1
|
de Souza C, de Souza C, Campos FP, Savaris VDL, Wachholz L, Kaufmann C, Broch J, Comin GN, Calderano AA, Tesser GLS, Starkey JD, Eyng C, Nunes RV. Effect of arginine, glycine + serine concentrations, and guanidinoacetic acid supplementation in vegetable-based diets for chickens. Poult Sci 2024; 103:104105. [PMID: 39153445 PMCID: PMC11378898 DOI: 10.1016/j.psj.2024.104105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 08/19/2024] Open
Abstract
The study investigated guanidinoacetic acid (GAA) supplementation with varying dietary digestible arginine (Arg) and glycine+serine (Gly+Ser) concentrations in the starter phase, exploring respective carry-over effects on growth performance, blood chemistry, incidence of pectoral myopathies and proximate composition in broilers. A total of 2,800 one-day-old male broiler chicks were distributed in a central composite design with 2 factors and double experimental mesh, represented by supplementation or omission of 0.6 g per kg of GAA, with a central point represented by 107% of Arg and 147% of Gly+Ser, 4 factorial points (combinations of Arg/Gly+Ser concentrations: 96.4/132.5%; 117.6/132.5%; 96.4/161.5%, and 117.6/132.5%), and 4 axial points (combinations of axial points estimated for Arg and Gly+Ser, with the central points of 92/147%; 122/147%; 107/126.5, and 107/167.5%), totaling 18 treatments, 4 repetitions to factorial and axial points, 24 replicates to the central point, and 25 birds per pen. Feed conversion ratio (FCR) from d 1 to 10 had a linear response (P = 0.009) for the decreasing Arg content and a quadratic response (P = 0.047) for Gly+Ser concentrations. Broilers supplemented GAA had lower FCR compared with nonsupplemented groups from d 1 to 10 (P = 0.048) and d 1 to 42 (P = 0.026). Aspartate aminotransferase (AST) exhibited increasing and decreasing linear effects as a function of Arg (P = 0.008) and Gly+Ser (P = 0.020) concentrations, respectively. Guanidinoacetic acid decreased serum AST (P = 0.028). Guanidinoacetic acid reduced moderate + severe (P = 0.039) and mild (P = 0.015) Wooden Breast scores. The occurrence of normal White Striping increased (P = 0.002), while severe score was reduced (P = 0.029) with GAA supplementation. In conclusion, increased digestible Arg:Lys and 14% and 6% above the recommendations (107% and 147%), respectively, provided improved FCR during the starter phase. Dietary GAA supplementation (0.6 g per kg) improved FCR, reduced severity of breast myopathies and appears to have reduced muscle damage in broilers fed plant-based diets.
Collapse
Affiliation(s)
- Cleison de Souza
- Department of Animal Science, Western Paraná State University, Marechal Cândido Rondon, PR 85960-000, Brazil
| | - Cleverson de Souza
- Department of Animal Science, Western Paraná State University, Marechal Cândido Rondon, PR 85960-000, Brazil
| | - Felipe P Campos
- Department of Animal Science, Western Paraná State University, Marechal Cândido Rondon, PR 85960-000, Brazil
| | - Vaneila D L Savaris
- Department of Animal Science, Western Paraná State University, Marechal Cândido Rondon, PR 85960-000, Brazil
| | - Lucas Wachholz
- Department of Animal Science, Western Paraná State University, Marechal Cândido Rondon, PR 85960-000, Brazil
| | - Cristine Kaufmann
- Department of Animal Science, Western Paraná State University, Marechal Cândido Rondon, PR 85960-000, Brazil
| | - Jomara Broch
- Department of Animal Science, Western Paraná State University, Marechal Cândido Rondon, PR 85960-000, Brazil
| | - Gabriel N Comin
- Department of Animal Science, Western Paraná State University, Marechal Cândido Rondon, PR 85960-000, Brazil
| | - Arele A Calderano
- Department of Animal Science, Federal University of Viçosa, Viçosa, MG 36570-900, Brazil
| | | | - Jessica D Starkey
- Department of Poultry Science, Auburn University, Auburn, AL 36849, US
| | - Cinthia Eyng
- Department of Animal Science, Western Paraná State University, Marechal Cândido Rondon, PR 85960-000, Brazil
| | - Ricardo V Nunes
- Department of Animal Science, Western Paraná State University, Marechal Cândido Rondon, PR 85960-000, Brazil.
| |
Collapse
|
2
|
Lygate CA. Maintaining energy provision in the heart: the creatine kinase system in ischaemia-reperfusion injury and chronic heart failure. Clin Sci (Lond) 2024; 138:491-514. [PMID: 38639724 DOI: 10.1042/cs20230616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/25/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
The non-stop provision of chemical energy is of critical importance to normal cardiac function, requiring the rapid turnover of ATP to power both relaxation and contraction. Central to this is the creatine kinase (CK) phosphagen system, which buffers local ATP levels to optimise the energy available from ATP hydrolysis, to stimulate energy production via the mitochondria and to smooth out mismatches between energy supply and demand. In this review, we discuss the changes that occur in high-energy phosphate metabolism (i.e., in ATP and phosphocreatine) during ischaemia and reperfusion, which represents an acute crisis of energy provision. Evidence is presented from preclinical models that augmentation of the CK system can reduce ischaemia-reperfusion injury and improve functional recovery. Energetic impairment is also a hallmark of chronic heart failure, in particular, down-regulation of the CK system and loss of adenine nucleotides, which may contribute to pathophysiology by limiting ATP supply. Herein, we discuss the evidence for this hypothesis based on preclinical studies and in patients using magnetic resonance spectroscopy. We conclude that the correlative evidence linking impaired energetics to cardiac dysfunction is compelling; however, causal evidence from loss-of-function models remains equivocal. Nevertheless, proof-of-principle studies suggest that augmentation of CK activity is a therapeutic target to improve cardiac function and remodelling in the failing heart. Further work is necessary to translate these findings to the clinic, in particular, a better understanding of the mechanisms by which the CK system is regulated in disease.
Collapse
Affiliation(s)
- Craig A Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, United Kingdom
| |
Collapse
|
3
|
Sugimoto C, Perna MK, Regan SL, Tepe EA, Liou R, Fritz AL, Williams MT, Vorhees CV, Skelton MR. A Gad2 specific Slc6a8 deletion recapitulates the contextual and cued freezing deficits seen in Slc6a8 -/y mice. Brain Res 2024; 1825:148690. [PMID: 38030104 PMCID: PMC10875619 DOI: 10.1016/j.brainres.2023.148690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/14/2023] [Accepted: 11/25/2023] [Indexed: 12/01/2023]
Abstract
The creatine (Cr)-phosphocreatine shuttle is essential for ATP homeostasis. In humans, the absence of brain Cr causes significant intellectual disability, epilepsy, and language delay. Mutations of the creatine transporter (SLC6A8) are the most common cause of Cr deficiency. In rodents, Slc6a8 deletion causes deficits in spatial learning, novel object recognition (NOR), as well as in contextual and cued freezing. The mechanisms that underlie these cognitive deficits are not known. Due to the heterogeneous nature of the brain, it is important to determine which systems are affected by a loss of Cr. In this study, we generated mice lacking Slc6a8 in GABAergic neurons by crossing Slc6a8FL mice with Gad2-Cre mice. These Gad2-specific Slc6a8 knockout (cKO) mice, along with the ubiquitous Slc6a8 KO (Slc6a8-/y), Gad2-Cre+, and wild-type (WT) mice were tested in the Morris water maze, NOR, conditioned freezing, and the radial water maze. Similar to the Slc6a8-/y mice, cKO mice had reduced contextual and cued freezing compared with WT mice. The cKO mice had a mild spatial learning deficit during the reversal phase of the MWM, however they were not as pronounced as in Slc6a8-/y mice. In NOR, the Gad2-Cre mice spent less time with the novel object, similar to the reduced novel time in the cKO mice. There were no changes in radial water maze performance. Slc6a8 deletion in GABAergic neurons is sufficient to recapitulate the conditioned freezing deficits seen in Slc6a8-/y mice.
Collapse
Affiliation(s)
- Chiho Sugimoto
- Department of Pediatrics, University of Cincinnati College of Medicine and Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States
| | - Marla K Perna
- Department of Pediatrics, University of Cincinnati College of Medicine and Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States.
| | - Samantha L Regan
- Department of Pediatrics, University of Cincinnati College of Medicine and Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States.
| | - Erin A Tepe
- Department of Pediatrics, University of Cincinnati College of Medicine and Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States
| | - Rosalyn Liou
- Department of Pediatrics, University of Cincinnati College of Medicine and Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States.
| | - Adam L Fritz
- Department of Pediatrics, University of Cincinnati College of Medicine and Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States
| | - Michael T Williams
- Department of Pediatrics, University of Cincinnati College of Medicine and Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States.
| | - Charles V Vorhees
- Department of Pediatrics, University of Cincinnati College of Medicine and Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States.
| | - Matthew R Skelton
- Department of Pediatrics, University of Cincinnati College of Medicine and Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States.
| |
Collapse
|
4
|
Melo LD, Cruz FGG, Rufino JPF, Melo RD, Feijó JDC, Andrade PGCD, Silva FMF, Oliveira Filho PAD. In ovo feeding of creatine monohydrate increases performances of hatching and development in breeder chicks. Anim Biotechnol 2023; 34:2979-2989. [PMID: 36154555 DOI: 10.1080/10495398.2022.2126368] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The current investigation was conducted to test the potential effects of in ovo feeding of creatine monohydrate (CMH) on hatchability, embryonic mortality, hatching weight, and development of heart and gastrointestinal tract (main organs and regions) of breeder chick embryos. Rhode Island Red fertile eggs were randomly distributed into seven experimental treatments: untreated egg (control), a sterile buffered solution (0.50% NaCl), and five solutions containing increased levels of CMH (0.50, 1.00, 1.50, and 2.00%) + 0.50% NaCl, being separated in four groups/replicates (three with 15 eggs and one with 16 eggs), totaling 61 eggs/treatment and a total of 427 fertile eggs used. All-in ovo injected groups with CMH decreased the hatchability and increased the intermediary embryonic mortality. At hatching, all-in ovo injected groups with CMH also increased the hatching weight and stimulated the development of the heart and the total length of the gastrointestinal tract, especially important organs for digestion of nutrients (yolk sac, pro-ventricle and gizzard) and regions for nutrient absorption (jejunum + ileum and colon + rectum). Conclusively, the in ovo feeding using CMH showed positive impacts on hatching weight and the development of gastrointestinal tract of chicks. However, caused negative impacts on hatchability.
Collapse
Affiliation(s)
- Lucas Duque Melo
- Faculty of Agrarian Sciences, Federal University of Amazonas, Manaus, Amazonas, Brazil
| | | | | | - Ramon Duque Melo
- Faculty of Agrarian Sciences, Federal University of Amazonas, Manaus, Amazonas, Brazil
| | - Julmar da Costa Feijó
- Faculty of Agronomy, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | | |
Collapse
|
5
|
Hua Y, Huang W, Wang F, Jing Z, Li J, Wang Q, Zhao Y. Metabolites, gene expression, and gut microbiota profiles suggest the putative mechanisms via which dietary creatine increases the serum taurine and g-ABA contents in Megalobrama amblycephala. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:253-274. [PMID: 36897433 DOI: 10.1007/s10695-023-01177-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/01/2023] [Indexed: 05/04/2023]
Abstract
A 90-day experiment was conducted to explore the effects of creatine on growth performance, liver health status, metabolites, and gut microbiota in Megalobrama amblycephala. There were 6 treatments as follows: control (CD, 29.41% carbohydrates), high carbohydrate (HCD, 38.14% carbohydrates), betaine (BET, 1.2% betaine + 39.76% carbohydrates), creatine 1 (CRE1, 0.5% creatine + 1.2% betaine + 39.29% carbohydrates), creatine 2 (CRE2, 1% creatine + 1.2% betaine + 39.50% carbohydrates), and creatine 3 (CRE3, 2% creatine + 1.2% betaine + 39.44% carbohydrates). The results showed that supplementing creatine and betaine together reduced the feed conversion ratio significantly (P < 0.05, compared to CD and HCD) and improved liver health (compared to HCD). Compared with the BET group, dietary creatine significantly increased the abundances of Firmicutes, Bacteroidota, ZOR0006, and Bacteroides and decreased the abundances of Proteobacteria, Fusobacteriota, Vibrio, Crenobacter, and Shewanella in the CRE1 group. Dietary creatine increased the content of taurine, arginine, ornithine, γ-aminobutyric acid (g-ABA), and creatine (CRE1 vs. BET group) and the expression of creatine kinase (ck), sulfinoalanine decarboxylase (csad), guanidinoacetate N-methyltransferase (gamt), glycine amidinotransferase (gatm), agmatinase (agmat), diamine oxidase1 (aoc1), and glutamate decarboxylase (gad) in the CRE1 group. Overall, these results suggested that dietary supplementation of creatine (0.5-2%) did not affect the growth performance, but it altered the gut microbial composition at the phylum and genus levels, which might be beneficial to the gut health of M. amblycephala; dietary creatine also increased the serum content of taurine by enhancing the expressions of ck and csad and increased the serum content of g-ABA by enhancing the arginine content and the expressions of gatm, agmat, gad, and aoc1.
Collapse
Affiliation(s)
- Yizhuo Hua
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Wangwang Huang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Fan Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Zhao Jing
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Juntao Li
- Institute of Tropical Bioscience and Biotechnology, Haikou, 570102, China
| | - Qingchao Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Yuhua Zhao
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China.
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, China.
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China.
| |
Collapse
|
6
|
Ghirardini E, Sagona G, Marquez-Galera A, Calugi F, Navarron CM, Cacciante F, Chen S, Di Vetta F, Dadà L, Mazziotti R, Lupori L, Putignano E, Baldi P, Lopez-Atalaya JP, Pizzorusso T, Baroncelli L. Cell-specific vulnerability to metabolic failure: the crucial role of parvalbumin expressing neurons in creatine transporter deficiency. Acta Neuropathol Commun 2023; 11:34. [PMID: 36882863 PMCID: PMC9990224 DOI: 10.1186/s40478-023-01533-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
Mutations in the solute carrier family 6-member 8 (Slc6a8) gene, encoding the protein responsible for cellular creatine (Cr) uptake, cause Creatine Transporter Deficiency (CTD), an X-linked neurometabolic disorder presenting with intellectual disability, autistic-like features, and epilepsy. The pathological determinants of CTD are still poorly understood, hindering the development of therapies. In this study, we generated an extensive transcriptomic profile of CTD showing that Cr deficiency causes perturbations of gene expression in excitatory neurons, inhibitory cells, and oligodendrocytes which result in remodeling of circuit excitability and synaptic wiring. We also identified specific alterations of parvalbumin-expressing (PV+) interneurons, exhibiting a reduction in cellular and synaptic density, and a hypofunctional electrophysiological phenotype. Mice lacking Slc6a8 only in PV+ interneurons recapitulated numerous CTD features, including cognitive deterioration, impaired cortical processing and hyperexcitability of brain circuits, demonstrating that Cr deficit in PV+ interneurons is sufficient to determine the neurological phenotype of CTD. Moreover, a pharmacological treatment targeted to restore the efficiency of PV+ synapses significantly improved cortical activity in Slc6a8 knock-out animals. Altogether, these data demonstrate that Slc6a8 is critical for the normal function of PV+ interneurons and that impairment of these cells is central in the disease pathogenesis, suggesting a novel therapeutic venue for CTD.
Collapse
Affiliation(s)
- Elsa Ghirardini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Viale del Tirreno 331, 56128, Calambrone (PI), Italy. .,Institute of Neuroscience, National Research Council (CNR), Via Giuseppe Moruzzi 1, 56124, Pisa, Italy.
| | - Giulia Sagona
- Institute of Neuroscience, National Research Council (CNR), Via Giuseppe Moruzzi 1, 56124, Pisa, Italy
| | - Angel Marquez-Galera
- Instituto de Neurociencias, Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas, Avenida Santiago Ramon Y Cajal, S/N, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Francesco Calugi
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, Via Di San Salvi 12, 50135, Florence, Italy.,BIO@SNS Lab, Scuola Normale Superiore Di Pisa, Piazza Dei Cavalieri 7, 56126, Pisa, Italy
| | - Carmen M Navarron
- Instituto de Neurociencias, Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas, Avenida Santiago Ramon Y Cajal, S/N, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Francesco Cacciante
- BIO@SNS Lab, Scuola Normale Superiore Di Pisa, Piazza Dei Cavalieri 7, 56126, Pisa, Italy
| | - Siwei Chen
- Department of Computer Science and Institute for Genomics and Bioinformatics, University of California, Irvine, CA, 92697-3435, USA
| | - Federica Di Vetta
- Institute of Neuroscience, National Research Council (CNR), Via Giuseppe Moruzzi 1, 56124, Pisa, Italy
| | - Lorenzo Dadà
- Institute of Neuroscience, National Research Council (CNR), Via Giuseppe Moruzzi 1, 56124, Pisa, Italy
| | - Raffaele Mazziotti
- Institute of Neuroscience, National Research Council (CNR), Via Giuseppe Moruzzi 1, 56124, Pisa, Italy.,Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, Via Di San Salvi 12, 50135, Florence, Italy
| | - Leonardo Lupori
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Viale del Tirreno 331, 56128, Calambrone (PI), Italy
| | - Elena Putignano
- Institute of Neuroscience, National Research Council (CNR), Via Giuseppe Moruzzi 1, 56124, Pisa, Italy
| | - Pierre Baldi
- Department of Computer Science and Institute for Genomics and Bioinformatics, University of California, Irvine, CA, 92697-3435, USA
| | - Jose P Lopez-Atalaya
- Instituto de Neurociencias, Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas, Avenida Santiago Ramon Y Cajal, S/N, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Tommaso Pizzorusso
- Institute of Neuroscience, National Research Council (CNR), Via Giuseppe Moruzzi 1, 56124, Pisa, Italy.,BIO@SNS Lab, Scuola Normale Superiore Di Pisa, Piazza Dei Cavalieri 7, 56126, Pisa, Italy
| | - Laura Baroncelli
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Viale del Tirreno 331, 56128, Calambrone (PI), Italy.,Institute of Neuroscience, National Research Council (CNR), Via Giuseppe Moruzzi 1, 56124, Pisa, Italy
| |
Collapse
|
7
|
Ren J, Yu F, Greenberg BM. ATP line splitting in association with reduced intracellular magnesium and pH: a brain 31 P MR spectroscopic imaging (MRSI) study of pediatric patients with myelin oligodendrocyte glycoprotein antibody-associated disorders (MOGADs). NMR IN BIOMEDICINE 2023; 36:e4836. [PMID: 36150743 DOI: 10.1002/nbm.4836] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 09/06/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Over the past four decades, ATP, the obligatory energy molecule for keeping all cells alive and functioning, has been thought to contribute only one set of signals in brain 31 P MR spectra. Here we report for the first time the observation of two separate β-ATP peaks in brain spectra acquired from patients with myelin oligodendrocyte glycoprotein antibody-associated disorders (MOGADs) using 3D MRSI at 7 T. In voxel spectra with β-ATP line splitting, these two peaks are separated by 0.46 ± 0.18 ppm (n = 6). Spectral lineshape analysis indicates that the upper field β-ATP peak is smaller in relative intensity (24 ± 11% versus 76 ± 11%), and narrower in linewidth (56.8 ± 10.3 versus 41.2 ± 10.3 Hz) than the downfield one. Data analysis also reveals a similar line splitting for the intracellular inorganic phosphate (Pi ) signal, which is characterized by two components with a smaller separation (0.16 ± 0.09 ppm) and an intensity ratio (26 ± 7%:74 ± 7%) comparable to that of β-ATP. While the major components of Pi and β-ATP correspond to a neutral intracellular pH (6.99 ± 0.01) and a free Mg2+ level (0.18 ± 0.02 mM, by Iotti's conversion formula) as found in healthy subjects, their minor counterparts relate to a slightly acidic pH (6.86 ± 0.07) and a 50% lower [Mg2+ ] (0.09 ± 0.02 mM), respectively. Data correlation between β-ATP and Pi signals appears to suggest an association between an increased [H+ ] and a reduced [Mg2+ ] in MOGAD patients.
Collapse
Affiliation(s)
- Jimin Ren
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Fang Yu
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Benjamin M Greenberg
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
8
|
Xu J, Xing T, Li J, Zhang L, Gao F. Dietary creatine nitrate enhances muscle creatine loading and delays postmortem glycolysis of broilers that experienced preslaughter transport. J Anim Sci 2022; 100:skac277. [PMID: 36002298 PMCID: PMC9584158 DOI: 10.1093/jas/skac277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/24/2022] [Indexed: 11/14/2022] Open
Abstract
This study investigated the attenuating effects of dietary creatine nitrate (CrN), a novel form of creatine, on energy expenditure and rapid glycolysis in pectoralis major (PM) muscle of broiler induced by preslaughter transport. A total of 288 Arbor Acres broilers (28 day old) were randomly assigned into five dietary treatments, including a basal diet or the basal diet supplemented with 600 mg/kg guanidinoacetic acid (GAA), 300, 600, or 900 mg/kg CrN for 14 d, respectively. On the day of transportation, the broilers from basal diet group were divided into two equal groups: one group was transported for 0.5 h (Control group) and the other group was transported for 3 h (T3h group). Meanwhile, the birds from GAA and CrN supplementation groups were transported for 3 h (identified as GAA600, CrN300, CrN600, and CrN900 group, respectively). The results demonstrated that dietary supplementation of GAA or CrN from 28 to 42 d of age did not significantly affect the growth performance, carcass traits, and textural characteristics (P > 0.05) in PM muscle of transported broilers. Compared with T3h group, GAA600, CrN600, and CrN900 groups increased the pH45min (P < 0.01), and CrN600, CrN900 groups decreased the cooking loss (P < 0.05) of PM muscle. Meanwhile, the muscle of GAA600, CrN600, and CrN900 groups showed a higher glycogen content (P < 0.01) and a lower lactic acid content (P < 0.01). GAA600 and all CrN treatments enhanced muscle Cr content and reduced AMP/ATP ratio (P < 0.01). In addition, GAA600 and all CrN treatments downregulated the relative mRNA expression levels of LKB1 and AMPKα2 (P < 0.001) and the protein expression of p-AMPKαThr172 compared with the T3h group (P < 0.01). All CrN treatments showed lower protein expression levels of LKB1 and p-LKB1Thr189 than those of the T3h group (P < 0.05). In summary, dietary supplementation with GAA and CrN enhanced the content of muscle creatine, and inhibited transport-induced activation of LKB1/AMPK pathway, which is beneficial for delaying rapid muscle glycolysis and improving meat quality.
Collapse
Affiliation(s)
- Jiawen Xu
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Tong Xing
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jiaolong Li
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Lin Zhang
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Feng Gao
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
9
|
McAndrew DJ, Lake HA, Zervou S, Schwedhelm E, Schneider JE, Neubauer S, Lygate CA. Homoarginine and creatine deficiency do not exacerbate murine ischaemic heart failure. ESC Heart Fail 2022; 10:189-199. [PMID: 36178450 PMCID: PMC9871656 DOI: 10.1002/ehf2.14183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/23/2022] [Accepted: 09/15/2022] [Indexed: 01/27/2023] Open
Abstract
AIMS Low levels of homoarginine and creatine are associated with heart failure severity in humans, but it is unclear to what extent they contribute to pathophysiology. Both are synthesized via L-arginine:glycine amidinotransferase (AGAT), such that AGAT-/- mice have a combined creatine and homoarginine deficiency. We hypothesized that this would be detrimental in the setting of chronic heart failure. METHODS AND RESULTS Study 1: homoarginine deficiency-female AGAT-/- and wild-type mice were given creatine-supplemented diet so that both had normal myocardial creatine levels, but only AGAT-/- had low plasma homoarginine. Myocardial infarction (MI) was surgically induced and left ventricular (LV) structure and function assessed at 6-7 weeks by in vivo imaging and haemodynamics. Study 2: homoarginine and creatine-deficiency-as before, but AGAT-/- mice were given creatine-supplemented diet until 1 week post-MI, when 50% were changed to a creatine-free diet. Both groups therefore had low homoarginine levels, but one group also developed lower myocardial creatine levels. In both studies, all groups had LV remodelling and dysfunction commensurate with the development of chronic heart failure, for example, LV dilatation and mean ejection fraction <20%. However, neither homoarginine deficiency alone or in combination with creatine deficiency had a significant effect on mortality, LV remodelling, or on any indices of contractile and lusitropic function. CONCLUSIONS Low levels of homoarginine and creatine do not worsen chronic heart failure arguing against a major causative role in disease progression. This suggests that it is unnecessary to correct hArg deficiency in patients with heart failure, although supra-physiological levels may still be beneficial.
Collapse
Affiliation(s)
- Debra J. McAndrew
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK,British Heart Foundation Centre for Research ExcellenceUniversity of OxfordOxfordUK,Wellcome Centre for Human GeneticsRoosevelt DriveOxfordOX3 7BNUK
| | - Hannah A. Lake
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK,British Heart Foundation Centre for Research ExcellenceUniversity of OxfordOxfordUK,Wellcome Centre for Human GeneticsRoosevelt DriveOxfordOX3 7BNUK
| | - Sevasti Zervou
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK,British Heart Foundation Centre for Research ExcellenceUniversity of OxfordOxfordUK,Wellcome Centre for Human GeneticsRoosevelt DriveOxfordOX3 7BNUK
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and ToxicologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Jurgen E. Schneider
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK,Experimental and Preclinical Imaging Centre (ePIC), Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Stefan Neubauer
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK,British Heart Foundation Centre for Research ExcellenceUniversity of OxfordOxfordUK
| | - Craig A. Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK,British Heart Foundation Centre for Research ExcellenceUniversity of OxfordOxfordUK,Wellcome Centre for Human GeneticsRoosevelt DriveOxfordOX3 7BNUK
| |
Collapse
|
10
|
Lygate CA, Lake HA, McAndrew DJ, Neubauer S, Zervou S. Influence of homoarginine on creatine accumulation and biosynthesis in the mouse. Front Nutr 2022; 9:969702. [PMID: 36017222 PMCID: PMC9395972 DOI: 10.3389/fnut.2022.969702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/21/2022] [Indexed: 12/24/2022] Open
Abstract
Organisms obtain creatine from their diet or by de novo synthesis via AGAT (L-arginine:glycine amidinotransferase) and GAMT (Guanidinoacetate N-methyltrasferase) in kidney and liver, respectively. AGAT also synthesizes homoarginine (hArg), low levels of which predict poor outcomes in human cardiovascular disease, while supplementation maintains contractility in murine heart failure. However, the expression pattern of AGAT has not been systematically studied in mouse tissues and nothing is known about potential feedback interactions between creatine and hArg. Herein, we show that C57BL/6J mice express AGAT and GAMT in kidney and liver respectively, whereas pancreas was the only organ to express appreciable levels of both enzymes, but no detectable transmembrane creatine transporter (Slc6A8). In contrast, kidney, left ventricle (LV), skeletal muscle and brown adipose tissue must rely on creatine transporter for uptake, since biosynthetic enzymes are not expressed. The effects of creatine and hArg supplementation were then tested in wild-type and AGAT knockout mice. Homoarginine did not alter creatine accumulation in plasma, LV or kidney, whereas in pancreas from AGAT KO, the addition of hArg resulted in higher levels of tissue creatine than creatine-supplementation alone (P < 0.05). AGAT protein expression in kidney was downregulated by creatine supplementation (P < 0.05), consistent with previous reports of end-product repression. For the first time, we show that hArg supplementation causes a similar down-regulation of AGAT protein (P < 0.05). These effects on AGAT were absent in the pancreas, suggesting organ specific mechanisms of regulation. These findings highlight the potential for interactions between creatine and hArg that may have implications for the use of dietary supplements and other therapeutic interventions.
Collapse
Affiliation(s)
- Craig A. Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre for Research Excellence, University of Oxford, Oxford, United Kingdom
| | | | | | | | - Sevasti Zervou
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre for Research Excellence, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Sun M, Jiao H, Wang X, Li H, Zhou Y, Zhao J, Lin H. The regulating pathway of creatine on muscular protein metabolism depends on the energy state. Am J Physiol Cell Physiol 2022; 322:C1022-C1035. [PMID: 35417269 DOI: 10.1152/ajpcell.00447.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Creatine (Cr) is beneficial for increasing muscle mass and preventing muscle atrophy via involving in energy metabolism through the Cr and phosphocreatine (PCr) system. This study aimed to evaluate the supplemental effect of Cr on protein metabolism under normal and starvation conditions. The primary myoblasts were obtained from the breast muscle of chicks. The mammalian target of rapamycin (mTOR)/P70S6 kinase (P70S6K), ubiquitin proteasome (UP) pathways, and mitochondrial function of myotubes were evaluated at normal or starvation state and with or without glucose supplementation. Under normal condition, Cr supplementation enhanced protein synthesis rate as well as upregulated the total and phosphorylated P70S6K expressions. Cr had little influence on protein catabolism, and mitochondrial function. In a starvation state, however, Cr alleviated myotube atrophy and enhanced protein accretion by inhibiting Atrogin1 and myostatin (MSTN) expression. Furthermore, Cr treatment upregulated the transcriptional coactivators peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) expression, and decreased reactive oxygen species (ROS) accumulation under starvation condition. In the presence of glucose, however, the favorable effect of Cr on protein content and myotube diameter did not occur under starvation condition. The present result indicates that at normal state, Cr stimulated protein synthesis via the mTOR/P70S6K pathway. In a starvation state, Cr mainly take a favorable effect on protein accumulation via suppression of UP pathway and mediated mitochondrial function mainly by serving as an energy supplier. The result highlights the potential clinical application for the modulation of muscle mass under different nutritional conditions.
Collapse
Affiliation(s)
- Mingfa Sun
- Department of Animal Science, Shandong Agricultural University, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian City, Shandong Province, China
| | - Hongchao Jiao
- Department of Animal Science, Shandong Agricultural University, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian City, Shandong Province, China
| | - Xiaojuan Wang
- Department of Animal Science, Shandong Agricultural University, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian City, Shandong Province, China
| | - Haifang Li
- College of Life Sciences, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Jingpeng Zhao
- Department of Animal Science, Shandong Agricultural University, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian City, Shandong Province, China
| | - Hai Lin
- Department of Animal Science, Shandong Agricultural University, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian City, Shandong Province, China
| |
Collapse
|
12
|
Liu Y, Zheng W, Zhang L, Hu L, Liu X, Cheng J, Li G, Gong M. Metabolomics-based evidence of the hypoglycemic effect and alleviation of diabetic complications by Ficus racemosa fruit in diabetic mice. Food Funct 2022; 13:7871-7884. [PMID: 35771162 DOI: 10.1039/d2fo01163h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The hypoglycemic and metabolic effects of Ficus racemosa fruit were studied in diabetic mice, and its potential mechanisms of hypoglycemic activity and its alleviation of diabetic complications were explored using...
Collapse
Affiliation(s)
- Yueqiu Liu
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, China
| | - Wen Zheng
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Lu Zhang
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Liqiang Hu
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Xin Liu
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Jingqiu Cheng
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China.
| | - Meng Gong
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
13
|
Chen HR, Zhang-Brotzge X, Morozov YM, Li Y, Wang S, Zhang HH, Kuan IS, Fugate EM, Mao H, Sun YY, Rakic P, Lindquist DM, DeGrauw T, Kuan CY. Creatine transporter deficiency impairs stress adaptation and brain energetics homeostasis. JCI Insight 2021; 6:e140173. [PMID: 34324436 PMCID: PMC8492331 DOI: 10.1172/jci.insight.140173] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/28/2021] [Indexed: 11/22/2022] Open
Abstract
The creatine transporter (CrT) maintains brain creatine (Cr) levels, but the effects of its deficiency on energetics adaptation under stress remain unclear. There are also no effective treatments for CrT deficiency, the second most common cause of X-linked intellectual disabilities. Herein, we examined the consequences of CrT deficiency in brain energetics and stress-adaptation responses plus the effects of intranasal Cr supplementation. We found that CrT-deficient (CrT–/y) mice harbored dendritic spine and synaptic dysgenesis. Nurtured newborn CrT–/y mice maintained baseline brain ATP levels, with a trend toward signaling imbalance between the p-AMPK/autophagy and mTOR pathways. Starvation elevated the signaling imbalance and reduced brain ATP levels in P3 CrT–/y mice. Similarly, CrT–/y neurons and P10 CrT–/y mice showed an imbalance between autophagy and mTOR signaling pathways and greater susceptibility to cerebral hypoxia-ischemia and ischemic insults. Notably, intranasal administration of Cr after cerebral ischemia increased the brain Cr/N-acetylaspartate ratio, partially averted the signaling imbalance, and reduced infarct size more potently than intraperitoneal Cr injection. These findings suggest important functions for CrT and Cr in preserving the homeostasis of brain energetics in stress conditions. Moreover, intranasal Cr supplementation may be an effective treatment for congenital CrT deficiency and acute brain injury.
Collapse
Affiliation(s)
- Hong-Ru Chen
- Department of Neurosciences, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Xiaohui Zhang-Brotzge
- Department of Pediatrics, Division of Neurology, Emory University, Atlanta, Georgia, USA
| | - Yury M Morozov
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yuancheng Li
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, USA
| | - Siming Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | | | - Irena S Kuan
- Department of Pediatrics, Division of Neurology, Emory University, Atlanta, Georgia, USA
| | - Elizabeth M Fugate
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, USA
| | - Yu-Yo Sun
- Department of Neurosciences, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Pasko Rakic
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Diana M Lindquist
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Ton DeGrauw
- Department of Pediatrics, Division of Neurology, Emory University, Atlanta, Georgia, USA
| | - Chia-Yi Kuan
- Department of Neurosciences, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
14
|
Hannemann J, Cordts K, Seniuk A, Choe CU, Schmidt-Hutten L, Duque Escobar J, Weinberger F, Böger R, Schwedhelm E. Arginine:Glycine Amidinotransferase Is Essential for Creatine Supply in Mice During Chronic Hypoxia. Front Physiol 2021; 12:703069. [PMID: 34483959 PMCID: PMC8416470 DOI: 10.3389/fphys.2021.703069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/20/2021] [Indexed: 11/18/2022] Open
Abstract
Objective: Chronic hypoxia induces pulmonary and cardiovascular pathologies, including pulmonary hypertension (PH). L-arginine:glycine amidinotransferase (AGAT) is essential for homoarginine (hArg) and guanidinoacetate synthesis, the latter being converted to creatine by guanidinoacetate methyltransferase. Low hArg concentrations are associated with cardiovascular morbidity and predict mortality in patients with PH. We therefore aimed to investigate the survival and cardiac outcome of AGAT knockout (Agat−/−) mice under hypoxia and a possible rescue of the phenotype. Methods:Agat−/− mice and wild-type (WT) littermates were subjected to normoxia or normobaric hypoxia (10% oxygen) for 4 weeks. A subgroup of Agat−/− mice was supplemented with 1% creatine from weaning. Survival, hematocrit, blood lactate and glucose, heart weight-to-tibia length (HW/TL) ratio, hArg plasma concentration, and Agat and Gamt expression in lung, liver, and kidneys were evaluated. Results: After 6 h of hypoxia, blood lactate was lower in Agat−/−-mice as compared to normoxia (p < 0.001). Agat−/− mice died within 2 days of hypoxia, whereas Agat−/− mice supplemented with creatine and WT mice survived until the end of the study. In WT mice, hematocrit (74 ± 4 vs. 55 ± 2%, mean ± SD, p < 0.001) and HW/TL (9.9 ± 1.3 vs. 7.3 ± 0.7 mg/mm, p < 0.01) were higher in hypoxia, while hArg plasma concentration (0.25 ± 0.06 vs. 0.38 ± 0.12 μmol/L, p < 0.01) was lower. Agat and Gamt expressions were differentially downregulated by hypoxia in lung, liver, and kidneys. Conclusion:Agat and Gamt are downregulated in hypoxia. Agat−/− mice are nonviable in hypoxia. Creatine rescues the lethal phenotype, but it does not reduce right ventricular hypertrophy of Agat−/− mice in hypoxia.
Collapse
Affiliation(s)
- Juliane Hannemann
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, Hamburg, Germany
| | - Kathrin Cordts
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anika Seniuk
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany.,Institute of Cellular and Integrative Physiology, University Medical Center Hamburg, Hamburg, Germany
| | - Chi-Un Choe
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lena Schmidt-Hutten
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jorge Duque Escobar
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany.,Department of Cardiology, University Heart and Vascular Center, Hamburg, Germany
| | - Florian Weinberger
- Insitute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rainer Böger
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, Hamburg, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| |
Collapse
|
15
|
de Souza C, Eyng C, Viott A, de Avila A, Pacheco W, Junior N, Kohler T, Tenorio K, Cirilo E, Nunes R. Effect of dietary guanidinoacetic acid or nucleotides supplementation on growth performances, carcass traits, meat quality and occurrence of myopathies in broilers. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
16
|
Yan Z, Yan Z, Liu S, Yin Y, Yang T, Chen Q. Regulative Mechanism of Guanidinoacetic Acid on Skeletal Muscle Development and Its Application Prospects in Animal Husbandry: A Review. Front Nutr 2021; 8:714567. [PMID: 34458310 PMCID: PMC8387576 DOI: 10.3389/fnut.2021.714567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
Guanidinoacetic acid is the direct precursor of creatine and its phosphorylated derivative phosphocreatine in the body. It is a safe nutritional supplement that can be used to promote muscle growth and development. Improving the growth performance of livestock and poultry and meat quality is the eternal goal of the animal husbandry, and it is also the common demand of today's society and consumers. A large number of experimental studies have shown that guanidinoacetic acid could improve the growth performance of animals, promote muscle development and improve the health of animals. However, the mechanism of how it affects muscle development needs to be further elucidated. This article discusses the physical and chemical properties of guanidinoacetic acid and its synthesis pathway, explores its mechanism of how it promotes muscle development and growth, and also classifies and summarizes the impact of its application in animal husbandry, providing a scientific basis for this application. In addition, this article also proposes future directions for the development of this substance.
Collapse
Affiliation(s)
- Zhaoming Yan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Zhaoyue Yan
- Chemistry Department, University of Liverpool, Liverpool, United Kingdom
| | - Shuangli Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yunju Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Tai Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Qinghua Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
17
|
Watanabe LM, Hashimoto AC, Torres DJ, Alfulaij N, Peres R, Sultana R, Maunakea AK, Berry MJ, Seale LA. Effect of statin treatment in obese selenium-supplemented mice lacking selenocysteine lyase. Mol Cell Endocrinol 2021; 533:111335. [PMID: 34052303 PMCID: PMC8263501 DOI: 10.1016/j.mce.2021.111335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 12/17/2022]
Abstract
People with obesity are often dyslipidemic and prescribed statins to prevent cardiovascular events. A common side effect of statin use is myopathy. This could potentially be caused by the reduction of selenoproteins that curb oxidative stress, in turn, affecting creatine metabolism. We determined if statins regulate hepatic and muscular selenoprotein expression, oxidative stress and creatine metabolism. Mice lacking selenocysteine lyase (Scly KO), a selenium-provider enzyme for selenoprotein synthesis, were fed a high-fat, Se-supplemented diet and treated with simvastatin. Statin improved creatine metabolism in females and oxidative responses in both sexes. Male Scly KO mice were heavier than females after statin treatment. Hepatic selenoproteins were unaffected by statin and genotype in females. Statin upregulated muscular Gpx1 in females but not males, while Scly loss downregulated muscular Gpx1 in males and Selenon in females. Osgin1 was reduced in statin-treated Scly KO males after AmpliSeq analysis. These results refine our understanding of the sex-dependent role of selenium in statin responses.
Collapse
Affiliation(s)
- Ligia M Watanabe
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96813, USA; Department of Internal Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo - FMRP/USP, Brazil
| | - Ann C Hashimoto
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96813, USA
| | - Daniel J Torres
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96813, USA; Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Naghum Alfulaij
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96813, USA; Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Rafael Peres
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96813, USA
| | - Razvan Sultana
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96813, USA
| | - Alika K Maunakea
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96813, USA
| | - Marla J Berry
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Lucia A Seale
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| |
Collapse
|
18
|
Harmon KK, Stout JR, Fukuda DH, Pabian PS, Rawson ES, Stock MS. The Application of Creatine Supplementation in Medical Rehabilitation. Nutrients 2021; 13:1825. [PMID: 34071875 PMCID: PMC8230227 DOI: 10.3390/nu13061825] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
Numerous health conditions affecting the musculoskeletal, cardiopulmonary, and nervous systems can result in physical dysfunction, impaired performance, muscle weakness, and disuse-induced atrophy. Due to its well-documented anabolic potential, creatine monohydrate has been investigated as a supplemental agent to mitigate the loss of muscle mass and function in a variety of acute and chronic conditions. A review of the literature was conducted to assess the current state of knowledge regarding the effects of creatine supplementation on rehabilitation from immobilization and injury, neurodegenerative diseases, cardiopulmonary disease, and other muscular disorders. Several of the findings are encouraging, showcasing creatine's potential efficacy as a supplemental agent via preservation of muscle mass, strength, and physical function; however, the results are not consistent. For multiple diseases, only a few creatine studies with small sample sizes have been published, making it difficult to draw definitive conclusions. Rationale for discordant findings is further complicated by differences in disease pathologies, intervention protocols, creatine dosing and duration, and patient population. While creatine supplementation demonstrates promise as a therapeutic aid, more research is needed to fill gaps in knowledge within medical rehabilitation.
Collapse
Affiliation(s)
- Kylie K. Harmon
- Neuromuscular Plasticity Laboratory, Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, FL 32816, USA;
| | - Jeffrey R. Stout
- Physiology of Work and Exercise Response (POWER) Laboratory, Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, FL 32816, USA; (J.R.S.); (D.H.F.)
| | - David H. Fukuda
- Physiology of Work and Exercise Response (POWER) Laboratory, Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, FL 32816, USA; (J.R.S.); (D.H.F.)
| | - Patrick S. Pabian
- Musculoskeletal Research Laboratory, Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, FL 32816, USA;
| | - Eric S. Rawson
- Department of Health, Nutrition, and Exercise Science, Messiah University, Mechanicsburg, PA 17055, USA;
| | - Matt S. Stock
- Neuromuscular Plasticity Laboratory, Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, FL 32816, USA;
| |
Collapse
|
19
|
Lygate CA. The Pitfalls of in vivo Cardiac Physiology in Genetically Modified Mice - Lessons Learnt the Hard Way in the Creatine Kinase System. Front Physiol 2021; 12:685064. [PMID: 34054587 PMCID: PMC8160301 DOI: 10.3389/fphys.2021.685064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/22/2021] [Indexed: 12/30/2022] Open
Abstract
In order to fully understand gene function, at some point, it is necessary to study the effects in an intact organism. The creation of the first knockout mouse in the late 1980's gave rise to a revolution in the field of integrative physiology that continues to this day. There are many complex choices when selecting a strategy for genetic modification, some of which will be touched on in this review, but the principal focus is to highlight the potential problems and pitfalls arising from the interpretation of in vivo cardiac phenotypes. As an exemplar, we will scrutinize the field of cardiac energetics and the attempts to understand the role of the creatine kinase (CK) energy buffering and transport system in the intact organism. This story highlights the confounding effects of genetic background, sex, and age, as well as the difficulties in interpreting knockout models in light of promiscuous proteins and metabolic redundancy. It will consider the dose-dependent effects and unintended consequences of transgene overexpression, and the need for experimental rigour in the context of in vivo phenotyping techniques. It is intended that this review will not only bring clarity to the field of cardiac energetics, but also aid the non-expert in evaluating and critically assessing data arising from in vivo genetic modification.
Collapse
Affiliation(s)
- Craig A Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
20
|
Branovets J, Karro N, Barsunova K, Laasmaa M, Lygate CA, Vendelin M, Birkedal R. Cardiac expression and location of hexokinase changes in a mouse model of pure creatine deficiency. Am J Physiol Heart Circ Physiol 2021; 320:H613-H629. [PMID: 33337958 DOI: 10.1152/ajpheart.00188.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 11/10/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
Creatine kinase (CK) is considered the main phosphotransfer system in the heart, important for overcoming diffusion restrictions and regulating mitochondrial respiration. It is substrate limited in creatine-deficient mice lacking l-arginine:glycine amidinotransferase (AGAT) or guanidinoacetate N-methyltranferase (GAMT). Our aim was to determine the expression, activity, and mitochondrial coupling of hexokinase (HK) and adenylate kinase (AK), as these represent alternative energy transfer systems. In permeabilized cardiomyocytes, we assessed how much endogenous ADP generated by HK, AK, or CK stimulated mitochondrial respiration and how much was channeled to mitochondria. In whole heart homogenates, and cytosolic and mitochondrial fractions, we measured the activities of AK, CK, and HK. Lastly, we assessed the expression of the major HK, AK, and CK isoforms. Overall, respiration stimulated by HK, AK, and CK was ∼25, 90, and 80%, respectively, of the maximal respiration rate, and ∼20, 0, and 25%, respectively, was channeled to the mitochondria. The activity, distribution, and expression of HK, AK, and CK did not change in GAMT knockout (KO) mice. In AGAT KO mice, we found no changes in AK, but we found a higher HK activity in the mitochondrial fraction, greater expression of HK I, but a lower stimulation of respiration by HK. Our findings suggest that mouse hearts depend less on phosphotransfer systems to facilitate ADP flux across the mitochondrial membrane. In AGAT KO mice, which are a model of pure creatine deficiency, the changes in HK may reflect changes in metabolism as well as influence mitochondrial regulation and reactive oxygen species production.NEW & NOTEWORTHY In creatine-deficient AGAT-/- and GAMT-/- mice, the myocardial creatine kinase system is substrate limited. It is unknown whether subcellular localization and mitochondrial ADP channeling by hexokinase and adenylate kinase may compensate as alternative phosphotransfer systems. Our results show no changes in adenylate kinase, which is the main alternative to creatine kinase in heart. However, we found increased expression and activity of hexokinase I in AGAT-/- cardiomyocytes. This could affect mitochondrial regulation and reactive oxygen species production.
Collapse
Affiliation(s)
- Jelena Branovets
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Niina Karro
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Karina Barsunova
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Martin Laasmaa
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Craig A Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Marko Vendelin
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Rikke Birkedal
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
21
|
Laasmaa M, Branovets J, Barsunova K, Karro N, Lygate CA, Birkedal R, Vendelin M. Altered calcium handling in cardiomyocytes from arginine-glycine amidinotransferase-knockout mice is rescued by creatine. Am J Physiol Heart Circ Physiol 2021; 320:H805-H825. [PMID: 33275525 DOI: 10.1152/ajpheart.00300.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/30/2020] [Accepted: 11/23/2020] [Indexed: 01/14/2023]
Abstract
The creatine kinase system facilitates energy transfer between mitochondria and the major ATPases in the heart. Creatine-deficient mice, which lack arginine-glycine amidinotransferase (AGAT) to synthesize creatine and homoarginine, exhibit reduced cardiac contractility. We studied how the absence of a functional CK system influences calcium handling in isolated cardiomyocytes from AGAT-knockouts and wild-type littermates as well as in AGAT-knockout mice receiving lifelong creatine supplementation via the food. Using a combination of whole cell patch clamp and fluorescence microscopy, we demonstrate that the L-type calcium channel (LTCC) current amplitude and voltage range of activation were significantly lower in AGAT-knockout compared with wild-type littermates. Additionally, the inactivation of LTCC and the calcium transient decay were significantly slower. According to our modeling results, these changes can be reproduced by reducing three parameters in knockout mice when compared with wild-type: LTCC conductance, the exchange constant of Ca2+ transfer between subspace and cytosol, and SERCA activity. Because tissue expression of LTCC and SERCA protein were not significantly different between genotypes, this suggests the involvement of posttranslational regulatory mechanisms or structural reorganization. The AGAT-knockout phenotype of calcium handling was fully reversed by dietary creatine supplementation throughout life. Our results indicate reduced calcium cycling in cardiomyocytes from AGAT-knockouts and suggest that the creatine kinase system is important for the development of calcium handling in the heart.NEW & NOTEWORTHY Creatine-deficient mice lacking arginine-glycine amidinotransferase exhibit compromised cardiac function. Here, we show that this is at least partially due to an overall slowing of calcium dynamics. Calcium influx into the cytosol via the L-type calcium current (LTCC) is diminished, and the rate of the sarcoendoplasmic reticulum calcium ATPase (SERCA) pumping calcium back into the sarcoplasmic reticulum is slower. The expression of LTCC and SERCA did not change, suggesting that the changes are regulatory.
Collapse
Affiliation(s)
- Martin Laasmaa
- Laboratory of Systems Biology, Department of Cybernetics, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Jelena Branovets
- Laboratory of Systems Biology, Department of Cybernetics, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Karina Barsunova
- Laboratory of Systems Biology, Department of Cybernetics, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Niina Karro
- Laboratory of Systems Biology, Department of Cybernetics, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Craig A Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, and the British Heart Foundation Centre of Research Excellence, University of Oxford, Tallinn, United Kingdom
| | - Rikke Birkedal
- Laboratory of Systems Biology, Department of Cybernetics, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Marko Vendelin
- Laboratory of Systems Biology, Department of Cybernetics, School of Science, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
22
|
Farr CV, El-Kasaby A, Freissmuth M, Sucic S. The Creatine Transporter Unfolded: A Knotty Premise in the Cerebral Creatine Deficiency Syndrome. Front Synaptic Neurosci 2020; 12:588954. [PMID: 33192443 PMCID: PMC7644880 DOI: 10.3389/fnsyn.2020.588954] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/18/2020] [Indexed: 12/16/2022] Open
Abstract
Creatine provides cells with high-energy phosphates for the rapid reconstitution of hydrolyzed adenosine triphosphate. The eponymous creatine transporter (CRT1/SLC6A8) belongs to a family of solute carrier 6 (SLC6) proteins. The key role of CRT1 is to translocate creatine across tissue barriers and into target cells, such as neurons and myocytes. Individuals harboring mutations in the coding sequence of the human CRT1 gene develop creatine transporter deficiency (CTD), one of the pivotal underlying causes of cerebral creatine deficiency syndrome. CTD encompasses an array of clinical manifestations, including severe intellectual disability, epilepsy, autism, development delay, and motor dysfunction. CTD is characterized by the absence of cerebral creatine, which implies an indispensable role for CRT1 in supplying the brain cells with creatine. CTD-associated variants dramatically reduce or abolish creatine transport activity by CRT1. Many of these are point mutations that are known to trigger folding defects, leading to the retention of encoded CRT1 proteins in the endoplasmic reticulum and precluding their delivery to the cell surface. Misfolding of several related SLC6 transporters also gives rise to detrimental pathologic conditions in people; e.g., mutations in the dopamine transporter induce infantile parkinsonism/dystonia, while mutations in the GABA transporter 1 cause treatment-resistant epilepsy. In some cases, folding defects are amenable to rescue by small molecules, known as pharmacological and chemical chaperones, which restore the cell surface expression and transport activity of the previously non-functional proteins. Insights from the recent molecular, animal and human case studies of CTD add toward our understanding of this complex disorder and reveal the wide-ranging effects elicited upon CRT1 dysfunction. This grants novel therapeutic prospects for the treatment of patients afflicted with CTD, e.g., modifying the creatine molecule to facilitate CRT1-independent entry into brain cells, or correcting folding-deficient and loss-of-function CTD variants using pharmacochaperones and/or allosteric modulators. The latter justifies a search for additional compounds with a capacity to correct mutation-specific defects.
Collapse
Affiliation(s)
| | | | | | - Sonja Sucic
- Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
23
|
Oviedo-Rondón EO, Córdova-Noboa HA. The Potential of Guanidino Acetic Acid to Reduce the Occurrence and Severity of Broiler Muscle Myopathies. Front Physiol 2020; 11:909. [PMID: 32922302 PMCID: PMC7456982 DOI: 10.3389/fphys.2020.00909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/07/2020] [Indexed: 12/29/2022] Open
Abstract
Guanidinoacetic acid (GAA) is the biochemical precursor of creatine, which, in its phosphorylated form, is an essential high-energy carrier in the muscle. Although creatine has limited stability in feed processing, GAA is well established as a source of creatine in the animal feed industry. Published data demonstrate beneficial effects of GAA supplementation on muscle creatine, energy compounds, and antioxidant status, leading to improvements in broiler body weight gain, feed conversion ratio, and breast meat yield. Although increases in weight gain and meat yield are often associated with wooden breast (WB) and other myopathies, recent reports have suggested the potential of GAA supplementation to reduce the occurrence and severity of WB while improving breast meat yield. This disorder increases the hardness of the Pectoralis major muscle and has emerged as a current challenge to the broiler industry worldwide by impacting meat quality. Genetic selection, fast-growth rates, and environmental stressors have been identified to be the main factors related to this myopathy, but the actual cause of this disorder is still unknown. Creatine supplementation has been used as a nutritional prescription in the treatment of several muscular myopathies in humans and other animals. Because GAA is a common feed additive in poultry production, the potential of GAA supplementation to reduce broiler myopathies has been investigated in experimental and commercial scenarios. In addition, a few studies have evaluated the potential of creatine in plasma and blood enzymes related to creatine to be used as potential markers for WB. The evidence indicates that GAA could potentially minimize the incidence of WB. More data are warranted to understand the factors affecting the potential efficacy of GAA to reduce the occurrence and severity of myopathies.
Collapse
|
24
|
Sinha A, Ahmed S, George C, Tsagaris M, Naufer A, von Both I, Tkachyova I, van Eede M, Henkelman M, Schulze A. Magnetic resonance imaging reveals specific anatomical changes in the brain of Agat- and Gamt-mice attributed to creatine depletion and guanidinoacetate alteration. J Inherit Metab Dis 2020; 43:827-842. [PMID: 31951021 DOI: 10.1002/jimd.12215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/30/2019] [Accepted: 01/09/2020] [Indexed: 11/07/2022]
Abstract
Arginine:glycine amidinotransferase- and guanidinoacetate methyltransferase deficiency are severe neurodevelopmental disorders. It is not known whether mouse models of disease express a neuroanatomical phenotype. High-resolution magnetic resonance imaging (MRI) with advanced image analysis was performed in perfused, fixed mouse brains encapsulated with the skull from male, 10-12 week old Agat -exc and B6J.Cg-Gamt tm1Isb mice (n = 48; n = 8 per genotype, strain). T2-weighted MRI scans were nonlinearly aligned to a 3D atlas of the mouse brain with 62 structures identified. Local differences in brain shape related to genotype were assessed by analysis of deformation fields. Creatine (Cr) and guanidinoacetate (GAA) were measured with high-performance liquid chromatography (HPLC) in brain homogenates (n = 24; n = 4 per genotype, strain) after whole-body perfusion. Cr was decreased in the brain of Agat- and Gamt mutant mice. GAA was decreased in Agat-/- and increased in Gamt-/- . Body weight and brain volume were lower in Agat-/- than in Gamt-/- . The analysis of entire brain structures revealed corpus callosum, internal capsule, fimbria and hypothalamus being different between the genotypes in both strains. Eighteen and fourteen significant peaks (local areas of difference in relative size) were found in Agat- and Gamt mutants, respectively. Comparing Agat-/- with Gamt-/- , we found changes in three brain regions, lateral septum, amygdala, and medulla. Intra-strain differences in four brain structures can be associated with Cr deficiency, while the inter-strain differences in three brain structures of the mutant mice may relate to GAA. Correlating these neuroanatomical findings with gene expression data implies the role of Cr metabolism in the developing brain and the importance of early intervention in patients with Cr deficiency syndromes.
Collapse
Affiliation(s)
- Ankit Sinha
- Genetics and Genome Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sohail Ahmed
- Genetics and Genome Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Chris George
- Genetics and Genome Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Melina Tsagaris
- Genetics and Genome Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Amriya Naufer
- Genetics and Genome Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ingo von Both
- Genetics and Genome Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ilona Tkachyova
- Genetics and Genome Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Matthijs van Eede
- Mouse Imaging Centre, Toronto Center of Phenogenomics, Toronto, Ontario, Canada
| | - Mark Henkelman
- Mouse Imaging Centre, Toronto Center of Phenogenomics, Toronto, Ontario, Canada
- Neurosciences and Mental Health Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Andreas Schulze
- Genetics and Genome Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Neu A, Hornig S, Sasani A, Isbrandt D, Gerloff C, Tsikas D, Schwedhelm E, Choe CU. Creatine, guanidinoacetate and homoarginine in statin-induced myopathy. Amino Acids 2020; 52:1067-1069. [PMID: 32594255 PMCID: PMC7406479 DOI: 10.1007/s00726-020-02865-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/20/2020] [Indexed: 11/05/2022]
Abstract
Our study evaluated the effect of creatine and homoarginine in AGAT- and GAMT-deficient mice after simvastatin exposure. Balestrino and Adriano suggest that guanidinoacetate might explain the difference between AGAT- and GAMT-deficient mice in simvastatin-induced myopathy. We agree with Balestrino and Adriano that our data shows that (1) creatine possesses a protective potential to ameliorate statin-induced myopathy in humans and mice and (2) homoarginine did not reveal a beneficial effect in statin-induced myopathy. Third, we agree that guanidinoacetate can be phosphorylated and partially compensate for phosphocreatine. In our study, simvastatin-induced damage showed a trend to be less pronounced in GAMT-deficient mice compared with wildtype mice. Therefore, (phospo) guanidinoacetate cannot completely explain the milder phenotype of GAMT-deficient mice, but we agree that it might contribute to ameliorate statin-induced myopathy in GAMT-deficient mice compared with AGAT-deficient mice. Finally, we agree with Balestino and Adriano that AGAT metabolites should further be evaluated as potential treatments in statin-induced myopathy.
Collapse
Affiliation(s)
- Axel Neu
- Experimental Neuropediatrics, Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sönke Hornig
- Experimental Neuropediatrics, Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ali Sasani
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Dirk Isbrandt
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,University of Cologne, Cologne, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Dimitris Tsikas
- Core Unit Proteomics, Hannover Medical School, Institute of Toxicology, Hannover, Germany
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Chi-Un Choe
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
26
|
Marker enzyme activities in hindleg from creatine-deficient AGAT and GAMT KO mice - differences between models, muscles, and sexes. Sci Rep 2020; 10:7956. [PMID: 32409787 PMCID: PMC7224371 DOI: 10.1038/s41598-020-64740-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/20/2020] [Indexed: 11/10/2022] Open
Abstract
Creatine kinase (CK) functions as an energy buffer in muscles. Its substrate, creatine, is generated by L-arginine:glycine amidinotransferase (AGAT) and guanidinoacetate N-methyltransferase (GAMT). Creatine deficiency has more severe consequences for AGAT than GAMT KO mice. In the present study, to characterize their muscle phenotype further, we recorded the weight of tibialis anterior (TA), extensor digitorum longus (EDL), gastrocnemius (GAS), plantaris (PLA) and soleus (SOL) from creatine-deficient AGAT and GAMT, KO and WT mice. In GAS, PLA and SOL representing glycolytic, intermediate and oxidative muscle, respectively, we recorded the activities of pyruvate kinase (PK), lactate dehydrogenase (LDH), citrate synthase (CS) and cytochrome oxidase (CO). In AGAT KO compared to WT mice, muscle atrophy and differences in marker enzyme activities were more pronounced in glycolytic than oxidative muscle. In GAMT KO compared to WT, the atrophy was modest, differences in PK and LDH activities were minor, and CS and CO activities were slightly higher in all muscles. SOL from males had higher CS and CO activities compared to females. Our results add detail to the characterization of AGAT and GAMT KO skeletal muscle phenotypes and illustrate the importance of taking into account differences between muscles, and differences between sexes.
Collapse
|
27
|
Hagenbeek FA, Roetman PJ, Pool R, Kluft C, Harms AC, van Dongen J, Colins OF, Talens S, van Beijsterveldt CEM, Vandenbosch MMLJZ, de Zeeuw EL, Déjean S, Fanos V, Ehli EA, Davies GE, Hottenga JJ, Hankemeier T, Bartels M, Vermeiren RRJM, Boomsma DI. Urinary Amine and Organic Acid Metabolites Evaluated as Markers for Childhood Aggression: The ACTION Biomarker Study. Front Psychiatry 2020; 11:165. [PMID: 32296350 PMCID: PMC7138132 DOI: 10.3389/fpsyt.2020.00165] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 02/21/2020] [Indexed: 01/05/2023] Open
Abstract
Biomarkers are of interest as potential diagnostic and predictive instruments in personalized medicine. We present the first urinary metabolomics biomarker study of childhood aggression. We aim to examine the association of urinary metabolites and neurotransmitter ratios involved in key metabolic and neurotransmitter pathways in a large cohort of twins (N = 1,347) and clinic-referred children (N = 183) with an average age of 9.7 years. This study is part of ACTION (Aggression in Children: Unraveling gene-environment interplay to inform Treatment and InterventiON strategies), in which we developed a standardized protocol for large-scale collection of urine samples in children. Our analytical design consisted of three phases: a discovery phase in twins scoring low or high on aggression (N = 783); a replication phase in twin pairs discordant for aggression (N = 378); and a validation phase in clinical cases and matched twin controls (N = 367). In the discovery phase, 6 biomarkers were significantly associated with childhood aggression, of which the association of O-phosphoserine (β = 0.36; SE = 0.09; p = 0.004), and gamma-L-glutamyl-L-alanine (β = 0.32; SE = 0.09; p = 0.01) remained significant after multiple testing. Although non-significant, the directions of effect were congruent between the discovery and replication analyses for six biomarkers and two neurotransmitter ratios and the concentrations of 6 amines differed between low and high aggressive twins. In the validation analyses, the top biomarkers and neurotransmitter ratios, with congruent directions of effect, showed no significant associations with childhood aggression. We find suggestive evidence for associations of childhood aggression with metabolic dysregulation of neurotransmission, oxidative stress, and energy metabolism. Although replication is required, our findings provide starting points to investigate causal and pleiotropic effects of these dysregulations on childhood aggression.
Collapse
Affiliation(s)
- Fiona A. Hagenbeek
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, Netherlands
| | - Peter J. Roetman
- Curium-LUMC, Department of Child and Adolescent Psychiatry, Leiden University Medical Center, Leiden, Netherlands
| | - René Pool
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, Netherlands
| | | | - Amy C. Harms
- Division of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Leiden, Netherlands
- The Netherlands Metabolomics Centre, Leiden, Netherlands
| | - Jenny van Dongen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, Netherlands
| | - Olivier F. Colins
- Curium-LUMC, Department of Child and Adolescent Psychiatry, Leiden University Medical Center, Leiden, Netherlands
- Department Special Needs Education, Ghent University, Ghent, Belgium
| | | | | | | | - Eveline L. de Zeeuw
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, Netherlands
| | - Sébastien Déjean
- Toulouse Mathematics Institute, University of Toulouse, CNRS, Toulouse, France
| | - Vassilios Fanos
- Department of Surgical Sciences, University of Cagliari and Neonatal Intensive Care Unit, Cagliari, Italy
| | - Erik A. Ehli
- Avera Institute for Human Genetics, Sioux Falls, SD, United States
| | - Gareth E. Davies
- Avera Institute for Human Genetics, Sioux Falls, SD, United States
| | - Jouke Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Thomas Hankemeier
- Division of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Leiden, Netherlands
- The Netherlands Metabolomics Centre, Leiden, Netherlands
| | - Meike Bartels
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, Netherlands
- Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Robert R. J. M. Vermeiren
- Curium-LUMC, Department of Child and Adolescent Psychiatry, Leiden University Medical Center, Leiden, Netherlands
| | - Dorret I. Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, Netherlands
- Amsterdam Neuroscience, Amsterdam, Netherlands
| |
Collapse
|
28
|
Analysis of L-arginine:glycine amidinotransferase-, creatine- and homoarginine-dependent gene regulation in the murine heart. Sci Rep 2020; 10:4821. [PMID: 32179820 PMCID: PMC7076046 DOI: 10.1038/s41598-020-61638-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/06/2020] [Indexed: 02/04/2023] Open
Abstract
L-arginine:glycine amidinotransferase (AGAT) and its metabolites creatine and homoarginine (HA) have been linked to cardiovascular pathologies in both human and murine studies, but the underlying molecular mechanisms are poorly understood. Here, we report the first analysis of heart transcriptome variation using microarrays in an AGAT-deficient (AGAT−/−) mouse model to evaluate AGAT-, creatine- and HA-dependent gene regulation. Our data revealed significant differences of gene expression between AGAT−/− and wild-type (WT) mice, affecting cardiac energy metabolism (Fbp2, Ucp2), cardiac hypertrophy and fibrosis (Nppa, Ctgf), immune response (Fgl2), and the conduction system of the heart (Dsc2, Ehd4, Hcn2, Hcn4, Scn4a, Scn4b). All of these genes being expressed on WT level in creatine-supplemented mice. Using in silico analysis based on the GEO database we found that most of these candidate genes (Ctgf, Dsc2, Fbp2, Fgl2, Hcn2, Nppa) revealed significant alterations in a WT mouse model of myocardial infarction underlining a pathophysiological relationship between AGAT metabolism and cardiovascular disease.
Collapse
|
29
|
Aksentijević D, Zervou S, Eykyn TR, McAndrew DJ, Wallis J, Schneider JE, Neubauer S, Lygate CA. Age-Dependent Decline in Cardiac Function in Guanidinoacetate- N-Methyltransferase Knockout Mice. Front Physiol 2020; 10:1535. [PMID: 32038270 PMCID: PMC6985570 DOI: 10.3389/fphys.2019.01535] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/05/2019] [Indexed: 01/15/2023] Open
Abstract
Aim Guanidinoacetate N-methyltransferase (GAMT) is the second essential enzyme in creatine (Cr) biosynthesis. Short-term Cr deficiency is metabolically well tolerated as GAMT–/– mice exhibit normal exercise capacity and response to ischemic heart failure. However, we hypothesized long-term consequences of Cr deficiency and/or accumulation of the Cr precursor guanidinoacetate (GA). Methods Cardiac function and metabolic profile were studied in GAMT–/– mice >1 year. Results In vivo LV catheterization revealed lower heart rate and developed pressure in aging GAMT–/– but normal lung weight and survival versus age-matched controls. Electron microscopy indicated reduced mitochondrial volume density in GAMT–/– hearts (P < 0.001), corroborated by lower mtDNA copy number (P < 0.004), and citrate synthase activity (P < 0.05), however, without impaired mitochondrial respiration. Furthermore, myocardial energy stores and key ATP homeostatic enzymes were barely altered, while pathology was unrelated to oxidative stress since superoxide production and protein carbonylation were unaffected. Gene expression of PGC-1α was 2.5-fold higher in GAMT–/– hearts while downstream genes were not activated, implicating a dysfunction in mitochondrial biogenesis signaling. This was normalized by 10 days of dietary Cr supplementation, as were all in vivo functional parameters, however, it was not possible to differentiate whether relief from Cr deficiency or GA toxicity was causative. Conclusion Long-term Cr deficiency in GAMT–/– mice reduces mitochondrial volume without affecting respiratory function, most likely due to impaired biogenesis. This is associated with hemodynamic changes without evidence of heart failure, which may represent an acceptable functional compromise in return for reduced energy demand in aging mice.
Collapse
Affiliation(s)
- Dunja Aksentijević
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine and Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Sevasti Zervou
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine and Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Thomas R Eykyn
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, United Kingdom
| | - Debra J McAndrew
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine and Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Julie Wallis
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine and Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Jurgen E Schneider
- Experimental and Preclinical Imaging Centre, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Stefan Neubauer
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine and Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Craig A Lygate
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine and Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
30
|
Sasani A, Hornig S, Grzybowski R, Cordts K, Hanff E, Tsikas D, Böger R, Gerloff C, Isbrandt D, Neu A, Schwedhelm E, Choe CU. Muscle phenotype of AGAT- and GAMT-deficient mice after simvastatin exposure. Amino Acids 2019; 52:73-85. [DOI: 10.1007/s00726-019-02812-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 12/05/2019] [Indexed: 01/03/2023]
|
31
|
Kopriva I, Jerić I, Hadžija MP, Hadžija M, Lovrenčić MV, Brkljačić L. Library-assisted nonlinear blind separation and annotation of pure components from a single 1H nuclear magnetic resonance mixture spectra. Anal Chim Acta 2019; 1080:55-65. [PMID: 31409475 DOI: 10.1016/j.aca.2019.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/27/2019] [Accepted: 07/02/2019] [Indexed: 01/07/2023]
Abstract
Due to its capability for high-throughput screening 1H nuclear magnetic resonance (NMR) spectroscopy is commonly used for metabolite research. The key problem in 1H NMR spectroscopy of multicomponent mixtures is overlapping of component signals and that is increasing with the number of components, their complexity and structural similarity. It makes metabolic profiling, that is carried out through matching acquired spectra with metabolites from the library, a hard problem. Here, we propose a method for nonlinear blind separation of highly correlated components spectra from a single 1H NMR mixture spectra. The method transforms a single nonlinear mixture into multiple high-dimensional reproducible kernel Hilbert Spaces (mRKHSs). Therein, highly correlated components are separated by sparseness constrained nonnegative matrix factorization in each induced RKHS. Afterwards, metabolites are identified through comparison of separated components with the library comprised of 160 pure components. Thereby, a significant number of them are expected to be related with diabetes type 2. Conceptually similar methodology for nonlinear blind separation of correlated components from two or more mixtures is presented in the Supplementary material. Single-mixture blind source separation is exemplified on: (i) annotation of five components spectra separated from one 1H NMR model mixture spectra; (ii) annotation of fifty five metabolites separated from one 1H NMR mixture spectra of urine of subjects with and without diabetes type 2. Arguably, it is for the first time a method for blind separation of a large number of components from a single nonlinear mixture has been proposed. Moreover, the proposed method pinpoints urinary creatine, glutamic acid and 5-hydroxyindoleacetic acid as the most prominent metabolites in samples from subjects with diabetes type 2, when compared to healthy controls.
Collapse
Affiliation(s)
- Ivica Kopriva
- Division of Electronics, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia.
| | - Ivanka Jerić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia
| | - Marijana Popović Hadžija
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia
| | - Mirko Hadžija
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia
| | - Marijana Vučić Lovrenčić
- Department of Medical Biochemistry and Laboratory Medicine, University Hospital Merkur, Zajčeva 19, HR-10000, Zagreb, Croatia
| | - Lidija Brkljačić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia
| |
Collapse
|
32
|
Balestrino M, Adriano E. Creatine as a Candidate to Prevent Statin Myopathy. Biomolecules 2019; 9:biom9090496. [PMID: 31533334 PMCID: PMC6770148 DOI: 10.3390/biom9090496] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 12/17/2022] Open
Abstract
Statins prevent cardiovascular diseases, yet their use is limited by the muscle disturbances they cause. Rarely, statin-induced myopathy is autoimmune, but more commonly it is due to direct muscle toxicity. Available evidence suggests that statin-induced creatine deficiency might be a major cause of this toxicity, and that creatine supplementation prevents it. Statins inhibit guanidinoacetate methyl transferase (GAMT), the last enzyme in the synthesis of creatine; thus, they decrease its intracellular content. Such decreased content could cause mitochondrial impairment, since creatine is the final acceptor of the phosphate group of adenosine triphosphate (ATP) at the end of mitochondrial oxidative phosphorylation. Decreased cellular synthesis of ATP would follow. Accordingly, ATP synthesis is decreased in statin-treated cells. In vitro, creatine supplementation prevents the opening of the mitochondrial permeability transition pore that is caused by statins. Clinically, creatine administration prevents statin myopathy in statin-intolerant patients. Additional research is warranted to hopefully confirm these findings. However, creatine is widely used by athletes with no adverse events, and has demonstrated to be safe even in double-blind, placebo-controlled trials of elderly individuals. Thus, it should be trialed, under medical supervision, in patients who cannot assume statin due to the occurrence of muscular symptoms.
Collapse
Affiliation(s)
- Maurizio Balestrino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Sciences (DINOGMI), University of Genoa, Largo Daneo 3, 16132 Genova, Italy.
| | - Enrico Adriano
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Sciences (DINOGMI), University of Genoa, Largo Daneo 3, 16132 Genova, Italy
| |
Collapse
|
33
|
Faller KME, Atzler D, McAndrew DJ, Zervou S, Whittington HJ, Simon JN, Aksentijevic D, Ten Hove M, Choe CU, Isbrandt D, Casadei B, Schneider JE, Neubauer S, Lygate CA. Impaired cardiac contractile function in arginine:glycine amidinotransferase knockout mice devoid of creatine is rescued by homoarginine but not creatine. Cardiovasc Res 2019; 114:417-430. [PMID: 29236952 PMCID: PMC5982714 DOI: 10.1093/cvr/cvx242] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/08/2017] [Indexed: 01/09/2023] Open
Abstract
Aims Creatine buffers cellular adenosine triphosphate (ATP) via the creatine kinase reaction. Creatine levels are reduced in heart failure, but their contribution to pathophysiology is unclear. Arginine:glycine amidinotransferase (AGAT) in the kidney catalyses both the first step in creatine biosynthesis as well as homoarginine (HA) synthesis. AGAT-/- mice fed a creatine-free diet have a whole body creatine-deficiency. We hypothesized that AGAT-/- mice would develop cardiac dysfunction and rescue by dietary creatine would imply causality. Methods and results Withdrawal of dietary creatine in AGAT-/- mice provided an estimate of myocardial creatine efflux of ∼2.7%/day; however, in vivo cardiac function was maintained despite low levels of myocardial creatine. Using AGAT-/- mice naïve to dietary creatine we confirmed absence of phosphocreatine in the heart, but crucially, ATP levels were unchanged. Potential compensatory adaptations were absent, AMPK was not activated and respiration in isolated mitochondria was normal. AGAT-/- mice had rescuable changes in body water and organ weights suggesting a role for creatine as a compatible osmolyte. Creatine-naïve AGAT-/- mice had haemodynamic impairment with low LV systolic pressure and reduced inotropy, lusitropy, and contractile reserve. Creatine supplementation only corrected systolic pressure despite normalization of myocardial creatine. AGAT-/- mice had low plasma HA and supplementation completely rescued all other haemodynamic parameters. Contractile dysfunction in AGAT-/- was confirmed in Langendorff perfused hearts and in creatine-replete isolated cardiomyocytes, indicating that HA is necessary for normal cardiac function. Conclusions Our findings argue against low myocardial creatine per se as a major contributor to cardiac dysfunction. Conversely, we show that HA deficiency can impair cardiac function, which may explain why low HA is an independent risk factor for multiple cardiovascular diseases.
Collapse
Affiliation(s)
- Kiterie M E Faller
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence at the University of Oxford and the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Dorothee Atzler
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence at the University of Oxford and the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK.,German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Institute for Cardiovascular Prevention (IPEK), Pettenkoferstraße 8a & 9, 80336 Munich, Germany.,Walther-Straub Institute of Pharmacology and Toxicology, Ludwig Maximilians University, Goethestrasse 33, 80336 Munich, Germany
| | - Debra J McAndrew
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence at the University of Oxford and the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Sevasti Zervou
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence at the University of Oxford and the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Hannah J Whittington
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence at the University of Oxford and the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Jillian N Simon
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence at the University of Oxford and the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Dunja Aksentijevic
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence at the University of Oxford and the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Michiel Ten Hove
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence at the University of Oxford and the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Chi-Un Choe
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Dirk Isbrandt
- Experimental Neurophysiology, German Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany.,The Institute for Molecular and Behavioral Neuroscience, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Barbara Casadei
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence at the University of Oxford and the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Jurgen E Schneider
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence at the University of Oxford and the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK.,Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Stefan Neubauer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence at the University of Oxford and the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Craig A Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence at the University of Oxford and the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| |
Collapse
|
34
|
Abstract
With an ever aging population, identifying interventions that can alleviate age-related functional declines has become increasingly important. Dietary supplements have taken center stage based on various health claims and have become a multi-million dollar business. One such supplement is creatine, a major contributor to normal cellular physiology. Creatine, an energy source that can be endogenously synthesized or obtained through diet and supplement, is involved primarily in cellular metabolism via ATP replenishment. The goal of this chapter is to summarize how creatine and its associated enzyme, creatine kinase, act under normal physiological conditions, and how altered levels of either may lead to detrimental functional outcomes. Furthermore, we will focus on the effect of aging on the creatine system and how supplementation may affect the aging process and perhaps reverse it.
Collapse
Affiliation(s)
- Nathalie Sumien
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Ritu A Shetty
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Eric B Gonzales
- Department of Medical Education, TCU and UNTHSC School of Medicine, Fort Worth, TX, USA.
| |
Collapse
|
35
|
Giusti L, Molinaro A, Alessandrì MG, Boldrini C, Ciregia F, Lacerenza S, Ronci M, Urbani A, Cioni G, Mazzoni MR, Pizzorusso T, Lucacchini A, Baroncelli L. Brain mitochondrial proteome alteration driven by creatine deficiency suggests novel therapeutic venues for creatine deficiency syndromes. Neuroscience 2019; 409:276-289. [PMID: 31029731 DOI: 10.1016/j.neuroscience.2019.03.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/09/2019] [Accepted: 03/12/2019] [Indexed: 01/15/2023]
Abstract
Creatine (Cr) is a small metabolite with a central role in energy metabolism and mitochondrial function. Creatine deficiency syndromes are inborn errors of Cr metabolism causing Cr depletion in all body tissues and particularly in the nervous system. Patient symptoms involve intellectual disability, language and behavioral disturbances, seizures and movement disorders suggesting that brain cells are particularly sensitive to Cr depletion. Cr deficiency was found to affect metabolic activity and structural abnormalities of mitochondrial organelles; however a detailed analysis of molecular mechanisms linking Cr deficit, energy metabolism alterations and brain dysfunction is still missing. Using a proteomic approach we evaluated the proteome changes of the brain mitochondrial fraction induced by the deletion of the Cr transporter (CrT) in developing mutant mice. We found a marked alteration of the mitochondrial proteomic landscape in the brain of CrT deficient mice, with the overexpression of many proteins involved in energy metabolism and response to oxidative stress. Moreover, our data suggest possible abnormalities of dendritic spines, synaptic function and plasticity, network excitability and neuroinflammatory response. Intriguingly, the alterations occurred in coincidence with the developmental onset of neurological symptoms. Thus, cerebral mitochondrial alterations could represent an early response to Cr deficiency that could be targeted for therapeutic intervention.
Collapse
Affiliation(s)
- Laura Giusti
- Department of Clinical and Experimental Medicine, University of Pisa, I-56126, Pisa, Italy; School of Pharmacy, University of Camerino, I-62032 Camerino, Italy
| | - Angelo Molinaro
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, I-50135, Florence, Italy; Institute of Neuroscience, National Research Council (CNR), I-56124, Pisa, Italy
| | - Maria Grazia Alessandrì
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, I-56128 Pisa, Italy
| | - Claudia Boldrini
- Department of Pharmacy, University of Pisa, I-56126, Pisa, Italy
| | - Federica Ciregia
- Department of Pharmacy, University of Pisa, I-56126, Pisa, Italy; Department of Rheumatology, GIGA Research, Centre Hospitalier Universitaire (CHU) de Liège, B-4000, Liège, Belgium
| | - Serena Lacerenza
- Department of Pharmacy, University of Pisa, I-56126, Pisa, Italy
| | - Maurizio Ronci
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, I-66100, Chieti, Italy
| | - Andrea Urbani
- Institute of Biochemistry and Clinical Chemistry, Catholic university of the sacred heart, I-00168, Rome, Italy
| | - Giovanni Cioni
- Department of Clinical and Experimental Medicine, University of Pisa, I-56126, Pisa, Italy; Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, I-56128 Pisa, Italy
| | | | - Tommaso Pizzorusso
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, I-50135, Florence, Italy; Institute of Neuroscience, National Research Council (CNR), I-56124, Pisa, Italy
| | - Antonio Lucacchini
- Department of Clinical and Experimental Medicine, University of Pisa, I-56126, Pisa, Italy
| | - Laura Baroncelli
- Institute of Neuroscience, National Research Council (CNR), I-56124, Pisa, Italy; Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, I-56128 Pisa, Italy.
| |
Collapse
|
36
|
Ren J, Sherry AD, Malloy CR. Modular 31 P wideband inversion transfer for integrative analysis of adenosine triphosphate metabolism, T 1 relaxation and molecular dynamics in skeletal muscle at 7T. Magn Reson Med 2019; 81:3440-3452. [PMID: 30793793 DOI: 10.1002/mrm.27686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE For efficient and integrative analysis of de novo adenosine triphosphate (ATP) synthesis, creatine-kinase-mediated ATP synthesis, T1 relaxation time, and ATP molecular motion dynamics in human skeletal muscle at rest. METHODS Four inversion-transfer modules differing in center inversion frequency were combined to generate amplified magnetization transfer (MT) effects in targeted MT pathways, including Pi ↔ γ-ATP, PCr ↔ γ-ATP, and 31 Pγ(α)ATP ↔ 31 PβATP . MT effects from both forward and reverse exchange kinetic pathways were acquired to reduce potential bias and confounding factors in integrated data analysis. RESULTS Kinetic data collected using 4 wideband inversion modules (8 minutes each) yielded the forward exchange rate constants, kPCr →γ ATP = 0.31 ± 0.05 s-1 and kPi →γ ATP = 0.064 ± 0.012 s-1 , and the reverse exchange rate constants, kγATP→Pi = 0.034 ± 0.006 s-1 and kγATP→PCr = 1.37 ± 0.22 s-1 , respectively. The cross-relaxation rate constant, σγ(α) ↔ βATP was -0.20 ± 0.03 s-1 , corresponding to ATP rotational correlation time τc of 0.8 ± 0.1 × 10-7 seconds. The intrinsic T1 relaxation times were Pi (9.2 ± 1.4 seconds), PCr (6.2 ± 0.4 seconds), γ-ATP (1.8 ± 0.1 seconds), α-ATP (1.4 ± 0.1 seconds), and β-ATP (1.1 ± 0.1 seconds). Muscle ATP T1 values were found to be significantly longer than those previously measured in the brain using a similar method. CONCLUSION A combination of multiple inversion transfer modules provides a comprehensive and integrated analysis of ATP metabolism and molecular motion dynamics. This relatively fast technique could be potentially useful for studying metabolic disorders in skeletal muscle.
Collapse
Affiliation(s)
- Jimin Ren
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - A Dean Sherry
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Chemistry, University of Texas at Dallas, Richardson, Texas
| | - Craig R Malloy
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.,VA North Texas Health Care System, Dallas, Texas
| |
Collapse
|
37
|
Yang T, Zhao M, Li J, Zhang L, Jiang Y, Zhou G, Gao F. In ovo feeding of creatine pyruvate alters energy metabolism in muscle of embryos and post-hatch broilers. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 32:834-841. [PMID: 30744365 PMCID: PMC6498083 DOI: 10.5713/ajas.18.0588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/06/2018] [Indexed: 11/27/2022]
Abstract
Objective This study was conducted to investigate the effects of in ovo feeding (IOF) of creatine pyruvate (CrPyr) on the energy metabolism in thigh muscle of embryos and neonatal broilers. Methods A total of 960 eggs were randomly assigned to three treatments: i) non-injected control group, ii) saline group injected with 0.6 mL of physiological saline (0.75%), and iii) CrPyr group injected with 0.6 mL of physiological saline (0.75%) containing 12 mg CrPyr/egg on 17.5 d of incubation. After hatching, 120 male chicks (close to the average body weight of the pooled group) in each group were randomly assigned to eight replications. The feeding experiment lasted 7 days. Results The results showed that IOF of CrPyr increased glucose concentrations in the thigh muscle of broilers on 2 d after injection (p<0.05). Compared with the control and saline groups, the concentration of creatine in CrPyr group was increased on 2 d after injection and the day of hatch (p<0.05). Moreover, IOF of CrPyr increased the creatine kinase activity at hatch and increased the activities of hexokinase and pyruvate kinase on 2 d after injection and the day of hatch (p<0.05). Chicks in CrPyr group showed higher mRNA expressions of glucose transporter 3 (GLUT3) and GLUT8 on the day of hatch (p<0.05). Conclusion These results demonstrated that IOF of CrPyr was beneficial to enhance muscle energy reserves of embryos and hatchlings.
Collapse
Affiliation(s)
- Tong Yang
- Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.,Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Minmeng Zhao
- Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.,Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaolong Li
- Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.,Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Lin Zhang
- Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.,Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Yun Jiang
- Ginling College, Nanjing Normal University, Nanjing 210097, China
| | - Guanghong Zhou
- Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.,Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Gao
- Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.,Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
38
|
Li J, Zhang L, Fu Y, Li Y, Jiang Y, Zhou G, Gao F. Creatine Monohydrate and Guanidinoacetic Acid Supplementation Affects the Growth Performance, Meat Quality, and Creatine Metabolism of Finishing Pigs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9952-9959. [PMID: 30173511 DOI: 10.1021/acs.jafc.8b02534] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This study aimed to investigate the effects of creatine monohydrate (CMH) and guanidinoacetic acid (GAA) supplementation on the growth performance, meat quality, and creatine metabolism of finishing pigs. The pigs were randomly allocated to three treatment groups: the control group, CMH group, and GAA group. In comparison to the control group, CMH treatment increased average daily feed intake and GAA treatment increased average daily feed intake and average daily gain of pigs. In addition, CMH and GAA treatment increased pH45 min, myofibrillar protein solubility, and calpain 1 mRNA expression level and decreased the drip loss and shear force value in longissimus dorsi or semitendinosus muscle. Moreover, CMH and GAA supplementation increased the concentrations of creatine and phosphocreatine and the mRNA expressions of guanidinoacetate N-methyltransferase and creatine transporter in longissimus dorsi muscle, semitendinosus muscle, liver, or kidneys and decreased the mRNA expressions of arginine:glycine amidinotransferase in kidneys. In conclusion, CMH and GAA supplementation could improve the growth performance and meat quality and alter creatine metabolism of finishing pigs.
Collapse
Affiliation(s)
- Jiaolong Li
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Key Laboratory of Gastrointestinal Nutrition and Animal Health of Jiangsu Province, and Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Key Laboratory of Gastrointestinal Nutrition and Animal Health of Jiangsu Province, and Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Yanan Fu
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Key Laboratory of Gastrointestinal Nutrition and Animal Health of Jiangsu Province, and Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Yanjiao Li
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Key Laboratory of Gastrointestinal Nutrition and Animal Health of Jiangsu Province, and Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Yun Jiang
- Ginling College , Nanjing Normal University , Nanjing , Jiangsu 210024 , People's Republic of China
| | - Guanghong Zhou
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Key Laboratory of Gastrointestinal Nutrition and Animal Health of Jiangsu Province, and Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Key Laboratory of Gastrointestinal Nutrition and Animal Health of Jiangsu Province, and Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| |
Collapse
|
39
|
Abstract
Isoforms of creatine kinase (CK) generate and use phosphocreatine, a concentrated and highly diffusible cellular "high energy" intermediate, for the main purpose of energy buffering and transfer in order to maintain cellular energy homeostasis. The mitochondrial CK isoform (mtCK) localizes to the mitochondrial intermembrane and cristae space, where it assembles into peripherally membrane-bound, large cuboidal homooctamers. These are part of proteolipid complexes wherein mtCK directly interacts with cardiolipin and other anionic phospholipids, as well as with the VDAC channel in the outer membrane. This leads to a stabilization and cross-linking of inner and outer mitochondrial membrane, forming so-called contact sites. Also the adenine nucleotide translocator of the inner membrane can be recruited into these proteolipid complexes, probably mediated by cardiolipin. The complexes have functions mainly in energy transfer to the cytosol and stimulation of oxidative phosphorylation, but also in restraining formation of reactive oxygen species and apoptosis. In vitro evidence indicates a putative role of mtCK in mitochondrial phospholipid distribution, and most recently a role in thermogenesis has been proposed. This review summarizes the essential structural and functional data of these mtCK complexes and describes in more detail the more recent advances in phospholipid interaction, thermogenesis, cancer and evolution of mtCK.
Collapse
|
40
|
Córdova-Noboa H, Oviedo-Rondón E, Sarsour A, Barnes J, Ferzola P, Rademacher-Heilshorn M, Braun U. Performance, meat quality, and pectoral myopathies of broilers fed either corn or sorghum based diets supplemented with guanidinoacetic acid. Poult Sci 2018; 97:2479-2493. [DOI: 10.3382/ps/pey096] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/09/2018] [Indexed: 11/20/2022] Open
|
41
|
Córdova-Noboa H, Oviedo-Rondón E, Sarsour A, Barnes J, Sapcota D, López D, Gross L, Rademacher-Heilshorn M, Braun U. Effect of guanidinoacetic acid supplementation on live performance, meat quality, pectoral myopathies and blood parameters of male broilers fed corn-based diets with or without poultry by-products. Poult Sci 2018; 97:2494-2505. [DOI: 10.3382/ps/pey097] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/09/2018] [Indexed: 11/20/2022] Open
|
42
|
Stockebrand M, Sasani A, Das D, Hornig S, Hermans-Borgmeyer I, Lake HA, Isbrandt D, Lygate CA, Heerschap A, Neu A, Choe CU. A Mouse Model of Creatine Transporter Deficiency Reveals Impaired Motor Function and Muscle Energy Metabolism. Front Physiol 2018; 9:773. [PMID: 30013483 PMCID: PMC6036259 DOI: 10.3389/fphys.2018.00773] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/04/2018] [Indexed: 11/22/2022] Open
Abstract
Creatine serves as fast energy buffer in organs of high-energy demand such as brain and skeletal muscle. L-Arginine:glycine amidinotransferase (AGAT) and guanidinoacetate N-methyltransferase are responsible for endogenous creatine synthesis. Subsequent uptake into target organs like skeletal muscle, heart and brain is mediated by the creatine transporter (CT1, SLC6A8). Creatine deficiency syndromes are caused by defects of endogenous creatine synthesis or transport and are mainly characterized by intellectual disability, behavioral abnormalities, poorly developed muscle mass, and in some cases also muscle weakness. CT1-deficiency is estimated to be among the most common causes of X-linked intellectual disability and therefore the brain phenotype was the main focus of recent research. Unfortunately, very limited data concerning muscle creatine levels and functions are available from patients with CT1 deficiency. Furthermore, different CT1-deficient mouse models yielded conflicting results and detailed analyses of their muscular phenotype are lacking. Here, we report the generation of a novel CT1-deficient mouse model and characterized the effects of creatine depletion in skeletal muscle. HPLC-analysis showed strongly reduced total creatine levels in skeletal muscle and heart. MR-spectroscopy revealed an almost complete absence of phosphocreatine in skeletal muscle. Increased AGAT expression in skeletal muscle was not sufficient to compensate for insufficient creatine transport. CT1-deficient mice displayed profound impairment of skeletal muscle function and morphology (i.e., reduced strength, reduced endurance, and muscle atrophy). Furthermore, severely altered energy homeostasis was evident on magnetic resonance spectroscopy. Strongly reduced phosphocreatine resulted in decreased ATP/Pi levels despite an increased inorganic phosphate to ATP flux. Concerning glucose metabolism, we show increased glucose transporter type 4 expression in muscle and improved glucose clearance in CT1-deficient mice. These metabolic changes were associated with activation of AMP-activated protein kinase – a central regulator of energy homeostasis. In summary, creatine transporter deficiency resulted in a severe muscle weakness and atrophy despite different compensatory mechanisms.
Collapse
Affiliation(s)
- Malte Stockebrand
- German Center for Neurodegenerative Diseases, Bonn, Germany.,Institute for Molecular and Behavioral Neuroscience, University of Cologne, Cologne, Germany
| | - Ali Sasani
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Experimental Neuropediatrics, Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Devashish Das
- Department of Radiology, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
| | - Sönke Hornig
- Experimental Neuropediatrics, Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Irm Hermans-Borgmeyer
- Transgenic Mouse Unit, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hannah A Lake
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom.,Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Dirk Isbrandt
- German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Craig A Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom.,Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Arend Heerschap
- Department of Radiology, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
| | - Axel Neu
- Experimental Neuropediatrics, Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Chi-Un Choe
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
43
|
Aggregation of cysteamine-capped gold nanoparticles in presence of ATP as an analytical tool for rapid detection of creatine kinase (CK-MM). Anal Chim Acta 2018; 1024:161-168. [PMID: 29776542 DOI: 10.1016/j.aca.2018.03.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/11/2018] [Accepted: 03/19/2018] [Indexed: 11/23/2022]
Abstract
Creatine kinase, a key biomarker associated with many debilitating physiological conditions has seldom been detected in biological fluids using functionalized gold nanoparticles (GNPs). We have developed a method based on the aggregation of cysteamine (Cys) functionalized GNPs in presence of ATP for effective detection of creatine kinase (CK-MM). Positively charged Cys-GNPs (brick red color) aggregate in presence of negatively charged ATP (blue color) but the process is prevented when CK-MM is added to the solution. The analytical response to the concentration of CK-MM is linear (R2 = 0.9850). The proposed method is selective in sensing the CK-MM for a range of 5.617 × 103 ng/ml, 0.5617 ng/ml. The limit of detection was found to be 0.569 ng/ml in solution and 0.553 ng/ml in human serum with high selectivity.
Collapse
|
44
|
Affiliation(s)
| | - Roger Harris
- Formerly University of Chichester, Chichester, UK.
| |
Collapse
|
45
|
Zhao M, Gong D, Gao T, Zhang L, Li J, Lv P, Yu L, Gao F, Zhou G. In ovo feeding of creatine pyruvate increases hatching weight, growth performance, and muscle growth but has no effect on meat quality in broiler chickens. Livest Sci 2017. [DOI: 10.1016/j.livsci.2017.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
46
|
Padilha CS, Cella PS, Salles LR, Deminice R. Oral creatine supplementation attenuates muscle loss caused by limb immobilization: a systematic review. FISIOTERAPIA EM MOVIMENTO 2017. [DOI: 10.1590/1980-5918.030.004.ar01] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract Introduction: Recent studies have pointing creatine supplementation as a promising therapeutic alterna- tive in several diseases, especially myopathies and neurodegenerative disorder. Objective: elucidate the role of creatine supplementation on deleterious effect caused by limb immobilization in humans and rats. Methods: Analyzed articles were searched by three online databases, PubMed, SportDicus e Scielo. After a review and analysis, the studies were included in this review articles on effect of creatine supplementation on skeletal muscle in humans and rat, before, during and after a period of limb immobilization. Results: Studies analyzed demonstrated positive points in use of creatine supplementation as a therapeutic tool to mitigating the deleterious effects of limb immobilization, in humans and rat. Conclusion: The dataset of this literature review allows us to conclude that creatine supplementation may reduce muscle loss and/or assist in the recovery of muscle atrophy caused by immobilization and disuse in rats and humans. Also, we note that further research with better methodological rigor is needed to clarify the mechanisms by which creatine support the recovery of muscle atrophy. Moreover, these effects are positive and promising in the field of muscle rehabilitation, especially after member’s immobilization.
Collapse
|
47
|
Iqbal F, Hoeger H, Lubec G, Bodamer O. Biochemical and behavioral phenotype of AGAT and GAMT deficient mice following long-term Creatine monohydrate supplementation. Metab Brain Dis 2017; 32:1951-1961. [PMID: 28808834 DOI: 10.1007/s11011-017-0092-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/11/2017] [Indexed: 10/19/2022]
Abstract
The creatine/phosphocreatine system is essential for cellular phosphate coupled energy storage and production. We investigated the utility of creatine monohydrate supplementation in two different creatine deficient knockout mouse models. Following weaning, female Arginine: Glycine Amidinotransferase (AGAT) and Guanidinoacetate: methyltransferase (GAMT) knockouts and wild type mice were studied based on their genotypes and dietary supplementation (creatine free or 2% creatine monohydrate supplemented diet) for 10 weeks, using a series of behavioral tests and biochemical analyzes. An improved Rota rod performance was observed in both AGAT (p = 0.02) and GAMT knockout mice (p < 0.001) supplemented with 2% creatine. During Morris water maze probe trial, creatine supplemented AGAT knockout mice took less time to reach virtual platform (p = 0.03) and more frequently crossed this area (p = 0.001) than mice on creatine free diet. Similar observations were recorded for GAMT knockout mice. Urinary creatinine concentrations for AGAT (p = 0.001) and GAMT (p = 0.05) knockout mice were increased following creatine supplementation. Creatine supplementation has a potential to improve neuro-muscular coordination, spatial learning in both AGAT and GAMT knockout mice. Long term Creatine supplementation results in increased urine creatinine concentrations indicating improved creatine metabolism in knockout mice.
Collapse
Affiliation(s)
- Furhan Iqbal
- Department of Pediatrics and Adolescent Medicine, Laboratory for Inherited Metabolic Disorders, Medical University of Vienna, Vienna, Austria.
- Institute of Pure and Applied Biology, Zoology Division, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Herald Hoeger
- Core Unit of Biomedical Research, Division of Laboratory Animal Science and Genetics, Brauhausgasse 34, A-2235, Himberg, Austria
| | - Gurt Lubec
- Department of Pediatrics and Adolescent Medicine, Laboratory for Inherited Metabolic Disorders, Medical University of Vienna, Vienna, Austria
| | - Olaf Bodamer
- Division of Genetics and Genomics, Department of Medicine, Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|
48
|
Zhao MM, Gong DQ, Gao T, Zhang L, Li JL, Lv PA, Yu LL, Gao F, Zhou GH. In ovo feeding of creatine pyruvate modulates growth performance, energy reserves and mRNA expression levels of gluconeogenesis and glycogenesis enzymes in liver of embryos and neonatal broilers. J Anim Physiol Anim Nutr (Berl) 2017; 102:e758-e767. [DOI: 10.1111/jpn.12831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 09/19/2017] [Indexed: 12/18/2022]
Affiliation(s)
- M. M. Zhao
- College of Animal Science and Technology; Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Nanjing Agricultural University; Nanjing China
- College of Animal Science and Technology; Yangzhou University; Yangzhou China
| | - D. Q. Gong
- College of Animal Science and Technology; Yangzhou University; Yangzhou China
| | - T. Gao
- College of Animal Science and Technology; Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Nanjing Agricultural University; Nanjing China
| | - L. Zhang
- College of Animal Science and Technology; Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Nanjing Agricultural University; Nanjing China
| | - J. L. Li
- College of Animal Science and Technology; Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Nanjing Agricultural University; Nanjing China
| | - P. A. Lv
- College of Animal Science and Technology; Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Nanjing Agricultural University; Nanjing China
| | - L. L. Yu
- College of Animal Science and Technology; Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Nanjing Agricultural University; Nanjing China
| | - F. Gao
- College of Animal Science and Technology; Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Nanjing Agricultural University; Nanjing China
| | - G. H. Zhou
- College of Animal Science and Technology; Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Nanjing Agricultural University; Nanjing China
| |
Collapse
|
49
|
Zhao M, Gao T, Zhang L, Li J, Lv P, Yu L, Gao F, Zhou G. In ovo feeding of creatine pyruvate alters energy reserves, satellite cell mitotic activity and myogenic gene expression of breast muscle in embryos and neonatal broilers. Poult Sci 2017; 96:3314-3323. [DOI: 10.3382/ps/pex150] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 05/10/2017] [Indexed: 11/20/2022] Open
|
50
|
Zhu M, Liu Z, Gao M, Zhang Y, Li Y, Ling S, Zhang P, Zhao C, Jiang L, Liu Y, Li Q, Li D, Hu S, Li Y. The effect of Bu Zhong Yi Qi decoction on simulated weightlessness‑induced muscle atrophy and its mechanisms. Mol Med Rep 2017; 16:5165-5174. [PMID: 28849026 PMCID: PMC5647051 DOI: 10.3892/mmr.2017.7287] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 05/11/2017] [Indexed: 12/17/2022] Open
Abstract
Microgravity has been previously demonstrated to induce skeletal muscle atrophy, loss of muscle force and disorders in myogenesis and metabolism. Current pharmacological strategies exhibit poor efficacy. Bu Zhong Yi Qi decoction (BZ) is a well-known traditional Chinese medicine decoction used for myasthenia gravis. In the present study, its effect on unloading induced muscle atrophy was investigated. The mousetail suspension model was used to simulate weightlessness induced muscle atrophy. The results indicated that BZ could significantly protect muscles from simulated weightlessness-induced atrophy. To elucidate the underlying mechanisms, drugCIPHER-CS methods were introduced to predict its potential targets, significantly enriched pathways and biological processes. The results demonstrated that the calcium signaling pathway, citrate cycle, biosynthetic and lipid metabolic process are affected by BZ. Among the targets, nuclear receptor corepressor 1 (NCoR1) is one of the most important proteins involved in myogenesis and metabolism. The results indicated that BZ significantly downregulated NCoR 1 expression, and further induced muscle differentiation and metabolism by regulating NCoR1-associated gene expression in vivo and in vitro. In summary, the present study indicated that may be effective in combating weightlessness-induced muscle atrophy. Combined with bioinformatics, the underlying mechanism for this decoction was investigated, which provided an improved understanding of this decoction.
Collapse
Affiliation(s)
- Mu Zhu
- Department of Chinese Materia Medica, School of Preclinical Medicine, Beijing University of Chinese Medicine, Beijing 100019, P.R. China
| | - Zhongyang Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Institute of Radiation Medicine, Beijing 102206, P.R. China
| | - Mingze Gao
- Department of Chinese Materia Medica, School of Preclinical Medicine, Beijing University of Chinese Medicine, Beijing 100019, P.R. China
| | - Yan Zhang
- Department of Chinese Materia Medica, School of Preclinical Medicine, Beijing University of Chinese Medicine, Beijing 100019, P.R. China
| | - Yuheng Li
- State Key Laboratory of Space Medicine Fundamentals and Applications, China Astronaut Research and Training Center, Beijing 100094, P.R. China
| | - Shukuan Ling
- State Key Laboratory of Space Medicine Fundamentals and Applications, China Astronaut Research and Training Center, Beijing 100094, P.R. China
| | - Pengfei Zhang
- State Key Laboratory of Space Medicine Fundamentals and Applications, China Astronaut Research and Training Center, Beijing 100094, P.R. China
| | - Chenyang Zhao
- State Key Laboratory of Space Medicine Fundamentals and Applications, China Astronaut Research and Training Center, Beijing 100094, P.R. China
| | - Lijun Jiang
- State Key Laboratory of Space Medicine Fundamentals and Applications, China Astronaut Research and Training Center, Beijing 100094, P.R. China
| | - Yu Liu
- State Key Laboratory of Space Medicine Fundamentals and Applications, China Astronaut Research and Training Center, Beijing 100094, P.R. China
| | - Qi Li
- State Key Laboratory of Space Medicine Fundamentals and Applications, China Astronaut Research and Training Center, Beijing 100094, P.R. China
| | - Dong Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Institute of Radiation Medicine, Beijing 102206, P.R. China
| | - Sumin Hu
- Department of Chinese Materia Medica, School of Preclinical Medicine, Beijing University of Chinese Medicine, Beijing 100019, P.R. China
| | - Yingxian Li
- State Key Laboratory of Space Medicine Fundamentals and Applications, China Astronaut Research and Training Center, Beijing 100094, P.R. China
| |
Collapse
|