1
|
Fischer SM, Maharaj A, Kang Y, Dillon KN, Martinez MA, Figueroa A. Endothelial and exercise vasodilation are reduced in postmenopausal females with obesity versus lean and overweight. Int J Obes (Lond) 2024; 48:1534-1541. [PMID: 38228876 DOI: 10.1038/s41366-024-01462-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024]
Abstract
BACKGROUND Obesity (OB) is highly prevalent in females after menopause, especially visceral adipose tissue (VAT) accumulation which contributes to endothelial dysfunction. The endothelium assists in regulating blood flow (BF) during exercise and is attenuated in females with OB. The purpose of this study was to examine upper and lower limb flow-mediated dilation (FMD) and BF regulation during graded low-intensity submaximal exercises in postmenopausal females with BMI in the lean (LN), overweight (OW) and OB categories. METHODS Participants were grouped by body mass index (BMI) into LN (BMI 18.5-24.9 kg/m2; n = 11), OW (BMI 25.0-29.9 kg/m2; n = 15), and OB (BMI 30.0-39.9 kg/m2; n = 13). FMD of the brachial (BA-FMD) and superficial femoral arteries (FA-FMD) were assessed. Subsequently, BF and vascular conductance (VC) in the upper (BA-BF and BA-VC) and lower limbs (FA-BF and FA-VC) were measured during separate 3-stage incremental rhythmic handgrip and plantarflexion exercises. RESULTS Significantly lower FA-FMD (P < 0.05) were seen in OB than LN and OW groups with no differences in BA-FMD. Increases in FA-BF and FA-VC were attenuated during the last stage of plantarflexion exercise at 30% of 1RM in OB (both P < 0.001) compared to LN and OW, while upper-body exercise vasodilation was unchanged. FA-BF and FA-VC during plantarflexion exercise were correlated to FA-FMD (FA-BF: r = 0.423, P = 0.007, FA-VC: r = 0.367, P = 0.021) and BMI (FA-BF: r = -0.386, P = 0.015, FA-VC: r = -0.456, P = 0.004). CONCLUSION Postmenopausal females with OB have reduced lower-limb endothelial and exercise vasodilator function during submaximal dynamic plantarflexion exercise compared to LN and OW. Our findings indicate that obesity may predict diminished leg endothelial function, BF and VC during exercise in postmenopausal females.
Collapse
Affiliation(s)
- Stephen M Fischer
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, 79409, USA
| | - Arun Maharaj
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, 79409, USA
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yejin Kang
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, 79409, USA
| | - Katherine N Dillon
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, 79409, USA
| | - Mauricio A Martinez
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, 79409, USA
| | - Arturo Figueroa
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
2
|
Mohammad M, Hartmann JP, Andersen AB, Hartmeyer HL, Iepsen UW, Berg RMG. Test-retest reliability of Doppler ultrasound-based leg blood flow assessments during exercise in patients with chronic obstructive pulmonary disease. Exp Physiol 2024. [PMID: 39223728 DOI: 10.1113/ep092100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
Doppler ultrasound may be used to assess leg blood flow (Q ̇ leg ${{\dot{Q}}_{{\mathrm{leg}}}}$ ), but the reliability of this method remains unexplored in patients with chronic obstructive pulmonary disease (COPD), where between-subject variability may be larger than healthy due to peripheral vascular changes. This study aimed to investigate the reliability of Doppler ultrasound in quantifyingQ ̇ leg ${{\dot{Q}}_{{\mathrm{leg}}}}$ during single-leg knee-extensor exercise (KEE) in COPD patients compared with those obtained from healthy matched controls. In this case-control study, 16 participants with COPD were matched based on sex and age with 16 healthy controls. All participants underwent measurement ofQ ̇ leg ${{\dot{Q}}_{{\mathrm{leg}}}}$ using Doppler ultrasound in a KEE set-up at various intensities on two separate visits. Confounding factors onQ ̇ leg ${{\dot{Q}}_{{\mathrm{leg}}}}$ were controlled for, and the ultrasound scans were consistently performed by the same sonographer. During exercise, smallest real difference (SRD) ranged from 367 mL to 583 mL in COPD and 438 mL to 667 mL in the control group. The coefficient of variation (CV) ranged from 7.9% to 14.3% in COPD and 9.4% to 10.4% in the control group. The intraclass correlation coefficient ranged from 0.75 to 0.92 in COPD and 0.67 to 0.84 in the control group. CV was lower in the control group during exercise at 0 W, but apart from that, reliability was not different between groups during exercise. Doppler ultrasound showed nearly equal reliability when evaluatingQ ̇ leg ${{\dot{Q}}_{{\mathrm{leg}}}}$ in COPD patients and healthy individuals with a CV below 15% during exercise for both groups. HIGHLIGHTS: What is the central question of this study? What is the between-day reliability of Doppler ultrasound when quantifying leg blood flow during single-leg knee-extensor exercise in COPD patients compared to healthy matched controls? What is the main finding and its importance? This study demonstrates a coefficient of variation ranging from 7.9 to 14.3% during single-leg knee-extensor exercise for between-day reliability when applying Doppler ultrasound to assess leg blood flow in patients with COPD. Furthermore, it offers insights into the peripheral circulatory constraints in COPD, as evidenced by diminished leg blood flow. This study is the first of its kind to evaluate the reliability of Doppler ultrasound in the assessment of the peripheral circulation during exercise in COPD.
Collapse
Affiliation(s)
- Milan Mohammad
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Jacob P Hartmann
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Amalie B Andersen
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Helene L Hartmeyer
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Ulrik W Iepsen
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Anesthesiology and Intensive Care, Copenhagen University Hospital, Hvidovre Hospital, Copenhagen, Denmark
| | - Ronan M G Berg
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| |
Collapse
|
3
|
Hearon CM. α-Adrenergic regulation of blood flow in HFpEF: too much and not enough. J Physiol 2024; 602:3241-3242. [PMID: 38923435 DOI: 10.1113/jp286912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Affiliation(s)
- Christopher M Hearon
- Institute for Exercise and Environmental Medicine, University of Texas Southwestern Medical Center & Texas Health, Presbyterian Hospital Dallas, Dallas, Texas, USA
- Department of Applied Clinical Research, University of Texas Southwestern School of Health Professions, Dallas, Texas, USA
| |
Collapse
|
4
|
Kang Y, Dillon KN, Martinez MA, Maharaj A, Fischer SM, Figueroa A. L-Citrulline Supplementation Improves Arterial Blood Flow and Muscle Oxygenation during Handgrip Exercise in Hypertensive Postmenopausal Women. Nutrients 2024; 16:1935. [PMID: 38931289 PMCID: PMC11206967 DOI: 10.3390/nu16121935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/07/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Endothelial dysfunction decreases exercise limb blood flow (BF) and muscle oxygenation. Acute L-Citrulline supplementation (CIT) improves muscle tissue oxygen saturation index (TSI) and deoxygenated hemoglobin (HHb) during exercise. Although CIT improves endothelial function (flow-mediated dilation [FMD]) in hypertensive women, the impact of CIT on exercise BF and muscle oxygenation (TSI) and extraction (HHb) are unknown. We examined the effects of CIT (10 g/day) and a placebo for 4 weeks on blood pressure (BP), arterial vasodilation (FMD, BF, and vascular conductance [VC]), and forearm muscle oxygenation (TSI and HHb) at rest and during exercise in 22 hypertensive postmenopausal women. Compared to the placebo, CIT significantly (p < 0.05) increased FMD (Δ-0.7 ± 0.6% vs. Δ1.6 ± 0.7%) and reduced aortic systolic BP (Δ3 ± 5 vs. Δ-4 ± 6 mmHg) at rest and improved exercise BF (Δ17 ± 12 vs. Δ48 ± 16 mL/min), VC (Δ-21 ± 9 vs. Δ41 ± 14 mL/mmHg/min), TSI (Δ-0.84 ± 0.58% vs. Δ1.61 ± 0.46%), and HHb (Δ1.03 ± 0.69 vs. Δ-2.76 ± 0.77 μM). Exercise BF and VC were positively correlated with improved FMD and TSI during exercise (all p < 0.05). CIT improved exercise artery vasodilation and muscle oxygenation via increased endothelial function in hypertensive postmenopausal women.
Collapse
Affiliation(s)
- Yejin Kang
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (Y.K.); (K.N.D.); (M.A.M.)
| | - Katherine N. Dillon
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (Y.K.); (K.N.D.); (M.A.M.)
| | - Mauricio A. Martinez
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (Y.K.); (K.N.D.); (M.A.M.)
| | - Arun Maharaj
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Stephen M. Fischer
- Department of Family and Community Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Arturo Figueroa
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (Y.K.); (K.N.D.); (M.A.M.)
| |
Collapse
|
5
|
Prodel E, Souza R, Divino B, Rocha HNM, Rocha NG, Nobrega ACL. Hyperaemia during dynamic handgrip exercise is preserved in healthy young subjects after recovery from COVID-19. Exp Physiol 2024; 109:841-846. [PMID: 38460126 PMCID: PMC11140172 DOI: 10.1113/ep091656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/28/2024] [Indexed: 03/11/2024]
Abstract
We sought to investigate possible impaired hyperaemia during dynamic handgrip exercise (HGE) in young healthy individuals who had recovered from COVID-19. We tested the vascular function in individuals recovered from COVID-19 using a nitric oxide donor (i.e., sodium nitroprusside; SNP), which could revert a possible impaired endothelial function during HGE. Further, we tested whether individuals who recovered from COVID-19 would present exaggerated brachial vascular resistance under an adrenergic agonist (i.e., phenylephrine; PHE) stimuli during HGE. Participants were distributed into two groups: healthy controls (Control; men: n = 6, 30 ± 3 years, 26 ± 1 kg/m2; and women: n = 5, 25 ± 1 years, 25 ± 1 kg/m2) and subjects recovered from COVID-19 (post-COVID; men: n = 6, 29 ± 3 years, 25 ± 1 kg/m2; and women: n = 10, 32 ± 4 years, 22 ± 1 kg/m2). Participants in the post-COVID group tested positive (RT-PCR) 12-14 weeks before the protocol. Heart rate (HR), brachial blood pressure (BP), brachial blood flow (BBF) and vascular conductance (BVC) at rest were not different between groups. The HGE increased HR (Control: Δ9 ± 0.4 bpm; and post-COVID: Δ11 ± 0.4 bpm) and BP (Control: Δ6 ± 1 mmHg; and post-COVID: Δ12 ± 0.6 mmHg) in both groups. Likewise, BBF (Control: Δ632 ± 38 ml/min; and post-COVID: Δ620 ± 27 ml/min) and BVC (Control: Δ6.6 ± 0.4 ml/min/mmHg; and post-COVID: Δ6.1 ± 0.3 ml/min/mmHg) increased during HGE. SNP did not change HGE-induced hyperaemia but did decrease BP, which induced a reflex-related increase in HR. PHE infusion also did not change the HGE-induced hyperaemia but raised BP and reduced HR. In conclusion, exercise-induced hyperaemia is preserved in healthy young subjects 12-14 weeks after recovery from COVID-19 infection.
Collapse
Affiliation(s)
- Eliza Prodel
- Laboratory of Exercise Science, Department of Physiology and PharmacologyFluminense Federal UniversityNiteróiBrazil
| | - Roberto Souza
- Laboratory of Exercise Science, Department of Physiology and PharmacologyFluminense Federal UniversityNiteróiBrazil
| | - Beatriz Divino
- Laboratory of Exercise Science, Department of Physiology and PharmacologyFluminense Federal UniversityNiteróiBrazil
| | - Helena N. M. Rocha
- Laboratory of Exercise Science, Department of Physiology and PharmacologyFluminense Federal UniversityNiteróiBrazil
- Laboratory of Integrative Cardiometabology, Department of Physiology and PharmacologyFluminense Federal UniversityNiteróiBrazil
| | - Natalia G. Rocha
- Laboratory of Exercise Science, Department of Physiology and PharmacologyFluminense Federal UniversityNiteróiBrazil
- Laboratory of Integrative Cardiometabology, Department of Physiology and PharmacologyFluminense Federal UniversityNiteróiBrazil
| | - Antonio C. L. Nobrega
- Laboratory of Exercise Science, Department of Physiology and PharmacologyFluminense Federal UniversityNiteróiBrazil
| |
Collapse
|
6
|
Hanson BE, Lee JF, Garten RS, O'Keefe ZB, Layec G, Ruple BA, Wray DW, Richardson RS, Trinity JD. Acute sympathetic activation blunts the hyperemic and vasodilatory response to passive leg movement. RESEARCH SQUARE 2024:rs.3.rs-4356062. [PMID: 38765959 PMCID: PMC11100891 DOI: 10.21203/rs.3.rs-4356062/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Heightened muscle sympathetic nerve activity (MSNA) contributes to impaired vasodilatory capacity and vascular dysfunction associated with aging and cardiovascular disease. The contribution of elevated MSNA to the vasodilatory response during passive leg movement (PLM) has not been adequately addressed. This study sought to test the hypothesis that elevated MSNA diminishes the vasodilatory response to PLM in healthy young males (n = 11, 25 ± 2 year). Post exercise circulatory occlusion (PECO) following 2 min of isometric handgrip (HG) exercise performed at 25% (ExPECO 25%) and 40% (ExPECO 40%) of maximum voluntary contraction was used to incrementally engage the metaboreceptors and augment MSNA. Control trials were performed without PECO (ExCON 25% and ExCON 40%) to account for changes due to HG exercise. PLM was performed 2 min after the cessation of exercise and central and peripheral hemodynamics were assessed. MSNA was directly recorded by microneurography in the peroneal nerve (n = 8). Measures of MSNA (i.e., burst incidences) increased during ExPECO 25% (+ 15 ± 5 burst/100 bpm) and ExPECO 40% (+ 22 ± 4 burst/100 bpm) and returned to pre-HG levels during ExCON trials. Vasodilation, assessed by the change in leg vascular conductance during PLM, was reduced by 16% and 44% during ExPECO 25% and ExPECO 40%, respectively. These findings indicate that elevated MSNA attenuates the vasodilatory response to PLM and that the magnitude of reduction in vasodilation during PLM is graded in relation to the degree of sympathoexcitation.
Collapse
|
7
|
Gollie JM, Ryan AS, Sen S, Patel SS, Kokkinos PF, Harris-Love MO, Scholten JD, Blackman MR. Exercise for patients with chronic kidney disease: from cells to systems to function. Am J Physiol Renal Physiol 2024; 326:F420-F437. [PMID: 38205546 PMCID: PMC11208028 DOI: 10.1152/ajprenal.00302.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Chronic kidney disease (CKD) is among the leading causes of death and disability, affecting an estimated 800 million adults globally. The underlying pathophysiology of CKD is complex creating challenges to its management. Primary risk factors for the development and progression of CKD include diabetes mellitus, hypertension, age, obesity, diet, inflammation, and physical inactivity. The high prevalence of diabetes and hypertension in patients with CKD increases the risk for secondary consequences such as cardiovascular disease and peripheral neuropathy. Moreover, the increased prevalence of obesity and chronic levels of systemic inflammation in CKD have downstream effects on critical cellular functions regulating homeostasis. The combination of these factors results in the deterioration of health and functional capacity in those living with CKD. Exercise offers protective benefits for the maintenance of health and function with age, even in the presence of CKD. Despite accumulating data supporting the implementation of exercise for the promotion of health and function in patients with CKD, a thorough description of the responses and adaptations to exercise at the cellular, system, and whole body levels is currently lacking. Therefore, the purpose of this review is to provide an up-to-date comprehensive review of the effects of exercise training on vascular endothelial progenitor cells at the cellular level; cardiovascular, musculoskeletal, and neural factors at the system level; and physical function, frailty, and fatigability at the whole body level in patients with CKD.
Collapse
Affiliation(s)
- Jared M Gollie
- Research and Development Service, Washington DC Veterans Affairs Medical Center, Washington, District of Columbia, United States
- Department of Health, Human Function, and Rehabilitation Sciences, The George Washington University, Washington, District of Columbia, United States
| | - Alice S Ryan
- Department of Medicine, University of Maryland, Baltimore, Maryland, United States
- Division of Geriatrics and Palliative Medicine, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, United States
| | - Sabyasachi Sen
- Department of Medicine, Washington DC Veterans Affairs, Medical Center, Washington, District of Columbia, United States
- Department of Medicine, The George Washington University, Washington, District of Columbia, United States
| | - Samir S Patel
- Research and Development Service, Washington DC Veterans Affairs Medical Center, Washington, District of Columbia, United States
- Department of Medicine, Washington DC Veterans Affairs, Medical Center, Washington, District of Columbia, United States
- Department of Medicine, The George Washington University, Washington, District of Columbia, United States
| | - Peter F Kokkinos
- Division of Cardiology, Washington DC Veterans Affairs Medical Center, Washington, District of Columbia, United States
- Department of Kinesiology and Health, Rutgers University, New Brunswick, New Jersey, United States
| | - Michael O Harris-Love
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Geriatric Research Education and Clinical Center, Eastern Colorado Veterans Affairs Health Care System, Denver, Colorado, United States
| | - Joel D Scholten
- Physical Medicine and Rehabilitation Service, Washington DC Veterans Affairs Medical Center, Washington, District of Columbia, United States
| | - Marc R Blackman
- Research and Development Service, Washington DC Veterans Affairs Medical Center, Washington, District of Columbia, United States
- Department of Medicine, Washington DC Veterans Affairs, Medical Center, Washington, District of Columbia, United States
- Department of Medicine, The George Washington University, Washington, District of Columbia, United States
- Department of Medicine, Georgetown University, Washington, District of Columbia, United States
- Department of Rehabilitation Medicine, Georgetown University, Washington, District of Columbia, United States
| |
Collapse
|
8
|
Bunsawat K, Skow RJ, Kaur J, Wray DW. Neural control of the circulation during exercise in heart failure with reduced and preserved ejection fraction. Am J Physiol Heart Circ Physiol 2023; 325:H998-H1011. [PMID: 37682236 PMCID: PMC10907034 DOI: 10.1152/ajpheart.00214.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/23/2023] [Accepted: 09/06/2023] [Indexed: 09/09/2023]
Abstract
Patients with heart failure with reduced (HFrEF) and preserved ejection fraction (HFpEF) exhibit severe exercise intolerance that may be due, in part, to inappropriate cardiovascular and hemodynamic adjustments to exercise. Several neural mechanisms and locally released vasoactive substances work in concert through complex interactions to ensure proper adjustments to meet the metabolic demands of the contracting skeletal muscle. Specifically, accumulating evidence suggests that disease-related alterations in neural mechanisms (e.g., central command, exercise pressor reflex, arterial baroreflex, and cardiopulmonary baroreflex) contribute to heightened sympathetic activation and impaired ability to attenuate sympathetic vasoconstrictor responsiveness that may contribute to reduced skeletal muscle blood flow and severe exercise intolerance in patients with HFrEF. In contrast, little is known regarding these important aspects of physiology in patients with HFpEF, though emerging data reveal heightened sympathetic activation and attenuated skeletal muscle blood flow during exercise in this patient population that may be attributable to dysregulated neural control of the circulation. The overall goal of this review is to provide a brief overview of the current understanding of disease-related alterations in the integrative neural cardiovascular responses to exercise in both HFrEF and HFpEF phenotypes, with a focus on sympathetic nervous system regulation during exercise.
Collapse
Affiliation(s)
- Kanokwan Bunsawat
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States
| | - Rachel J Skow
- Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas, United States
- Faculty of Nursing, University of Alberta, Edmonton, Alberta, Canada
| | - Jasdeep Kaur
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas, United States
| | - D Walter Wray
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
9
|
Teixeira AL, Gangat A, Millar PJ. A single high-fat Western meal modulates vascular responsiveness to sympathetic activation at rest and during exercise in humans: a randomized controlled trial. Am J Physiol Heart Circ Physiol 2023; 325:H529-H538. [PMID: 37477687 DOI: 10.1152/ajpheart.00283.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/03/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
A single high-fat Western meal transiently reduces endothelium-dependent vasodilation at rest, but the interaction with sympathetic vasoconstrictor activity during exercise remains unknown. Herein, we tested the hypothesis that a single high-fat Western meal would impair the ability of contracting skeletal muscle to offset vascular responsiveness to sympathetic activation during exercise, termed functional sympatholysis. In 18 (10 females/8 males) healthy young adults, forearm blood flow (Doppler ultrasound) and beat-to-beat arterial pressure (photoplethysmography) were measured during lower-body negative pressure (LBNP; -20 mmHg) applied at rest and simultaneously during low (15% maximum contraction) and moderate (30% maximum contraction)-intensity rhythmic handgrip exercise. The magnitude of sympatholysis was calculated as the difference of LBNP-induced changes in forearm vascular conductance (FVC) between handgrip and rest. Experiments were performed preprandial and 1 h, 2 h, and 3 h after a high- or low-fat meal. In the preprandial state, LBNP decreased resting FVC (Δ-54 ± 10%), and these responses were attenuated during low (Δ-17 ± 7%)- and moderate (Δ-8 ± 6%)-intensity handgrip exercise. Following a high-fat meal, LBNP induced attenuated decreases in resting FVC (3 h postprandial, Δ-47 ± 10%, P = 0.002 vs. preprandial) and blunted attenuation of FVC during low (3 h postprandial, Δ-23 ± 8%, P = 0.001 vs. preprandial)- and moderate (3 h postprandial, Δ-16 ± 6%, P < 0.001 vs. preprandial)-intensity handgrip exercise. The high-fat meal attenuated the magnitude of sympatholysis during low (preprandial, 38 ± 7 vs. 3 h postprandial, 23 ± 8%, P < 0.001)- and moderate (preprandial, 46 ± 11 vs. 3 h postprandial, 31 ± 10%, P < 0.001)-intensity handgrip exercise. The low-fat meal had no impact on these responses. In conclusion, a single high-fat Western meal modulates sympathetic vasoconstriction at rest and during low- and moderate-intensity handgrip exercise in young healthy adults.NEW & NOTEWORTHY We observed that a single high-fat Western meal, but not an isocaloric low-fat meal, attenuated the sympathetic vasoconstriction at rest and the ability of the active skeletal muscle to counteract the vascular responsiveness to sympathetic activation (i.e., functional sympatholysis) during low- and moderate-intensity rhythmic handgrip exercise in healthy young adults. Our findings highlight the potential deleterious vascular effect associated with the consumption of a Western diet.
Collapse
Affiliation(s)
- André L Teixeira
- Human Cardiovascular Physiology Laboratory, Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Ayesha Gangat
- Human Cardiovascular Physiology Laboratory, Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
- Department of Kinesiology, University of Guelph-Humber, Toronto, Ontario, Canada
| | - Philip J Millar
- Human Cardiovascular Physiology Laboratory, Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
10
|
Cuspidi C, Faggiano A, Gherbesi E, Sala C, Grassi G, Tadic M. Clinical and Prognostic Value of Exaggerated Blood Pressure Response to Exercise. Rev Cardiovasc Med 2023; 24:64. [PMID: 39077480 PMCID: PMC11263987 DOI: 10.31083/j.rcm2403064] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/14/2022] [Accepted: 12/30/2022] [Indexed: 07/31/2024] Open
Abstract
The hypertensive response to exercise testing, defined as exaggerated blood pressure response (EBPR), has been documented to be independently associated with unhealthy conditions, carrying an increased risk of future hypertension, cardiovascular (CV) morbidity and mortality. In treated hypertensives, EBPR is a marker of uncontrolled hypertension, a condition previously undetected by office blood pressure (BP) measurements at rest; EBPR may also detect masked hypertension, a phenotype characterized by normal BP values in the medical environment but elevated home or ambulatory BP monitoring (ABPM). The aim of the present review is to provide a comprehensive and up-dated information on the clinical importance of EBPR targeting the following issues: (I) definition and prevalence; (II) underlying mechanisms; (III) clinical correlates and association with subclinical organ damage; (IV) predictive value; (V) clinical decision making.
Collapse
Affiliation(s)
- Cesare Cuspidi
- Department of Medicine and Surgery, University of Milano-Bicocca, 20126 Milano, Italy
| | - Andrea Faggiano
- Department of Clinical Sciences and Community Health, University of Milano, 20122 Milano, Italy
- Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy
| | - Elisa Gherbesi
- Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy
| | - Carla Sala
- Department of Clinical Sciences and Community Health, University of Milano, 20122 Milano, Italy
- Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy
| | - Guido Grassi
- Department of Medicine and Surgery, University of Milano-Bicocca, 20126 Milano, Italy
| | - Marijana Tadic
- Department of Cardiology, University Hospital “Dr. Dragisa Misovic-Dedinje'', 11000 Belgrade, Serbia
| |
Collapse
|
11
|
Manabe K, D’Souza AW, Washio T, Takeda R, Hissen SL, Akins JD, Fu Q. Sympathetic and hemodynamic responses to exercise in heart failure with preserved ejection fraction. Front Cardiovasc Med 2023; 10:1148324. [PMID: 37139124 PMCID: PMC10150451 DOI: 10.3389/fcvm.2023.1148324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Excessive sympathetic activity during exercise causes heightened peripheral vasoconstriction, which can reduce oxygen delivery to active muscles, resulting in exercise intolerance. Although both patients suffering from heart failure with preserved and reduced ejection fraction (HFpEF and HFrEF, respectively) exhibit reduced exercise capacity, accumulating evidence suggests that the underlying pathophysiology may be different between these two conditions. Unlike HFrEF, which is characterized by cardiac dysfunction with lower peak oxygen uptake, exercise intolerance in HFpEF appears to be predominantly attributed to peripheral limitations involving inadequate vasoconstriction rather than cardiac limitations. However, the relationship between systemic hemodynamics and the sympathetic neural response during exercise in HFpEF is less clear. This mini review summarizes the current knowledge on the sympathetic (i.e., muscle sympathetic nerve activity, plasma norepinephrine concentration) and hemodynamic (i.e., blood pressure, limb blood flow) responses to dynamic and static exercise in HFpEF compared to HFrEF, as well as non-HF controls. We also discuss the potential of a relationship between sympathetic over-activation and vasoconstriction leading to exercise intolerance in HFpEF. The limited body of literature indicates that higher peripheral vascular resistance, perhaps secondary to excessive sympathetically mediated vasoconstrictor discharge compared to non-HF and HFrEF, drives exercise in HFpEF. Excessive vasoconstriction also may primarily account for over elevations in blood pressure and concomitant limitations in skeletal muscle blood flow during dynamic exercise, resulting in exercise intolerance. Conversely, during static exercise, HFpEF exhibit relatively normal sympathetic neural reactivity compared to non-HF, suggesting that other mechanisms beyond sympathetic vasoconstriction dictate exercise intolerance in HFpEF.
Collapse
Affiliation(s)
- Kazumasa Manabe
- Women’s Heart Health Laboratory, Institute for Exercise and Environmental Medicine at Texas Health Presbyterian Hospital, Dallas, TX, United States
- Cardiology Division, Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Andrew W. D’Souza
- Women’s Heart Health Laboratory, Institute for Exercise and Environmental Medicine at Texas Health Presbyterian Hospital, Dallas, TX, United States
- Cardiology Division, Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Neurovascular Research Laboratory, School of Kinesiology, Western University, London, ON, Canada
| | - Takuro Washio
- Women’s Heart Health Laboratory, Institute for Exercise and Environmental Medicine at Texas Health Presbyterian Hospital, Dallas, TX, United States
- Cardiology Division, Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Ryosuke Takeda
- Women’s Heart Health Laboratory, Institute for Exercise and Environmental Medicine at Texas Health Presbyterian Hospital, Dallas, TX, United States
- Cardiology Division, Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Sarah L. Hissen
- Women’s Heart Health Laboratory, Institute for Exercise and Environmental Medicine at Texas Health Presbyterian Hospital, Dallas, TX, United States
- Cardiology Division, Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - John D. Akins
- Women’s Heart Health Laboratory, Institute for Exercise and Environmental Medicine at Texas Health Presbyterian Hospital, Dallas, TX, United States
- Cardiology Division, Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Qi Fu
- Women’s Heart Health Laboratory, Institute for Exercise and Environmental Medicine at Texas Health Presbyterian Hospital, Dallas, TX, United States
- Cardiology Division, Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Correspondence: Qi Fu
| |
Collapse
|
12
|
Mori S, Kosaki K, Tagata R, Kon K, Yasuda R, Nishitani N, Ishizu T, Maeda S. Acute influences of tennis services on cardiac output and brachial hemodynamics in young male tennis players. J Sci Med Sport 2022; 25:973-978. [DOI: 10.1016/j.jsams.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022]
|
13
|
Nyberg M, Jones AM. Matching of O2 Utilization and O2 Delivery in Contracting Skeletal Muscle in Health, Aging, and Heart Failure. Front Physiol 2022; 13:898395. [PMID: 35774284 PMCID: PMC9237395 DOI: 10.3389/fphys.2022.898395] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle is one of the most dynamic metabolic organs as evidenced by increases in metabolic rate of >150-fold from rest to maximal contractile activity. Because of limited intracellular stores of ATP, activation of metabolic pathways is required to maintain the necessary rates of ATP re-synthesis during sustained contractions. During the very early phase, phosphocreatine hydrolysis and anaerobic glycolysis prevails but as activity extends beyond ∼1 min, oxidative phosphorylation becomes the major ATP-generating pathway. Oxidative metabolism of macronutrients is highly dependent on the cardiovascular system to deliver O2 to the contracting muscle fibres, which is ensured through a tight coupling between skeletal muscle O2 utilization and O2 delivery. However, to what extent O2 delivery is ideal in terms of enabling optimal metabolic and contractile function is context-dependent and determined by a complex interaction of several regulatory systems. The first part of the review focuses on local and systemic mechanisms involved in the regulation of O2 delivery and how integration of these influences the matching of skeletal muscle O2 demand and O2 delivery. In the second part, alterations in cardiovascular function and structure associated with aging and heart failure, and how these impact metabolic and contractile function, will be addressed. Where applicable, the potential of exercise training to offset/reverse age- and disease-related cardiovascular declines will be highlighted in the context of skeletal muscle metabolic function. The review focuses on human data but also covers animal observations.
Collapse
Affiliation(s)
- Michael Nyberg
- Vascular Biology, Global Drug Discovery, Novo Nordisk A/S, Maaloev, Denmark
- *Correspondence: Michael Nyberg,
| | - Andrew M. Jones
- Department of Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
14
|
Shannon OM, Clifford T, Seals DR, Craighead DH, Rossman MJ. Nitric oxide, aging and aerobic exercise: Sedentary individuals to Master's athletes. Nitric Oxide 2022; 125-126:31-39. [PMID: 35705144 DOI: 10.1016/j.niox.2022.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022]
Abstract
Aging is associated with a decline in physiological function and exercise performance. These effects are mediated, at least in part, by an age-related decrease in the bioavailability of nitric oxide (NO), a ubiquitous gasotransmitter and regulator of myriad physiological processes. The decrease in NO bioavailability with aging is especially apparent in sedentary individuals, whereas older, physically active individuals maintain higher levels of NO with advancing age. Strategies which enhance NO bioavailability (including nutritional supplementation) have been proposed as a potential means of reducing the age-related decrease in physiological function and enhancing exercise performance and may be of interest to a range of older individuals including those taking part in competitive sport. In this brief review we discuss the effects of aging on physiological function and endurance exercise performance, and the potential role of changes in NO bioavailability in these processes. We also provide a summary of current evidence for dietary supplementation with substrates for NO production - including inorganic nitrate and nitrite, l-arginine and l-citrulline - for improving exercise capacity/performance in older adults. Additionally, we discuss the (limited) evidence on the effects of (poly)phenols and other dietary antioxidants on NO bioavailability in older individuals. Finally, we provide suggestions for future research.
Collapse
Affiliation(s)
- Oliver M Shannon
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK.
| | - Tom Clifford
- School of Sport, Exercise and Health Science, Loughborough University, Loughborough, UK
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Daniel H Craighead
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Matthew J Rossman
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
15
|
Venturelli M, Rossman MJ, Ives SJ, Weavil JC, Amann M, Wray DW, Richardson RS. Passive leg movement-induced vasodilation and exercise-induced sympathetic vasoconstriction. Auton Neurosci 2022; 239:102969. [DOI: 10.1016/j.autneu.2022.102969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/16/2022] [Accepted: 02/28/2022] [Indexed: 10/18/2022]
|
16
|
Keller JL, Kennedy KG, Hill EC, Fleming SR, Colquhoun RJ, Schwarz NA. Handgrip exercise induces sex-specific mean arterial pressure and oxygenation responses but similar performance fatigability. Clin Physiol Funct Imaging 2022; 42:127-138. [PMID: 34979052 DOI: 10.1111/cpf.12739] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/30/2021] [Accepted: 12/20/2021] [Indexed: 01/19/2023]
Abstract
Women exhibit an attenuated exercise pressor reflex (EPR) when compared to men. The influence of sex-specific mechanisms related to the EPR and performance fatigability remain to be fully elucidated. The purpose was to determine the impact of oxygenation and metabolic efficiency on sex-specific performance fatigability and increases in mean arterial pressure (MAP) resulting from a fatiguing isometric handgrip (IHG). Twenty-four adults volunteered to perform an IHG at 25% at maximal voluntary isometric contractions (MVICs). Pre- and posttest MVICs were conducted to quantify performance fatigability. MAP was collected at 3 timepoints. A near-infrared spectroscopy device was attached to the forearm to derive the following signals: oxy[haem], deoxy[haem], total[haem], and diff[haem]. These values were normalized and examined across time in 5% segments of time-to-task-failure. Metabolic efficiency was defined as the ratio force:deoxy[haem]. During the IHG, there was a decline in oxy[haem] for the men (b = -0.075), whereas the women demonstrated an increase (b = 0.117). For the men, the diff[haem] tracked the mean oxy[haem] response, but there was no change for the women. The men exhibited greater declines in metabolic efficiency, yet there were no sex differences in PF (46.6 ± 9.7% vs. 45.5 ± 14.2%). For relative MAP, the men (24.5 ± 15.1%) exhibited a greater (p = .03) increase than the women (11.0 ± 17.6%). These results indicated the EPR was more prominent for the men, perhaps due to differences in mechanical stimuli and a lack of ability to maintain metabolic efficiency. However, these physiological differences did not induce a sex difference in performance fatigability.
Collapse
Affiliation(s)
- Joshua L Keller
- Department of Health, Kinesiology, and Sport, College of Education and Professional Studies, University of South Alabama, Mobile, Alabama, USA
| | - Katie G Kennedy
- Department of Health, Kinesiology, and Sport, College of Education and Professional Studies, University of South Alabama, Mobile, Alabama, USA
| | - Ethan C Hill
- Division of Kinesiology, School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, Florida, USA.,Florida Space Institute, University of Central Florida, Orlando, Florida, USA
| | - Sydnie R Fleming
- Department of Health, Kinesiology, and Sport, College of Education and Professional Studies, University of South Alabama, Mobile, Alabama, USA
| | - Ryan J Colquhoun
- Department of Health, Kinesiology, and Sport, College of Education and Professional Studies, University of South Alabama, Mobile, Alabama, USA
| | - Neil A Schwarz
- Department of Health, Kinesiology, and Sport, College of Education and Professional Studies, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
17
|
van der Horst J, Møller S, Kjeldsen SAS, Wojtaszewski JFP, Hellsten Y, Jepps TA. Functional sympatholysis in mouse skeletal muscle involves sarcoplasmic reticulum swelling in arterial smooth muscle cells. Physiol Rep 2021; 9:e15133. [PMID: 34851043 PMCID: PMC8634630 DOI: 10.14814/phy2.15133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 11/24/2022] Open
Abstract
The vasoconstrictive effect of sympathetic activity is attenuated in contracting skeletal muscle (functional sympatholysis), allowing increased blood supply to the working muscle but the underlying mechanisms are incompletely understood. The purpose of this study was to examine α-adrenergic receptor responsiveness in isolated artery segments from non-exercised and exercised mice, using wire myography. Isometric tension recordings performed on femoral artery segments from exercised mice showed decreased α-adrenergic receptor responsiveness compared to non-exercised mice (logEC50 -5.2 ± 0.04 M vs. -5.7 ± 0.08 M, respectively). In contrast, mesenteric artery segments from exercised mice displayed similar α-adrenergic receptor responses compared to non-exercised mice. Responses to the vasoconstrictor serotonin (5-HT) and vasodilator isoprenaline, were similar in femoral artery segments from non-exercised and exercised mice. To study sarcoplasmic reticulum (SR) function, we examined arterial contractions induced by caffeine, which depletes SR Ca2+ and thapsigargin, which inhibits SR Ca2+ -ATPase (SERCA) and SR Ca2+ uptake. Arterial contractions to both caffeine and thapsigargin were increased in femoral artery segment from exercised compared to non-exercised mice. Furthermore, 3D electron microscopy imaging of the arterial wall showed SR volume/length ratio increased 157% in smooth muscle cells of the femoral artery from the exercised mice, whereas there was no difference in SR volume/length ratio in mesenteric artery segments. These results show that in arteries surrounding exercising muscle, the α-adrenergic receptor constrictions are blunted, which can be attributed to swollen smooth muscle cell SR's, likely due to increased Ca2+ content that is possibly reducing free intracellular Ca2+ available for contraction. Overall, this study uncovers a previously unknown mechanism underlying functional sympatholysis.
Collapse
Affiliation(s)
- Jennifer van der Horst
- Department of Biomedical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Nutrition, Exercise and SportsThe August Krogh Section for Human PhysiologyUniversity of CopenhagenCopenhagenDenmark
| | - Sophie Møller
- Department of Nutrition, Exercise and SportsThe August Krogh Section for Human PhysiologyUniversity of CopenhagenCopenhagenDenmark
| | | | - Jørgen F. P. Wojtaszewski
- Department of Nutrition, Exercise and SportsThe August Krogh Section for Molecular PhysiologyUniversity of CopenhagenCopenhagenDenmark
| | - Ylva Hellsten
- Department of Nutrition, Exercise and SportsThe August Krogh Section for Human PhysiologyUniversity of CopenhagenCopenhagenDenmark
| | - Thomas A. Jepps
- Department of Biomedical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
18
|
Stewart JM, Pianosi PT. Postural orthostatic tachycardia syndrome: A respiratory disorder? Curr Res Physiol 2021; 4:1-6. [PMID: 34746821 PMCID: PMC8562237 DOI: 10.1016/j.crphys.2021.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 11/28/2022] Open
Abstract
Postural orthostatic tachycardia syndrome (POTS) is a disorder epitomized by the story of the blind men and the elephant. Patients may see primary care internists or pediatricians due to fatigue, be referred to neurologists for “spells”, to cardiologists for evaluation of pre-syncope or chest pain, to gastroenterologists for nausea or dyspepsia, and even pulmonologists for dyspnea. Adoption of a more systematic approach to their evaluation and better characterization of patients has led to greater understanding of comorbidities, hypotheses prompting mechanistic investigations, and pharmacologic trials. Recent work has implicated disordered sympathetic nervous system activation in response to central (thoracic) hypovolemia. It is this pathway that leads one zero in on a putative focal point from which many of the clinical manifestations can be explained – specifically the carotid body. Despite heterogeneity in etiopathogenesis of a POTS phenotype, we propose that aberrant activation and response of the carotid body represents one potential common pathway in evolution. To understand this postulate, one must jettison isolationist or reductionist ideas of chemoreceptor and baroreceptor functions of the carotid body or sinus, respectively, and consider their interaction and interdependence both locally and centrally where some of its efferents merge. Doing so enables one to connect the dots and appreciate origins of diverse manifestations of POTS, including dyspnea for which the concept of neuro-mechanical uncoupling is wanting, thereby expanding our construct of this symptom. This perspective expounds our premise that POTS has a prominent respiratory component. Dyspnea affects ~⅓ patients with postural orthostatic tachycardia syndrome (POTS). POTS is characterized by thoracic hypovolemia and compromised cephalad perfusion when upright. Carotid body and adjacent carotid sinus mediate chemo- and baro- reflexes, respectively. These are not independent and stimulation of either activates sympathetic discharge. We speculate that carotid body mediates hyperventilation and dyspnea in POTS.
Collapse
Affiliation(s)
- Julian M Stewart
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA.,Department of Physiology, New York Medical College, Valhalla, NY, USA
| | - Paolo T Pianosi
- Department of Pediatrics, Division of Pulmonary & Sleep Medicine, University of Minnesota, VCRC, 401 E River Parkway Rm 413, Minneapolis, UK
| |
Collapse
|
19
|
Hansen AB, Moralez G, Amin SB, Simspon LL, Hofstaetter F, Anholm JD, Gasho C, Stembridge M, Dawkins TG, Tymko MM, Ainslie PN, Villafuerte F, Romero SA, Hearon CM, Lawley JS. Global REACH 2018: the adaptive phenotype to life with chronic mountain sickness and polycythaemia. J Physiol 2021; 599:4021-4044. [PMID: 34245004 DOI: 10.1113/jp281730] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/18/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Humans suffering from polycythaemia undergo multiple circulatory adaptations including changes in blood rheology and structural and functional vascular adaptations to maintain normal blood pressure and vascular shear stresses, despite high blood viscosity. During exercise, several circulatory adaptations are observed, especially involving adrenergic and non-adrenergic mechanisms within non-active and active skeletal muscle to maintain exercise capacity, which is not observed in animal models. Despite profound circulatory stress, i.e. polycythaemia, several adaptations can occur to maintain exercise capacity, therefore making early identification of the disease difficult without overt symptomology. Pharmacological treatment of the background heightened sympathetic activity may impair the adaptive sympathetic response needed to match local oxygen delivery to active skeletal muscle oxygen demand and therefore inadvertently impair exercise capacity. ABSTRACT Excessive haematocrit and blood viscosity can increase blood pressure, cardiac work and reduce aerobic capacity. However, past clinical investigations have demonstrated that certain human high-altitude populations suffering from excessive erythrocytosis, Andeans with chronic mountain sickness, appear to have phenotypically adapted to life with polycythaemia, as their exercise capacity is comparable to healthy Andeans and even with sea-level inhabitants residing at high altitude. By studying this unique population, which has adapted through natural selection, this study aimed to describe how humans can adapt to life with polycythaemia. Experimental studies included Andeans with (n = 19) and without (n = 17) chronic mountain sickness, documenting exercise capacity and characterizing the transport of oxygen through blood rheology, including haemoglobin mass, blood and plasma volume and blood viscosity, cardiac output, blood pressure and changes in total and local vascular resistances through pharmacological dissection of α-adrenergic signalling pathways within non-active and active skeletal muscle. At rest, Andeans with chronic mountain sickness had a substantial plasma volume contraction, which alongside a higher red blood cell volume, caused an increase in blood viscosity yet similar total blood volume. Moreover, both morphological and functional alterations in the periphery normalized vascular shear stress and blood pressure despite high sympathetic nerve activity. During exercise, blood pressure, cardiac work and global oxygen delivery increased similar to healthy Andeans but were sustained by modifications in both non-active and active skeletal muscle vascular function. These findings highlight widespread physiological adaptations that can occur in response to polycythaemia, which allow the maintenance of exercise capacity.
Collapse
Affiliation(s)
- Alexander B Hansen
- Department of Sport Science, Division of Performance Physiology and Prevention, University of Innsbruck, Innsbruck, Austria
| | - Gilbert Moralez
- Department of Applied Clinical Research, University of Southwestern Medical Center, Dallas, Texas, USA
| | - Sachin B Amin
- Department of Sport Science, Division of Performance Physiology and Prevention, University of Innsbruck, Innsbruck, Austria
| | - Lydia L Simspon
- Department of Sport Science, Division of Performance Physiology and Prevention, University of Innsbruck, Innsbruck, Austria
| | - Florian Hofstaetter
- Department of Sport Science, Division of Performance Physiology and Prevention, University of Innsbruck, Innsbruck, Austria
| | - James D Anholm
- Department of Medicine, Division of Pulmonary and Critical Care, Loma Linda University, Loma Linda, California, USA
| | - Christopher Gasho
- Department of Medicine, Division of Pulmonary and Critical Care, Loma Linda University, Loma Linda, California, USA
| | - Mike Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Tony G Dawkins
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Michael M Tymko
- Physical Activity and Diabetes Laboratory, Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, Alberta, Canada.,Centre of Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Philip N Ainslie
- Centre of Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Francisco Villafuerte
- Laboratorio de Fisiología Comparada/Fisiología del Transporte de Oxígeno, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Steven A Romero
- University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Christopher M Hearon
- Department of Applied Clinical Research, University of Southwestern Medical Center, Dallas, Texas, USA.,Institute of Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, Dallas, Texas, USA
| | - Justin S Lawley
- Department of Sport Science, Division of Performance Physiology and Prevention, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
20
|
Gama G, Farinatti P, Rangel MVDS, Mira PADC, Laterza MC, Crisafulli A, Borges JP. Muscle metaboreflex adaptations to exercise training in health and disease. Eur J Appl Physiol 2021; 121:2943-2955. [PMID: 34189604 DOI: 10.1007/s00421-021-04756-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/19/2021] [Indexed: 12/11/2022]
Abstract
Abnormalities in the muscle metaboreflex concur to exercise intolerance and greater cardiovascular risk. Exercise training benefits neurocardiovascular function at rest and during exercise, but its role in favoring muscle metaboreflex in health and disease remains controversial. While some authors demonstrated that exercise training enhanced the sensitization of muscle metabolically afferents and improved neurocardiovascular responses to muscle metaboreflex activation, others reported unaltered responses. This narrative review aimed to: (a) highlight the current evidence on the effects of exercise training upon cardiovascular and autonomic responses to muscle metaboreflex activation; (b) analyze the role of training components and indicate potential mechanisms of metaboreflex adaptations; and (c) address key methodological features for future research. Though limited, accumulated evidence suggests that muscle metaboreflex adaptations depend on the individual clinical status, exercise modality, and training duration. In healthy populations, most trials negated the hypothesis of metaboreflex improvement due to chronic exercise, irrespective of the training duration. Favorable changes in patients with impaired metaboreflex, particularly chronic heart failure, mostly resulted from long-term interventions (> 16 weeks) including aerobic exercise of moderate to high intensity, performed in isolation or within multimodal training. Potential mechanisms of metaboreflex improvements include enhanced sensitivity of channels and receptors, greater antioxidant capacity, lower metabolite accumulation, increased functional sympatholysis, and muscle perfusion. Future research should investigate: (1) the dose-response relationship of training components within different exercise modalities to elicit improvements in individuals showing intact or impaired muscle metaboreflex; and (2) potential and specific underlying mechanisms of metaboreflex improvements in individuals with different medical conditions.
Collapse
Affiliation(s)
- Gabriel Gama
- Laboratory of Physical Activity and Health Promotion, Institute of Physical Education and Sports, University of Rio de Janeiro State, Rua São Francisco Xavier, 524, sala 8133F, Maracanã, Rio de Janeiro, RJ, CEP, 20550-013, Brazil
- Graduate Program in Exercise and Sports Sciences, University of Rio de Janeiro State, Rio de Janeiro, RJ, Brazil
| | - Paulo Farinatti
- Laboratory of Physical Activity and Health Promotion, Institute of Physical Education and Sports, University of Rio de Janeiro State, Rua São Francisco Xavier, 524, sala 8133F, Maracanã, Rio de Janeiro, RJ, CEP, 20550-013, Brazil
- Graduate Program in Exercise and Sports Sciences, University of Rio de Janeiro State, Rio de Janeiro, RJ, Brazil
- Graduate Program in Physical Activity Sciences, Salgado de Oliveira University, Niteroi, RJ, Brazil
| | - Marcus Vinicius Dos Santos Rangel
- Laboratory of Physical Activity and Health Promotion, Institute of Physical Education and Sports, University of Rio de Janeiro State, Rua São Francisco Xavier, 524, sala 8133F, Maracanã, Rio de Janeiro, RJ, CEP, 20550-013, Brazil
- Graduate Program in Exercise and Sports Sciences, University of Rio de Janeiro State, Rio de Janeiro, RJ, Brazil
| | - Pedro Augusto de Carvalho Mira
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niteroi, RJ, Brazil
- Cardiovascular Research Unit and Exercise Physiology - InCFEx, University Hospital and Faculty of Physical Education and Sports, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Mateus Camaroti Laterza
- Cardiovascular Research Unit and Exercise Physiology - InCFEx, University Hospital and Faculty of Physical Education and Sports, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Antonio Crisafulli
- Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Juliana Pereira Borges
- Laboratory of Physical Activity and Health Promotion, Institute of Physical Education and Sports, University of Rio de Janeiro State, Rua São Francisco Xavier, 524, sala 8133F, Maracanã, Rio de Janeiro, RJ, CEP, 20550-013, Brazil.
- Graduate Program in Exercise and Sports Sciences, University of Rio de Janeiro State, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
21
|
Terwoord JD, Racine ML, Hearon CM, Luckasen GJ, Dinenno FA. ATP and acetylcholine interact to modulate vascular tone and α 1-adrenergic vasoconstriction in humans. J Appl Physiol (1985) 2021; 131:566-574. [PMID: 34166116 DOI: 10.1152/japplphysiol.00205.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The vascular endothelium senses and integrates numerous inputs to regulate vascular tone. Recent evidence reveals complex signal processing within the endothelium, yet little is known about how endothelium-dependent stimuli interact to regulate blood flow. We tested the hypothesis that combined stimulation of the endothelium with adenosine triphosphate (ATP) and acetylcholine (ACh) elicits greater vasodilation and attenuates α1-adrenergic vasoconstriction compared with combination of ATP or ACh with the endothelium-independent dilator sodium nitroprusside (SNP). We assessed forearm vascular conductance (FVC) in young adults (6 women, 7 men) during local intra-arterial infusion of ATP, ACh, or SNP alone and in the following combinations: ATP + ACh, SNP + ACh, and ATP + SNP, wherein the second dilator was coinfused after attaining steady state with the first dilator. By design, each dilator evoked a similar response when infused separately (ΔFVC, ATP: 48 ± 4; ACh: 57 ± 6; SNP: 53 ± 6 mL·min-1·100 mmHg-1; P ≥ 0.62). Combined infusion of the endothelium-dependent dilators evoked greater vasodilation than combination of either dilator with SNP (ΔFVC from first dilator, ATP + ACh: 45 ± 9 vs. SNP + ACh: 18 ± 7 and ATP + SNP: 26 ± 4 mL·min-1·100 mmHg-1, P < 0.05). Phenylephrine was subsequently infused to evaluate α1-adrenergic vasoconstriction. Phenylephrine elicited less vasoconstriction during infusion of ATP or ACh versus SNP (ΔFVC, -25 ± 3 and -29 ± 4 vs. -48 ± 3%; P < 0.05). The vasoconstrictor response to phenylephrine was further diminished during combined infusion of ATP + ACh (-13 ± 3%; P < 0.05 vs. ATP or ACh alone) and was less than that observed when either dilator was combined with SNP (SNP + ACh: -26 ± 3%; ATP + SNP: -31 ± 4%; both P < 0.05 vs. ATP + ACh). We conclude that endothelium-dependent agonists interact to elicit vasodilation and limit α1-adrenergic vasoconstriction in humans.NEW & NOTEWORTHY The results of this study highlight the vascular endothelium as a critical site for integration of vasomotor signals in humans. To our knowledge, this is the first study to demonstrate that combined stimulation of the endothelium with ATP and ACh results in enhanced vasodilation compared with combination of either ATP or ACh with an endothelium-independent dilator. Furthermore, we show that ATP and ACh interact to modulate α1-adrenergic vasoconstriction in human skeletal muscle in vivo.
Collapse
Affiliation(s)
- Janée D Terwoord
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado
| | - Matthew L Racine
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado
| | - Christopher M Hearon
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado
| | - Gary J Luckasen
- Medical Center of the Rockies Foundation, University of Colorado Health, Loveland, Colorado
| | - Frank A Dinenno
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
22
|
Grotle AK, Kaur J, Stone AJ, Fadel PJ. Neurovascular Dysregulation During Exercise in Type 2 Diabetes. Front Physiol 2021; 12:628840. [PMID: 33927637 PMCID: PMC8076798 DOI: 10.3389/fphys.2021.628840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/05/2021] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence suggests that type 2 diabetes (T2D) may impair the ability to properly adjust the circulation during exercise with augmented blood pressure (BP) and an attenuated contracting skeletal muscle blood flow (BF) response being reported. This review provides a brief overview of the current understanding of these altered exercise responses in T2D and the potential underlying mechanisms, with an emphasis on the sympathetic nervous system and its regulation during exercise. The research presented support augmented sympathetic activation, heightened BP, reduced skeletal muscle BF, and impairment in the ability to attenuate sympathetically mediated vasoconstriction (i.e., functional sympatholysis) as potential drivers of neurovascular dysregulation during exercise in T2D. Furthermore, emerging evidence supporting a contribution of the exercise pressor reflex and central command is discussed along with proposed future directions for studies in this important area of research.
Collapse
Affiliation(s)
- Ann-Katrin Grotle
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States
| | - Jasdeep Kaur
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Audrey J Stone
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Paul J Fadel
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
23
|
Badrov MB, Mak S, Floras JS. Cardiovascular Autonomic Disturbances in Heart Failure With Preserved Ejection Fraction. Can J Cardiol 2020; 37:609-620. [PMID: 33310140 DOI: 10.1016/j.cjca.2020.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 02/09/2023] Open
Abstract
In heart failure with reduced ejection fraction (HFrEF), diminished tonic and reflex vagal heart rate modulation and exaggerated sympathetic outflow and neural norepinephrine release are evident from disease inception. Each of these disturbances of autonomic regulation has been independently associated with shortened survival, and β-adrenoceptor antagonism and therapeutic autonomic modulation by other means have been demonstrated, in clinical trials, to lessen symptoms and prolong survival. In contrast, data concerning the autonomic status of patients with heart failure with preserved ejection fraction (HFpEF) are comparatively sparse. Little is known concerning the prognostic consequences of autonomic dysregulation in such individuals, and therapies applied with success in HFrEF have in most trials failed to improve symptoms or survival of those with HFpEF. A recent HFpEF Expert Scientific Panel report emphasised that without a deeper understanding of the pathophysiology of HFpEF, establishing effective treatment will be challenging. One aspect of such pathology may be cardiovascular autonomic disequilibrium, often worsened by acute exercise or routine daily activity. This review aims to summarise existing knowledge concerning parasympathetic and sympathetic function of patients with HFpEF, consider potential mechanisms and specific consequences of autonomic disturbances that have been identified, and propose hypotheses for future investigation.
Collapse
Affiliation(s)
- Mark B Badrov
- Division of Cardiology, Department of Medicine, University Health Network and Sinai Health System, University of Toronto, Toronto, Ontario, Canada
| | - Susanna Mak
- Division of Cardiology, Department of Medicine, University Health Network and Sinai Health System, University of Toronto, Toronto, Ontario, Canada
| | - John S Floras
- Division of Cardiology, Department of Medicine, University Health Network and Sinai Health System, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
24
|
Cooper IR, Liu S, DeLorey DS. Effects of sex and exercise training on β-adrenoreceptor-mediated opposition of evoked sympathetic vasoconstriction in resting and contracting muscle of rats. J Appl Physiol (1985) 2020; 130:114-123. [PMID: 33090912 DOI: 10.1152/japplphysiol.00726.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study investigated the hypothesis that β-adrenoreceptor-mediated inhibition of sympathetic vasoconstriction would be enhanced in female compared with male rats, and that endurance exercise training would augment β-adrenoreceptor-mediated inhibition of sympathetic vasoconstriction in male and female rats. Sprague-Dawley rats were randomized into sedentary (male: n = 7; female: n = 8) and exercise-trained (male: n = 9; female: n = 9) groups. Following 4 wk of exercise training or being sedentary, rats were anesthetized and surgically instrumented for stimulation of the lumbar sympathetic chain, muscle contraction and measurement of arterial blood pressure and femoral artery blood flow (FBF). Femoral vascular conductance (FVC) was calculated as FBF/mean arterial pressure. The percentage change of FVC in response to sympathetic stimulation delivered at 2 and 5 Hz was measured at rest and during contraction of the triceps surae muscles before and after β-adrenoreceptor blockade (propranolol: 0.075 mg·kg-1 iv). We found that, at rest, β-adrenoreceptor blockade decreased (main effect of drug, 2 Hz: P < 0.001; 5 Hz: P < 0.001) sympathetic vasoconstriction. During contraction, sympathetic vasoconstrictor responsiveness was lower (main effect of sex, 2 Hz: P = 0.001; 5 Hz: P = 0.023) in female compared with male rats, and sympatholysis was enhanced (main effect of sex, 2 Hz: P = 0.001; 5 Hz: P < 0.001) in female rats. β-adrenoreceptor blockade decreased (main effect of drug, 2 Hz: P = 0.049; 5 Hz: P < 0.001) evoked sympathetic vasoconstriction in contracting muscle. The present study demonstrated that β-adrenoreceptors do not blunt sympathetic vasoconstriction in resting or contracting skeletal muscle of male or female rats. Sympatholysis was enhanced in female rats; however, this was not attributable to β-adrenoreceptor-mediated blunting of sympathetic vasoconstriction.NEW & NOTEWORTHY β-adrenoreceptors do not inhibit sympathetic vasoconstriction in resting or contracting muscle of male or female rats, regardless of training status. Sympatholysis was enhanced in female, compared to male rats; however, β-adrenoreceptors were not responsible for the enhanced sympatholysis. These findings indicate that β-adrenoreceptors do not contribute to the regulation of sympathetic vasoconstriction in resting and contracting skeletal muscle and suggest that β-adrenoreceptors do not underlie sex differences in the neural control of the circulation.
Collapse
Affiliation(s)
- Ian R Cooper
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Sixue Liu
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Darren S DeLorey
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
25
|
Bock JM, Hughes WE, Ueda K, Feider AJ, Hanada S, Kruse NT, Iwamoto E, Casey DP. Greater α1-adrenergic-mediated vasoconstriction in contracting skeletal muscle of patients with type 2 diabetes. Am J Physiol Heart Circ Physiol 2020; 319:H797-H807. [DOI: 10.1152/ajpheart.00532.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Findings presented in this article are the first to show patients with type 2 diabetes mellitus have blunted hyperemic and vasodilatory responses to dynamic handgrip exercise. Moreover, we illustrate greater α1-adrenergic-mediated vasoconstriction may contribute to our initial observations. Collectively, these data suggest patients with type 2 diabetes may have impaired functional sympatholysis, which can contribute to their reduced exercise capacity.
Collapse
Affiliation(s)
- Joshua M. Bock
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - William E. Hughes
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Kenichi Ueda
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Andrew J. Feider
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Satoshi Hanada
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Nicholas T. Kruse
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Erika Iwamoto
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa
- School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Darren P. Casey
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
26
|
Hansen AB, Moralez G, Romero SA, Gasho C, Tymko MM, Ainslie PN, Hofstätter F, Rainer SL, Lawley JS, Hearon CM. Mechanisms of sympathetic restraint in human skeletal muscle during exercise: role of α-adrenergic and nonadrenergic mechanisms. Am J Physiol Heart Circ Physiol 2020; 319:H192-H202. [PMID: 32502375 DOI: 10.1152/ajpheart.00208.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sympathetic vasoconstriction is mediated by α-adrenergic receptors under resting conditions. During exercise, increased sympathetic nerve activity (SNA) is directed to inactive and active skeletal muscle; however, it is unclear what mechanism(s) are responsible for vasoconstriction during large muscle mass exercise in humans. The aim of this study was to determine the contribution of α-adrenergic receptors to sympathetic restraint of inactive skeletal muscle and active skeletal muscle during cycle exercise in healthy humans. In ten male participants (18-35 yr), mean arterial pressure (intra-arterial catheter) and forearm vascular resistance (FVR) and conductance (FVC) were assessed during cycle exercise (60% total peak workload) alone and during combined cycle exercise + handgrip exercise (HGE) before and after intra-arterial blockade of α- and β-adrenoreceptors via phentolamine and propranolol, respectively. Cycle exercise caused vasoconstriction in the inactive forearm that was attenuated ~80% with adrenoreceptor blockade (%ΔFVR, +81.7 ± 84.6 vs. +9.7 ± 30.7%; P = 0.05). When HGE was performed during cycle exercise, the vasodilatory response to HGE was restrained by ~40% (ΔFVC HGE, +139.3 ± 67.0 vs. cycle exercise: +81.9 ± 66.3 ml·min-1·100 mmHg-1; P = 0.03); however, the restraint of active skeletal muscle blood flow was not due to α-adrenergic signaling. These findings highlight that α-adrenergic receptors are the primary, but not the exclusive mechanism by which sympathetic vasoconstriction occurs in inactive and active skeletal muscle during exercise. Metabolic activity or higher sympathetic firing frequencies may alter the contribution of α-adrenergic receptors to sympathetic vasoconstriction. Finally, nonadrenergic vasoconstrictor mechanisms may be important for understanding the regulation of blood flow during exercise.NEW & NOTEWORTHY Sympathetic restraint of vascular conductance to inactive skeletal muscle is critical to maintain blood pressure during moderate- to high-intensity whole body exercise. This investigation shows that cycle exercise-induced restraint of inactive skeletal muscle vascular conductance occurs primarily because of activation of α-adrenergic receptors. Furthermore, exercise-induced vasoconstriction restrains the subsequent vasodilatory response to hand-grip exercise; however, the restraint of active skeletal muscle vasodilation was in part due to nonadrenergic mechanisms. We conclude that α-adrenergic receptors are the primary but not exclusive mechanism by which sympathetic vasoconstriction restrains blood flow in humans during whole body exercise and that metabolic activity modulates the contribution of α-adrenergic receptors.
Collapse
Affiliation(s)
- Alexander B Hansen
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Gilbert Moralez
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Steven A Romero
- University of North Texas Health Science Center, Fort Worth, Texas
| | - Christopher Gasho
- Division of Pulmonary and Critical Care, Department of Medicine, University of Loma Lida, Loma Lida, California
| | - Michael M Tymko
- Centre of Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada.,Physical Activity and Diabetes Laboratory, Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Philip N Ainslie
- Centre of Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - Florian Hofstätter
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Simon L Rainer
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Justin S Lawley
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Christopher M Hearon
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, Dallas, Texas.,University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
27
|
Hearon CM, Richards JC, Racine ML, Luckasen GJ, Larson DG, Dinenno FA. Augmentation of endothelium-dependent vasodilatory signalling improves functional sympatholysis in contracting muscle of older adults. J Physiol 2020; 598:2323-2336. [PMID: 32306393 DOI: 10.1113/jp279462] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/14/2020] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The ability of contracting skeletal muscle to attenuate sympathetic vasoconstriction (functional sympatholysis) is critical for maintaining blood flow during exercise-mediated sympathoexcitation. Functional sympatholysis and endothelial function are impaired with ageing, resulting in compromised blood flow and oxygen delivery to contracting skeletal muscle during exercise. In the present study, intra-arterial infusion of ACh or ATP to augment endothelium-dependent signalling during exercise attenuated α1 -adrenergic vasoconstriction in the contracting muscle of older adults. The vascular signalling mechanisms capable of functional sympatholysis are preserved in healthy ageing, and thus the age-related impairment in functional sympatholysis probably results from the loss of a functional signal (e.g. plasma [ATP]) as opposed to an intrinsic endothelial dysfunction. ABSTRACT The ability of contracting skeletal muscle to attenuate sympathetic α-adrenergic vasoconstriction ('functional sympatholysis') is impaired with age. In young adults, increasing endothelium-dependent vasodilatory signalling during mild exercise augments sympatholysis. In the present study, we tested the hypothesis that increasing endothelium-dependent signalling during exercise in older adults can improve sympatholysis. In 16 older individuals (Protocol 1, n = 8; Protocol 2, n = 8), we measured forearm blood flow (Doppler ultrasound) and calculated changes in vascular conductance (FVC) to local intra-arterial infusion of phenylephrine (PE; α1 -agonist) during (i) infusion of an endothelium-dependent vasodilator alone (Protocol 1: ACh or Protocol 2: low dose ATP); (ii) mild handgrip exercise (5% maximum voluntary contraction; MVC); (iii) moderate handgrip exercise (15% MVC); and (iv) mild or moderate handgrip exercise + infusion of ACh or ATP to augment endothelium-dependent signalling. PE caused robust vasoconstriction in resting skeletal muscle during control vasodilator infusions (ΔFVC: ACh: -31 ± 3 and ATP: -30 ± 4%). PE-mediated vasoconstriction was not attenuated by mild or moderate intensity exercise (ΔFVC: 5% MVC: -30 ± 9; 15% MVC: -33 ± 8%; P > 0.05 vs. control ACh and ATP), indicative of impaired sympatholysis, and ACh or ATP infusion during mild exercise did not impact this response. However, augmentation of endothelium-dependent signalling via infusion of ACh or ATP during moderate intensity exercise attenuated PE-mediated vasoconstriction (ΔFVC: -13 ± 1 and -19 ± 5%, respectively; P < 0.05 vs. all conditions). Our findings demonstrate that, given a sufficient stimulus, endothelium-dependent sympatholysis remains intact in older adults. Strategies aimed at activating such pathways represent a viable approach for improving sympatholysis and thus tissue blood flow and oxygen delivery in older adults.
Collapse
Affiliation(s)
- Christopher M Hearon
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Jennifer C Richards
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Mathew L Racine
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Gary J Luckasen
- Medical Center of the Rockies Foundation, University of Colorado Health System, Loveland, CO, USA
| | - Dennis G Larson
- Medical Center of the Rockies Foundation, University of Colorado Health System, Loveland, CO, USA
| | - Frank A Dinenno
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA.,Center for Cardiovascular Research, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
28
|
Ives SJ, Layec G, Hart CR, Trinity JD, Gifford JR, Garten RS, Witman MAH, Sorensen JR, Richardson RS. Passive leg movement in chronic obstructive pulmonary disease: evidence of locomotor muscle vascular dysfunction. J Appl Physiol (1985) 2020; 128:1402-1411. [PMID: 32324478 DOI: 10.1152/japplphysiol.00568.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD), characterized by pulmonary dysfunction, is now also recognized to be associated with free radical-mediated vascular dysfunction. However, as previous investigations have utilized the brachial artery flow-mediated dilation technique, whether such vascular dysfunction exists in the locomotor muscle of patients with COPD remains unclear. Therefore, in patients with COPD (n = 13, 66 ± 6 yr) and healthy age- and sex-matched control subjects (n = 12, 68 ± 6 yr), second-by-second measurements of leg blood flow (LBF) (ultrasound Doppler), mean arterial pressure (MAP) (Finapres), and leg vascular conductance (LVC) were recorded before and during both 2 min of continuous upright seated continuous-movement passive leg movement (PLM) and a single-movement PLM (sPLM). In response to PLM, both peak change in LBF (COPD 321 ± 54, Control 470 ± 55 ∆mL/min) and LVC (COPD 3.0 ± 0.5, Control 5.4 ± 0.5 ∆mL·min-1·mmHg-1) were significantly attenuated in patients with COPD compared with control subjects (P < 0.05). This attenuation in the patients with COPD was also evident in response to sPLM, with peak change in LBF tending to be lower (COPD 142 ± 26, Control 169 ± 14 ∆mL/min) and LVC being significantly lower (P < 0.05) in the patients than the control subjects (COPD 1.6 ± 0.4, Control 2.5 ± 0.3 ∆mL·min-1·mmHg-1). Therefore, utilizing both PLM and sPLM, this study provides evidence of locomotor muscle vascular dysfunction in patients with COPD, perhaps due to redox imbalance and reduced nitric oxide bioavailability, which is in agreement with an increased cardiovascular disease risk in this population. This locomotor muscle vascular dysfunction, in combination with the clearly dysfunctional lungs, may contribute to the exercise intolerance associated with COPD.NEW & NOTEWORTHY Utilizing both the single and continuous passive leg movement (PLM) models, which induce nitric oxide (NO)-dependent hyperemia, this study provides evidence of vascular dysfunction in the locomotor muscle of patients with chronic obstructive pulmonary disease (COPD), independent of central hemodynamics. This impaired hyperemia may be the result of an oxidant-mediated attenuation in NO bioavailability. In addition to clearly dysfunctional lungs, vascular dysfunction in locomotor muscle may contribute to the exercise intolerance associated with COPD and increased cardiovascular disease risk.
Collapse
Affiliation(s)
- Stephen J Ives
- Geriatric Research, Education, and Clinical Center, George E. Whalen Department of Veterans Affairs Medical Center, Salt Lake City, Utah.,Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Health and Human Physiological Sciences Department, Skidmore College, Saratoga Springs, New York
| | - Gwenael Layec
- Geriatric Research, Education, and Clinical Center, George E. Whalen Department of Veterans Affairs Medical Center, Salt Lake City, Utah.,Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Corey R Hart
- Geriatric Research, Education, and Clinical Center, George E. Whalen Department of Veterans Affairs Medical Center, Salt Lake City, Utah.,Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Joel D Trinity
- Geriatric Research, Education, and Clinical Center, George E. Whalen Department of Veterans Affairs Medical Center, Salt Lake City, Utah.,Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Jayson R Gifford
- Geriatric Research, Education, and Clinical Center, George E. Whalen Department of Veterans Affairs Medical Center, Salt Lake City, Utah.,Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Department of Exercise Sciences, Brigham Young University, Provo, Utah
| | - Ryan S Garten
- Geriatric Research, Education, and Clinical Center, George E. Whalen Department of Veterans Affairs Medical Center, Salt Lake City, Utah.,Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Melissa A H Witman
- Geriatric Research, Education, and Clinical Center, George E. Whalen Department of Veterans Affairs Medical Center, Salt Lake City, Utah.,Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Department of Kinesiology and Applied Physiology, University of Delaware, Wilmington, Delaware
| | - Jacob R Sorensen
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| | - Russell S Richardson
- Geriatric Research, Education, and Clinical Center, George E. Whalen Department of Veterans Affairs Medical Center, Salt Lake City, Utah.,Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
29
|
Hanson BE, Proffit M, Gifford JR. Vascular function is related to blood flow during high-intensity, but not low-intensity, knee extension exercise. J Appl Physiol (1985) 2020; 128:698-708. [DOI: 10.1152/japplphysiol.00671.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
While vascular function, assessed as the ability of the vasculature to dilate in response to a stimulus, is related to cardiovascular health, its relationship to exercise hyperemia is unclear. This study sought to determine if blood flow during submaximal and maximal exercise is related to vascular function. Nineteen healthy adults completed multiple assessments of vascular function specific to the leg, including passive leg movement (PLM), rapid onset vasodilation (ROV), reactive hyperemia (RH), and flow-mediated dilation (FMD). On a separate day, exercise blood flow (Doppler ultrasound) was assessed in the same leg during various intensities of single-leg, knee-extension (KE) exercise. Vascular function, determined by PLM, ROV, and RH, was related to exercise blood flow at high intensities, including maximum work rate (WRmax) ( r = 0.58–0.77, P < 0.001), but not low intensities, like ~21% WRmax ( r = 0.12–0.34, P = 0.12–0.62). Relationships between multiple indices of vascular function and peak exercise blood flow persisted when controlling for quadriceps mass and exercise work rate ( P < 0.05), indicating vascular function is independently related to the blood flow response to intense exercise. When divided into two groups based upon the magnitude of the PLM response, subjects with a lower PLM response exhibited lower exercise flow at several absolute work rates, as well as lower peak flow ( P < 0.05). In conclusion, leg flow during dynamic exercise is independently correlated with multiple different indices of microvascular function. Thus microvascular function appears to modulate the hyperemic response to high-intensity, but not low-intensity, exercise. NEW & NOTEWORTHY While substantial evidence indicates that individuals with lower vascular function are at greater risk for cardiovascular disease, with many redundant vasodilator pathways present during exercise, it has been unclear if low vascular function actually impacts blood flow during exercise. This study provides evidence that vascular function, assessed by multiple noninvasive methods, is related to the blood flow response to high-intensity leg exercise in healthy young adults. Importantly, healthy young adults with lower levels of vascular function, particularly microvascular function, exhibit lower blood flow during high-intensity, and maximal knee extension exercise. Thus it appears that in addition to increasing one’s risk of cardiovascular disease, lower vascular function is also related to a blunted blood flow response during high-intensity exercise.
Collapse
Affiliation(s)
- Brady E. Hanson
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| | - Meagan Proffit
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| | - Jayson R. Gifford
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
- Program of Gerontology, Brigham Young University, Provo, Utah
| |
Collapse
|
30
|
Limberg JK, Casey DP, Trinity JD, Nicholson WT, Wray DW, Tschakovsky ME, Green DJ, Hellsten Y, Fadel PJ, Joyner MJ, Padilla J. Assessment of resistance vessel function in human skeletal muscle: guidelines for experimental design, Doppler ultrasound, and pharmacology. Am J Physiol Heart Circ Physiol 2019; 318:H301-H325. [PMID: 31886718 DOI: 10.1152/ajpheart.00649.2019] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The introduction of duplex Doppler ultrasound almost half a century ago signified a revolutionary advance in the ability to assess limb blood flow in humans. It is now widely used to assess blood flow under a variety of experimental conditions to study skeletal muscle resistance vessel function. Despite its pervasive adoption, there is substantial variability between studies in relation to experimental protocols, procedures for data analysis, and interpretation of findings. This guideline results from a collegial discussion among physiologists and pharmacologists, with the goal of providing general as well as specific recommendations regarding the conduct of human studies involving Doppler ultrasound-based measures of resistance vessel function in skeletal muscle. Indeed, the focus is on methods used to assess resistance vessel function and not upstream conduit artery function (i.e., macrovasculature), which has been expertly reviewed elsewhere. In particular, we address topics related to experimental design, data collection, and signal processing as well as review common procedures used to assess resistance vessel function, including postocclusive reactive hyperemia, passive limb movement, acute single limb exercise, and pharmacological interventions.
Collapse
Affiliation(s)
- Jacqueline K Limberg
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Darren P Casey
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,François M. Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Fraternal Order of Eagles Diabetes Research, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Joel D Trinity
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | | | - D Walter Wray
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Michael E Tschakovsky
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Daniel J Green
- School of Human Sciences (Exercise and Sport Science), University of Western Australia, Perth, Western Australia, Australia
| | - Ylva Hellsten
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Paul J Fadel
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| | | | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
31
|
Caldwell JT, Sutterfield SL, Post HK, Lovoy GM, Banister HR, Turpin VRG, Colburn TD, Hammond SS, Copp SW, Ade CJ. Impact of high sodium intake on blood pressure and functional sympatholysis during rhythmic handgrip exercise. Appl Physiol Nutr Metab 2019; 45:613-620. [PMID: 31725319 DOI: 10.1139/apnm-2019-0445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High dietary sodium intake is a risk factor for arterial hypertension; given that the ability to overcome sympathetically mediated vasoconstriction (functional sympatholysis) is attenuated in individuals with hypertension, we investigated the cardiovascular responses to high salt (HS) intake in healthy humans. We hypothesized that a HS intake of 15 g/day for 7 days would attenuate functional sympatholysis and augment the blood pressure response to handgrip exercise (HGE). Thirteen participants (6 males, 7 females) underwent 2 individual days of testing. Beat-by-beat blood pressure and heart rate were recorded throughout the trial on the non-exercising limb. Forearm blood flow was derived from ultrasonography on the brachial artery of the exercising limb. Participants then underwent a flow-mediated dilation (FMD) test. Next, a submaximal HGE was performed for 7 min with lower body negative pressure initiated during minutes 5-7. A single spot urine sample revealed a significant increase in sodium excretion during the HS conditions (p < 0.01). FMD was reduced during the HS condition. Mean arterial pressure was significantly higher during HS intake. No alteration to functional sympatholysis was found between conditions (p > 0.05). In summary, HS intake increases blood pressure without impacting functional sympatholysis or blood pressure responsiveness during HGE. These findings indicate that brachial artery dysfunction precedes an inefficient functional sympatholysis. Novelty Functional sympatholysis was not impacted by 1 week of high sodium intake. High sodium intake augmented the rate pressure product during handgrip exercise in healthy humans.
Collapse
Affiliation(s)
- Jacob T Caldwell
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA.,Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA
| | - Shelbi L Sutterfield
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA.,Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA
| | - Hunter K Post
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA.,Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA
| | - Garrett M Lovoy
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA.,Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA
| | - Heather R Banister
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA.,Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA
| | - Vanessa-Rose G Turpin
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA.,Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA
| | - Trenton D Colburn
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA.,Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA
| | - Stephen S Hammond
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA.,Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA
| | - Steven W Copp
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA.,Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA
| | - Carl J Ade
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA.,Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
32
|
Cooper IR, Just TP, DeLorey DS. β-Adrenoreceptors do not oppose sympathetic vasoconstriction in resting and contracting skeletal muscle of male rats. Appl Physiol Nutr Metab 2019; 44:1230-1236. [DOI: 10.1139/apnm-2019-0130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sympathetic nervous system (SNS) vasoconstriction is primarily achieved through the binding of norepinephrine (NE) to α-adrenoreceptors. However, NE may also bind to β-adrenoreceptors and cause vasodilation that may oppose/blunt SNS-mediated vasoconstriction. Therefore, this study investigated the hypothesis that β-adrenoreceptor–mediated vasodilation opposes evoked vasoconstriction in resting and contracting skeletal muscle. Male (n = 9) Sprague–Dawley rats were anesthetized and surgically instrumented for stimulation of the lumbar sympathetic chain and measurement of arterial blood pressure and femoral artery blood flow. The percentage change of femoral vascular conductance in response to sympathetic chain stimulation delivered at 2 and 5 Hz was determined at rest and during triceps surae skeletal muscle contraction before (control) and after β-adrenoreceptor blockade (propranolol; 0.075 mg·kg−1, intravenously). β-Adrenoreceptor blockade did not alter (P > 0.05) baseline hemodynamics or the hyperemic response to exercise. At the 2 Hz stimulation frequency, sympathetic vasoconstriction was similar (P > 0.05) in control and β-blockade conditions in resting (control, −34% ± 6%; β-blockade, −33% ± 8%) and contracting (control, −16% ± 6%; β-blockade, −14% ± 7%) muscle. At the 5 Hz stimulation frequency, sympathetic vasoconstrictor responsiveness was reduced (main effect of drug, P < 0.05) following β-blockade (rest: control, −52% ± 7%; β-blockade, −51% ± 9%; contraction: control, −32% ± 11%; β-blockade, −29% ± 13%). Novelty These data indicate that β-adrenoreceptor blockade did not augment sympathetic vasoconstriction at rest or during exercise. The study demonstrates that β-adrenoreceptors do not oppose evoked sympathetic vasoconstriction in resting or contracting skeletal muscle or contribute to functional sympatholysis.
Collapse
Affiliation(s)
- Ian R. Cooper
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB T6G 2H9, Canada
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB T6G 2H9, Canada
| | - Timothy P. Just
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB T6G 2H9, Canada
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB T6G 2H9, Canada
| | - Darren S. DeLorey
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB T6G 2H9, Canada
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB T6G 2H9, Canada
| |
Collapse
|
33
|
Gliemann L, Vestergaard Hansen C, Rytter N, Hellsten Y. Regulation of skeletal muscle blood flow during exercise. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Mishra RC, Rahman MM, Davis MJ, Wulff H, Hill MA, Braun AP. Alpha 1 -adrenergic stimulation selectively enhances endothelium-mediated vasodilation in rat cremaster arteries. Physiol Rep 2019; 6:e13703. [PMID: 29756401 PMCID: PMC5949301 DOI: 10.14814/phy2.13703] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/19/2018] [Accepted: 04/16/2018] [Indexed: 11/24/2022] Open
Abstract
We have systematically investigated how vascular smooth muscle α1‐adrenoceptor activation impacts endothelium‐mediated vasodilation in isolated, myogenically active, rat cremaster muscle 1A arteries. Cannulated cremaster arteries were pressurized intraluminally to 70 mmHg to induce myogenic tone, and exposed to vasoactive agents via bath superfusion at 34°C. Smooth muscle membrane potential was measured via sharp microelectrode recordings in pressurized, myogenic arteries. The α1‐adrenergic agonist phenylephrine (25–100 nmol/L) produced further constriction of myogenic arteries, but did not alter the vasorelaxant responses to acetylcholine (0.3 μmol/L), SKA‐31 (an activator of endothelial Ca2+‐dependent K+ channels) (3 μmol/L) or sodium nitroprusside (10 μmol/L). Exposure to 0.25–1 μmol/L phenylephrine or 1 μmol/L norepinephrine generated more robust constrictions, and also enhanced the vasodilations evoked by acetylcholine and SKA‐31, but not by sodium nitroprusside. In contrast, the thromboxane receptor agonist U46619 (250 nmol/L) dampened responses to all three vasodilators. Phenylephrine exposure depolarized myogenic arteries, and mimicking this effect with 4‐aminopyridine (1 mmol/L) was sufficient to augment the SKA‐31‐evoked vasodilation. Inhibition of L‐type Ca2+ channels by 1 μmol/L nifedipine decreased myogenic tone, phenylephrine‐induced constriction and prevented α1‐adrenergic enhancement of endothelium‐evoked vasodilation; these latter deficits were overcome by exposure to 3 and 10 μmol/L phenylephrine. Mechanistically, augmentation of ACh‐evoked dilation by phenylephrine was dampened by eNOS inhibition and abolished by blockade of endothelial KCa channels. Collectively, these data suggest that increasing α1‐adrenoceptor activation beyond a threshold level augments endothelium‐evoked vasodilation, likely by triggering transcellular signaling between smooth muscle and the endothelium. Physiologically, this negative feedback process may serve as a “brake” to limit the extent of vasoconstriction in the skeletal microcirculation evoked by the elevated sympathetic tone.
Collapse
Affiliation(s)
- Ramesh C Mishra
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mohammad M Rahman
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Michael J Davis
- Dalton Cardiovascular Research Institute and Dept. of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Heike Wulff
- Department of Pharmacology, University of California Davis, Davis, California
| | - Michael A Hill
- Dalton Cardiovascular Research Institute and Dept. of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Andrew P Braun
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
35
|
Hearon CM, Dinenno FA. Escape, lysis, and feedback: endothelial modulation of sympathetic vasoconstriction. Curr Opin Pharmacol 2019; 45:81-86. [PMID: 31170683 DOI: 10.1016/j.coph.2019.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/15/2019] [Accepted: 04/01/2019] [Indexed: 12/21/2022]
Abstract
The sympathetic nervous system exerts a vasoconstrictor influence over peripheral vascular beds that is counter-regulated by local vascular signaling mechanisms (i.e. sympathetic escape, sympatholysis, and myoendothelial feedback). The endothelium has emerged as a primary site for the regulation of sympathetic vasoconstriction through highly specialized cellular connections called myoendothelial projections (MEPs) that facilitate electrical coupling of endothelial and vascular smooth muscle cells. Endothelial derived hyperpolarization (EDH) via activation of IKCa channels is an important component of MEP-mediated feedback regulation of sympathetic vasoconstriction in animal models. Recent pharmacological data highlight the unique ability of EDH signaling to attenuate sympathetic vasoconstriction in humans.
Collapse
Affiliation(s)
- Christopher M Hearon
- Institute for Exercise and Environmental Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Frank A Dinenno
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, USA; Center for Cardiovascular Research, Colorado State University Fort Collins, CO 80523, USA.
| |
Collapse
|
36
|
Bunsawat K, Grigoriadis G, Schroeder EC, Rosenberg AJ, Rader MM, Fadel PJ, Clifford PS, Fernhall B, Baynard T. Preserved ability to blunt sympathetically-mediated vasoconstriction in exercising skeletal muscle of young obese humans. Physiol Rep 2019; 7:e14068. [PMID: 31033212 PMCID: PMC6487469 DOI: 10.14814/phy2.14068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 03/29/2019] [Indexed: 01/22/2023] Open
Abstract
Sympathetic vasoconstriction is attenuated in exercising muscles to assist in matching of blood flow with metabolic demand. This "functional sympatholysis" may be impaired in young obese individuals due to greater sympathetic activation and/or reduced local vasodilatory capacity of both small and large arteries, but this remains poorly understood. We tested the hypothesis that functional sympatholysis is impaired in obese individuals compared with normal-weight counterparts. In 36 obese and normal-weight young healthy adults (n = 18/group), we measured forearm blood flow and calculated forearm vascular conductance (FVC) responses to reflex increases in sympathetic nerve activity induced by lower body negative pressure (LBNP) at rest and during rhythmic handgrip exercise at 15% and 30% of the maximal voluntary contraction (MVC). FVC was normalized to lean forearm mass. In normal-weight individuals, LBNP evoked a decrease in FVC (-16.1 ± 5.7%) in the resting forearm, and the reduction in FVC (15%MVC: -8.1 ± 3.3%; 30%MVC: -1.0 ± 4.0%) was blunted during exercise in an intensity-dependent manner (P < 0.05). Similarly, in obese individuals, LBNP evoked a comparable decrease in FVC (-10.9 ± 5.7%) in the resting forearm, with the reduction in FVC (15%MVC: -9.7 ± 3.3%; 30%MVC: -0.3 ± 4.0%) also blunted during exercise in an intensity-dependent manner (P < 0.05). The magnitude of sympatholysis was similar between groups (P > 0.05) and was intensity-dependent (P < 0.05). Our findings suggest that functional sympatholysis is not impaired in young obese individuals without overt cardiovascular diseases.
Collapse
Affiliation(s)
- Kanokwan Bunsawat
- Integrative Physiology LaboratoryDepartment of Kinesiology and NutritionCollege of Applied Health SciencesUniversity of Illinois at ChicagoChicagoIllinois
| | - Georgios Grigoriadis
- Integrative Physiology LaboratoryDepartment of Kinesiology and NutritionCollege of Applied Health SciencesUniversity of Illinois at ChicagoChicagoIllinois
| | - Elizabeth C. Schroeder
- Integrative Physiology LaboratoryDepartment of Kinesiology and NutritionCollege of Applied Health SciencesUniversity of Illinois at ChicagoChicagoIllinois
| | - Alexander J. Rosenberg
- Integrative Physiology LaboratoryDepartment of Kinesiology and NutritionCollege of Applied Health SciencesUniversity of Illinois at ChicagoChicagoIllinois
| | - Melissa M. Rader
- Integrative Physiology LaboratoryDepartment of Kinesiology and NutritionCollege of Applied Health SciencesUniversity of Illinois at ChicagoChicagoIllinois
| | - Paul J. Fadel
- Department of KinesiologyCollege of Nursing and Health InnovationUniversity of Texas at ArlingtonArlingtonTexas
| | - Philip S. Clifford
- Integrative Physiology LaboratoryDepartment of Kinesiology and NutritionCollege of Applied Health SciencesUniversity of Illinois at ChicagoChicagoIllinois
| | - Bo Fernhall
- Integrative Physiology LaboratoryDepartment of Kinesiology and NutritionCollege of Applied Health SciencesUniversity of Illinois at ChicagoChicagoIllinois
| | - Tracy Baynard
- Integrative Physiology LaboratoryDepartment of Kinesiology and NutritionCollege of Applied Health SciencesUniversity of Illinois at ChicagoChicagoIllinois
| |
Collapse
|
37
|
Kiviniemi AM, Kenttä TV, Lepojärvi S, Perkiömäki JS, Piira OP, Ukkola O, Huikuri HV, Junttila MJ, Tulppo MP. Recovery of rate-pressure product and cardiac mortality in coronary artery disease patients with type 2 diabetes. Diabetes Res Clin Pract 2019; 150:150-157. [PMID: 30872066 DOI: 10.1016/j.diabres.2019.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/05/2019] [Indexed: 01/09/2023]
Abstract
AIMS To investigate prognostic significance of post-exercise recovery of rate-pressure product (RPP) in patients with stable coronary artery disease (CAD) and type 2 diabetes (T2D). METHODS Patients with angiographically documented CAD and T2D (n = 697) underwent symptom-limited bicycle exercise test. Exercise capacity (EC), heart rate, blood pressure and RPP responses to peak exercise and recovery (2' and 5' after cessation of exercise) were analyzed. Cardiac death was the primary and sudden cardiac death (SCD) secondary endpoint. RESULTS During a median follow-up of 76 months, 49 cardiac deaths (7.0%) and 28 SCDs (4.0%) were observed. The recovery of RPP at 5' was the strongest univariate predictor of cardiac death (hazard ratio [HR]: 2.55 per SD decrease, 95%CI: 1.82-3.58, p < 0.001) and SCD (HR: 2.34, 95%CI: 1.51-3.62, p < 0.001). In multivariate analysis, it remained significantly associated to cardiac death and SCD without (HR: 1.66, 95%CI: 1.14-2.41, p < 0.01 and HR: 1.75, 95%CI: 1.08-2.85, p < 0.05, respectively) and with additional adjustment for EC and peak RPP (HR: 1.45, 95%CI: 1.09-1.92, p < 0.05 and HR: 1.52, 95%CI: 1.01-2.27, p < 0.05, respectively). CONCLUSIONS The recovery of RPP after exercise is a potent predictor of cardiac death in patients with CAD and T2D. It provides significant prognostic information beyond EC and peak RPP.
Collapse
Affiliation(s)
- Antti M Kiviniemi
- Research Unit of Internal Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.
| | - Tuomas V Kenttä
- Research Unit of Internal Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Samuli Lepojärvi
- Research Unit of Internal Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Juha S Perkiömäki
- Research Unit of Internal Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Olli-Pekka Piira
- Research Unit of Internal Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Olavi Ukkola
- Research Unit of Internal Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Heikki V Huikuri
- Research Unit of Internal Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - M Juhani Junttila
- Research Unit of Internal Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Mikko P Tulppo
- Research Unit of Internal Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| |
Collapse
|
38
|
Groen MB, Knudsen TA, Finsen SH, Pedersen BK, Hellsten Y, Mortensen SP. Reduced skeletal-muscle perfusion and impaired ATP release during hypoxia and exercise in individuals with type 2 diabetes. Diabetologia 2019; 62:485-493. [PMID: 30607464 DOI: 10.1007/s00125-018-4790-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022]
Abstract
AIMS/HYPOTHESIS Plasma ATP is a potent vasodilator and is thought to play a role in the local regulation of blood flow. Type 2 diabetes is associated with reduced tissue perfusion. We aimed to examine whether individuals with type 2 diabetes have reduced plasma ATP concentrations compared with healthy control participants (case-control design). METHODS We measured femoral arterial and venous plasma ATP levels with the intravascular microdialysis technique during normoxia, hypoxia and one-legged knee-extensor exercise (10 W and 30 W) in nine participants with type 2 diabetes and eight control participants. In addition, we infused acetylcholine (ACh), sodium nitroprusside (SNP) and ATP into the femoral artery to assess vascular function and ATP signalling. RESULTS Individuals with type 2 diabetes had a lower leg blood flow (LBF; 2.9 ± 0.1 l/min) compared with the control participants (3.2 ± 0.1 l/min) during exercise (p < 0.05), in parallel with lower venous plasma ATP concentration (205 ± 35 vs 431 ± 72 nmol/l; p < 0.05). During systemic hypoxia, LBF increased from 0.35 ± 0.04 to 0.54 ± 0.06 l/min in control individuals, whereas it did not increase (0.25 ± 0.04 vs 0.31 ± 0.03 l/min) in the those with type 2 diabetes and was lower than in the control individuals (p < 0.05). Hypoxia increased venous plasma ATP levels in both groups (p < 0.05), but the increase was higher in control individuals (90 ± 26 nmol/l) compared to those with type 2 diabetes (18 ± 5 nmol/l). LBF and vascular conductance were lower during ATP (0.15 and 0.4 μmol min-1 [kg leg mass]-1) and ACh (100 μg min-1 [kg leg mass]-1) infusion in individuals with type 2 diabetes compared with the control participants (p < 0.05), whereas there was no difference during SNP infusion. CONCLUSIONS/INTERPRETATION These findings demonstrate that individuals with type 2 diabetes have lower plasma ATP concentrations during exercise and hypoxia compared with control individuals, and this occurs in parallel with lower blood flow. Moreover, individuals with type 2 diabetes have a reduced vasodilatory response to infused ATP. These impairments in the ATP system are both likely to contribute to the reduced tissue perfusion associated with type 2 diabetes. TRIAL REGISTRATION ClinicalTrials.gov NCT02001766.
Collapse
Affiliation(s)
- Martin B Groen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Winslowparken 21 3, 5000, Odense, Denmark
| | - Trine A Knudsen
- Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Stine H Finsen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Winslowparken 21 3, 5000, Odense, Denmark
| | - Bente K Pedersen
- Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Ylva Hellsten
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Stefan P Mortensen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Winslowparken 21 3, 5000, Odense, Denmark.
- Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
39
|
Sprick JD, Downey RM, Morison DL, Fonkoue IT, Li Y, DaCosta D, Rapista D, Park J. Functional sympatholysis is impaired in end-stage renal disease. Am J Physiol Regul Integr Comp Physiol 2019; 316:R504-R511. [PMID: 30726117 DOI: 10.1152/ajpregu.00380.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Patients with end-stage renal disease (ESRD) have decreased exercise capacity and exercise intolerance that contribute to cardiovascular risk. One potential mechanism underlying exercise intolerance in ESRD is impaired ability to oppose sympathetically mediated vasoconstriction within exercising skeletal muscle (i.e., functional sympatholysis, FS). We hypothesized that ESRD patients have impaired FS compared with healthy (CON) and hypertensive (HTN) controls and that impaired FS is related to circulating levels of the uremic toxin asymmetric dimethyl arginine (ADMA), an endogenous nitric oxide synthase inhibitor. Near-infrared spectroscopy-derived oxygen tissue saturation index (TSI) of the forearm muscle was measured continuously in 33 participants (9 CON, 14 HTN, 10 ESRD) at rest and during low-dose (-20 mmHg) lower body negative pressure (LBNP), moderate rhythmic handgrip exercise, and LBNP with concomitant handgrip exercise (LBNP+handgrip). Resting muscle TSI was lower in ESRD than in CON and HTN groups (CON = 67.8 ± 1.9%, HTN = 67.2 ± 1.1%, ESRD = 62.7 ± 1.5%, P = 0.03). Whereas CON and HTN groups had an attenuation in sympathetically mediated reduction in TSI during LBNP + handgrip compared with LBNP alone (P ≤ 0.05), this response was not present in ESRD (P = 0.71), suggesting impaired FS. There was no difference in plasma [ADMA] between groups (CON = 0.47 ± 0.05 µmol/l, HTN = 0.42 ± 0.06 µmol/l, ESRD = 0.63 ± 0.14 µmol/l, P = 0.106) and no correlation between plasma [ADMA] and resting muscle TSI (P = 0.84) or FS (P = 0.75). Collectively, these findings suggest that ESRD patients have lower muscle perfusion at rest and impaired FS but that these derangements are not related to circulating [ADMA].
Collapse
Affiliation(s)
- Justin D Sprick
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine , Atlanta, Georgia.,Department of Veterans Affairs Health Care System, Decatur, Georgia
| | - Ryan M Downey
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine , Atlanta, Georgia.,Department of Veterans Affairs Health Care System, Decatur, Georgia
| | - Doree Lynn Morison
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine , Atlanta, Georgia.,Department of Veterans Affairs Health Care System, Decatur, Georgia
| | - Ida T Fonkoue
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine , Atlanta, Georgia.,Department of Veterans Affairs Health Care System, Decatur, Georgia
| | - Yunxiao Li
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University , Atlanta, Georgia
| | - Dana DaCosta
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine , Atlanta, Georgia.,Department of Veterans Affairs Health Care System, Decatur, Georgia
| | - Derick Rapista
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine , Atlanta, Georgia.,Department of Veterans Affairs Health Care System, Decatur, Georgia
| | - Jeanie Park
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine , Atlanta, Georgia.,Department of Veterans Affairs Health Care System, Decatur, Georgia
| |
Collapse
|
40
|
Caldwell JT, Sutterfield SL, Post HK, Craig JC, Baumfalk DR, Copp SW, Ade CJ. Impact of Acute Dietary Nitrate Supplementation during Exercise in Hypertensive Women. Med Sci Sports Exerc 2018; 51:1014-1021. [PMID: 30531488 DOI: 10.1249/mss.0000000000001857] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION the aim of the current investigation was to examine if dietary nitrate supplementation would improve vascular control in hypertensive postmenopausal women (PMW). We tested the hypotheses that acute dietary nitrate supplementation would 1) significantly decrease arterial blood pressure (BP) at rest and during exercise, 2) increase limb blood flow during steady-state (SS) exercise, and 3) improve functional sympatholysis during SS exercise. METHODS Ten hypertensive PMW underwent a randomized, double-blind, placebo-controlled trial with a nitrate-rich (NR) or nitrate-poor (NP) supplement. Beat-by-beat BP and heart rate were recorded throughout the trial on the nonexercising limb. Forearm blood flow was measured via ultrasonography on the brachial artery of the exercising limb. All patients performed a resting cold pressor test (CPT) (2 min) and then 7 min of submaximal handgrip exercise with a CPT applied during minutes 5-7. RESULTS SS systolic (NR, 170 ± 7; NP, 171 ± 37 mm Hg), diastolic (NR, 89 ± 2; NP, 92 ± 2 mm Hg), and mean arterial (NR, 121 ± 4; NP, 123 ± 2 mm Hg) pressures were not different between NP and NR treatment conditions (P > 0.05). During SS exercise, forearm blood flow (NR, 189 ± 8; NP, 218 ± 8 mL·min; P = 0.03) in the NR treatment was significantly lower compared with NP. When the CPT was applied during minutes 6-7 of exercise, forearm vascular conductance was reduced by 15% in the NR condition, but only 7% in the NR condition. CONCLUSIONS In summary, an acute NR supplement improved functional sympatholysis by ~50% versus an NP placebo condition. Improvements in functional sympatholysis may have important implications regarding exercise tolerance in hypertensive PMW.
Collapse
Affiliation(s)
- Jacob T Caldwell
- Department of Kinesiology, Kansas State University, Manhattan, KS
| | | | | | | | | | | | | |
Collapse
|
41
|
Plasma Nucleotide Dynamics during Exercise and Recovery in Highly Trained Athletes and Recreationally Active Individuals. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4081802. [PMID: 30402475 PMCID: PMC6198572 DOI: 10.1155/2018/4081802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/14/2018] [Accepted: 09/16/2018] [Indexed: 01/04/2023]
Abstract
Circulating plasma ATP is able to regulate local skeletal muscle blood flow and 02 delivery causing considerable vasodilatation during exercise. We hypothesized that sport specialization and specific long-term training stimuli have an impact on venous plasma [ATP] and other nucleotides concentration. Four athletic groups consisting of sprinters (n=11; age range 21–30 yr), endurance-trained athletes (n=16; age range 18–31 yr), futsal players (n=14; age range 18–30 yr), and recreationally active individuals (n=12; age range 22–33 yr) were studied. Venous blood samples were collected at rest, during an incremental treadmill test, and during recovery. Baseline [ATP] was 759±80 nmol·l−1 in competitive athletes and 680±73 nmol·l−1 in controls and increased during exercise by ~61% in competitive athletes and by ~31% in recreationally active participants. We demonstrated a rapid increase in plasma [ATP] at exercise intensities of 83–87% of VO2max in competitive athletes and 94% in controls. Concentrations reported after 30 minutes of recovery were distinct from those obtained preexercise in competitive athletes (P < 0.001) but not in controls (P = 0.61). We found a correlation between total-body skeletal muscle mass and resting and maximal plasma [ATP] in competitive athletes (r=0.81 and r=0.75, respectively). In conclusion, sport specialization is significantly related to plasma [ATP] at rest, during exercise, and during maximal effort. Intensified exercise-induced plasma [ATP] increases may contribute to more effective vessel dilatation during exercise in highly trained athletes than in recreational runners. The most rapid increase in ATP concentration was associated with the respiratory compensation point. No differences between groups of competitive athletes were observed during the recovery period suggesting a similar pattern of response after exercise. Total-body skeletal muscle mass is indirectly related to plasma [ATP] in highly trained athletes.
Collapse
|
42
|
Hald BO, Sørensen RB, Sørensen PG, Sørensen CM, Jacobsen JCB. Stimulation history affects vasomotor responses in rat mesenteric arterioles. Pflugers Arch 2018; 471:271-283. [PMID: 30219946 DOI: 10.1007/s00424-018-2206-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/06/2018] [Indexed: 11/25/2022]
Abstract
Resistance vessels regulate blood flow by continuously adjusting activity of the wall smooth muscle cells. These cells integrate a variety of stimuli from blood, endothelium, autonomic nerves, and surrounding tissues. Each stimulus elicits an intracellular signaling cascade that eventually influences activation of the contractile machinery. The characteristic time scale of each cascade and the sharing of specific reactions between cascades provide for complex behavior when a vessel receives multiple stimuli. Here, we apply sequential stimulation with invariant concentrations of vasoconstrictor (norepinephrine/methoxamine) and vasodilator (SNAP/carbacol) to rat mesenteric vessels in the wire myograph to show that (1) time elapsed between addition of two vasoactive drugs and (2) the sequence of addition may significantly affect final force development. Furthermore, force oscillations (vasomotion) often appear upon norepinephrine administration. Using computational modeling in combination with nitric oxide (NO) inhibition/NO addition experiments, we show that (3) amplitude and number of oscillating vessels increase over time, (4) the ability of NO to induce vasomotion depends on whether it is applied before or after norepinephrine, and (5) emergence of vasomotion depends on the prior dynamical state of the system; in simulations, this phenomenon appears as "hysteresis." These findings underscore the time-dependent nature of vascular tone generation which must be considered when evaluating the vasomotor effects of multiple, simultaneous stimuli in vitro or in vivo.
Collapse
Affiliation(s)
- Bjørn Olav Hald
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.
| | - Rasmus B Sørensen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Preben G Sørensen
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte M Sørensen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
43
|
Kruse NT, Hughes WE, Ueda K, Hanada S, Feider AJ, Iwamoto E, Bock JM, Casey DP. Impaired modulation of postjunctional α 1 - but not α 2 -adrenergic vasoconstriction in contracting forearm muscle of postmenopausal women. J Physiol 2018; 596:2507-2519. [PMID: 29708589 DOI: 10.1113/jp275777] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 04/20/2018] [Indexed: 01/14/2023] Open
Abstract
KEY POINTS Contraction-mediated blunting of postjunctional α-adrenergic vasoconstriction (functional sympatholysis) is attenuated in skeletal muscle of ageing males, brought on by altered postjunctional α1 - and α2 -adrenergic receptor sensitivity. The extent to which postjunctional α-adrenergic vasoconstriction occurs in the forearms at rest and during exercise in postmenopausal women remains unknown. The novel findings indicate that contraction-mediated blunting of α1 - (via intra-arterial infusion of phenylephrine) but not α2 -adrenergic (via intra-arterial infusion of dexmedetomidine) vasoconstriction was attenuated in postmenopausal women compared to young women. Additional important findings revealed that postjunctional α-adrenergic vasoconstrictor responsiveness at rest does not appear to be affected by age in women. Collectively, these results contribute to our understanding of local neurovascular control at rest and during exercise with age in women. ABSTRACT Contraction-mediated blunting of postjunctional α-adrenergic vasoconstriction (functional sympatholysis) is attenuated in older males; however, direct confirmation of this effect remains unknown in postmenopausal women (PMW). The present study examined whether PMW exhibit augmented postjunctional α-adrenergic receptor vasoconstriction at rest and during forearm exercise compared to young women (YW). Eight YW (24 ± 1 years) and eight PMW (65 ± 1 years) completed a series of randomized experimental trials: (1) at rest, (2) under high flow (adenosine infusion) conditions and (3) during 6 min of forearm exercise at relative (20% of maximum) and absolute (7 kg) intensities. Phenylephrine (α1 -agonist) or dexmedetomidine (α2 -agonist) was administered during the last 3 min of each trial to elicit α-adrenergic vasoconstriction. Forearm vascular conductance (FVC) was calculated from blood flow and blood pressure. Vasoconstrictor responsiveness was identified as the change in FVC (%) during α-adrenergic agonist infusions from baseline (resting trial) or from steady-state conditions (high flow and exercise trials). During resting and high flow trials, the %FVC during α1 - and α2 -agonist stimulation was similar between YW and PMW. During exercise, α1 -mediated vasoconstriction was blunted in YW vs. PMW at relative (-6 ± 2% vs. -15 ± 3%) and absolute (-4 ± 2% vs. -14 ± 5%) workloads, such that blood flow and FVC were lower in PMW (P < 0.05 for all). Conversely, α2 -mediated vasoconstriction was similar between YW and PMW at relative (-22 ± 3% vs. -22 ± 4%; P > 0.05) and absolute (-19 ± 3% vs. -18 ± 4%; P > 0.05) workloads. Collectively, these findings demonstrate that despite similar α-adrenergic vasoconstrictor responsiveness at rest, PMW have a decreased ability to attenuate α1 -adrenergic vasoconstriction in contracting skeletal muscle.
Collapse
Affiliation(s)
- Nicholas T Kruse
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA.,Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA, USA
| | - William E Hughes
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Kenichi Ueda
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Satoshi Hanada
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Andrew J Feider
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Erika Iwamoto
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Joshua M Bock
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Darren P Casey
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA.,Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA, USA.,Fraternal Order of Eagles Diabetes Research, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
44
|
Piil P, Jørgensen TS, Egelund J, Gliemann L, Hellsten Y, Nyberg M. Effect of high-intensity exercise training on functional sympatholysis in young and older habitually active men. TRANSLATIONAL SPORTS MEDICINE 2018. [DOI: 10.1002/tsm2.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- P. Piil
- Department of Nutrition, Exercise and Sports; University of Copenhagen; Copenhagen Denmark
| | - T. S. Jørgensen
- Department of Nutrition, Exercise and Sports; University of Copenhagen; Copenhagen Denmark
- Department of Orthopedics; Herlev and Gentofte Hospital; Copenhagen Denmark
| | - J. Egelund
- Department of Nutrition, Exercise and Sports; University of Copenhagen; Copenhagen Denmark
| | - L. Gliemann
- Department of Nutrition, Exercise and Sports; University of Copenhagen; Copenhagen Denmark
| | - Y. Hellsten
- Department of Nutrition, Exercise and Sports; University of Copenhagen; Copenhagen Denmark
| | - M. Nyberg
- Department of Nutrition, Exercise and Sports; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
45
|
Hong KS, Kim K. Skeletal muscle contraction-induced vasodilation in the microcirculation. J Exerc Rehabil 2017; 13:502-507. [PMID: 29114523 PMCID: PMC5667595 DOI: 10.12965/jer.1735114.557] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 10/08/2017] [Indexed: 11/22/2022] Open
Abstract
Maximal whole body exercise leads skeletal muscle blood flow to markedly increase to match metabolic demands, a phenomenon termed exercise hyperaemia that is accomplished by increasing vasodilation. However, local vasodilatory mechanisms in response to skeletal muscle contraction remain uncertain. This review highlights metabolic vasodilators released from contracting skeletal muscle, endothelium, or blood cells. As a considerable skeletal muscle vasodilation potentially results in hypotension, sympathetic nerve activity needs to be augmented to elevate cardiac output and blood pressure during dynamic exercise. However, since the enhanced sympathetic vasoconstriction restrains skeletal muscle blood flow, intramuscular arteries have an indispensable ability to blunt sympathetic activity for exercise hyperaemia. In addition, we discuss that mechanical compression of the intramuscular vasculature contributes to causing the initial phase of increasing vasodilation following a single muscle contraction. We have also chosen to focus on conducted (or ascending) electrical signals that evoke vasodilation of proximal feed arteries to elevate blood flow in the microcirculation of skeletal muscle. Endothelial hyperpolarization originating within distal arterioles ascends into the proximal feed arteries, thereby increasing total blood flow in contracting skeletal muscle. This brief review summarizes molecular mechanisms underlying the regulation of skeletal muscle blood flow to a single or sustained muscle contraction.
Collapse
Affiliation(s)
- Kwang-Seok Hong
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, USA
| | - Kijeong Kim
- School of Exercise & Sport Science, College of Natural Sciences, University of Ulsan, Ulsan, Korea
| |
Collapse
|
46
|
Khaddaj Mallat R, Mathew John C, Kendrick DJ, Braun AP. The vascular endothelium: A regulator of arterial tone and interface for the immune system. Crit Rev Clin Lab Sci 2017; 54:458-470. [PMID: 29084470 DOI: 10.1080/10408363.2017.1394267] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
As the primary interface between the blood and various tissues of the body, the vascular endothelium exhibits a diverse range of roles and activities, all of which contribute to the overall health and function of the cardiovascular system. In this focused review, we discuss several key aspects of endothelial function, how this may be compromised and subsequent consequences. Specifically, we examine the dynamic regulation of arterial contractility and distribution of blood flow through the generation of chemical and electrical signaling events that impinge upon vascular smooth muscle. The endothelium can generate a diverse range of vasoactive compounds and signals, most of which act locally to adjust blood flow in a dynamic fashion to match tissue metabolism. Disruption of these vascular signaling processes (e.g. reduced nitric oxide bioavailability) is typically referred to as endothelial dysfunction, which is a recognized risk factor for cardiovascular disease in patients and occurs early in the development and progression of hypertension, atherosclerosis and tissue ischemia. Endothelial dysfunction is also associated with type-2 Diabetes and aging and increased mechanistic knowledge of the cellular changes contributing to these effects may provide important clues for interventional strategies. The endothelium also serves as the initial site of interaction for immune cells entering tissues in response to damage and acts to facilitate the actions of both the innate and acquired immune systems to interact with the vascular wall. In addition to representing the main cell type responsible for the formation of new blood vessels (i.e. angiogenesis) within the vasculature, the endothelium is also emerging as a source of extracellular vesicle or microparticles for the transport of signaling molecules and other cellular materials to nearby, or remote, sites in the body. The characteristics of released microparticles appear to change with the functional status of the endothelium; thus, these microparticles may represent novel biomarkers of endothelial health and more serious cardiovascular disease.
Collapse
Affiliation(s)
- Rayan Khaddaj Mallat
- a Department of Physiology and Pharmacology, Cumming School of Medicine , University of Calgary, and Libin Cardiovascular Institute of Alberta , Calgary , Canada
| | - Cini Mathew John
- a Department of Physiology and Pharmacology, Cumming School of Medicine , University of Calgary, and Libin Cardiovascular Institute of Alberta , Calgary , Canada
| | - Dylan J Kendrick
- a Department of Physiology and Pharmacology, Cumming School of Medicine , University of Calgary, and Libin Cardiovascular Institute of Alberta , Calgary , Canada
| | - Andrew P Braun
- a Department of Physiology and Pharmacology, Cumming School of Medicine , University of Calgary, and Libin Cardiovascular Institute of Alberta , Calgary , Canada
| |
Collapse
|
47
|
Iepsen UW, Munch GW, Ryrsø CK, Secher NH, Lange P, Thaning P, Pedersen BK, Mortensen SP. Muscle α-adrenergic responsiveness during exercise and ATP-induced vasodilation in chronic obstructive pulmonary disease patients. Am J Physiol Heart Circ Physiol 2017; 314:H180-H187. [PMID: 29030339 DOI: 10.1152/ajpheart.00398.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sympathetic vasoconstriction is blunted in exercising muscle (functional sympatholysis) but becomes attenuated with age. We tested the hypothesis that functional sympatholysis is further impaired in chronic obstructive pulmonary disease (COPD) patients. We determined leg blood flow and calculated leg vascular conductance (LVC) during 1) femoral-arterial Tyramine infusion (evokes endogenous norepinephrine release, 1 µmol·min-1·kg leg mass-1), 2) one-legged knee extensor exercise with and without Tyramine infusion [10 W and 20% of maximal workload (WLmax)], 3) ATP (0.05 µmol·min-1·kg leg mass-1) and Tyramine infusion, and 4) incremental ATP infusions (0.05, 0.3, and 3.0 µmol·min-1·kg leg mass-1). We included 10 patients with moderate to severe COPD and 8 age-matched healthy control subjects. Overall, leg blood flow and LVC were lower in COPD patients during exercise ( P < 0.05). Tyramine reduced LVC in both groups at 10-W exercise (COPD: -3 ± 1 ml·min-1·mmHg-1 and controls: -3 ± 1 ml·min-1·mmHg-1, P < 0.05) and 20% WLmax (COPD: -4 ± 1 ml·min-1·mmHg-1 and controls: -3 ± 1 ml·min-1·mmHg-1, P < 0.05) with no difference between groups. Incremental ATP infusions induced dose-dependent vasodilation with no difference between groups, and, in addition, the vasoconstrictor response to Tyramine infused together with ATP was not different between groups (COPD: -0.03 ± 0.01 l·min-1·kg leg mass-1 vs. CONTROLS -0.04 ± 0.01 l·min-1·kg leg mass-1, P > 0.05). Compared with age-matched healthy control subjects, the vasodilatory response to ATP is intact in COPD patients and their ability to blunt sympathetic vasoconstriction (functional sympatholysis) as evaluated by intra-arterial Tyramine during exercise or ATP infusion is maintained. NEW & NOTEWORTHY The ability to blunt sympathetic vasoconstriction in exercising muscle and ATP-induced dilation in chronic obstructive pulmonary disease patients remains unexplored. Chronic obstructive pulmonary disease patients demonstrated similar sympathetic vasoconstriction in response to intra-arterial Tyramine during exercise and ATP-induced vasodilation compared with age-matched healthy control subjects.
Collapse
Affiliation(s)
- U W Iepsen
- Centre of Inflammation and Metabolism and Centre for Physical Activity Research, University of Copenhagen, Rigshospitalet, Copenhagen , Denmark
| | - G W Munch
- Centre of Inflammation and Metabolism and Centre for Physical Activity Research, University of Copenhagen, Rigshospitalet, Copenhagen , Denmark
| | - C K Ryrsø
- Centre of Inflammation and Metabolism and Centre for Physical Activity Research, University of Copenhagen, Rigshospitalet, Copenhagen , Denmark
| | - N H Secher
- Department of Anesthesiology, The Copenhagen Muscle Research Centre, University of Copenhagen, Rigshospitalet, Copenhagen , Denmark
| | - P Lange
- Centre of Inflammation and Metabolism and Centre for Physical Activity Research, University of Copenhagen, Rigshospitalet, Copenhagen , Denmark.,Medical Department O, Respiratory Section, Herlev and Gentofte Hospital, Copenhagen , Denmark.,Department of Public Health, Section of Social Medicine, University of Copenhagen , Copenhagen , Denmark
| | - P Thaning
- Centre of Inflammation and Metabolism and Centre for Physical Activity Research, University of Copenhagen, Rigshospitalet, Copenhagen , Denmark.,Medical Department O, Respiratory Section, Herlev and Gentofte Hospital, Copenhagen , Denmark
| | - B K Pedersen
- Centre of Inflammation and Metabolism and Centre for Physical Activity Research, University of Copenhagen, Rigshospitalet, Copenhagen , Denmark
| | - S P Mortensen
- Centre of Inflammation and Metabolism and Centre for Physical Activity Research, University of Copenhagen, Rigshospitalet, Copenhagen , Denmark.,Department of Cardiovascular and Renal Research, University of Southern Denmark, Denmark
| |
Collapse
|
48
|
Piil P, Smith Jørgensen T, Egelund J, Damsgaard R, Gliemann L, Hellsten Y, Nyberg M. Exercise training improves blood flow to contracting skeletal muscle of older men via enhanced cGMP signaling. J Appl Physiol (1985) 2017; 124:109-117. [PMID: 28982945 DOI: 10.1152/japplphysiol.00634.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Physical activity has the potential to offset age-related impairments in the regulation of blood flow and O2 delivery to the exercising muscles; however, the mechanisms underlying this effect of physical activity remain poorly understood. The present study examined the role of cGMP in training-induced adaptations in the regulation of skeletal muscle blood flow and oxidative metabolism during exercise in aging humans. We measured leg hemodynamics and oxidative metabolism during exercise engaging the knee extensor muscles in young [ n = 15, 25 ± 1 (SE) yr] and older ( n = 15, 72 ± 1 yr) subjects before and after a period of aerobic high-intensity exercise training. To determine the role of cGMP signaling, pharmacological inhibition of phosphodiesterase 5 (PDE5) was performed. Before training, inhibition of PDE5 increased ( P < 0.05) skeletal muscle blood flow and O2 uptake during moderate-intensity exercise in the older group; however, these effects of PDE5 inhibition were not detected after training. These findings suggest a role for enhanced cGMP signaling in the training-induced improvement of regulation of blood flow in contracting skeletal muscle of older men. NEW & NOTEWORTHY The present study provides evidence for enhanced cyclic GMP signaling playing an essential role in the improved regulation of blood flow in contracting skeletal muscle of older men with aerobic exercise training.
Collapse
Affiliation(s)
- Peter Piil
- Department of Nutrition, Exercise and Sports, University of Copenhagen , Copenhagen , Denmark
| | - Tue Smith Jørgensen
- Department of Nutrition, Exercise and Sports, University of Copenhagen , Copenhagen , Denmark.,Department of Orthopedics, Herlev and Gentofte Hospital, Copenhagen, Denmark
| | - Jon Egelund
- Department of Nutrition, Exercise and Sports, University of Copenhagen , Copenhagen , Denmark
| | - Rasmus Damsgaard
- Department of Nutrition, Exercise and Sports, University of Copenhagen , Copenhagen , Denmark
| | - Lasse Gliemann
- Department of Nutrition, Exercise and Sports, University of Copenhagen , Copenhagen , Denmark
| | - Ylva Hellsten
- Department of Nutrition, Exercise and Sports, University of Copenhagen , Copenhagen , Denmark
| | - Michael Nyberg
- Department of Nutrition, Exercise and Sports, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
49
|
Hughes WE, Kruse NT, Casey DP. Sympathetic nervous system activation reduces contraction-induced rapid vasodilation in the leg of humans independent of age. J Appl Physiol (1985) 2017; 123:106-115. [PMID: 28385914 DOI: 10.1152/japplphysiol.00005.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/20/2017] [Accepted: 04/05/2017] [Indexed: 11/22/2022] Open
Abstract
Contraction-induced rapid vasodilation is attenuated similarly in the upper and lower limbs of older adults. In the forearm, this attenuation is in part due to a greater sympathetic vasoconstriction. We examined whether the age-related reduction in contraction-induced vasodilation in the leg is also due to a sympathetic vasoconstrictive mechanism. Thirteen young (24 ± 1 yr) and twelve older adults (67 ± 1 yr) performed single-leg knee extension at 20 and 40% of work-rate maximum (WRmax) during control and cold-pressor test (CPT) conditions. Femoral artery diameter and blood velocity were measured using Doppler ultrasound. Vascular conductance (VC; ml·min-1·mmHg-1) was calculated using blood flow (ml/min) and mean arterial pressure (mmHg). Peak (ΔVC from baseline) and total VC were blunted in older adults during control conditions across exercise intensities (P < 0.05). Peak and total VC were reduced during CPT in both age groups across exercise intensities (P < 0.05). The relative change (i.e., %reduction; CPT vs. control) in peak (-25 ± 5 vs. -22 ± 4% at 20% WRmax; and -21 ± 6 vs. -27 ± 5% at 40% WRmax; P = 0.42-0.55) and total VC (-28 ± 5 vs. -36 ± 6% at 20% WRmax; and -22 ± 8 vs. -33 ± 5% at 40% WRmax; P = 0.23-0.34) were similar between young and older adults. When matched for absolute workload (~10 W), age differences persisted in peak VC (P < 0.05) under both conditions, with similar relative changes in peak and total VC during CPT. Our data suggest that 1) sympathetic stimulation reduces contraction-induced rapid vasodilation in the leg of young and older adults similarly; and 2) enhanced sympathetic vasoconstriction does not fully explain age-related differences in contraction-induced vasodilation within the leg.NEW & NOTEWORTHY Aging is associated with attenuated contraction-induced rapid onset vasodilation (ROV). Within the forearm, this attenuation is partially due to enhanced sympathetic vasoconstriction. In the current study, we found that sympathetic vasoconstriction reduces contraction-induced ROV within the leg of both young and older adults, with the magnitude of change being similar between age groups. Our current results suggest that age-related attenuations in contraction-induced ROV within the leg are not fully explained by a sympathetic vasoconstrictor mechanism.
Collapse
Affiliation(s)
- William E Hughes
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Nicholas T Kruse
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| | - Darren P Casey
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa; .,Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa; and.,Fraternal Order of Eagles Diabetes Research, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
50
|
Kruse NT, Hughes WE, Ueda K, Casey DP. Vasoconstrictor responsiveness in contracting human muscle: influence of contraction frequency, contractile work, and metabolic rate. Eur J Appl Physiol 2017. [PMID: 28624852 DOI: 10.1007/s00421-017-3660-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
PURPOSE The aim of this study was to examine whether independent effects exist between contractile work and metabolic demand (VO2m) on vasoconstrictor responsiveness (i.e., functional sympatholysis) under different contraction durations matched for total contractile work in exercising human skeletal muscle. METHODS Ten young men performed rhythmic forearm contractions at 10 and 15% of maximum voluntary contraction (MVC) which consisted of muscle contractions using the same duty cycle but altering the duration of the contraction-relaxation cycles of exercise and included: 1) fast frequency contractions at 10% MVC (FFC10%) using a contraction relaxation cycle at 1:2 s; 2) slow frequency contractions at 10% MVC (SFC10%) at 2:4 s; and 3) SFC at 15% MVC (SFC15%) at 2:4 s. Lower body negative pressure (LBNP) was applied to increase sympathetic vasoconstriction during forearm exercise. Brachial artery diameter and blood velocities (measured via Doppler ultrasound) determined forearm blood flow (FBF), and forearm vascular conductance (FVC) was calculated from FBF (ml min-1) and mean arterial blood pressure. RESULTS Results revealed that steady-state indices of FBF, FVC, and VO2m were greater (P < 0.05) in FFC10% and SFC15% vs. SFC10%. In addition, the magnitude of vasoconstriction (percent reduction in FVC) in response to reflex increases in sympathetic activity during LBNP was greater with SFC10% vs. FFC10% (-20.6 ± 3.0 vs. -11.1 ± 2.0%; P < 0.05), whereas there was no difference with FFC10% vs. SFC15% (-11.1 ± 2.0 vs. -11.8 ± 1.8%; P = 0.91). CONCLUSIONS Our data indicate that faster work-matched muscle contractions increase blood flow and metabolism, leading to improved functional sympatholysis as compared to slower work-matched muscle contractions in humans.
Collapse
Affiliation(s)
- Nicholas T Kruse
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa, IA, 52242, USA. .,Abboud Cardiovascular Research Center, Iowa, IA, USA.
| | - William E Hughes
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa, IA, 52242, USA
| | - Kenichi Ueda
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa, IA, USA
| | - Darren P Casey
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa, IA, 52242, USA.,Abboud Cardiovascular Research Center, Iowa, IA, USA.,Fraternal Order of Eagles Diabetes Research, Iowa, IA, USA
| |
Collapse
|