Mol Sci 2024; 25:12280. [PMID: 39596345 PMCID: PMC11594450 DOI: 10.3390/ijms252212280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Bioenergetic pathways uniquely support sarcomere function which, in turn, helps to maintain functional skeletal muscle (SKM) mass. Emerging evidence supports alcohol (EtOH)-induced bioenergetic impairments in SKM and muscle precursor cells. We performed a scoping review to synthesize existing evidence regarding the effects of EtOH on SKM bioenergetics. Eligible articles from six databases were identified, and titles, abstracts, and full texts for potentially relevant articles were screened against inclusion criteria. Through the search, we identified 555 unique articles, and 21 met inclusion criteria. Three studies investigated EtOH effects on the adenosine triphosphate (ATP)-phosphocreatine (PCr) system, twelve investigated EtOH effects on glycolytic metabolism, and seventeen investigated EtOH effects on mitochondrial metabolism. Despite increased ATP-PCr system reliance, EtOH led to an overall decrease in bioenergetic function through decreased expression and activity of glycolytic and mitochondrial pathway components. However, effects varied depending on the EtOH dose and duration, model system, and sample type. The results detail the EtOH-induced shifts in energy metabolism, which may adversely affect sarcomere function and contribute to myopathy. These findings should be used to develop targeted interventions that improve SKM bioenergetic function, and thus sarcomere function, in people with Alcohol Use Disorder (AUD). Key areas in need of further investigation are also identified.
Collapse
Affiliation(s)
- Matthew R. DiLeo
- Metabolic Health and Muscle Physiology Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (M.R.D.); (R.E.H.); (C.L.D.)
| | - Rylea E. Hall
- Metabolic Health and Muscle Physiology Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (M.R.D.); (R.E.H.); (C.L.D.)
| | - Heather L. Vellers
- Mitochondrial Biology and Endurance Trainability Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA;
| | - Chelsea L. Daniels
- Metabolic Health and Muscle Physiology Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (M.R.D.); (R.E.H.); (C.L.D.)
| | - Danielle E. Levitt
- Metabolic Health and Muscle Physiology Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (M.R.D.); (R.E.H.); (C.L.D.)
| |
Collapse
|
25
|
Pham TCP, Raun SH, Havula E, Henriquez-Olguín C, Rubalcava-Gracia D, Frank E, Fritzen AM, Jannig PR, Andersen NR, Kruse R, Ali MS, Irazoki A, Halling JF, Ringholm S, Needham EJ, Hansen S, Lemminger AK, Schjerling P, Petersen MH, de Almeida ME, Jensen TE, Kiens B, Hostrup M, Larsen S, Ørtenblad N, Højlund K, Kjær M, Ruas JL, Trifunovic A, Wojtaszewski JFP, Nielsen J, Qvortrup K, Pilegaard H, Richter EA, Sylow L. The mitochondrial mRNA-stabilizing protein SLIRP regulates skeletal muscle mitochondrial structure and respiration by exercise-recoverable mechanisms. Nat Commun 2024; 15:9826. [PMID: 39537626 PMCID: PMC11561311 DOI: 10.1038/s41467-024-54183-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Decline in mitochondrial function is linked to decreased muscle mass and strength in conditions like sarcopenia and type 2 diabetes. Despite therapeutic opportunities, there is limited and equivocal data regarding molecular cues controlling muscle mitochondrial plasticity. Here we uncovered that the mitochondrial mRNA-stabilizing protein SLIRP, in complex with LRPPRC, is a PGC-1α target that regulates mitochondrial structure, respiration, and mtDNA-encoded-mRNA pools in skeletal muscle. Exercise training effectively counteracts mitochondrial defects caused by genetically-induced LRPPRC/SLIRP loss, despite sustained low mtDNA-encoded-mRNA pools, by increasing mitoribosome translation capacity and mitochondrial quality control. In humans, exercise training robustly increases muscle SLIRP and LRPPRC protein across exercise modalities and sexes, yet less prominently in individuals with type 2 diabetes. SLIRP muscle loss reduces Drosophila lifespan. Our data points to a mechanism of post-transcriptional mitochondrial regulation in muscle via mitochondrial mRNA stabilization, offering insights into how exercise enhances mitoribosome capacity and mitochondrial quality control to alleviate defects.
Collapse
Affiliation(s)
- Tang Cam Phung Pham
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Steffen Henning Raun
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Essi Havula
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Carlos Henriquez-Olguín
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Exercise Science Laboratory, Faculty of Medicine, Universidad Finis Terrae, Av. Pedro de Valdivia 1509, Santiago, Chile
| | - Diana Rubalcava-Gracia
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Emma Frank
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Mæchel Fritzen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Paulo R Jannig
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, SE-17177, Stockholm, Sweden
| | - Nicoline Resen Andersen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Kruse
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
| | - Mona Sadek Ali
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Irazoki
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Frey Halling
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Stine Ringholm
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Elise J Needham
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Solvejg Hansen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Anders Krogh Lemminger
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Peter Schjerling
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark
- Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Martin Eisemann de Almeida
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Thomas Elbenhardt Jensen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Bente Kiens
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Morten Hostrup
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Steen Larsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark
- Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Kurt Højlund
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Michael Kjær
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark
- Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jorge L Ruas
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, SE-17177, Stockholm, Sweden
| | - Aleksandra Trifunovic
- Institute for Mitochondrial Diseases and Aging, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), Medical Faculty, University of Cologne, Cologne, Germany
| | | | - Joachim Nielsen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Klaus Qvortrup
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Erik Arne Richter
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Lykke Sylow
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
26
|
Sudhadevi T, Harijith A. Mitochondrial dysfunction in febrile illness and sepsis: no clear picture yet. Pediatr Res 2024:10.1038/s41390-024-03696-1. [PMID: 39511441 DOI: 10.1038/s41390-024-03696-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024]
Affiliation(s)
- Tara Sudhadevi
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Anantha Harijith
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
27
|
Dobashi S, Yoshihara T, Ogura Y, Naito H. Normobaric hypoxia accelerates high-intensity intermittent training-induced mitochondrial biogenesis (PGC-1α)- and dynamics (OPA1)-related protein expressions in rat gastrocnemius muscle. J Physiol Biochem 2024; 80:909-917. [PMID: 39422861 DOI: 10.1007/s13105-024-01052-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
High-intensity intermittent training (HIIT) in a normobaric hypoxic environment enhances exercise capacity, possibly by increasing the mitochondrial content in skeletal muscle; however, the molecular mechanisms underlying these adaptations are not well understood. Therefore, we investigated whether HIIT under normobaric hypoxia can enhance the expression of proteins involved in mitochondrial biogenesis and dynamics in rat gastrocnemius muscle. Five-week-old male Wistar rats (n = 24) were randomly assigned to the following four groups: (1) sedentary under normoxia (20.9% O2) (NS), (2) training under normoxia (NT), (3) sedentary under normobaric hypoxia (14.5% O2) (HS), and (4) training under normobaric hypoxia (HT). The training groups in both conditions were engaged in HIIT on a treadmill five to six days per week for nine weeks. From the fourth week of the training period, the group assigned to hypoxic conditions was exposed to normobaric hypoxia. Forty-eight hours after completing the final training session, gastrocnemius muscles were surgically removed, and mitochondrial enzyme activity and mitochondrial biogenesis and dynamics regulatory protein levels were determined. Citrate synthase (CS) activity and mitochondrial oxygen phosphorylation (OXPHOS) subunits in the gastrocnemius muscle in the HT significantly exceeded those in the other three groups. Moreover, the levels of a master regulator of mitochondrial biogenesis, peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), and a mitochondrial fusion-related protein, optic atrophy 1 (OPA1), were significantly increased by HIIT under normobaric hypoxia. Our data indicates that HIIT and normobaric hypoxia increase the expression of mitochondrial biogenesis- and dynamics-related proteins in skeletal muscles.
Collapse
Affiliation(s)
- Shohei Dobashi
- Graduate School of Health and Sports Science, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan
- Institute of Health and Sports Science & Medicine, Juntendo University, Chiba, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Toshinori Yoshihara
- Graduate School of Health and Sports Science, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan.
| | - Yuji Ogura
- Graduate School of Health and Sports Science, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan
- Department of Physiology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Hisashi Naito
- Graduate School of Health and Sports Science, Juntendo University, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan
- Institute of Health and Sports Science & Medicine, Juntendo University, Chiba, Japan
| |
Collapse
|
28
|
Mast HE, Blier PU, Ɖorđević M, Savković U, Holody CD, Bourque SL, Lemieux H. Selection for Late Reproduction Leads to Loss of Complex I Mitochondrial Capacity and Associated Increased Longevity in Seed Beetles. J Gerontol A Biol Sci Med Sci 2024; 79:glae208. [PMID: 39158488 PMCID: PMC11497162 DOI: 10.1093/gerona/glae208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Indexed: 08/20/2024] Open
Abstract
Mitochondria play a key role in aging. Here, we measured integrated mitochondrial functions in experimentally evolved lines of the seed beetle Acanthoscelides obtectus that were selected for early (E) or late (L) reproduction for nearly 4 decades. The 2 lines have markedly different lifespans (8 days and 13 days in the E and L lines, respectively). The contribution of the NADH pathway to maximal flux was lower in the L compared to the E beetles at young stages, associated with increased control by complex I. In contrast, the contribution of the Succinate pathway was higher in the L than in the E line, whereas the Proline pathway showed no differences between the lines. Our data suggest that selection of age at reproduction leads to a modulation of complex I activity in mitochondria and that mitochondria are a functional link between evolutionary and mechanistic theories of aging.
Collapse
Affiliation(s)
- Heather E Mast
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Pierre U Blier
- Département de Biologie, Université du Québec à Rimouski, Rimouski, Quebec, Canada
| | - Mirko Ɖorđević
- Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković” – National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Uroš Savković
- Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković” – National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Claudia D Holody
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Stephane L Bourque
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Hélène Lemieux
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
29
|
Hutchinson AJ, Staples JF, Gugleilmo CG. The mitochondrial physiology of torpor in ruby-throated hummingbirds, Archilochus colubris. J Exp Biol 2024; 227:jeb248027. [PMID: 39319364 DOI: 10.1242/jeb.248027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Hummingbirds save energy by facultatively entering torpor, but the physiological mechanisms underlying this metabolic suppression are largely unknown. We compared whole-animal and pectoralis mitochondrial metabolism between torpid and normothermic ruby-throated hummingbirds (Archilochus colubris). When fasting, hummingbirds were exposed to 10°C ambient temperature at night and they entered torpor; average body temperature decreased by nearly 25°C (from ∼37 to ∼13°C) and whole-animal metabolic rate (V̇O2) decreased by 95% compared with normothermia, a much greater metabolic suppression compared with that of mammalian daily heterotherms. We then measured pectoralis mitochondrial oxidative phosphorylation (OXPHOS) fueled by either carbohydrate or fatty acid substrates at both 39°C and 10°C in torpid and normothermic hummingbirds. Aside from a 20% decrease in electron transport system complex I-supported respiration with pyruvate, the capacity for OXPHOS at a common in vivo temperature did not differ in isolated mitochondria between torpor and normothermia. Similarly, the activities of pectoralis pyruvate dehydrogenase and 3-hydroxyacyl-CoA dehydrogenase did not differ between the states. Unlike heterothermic mammals, hummingbirds do not suppress muscle mitochondrial metabolism in torpor by active, temperature-independent mechanisms. Other mechanisms that may underly this impressive whole-animal metabolic suppression include decreasing ATP demand or relying on rapid passive cooling facilitated by the very small body size of A. colubris.
Collapse
Affiliation(s)
- Amalie J Hutchinson
- Department of Biology, The University of Western Ontario, London, ON, Canada, N6A 3K7
- Center for Animals on the Move, The University of Western Ontario, London, ON, Canada, N6A 3K7
| | - James F Staples
- Department of Biology, The University of Western Ontario, London, ON, Canada, N6A 3K7
| | - Christopher G Gugleilmo
- Department of Biology, The University of Western Ontario, London, ON, Canada, N6A 3K7
- Center for Animals on the Move, The University of Western Ontario, London, ON, Canada, N6A 3K7
| |
Collapse
|
30
|
Aisyah R, Kamesawa M, Horii M, Watanabe D, Yoshida Y, Miyata K, Kumrungsee T, Wada M, Yanaka N. Comparative study on muscle function in two different streptozotocin-induced diabetic models. Acta Diabetol 2024; 61:1443-1453. [PMID: 38856757 PMCID: PMC11531449 DOI: 10.1007/s00592-024-02311-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/20/2024] [Indexed: 06/11/2024]
Abstract
AIMS Streptozotocin (STZ) is widely used to study diabetic complications. Owing to the nonspecific cytotoxicity of high-dose STZ, alternative models using moderate-dose or a combination of low-dose STZ and a high-fat diet have been established. This study aimed to investigate the effects of these models on muscle function. METHODS The muscle function of two STZ models using moderate-dose STZ (100 mg/kg, twice) and a combination of low-dose STZ and high-fat diet (50 mg/kg for 5 consecutive days + 45% high-fat diet) were examined using in vivo electrical stimulation. Biochemical and gene expression analysis were conducted on the skeletal muscles of the models immediately after the stimulation. RESULTS The contractile force did not differ significantly between the models compared to respective controls. However, the moderate-dose STZ model showed more severe fatigue and blunted exercise-induced glycogen degradation possibly thorough a downregulation of oxidative phosphorylation- and vasculature development-related genes expression. CONCLUSIONS Moderate-dose STZ model is suitable for fatigability assessment in diabetes and careful understanding on the molecular signatures of each model is necessary to guide the selection of suitable models to study diabetic myopathy.
Collapse
Affiliation(s)
- Rahmawati Aisyah
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Mion Kamesawa
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Mayu Horii
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Daiki Watanabe
- Graduate School of Humanities and Social Sciences, Hiroshima University, Hiroshima, 739-8521, Japan
- Graduate School of Sport and Health Sciences, Osaka University of Health and Sport Sciences, Osaka, 564-8565, Japan
| | - Yuki Yoshida
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Kenshu Miyata
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Thanutchaporn Kumrungsee
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Masanobu Wada
- Graduate School of Humanities and Social Sciences, Hiroshima University, Hiroshima, 739-8521, Japan
| | - Noriyuki Yanaka
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan.
| |
Collapse
|
31
|
Ducros L, Lavoie-Rochon AS, Pichaud N, Lamarre SG. Metabolic rate and mitochondrial physiology adjustments in Arctic char (Salvelinus alpinus) during cyclic hypoxia. J Exp Biol 2024; 227:jeb247834. [PMID: 39319396 DOI: 10.1242/jeb.247834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024]
Abstract
Diel fluctuations of oxygen levels characterize cyclic hypoxia and pose a significant challenge to wild fish populations. Although recent research has been conducted on the effects of hypoxia and reoxygenation, mechanisms by which fish acclimatize to cyclic hypoxia remain unclear, especially in hypoxia-sensitive species. We hypothesized that acclimation to cyclic hypoxia requires a downregulation of aerobic metabolic rate and an upregulation of mitochondrial respiratory capacities to mitigate constraints on aerobic metabolism and the elevated risk of oxidative stress upon reoxygenation. We exposed Arctic char (Salvelinus alpinus) to 10 days of cyclic hypoxia and measured their metabolic rate and mitochondrial physiology to determine how they cope with fluctuating oxygen concentrations. We measured oxygen consumption as a proxy of metabolic rate and observed that Arctic char defend their standard metabolic rate but decrease their routine metabolic rate during hypoxic phases, presumably through the repression of spontaneous swimming activities. At the mitochondrial level, acute cyclic hypoxia increases oxygen consumption without ADP (CI-LEAK) in the liver and heart. Respiration in the presence of ADP (OXPHOS) temporarily increases in the liver and decreases in the heart. Cytochrome c oxidase oxygen affinity also increases at day 3 in the liver. However, no change occurs in the brain, which is likely primarily preserved through preferential perfusion (albeit not measured in this study). Finally, in vivo measurements of reactive oxygen species revealed the absence of an oxidative burst in mitochondria in the cyclic hypoxia group. Our study shows that Arctic char acclimatize to cyclic hypoxia through organ-specific mitochondrial adjustments.
Collapse
Affiliation(s)
- Loïck Ducros
- Département de Biologie, Université de Moncton, Moncton, NB, Canada, E1A 3E9
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB, Canada, E1A 3E9
| | - A S Lavoie-Rochon
- Département de Biologie, Université de Moncton, Moncton, NB, Canada, E1A 3E9
| | - N Pichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB, Canada, E1A 3E9
| | - S G Lamarre
- Département de Biologie, Université de Moncton, Moncton, NB, Canada, E1A 3E9
| |
Collapse
|
32
|
Liu W, Jiang Y, Li G, Huang D, Qin T. Oxidative phosphorylation related gene COA6 is a novel indicator for the prognosis and immune response in lung adenocarcinoma. Sci Rep 2024; 14:25970. [PMID: 39472746 PMCID: PMC11522384 DOI: 10.1038/s41598-024-77775-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024] Open
Abstract
Although the initial research focused on glycolysis, mitochondrial oxidative phosphorylation has become a major target of cancer cells. Cytochrome C oxidase assembly factor 6 (COA6) is a conserved assembly factor necessary for complex IV biogenesis. Nevertheless, the clinical predictive value of COA6, especially its correlation with immune cell infiltration in lung adenocarcinoma (LUAD), has not yet been elucidated. COA6 exhibited higher expression levels in LUAD cells and tumor tissues compared to normal tissues. Additionally, heightened COA6 expression was associated with reduced overall survival (OS) and advanced tumor stage. Apart from its role in mitochondrial respiratory processes, COA6 may be involved in the process of antigen binding, immunoglobulin receptor binding. Interestingly, we observed a positive correlation between COA6 expression and tumor mutational burden (TMB), as well as a significant association with decreased immune cell infiltration. COA6 was linked to resistance against gemcitabine and etoposide. We verified that COA6 was highly expressed in LUAD experimentally and cell proliferation was inhibited after COA6 knockdown. Thus, we conclude that the expression of COA6 was correlated with reduced immune cell infiltration. Additionally, COA6 functioned as a biomarker for drug sensitivity and the prognosis of lung adenocarcinoma.
Collapse
Affiliation(s)
- Wenting Liu
- Department of Thoracic Oncology, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yantao Jiang
- Department of Thoracic Oncology, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Guoli Li
- Department of Clinical Laboratory, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Dingzhi Huang
- Department of Thoracic Oncology, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Tingting Qin
- Department of Thoracic Oncology, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
33
|
Fang C, Du L, Gao S, Chen Y, Chen Z, Wu Z, Li L, Li J, Zeng X, Li M, Li Y, Tian X. Association between premature vascular smooth muscle cells senescence and vascular inflammation in Takayasu's arteritis. Ann Rheum Dis 2024; 83:1522-1535. [PMID: 38816066 PMCID: PMC11503059 DOI: 10.1136/ard-2024-225630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024]
Abstract
OBJECTIVES Arterial wall inflammation and remodelling are the characteristic features of Takayasu's arteritis (TAK). It has been proposed that vascular smooth muscle cells (VSMCs) are the main targeted cells of inflammatory damage and participate in arterial remodelling in TAK. Whether VSMCs are actively involved in arterial wall inflammation has not been elucidated. Studies have shown that cellular senescence in tissue is closely related to local inflammation persistence. We aimed to investigate whether VSMCs senescence contributes to vascular inflammation and the prosenescent factors in TAK. METHODS VSMCs senescence and senescence-associated secretory phenotype were detected by histological examination, bulk RNA-Seq and single-cell RNA-seq conducted on vascular surgery samples of TAK patients. The key prosenescent factors and the downstream signalling pathway were investigated in a series of in vitro and ex vivo experiments. RESULTS Histological findings, primary cell culture and transcriptomic analyses demonstrated that VSMCs of TAK patients had the features of premature senescence and contributed substantially to vascular inflammation by upregulating the expression of senescence-associated inflammatory cytokines. IL-6 was found to be the critical cytokine that drove VSMCs senescence and senescence-associated mitochondrial dysfunction in TAK. Mechanistically, IL-6-induced non-canonical mitochondrial localisation of phosphorylated STAT3 (Tyr705) prevented mitofusin 2 (MFN2) from proteasomal degradation, and subsequently promoted senescence-associated mitochondrial dysfunction and VSMCs senescence. Mitochondrial STAT3 or MFN2 inhibition ameliorated VSMCs senescence in ex vivo cultured arteries of TAK patients. CONCLUSIONS VSMCs present features of cellular senescence and are actively involved in vascular inflammation in TAK. Vascular IL-6-mitochondrial STAT3-MFN2 signalling is an important driver of VSMCs senescence.
Collapse
Affiliation(s)
- Chenglong Fang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Lihong Du
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Shang Gao
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuexin Chen
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zuoguan Chen
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhiyuan Wu
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Lili Li
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Jing Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Yongjun Li
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinping Tian
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| |
Collapse
|
34
|
Costa JSR, Silva G, Guimarães IC, Silva LFR, Silva SSD, Almeida JPDP, Coimbra CC, Parizotto NA, Gripp F, Dias-Peixoto MF, Esteves EA, Amorim FT, Ferraresi C, de Castro Magalhaes F. Photobiomodulation Enhances the Effect of Strength Training on Insulin Resistance Regardless of Exercise Volume in Mice Fed a High-Fat Diet. JOURNAL OF BIOPHOTONICS 2024:e202400274. [PMID: 39419755 DOI: 10.1002/jbio.202400274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
The aim was to investigate the effects of different volumes of strength training (ST) in association with photobiomodulation (PBMt) in mice fed a high-fat diet (HFD) on insulin resistance (IR). Male Swiss albino mice were fed HFD and performed high- or low-volume (one-third) ST (3 days/week), associated with PBMt (660 nm + 850 nm; ~42 J delivered) or not (lights off). ST improved IR, lowered visceral adiposity and circulating cytokines, and increased skeletal muscle hypertrophy and mitochondrial activity. The smaller volume of ST did not interfere with the improvement in IR, mitochondrial activity, or inflammatory profile, but exerted a smaller effect on visceral adiposity and skeletal muscle hypertrophy. Association with PBMt further improved IR, regardless of ST volume, although it did not affect adiposity, mitochondrial activity, and the inflammatory profile. Interestingly, PBMt positively affected quadriceps, but attenuated gluteus maximus hypertrophy. The association with PBMt induced greater improvement than ST alone.
Collapse
Affiliation(s)
- Juliana Sales Rodrigues Costa
- Multicentric Graduate Program in Physiological Sciences, Federal University of the Jequitinhonha and Mucuri Valleys - UFVJM, Diamantina, Minas Gerais, Brazil
| | - Gabriela Silva
- Multicentric Graduate Program in Physiological Sciences, Federal University of the Jequitinhonha and Mucuri Valleys - UFVJM, Diamantina, Minas Gerais, Brazil
- Graduate Program in Health Sciences, Federal University of the Jequitinhonha and Mucuri Valleys - UFVJM, Diamantina, Minas Gerais, Brazil
| | - Isabela Carvalho Guimarães
- Graduate Program in Health Sciences, Federal University of the Jequitinhonha and Mucuri Valleys - UFVJM, Diamantina, Minas Gerais, Brazil
| | - Luis Filipe Rocha Silva
- Graduate Program in Health Sciences, Federal University of the Jequitinhonha and Mucuri Valleys - UFVJM, Diamantina, Minas Gerais, Brazil
| | - Saulo Soares da Silva
- Instituto de Ciências e Tecnologia, Federal University of the Jequitinhonha and Mucuri Valleys - UFVJM, Diamantina, Minas Gerais, Brazil
| | - João Paulo de Paula Almeida
- Instituto de Ciências e Tecnologia, Federal University of the Jequitinhonha and Mucuri Valleys - UFVJM, Diamantina, Minas Gerais, Brazil
| | - Cândido Celso Coimbra
- Multicentric Graduate Program in Physiological Sciences, Federal University of the Jequitinhonha and Mucuri Valleys - UFVJM, Diamantina, Minas Gerais, Brazil
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Fernando Gripp
- Department of Physical Education, Federal University of the Jequitinhonha and Mucuri Valleys - Diamantina, Diamantina, Minas Gerais, Brazil
| | - Marco Fabrício Dias-Peixoto
- Multicentric Graduate Program in Physiological Sciences, Federal University of the Jequitinhonha and Mucuri Valleys - UFVJM, Diamantina, Minas Gerais, Brazil
- Graduate Program in Health Sciences, Federal University of the Jequitinhonha and Mucuri Valleys - UFVJM, Diamantina, Minas Gerais, Brazil
- Department of Physical Education, Federal University of the Jequitinhonha and Mucuri Valleys - Diamantina, Diamantina, Minas Gerais, Brazil
| | - Elizabethe Adriana Esteves
- Multicentric Graduate Program in Physiological Sciences, Federal University of the Jequitinhonha and Mucuri Valleys - UFVJM, Diamantina, Minas Gerais, Brazil
- Graduate Program in Health Sciences, Federal University of the Jequitinhonha and Mucuri Valleys - UFVJM, Diamantina, Minas Gerais, Brazil
- Department of Nutrition, Federal University of the Jequitinhonha and Mucuri Valleys - Diamantina, Diamantina, Minas Gerais, Brazil
| | - Fabiano Trigueiro Amorim
- Department of Health, Exercise, and Sports Sciences, University of New Mexico - UNM. Johnson Center, Albuquerque, New Mexico, USA
| | - Cleber Ferraresi
- Department of Physical Therapy, Federal University of Sao Carlos - UFSCAR. Rodovia Washington Luis, Km 235, Sao Carlos, Sao Paulo, Brazil
| | - Flavio de Castro Magalhaes
- Multicentric Graduate Program in Physiological Sciences, Federal University of the Jequitinhonha and Mucuri Valleys - UFVJM, Diamantina, Minas Gerais, Brazil
- Graduate Program in Health Sciences, Federal University of the Jequitinhonha and Mucuri Valleys - UFVJM, Diamantina, Minas Gerais, Brazil
- Department of Physical Education, Federal University of the Jequitinhonha and Mucuri Valleys - Diamantina, Diamantina, Minas Gerais, Brazil
- Department of Health, Exercise, and Sports Sciences, University of New Mexico - UNM. Johnson Center, Albuquerque, New Mexico, USA
| |
Collapse
|
35
|
Bautista NM, Herrera ND, Shadowitz E, Wearing OH, Cheviron ZA, Scott GR, Storz JF. Local adaptation, plasticity, and evolved resistance to hypoxic cold stress in high-altitude deer mice. Proc Natl Acad Sci U S A 2024; 121:e2412526121. [PMID: 39352929 PMCID: PMC11474095 DOI: 10.1073/pnas.2412526121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/20/2024] [Indexed: 10/04/2024] Open
Abstract
A fundamental question in evolutionary biology concerns the relative contributions of phenotypic plasticity vs. local adaptation (genotypic specialization) in enabling wide-ranging species to inhabit diverse environmental conditions. Here, we conduct a long-term hypoxia acclimation experiment to assess the relative roles of local adaptation and plasticity in enabling highland and lowland deer mice (Peromyscus maniculatus) to sustain aerobic thermogenesis at progressively increasing elevations. We assessed the relative physiological performance capacities of highland and lowland natives as they were exposed to progressive, stepwise increases in hypoxia, simulating the gradual ascent from sea level to an elevation of 6,000 m. The final elevation of 6,000 m far exceeds the highest attainable elevations within the species' range, and therefore tests the animals' ability to tolerate levels of hypoxia that surpass the prevailing conditions within their current distributional limits. Our results demonstrate that highland natives exhibit superior thermogenic capacities at the most severe levels of hypoxia, suggesting that the species' broad fundamental niche and its ability to inhabit such a broad range of elevational zones is attributable to genetically based local adaptation, including evolved changes in plasticity. Transcriptomic and physiological measurements identify evolved changes in the acclimation response to hypoxia that contribute to the enhanced thermogenic capacity of highland natives.
Collapse
Affiliation(s)
- Naim M. Bautista
- School of Biological Sciences, University of Nebraska, Lincoln, NE68588
| | | | - Ellen Shadowitz
- Department of Biology, McMaster University, Hamilton, ONL8S 4K1, Canada
| | - Oliver H. Wearing
- Department of Biology, McMaster University, Hamilton, ONL8S 4K1, Canada
| | | | - Graham R. Scott
- Department of Biology, McMaster University, Hamilton, ONL8S 4K1, Canada
| | - Jay F. Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE68588
| |
Collapse
|
36
|
Kumari S, Sadeesh EM. Comparative Assessment of Mitochondria Isolation Buffers for Optimizing Tissue-Specific Yields in Buffalo. Cells Tissues Organs 2024:1-13. [PMID: 39353407 DOI: 10.1159/000541733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024] Open
Abstract
INTRODUCTION Mitochondrial studies are crucial for assessing livestock health and performance. While extensive research has been done on cattle and pigs, the influence of mitochondria in Indian buffalo remains unexplored. Therefore, in order to understand functions of mitochondria, their energy-related processes, or any additional mitochondrial traits in buffaloes, it is imperative to isolate high-yield mitochondria with purity and functionality. Mitochondria are extracted by few conventional buffers. These buffers were previously characterized for their effectiveness in isolating mitochondria from rodent and human tissues. Therefore, the present study is to assess the performance of mitochondria isolation buffers specifically in buffalo tissues. METHODS The study involved isolation of mitochondria from four different tissues, i.e., liver, brain, heart and muscles of slaughtered buffalo (n = 3), using: (i) Tris-Mannitol buffer (ii) Tris-Sucrose buffer, and (iii) MOPS-Sucrose buffer. Buffer efficiency in preserving high fidelity during mitochondria isolation was assessed by comparison with Cayman's MitoCheck® Mitochondrial Isolation Kit (control). Further mitochondrial purity and functionality was assessed through comparative estimation of protein concentration and marker enzyme assays, respectively. RESULTS Our results revealed insights into the suitability of specific buffer for functional mitochondria isolation from specific type of buffalo tissue. Notably for obtaining high quality functional mitochondria from buffalo, MOPS-Sucrose buffer appeared optimal for soft tissues (liver and brain), while Tris-Mannitol buffer was efficient for hard tissues (muscles and heart). CONCLUSIONS Thus, our research highlights the influence of buffer composition and tissue-specific variations in buffer effectiveness on mitochondrial activity in different tissues, leading to improved mitochondrial isolation in buffalo.
Collapse
Affiliation(s)
- Sweta Kumari
- Laboratory of Mitochondrial Biology of Farm Animals, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - E M Sadeesh
- Laboratory of Mitochondrial Biology of Farm Animals, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
37
|
Noble RMN, Soni S, Liu SN, Rachid JJ, Mast HE, Wiedemeyer A, Holody CD, Mah R, Woodman AG, Ferdaoussi M, Lemieux H, Dyck JRB, Bourque SL. Maternal ketone supplementation throughout gestation improves neonatal cardiac dysfunction caused by perinatal iron deficiency. Clin Sci (Lond) 2024; 138:1249-1264. [PMID: 39288030 DOI: 10.1042/cs20241386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/02/2024] [Accepted: 09/17/2024] [Indexed: 09/19/2024]
Abstract
Iron deficiency (ID) is common during gestation and in early infancy and has been shown to adversely affect cardiac development and function, which could lead to lasting cardiovascular consequences. Ketone supplementation has been shown to confer cardioprotective effects in numerous disease models. Here, we tested the hypothesis that maternal ketone supplementation during gestation would mitigate cardiac dysfunction in ID neonates. Female Sprague-Dawley rats were fed an iron-restricted or iron-replete diet before and throughout pregnancy. Throughout gestation, iron-restricted dams were given either a daily subcutaneous injection of ketone solution (containing β-hydroxybutyrate [βOHB]) or saline (vehicle). Neonatal offspring cardiac function was assessed by echocardiography at postnatal days (PD)3 and 13. Hearts and livers were collected post-mortem for assessments of mitochondrial function and gene expression profiles of markers oxidative stress and inflammation. Maternal iron restriction caused neonatal anemia and asymmetric growth restriction at all time points assessed, and maternal βOHB treatment had no effect on these outcomes. Echocardiography revealed reduced ejection fraction despite enlarged hearts (relative to body weight) in ID offspring, resulting in impaired oxygen delivery, which was attenuated by maternal βOHB supplementation. Further, maternal ketone supplementation affected biochemical markers of mitochondrial function, oxidative stress and inflammation in hearts of neonates, implicating these pathways in the protective effects conferred by βOHB. In summary, βOHB supplementation confers protection against cardiac dysfunction in ID neonates and could have implications for the treatment of anemic babies.
Collapse
Affiliation(s)
- Ronan M N Noble
- Department of Pediatrics, University of Alberta, Edmonton, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Shubham Soni
- Department of Pediatrics, University of Alberta, Edmonton, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Si Ning Liu
- Department of Pediatrics, University of Alberta, Edmonton, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Jad-Julian Rachid
- Department of Pediatrics, University of Alberta, Edmonton, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Heather E Mast
- Faculty Saint-Jean, University of Alberta, Edmonton, AB, Canada
| | - Alyssa Wiedemeyer
- Department of Pediatrics, University of Alberta, Edmonton, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Claudia D Holody
- Department of Pediatrics, University of Alberta, Edmonton, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Richard Mah
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew G Woodman
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
- Department of Anesthesiology, University of Alberta, Edmonton, Canada
| | - Mourad Ferdaoussi
- Department of Pediatrics, University of Alberta, Edmonton, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Helene Lemieux
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada
- Faculty Saint-Jean, University of Alberta, Edmonton, AB, Canada
| | - Jason R B Dyck
- Department of Pediatrics, University of Alberta, Edmonton, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Stephane L Bourque
- Department of Pediatrics, University of Alberta, Edmonton, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
- Department of Anesthesiology, University of Alberta, Edmonton, Canada
| |
Collapse
|
38
|
Zhao YC, Gao BH. Integrative effects of resistance training and endurance training on mitochondrial remodeling in skeletal muscle. Eur J Appl Physiol 2024; 124:2851-2865. [PMID: 38981937 DOI: 10.1007/s00421-024-05549-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
Resistance training activates mammalian target of rapamycin (mTOR) pathway of hypertrophy for strength gain, while endurance training increases peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) pathway of mitochondrial biogenesis benefiting oxidative phosphorylation. The conventional view suggests that resistance training-induced hypertrophy signaling interferes with endurance training-induced mitochondrial remodeling. However, this idea has been challenged because acute leg press and knee extension in humans enhance both muscle hypertrophy and mitochondrial remodeling signals. Thus, we first examined the muscle mitochondrial remodeling and hypertrophy signals with endurance training and resistance training, respectively. In addition, we discussed the influence of resistance training on muscle mitochondria, demonstrating that the PGC-1α-mediated muscle mitochondrial adaptation and hypertrophy occur simultaneously. The second aim was to discuss the integrative effects of concurrent training, which consists of endurance and resistance training sessions on mitochondrial remodeling. The study found that the resistance training component does not reduce muscle mitochondrial remodeling signals in concurrent training. On the contrary, concurrent training has the potential to amplify skeletal muscle mitochondrial biogenesis compared to a single exercise model. Concurrent training involving differential sequences of resistance and endurance training may result in varied mitochondrial biogenesis signals, which should be linked to the pre-activation of mTOR or PGC-1α signaling. Our review proposed a mechanism for mTOR signaling that promotes PGC-1α signaling through unidentified pathways. This mechanism may be account for the superior muscle mitochondrial remodeling change following the concurrent training. Our review suggested an interaction between resistance training and endurance training in skeletal muscle mitochondrial adaptation.
Collapse
Affiliation(s)
- Yong-Cai Zhao
- College of Exercise and Health, Tianjin University of Sport, No. 16 Donghai Road, Jinghai District, Tianjin, 301617, China.
| | - Bing-Hong Gao
- School of Athletic Performance, Shanghai University of Sport, No. 399 Changhai Road, Yangpu District, Shanghai, 200438, China
| |
Collapse
|
39
|
Brandão SR, Oliveira PF, Guerra-Carvalho B, Reis-Mendes A, Neuparth MJ, Carvalho F, Ferreira R, Costa VM. Enduring metabolic modulation in the cardiac tissue of elderly CD-1 mice two months post mitoxantrone treatment. Free Radic Biol Med 2024; 223:199-211. [PMID: 39059512 DOI: 10.1016/j.freeradbiomed.2024.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Mitoxantrone (MTX) is a therapeutic agent used in the treatment of solid tumors and multiple sclerosis, recognized for its cardiotoxicity, with underlying molecular mechanisms not fully disclosed. The cardiotoxicity is influenced by risk factors, including age. Our study intended to assess the molecular effect of MTX on the cardiac muscle of old male CD-1 mice. Mice aged 19 months received a total cumulative dose of 4.5 mg/kg of MTX (MTX group) or saline solution (CTRL group). Two months post treatment, blood was collected, animals sacrificed, and the heart removed. MTX caused structural cardiac changes, which were accompanied by extracellular matrix remodeling, as indicated by the increased ratio between matrix metallopeptidase 2 and metalloproteinase inhibitor 2. At the metabolic level, decreased glycerol levels were found, together with a trend towards increased content of the electron transfer flavoprotein dehydrogenase. In contrast, lower glycolysis, given by the decreased content of glucose transporter GLUT4 and phosphofructokinase, seemed to occur. The findings suggest higher reliance on fatty acids oxidation, despite no major remodeling occurring at the mitochondrial level. Furthermore, the levels of glutamine and other amino acids (although to a lesser extent) were decreased, which aligns with decreased content of the E3 ubiquitin-protein ligase Atrogin-1, suggesting a decrease in proteolysis. As far as we know, this was the first study made in old mice with a clinically relevant dose of MTX, evaluating its long-term cardiac effects. Even two months after MTX exposure, changes in metabolic fingerprint occurred, highlighting enduring cardiac effects that may require clinical vigilance.
Collapse
Affiliation(s)
- Sofia Reis Brandão
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; LAQV - REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Pedro Fontes Oliveira
- LAQV - REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Bárbara Guerra-Carvalho
- LAQV - REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; ICBAS - School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal.
| | - Ana Reis-Mendes
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Maria João Neuparth
- Laboratory for Integrative and Translational Research in Population Health (ITR), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal.
| | - Félix Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Rita Ferreira
- LAQV - REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Vera Marisa Costa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
40
|
Cwerman-Thibault H, Malko-Baverel V, Le Guilloux G, Torres-Cuevas I, Ratcliffe E, Mouri D, Mignon V, Saubaméa B, Boespflug-Tanguy O, Gressens P, Corral-Debrinski M. Harlequin mice exhibit cognitive impairment, severe loss of Purkinje cells and a compromised bioenergetic status due to the absence of Apoptosis Inducing Factor. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167272. [PMID: 38897257 DOI: 10.1016/j.bbadis.2024.167272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
The functional integrity of the central nervous system relies on complex mechanisms in which the mitochondria are crucial actors because of their involvement in a multitude of bioenergetics and biosynthetic pathways. Mitochondrial diseases are among the most prevalent groups of inherited neurological disorders, affecting up to 1 in 5000 adults and despite considerable efforts around the world there is still limited curative treatments. Harlequin mice correspond to a relevant model of recessive X-linked mitochondrial disease due to a proviral insertion in the first intron of the Apoptosis-inducing factor gene, resulting in an almost complete depletion of the corresponding protein. These mice exhibit progressive degeneration of the retina, optic nerve, cerebellum, and cortical regions leading to irremediable blindness and ataxia, reminiscent of what is observed in patients suffering from mitochondrial diseases. We evaluated the progression of cerebellar degeneration in Harlequin mice, especially for Purkinje cells and its relationship with bioenergetics failure and behavioral damage. For the first time to our knowledge, we demonstrated that Harlequin mice display cognitive and emotional impairments at early stage of the disease with further deteriorations as ataxia aggravates. These functions, corresponding to higher-order cognitive processing, have been assigned to a complex network of reciprocal connections between the cerebellum and many cortical areas which could be dysfunctional in these mice. Consequently, Harlequin mice become a suitable experimental model to test innovative therapeutics, via the targeting of mitochondria which can become available to a large spectrum of neurological diseases.
Collapse
Affiliation(s)
| | | | | | - Isabel Torres-Cuevas
- Université Paris Cité, NeuroDiderot, Inserm, F-75019 Paris, France; Department of Physiology, University of Valencia, Vicent Andrés Estellés s/n, 46100 12 Burjassot, Spain
| | - Edward Ratcliffe
- Université Paris Cité, NeuroDiderot, Inserm, F-75019 Paris, France
| | - Djmila Mouri
- Université Paris Cité, NeuroDiderot, Inserm, F-75019 Paris, France
| | - Virginie Mignon
- Université de Paris, UMR-S 1144 Inserm, 75006 Paris, France; Université Paris Cité, Platform of Cellular and Molecular Imaging, US25 Inserm, UAR3612 CNRS, 75006 Paris, France
| | - Bruno Saubaméa
- Université de Paris, UMR-S 1144 Inserm, 75006 Paris, France
| | - Odile Boespflug-Tanguy
- Université Paris Cité, NeuroDiderot, Inserm, F-75019 Paris, France; Service de Neurologie et Maladies métaboliques, CHU Paris - Hôpital Robert Debré, F-75019 Paris, France
| | - Pierre Gressens
- Université Paris Cité, NeuroDiderot, Inserm, F-75019 Paris, France
| | | |
Collapse
|
41
|
Thoral E, Dawson NJ, Bettinazzi S, Rodríguez E. An evolving roadmap: using mitochondrial physiology to help guide conservation efforts. CONSERVATION PHYSIOLOGY 2024; 12:coae063. [PMID: 39252884 PMCID: PMC11381570 DOI: 10.1093/conphys/coae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024]
Abstract
The crucial role of aerobic energy production in sustaining eukaryotic life positions mitochondrial processes as key determinants of an animal's ability to withstand unpredictable environments. The advent of new techniques facilitating the measurement of mitochondrial function offers an increasingly promising tool for conservation approaches. Herein, we synthesize the current knowledge on the links between mitochondrial bioenergetics, ecophysiology and local adaptation, expanding them to the wider conservation physiology field. We discuss recent findings linking cellular bioenergetics to whole-animal fitness, in the current context of climate change. We summarize topics, questions, methods, pitfalls and caveats to help provide a comprehensive roadmap for studying mitochondria from a conservation perspective. Our overall aim is to help guide conservation in natural populations, outlining the methods and techniques that could be most useful to assess mitochondrial function in the field.
Collapse
Affiliation(s)
- Elisa Thoral
- Department of Biology, Section for Evolutionary Ecology, Lund University, Sölvegatan 37, Lund 223 62, Sweden
| | - Neal J Dawson
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Garscube Campus, Bearsden Road, Glasgow, G61 1QH , UK
| | - Stefano Bettinazzi
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, 99-105 Gower Street, WC1E 6BT, London, UK
| | - Enrique Rodríguez
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, 99-105 Gower Street, WC1E 6BT, London, UK
| |
Collapse
|
42
|
Reisman EG, Botella J, Huang C, Schittenhelm RB, Stroud DA, Granata C, Chandrasiri OS, Ramm G, Oorschot V, Caruana NJ, Bishop DJ. Fibre-specific mitochondrial protein abundance is linked to resting and post-training mitochondrial content in the muscle of men. Nat Commun 2024; 15:7677. [PMID: 39227581 PMCID: PMC11371815 DOI: 10.1038/s41467-024-50632-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 07/16/2024] [Indexed: 09/05/2024] Open
Abstract
Analyses of mitochondrial adaptations in human skeletal muscle have mostly used whole-muscle samples, where results may be confounded by the presence of a mixture of type I and II muscle fibres. Using our adapted mass spectrometry-based proteomics workflow, we provide insights into fibre-specific mitochondrial differences in the human skeletal muscle of men before and after training. Our findings challenge previous conclusions regarding the extent of fibre-type-specific remodelling of the mitochondrial proteome and suggest that most baseline differences in mitochondrial protein abundances between fibre types reported by us, and others, might be due to differences in total mitochondrial content or a consequence of adaptations to habitual physical activity (or inactivity). Most training-induced changes in different mitochondrial functional groups, in both fibre types, were no longer significant in our study when normalised to changes in markers of mitochondrial content.
Collapse
Affiliation(s)
- Elizabeth G Reisman
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Javier Botella
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia
- Metabolic Research Unit, School of Medicine and Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, VIC, Australia
| | - Cheng Huang
- Monash Proteomics & Metabolomics Facility, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics & Metabolomics Facility, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - David A Stroud
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Parkville, VIC, Australia
| | - Cesare Granata
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Institute for Clinical Diabetology, German, Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Owala S Chandrasiri
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia
| | - Georg Ramm
- Ramaciotti Centre for Cryo EM, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Viola Oorschot
- Ramaciotti Centre for Cryo EM, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Nikeisha J Caruana
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia.
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia.
| | - David J Bishop
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia.
| |
Collapse
|
43
|
Keshavan N, Rahman S. Natural history of deoxyguanosine kinase deficiency. Mol Genet Metab 2024; 143:108554. [PMID: 39079226 DOI: 10.1016/j.ymgme.2024.108554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 10/16/2024]
Abstract
BACKGROUND AND OBJECTIVES Deoxyguanosine kinase deficiency is one genetic cause of mtDNA depletion syndrome. Its major phenotypes include neonatal/infantile-onset hepatocerebral disease, isolated hepatic disease and myopathic disease. In this retrospective study, we seek to describe the natural history of deoxyguanosine kinase deficiency and identify any genotype-phenotype correlations. METHODS Retrospective literature search and collation of data from genetically confirmed cases of deoxyguanosine kinase deficiency. RESULTS 173 cases of DGUOK deficiency were identified. Neonatal/infantile-onset hepatocerebral disease accounted for 128 (74%) of cases. Isolated liver disease was seen in 36 (21%) and myopathic disease in 9 (5%) of cases. The most frequently involved systems were liver (98%), brain (75%), growth (46%) and gastrointestinal tract (26%). Infantile-onset disease typically presented with cholestatic jaundice and lactic acidosis. Neurological involvement included hypotonia, nystagmus and developmental delay with MRI brain abnormalities in about half of cases. Missense variants accounted for 48% of all pathogenic variants while variants resulting in truncated transcripts accounted for 39%. Prognosis was poor, especially for neonatal/ infantile-onset hepatocerebral disease for which 1 year survival was 11%. Twenty-three patients received liver transplants, of whom 12 died within 2 years of transplant. Patients with two truncating variants had a higher risk of death and were more likely to have the neonatal/infantile-onset hepatocerebral disease phenotype. No blood biomarker predictive of neurological involvement was identified. Earlier onset correlated with increased mortality. CONCLUSIONS There is a narrow window for therapeutic intervention. For the hepatocerebral disease phenotype, median age of onset was 1 month while the median age of death was 6.5 months implying rapid disease progression.
Collapse
Affiliation(s)
- Nandaki Keshavan
- Department of Metabolic Medicine, Great Ormond Street Hospital, Great Ormond Street, London WC1N 3JH, United Kingdom; UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom
| | - Shamima Rahman
- Department of Metabolic Medicine, Great Ormond Street Hospital, Great Ormond Street, London WC1N 3JH, United Kingdom; UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom.
| |
Collapse
|
44
|
Pelka EZ, Davis BR, McDaniel J. Sourcebook update: using near-infrared spectroscopy to assess skeletal muscle oxygen uptake. ADVANCES IN PHYSIOLOGY EDUCATION 2024; 48:566-572. [PMID: 38779745 DOI: 10.1152/advan.00047.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/16/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
Monitoring the metabolic cost or oxygen consumption associated with rest and exercise is crucial to understanding the impact of disease or physical training on the health of individuals. Traditionally, measuring the skeletal muscle oxygen cost associated with exercise/muscle contractions can be rather expensive or invasive (i.e., muscle biopsies). More recently, specific protocols designed around the use of near-infrared spectroscopy (NIRS) have been shown to provide a quick, noninvasive easy-to-use tool to measure skeletal muscle oxygen consumption ([Formula: see text]). However, the data and results from NIRS devices are often misunderstood. Thus the primary purpose of this sourcebook update is to provide several experimental protocols students can utilize to improve their understanding of NIRS technology, learn how to analyze results from NIRS devices, and better understand how muscle contraction intensity and type (isometric, concentric, or eccentric) influence the oxygen cost of muscle contractions.NEW & NOTEWORTHY Compared to traditional methods, near-infrared spectroscopy (NIRS) provides a relatively cheap and easy-to-use noninvasive technique to measure skeletal muscle oxygen uptake following exercise. This laboratory not only enables students to learn about the basics of NIRS and muscle energetics but also addresses more complex questions regarding skeletal muscle physiology.
Collapse
Affiliation(s)
- Edward Z Pelka
- Exercise Science and Exercise Physiology Program, Kent State University, Kent, Ohio, United States
| | - B Ryan Davis
- Exercise Science and Exercise Physiology Program, Kent State University, Kent, Ohio, United States
| | - John McDaniel
- Exercise Science and Exercise Physiology Program, Kent State University, Kent, Ohio, United States
| |
Collapse
|
45
|
Coulson SZ, Lyons SA, Robertson CE, Fabello B, Dessureault LM, McClelland GB. Regulation of muscle pyruvate dehydrogenase activity and fuel use during exercise in high-altitude deer mice. J Exp Biol 2024; 227:jeb246890. [PMID: 39054898 PMCID: PMC11418174 DOI: 10.1242/jeb.246890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Adult, lab-reared, highland deer mice acclimate to hypoxia by increasing reliance on carbohydrates to fuel exercise. Yet neither the underlying mechanisms for this shift in fuel use nor the impact of lifetime hypoxia exposure experienced in high alpine conditions, are fully understood. Thus, we assessed the use of fuel during exercise in wild highland deer mice running in their native environment. We examined a key step in muscle carbohydrate oxidation - the regulation of pyruvate dehydrogenase (PDH) - during exercise at altitude in wild highlanders and in first generation (G1) lab-born and -raised highlanders acclimated to normoxia or hypoxia. PDH activity was also determined in the gastrocnemius of G1 highlanders using an in situ muscle preparation. We found that wild highlanders had a high reliance on carbohydrates while running in their native environment, consistent with data from hypoxia-acclimated G1 highlanders. PDH activity in the gastrocnemius was similar post exercise between G1 and wild highlanders. However, when the gastrocnemius was stimulated at a light work rate in situ, PDH activity was higher in hypoxia-acclimated G1 highlanders and was associated with lower intramuscular lactate levels. These findings were supported by lower PDH kinase 2 protein production in hypoxia-acclimated G1 mice. Our findings indicate that adult phenotypic plasticity in response to low oxygen is sufficient to increase carbohydrate reliance during exercise in highland deer mice. Additionally, variation in PDH regulation with hypoxia acclimation contributes to shifts in whole-animal patterns of fuel use and is likely to improve exercise performance via elevated energy yield per mole of O2. .
Collapse
Affiliation(s)
- Soren Z. Coulson
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4K1
| | - Sulayman A. Lyons
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4K1
| | - Cayleih E. Robertson
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4K1
| | - Benjamin Fabello
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4K1
| | - Lauren M. Dessureault
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4K1
| | - Grant B. McClelland
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4K1
| |
Collapse
|
46
|
Cázares-Preciado JA, López-Arredondo A, Cruz-Cardenas JA, Luévano-Martínez LA, García-Rivas G, Prado-Garcia H, Brunck MEG. Metabolic features of neutrophilic differentiation of HL-60 cells in hyperglycemic environments. BMJ Open Diabetes Res Care 2024; 12:e004181. [PMID: 39122366 PMCID: PMC11409339 DOI: 10.1136/bmjdrc-2024-004181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
INTRODUCTION Chronic hyperglycemia affects neutrophil functions, leading to reduced pathogen killing and increased morbidity. This impairment has been directly linked to increased glycemia, however, how this specifically affects neutrophils metabolism and their differentiation in the bone marrow is unclear and difficult to study. RESEARCH DESIGN AND METHODS We used high-resolution respirometry to investigate the metabolism of resting and activated donor neutrophils, and flow cytometry to measure surface CD15 and CD11b expression. We then used HL-60 cells differentiated towards neutrophil-like cells in standard media and investigated the effect of doubling glucose concentration on differentiation metabolism. We measured the oxygen consumption rate (OCR), and the enzymatic activity of carnitine palmitoyl transferase 1 (CPT1) and citrate synthase during neutrophil-like differentiation. We compared the surface phenotype, functions, and OCR of neutrophil-like cells differentiated under both glucose concentrations. RESULTS Donor neutrophils showed significant instability of CD11b and OCR after phorbol 12-myristate 13-acetate stimulation at 3 hours post-enrichment. During HL-60 neutrophil-like cell differentiation, there was a significant increase in surface CD15 and CD11b expression together with the loss of mitochondrial mass. Differentiated neutrophil-like cells also exhibited higher CD11b expression and were significantly more phagocytic. In higher glucose media, we measured a decrease in citrate synthase and CPT1 activities during neutrophil-like differentiation. CONCLUSIONS HL-60 neutrophil-like differentiation recapitulated known molecular and metabolic features of human neutrophil differentiation. Increased glucose concentrations correlated with features described in hyperglycemic donor neutrophils including increased CD11b and phagocytosis. We used this model to describe metabolic features of neutrophil-like cell differentiation in hyperglycemia and show for the first time the downregulation of CPT1 and citrate synthase activity, independently of mitochondrial mass.
Collapse
Affiliation(s)
| | | | | | - Luis Alberto Luévano-Martínez
- Escuela de Medicina y Ciencias de La Salud, Tecnologico de Monterrey, Monterrey, Nuevo Leon, Mexico
- The Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Mexico
| | - Gerardo García-Rivas
- Escuela de Medicina y Ciencias de La Salud, Tecnologico de Monterrey, Monterrey, Nuevo Leon, Mexico
- The Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Mexico
| | - Heriberto Prado-Garcia
- Laboratorio de Onco-Inmunobiología, Departamento de Enfermedades Crónico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico, Mexico
| | - Marion E G Brunck
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, Nuevo Leon, Mexico
- The Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Mexico
| |
Collapse
|
47
|
Sartori LF, Tsemberis E, Hernandez T, Luchette K, Zhang D, Farooqi S, Bush J, McCann JC, Balamuth F, Weiss SL. Distinct mitochondrial respiration profiles in pediatric patients with febrile illness versus sepsis. Pediatr Res 2024:10.1038/s41390-024-03420-z. [PMID: 39095577 DOI: 10.1038/s41390-024-03420-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/06/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVE Mitochondrial dysfunction, linked to sepsis-related organ failure, is unknown in febrile illness. METHODS Prospective study of children in an Emergency Department (ED) with febrile illness or without infection (ED controls); secondary analysis of ICU patients with sepsis or without infection (ICU controls). Mitochondrial oxygen consumption measured in peripheral blood mononuclear cells using respirometry, with primary outcome of spare respiratory capacity (SRC). Mitochondrial content measured as citrate synthase (CS: febrile illness and ED controls) and mitochondrial to nuclear DNA ratio (mtDNA:nDNA: all groups). RESULTS SRC was lower in febrile illness (6.7 ± 3.0 pmol/sec/106 cells) and sepsis (5.7 ± 4.7) than ED/PICU controls (8.5 ± 3.7; both p < 0.05), but not different between febrile illness and sepsis (p = 0.26). Low SRC was driven by increased basal respiration in febrile illness and decreased maximal uncoupled respiration in sepsis. Differences were no longer significant after adjustment for patient demographics. Febrile illness demonstrated lower CS activity than ED controls (p = 0.07) and lower mtDNA:nDNA than both ED/PICU controls and sepsis (both p < 0.05). CONCLUSION Mitochondrial SRC was reduced in both febrile illness and sepsis, but due to distinct mitochondrial profiles and impacted by demographics. Further work is needed to determine if mitochondrial profiles could differentiate febrile illness from early sepsis. IMPACT STATEMENT Mitochondrial dysfunction has been linked to organ failure in sepsis, but whether mitochondrial alterations are evident in febrile illness without sepsis is unknown. In our study, while mitochondrial spare respiratory capacity (SRC), an index of cellular bioenergetic reserve under stress, was reduced in children with both febrile illness and sepsis compared to children without infections, low SRC was driven by increased basal respiration in febrile illness compared with decreased maximal uncoupled respiration in sepsis. Additional research is needed to understand if distinct mitochondrial profiles could be used to differentiate febrile illness from early sepsis in children.
Collapse
Affiliation(s)
- Laura F Sartori
- Department of Emergency Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Elena Tsemberis
- Department of Emergency Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Tyne Hernandez
- Department of Emergency Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Katherine Luchette
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Donglan Zhang
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Jenny Bush
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - John C McCann
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Fran Balamuth
- Department of Emergency Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Scott L Weiss
- Nemours Children's Health, Wilmington, DE, USA
- Sidney Kimmel Medical College - Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
48
|
Parenteau F, Denis A, Roberts M, Comtois AS, Bergdahl A. A polyphenol-rich cranberry supplement improves muscle oxidative capacity in healthy adults. Appl Physiol Nutr Metab 2024; 49:1047-1054. [PMID: 38626462 DOI: 10.1139/apnm-2023-0633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Cranberries are rich in polyphenols, have a high antioxidant capacity, and may protect against exercise-induced free radical production. Mitochondria are known producers of free radical in skeletal muscle, and preventing overproduction of radicals may be a viable approach to improve muscle health. This study aimed to investigate the effect of a polyphenol-rich cranberry extract (CE) on muscle oxidative capacity and oxygenation metrics in healthy active adults. 17 participants (9 males and 8 females) were tested at: (i) baseline, (ii) 2 h following an acute CE dose (0.7 g/kg of body mass), and (iii) after 4 weeks of daily supplement consumption (0.3 g/kg of body mass). At each time point, muscle oxidative capacity was determined using near-infrared spectroscopy to measure the recovery kinetics of muscle oxygen consumption following a 15-20 s contraction of the vastus lateralis. Cranberry supplementation over 28 days significantly improved muscle oxidative capacity (k-constant, 2.8 ± 1.8 vs. 3.9 ± 2.2; p = 0.02). This was supported by a greater rate of oxygen depletion during a sustained cuff occlusion (-0.04 ± 0.02 vs. -0.07 ± 0.03; p = 0.02). Resting muscle oxygen consumption was not affected by cranberry consumption. Our results suggest that cranberry supplementation may play a role in improving mitochondrial health, which could lead to better muscle oxidative capacity in healthy active adult populations.
Collapse
Affiliation(s)
- Francis Parenteau
- Department of Health, Kinesiology and Applied Physiology, Concordia University, Montréal, QC, Canada
| | - Antoine Denis
- Department of Health, Kinesiology and Applied Physiology, Concordia University, Montréal, QC, Canada
| | - Mary Roberts
- Department of Health, Kinesiology and Applied Physiology, Concordia University, Montréal, QC, Canada
| | - Alain Steve Comtois
- Département des Sciences de l'activité physique, Université du Québec à Montréal (UQAM), Montréal, QC, Canada
| | - Andreas Bergdahl
- Department of Health, Kinesiology and Applied Physiology, Concordia University, Montréal, QC, Canada
| |
Collapse
|
49
|
Hamilton K, Kilding AE, Plews DJ, Mildenhall MJ, Waldron M, Charoensap T, Cox TH, Brick MJ, Leigh WB, Maunder E. Durability of the moderate-to-heavy-intensity transition is related to the effects of prolonged exercise on severe-intensity performance. Eur J Appl Physiol 2024; 124:2427-2438. [PMID: 38546844 PMCID: PMC11322397 DOI: 10.1007/s00421-024-05459-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/06/2024] [Indexed: 08/16/2024]
Abstract
PURPOSE Power output at the moderate-to-heavy-intensity transition decreases during prolonged exercise, and resilience to this has been termed 'durability'. The purpose of this study was to assess the relationship between durability and the effect of prolonged exercise on severe-intensity performance, and explore intramuscular correlates of durability. METHODS On separate days, 13 well-trained cyclists and triathletes (V̇O2peak, 57.3 ± 4.8 mL kg-1 min-1; training volume, 12 ± 2.1 h week-1) undertook an incremental test and 5-min time trial (TT) to determine power output at the first ventilatory threshold (VT1) and severe-intensity performance, with and without 150-min of prior moderate-intensity cycling. A single resting vastus lateralis microbiopsy was obtained. RESULTS Prolonged exercise reduced power output at VT1 (211 ± 40 vs. 198 ± 39 W, ∆ -13 ± 16 W, ∆ -6 ± 7%, P = 0.013) and 5-min TT performance (333 ± 75 vs. 302 ± 63 W, ∆ -31 ± 41 W, ∆ -9 ± 10%, P = 0.017). The reduction in 5-min TT performance was significantly associated with durability of VT1 (rs = 0.719, P = 0.007). Durability of VT1 was not related to vastus lateralis carnosine content, citrate synthase activity, or complex I activity (P > 0.05). CONCLUSION These data provide the first direct support that durability of the moderate-to-heavy-intensity transition is an important performance parameter, as more durable athletes exhibited smaller reductions in 5-min TT performance following prolonged exercise. We did not find relationships between durability and vastus lateralis carnosine content, citrate synthase activity, or complex I activity.
Collapse
Affiliation(s)
- Kate Hamilton
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Andrew E Kilding
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Daniel J Plews
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | | | - Mark Waldron
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| | - Thanchanok Charoensap
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Tobias H Cox
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Matthew J Brick
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
- Orthosports North Harbour, AUT Millennium, Auckland, New Zealand
| | - Warren B Leigh
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
- Orthosports North Harbour, AUT Millennium, Auckland, New Zealand
| | - Ed Maunder
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand.
| |
Collapse
|
50
|
Liu Y, Sun L, Li Y, Holmes C. Mesenchymal stromal/stem cell tissue source and in vitro expansion impact extracellular vesicle protein and miRNA compositions as well as angiogenic and immunomodulatory capacities. J Extracell Vesicles 2024; 13:e12472. [PMID: 39092563 PMCID: PMC11294870 DOI: 10.1002/jev2.12472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/14/2024] [Indexed: 08/04/2024] Open
Abstract
Recently, therapies utilizing extracellular vesicles (EVs) derived from mesenchymal stromal/stem cells (MSCs) have begun to show promise in clinical trials. However, EV therapeutic potential varies with MSC tissue source and in vitro expansion through passaging. To find the optimal MSC source for clinically translatable EV-derived therapies, this study aims to compare the angiogenic and immunomodulatory potentials and the protein and miRNA cargo compositions of EVs isolated from the two most common clinical sources of adult MSCs, bone marrow and adipose tissue, across different passage numbers. Primary bone marrow-derived MSCs (BMSCs) and adipose-derived MSCs (ASCs) were isolated from adult female Lewis rats and expanded in vitro to the indicated passage numbers (P2, P4, and P8). EVs were isolated from the culture medium of P2, P4, and P8 BMSCs and ASCs and characterized for EV size, number, surface markers, protein content, and morphology. EVs isolated from different tissue sources showed different EV yields per cell, EV sizes, and protein yield per EV. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of proteomics data and miRNA seq data identified key proteins and pathways associated with differences between BMSC-EVs and ASC-EVs, as well as differences due to passage number. In vitro tube formation assays employing human umbilical vein endothelial cells suggested that both tissue source and passage number had significant effects on the angiogenic capacity of EVs. With or without lipopolysaccharide (LPS) stimulation, EVs more significantly impacted expression of M2-macrophage genes (IL-10, Arg1, TGFβ) than M1-macrophage genes (IL-6, NOS2, TNFα). By correlating the proteomics analyses with the miRNA seq analysis and differences observed in our in vitro immunomodulatory, angiogenic, and proliferation assays, this study highlights the trade-offs that may be necessary in selecting the optimal MSC source for development of clinical EV therapies.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Chemical & Biomedical Engineering, Florida A&M University‐Florida State University College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
| | - Li Sun
- Department of Chemical & Biomedical Engineering, Florida A&M University‐Florida State University College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
- Department of Biomedical Sciences, College of MedicineFlorida State UniversityTallahasseeFloridaUSA
| | - Yan Li
- Department of Chemical & Biomedical Engineering, Florida A&M University‐Florida State University College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
| | - Christina Holmes
- Department of Chemical & Biomedical Engineering, Florida A&M University‐Florida State University College of EngineeringFlorida State UniversityTallahasseeFloridaUSA
| |
Collapse
|