1
|
Tan Y, Han Y, Zhang L, Ma Y, Sun M. Closed-loop photoacoustic photothermal treatment method and system based on real-time Kalman filter temperature estimation. Comput Biol Med 2025; 191:110132. [PMID: 40215871 DOI: 10.1016/j.compbiomed.2025.110132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/30/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025]
Abstract
Real-time measurement and control of the temperature and thermal damage of the therapeutic target is critical to the safety and effectiveness of photothermal therapy (PTT). However, due to the lack of effective non-contact temperature control technology, it is very difficult to accurately measure and control the temperature of the target area, which may cause damage to the healthy tissues around the target area. In this paper, to ensure the effectiveness of photothermal therapy while minimizing damage to normal tissues, we propose a closed-loop photoacoustic photothermal therapy method and system based on real-time Kalman filter temperature estimation model. A prediction and observation model for the target temperature field has been established, achieving non-invasive real-time temperature measurement. At the same time, combined with the closed-loop fuzzy PID temperature regulation algorithm, we can also adjust the drive power of therapeutic laser in real time, and finally achieve the real-time control of the target temperature. After experimental validation, the system proposed in this paper achieves the temperature control accuracy of 0.47 °C and 0.76 °C on the phantoms and ex vivo, respectively. In addition, the comparison with the results of the simulated PTT experiment without the temperature observation model further verifies the advantages of this method in dynamic and static control performance. In general, this method has the potential to be used as an auxiliary means in PTT to further improve the dynamic characteristics and precision of therapy.
Collapse
Affiliation(s)
- Yi Tan
- Department of Control Science and Engineering, Harbin Institute of Technology, Weihai, Shandong, 264200, China
| | - Yuelin Han
- Department of Control Science and Engineering, Harbin Institute of Technology, Weihai, Shandong, 264200, China; Shandong Laboratory of Advanced Biomaterials and Medical Devices in Weihai, Weihai, Shandong, 264209, China
| | - Leixi Zhang
- Department of Control Science and Engineering, Harbin Institute of Technology, Weihai, Shandong, 264200, China
| | - Yiming Ma
- Department of Control Science and Engineering, Harbin Institute of Technology, Weihai, Shandong, 264200, China; Department of Control Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China; Shandong Laboratory of Advanced Biomaterials and Medical Devices in Weihai, Weihai, Shandong, 264209, China; Harbin Institute of Technology Suzhou Research Institute, Suzhou, 215000, China.
| | - Mingjian Sun
- Department of Control Science and Engineering, Harbin Institute of Technology, Weihai, Shandong, 264200, China; Department of Control Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China; Shandong Laboratory of Advanced Biomaterials and Medical Devices in Weihai, Weihai, Shandong, 264209, China; Harbin Institute of Technology Suzhou Research Institute, Suzhou, 215000, China.
| |
Collapse
|
2
|
Hariyanto AP, Mugni FF, Khumaira L, Sensusiati AD, Nursela AL, Suprijanto, Ng KH, Haryanto F, Endarko. Fabrication and evaluation of breast tissue equivalent phantoms for image quality assessment in ultrasound imaging. Radiography (Lond) 2025; 31:254-263. [PMID: 39667263 DOI: 10.1016/j.radi.2024.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024]
Abstract
INTRODUCTION Phantom materials with tissue-equivalent physical properties that require regular evaluation using patented phantoms are essential for medical device quality assurance programs. This study evaluated phantom materials for tissue equivalence and their use in image quality assessment for breast ultrasound scanner performance testing using two custom-made phantoms. METHODS Two types of phantoms were developed: phantoms A and B. Phantom A was made from a base material consisting of polyvinyl chloride-plastisol with the addition of glycerol, whereas phantom B consisted of polyvinyl chloride-plastisol with the addition of graphite. Each phantom had a stiff and soft lesion shaped like a sphere, with a diameter of 1.4 cm. The phantoms were cuboids with dimensions of 10 × 10 cm2 and a thickness of 5 cm. A series of phantom evaluations was performed, consisting of density, elasticity, acoustic properties, B-mode ultrasound images, and strain ratio. RESULTS The characterisation results show that background A closely resembles fibroglandular tissue in terms of density and acoustic properties (<5% variation); background B only resembles fibroglandular tissue in terms of density (-1.8% variation). In terms of elasticity, both backgrounds were close to the minimum value of fibroglandular tissue elasticity. The soft lesion on the phantom had a slightly lower density and elasticity than the carcinoma, whereas its acoustic properties (speed of sound and attenuation coefficient) were slightly higher than those of the reference carcinoma. Both phantoms were consistent with the literature in terms of strain ratio, geometric accuracy, lesion detection, and mean pixel value and showed good potential stability over one year. CONCLUSION This study successfully described the fabrication and evaluation sequence of a phantom equivalent to breast fibroglandular tissue and its evaluation via ultrasound imaging. IMPLICATIONS FOR PRACTICE This study offers proprietary information essential for the fabrication of phantoms that can be used for quality assurance and control in ultrasound imaging.
Collapse
Affiliation(s)
- A P Hariyanto
- Department of Physics, Institut Teknologi Sepuluh Nopember, Kampus ITS, Sukolilo Surabaya 60111, East Java, Indonesia
| | - F F Mugni
- Department of Physics, Institut Teknologi Sepuluh Nopember, Kampus ITS, Sukolilo Surabaya 60111, East Java, Indonesia
| | - L Khumaira
- Department of Physics, Institut Teknologi Sepuluh Nopember, Kampus ITS, Sukolilo Surabaya 60111, East Java, Indonesia
| | - A D Sensusiati
- Department of Radiology, Universitas Airlangga Hospital, Surabaya 60115, East Java, Indonesia
| | - A L Nursela
- Radiology Installation, Gambiran General Hospital, Kediri, East Java, 64133, Indonesia
| | - Suprijanto
- Instrumentation and Control Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha, 10, Labtek, 40132 Bandung, Indonesia
| | - K H Ng
- Department of Biomedical Imaging, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - F Haryanto
- Department of Physics, Faculty of Mathematics and Natural Science, Institut Teknologi Bandung, Jl. Ganesa 10, Bandung 40132, Indonesia
| | - Endarko
- Department of Physics, Institut Teknologi Sepuluh Nopember, Kampus ITS, Sukolilo Surabaya 60111, East Java, Indonesia.
| |
Collapse
|
3
|
Ifijen IH, Christopher AT, Lekan OK, Aworinde OR, Faderin E, Obembe O, Abdulsalam Akanji TF, Igboanugo JC, Udogu U, Ogidi GO, Iorkula TH, Osayawe OJK. Advancements in tantalum based nanoparticles for integrated imaging and photothermal therapy in cancer management. RSC Adv 2024; 14:33681-33740. [PMID: 39450067 PMCID: PMC11498270 DOI: 10.1039/d4ra05732e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024] Open
Abstract
Tantalum-based nanoparticles (TaNPs) have emerged as promising tools in cancer management, owing to their unique properties that facilitate innovative imaging and photothermal therapy applications. This review provides a comprehensive overview of recent advancements in TaNPs, emphasizing their potential in oncology. Key features include excellent biocompatibility, efficient photothermal conversion, and the ability to integrate multifunctional capabilities, such as targeted drug delivery and enhanced imaging. Despite these advantages, challenges remain in establishing long-term biocompatibility, optimizing therapeutic efficacy through surface modifications, and advancing imaging techniques for real-time monitoring. Strategic approaches to address these challenges include surface modifications like PEGylation to improve biocompatibility, precise control over size and shape for effective photothermal therapy, and the development of biodegradable TaNPs for safe elimination from the body. Furthermore, integrating advanced imaging modalities-such as photoacoustic imaging, magnetic resonance imaging (MRI), and computed tomography (CT)-enable real-time tracking of TaNPs in vivo, which is crucial for clinical applications. Personalized medicine strategies that leverage biomarkers and genetic profiling also hold promise for tailoring TaNP-based therapies to individual patient profiles, thereby enhancing treatment efficacy and minimizing side effects. In conclusion, TaNPs represent a significant advancement in nanomedicine, poised to transform cancer treatment paradigms while expanding into various biomedical applications.
Collapse
Affiliation(s)
- Ikhazuagbe H Ifijen
- Department of Research Outreach, Rubber Research Institute of Nigeria Iyanomo Benin City Nigeria
| | - Awoyemi Taiwo Christopher
- Laboratory Department, Covenant University Medical Centre Canaan land, KM 10, Idiroko Road Ota Ogun State Nigeria
| | - Ogunnaike Korede Lekan
- Department of Chemistry, Wichita State University 1845 Fairmount, Box 150 Wichita KS 67260-0150 USA
| | | | - Emmanuel Faderin
- Department of Pharmaceutical Sciences, Southern Illinois University Edwardsville, 1 Hairpin Drive Edwardsville IL 62026-001 USA
| | | | | | - Juliet C Igboanugo
- Department of Health, Human Performance, and Recreation 155 Stadium Drive Arkansas 72701 USA
| | - Uzochukwu Udogu
- Department of Chemistry, Federal University of Technology Owerri Nigeria
| | | | - Terungwa H Iorkula
- Department of Chemistry and Biochemistry, Brigham Young University Provo Utah USA
| | | |
Collapse
|
4
|
Hacker L, Joseph J, Lilaj L, Manohar S, Ivory AM, Tao R, Bohndiek SE, Members of IPASC. Tutorial on phantoms for photoacoustic imaging applications. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:080801. [PMID: 39143981 PMCID: PMC11324153 DOI: 10.1117/1.jbo.29.8.080801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 08/16/2024]
Abstract
Significance Photoacoustic imaging (PAI) is an emerging technology that holds high promise in a wide range of clinical applications, but standardized methods for system testing are lacking, impeding objective device performance evaluation, calibration, and inter-device comparisons. To address this shortfall, this tutorial offers readers structured guidance in developing tissue-mimicking phantoms for photoacoustic applications with potential extensions to certain acoustic and optical imaging applications. Aim The tutorial review aims to summarize recommendations on phantom development for PAI applications to harmonize efforts in standardization and system calibration in the field. Approach The International Photoacoustic Standardization Consortium has conducted a consensus exercise to define recommendations for the development of tissue-mimicking phantoms in PAI. Results Recommendations on phantom development are summarized in seven defined steps, expanding from (1) general understanding of the imaging modality, definition of (2) relevant terminology and parameters and (3) phantom purposes, recommendation of (4) basic material properties, (5) material characterization methods, and (6) phantom design to (7) reproducibility efforts. Conclusions The tutorial offers a comprehensive framework for the development of tissue-mimicking phantoms in PAI to streamline efforts in system testing and push forward the advancement and translation of the technology.
Collapse
Affiliation(s)
- Lina Hacker
- University of Oxford, Department of Oncology, Oxford, United Kingdom
| | - James Joseph
- University of Dundee, School of Science and Engineering, United Kingdom
- University of Dundee, Centre for Medical Engineering and Technology, Dundee, United Kingdom
| | | | - Srirang Manohar
- University of Twente, Tech Med Centre, Multi-Modality Medical Imaging, Enschede, The Netherlands
| | - Aoife M. Ivory
- St. Vincent’s Private Hospital, Department of Medical Physics, Dublin, Ireland
| | - Ran Tao
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Cambridge, United Kingdom
| | - Sarah E. Bohndiek
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Cambridge, United Kingdom
| | - Members of IPASC
- University of Oxford, Department of Oncology, Oxford, United Kingdom
- University of Dundee, School of Science and Engineering, United Kingdom
- University of Dundee, Centre for Medical Engineering and Technology, Dundee, United Kingdom
- iThera Medical GmbH, Munich, Germany
- University of Twente, Tech Med Centre, Multi-Modality Medical Imaging, Enschede, The Netherlands
- St. Vincent’s Private Hospital, Department of Medical Physics, Dublin, Ireland
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Cambridge, United Kingdom
| |
Collapse
|
5
|
Khodaverdi A, Cinthio M, Reistad E, Erlöv T, Malmsjö M, Zackrisson S, Reistad N. Optical tuning of copolymer-in-oil tissue-mimicking materials for multispectral photoacoustic imaging. Biomed Phys Eng Express 2024; 10:055009. [PMID: 38959869 DOI: 10.1088/2057-1976/ad5e85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/03/2024] [Indexed: 07/05/2024]
Abstract
Objective. The availability of tissue-mimicking materials (TMMs) for manufacturing high-quality phantoms is crucial for standardization, evaluating novel quantitative approaches, and clinically translating new imaging modalities, such as photoacoustic imaging (PAI). Recently, a gel comprising the copolymer styrene-ethylene/butylene-styrene (SEBS) in mineral oil has shown significant potential as TMM due to its optical and acoustic properties akin to soft tissue. We propose using artists' oil-based inks dissolved and diluted in balsam turpentine to tune the optical properties.Approach. A TMM was fabricated by mixing a SEBS copolymer and mineral oil, supplemented with additives to tune its optical absorption and scattering properties independently. A systematic investigation of the tuning accuracies and relationships between concentrations of oil-based pigments and optical absorption properties of the TMM across visible and near-infrared wavelengths using collimated transmission spectroscopy was conducted. The photoacoustic spectrum of various oil-based inks was studied to analyze the effect of increasing concentration and depth.Main results. Artists' oil-based inks dissolved in turpentine proved effective as additives to tune the optical absorption properties of mineral oil SEBS-gel with high accuracy. The TMMs demonstrated long-term stability and suitability for producing phantoms with desired optical absorption properties for PAI studies.Significance. The findings, including tuning of optical absorption and spectral shape, suggest that this TMM facilitates the development of more sophisticated phantoms of arbitrary shapes. This approach holds promise for advancing the development of PAI, including investigation of the spectral coloring effect. In addition, it can potentially aid in the development and clinical translation of ultrasound optical tomography.
Collapse
Affiliation(s)
- Azin Khodaverdi
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden
| | - Magnus Cinthio
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden
| | | | - Tobias Erlöv
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden
| | - Malin Malmsjö
- Department of Clinical Sciences Lund, Ophthalmology, Skåne University Hospital, Lund University, 223 62 Lund, Sweden
| | - Sophia Zackrisson
- Department of Translational Medicine, Diagnostic Radiology, Lund University, 205 02 Malmö, Sweden
- Department of Medical Imaging and Physiology, Skåne University Hospital, 214 28 Malmö, Sweden
| | - Nina Reistad
- Department of Physics, Lund University, 221 00 Lund, Sweden
| |
Collapse
|
6
|
Tao R, Gröhl J, Hacker L, Pifferi A, Roblyer D, Bohndiek SE. Tutorial on methods for estimation of optical absorption and scattering properties of tissue. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:060801. [PMID: 38864093 PMCID: PMC11166171 DOI: 10.1117/1.jbo.29.6.060801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 06/13/2024]
Abstract
Significance The estimation of tissue optical properties using diffuse optics has found a range of applications in disease detection, therapy monitoring, and general health care. Biomarkers derived from the estimated optical absorption and scattering coefficients can reflect the underlying progression of many biological processes in tissues. Aim Complex light-tissue interactions make it challenging to disentangle the absorption and scattering coefficients, so dedicated measurement systems are required. We aim to help readers understand the measurement principles and practical considerations needed when choosing between different estimation methods based on diffuse optics. Approach The estimation methods can be categorized as: steady state, time domain, time frequency domain (FD), spatial domain, and spatial FD. The experimental measurements are coupled with models of light-tissue interactions, which enable inverse solutions for the absorption and scattering coefficients from the measured tissue reflectance and/or transmittance. Results The estimation of tissue optical properties has been applied to characterize a variety of ex vivo and in vivo tissues, as well as tissue-mimicking phantoms. Choosing a specific estimation method for a certain application has to trade-off its advantages and limitations. Conclusion Optical absorption and scattering property estimation is an increasingly important and accessible approach for medical diagnosis and health monitoring.
Collapse
Affiliation(s)
- Ran Tao
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Janek Gröhl
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Lina Hacker
- University of Oxford, Department of Oncology, Oxford, United Kingdom
| | | | - Darren Roblyer
- Boston University, Department of Electrical and Computer Engineering, Boston, Massachusetts, United States
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Sarah E. Bohndiek
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| |
Collapse
|
7
|
Seitzinger M, Gnatzy F, Kern S, Steinhausen R, Klammer J, Schlosser T, Blank V, Karlas T. Development, evaluation, and overview of standardized training phantoms for abdominal ultrasound-guided interventions. ULTRASCHALL IN DER MEDIZIN (STUTTGART, GERMANY : 1980) 2024; 45:176-183. [PMID: 38350630 DOI: 10.1055/a-2242-7074] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
PURPOSE Ultrasound (US) represents the primary approach for abdominal diagnosis and is regularly used to guide diagnostic and therapeutic interventions (INVUS). Due to possible serious INVUS complications, structured training concepts are required. Phantoms can facilitate teaching, but their use is currently restricted by complex manufacturing and short durability of the materials. Hence, the aim of this study was the development and evaluation of an optimized abdominal INVUS phantom. MATERIALS AND METHODS Phantom requirements were defined in a structured research process: Skin-like surface texture, homogeneous matrix with realistic tissue properties, implementation of lesions and abscess cavities in different sizes and depths as well as a modular production process allowing for customized layouts. The phantom prototypes were evaluated in certified ultrasound courses. RESULTS In accordance with the defined specifications, a new type of matrix was developed and cast in multiple layers including different target materials. The phantom structure is based on features of liver anatomy and includes solid focal lesions, vessels, and abscess formations. For a realistic biopsy procedure, ultrasound-proof material was additionally included to imitate bone. The evaluation was performed by US novices (n=40) and experienced participants (n=41). The majority (73/81) confirmed realistic visualization of the lesions. The 3D impression was rated as "very good" in 64% of cases (52/81) and good in 31% (25/81). Overall, 86% (70/81) of the participants certified high clinical relevance of the phantom. CONCLUSION The presented INVUS phantom concept allows standardized and realistic training for interventions.
Collapse
Affiliation(s)
- Max Seitzinger
- Division of Gastroenterology, Department of Medicine II, Leipzig University Medical Centre, Leipzig, Germany
| | - Franziska Gnatzy
- Department of Medicine II, St. Elisabeth Hospital, Leipzig, Germany
| | - Sabine Kern
- Forschungszentrum Ultraschall gGmbH, Research Center Ultrasound, Halle (Saale), Germany
| | - Ralf Steinhausen
- Forschungszentrum Ultraschall gGmbH, Research Center Ultrasound, Halle (Saale), Germany
| | - Jana Klammer
- Forschungszentrum Ultraschall gGmbH, Research Center Ultrasound, Halle (Saale), Germany
| | - Tobias Schlosser
- Division of Gastroenterology, Department of Medicine II, Leipzig University Medical Centre, Leipzig, Germany
| | - Valentin Blank
- Division of Interdisciplinary Ultrasound; Department of Internal Medicine I (Gastroenterology, Pneumology), University Hospital Halle, Halle, Germany
- Division of Gastroenterology, Department of Medicine II, Leipzig University Medical Centre, Leipzig, Germany
| | - Thomas Karlas
- Division of Gastroenterology, Department of Medicine II, Leipzig University Medical Centre, Leipzig, Germany
| |
Collapse
|
8
|
Leonov D, Venidiktova D, Costa-Júnior JFS, Nasibullina A, Tarasova O, Pashinceva K, Vetsheva N, Bulgakova J, Kulberg N, Borsukov A, Saikia MJ. Development of an anatomical breast phantom from polyvinyl chloride plastisol with lesions of various shape, elasticity and echogenicity for teaching ultrasound examination. Int J Comput Assist Radiol Surg 2024; 19:151-161. [PMID: 37099215 DOI: 10.1007/s11548-023-02911-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/04/2023] [Indexed: 04/27/2023]
Abstract
PURPOSE The WHO reported an increasing trend in the number of new cases of breast cancer, making it the most prevalent cancer in the world. This fact necessitates the availability of highly qualified ultrasonographers, which can be achieved by the widespread implementation of training phantoms. The goal of the present work is to develop and test an inexpensive, accessible, and reproducible technology for creating an anatomical breast phantom for practicing ultrasound diagnostic skills in grayscale and elastography imaging, as well as ultrasound-guided biopsy sampling. METHODS We used FDM 3D printer and PLA plastic for printing an anatomical breast mold. We made a phantom using a mixture of polyvinyl chloride plastisol, graphite powder, and metallic glitter to simulate soft tissues and lesions. Various degrees of elasticity were imparted using plastisols of stiffness ranging from 3 to 17 on the Shore scale. The lesions were shaped by hand. The materials and methods used are easily accessible and reproducible. RESULTS Using the proposed technology, we have developed and tested a basic, differential, and elastographic versions of the breast phantom. The three versions of the phantom are anatomical and intended for use in medical education: the basic version is for practicing primary hand-eye coordination skills; the differential one is for practicing the differential diagnosis skills; the elastographic version helps developing the skills needed for assessing the stiffness of tissues. CONCLUSION The proposed technology allows the creation of breast phantoms for practicing hand-eye coordination and develop the critical skills for navigation and assessment of the shape, margins, and size of the lesion, as well as performing an ultrasound-guided biopsy. It is cost-effective, reproducible, and easily implementable, and could be instrumental in generating ultrasonographers with crucial skills for accurate diagnosis of breast cancer, especially in low-resource settings.
Collapse
Affiliation(s)
- Denis Leonov
- Moscow Center for Diagnostics and Telemedicine, Moscow, Russia.
- Moscow Power Engineering Institute, Moscow, Russia.
| | | | | | - Anastasia Nasibullina
- Moscow Center for Diagnostics and Telemedicine, Moscow, Russia
- Moscow Power Engineering Institute, Moscow, Russia
| | - Olga Tarasova
- Plekhanov Russian University of Economics, Moscow, Russia
| | | | - Natalia Vetsheva
- Federal State Budgetary Educational Institution of Further Professional Education "Russian Medical Academy of Continuous Professional Education" of the Ministry of Healthcare of the Russian Federatio, Moscow, Russia
| | - Julia Bulgakova
- Moscow Center for Diagnostics and Telemedicine, Moscow, Russia
- Moscow Power Engineering Institute, Moscow, Russia
| | - Nicholas Kulberg
- Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, Moscow, Russia
| | | | - Manob Jyoti Saikia
- Department of Electrical Engineering, University of North Florida, Jacksonville, FL, 32224, USA
| |
Collapse
|
9
|
Vogt WC, Wear KA, Pfefer TJ. Phantoms for evaluating the impact of skin pigmentation on photoacoustic imaging and oximetry performance. BIOMEDICAL OPTICS EXPRESS 2023; 14:5735-5748. [PMID: 38021140 PMCID: PMC10659791 DOI: 10.1364/boe.501950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/25/2023] [Accepted: 09/11/2023] [Indexed: 12/01/2023]
Abstract
Recent reports have raised concerns of potential racial disparities in performance of optical oximetry technologies. To investigate how variable epidermal melanin content affects performance of photoacoustic imaging (PAI) devices, we developed plastisol phantoms combining swappable skin-mimicking layers with a breast phantom containing either India ink or blood adjusted to 50-100% SO2 using sodium dithionite. Increasing skin pigmentation decreased maximum imaging depth by up to 25%, enhanced image clutter, and increased root-mean-square error in SO2 from 8.0 to 17.6% due to signal attenuation and spectral coloring effects. This phantom tool can aid in evaluating PAI device robustness to ensure high performance in all patients.
Collapse
Affiliation(s)
- William C. Vogt
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Keith A. Wear
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - T. Joshua Pfefer
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| |
Collapse
|
10
|
Grasso V, Raymond JL, Willumeit-Römer R, Joseph J, Jose J. Development of a morphologically realistic mouse phantom for pre-clinical photoacoustic imaging. Med Phys 2023; 50:5757-5771. [PMID: 37535898 DOI: 10.1002/mp.16651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/10/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Characterizations based on anatomically realistic phantoms are highly effective to perform accurate technical validation of imaging systems. Specifically for photoacoustic imaging (PAI), although a variety of phantom models with simplified geometries are reported, an unmet need still exists to establish morphologically realistic heterogeneous pre-clinical phantoms. So the development of a mouse-mimicking phantom can reduce the use of animals for the validation and standardization studies of pre-clinical PAI systems and thus eventually translate the PAI technology to clinical research. PURPOSE Here we designed, developed, and fabricated a stable phantom that mimics the detailed morphology of a mouse, to be used as a realistic tool for PAI. METHODS The mouse phantom, has been designed by using a combination of image modeling and 3D-printing techniques. As a tissue-mimicking material, we have used copolymer-in-oil-based material that was recently proposed by the International Photoacoustic Standardization Consortium (IPASC). In particular, the anatomically realistic phantom has been modeled by using the real atlas of a mouse as a reference. The mouse phantom includes a 3D-printed skeleton and the main abdominal organs such as the liver, spleen, and kidneys obtained by using doped copolymer-in-oil material with 3D-printed molds. In addition, the acoustic and optical properties of the tissue-mimicking material and the long-term stability have been broadly characterized. RESULTS Furthermore, our studies showed that the phantom is durable and stable for more than 200 days, under normal storage and repeated use. Fabrication protocol is easy to reproduce. As a result, the proposed morphologically realistic mouse phantom offers durability, material compatibility, and an unprecedented realistic resemblance to the actual rodents' anatomy in PAI. CONCLUSION This durable morphologically realistic mouse phantom would minimize the animal experiments in compliance with the 3R principle of Replacement, Reduction, and Refinement. To our knowledge, this is the first time an anatomically realistic heterogeneous mouse phantom has been proposed for PAI in pre-clinical animal imaging and tested its durability over 200 days.
Collapse
Affiliation(s)
- Valeria Grasso
- FUJIFILM VisualSonics, Amsterdam, The Netherlands
- Institute for Materials Science, Faculty of Engineering, Christian-Albrecht University of Kiel, Kiel, Germany
| | - Jason L Raymond
- Department of Engineering Science, University of Oxford, Oxford, UK
| | - Regine Willumeit-Römer
- Institute for Materials Science, Faculty of Engineering, Christian-Albrecht University of Kiel, Kiel, Germany
- Institute of Materials Research, Division Metallic Biomaterials, Helmholtz-Zentrum Hereon GmbH, Geesthacht, Germany
| | - James Joseph
- School of Science and Engineering, University of Dundee, Dundee, UK
- Centre for Medical Engineering and Technology, University of Dundee, Dundee, UK
| | - Jithin Jose
- FUJIFILM VisualSonics, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Christie LB, Zheng W, Johnson W, Marecki EK, Heidrich J, Xia J, Oh KW. Review of imaging test phantoms. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:080903. [PMID: 37614568 PMCID: PMC10442662 DOI: 10.1117/1.jbo.28.8.080903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/25/2023]
Abstract
Significance Photoacoustic tomography has emerged as a prominent medical imaging technique that leverages its hybrid nature to provide deep penetration, high resolution, and exceptional optical contrast with notable applications in early cancer detection, functional brain imaging, drug delivery monitoring, and guiding interventional procedures. Test phantoms are pivotal in accelerating technology development and commercialization, specifically in photoacoustic (PA) imaging, and can be optimized to achieve significant advancements in PA imaging capabilities. Aim The analysis of material properties, structural characteristics, and manufacturing methodologies of test phantoms from existing imaging technologies provides valuable insights into their applicability to PA imaging. This investigation enables a deeper understanding of how phantoms can be effectively employed in the context of PA imaging. Approach Three primary categories of test phantoms (simple, intermediate, and advanced) have been developed to differentiate complexity and manufacturing requirements. In addition, four sub-categories (tube/channel, block, test target, and naturally occurring phantoms) have been identified to encompass the structural variations within these categories, resulting in a comprehensive classification system for test phantoms. Results Based on a thorough examination of literature and studies on phantoms in various imaging modalities, proposals have been put forth for the development of multiple PA-capable phantoms, encompassing considerations related to the material composition, structural design, and specific applications within each sub-category. Conclusions The advancement of novel and sophisticated test phantoms within each sub-category is poised to foster substantial progress in both the commercialization and development of PA imaging. Moreover, the continued refinement of test phantoms will enable the exploration of new applications and use cases for PA imaging.
Collapse
Affiliation(s)
- Liam B. Christie
- State University of New York at Buffalo, Sensors and MicroActuators Learning Lab, Electrical Engineering, Buffalo, New York, United States
| | - Wenhan Zheng
- State University of New York at Buffalo, Optical and Ultrasonic Imaging Laboratory, Biomedical Engineering, Buffalo, New York, United States
| | - William Johnson
- State University of New York at Buffalo, Sensors and MicroActuators Learning Lab, Electrical Engineering, Buffalo, New York, United States
| | - Eric K. Marecki
- State University of New York at Buffalo, Sensors and MicroActuators Learning Lab, Electrical Engineering, Buffalo, New York, United States
| | - James Heidrich
- State University of New York at Buffalo, Sensors and MicroActuators Learning Lab, Electrical Engineering, Buffalo, New York, United States
| | - Jun Xia
- State University of New York at Buffalo, Optical and Ultrasonic Imaging Laboratory, Biomedical Engineering, Buffalo, New York, United States
| | - Kwang W. Oh
- State University of New York at Buffalo, Sensors and MicroActuators Learning Lab, Electrical Engineering, Buffalo, New York, United States
| |
Collapse
|
12
|
Zhang J, Wiacek A, Feng Z, Ding K, Lediju Bell MA. Flexible array transducer for photoacoustic-guided interventions: phantom and ex vivo demonstrations. BIOMEDICAL OPTICS EXPRESS 2023; 14:4349-4368. [PMID: 37799699 PMCID: PMC10549736 DOI: 10.1364/boe.491406] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 10/07/2023]
Abstract
Photoacoustic imaging has demonstrated recent promise for surgical guidance, enabling visualization of tool tips during surgical and non-surgical interventions. To receive photoacoustic signals, most conventional transducers are rigid, while a flexible array is able to deform and provide complete contact on surfaces with different geometries. In this work, we present photoacoustic images acquired with a flexible array transducer in multiple concave shapes in phantom and ex vivo bovine liver experiments targeted toward interventional photoacoustic applications. We validate our image reconstruction equations for known sensor geometries with simulated data, and we provide empirical elevation field-of-view, target position, and image quality measurements. The elevation field-of-view was 6.08 mm at a depth of 4 cm and greater than 13 mm at a depth of 5 cm. The target depth agreement with ground truth ranged 98.35-99.69%. The mean lateral and axial target sizes when imaging 600 μm-core-diameter optical fibers inserted within the phantoms ranged 0.98-2.14 mm and 1.61-2.24 mm, respectively. The mean ± one standard deviation of lateral and axial target sizes when surrounded by liver tissue were 1.80±0.48 mm and 2.17±0.24 mm, respectively. Contrast, signal-to-noise, and generalized contrast-to-noise ratios ranged 6.92-24.42 dB, 46.50-67.51 dB, and 0.76-1, respectively, within the elevational field-of-view. Results establish the feasibility of implementing photoacoustic-guided surgery with a flexible array transducer.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Alycen Wiacek
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ziwei Feng
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kai Ding
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Medicine, Baltimore, MD 21287, USA
| | - Muyinatu A. Lediju Bell
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
13
|
Armstrong SA, Jafary R, Forsythe JS, Gregory SD. Tissue-Mimicking Materials for Ultrasound-Guided Needle Intervention Phantoms: A Comprehensive Review. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:18-30. [PMID: 36210247 DOI: 10.1016/j.ultrasmedbio.2022.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/07/2022] [Accepted: 07/30/2022] [Indexed: 06/16/2023]
Abstract
Ultrasound-guided needle interventions are common procedures in medicine, and tissue-mimicking phantoms are widely used for simulation training to bridge the gap between theory and clinical practice in a controlled environment. This review assesses tissue-mimicking materials from 24 studies as candidates for a high-fidelity ultrasound phantom, including methods for evaluating relevant acoustic and mechanical properties and to what extent the reported materials mimic the superficial layers of biological tissue. Speed of sound, acoustic attenuation, Young's modulus, hardness, needle interaction forces, training efficiency and material limitations were systematically evaluated. Although gelatin and agar have the closest acoustic values to tissue, mechanical properties are limited, and strict storage protocols must be employed to counteract dehydration and microbial growth. Polyvinyl chloride (PVC) has superior mechanical properties and is a suitable alternative if durability is desired and some ultrasound realism to human tissue may be sacrificed. Polyvinyl alcohol (PVA), while also requiring hydration, performs well across all categories. Furthermore, we propose a framework for the evaluation of future ultrasound-guided needle intervention tissue phantoms to increase the fidelity of training programs and thereby improve clinical performance.
Collapse
Affiliation(s)
- Sophie A Armstrong
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia; Cardio-respiratory Engineering and Technology Laboratory (CREATElab), Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
| | - Rezan Jafary
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia; Cardio-respiratory Engineering and Technology Laboratory (CREATElab), Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - John S Forsythe
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia
| | - Shaun D Gregory
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia; Cardio-respiratory Engineering and Technology Laboratory (CREATElab), Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| |
Collapse
|
14
|
Zare A, Shamshiripour P, Lotfi S, Shahin M, Rad VF, Moradi AR, Hajiahmadi F, Ahmadvand D. Clinical theranostics applications of photo-acoustic imaging as a future prospect for cancer. J Control Release 2022; 351:805-833. [DOI: 10.1016/j.jconrel.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 10/31/2022]
|
15
|
Dimaridis I, Sridharan P, Ntziachristos V, Karlas A, Hadjileontiadis L. Image Quality Improvement Techniques and Assessment Adequacy in Clinical Optoacoustic Imaging: A Systematic Review. BIOSENSORS 2022; 12:901. [PMID: 36291038 PMCID: PMC9599915 DOI: 10.3390/bios12100901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/09/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Optoacoustic imaging relies on the detection of optically induced acoustic waves to offer new possibilities in morphological and functional imaging. As the modality matures towards clinical application, research efforts aim to address multifactorial limitations that negatively impact the resulting image quality. In an endeavor to obtain a clear view on the limitations and their effects, as well as the status of this progressive refinement process, we conduct an extensive search for optoacoustic image quality improvement approaches that have been evaluated with humans in vivo, thus focusing on clinically relevant outcomes. We query six databases (PubMed, Scopus, Web of Science, IEEE Xplore, ACM Digital Library, and Google Scholar) for articles published from 1 January 2010 to 31 October 2021, and identify 45 relevant research works through a systematic screening process. We review the identified approaches, describing their primary objectives, targeted limitations, and key technical implementation details. Moreover, considering comprehensive and objective quality assessment as an essential prerequisite for the adoption of such approaches in clinical practice, we subject 36 of the 45 papers to a further in-depth analysis of the reported quality evaluation procedures, and elicit a set of criteria with the intent to capture key evaluation aspects. Through a comparative criteria-wise rating process, we seek research efforts that exhibit excellence in quality assessment of their proposed methods, and discuss features that distinguish them from works with similar objectives. Additionally, informed by the rating results, we highlight areas with improvement potential, and extract recommendations for designing quality assessment pipelines capable of providing rich evidence.
Collapse
Affiliation(s)
- Ioannis Dimaridis
- Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Patmaa Sridharan
- Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Munich Institute of Robotics and Machine Intelligence (MIRMI), Technical University of Munich, 80992 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80636 Munich, Germany
| | - Angelos Karlas
- Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80636 Munich, Germany
- Clinic for Vascular and Endovascular Surgery, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Leontios Hadjileontiadis
- Department of Biomedical Engineering, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Healthcare Engineering Innovation Center (HEIC), Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Signal Processing and Biomedical Technology Unit, Telecommunications Laboratory, Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
16
|
Robotic needle steering: state-of-the-art and research challenges. INTEL SERV ROBOT 2022. [DOI: 10.1007/s11370-022-00446-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Palma-Chavez J, Wear KA, Mantri Y, Jokerst JV, Vogt WC. Photoacoustic imaging phantoms for assessment of object detectability and boundary buildup artifacts. PHOTOACOUSTICS 2022; 26:100348. [PMID: 35360521 PMCID: PMC8960980 DOI: 10.1016/j.pacs.2022.100348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/18/2022] [Accepted: 03/17/2022] [Indexed: 05/05/2023]
Abstract
Standardized phantoms and test methods are needed to accelerate clinical translation of emerging photoacoustic imaging (PAI) devices. Evaluating object detectability in PAI is challenging due to variations in target morphology and artifacts including boundary buildup. Here we introduce breast fat and parenchyma tissue-mimicking materials based on emulsions of silicone oil and ethylene glycol in polyacrylamide hydrogel. 3D-printed molds were used to fabricate solid target inclusions that produced more filled-in appearance than traditional PAI phantoms. Phantoms were used to assess understudied image quality characteristics (IQCs) of three PAI systems. Object detectability was characterized vs. target diameter, absorption coefficient, and depth. Boundary buildup was quantified by target core/boundary ratio, which was higher in transducers with lower center frequency. Target diameter measurement accuracy was also size-dependent and improved with increasing transducer frequency. These phantoms enable evaluation of multiple key IQCs and may support development of comprehensive standardized test methods for PAI devices.
Collapse
Affiliation(s)
- Jorge Palma-Chavez
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Keith A. Wear
- Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Yash Mantri
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jesse V. Jokerst
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
- Material Science Program, University of California San Diego, La Jolla, CA 92093, USA
- Corresponding author at: Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA.
| | - William C. Vogt
- Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD 20993, USA
- Corresponding author.
| |
Collapse
|
18
|
Hacker L, Wabnitz H, Pifferi A, Pfefer TJ, Pogue BW, Bohndiek SE. Criteria for the design of tissue-mimicking phantoms for the standardization of biophotonic instrumentation. Nat Biomed Eng 2022; 6:541-558. [PMID: 35624150 DOI: 10.1038/s41551-022-00890-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/07/2022] [Indexed: 01/08/2023]
Abstract
A lack of accepted standards and standardized phantoms suitable for the technical validation of biophotonic instrumentation hinders the reliability and reproducibility of its experimental outputs. In this Perspective, we discuss general criteria for the design of tissue-mimicking biophotonic phantoms, and use these criteria and state-of-the-art developments to critically review the literature on phantom materials and on the fabrication of phantoms. By focusing on representative examples of standardization in diffuse optical imaging and spectroscopy, fluorescence-guided surgery and photoacoustic imaging, we identify unmet needs in the development of phantoms and a set of criteria (leveraging characterization, collaboration, communication and commitment) for the standardization of biophotonic instrumentation.
Collapse
Affiliation(s)
- Lina Hacker
- Department of Physics, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Heidrun Wabnitz
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | | | | | - Brian W Pogue
- Thayer School of Engineering, Dartmouth, Hanover, NH, USA
| | - Sarah E Bohndiek
- Department of Physics, University of Cambridge, Cambridge, UK.
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
19
|
Amiri SA, Berckel PV, Lai M, Dankelman J, Hendriks BHW. Tissue-mimicking phantom materials with tunable optical properties suitable for assessment of diffuse reflectance spectroscopy during electrosurgery. BIOMEDICAL OPTICS EXPRESS 2022; 13:2616-2643. [PMID: 35774339 PMCID: PMC9203083 DOI: 10.1364/boe.449637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 06/15/2023]
Abstract
Emerging intraoperative tumor margin assessment techniques require the development of more complex and reliable organ phantoms to assess the performance of the technique before its translation into the clinic. In this work, electrically conductive tissue-mimicking materials (TMMs) based on fat, water and agar/gelatin were produced with tunable optical properties. The composition of the phantoms allowed for the assessment of tumor margins using diffuse reflectance spectroscopy, as the fat/water ratio served as a discriminating factor between the healthy and malignant tissue. Moreover, the possibility of using polyvinyl alcohol (PVA) or transglutaminase in combination with fat, water and gelatin for developing TMMs was studied. The diffuse spectral response of the developed phantom materials had a good match with the spectral response of porcine muscle and adipose tissue, as well as in vitro human breast tissue. Using the developed recipe, anatomically relevant heterogeneous breast phantoms representing the optical properties of different layers of the human breast were fabricated using 3D-printed molds. These TMMs can be used for further development of phantoms applicable for simulating the realistic breast conserving surgery workflow in order to evaluate the intraoperative optical-based tumor margin assessment techniques during electrosurgery.
Collapse
Affiliation(s)
- Sara Azizian Amiri
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, The Netherlands
| | - Pieter Van Berckel
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, The Netherlands
| | - Marco Lai
- Philips Research, IGT & US Devices and Systems Department, Eindhoven, The Netherlands
- Eindhoven University of Technology (TU/e), Eindhoven, The Netherlands
| | - Jenny Dankelman
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, The Netherlands
| | - Benno H. W. Hendriks
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, The Netherlands
- Philips Research, IGT & US Devices and Systems Department, Eindhoven, The Netherlands
| |
Collapse
|
20
|
Hsu HC, Wear KA, Joshua Pfefer T, Vogt WC. Tissue-mimicking phantoms for performance evaluation of photoacoustic microscopy systems. BIOMEDICAL OPTICS EXPRESS 2022; 13:1357-1373. [PMID: 35415004 PMCID: PMC8973174 DOI: 10.1364/boe.445702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/19/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Phantom-based performance test methods are critically needed to support development and clinical translation of emerging photoacoustic microscopy (PAM) devices. While phantoms have been recently developed for macroscopic photoacoustic imaging systems, there is an unmet need for well-characterized tissue-mimicking materials (TMMs) and phantoms suitable for evaluating PAM systems. Our objective was to develop and characterize a suitable dermis-mimicking TMM based on polyacrylamide hydrogels and demonstrate its utility for constructing image quality phantoms. TMM formulations were optically characterized over 400-1100 nm using integrating sphere spectrophotometry and acoustically characterized using a pulse through-transmission method over 8-24 MHz with highly confident extrapolation throughout the usable band of the PAM system. This TMM was used to construct a spatial resolution phantom containing gold nanoparticle point targets and a penetration depth phantom containing slanted tungsten filaments and blood-filled tubes. These phantoms were used to characterize performance of a custom-built PAM system. The TMM was found to be broadly tunable and specific formulations were identified to mimic human dermis at an optical wavelength of 570 nm and acoustic frequencies of 10-50 MHz. Imaging results showed that tungsten filaments yielded 1.1-4.2 times greater apparent maximum imaging depth than blood-filled tubes, which may overestimate real-world performance for vascular imaging applications. Nanoparticles were detectable only to depths of 120-200 µm, which may be due to the relatively weaker absorption of single nanoparticles vs. larger targets containing high concentration of hemoglobin. The developed TMMs and phantoms are useful tools to support PAM device characterization and optimization, streamline regulatory decision-making, and accelerate clinical translation.
Collapse
Affiliation(s)
- Hsun-Chia Hsu
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Keith A. Wear
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - T. Joshua Pfefer
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - William C. Vogt
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| |
Collapse
|
21
|
Manwar R, Islam MT, Ranjbaran SM, Avanaki K. Transfontanelle photoacoustic imaging: ultrasound transducer selection analysis. BIOMEDICAL OPTICS EXPRESS 2022; 13:676-693. [PMID: 35284180 PMCID: PMC8884197 DOI: 10.1364/boe.446087] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 05/11/2023]
Abstract
Transfontanelle ultrasound imaging (TFUI) is the conventional approach for diagnosing brain injury in neonates. Despite being the first stage imaging modality, TFUI lacks accuracy in determining the injury at an early stage due to degraded sensitivity and specificity. Therefore, a modality like photoacoustic imaging that combines the advantages of both acoustic and optical imaging can overcome the existing TFUI limitations. Even though a variety of transducers have been used in TFUI, it is essential to identify the transducer specification that is optimal for transfontanelle imaging using the photoacoustic technique. In this study, we evaluated the performance of 6 commercially available ultrasound transducer arrays to identify the optimal characteristics for transfontanelle photoacoustic imaging. We focused on commercially available linear and phased array transducer probes with center frequencies ranging from 2.5MHz to 8.5MHz which covers the entire spectrum of the transducer arrays used for brain imaging. The probes were tested on both in vitro and ex vivo brain tissue, and their performance in terms of transducer resolution, size, penetration depth, sensitivity, signal to noise ratio, signal amplification and reconstructed image quality were evaluated. The analysis of selected transducers in these areas allowed us to determine the optimal transducer for transfontanelle imaging, based on vasculature depth and blood density in tissue using ex vivo sheep brain. The outcome of this evaluation identified the two most suitable ultrasound transducer probes for transfontanelle photoacoustic imaging.
Collapse
Affiliation(s)
- Rayyan Manwar
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, USA
- These authors have contributed equally
| | - Md Tarikul Islam
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, USA
| | - Seyed Mohsen Ranjbaran
- Department of Physics, University of Isfahan, Isfahan 81746-73441, Iran
- These authors have contributed equally
| | - Kamran Avanaki
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, USA
- Department of Dermatology, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
22
|
Hacker L, Joseph J, Ivory AM, Saed MO, Zeqiri B, Rajagopal S, Bohndiek SE. A Copolymer-in-Oil Tissue-Mimicking Material With Tuneable Acoustic and Optical Characteristics for Photoacoustic Imaging Phantoms. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:3593-3603. [PMID: 34152979 DOI: 10.1109/tmi.2021.3090857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Photoacoustic imaging (PAI) standardisation demands a stable, highly reproducible physical phantom to enable routine quality control and robust performance evaluation. To address this need, we have optimised a low-cost copolymer-in-oil tissue-mimickingmaterial formulation. The base material consists of mineral oil, copolymer and stabiliser with defined Chemical Abstract Service numbers. Speed of sound c(f) and acoustic attenuation coefficient α (f) were characterised over 2-10 MHz; optical absorption μa ( λ ) and reduced scattering μs '( λ ) coefficients over 450-900 nm. Acoustic properties were optimised by modifying base component ratios and optical properties were adjusted using additives. The temporal, thermomechanical and photo-stabilitywere studied, alongwith intra-laboratory fabrication and field-testing. c(f) could be tuned up to (1516±0.6) [Formula: see text] and α (f) to (17.4±0.3)dB · cm -1 at 5 MHz. The base material exhibited negligible μa ( λ ) and μs '( λ ), which could be independently tuned by addition of Nigrosin or TiO2 respectively. These properties were stable over almost a year and were minimally affected by recasting. The material showed high intra-laboratory reproducibility (coefficient of variation <4% for c ( f ), α ( f ), optical transmittance and reflectance), and good photo- and mechanical-stability in the relevant working range (20-40°C). The optimised copolymer-in-oil material represents an excellent candidate for widespread application in PAI phantoms, with properties suitable for broader use in biophotonics and ultrasound imaging standardisation efforts.
Collapse
|
23
|
Cabrelli LC, Uliana JH, da Cruz Junior LB, Bachmann L, Carneiro AAO, Pavan TZ. Glycerol-in-SEBS gel as a material to manufacture stable wall-less vascular phantom for ultrasound and photoacoustic imaging. Biomed Phys Eng Express 2021; 7. [PMID: 34496358 DOI: 10.1088/2057-1976/ac24d6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/08/2021] [Indexed: 11/12/2022]
Abstract
Styrene-ethylene/butylene-styrene (SEBS) copolymer-in-mineral oil gel is an appropriate tissue-mimicking material to manufacture stable phantoms for ultrasound and photoacoustic imaging. Glycerol dispersion has been proposed to further tune the acoustic properties and to incorporate hydrophilic additives into SEBS gel. However, this type of material has not been investigated to produce wall-less vascular flow phantom for these imaging modalities. In this paper, the development of a wall-less vascular phantom for ultrasound and photoacoustic imaging is reported. Mixtures of glycerol/TiO2-in-SEBS gel samples were manufactured at different proportions of glycerol (10%, 15%, and 20%) and TiO2(0% to 0.5%) to characterize their optical and acoustic properties. Optical absorption in the 500-950 nm range was independent of the amount of glycerol and TiO2, while optical scattering increased linearly with the concentration of TiO2. Acoustic attenuation and speed of sound were not influenced by the presence of TiO2. The sample manufactured using weight percentages of 10% SEBS, 15% glycerol, and 0.2% TiO2was selected to make the vascular phantom. The phantom proved to be stable during the pulsatile blood-mimicking fluid (BMF) flow, without any observed damage to its structure or leaks. Ultrasound color Doppler images showed a typical laminar flow, while the B-mode images showed a homogeneous speckled pattern due to the presence of the glycerol droplets in the gel. The photoacoustic images of the phantom showed a well-defined signal coming from the surface of the phantom and from the vessels where BMF was flowing. The Spearman's correlations between the photoacoustic and tabulated spectra calculated from the regions containing BMF, in this case a mixture of salt solutions (NiCl2and CuSO4), were higher than 0.95. Our results demonstrated that glycerol-in-SEBS gel was an adequate material to make a stable vascular flow phantom for ultrasound photoacoustic imaging.
Collapse
Affiliation(s)
- Luciana C Cabrelli
- Departamento de Física, FFCLRP, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Joao H Uliana
- Departamento de Física, FFCLRP, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - Luciano Bachmann
- Departamento de Física, FFCLRP, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Antonio A O Carneiro
- Departamento de Física, FFCLRP, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Theo Z Pavan
- Departamento de Física, FFCLRP, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
24
|
Pattyn A, Mumm Z, Alijabbari N, Duric N, Anastasio MA, Mehrmohammadi M. Model-based optical and acoustical compensation for photoacoustic tomography of heterogeneous mediums. PHOTOACOUSTICS 2021; 23:100275. [PMID: 34094852 PMCID: PMC8167150 DOI: 10.1016/j.pacs.2021.100275] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 05/11/2023]
Abstract
Photoacoustic tomography (PAT) is a non-invasive, high-resolution imaging modality, capable of providing functional and molecular information of various pathologies, such as cancer. One limitation of PAT is the depth and wavelength dependent optical fluence, which results in reduced PA signal amplitude from deeper tissue regions. These factors can therefore introduce errors into quantitative measurements such as oxygen saturation (sO2) or the localization and concentration of various chromophores. The variation in the speed-of-sound between different tissues can also lead to distortions in object location and shape. Compensating for these effects allows PAT to be used more quantitatively. We have developed a proof-of-concept algorithm capable of compensating for the heterogeneity in speed-of-sound and depth dependent optical fluence. Speed-of-sound correction was done by using a straight ray-based algorithm for calculating the family of iso-time-of-flight contours between the transducers and every pixel in the imaging grid, while fluence compensation was done by utilizing the graphics processing unit (GPU) accelerated software MCXCL for Monte Carlo modeling of optical fluence variation. This algorithm was tested on a polyvinyl chloride plastisol (PVCP) phantom, which contained cyst mimics and blood inclusions to test the algorithm under relatively heterogeneous conditions. Our results indicate that our PAT algorithm can compensate for the speed-of-sound variation and depth dependent fluence effects within a heterogeneous phantom. The results of this study will pave the way for further development and evaluation of the proposed method in more complex in-vitro and ex-vivo phantoms, as well as compensating for the wavelength-dependent optical fluence in spectroscopic PAT.
Collapse
Affiliation(s)
- Alexander Pattyn
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
- Corresponding author.
| | - Zackary Mumm
- Department of Electrical and Computer Engineering, Wayne State University, Detroit, MI, USA
| | - Naser Alijabbari
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Neb Duric
- Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
- Department of Imaging Sciences, University of Rochester, Rochester, NY, USA
| | - Mark A. Anastasio
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Mohammad Mehrmohammadi
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
- Department of Electrical and Computer Engineering, Wayne State University, Detroit, MI, USA
- Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
| |
Collapse
|
25
|
Palma-Chavez J, Pfefer TJ, Agrawal A, Jokerst JV, Vogt WC. Review of consensus test methods in medical imaging and current practices in photoacoustic image quality assessment. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210176VSSR. [PMID: 34510850 PMCID: PMC8434148 DOI: 10.1117/1.jbo.26.9.090901] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/17/2021] [Indexed: 05/06/2023]
Abstract
SIGNIFICANCE Photoacoustic imaging (PAI) is a powerful emerging technology with broad clinical applications, but consensus test methods are needed to standardize performance evaluation and accelerate translation. AIM To review consensus image quality test methods for mature imaging modalities [ultrasound, magnetic resonance imaging (MRI), x-ray CT, and x-ray mammography], identify best practices in phantom design and testing procedures, and compare against current practices in PAI phantom testing. APPROACH We reviewed scientific papers, international standards, clinical accreditation guidelines, and professional society recommendations describing medical image quality test methods. Observations are organized by image quality characteristics (IQCs), including spatial resolution, geometric accuracy, imaging depth, uniformity, sensitivity, low-contrast detectability, and artifacts. RESULTS Consensus documents typically prescribed phantom geometry and material property requirements, as well as specific data acquisition and analysis protocols to optimize test consistency and reproducibility. While these documents considered a wide array of IQCs, reported PAI phantom testing focused heavily on in-plane resolution, depth of visualization, and sensitivity. Understudied IQCs that merit further consideration include out-of-plane resolution, geometric accuracy, uniformity, low-contrast detectability, and co-registration accuracy. CONCLUSIONS Available medical image quality standards provide a blueprint for establishing consensus best practices for photoacoustic image quality assessment and thus hastening PAI technology advancement, translation, and clinical adoption.
Collapse
Affiliation(s)
- Jorge Palma-Chavez
- University of California San Diego, Department of NanoEngineering, La Jolla, California, United States
| | - T. Joshua Pfefer
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, United States
| | - Anant Agrawal
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, United States
| | - Jesse V. Jokerst
- University of California San Diego, Department of NanoEngineering, La Jolla, California, United States
- University of California San Diego, Department of Radiology, La Jolla, California, United States
- University of California San Diego, Materials Science and Engineering Program, La Jolla, California, United States
| | - William C. Vogt
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, United States
| |
Collapse
|
26
|
Muller JW, van Hees R, van Sambeek M, Boutouyrie P, Rutten M, Brands P, Wu M, Lopata R. Towards in vivo photoacoustic imaging of vulnerable plaques in the carotid artery. BIOMEDICAL OPTICS EXPRESS 2021; 12:4207-4218. [PMID: 34457409 PMCID: PMC8367242 DOI: 10.1364/boe.430064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 05/06/2023]
Abstract
The main indicator for endarterectomy is the grade of stenosis, which results in severe overtreatment. Photoacoustic imaging (PAI) can provide patient-specific assessment of plaque morphology, and thereby vulnerability. A pilot study of PAI on carotid plaques in patients (n=16) was performed intraoperatively with a hand-held PAI system. By compensating for motion, the photoacoustic (PA) signal-to-noise ratio (SNR) could be increased by 5 dB in vivo. PA signals from hemorrhagic plaques had different characteristics compared to the signals from the carotid blood pool. This study is a key step towards a non-invasive application of PAI to detect vulnerable plaques.
Collapse
Affiliation(s)
- Jan-Willem Muller
- Photoacoustics and Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Vascular Surgery, Catharina Hospital, Eindhoven, The Netherlands
| | - Roy van Hees
- Photoacoustics and Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Marc van Sambeek
- Photoacoustics and Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Vascular Surgery, Catharina Hospital, Eindhoven, The Netherlands
| | - Pierre Boutouyrie
- Department of Pharmacology, Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
- Université de Paris, INSERM U970, Paris, France
| | - Marcel Rutten
- Cardiovascular Biomechanics Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | - Min Wu
- Photoacoustics and Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Richard Lopata
- Photoacoustics and Ultrasound Laboratory Eindhoven (PULS/e), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
27
|
Hariri A, Palma-Chavez J, Wear KA, Pfefer TJ, Jokerst JV, Vogt WC. Polyacrylamide hydrogel phantoms for performance evaluation of multispectral photoacoustic imaging systems. PHOTOACOUSTICS 2021; 22:100245. [PMID: 33747787 PMCID: PMC7972966 DOI: 10.1016/j.pacs.2021.100245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/09/2020] [Accepted: 02/12/2021] [Indexed: 05/21/2023]
Abstract
As photoacoustic imaging (PAI) begins to mature and undergo clinical translation, there is a need for well-validated, standardized performance test methods to support device development, quality control, and regulatory evaluation. Despite recent progress, current PAI phantoms may not adequately replicate tissue light and sound transport over the full range of optical wavelengths and acoustic frequencies employed by reported PAI devices. Here we introduce polyacrylamide (PAA) hydrogel as a candidate material for fabricating stable phantoms with well-characterized optical and acoustic properties that are biologically relevant over a broad range of system design parameters. We evaluated suitability of PAA phantoms for conducting image quality assessment of three PAI systems with substantially different operating parameters including two commercial systems and a custom system. Imaging results indicated that appropriately tuned PAA phantoms are useful tools for assessing and comparing PAI system image quality. These phantoms may also facilitate future standardization of performance test methodology.
Collapse
Affiliation(s)
- Ali Hariri
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Jorge Palma-Chavez
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Keith A Wear
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - T Joshua Pfefer
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Jesse V Jokerst
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - William C Vogt
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
28
|
Joseph J, Ajith Singh MK, Sato N, Bohndiek SE. Technical validation studies of a dual-wavelength LED-based photoacoustic and ultrasound imaging system. PHOTOACOUSTICS 2021; 22:100267. [PMID: 33948434 PMCID: PMC8080074 DOI: 10.1016/j.pacs.2021.100267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/01/2021] [Accepted: 04/06/2021] [Indexed: 05/12/2023]
Abstract
Recent advances in high power, pulsed, light emitting diodes (LEDs) have shown potential as fast, robust and relatively inexpensive excitation sources for photoacoustic imaging (PAI), yet systematic characterization of performance for biomedical imaging is still lacking. We report here technical and biological validation studies of a commercial dual-wavelength LED-based PAI and ultrasound system. Phantoms and small animals were used to assess temporal precision. In phantom studies, we found high temporal stability of the LED-based PAI system, with no significant drift in performance observed during 6 h of operation or over 30 days of repeated measurements. In vivo dual-wavelength imaging was able to map the dynamics of changes in blood oxygenation during oxygen-enhanced imaging and reveal the kinetics of indocyanine green contrast agent inflow after intravenous administration (Tmax∼6 min). Taken together, these studies indicate that LED-based excitation could be promising for future application in functional and molecular PAI.
Collapse
Affiliation(s)
- James Joseph
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
- Now at School of Science and Engineering, Fulton Building, University of Dundee, DD1 4HN, UK
| | | | - Naoto Sato
- Research and Development Division, CYBERDYNE INC, Tsukuba, 305-0818, Japan
| | - Sarah E. Bohndiek
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| |
Collapse
|
29
|
Goldfain AM, Yung CS, Briggman KA, Hwang J. Optical phase contrast imaging for absolute, quantitative measurements of ultrasonic fields with frequencies up to 20 MHz. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 149:4620. [PMID: 34241467 PMCID: PMC9889099 DOI: 10.1121/10.0005431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
The technique of phase contrast imaging, combined with tomographic reconstructions, can rapidly measure ultrasonic fields propagating in water, including ultrasonic fields with complex wavefront shapes, which are difficult to characterize with standard hydrophone measurements. Furthermore, the technique can measure the absolute pressure amplitudes of ultrasonic fields without requiring a pressure calibration. Absolute pressure measurements have been previously demonstrated using optical imaging methods for ultrasonic frequencies below 2.5 MHz. The present work demonstrates that phase contrast imaging can accurately measure ultrasonic fields with frequencies up to 20 MHz and pressure amplitudes near 10 kPa. Accurate measurements at high ultrasonic frequencies are performed by tailoring the measurement conditions to limit optical diffraction as guided by a simple dimensionless parameter. In some situations, differences between high frequency measurements made with the phase contrast method and a calibrated hydrophone become apparent, and the reasons for these differences are discussed. Extending optical imaging measurements to high ultrasonic frequencies could facilitate quantitative applications of ultrasound measurements in nondestructive testing and medical therapeutics and diagnostics such as photoacoustic imaging.
Collapse
Affiliation(s)
- Aaron M Goldfain
- Applied Physics Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | - Christopher S Yung
- Applied Physics Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | - Kimberly A Briggman
- Applied Physics Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | - Jeeseong Hwang
- Applied Physics Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| |
Collapse
|
30
|
Fales AM, Strobbia P, Vo-Dinh T, Ilev IK, Pfefer TJ. 3D-printed phantoms for characterizing SERS nanoparticle detectability in turbid media. Analyst 2021; 145:6045-6053. [PMID: 32766656 DOI: 10.1039/d0an01295e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent advances in plasmonic nanoparticle synthesis have enabled extremely high per-particle surface-enhanced Raman scattering (SERS) efficiencies. This has led to the development of SERS tags for in vivo applications (e.g. tumor targeting and detection), providing high sensitivity and fingerprint-like molecular specificity. While the SERS enhancement factor is a major contributor to SERS tag performance, in practice the throughput and excitation-collection geometry of the optical system can significantly impact detectability. Test methods to objectively quantify SERS particle performance under realistic conditions are necessary to facilitate clinical translation. Towards this goal, we have developed 3D-printed phantoms with tunable, biologically-relevant optical properties. Phantoms were designed to include 1 mm-diameter channels at different depths, which can be filled with SERS tag solutions. The effects of channel depth and particle concentration on the detectability of three different SERS tags were evaluated using 785 nm laser excitation at the maximum permissible exposure for skin. Two of these tags were commercially available, featuring gold nanorods as the SERS particle, while the third tag was prepared in-house using silver-coated gold nanostars. Our findings revealed that the measured SERS intensity of tags in solution is not always a reliable predictor of detectability when applied in a turbid medium such as tissue. The phantoms developed in this work can be used to assess the suitability of specific SERS tags and instruments for their intended clinical applications and provide a means of optimizing new SERS device-tag combination products.
Collapse
Affiliation(s)
- Andrew M Fales
- Division of Biomedical Physics, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, USA.
| | | | | | | | | |
Collapse
|
31
|
Wiacek A, Lediju Bell MA. Photoacoustic-guided surgery from head to toe [Invited]. BIOMEDICAL OPTICS EXPRESS 2021; 12:2079-2117. [PMID: 33996218 PMCID: PMC8086464 DOI: 10.1364/boe.417984] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 05/04/2023]
Abstract
Photoacoustic imaging-the combination of optics and acoustics to visualize differences in optical absorption - has recently demonstrated strong viability as a promising method to provide critical guidance of multiple surgeries and procedures. Benefits include its potential to assist with tumor resection, identify hemorrhaged and ablated tissue, visualize metal implants (e.g., needle tips, tool tips, brachytherapy seeds), track catheter tips, and avoid accidental injury to critical subsurface anatomy (e.g., major vessels and nerves hidden by tissue during surgery). These benefits are significant because they reduce surgical error, associated surgery-related complications (e.g., cancer recurrence, paralysis, excessive bleeding), and accidental patient death in the operating room. This invited review covers multiple aspects of the use of photoacoustic imaging to guide both surgical and related non-surgical interventions. Applicable organ systems span structures within the head to contents of the toes, with an eye toward surgical and interventional translation for the benefit of patients and for use in operating rooms and interventional suites worldwide. We additionally include a critical discussion of complete systems and tools needed to maximize the success of surgical and interventional applications of photoacoustic-based technology, spanning light delivery, acoustic detection, and robotic methods. Multiple enabling hardware and software integration components are also discussed, concluding with a summary and future outlook based on the current state of technological developments, recent achievements, and possible new directions.
Collapse
Affiliation(s)
- Alycen Wiacek
- Department of Electrical and Computer Engineering, 3400 N. Charles St., Johns Hopkins University, Baltimore, MD 21218, USA
| | - Muyinatu A. Lediju Bell
- Department of Electrical and Computer Engineering, 3400 N. Charles St., Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, 3400 N. Charles St., Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Computer Science, 3400 N. Charles St., Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
32
|
Dantuma M, Kruitwagen S, Ortega-Julia J, Pompe van Meerdervoort RP, Manohar S. Tunable blood oxygenation in the vascular anatomy of a semi-anthropomorphic photoacoustic breast phantom. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-200370RR. [PMID: 33728828 PMCID: PMC7961914 DOI: 10.1117/1.jbo.26.3.036003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/19/2021] [Indexed: 05/21/2023]
Abstract
SIGNIFICANCE Recovering accurate oxygenation estimations in the breast with quantitative photoacoustic tomography (QPAT) is not straightforward. Accurate light fluence models are required, but the unknown ground truth of the breast makes it difficult to validate them. Phantoms are often used for the validation, but most reported phantoms have a simple architecture. Fluence models developed in these simplistic objects are not accurate for application on the complex tissues of the breast. AIM We present a sophisticated breast phantom platform for photoacoustic (PA) and ultrasound (US) imaging in general, and specifically for QPAT. The breast phantom is semi-anthropomorphic in distribution of optical and acoustic properties and contains wall-less channels with blood. APPROACH 3D printing approaches are used to develop the solid 3D breast phantom from custom polyvinyl chloride plastisol formulations and additives for replicating the tissue optical and acoustic properties. A flow circuit was developed to flush the channels with bovine blood with a controlled oxygen saturation level. To showcase the phantom's functionality, PA measurements were performed on the phantom with two oxygenation levels. Image reconstructions with and without fluence compensation from Monte Carlo simulations were analyzed for the accuracy of oxygen saturation estimations. RESULTS We present design aspects of the phantom, demonstrate how it is developed, and present its breast-like appearance in PA and US imaging. The oxygen saturations were estimated in two regions of interest with and without using the fluence models. The fluence compensation positively influenced the SO2 estimations in all cases and confirmed that highly accurate fluence models are required to minimize estimation errors. CONCLUSIONS This phantom allows studies to be performed in PA in carefully controlled laboratory settings to validate approaches to recover both qualitative and quantitative features sought after in in-vivo studies. We believe that testing with phantoms of this complexity can streamline the transition of new PA technologies from the laboratory to studies in the clinic.
Collapse
Affiliation(s)
- Maura Dantuma
- University of Twente, Multi-Modality Medical Imaging, Techmed Centre, Enschede, The Netherlands
- Address all correspondence to Maura Dantuma,
| | - Saskia Kruitwagen
- University of Twente, Multi-Modality Medical Imaging, Techmed Centre, Enschede, The Netherlands
- Medisch Spectrum Twente, Enschede, The Netherlands
| | - Javier Ortega-Julia
- University of Twente, Multi-Modality Medical Imaging, Techmed Centre, Enschede, The Netherlands
| | | | - Srirang Manohar
- University of Twente, Multi-Modality Medical Imaging, Techmed Centre, Enschede, The Netherlands
| |
Collapse
|
33
|
Chandramoorthi S, Thittai AK. Extending Imaging Depth in PLD-Based Photoacoustic Imaging: Moving Beyond Averaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:549-557. [PMID: 32784132 DOI: 10.1109/tuffc.2020.3015130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Pulsed laser diodes (PLDs) promise to be an attractive alternative to solid-state laser sources in photoacoustic tomography (PAT) due to their portability, high-pulse repetition frequency (PRF), and cost effectiveness. However, due to their lower energy per pulse, which, in turn, results in lower fluence required per photoacoustic signal generation, PLD-based photoacoustic systems generally have maximum imaging depth that is lower in comparison to solid-state lasers. Averaging of multiple frames is usually employed as a common practice in high PRF PLD systems to improve the signal-to-noise ratio of the PAT images. In this work, we demonstrate that by combining the recently described approach of subpitch translation on the receive-side ultrasound transducer alongside averaging of multiple frames, it is feasible to increase the depth sensitivity in a PLD-based PAT imaging system. Here, experiments on phantom containing diluted India ink targets were performed at two different laser energy level settings, that is, 21 and [Formula: see text]. Results obtained showed that the imaging depth improves by ~38.5% from 9.1 to 12.6 mm for 21- [Formula: see text] energy level setting and by ~33.3% from 10.8 to 14.4 mm for 27- [Formula: see text] energy level setting by using λ /4-pitch translation and average of 128 frames in comparison to λ -pitch data acquired with the average of 128 frames. However, the achievable frame rate is reduced by a factor of 2 and 4 for λ /2 and λ /4 subpitch translation, respectively.
Collapse
|
34
|
Kozlova A, Bratashov D, Grishin O, Abdurashitov A, Prikhozhdenko E, Verkhovskii R, Shushunova N, Shashkov E, Zharov VP, Inozemtseva O. Dynamic blood flow phantom for in vivo liquid biopsy standardization. Sci Rep 2021; 11:1185. [PMID: 33441866 PMCID: PMC7806591 DOI: 10.1038/s41598-020-80487-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/21/2020] [Indexed: 01/29/2023] Open
Abstract
In vivo liquid biopsy, especially using the photoacoustic (PA) method, demonstrated high clinical potential for early diagnosis of deadly diseases such as cancer, infections, and cardiovascular disorders through the detection of rare circulating tumor cells (CTCs), bacteria, and clots in the blood background. However, little progress has been made in terms of standardization of these techniques, which is crucial to validate their high sensitivity, accuracy, and reproducibility. In the present study, we addressed this important demand by introducing a dynamic blood vessel phantom with flowing mimic normal and abnormal cells. The light transparent silica microspheres were used as white blood cells and platelets phantoms, while hollow polymeric capsules, filled with hemoglobin and melanin, reproduced red blood cells and melanoma CTCs, respectively. These phantoms were successfully used for calibration of the PA flow cytometry platform with high-speed signal processing. The results suggest that these dynamic cell flow phantoms with appropriate biochemical, optical, thermal, and acoustic properties can be promising for the establishment of standardization tool for calibration of PA, fluorescent, Raman, and other detection methods of in vivo flow cytometry and liquid biopsy.
Collapse
Affiliation(s)
- Anastasiia Kozlova
- grid.446088.60000 0001 2179 0417Saratov State University, Saratov, Russia
| | - Daniil Bratashov
- grid.446088.60000 0001 2179 0417Saratov State University, Saratov, Russia
| | - Oleg Grishin
- grid.446088.60000 0001 2179 0417Saratov State University, Saratov, Russia
| | - Arkadii Abdurashitov
- grid.454320.40000 0004 0555 3608Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow, Russia
| | | | - Roman Verkhovskii
- grid.446088.60000 0001 2179 0417Saratov State University, Saratov, Russia
| | - Natalia Shushunova
- grid.446088.60000 0001 2179 0417Saratov State University, Saratov, Russia
| | - Evgeny Shashkov
- grid.424964.90000 0004 0637 9699Prokhorov General Physics Institute of RAS, Moscow, Russia
| | - Vladimir P. Zharov
- grid.241054.60000 0004 4687 1637University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Olga Inozemtseva
- grid.446088.60000 0001 2179 0417Saratov State University, Saratov, Russia
| |
Collapse
|
35
|
Brown RB, Dufour S, Deladurantaye P, Bouch NL, Gallant P, Méthot S, Rochette PJ, Mermut O. Effect of laser pulse shaping on photoacoustic dosimetry in retinal models. BIOMEDICAL OPTICS EXPRESS 2020; 11:6590-6604. [PMID: 33282510 PMCID: PMC7687941 DOI: 10.1364/boe.403703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 06/12/2023]
Abstract
Photoacoustic sensing can be a powerful technique to obtain real-time feedback of laser energy dose in treatments of biological tissue. However, when laser therapy uses pulses with microsecond duration, they are not optimal for photoacoustic pressure wave generation. This study examines a programmable fiber laser technique using pulse modulation in order to optimize the photoacoustic feedback signal to noise ratio (SNR) in a context where longer laser pulses are employed, such as in selective retinal therapy. We have demonstrated with a homogeneous tissue phantom that this method can yield a greater than seven-fold improvement in SNR over non-modulated square pulses of the same duration and pulse energy. This technique was further investigated for assessment of treatment outcomes in leporine retinal explants by photoacoustic mapping around the cavitation-induced frequency band.
Collapse
Affiliation(s)
- Robert B. Brown
- National Optics Institute (INO), 2740 Einstein St., Quebec City, G1P 4S4, Canada
- authors contributed equally to this work
| | - Suzie Dufour
- National Optics Institute (INO), 2740 Einstein St., Quebec City, G1P 4S4, Canada
- authors contributed equally to this work
| | - Pascal Deladurantaye
- National Optics Institute (INO), 2740 Einstein St., Quebec City, G1P 4S4, Canada
| | - Nolwenn Le Bouch
- National Optics Institute (INO), 2740 Einstein St., Quebec City, G1P 4S4, Canada
| | - Pascal Gallant
- National Optics Institute (INO), 2740 Einstein St., Quebec City, G1P 4S4, Canada
| | - Sébastien Méthot
- Laval University, Department of Ophthalmology and ORL, Quebec City, G1 V 0A6, Canada
- Regenerative Medicine Research Center, CHU Quebec, Saint-Sacrement Hospital, Quebec City, G1S 4L8, Canada
| | - Patrick J. Rochette
- Laval University, Department of Ophthalmology and ORL, Quebec City, G1 V 0A6, Canada
- Regenerative Medicine Research Center, CHU Quebec, Saint-Sacrement Hospital, Quebec City, G1S 4L8, Canada
| | - Ozzy Mermut
- National Optics Institute (INO), 2740 Einstein St., Quebec City, G1P 4S4, Canada
- York University, Department of Physics and Astronomy, Toronto, Canada, M3J 1P3, Canada
| |
Collapse
|
36
|
Nowak LJ, Steenbergen W. Reflection-mode acousto-optic imaging using a one-dimensional ultrasound array with electronically scanned focus. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:JBO-200183R. [PMID: 32885621 PMCID: PMC7470216 DOI: 10.1117/1.jbo.25.9.096002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/24/2020] [Indexed: 05/03/2023]
Abstract
SIGNIFICANCE Practical implementation of acousto-optic imaging (AOI) encounters difficulties that prevent it from rapid adoption in clinical use. In many practical medical applications, the region of interest may be accessed only from one side, and using a water tank for coupling is not feasible. The solution might be to use reflection-mode imaging with an electronically scanned ultrasound (US) focus. Such an approach, however, entails considerable challenges. AIM The possibilities of detecting and localizing light-absorbing inclusions inside turbid media by combining reflection-mode AOI conducted using a one-dimensional US array with electronic scanning of the US focus are investigated experimentally and signal processing algorithms that could be used for this purpose are introduced. APPROACH We determine the speckle contrast decrease due to the acousto-optic effect as a function of the US focal point coordinates. Different signal postprocessing techniques are investigated. RESULTS A significant decrease in the determined speckle contrast difference values is observed due to the presence of light-absorbing inclusions. However, local minima occur in the plots only under specific conditions. Subtracting individual distributions and determining symmetry deviations allow for localizing the inclusions. CONCLUSIONS Detection and localization of optically distinct regions are possible using the introduced approach. Signal postprocessing is required in a general case.
Collapse
Affiliation(s)
- Lukasz J. Nowak
- University of Twente, Faculty of Science and Technology, Biomedical Photonic Imaging Group, Enschede, The Netherlands
| | - Wiendelt Steenbergen
- University of Twente, Faculty of Science and Technology, Biomedical Photonic Imaging Group, Enschede, The Netherlands
| |
Collapse
|
37
|
Zhou X, Akhlaghi N, Wear KA, Garra BS, Pfefer TJ, Vogt WC. Evaluation of Fluence Correction Algorithms in Multispectral Photoacoustic Imaging. PHOTOACOUSTICS 2020; 19:100181. [PMID: 32405456 PMCID: PMC7210453 DOI: 10.1016/j.pacs.2020.100181] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 05/07/2023]
Abstract
Multispectral photoacoustic imaging (MPAI) is a promising emerging diagnostic technology, but fluence artifacts can degrade device performance. Our goal was to develop well-validated phantom-based test methods for evaluating and comparing MPAI fluence correction algorithms, including a heuristic diffusion approximation, Monte Carlo simulations, and an algorithm we developed based on novel application of the diffusion dipole model (DDM). Phantoms simulated a range of breast-mimicking optical properties and contained channels filled with chromophore solutions (ink, hemoglobin, or copper sulfate) or connected to a previously developed blood flow circuit providing tunable oxygen saturation (SO2). The DDM algorithm achieved similar spectral recovery and SO2 measurement accuracy to Monte Carlo-based corrections with lower computational cost, potentially providing an accurate, real-time correction approach. Algorithms were sensitive to optical property uncertainty, but error was minimized by matching phantom albedo. The developed test methods may provide a foundation for standardized assessment of MPAI fluence correction algorithm performance.
Collapse
Affiliation(s)
- Xuewen Zhou
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 02742, United States
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Nima Akhlaghi
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Keith A. Wear
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Brian S. Garra
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993, United States
| | - T. Joshua Pfefer
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993, United States
| | - William C. Vogt
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993, United States
- Corresponding author.
| |
Collapse
|
38
|
Abstract
Photoacoustic (PA) imaging is an emerging imaging modality whereby pulsed laser illumination generates pressure transients that are detectable using conventional ultrasound. Plasmonic nanoparticles such as gold nanorods and nanostars are often used as PA contrast agents. The thermoelastic expansion model best describes the PA response from plasmonic nanoparticles: Light absorption causes a small increase in temperature leading to thermoelastic expansion. The conversion of optical energy into pressure waves (po) is dependent on several features: (i) the absorption coefficient (μa), (ii) the thermal expansion coefficient (β), (iii) specific heat capacity (Cp) of the absorbing material, (iv) speed of sound in the medium (c), and (v) the illumination fluence (F). Controlling the geometry, composition, coatings, and solvents around plasmonic nanostructures can help tune these variables to generate the optimum PA signal. The thermoelastic expansion model is not limited to plasmonic structures and holds true for all absorbing molecules. Here, we focus on ways to engineer these variables to enhance the PA response from plasmonic nanoparticles.
Collapse
|
39
|
Kuriakose M, Nguyen CD, Kuniyil Ajith Singh M, Mallidi S. Optimizing Irradiation Geometry in LED-Based Photoacoustic Imaging with 3D Printed Flexible and Modular Light Delivery System. SENSORS 2020; 20:s20133789. [PMID: 32640683 PMCID: PMC7374354 DOI: 10.3390/s20133789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 01/04/2023]
Abstract
Photoacoustic (PA) imaging–a technique combining the ability of optical imaging to probe functional properties of the tissue and deep structural imaging ability of ultrasound–has gained significant popularity in the past two decades for its utility in several biomedical applications. More recently, light-emitting diodes (LED) are being explored as an alternative to bulky and expensive laser systems used in PA imaging for their portability and low-cost. Due to the large beam divergence of LEDs compared to traditional laser beams, it is imperative to quantify the angular dependence of LED-based illumination and optimize its performance for imaging superficial or deep-seated lesions. A custom-built modular 3-D printed hinge system and tissue-mimicking phantoms with various absorption and scattering properties were used in this study to quantify the angular dependence of LED-based illumination. We also experimentally calculated the source divergence of the pulsed-LED arrays to be 58° ± 8°. Our results from point sources (pencil lead phantom) in non-scattering medium obey the cotangential relationship between the angle of irradiation and maximum PA intensity obtained at various imaging depths, as expected. Strong dependence on the angle of illumination at superficial depths (−5°/mm at 10 mm) was observed that becomes weaker at intermediate depths (−2.5°/mm at 20 mm) and negligible at deeper locations (−1.1°/mm at 30 mm). The results from the tissue-mimicking phantom in scattering media indicate that angles between 30–75° could be used for imaging lesions at various depths (12 mm–28 mm) where lower LED illumination angles (closer to being parallel to the imaging plane) are preferable for deep tissue imaging and superficial lesion imaging is possible with higher LED illumination angles (closer to being perpendicular to the imaging plane). Our results can serve as a priori knowledge for the future LED-based PA system designs employed for both preclinical and clinical applications.
Collapse
Affiliation(s)
- Maju Kuriakose
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA; (M.K.); (C.D.N.)
| | - Christopher D. Nguyen
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA; (M.K.); (C.D.N.)
| | | | - Srivalleesha Mallidi
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA; (M.K.); (C.D.N.)
- Correspondence:
| |
Collapse
|
40
|
Bakaric M, Miloro P, Zeqiri B, Cox BT, Treeby BE. The Effect of Curing Temperature and Time on the Acoustic and Optical Properties of PVCP. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:505-512. [PMID: 31613754 DOI: 10.1109/tuffc.2019.2947341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Polyvinyl chloride plastisol (PVCP) has been increasingly used as a phantom material for photoacoustic and ultrasound imaging. As one of the most useful polymeric materials for industrial applications, its mechanical properties and behavior are well-known. Although the acoustic and optical properties of several formulations have previously been investigated, it is still unknown how these are affected by varying the fabrication method. Here, an improved and straightforward fabrication method is presented, and the effect of curing temperature and curing time on the PVCP acoustic and optical properties, as well as their stability over time, is investigated. The speed of sound and attenuation were determined over a frequency range from 2 to 15 MHz, while the optical attenuation spectra of samples were measured over a wavelength range from 500 to 2200 nm. The results indicate that the optimum properties are achieved at curing temperatures between 160 °C and 180 °C, while the required curing time decreases with increasing temperature. The properties of the fabricated phantoms were highly repeatable, meaning that the phantoms are not sensitive to the manufacturing conditions provided that the curing temperature and time are within the range of complete gelation-fusion (samples are optically clear) and below the limit of thermal degradation (indicated by the yellowish appearance of the sample). The samples' long-term stability was assessed over 16 weeks, and no significant change was observed in the measured acoustic and optical properties.
Collapse
|
41
|
Manohar S, Dantuma M. Current and future trends in photoacoustic breast imaging. PHOTOACOUSTICS 2019; 16:100134. [PMID: 31871887 PMCID: PMC6909206 DOI: 10.1016/j.pacs.2019.04.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/19/2019] [Accepted: 04/10/2019] [Indexed: 05/14/2023]
Abstract
Non-invasive detection of breast cancer has been regarded as the holy grail of applications for photoacoustic (optoacoustic) imaging right from the early days of re-discovery of the method. Two-and-a-half decades later we report on the state-of-the-art in photoacoustic breast imaging technology and clinical studies. Even within the single application of breast imaging, we find imagers with various measurement geometries, ultrasound detection characteristics, illumination schemes, and image reconstruction strategies. We first analyze the implications on performance of a few of these design choices in a generic imaging system, before going into detailed descriptions of the imagers. Per imaging system we present highlights of patient studies, which barring a couple are mostly in the nature of technology demonstrations and proof-of-principle studies. We close this work with a discussion on several aspects that may turn out to be crucial for the future clinical translation of the method.
Collapse
|
42
|
Zalev J, Richards LM, Clingman BA, Harris J, Cantu E, Menezes GLG, Avila C, Bertrand A, Saenz X, Miller S, Oraevsky AA, Kolios MC. Opto-acoustic imaging of relative blood oxygen saturation and total hemoglobin for breast cancer diagnosis. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-16. [PMID: 31849204 PMCID: PMC7005558 DOI: 10.1117/1.jbo.24.12.121915] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/22/2019] [Indexed: 05/14/2023]
Abstract
Opto-acoustic imaging involves using light to produce sound waves for visualizing blood in biological tissue. By using multiple optical wavelengths, diagnostic images of blood oxygen saturation and total hemoglobin are generated using endogenous optical contrast, without injection of any external contrast agent and without using any ionizing radiation. The technology has been used in recent clinical studies for diagnosis of breast cancer to help distinguish benign from malignant lesions, potentially reducing the need for biopsy through improved diagnostic imaging accuracy. To enable this application, techniques for mapping oxygen saturation differences within tissue are necessary. Using biologically relevant opto-acoustic phantoms, we analyze the ability of an opto-acoustic imaging system to display colorized parametric maps that are generated using a statistical mapping approach. To mimic breast tissue, a material with closely matching properties for optical absorption, optical scattering, acoustic attenuation, and speed of sound is used. The phantoms include two vessels filled with whole blood at oxygen saturation levels determined using a sensor-based approach. A flow system with gas-mixer and membrane oxygenator adjusts the oxygen saturation of each vessel independently. Datasets are collected with an investigational Imagio® breast imaging system. We examine the ability to distinguish vessels as the oxygen saturation level and imaging depth are varied. At depth of 15 mm and hematocrit of 42%, a sufficient level of contrast to distinguish between two 1.6-mm diameter vessels was measured for an oxygen saturation difference of ∼4.6 % . In addition, an oxygenated vessel was visible at a depth of 48 mm using an optical wavelength of 1064 nm, and a deoxygenated vessel was visible to a depth of 42 mm with 757 nm. The results provide insight toward using color mapped opto-acoustic images for diagnosing breast cancer.
Collapse
Affiliation(s)
- Jason Zalev
- Seno Medical Instruments, Inc., San Antonio, Texas, United States
- Ryerson University, Department of Physics, Toronto, Ontario, Canada
- Address all correspondence to Jason Zalev, E-mail: ; Lisa M. Richards, E-mail: ; Bryan A. Clingman, E-mail:
| | - Lisa M. Richards
- Seno Medical Instruments, Inc., San Antonio, Texas, United States
- Address all correspondence to Jason Zalev, E-mail: ; Lisa M. Richards, E-mail: ; Bryan A. Clingman, E-mail:
| | - Bryan A. Clingman
- Seno Medical Instruments, Inc., San Antonio, Texas, United States
- Address all correspondence to Jason Zalev, E-mail: ; Lisa M. Richards, E-mail: ; Bryan A. Clingman, E-mail:
| | - Jeff Harris
- Seno Medical Instruments, Inc., San Antonio, Texas, United States
| | - Edgar Cantu
- Seno Medical Instruments, Inc., San Antonio, Texas, United States
| | | | - Carlos Avila
- Seno Medical Instruments, Inc., San Antonio, Texas, United States
| | - Allison Bertrand
- Seno Medical Instruments, Inc., San Antonio, Texas, United States
| | - Xavier Saenz
- Seno Medical Instruments, Inc., San Antonio, Texas, United States
| | - Steve Miller
- Seno Medical Instruments, Inc., San Antonio, Texas, United States
| | | | | |
Collapse
|
43
|
Dantuma M, van Dommelen R, Manohar S. Semi-anthropomorphic photoacoustic breast phantom. BIOMEDICAL OPTICS EXPRESS 2019; 10:5921-5939. [PMID: 31799055 PMCID: PMC6865090 DOI: 10.1364/boe.10.005921] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 05/04/2023]
Abstract
Imaging parameters of photoacoustic breast imaging systems such as the spatial resolution and imaging depth are often characterized with phantoms. These objects usually contain simple structures in homogeneous media such as absorbing wires or spherical objects in scattering gels. While these kinds of basic phantoms are uncluttered and useful, they do not challenge the system as much as a breast does, and can thereby overestimate the system's performance. The female breast is a complex collection of tissue types, and the acoustic and optical attenuation of these tissues limit the imaging depth, the resolution and the ability to extract quantitative information. For testing and challenging photoacoustic breast imaging systems to the full extent before moving to in vivo studies, a complex breast phantom which simulates the breast's most prevalent tissues is required. In this work we present the first three dimensional multi-layered semi-anthropomorphic photoacoustic breast phantom. The phantom aims to simulate skin, fat, fibroglandular tissue and blood vessels. The latter three are made from custom polyvinyl chloride plastisol (PVCP) formulations and are appropriately doped with additives to obtain tissue realistic acoustic and optical properties. Two tumors are embedded, which are modeled as clusters of small blood vessels. The PVCP materials are surrounded by a silicon layer mimicking the skin. The tissue mimicking materials were cast into the shapes and sizes expected in the breast using 3D-printed moulds developed from a magnetic resonance imaging segmented numerical breast model. The various structures and layers were assembled to obtain a realistic breast morphology. We demonstrate the phantom's appearance in both ultrasound imaging as photoacoustic tomography and make a comparison with a photoacoustic image of a real breast. A good correspondence is observed, which confirms the phantom's usefulness.
Collapse
Affiliation(s)
- Maura Dantuma
- Multi-Modality Medical Imaging group, TechMed Centre, University of Twente, Enschede, The Netherlands
- Biomedical Photonic Imaging group, TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Rianne van Dommelen
- Biomedical Photonic Imaging group, TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Srirang Manohar
- Multi-Modality Medical Imaging group, TechMed Centre, University of Twente, Enschede, The Netherlands
| |
Collapse
|
44
|
Akhlaghi N, Pfefer TJ, Wear KA, Garra BS, Vogt WC. Multidomain computational modeling of photoacoustic imaging: verification, validation, and image quality prediction. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-12. [PMID: 31705636 PMCID: PMC7005568 DOI: 10.1117/1.jbo.24.12.121910] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/14/2019] [Indexed: 05/05/2023]
Abstract
As photoacoustic imaging (PAI) technology matures, computational modeling will increasingly represent a critical tool for facilitating clinical translation through predictive simulation of real-world performance under a wide range of device and biological conditions. While modeling currently offers a rapid, inexpensive tool for device development and prediction of fundamental image quality metrics (e.g., spatial resolution and contrast ratio), rigorous verification and validation will be required of models used to provide regulatory-grade data that effectively complements and/or replaces in vivo testing. To address methods for establishing model credibility, we developed an integrated computational model of PAI by coupling a previously developed three-dimensional Monte Carlo model of tissue light transport with a two-dimensional (2D) acoustic wave propagation model implemented in the well-known k-Wave toolbox. We then evaluated ability of the model to predict basic image quality metrics by applying standardized verification and validation principles for computational models. The model was verified against published simulation data and validated against phantom experiments using a custom PAI system. Furthermore, we used the model to conduct a parametric study of optical and acoustic design parameters. Results suggest that computationally economical 2D acoustic models can adequately predict spatial resolution, but metrics such as signal-to-noise ratio and penetration depth were difficult to replicate due to challenges in modeling strong clutter observed in experimental images. Parametric studies provided quantitative insight into complex relationships between transducer characteristics and image quality as well as optimal selection of optical beam geometry to ensure adequate image uniformity. Multidomain PAI simulation tools provide high-quality tools to aid device development and prediction of real-world performance, but further work is needed to improve model fidelity, especially in reproducing image noise and clutter.
Collapse
Affiliation(s)
- Nima Akhlaghi
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, United States
- Address all correspondence to Nima Akhlaghi, E-mail:
| | - T. Joshua Pfefer
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, United States
| | - Keith A. Wear
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, United States
| | - Brian S. Garra
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, United States
| | - William C. Vogt
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, United States
| |
Collapse
|
45
|
Gehrung M, Bohndiek SE, Brunker J. Development of a blood oxygenation phantom for photoacoustic tomography combined with online pO2 detection and flow spectrometry. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-11. [PMID: 31625321 PMCID: PMC7005535 DOI: 10.1117/1.jbo.24.12.121908] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/09/2019] [Indexed: 05/07/2023]
Abstract
Photoacoustic tomography (PAT) is intrinsically sensitive to blood oxygen saturation (sO2) in vivo. However, making accurate sO2 measurements without knowledge of tissue- and instrumentation-related correction factors is extremely challenging. We have developed a low-cost flow phantom to facilitate validation of PAT systems. The phantom is composed of a flow circuit of tubing partially embedded within a tissue-mimicking material, with independent sensors providing online monitoring of the optical absorption spectrum and partial pressure of oxygen in the tube. We first test the flow phantom using two small molecule dyes that are frequently used for photoacoustic imaging: methylene blue and indocyanine green. We then demonstrate the potential of the phantom for evaluating sO2 using chemical oxygenation and deoxygenation of blood in the circuit. Using this dynamic assessment of the photoacoustic sO2 measurement in phantoms in relation to a ground truth, we explore the influence of multispectral processing and spectral coloring on accurate assessment of sO2. Future studies could exploit this low-cost dynamic flow phantom to validate fluence correction algorithms and explore additional blood parameters such as pH and also absorptive and other properties of different fluids.
Collapse
Affiliation(s)
- Marcel Gehrung
- Cancer Research UK Cambridge Institute, Li Ka-Shing Centre, Cambridge, United Kingdom
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
| | - Sarah E. Bohndiek
- Cancer Research UK Cambridge Institute, Li Ka-Shing Centre, Cambridge, United Kingdom
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
| | - Joanna Brunker
- Cancer Research UK Cambridge Institute, Li Ka-Shing Centre, Cambridge, United Kingdom
- University of Cambridge, Department of Physics, Cambridge, United Kingdom
| |
Collapse
|
46
|
Jeon S, Park EY, Choi W, Managuli R, Lee KJ, Kim C. Real-time delay-multiply-and-sum beamforming with coherence factor for in vivo clinical photoacoustic imaging of humans. PHOTOACOUSTICS 2019; 15:100136. [PMID: 31467842 PMCID: PMC6710719 DOI: 10.1016/j.pacs.2019.100136] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/10/2019] [Accepted: 06/13/2019] [Indexed: 05/06/2023]
Abstract
In the clinical photoacoustic (PA) imaging, ultrasound (US) array transducers are typically used to provide B-mode images in real-time. To form a B-mode image, delay-and-sum (DAS) beamforming algorithm is the most commonly used algorithm because of its ease of implementation. However, this algorithm suffers from low image resolution and low contrast drawbacks. To address this issue, delay-multiply-and-sum (DMAS) beamforming algorithm has been developed to provide enhanced image quality with higher contrast, and narrower main lobe compared but has limitations on the imaging speed for clinical applications. In this paper, we present an enhanced real-time DMAS algorithm with modified coherence factor (CF) for clinical PA imaging of humans in vivo. Our algorithm improves the lateral resolution and signal-to-noise ratio (SNR) of original DMAS beamformer by suppressing the background noise and side lobes using the coherence of received signals. We optimized the computations of the proposed DMAS with CF (DMAS-CF) to achieve real-time frame rate imaging on a graphics processing unit (GPU). To evaluate the proposed algorithm, we implemented DAS and DMAS with/without CF on a clinical US/PA imaging system and quantitatively assessed their processing speed and image quality. The processing time to reconstruct one B-mode image using DAS, DAS with CF (DAS-CF), DMAS, and DMAS-CF algorithms was 7.5, 7.6, 11.1, and 11.3 ms, respectively, all achieving the real-time imaging frame rate. In terms of the image quality, the proposed DMAS-CF algorithm improved the lateral resolution and SNR by 55.4% and 93.6 dB, respectively, compared to the DAS algorithm in the phantom imaging experiments. We believe the proposed DMAS-CF algorithm and its real-time implementation contributes significantly to the improvement of imaging quality of clinical US/PA imaging system.
Collapse
Affiliation(s)
- Seungwan Jeon
- Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Eun-Yeong Park
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Wonseok Choi
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Ravi Managuli
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Hitachi Medical Systems of America, Twinsburg, OH, 44087, USA
| | - Ki jong Lee
- Future IT Innovation Laboratory, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Chulhong Kim
- Departments of Creative IT Engineering, Mechanical Engineering, and Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Corresponding author.
| |
Collapse
|
47
|
Liu S, Feng X, Jin H, Zhang R, Luo Y, Zheng Z, Gao F, Zheng Y. Handheld Photoacoustic Imager for Theranostics in 3D. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:2037-2046. [PMID: 30802853 DOI: 10.1109/tmi.2019.2900656] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A handheld approach to 3D photoacoustic imaging is essential in clinical applications. To this end, we develop a 3D handheld photoacoustic imager for dynamic (temporally and spatially) volumetric visualization. In this 3D imager, the optically transmitting part and the acoustically receiving part are integrated into a single handheld probe with a compact size about 160 mm ×64 mm ×40 mm. Besides, a dedicated imaging reconstruction algorithm for the heterogeneous medium is developed based on the phase-shift migration method in the frequency domain, which deals well with the stratified condition in the designed system. Dynamic 3D imaging supporting flexible handheld operation is demonstrated with needle biopsy and in vitro temperature measurement for photothermal therapy. The development of such a 3D handheld photoacoustic system paves the way for compact and handheld-operating implementations, and its further clinical exploration is promising.
Collapse
|
48
|
Ratto F, Cavigli L, Borri C, Centi S, Magni G, Mazzoni M, Pini R. Hybrid organosilicon/polyol phantom for photoacoustic imaging. BIOMEDICAL OPTICS EXPRESS 2019; 10:3719-3730. [PMID: 31452970 PMCID: PMC6701555 DOI: 10.1364/boe.10.003719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 05/15/2023]
Abstract
The rapid development of hardware and software for photoacoustic technologies is urging the establishment of dedicated tools for standardization and performance assessment. In particular, the fabrication of anatomical phantoms for photoacoustic imaging remains an open question, as current solutions have not yet gained unanimous support. Here, we propose that a hybrid material made of a water-in-oil emulsion of glycerol and polydimethylsiloxane may represent a versatile platform to host a broad taxonomy of hydrophobic and hydrophilic dyes and recapitulate the optical and acoustic features of bio tissue. For a full optical parameterization, we refer to Wróbel, et al. [ Biomed. Opt. Express7, 2088 (2016)], where this material was first presented for optical imaging. Instead, here, we complete the picture and find that its speed of sound and acoustic attenuation resemble those of pure polydimethylsiloxane, i.e. respectively 1150 ± 30 m/s and 3.5 ± 0.4 dB/(MHz·cm). We demonstrate its use under a commercial B-mode scanner and a home-made A-mode stage for photoacoustic analysis to retrieve the ground-truth encoded in a multilayer architecture containing indocyanine green, plasmonic particles and red blood cells. Finally, we verify the stability of its acoustic, optical and geometric features over a time span of three months.
Collapse
Affiliation(s)
- Fulvio Ratto
- Istituto di Fisica Applicata ‘Nello Carrara’ IFAC-CNR, Via Madonna del Piano, 10, 50019 Sesto Fiorentino (FI), Italy
| | - Lucia Cavigli
- Istituto di Fisica Applicata ‘Nello Carrara’ IFAC-CNR, Via Madonna del Piano, 10, 50019 Sesto Fiorentino (FI), Italy
| | - Claudia Borri
- Istituto di Fisica Applicata ‘Nello Carrara’ IFAC-CNR, Via Madonna del Piano, 10, 50019 Sesto Fiorentino (FI), Italy
| | - Sonia Centi
- Istituto di Fisica Applicata ‘Nello Carrara’ IFAC-CNR, Via Madonna del Piano, 10, 50019 Sesto Fiorentino (FI), Italy
| | - Giada Magni
- Istituto di Fisica Applicata ‘Nello Carrara’ IFAC-CNR, Via Madonna del Piano, 10, 50019 Sesto Fiorentino (FI), Italy
| | - Marina Mazzoni
- Istituto di Fisica Applicata ‘Nello Carrara’ IFAC-CNR, Via Madonna del Piano, 10, 50019 Sesto Fiorentino (FI), Italy
| | - Roberto Pini
- Istituto di Fisica Applicata ‘Nello Carrara’ IFAC-CNR, Via Madonna del Piano, 10, 50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
49
|
Fales AM, Vogt WC, Wear KA, Ilev IK, Pfefer TJ. Pulsed laser damage of gold nanorods in turbid media and its impact on multi-spectral photoacoustic imaging. BIOMEDICAL OPTICS EXPRESS 2019; 10:1919-1934. [PMID: 31061767 PMCID: PMC6485005 DOI: 10.1364/boe.10.001919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 05/03/2023]
Abstract
Innovative biophotonic modalities such as photoacoustic imaging (PAI) have the potential to provide enhanced sensitivity and molecule-specific detection when used with nanoparticles. However, high peak irradiance levels generated by pulsed lasers can lead to modification of plasmonic nanoparticles. Thus, there is an outstanding need to develop practical methods to effectively predict the onset nanoparticle photomodification as well as a need to better understand the process during PAI. To address this need, we studied pulsed laser damage of gold nanorods (GNRs) using turbid phantoms and a multi-spectral near-infrared PAI system, comparing results with spectrophotometric measurements of non-scattering samples. Transmission electron microscopy and Monte Carlo modeling were also performed to elucidate damage processes. In the phantoms, shifts in PAI-detected spectra indicative of GNR damage were initiated at exposure levels one-third of that seen in non-scattering samples, due to turbidity-induced enhancement of subsurface fluence. For exposures approaching established safety limits, damage was detected at depths of up to 12.5 mm. Typically, GNR damage occurred rapidly, over the course of a few laser pulses. This work advances the development of test methods and numerical models as tools for assessment of nanoparticle damage and its implications, and highlights the importance of considering GNR damage in development of PAI products, even for exposures well below laser safety limits.
Collapse
Affiliation(s)
- Andrew M. Fales
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - William C. Vogt
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Keith A. Wear
- Division of Applied Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Ilko K. Ilev
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - T. Joshua Pfefer
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
50
|
Vogt WC, Zhou X, Andriani R, Wear KA, Pfefer TJ, Garra BS. Photoacoustic oximetry imaging performance evaluation using dynamic blood flow phantoms with tunable oxygen saturation. BIOMEDICAL OPTICS EXPRESS 2019; 10:449-464. [PMID: 30800492 PMCID: PMC6377872 DOI: 10.1364/boe.10.000449] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/14/2018] [Accepted: 12/14/2018] [Indexed: 05/18/2023]
Abstract
Multispectral photoacoustic oximetry imaging (MPOI) is an emerging hybrid modality that enables the spatial mapping of blood oxygen saturation (SO2) to depths of several centimeters. To facilitate MPOI device development and clinical translation, well-validated performance test methods and improved quantitative understanding of physical processes and best practices are needed. We developed a breast-mimicking blood flow phantom with tunable SO2 and used this phantom to evaluate a custom MPOI system. Results provide quantitative evaluation of the impact of phantom medium properties (Intralipid versus polyvinyl chloride plastisol) and device design parameters (different transducers) on SO2 measurement accuracy, especially depth-dependent performance degradation due to fluence artifacts. This approach may guide development of standardized test methods for evaluating MPOI devices.
Collapse
Affiliation(s)
- William C. Vogt
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Xuewen Zhou
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Rudy Andriani
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Keith A. Wear
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - T. Joshua Pfefer
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Brian S. Garra
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| |
Collapse
|