1
|
Calcaterra V, Lacerenza M, Rossi V, Zanelli S, Contini D, Amendola C, Buttafava M, Torricelli A, Zuccotti G. Reference values for cerebral and peripheral tissue oximetry in children: A clinical TD-NIRS study. Acta Paediatr 2024. [PMID: 39425553 DOI: 10.1111/apa.17459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/20/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024]
Abstract
AIM Current non-invasive near-infrared spectroscopy (NIRS) tissue oximetry suffers from suboptimal reproducibility over probe repositioning, hindering clinical threshold establishment. Time Domain-NIRS (TD-NIRS) offers higher precision but lacks sufficient paediatric data, preventing effective clinical application. We aimed to establish reference ranges for cerebral and mid-upper arm (MUA) tissue haemodynamics in paediatric subjects using TD-NIRS and explore correlations with auxological variables. METHODS TD-NIRS measurements were conducted acquiring data from cerebral and MUA regions with the NIRSBOX tissue oximeter. Morphological and clinically relevant information were collected to explore potential correlations with TD-NIRS derived parameters. RESULTS TD-NIRS assessment was applied in 350 children (8.4 ± 5.0 years). Precision of TD-NIRS was demonstrated with standard deviations of 0.9% (StO2) and 4.2 μM (tHb) for frontotemporal cerebral cortex, and 0.8% (StO2) and 3.7 μM (tHb) for MUA. No user dependency was observed. The trends of values for cerebral and peripheral regions vary differently according to age and auxological parameters. CONCLUSION This study reports resting-state optical and haemodynamic values for a healthy paediatric population, providing a foundation for future investigations into clinically relevant deviations in these parameters. Furthermore, correlations with anthropometric and demographic values provide valuable insights for a deeper understanding of tissue haemodynamic evolution in childhood.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Pediatric and Adolescent Unit, Department of Internal Medicine, University of Pavia, Pavia, Italy
- Pediatric Department, Buzzi Children's Hospital, Milan, Italy
| | | | - Virginia Rossi
- Pediatric Department, Buzzi Children's Hospital, Milan, Italy
| | - Sara Zanelli
- Pediatric Department, Buzzi Children's Hospital, Milan, Italy
| | - Davide Contini
- Dipartimento di Fisica, Politecnico di Milano, Milan, Italy
| | | | | | - Alessandro Torricelli
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Gianvincenzo Zuccotti
- Pediatric Department, Buzzi Children's Hospital, Milan, Italy
- Department of Biomedical and Clinical Science, University of Milan, Milan, Italy
| |
Collapse
|
2
|
Tagliabue S, Kacprzak M, Rey-Perez A, Baena J, Riveiro M, Maruccia F, Fischer JB, Poca MA, Durduran T. How the heterogeneity of the severely injured brain affects hybrid diffuse optical signals: case examples and guidelines. NEUROPHOTONICS 2024; 11:045005. [PMID: 39430435 PMCID: PMC11487584 DOI: 10.1117/1.nph.11.4.045005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/16/2024] [Accepted: 09/12/2024] [Indexed: 10/22/2024]
Abstract
Significance A shortcoming of the routine clinical use of diffuse optics (DO) in the injured head has been that the results from commercial near-infrared spectroscopy-based devices are not reproducible, often give physiologically invalid values, and differ among systems. Besides the limitations due to the physics of continuous-wave light sources, one culprit is the head heterogeneity and the underlying morphological and functional abnormalities of the probed tissue. Aim The aim is to investigate the effect that different tissue alterations in the damaged head have on DO signals and provide guidelines to avoid data misinterpretation. Approach DO measurements and computed tomography scans were acquired on brain-injured patients. The relationship between the signals and the underlying tissue types was classified on a case-by-case basis. Results Examples and suggestions to establish quality control routines were provided. The findings suggested guidelines for carrying out DO measurements and speculations toward improved devices. Conclusions We advocate for the standardization of the DO measurements to secure a role for DO in neurocritical care. We suggest that blind measurements are unacceptably problematic due to confounding effects and care using a priori and a posteriori quality control routines that go beyond an assessment of the signal-to-noise ratio that is typically utilized.
Collapse
Affiliation(s)
- Susanna Tagliabue
- ICFO–Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Biomedical Optics, Barcelona, Spain
| | - Michał Kacprzak
- ICFO–Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Biomedical Optics, Barcelona, Spain
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | - Anna Rey-Perez
- Vall d’Hebron Hospital, Neurotrauma Intensive Care Unit, Barcelona, Spain
| | - Jacinto Baena
- Vall d’Hebron Hospital, Neurotrauma Intensive Care Unit, Barcelona, Spain
| | - Marilyn Riveiro
- Vall d’Hebron Hospital, Neurotrauma Intensive Care Unit, Barcelona, Spain
| | - Federica Maruccia
- ICFO–Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Biomedical Optics, Barcelona, Spain
- Vall d’Hebron Research Institute (VHIR), Neurotraumatology and Neurosurgery Research Unit (UNINN), Barcelona, Spain
| | - Jonas B. Fischer
- ICFO–Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Biomedical Optics, Barcelona, Spain
| | - Maria A. Poca
- Vall d’Hebron Research Institute (VHIR), Neurotraumatology and Neurosurgery Research Unit (UNINN), Barcelona, Spain
- Vall d’Hebron Hospital, Department of Neurosurgery, Barcelona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Turgut Durduran
- ICFO–Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Biomedical Optics, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
3
|
Mazumder D, Kholiqov O, Srinivasan VJ. Interferometric near-infrared spectroscopy (iNIRS) reveals that blood flow index depends on wavelength. BIOMEDICAL OPTICS EXPRESS 2024; 15:2152-2174. [PMID: 38633063 PMCID: PMC11019706 DOI: 10.1364/boe.507373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 04/19/2024]
Abstract
Blood flow index (BFI) is an optically accessible parameter, with unit distance-squared-over-time, that is widely used as a proxy for tissue perfusion. BFI is defined as the dynamic scattering probability (i.e. the ratio of dynamic to overall reduced scattering coefficients) times an effective Brownian diffusion coefficient that describes red blood cell (RBC) motion. Here, using a wavelength division multiplexed, time-of-flight- (TOF) - resolved iNIRS system, we obtain TOF-resolved field autocorrelations at 773 nm and 855 nm via the same source and collector. We measure the human forearm, comprising biological tissues with mixed static and dynamic scattering, as well as a purely dynamic scattering phantom. Our primary finding is that forearm BFI increases from 773 nm to 855 nm, though the magnitude of this increase varies across subjects (23% ± 19% for N = 3). However, BFI is wavelength-independent in the purely dynamic scattering phantom. From these data, we infer that the wavelength-dependence of BFI arises from the wavelength-dependence of the dynamic scattering probability. This inference is further supported by RBC scattering literature. Our secondary finding is that the higher-order cumulant terms of the mean squared displacement (MSD) of RBCs are significant, but decrease with wavelength. Thus, laser speckle and related modalities should exercise caution when interpreting field autocorrelations.
Collapse
Affiliation(s)
- Dibbyan Mazumder
- Department of Radiology, New York University Langone Health, New York, NY 10016, USA
- Department of Ophthalmology, New York University Langone Health, New York, NY 10016, USA
| | - Oybek Kholiqov
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
| | - Vivek J. Srinivasan
- Department of Radiology, New York University Langone Health, New York, NY 10016, USA
- Department of Ophthalmology, New York University Langone Health, New York, NY 10016, USA
| |
Collapse
|
4
|
Cortese L, Fernández Esteberena P, Zanoletti M, Lo Presti G, Aranda Velazquez G, Ruiz Janer S, Buttafava M, Renna M, Di Sieno L, Tosi A, Dalla Mora A, Wojtkiewicz S, Dehghani H, de Fraguier S, Nguyen-Dinh A, Rosinski B, Weigel UM, Mesquida J, Squarcia M, Hanzu FA, Contini D, Mora Porta M, Durduran T. In vivocharacterization of the optical and hemodynamic properties of the human sternocleidomastoid muscle through ultrasound-guided hybrid near-infrared spectroscopies. Physiol Meas 2023; 44:125010. [PMID: 38061053 DOI: 10.1088/1361-6579/ad133a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 12/07/2023] [Indexed: 12/28/2023]
Abstract
Objective.In this paper, we present a detailedin vivocharacterization of the optical and hemodynamic properties of the human sternocleidomastoid muscle (SCM), obtained through ultrasound-guided near-infrared time-domain and diffuse correlation spectroscopies.Approach.A total of sixty-five subjects (forty-nine females, sixteen males) among healthy volunteers and thyroid nodule patients have been recruited for the study. Their SCM hemodynamic (oxy-, deoxy- and total hemoglobin concentrations, blood flow, blood oxygen saturation and metabolic rate of oxygen extraction) and optical properties (wavelength dependent absorption and reduced scattering coefficients) have been measured by the use of a novel hybrid device combining in a single unit time-domain near-infrared spectroscopy, diffuse correlation spectroscopy and simultaneous ultrasound imaging.Main results.We provide detailed tables of the results related to SCM baseline (i.e. muscle at rest) properties, and reveal significant differences on the measured parameters due to variables such as side of the neck, sex, age, body mass index, depth and thickness of the muscle, allowing future clinical studies to take into account such dependencies.Significance.The non-invasive monitoring of the hemodynamics and metabolism of the sternocleidomastoid muscle during respiration became a topic of increased interest partially due to the increased use of mechanical ventilation during the COVID-19 pandemic. Near-infrared diffuse optical spectroscopies were proposed as potential practical monitors of increased recruitment of SCM during respiratory distress. They can provide clinically relevant information on the degree of the patient's respiratory effort that is needed to maintain an optimal minute ventilation, with potential clinical application ranging from evaluating chronic pulmonary diseases to more acute settings, such as acute respiratory failure, or to determine the readiness to wean from invasive mechanical ventilation.
Collapse
Affiliation(s)
- Lorenzo Cortese
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, E-08860 Castelldefels (Barcelona), Spain
| | - Pablo Fernández Esteberena
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, E-08860 Castelldefels (Barcelona), Spain
| | - Marta Zanoletti
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, E-08860 Castelldefels (Barcelona), Spain
- Politecnico di Milano, Dipartimento di Fisica, I-20133 Milano, Italy
| | - Giuseppe Lo Presti
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, E-08860 Castelldefels (Barcelona), Spain
| | | | - Sabina Ruiz Janer
- IDIBAPS, Fundació Clínic per la Recerca Biomèdica, E-08036 Barcelona, Spain
| | - Mauro Buttafava
- Politecnico di Milano, Dipartimento di Elettronica Informazione e Bioingegneria, I-20133 Milano, Italy
- Now at PIONIRS s.r.l., I-20124 Milano, Italy
| | - Marco Renna
- Politecnico di Milano, Dipartimento di Elettronica Informazione e Bioingegneria, I-20133 Milano, Italy
- Now at Athinoula A. Martinos Center for Biomedical Imaging, MGH, Harvard Medical School, Charlestown, MA 02129, United States of America
| | - Laura Di Sieno
- Politecnico di Milano, Dipartimento di Fisica, I-20133 Milano, Italy
| | - Alberto Tosi
- Politecnico di Milano, Dipartimento di Elettronica Informazione e Bioingegneria, I-20133 Milano, Italy
| | | | - Stanislaw Wojtkiewicz
- University of Birmingham, School of Computer Science, Edgbaston, Birmingham, B15 2TT, United Kingdom
- Now at Nalecz Institute of Biocybernetics and Biomedical Engineering, 02-109 Warsaw, Poland
| | - Hamid Dehghani
- University of Birmingham, School of Computer Science, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | | | | | | | - Udo M Weigel
- HemoPhotonics S.L., E-08860 Castelldefels (Barcelona), Spain
| | - Jaume Mesquida
- Área de Crítics, Parc Taulí Hospital Universitari, E-08208 Sabadell, Spain
| | - Mattia Squarcia
- IDIBAPS, Fundació Clínic per la Recerca Biomèdica, E-08036 Barcelona, Spain
- Neuroradiology Department, Hospital Clínic of Barcelona, E-08036 Barcelona, Spain
| | - Felicia A Hanzu
- IDIBAPS, Fundació Clínic per la Recerca Biomèdica, E-08036 Barcelona, Spain
- Endocrinology and Nutrition Department, Hospital Clínic of Barcelona, E-08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), E-28029 Madrid, Spain
| | - Davide Contini
- Politecnico di Milano, Dipartimento di Fisica, I-20133 Milano, Italy
| | - Mireia Mora Porta
- IDIBAPS, Fundació Clínic per la Recerca Biomèdica, E-08036 Barcelona, Spain
- Endocrinology and Nutrition Department, Hospital Clínic of Barcelona, E-08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), E-28029 Madrid, Spain
| | - Turgut Durduran
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, E-08860 Castelldefels (Barcelona), Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), E-08010 Barcelona, Spain
| |
Collapse
|
5
|
Tagliabue S, Kacprzak M, Serra I, Maruccia F, Fischer JB, Riveiro-Vilaboa M, Rey-Perez A, Expósito L, Lindner C, Báguena M, Durduran T, Poca MA. Transcranial, Non-Invasive Evaluation of Potential Misery Perfusion During Hyperventilation Therapy of Traumatic Brain Injury Patients. J Neurotrauma 2023; 40:2073-2086. [PMID: 37125452 PMCID: PMC10541939 DOI: 10.1089/neu.2022.0419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Hyperventilation (HV) therapy uses vasoconstriction to reduce intracranial pressure (ICP) by reducing cerebral blood volume. However, as HV also lowers cerebral blood flow (CBF), it may provoke misery perfusion (MP), in which the decrease in CBF is coupled with increased oxygen extraction fraction (OEF). MP may rapidly lead to the exhaustion of brain energy metabolites, making the brain vulnerable to ischemia. MP is difficult to detect at the bedside, which is where transcranial hybrid, near-infrared spectroscopies are promising because they non-invasively measure OEF and CBF. We have tested this technology during HV (∼30 min) with bilateral, frontal lobe monitoring to assess MP in 27 sessions in 18 patients with traumatic brain injury. In this study, HV did not lead to MP at a group level (p > 0.05). However, a statistical approach yielded 89 events with a high probability of MP in 19 sessions. We have characterized each statistically significant event in detail and its possible relationship to clinical and radiological status (decompressive craniectomy and presence of a cerebral lesion), without detecting any statistically significant difference (p > 0.05). However, MP detection stresses the need for personalized, real-time assessment in future clinical trials with HV, in order to provide an optimal evaluation of the risk-benefit balance of HV. Our study provides pilot data demonstrating that bedside transcranial hybrid near-infrared spectroscopies could be utilized to assess potential MP.
Collapse
Affiliation(s)
- Susanna Tagliabue
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Michał Kacprzak
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Isabel Serra
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
- Centre de Recerca Matemàtica (CRM), Bellaterra, Spain
| | - Federica Maruccia
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
- Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Jonas B. Fischer
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
- HemoPhotonics S.L., Castelldefels (Barcelona), Spain
| | | | - Anna Rey-Perez
- Neurotrauma Intensive Care Unit, and Vall d'Hebron University Hospital, Barcelona, Spain
| | - Lourdes Expósito
- Neurotrauma Intensive Care Unit, and Vall d'Hebron University Hospital, Barcelona, Spain
| | - Claus Lindner
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Marcelino Báguena
- Neurotrauma Intensive Care Unit, and Vall d'Hebron University Hospital, Barcelona, Spain
| | - Turgut Durduran
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - María Antonia Poca
- Centre de Recerca Matemàtica (CRM), Bellaterra, Spain
- Department of Neurosurgery, Vall d'Hebron University Hospital, Barcelona, Spain
- Department of Surgery, Universidad Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
6
|
Passera S, De Carli A, Fumagalli M, Contini D, Pesenti N, Amendola C, Giovannella M, Durduran T, Weigel UM, Spinelli L, Torricelli A, Greisen G. Cerebrovascular reactivity to carbon dioxide tension in newborns: data from combined time-resolved near-infrared spectroscopy and diffuse correlation spectroscopy. NEUROPHOTONICS 2023; 10:045003. [PMID: 37841558 PMCID: PMC10576436 DOI: 10.1117/1.nph.10.4.045003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/30/2023] [Accepted: 08/18/2023] [Indexed: 10/17/2023]
Abstract
Significance Critically ill newborns are at risk of brain damage from cerebrovascular disturbances. A cerebral hemodynamic monitoring system would have the potential role to guide targeted intervention. Aim To obtain, in a population of newborn infants, simultaneous near-infrared spectroscopy (NIRS)-based estimates of cerebral tissue oxygen saturation (StO 2 ) and blood flow during variations of carbon dioxide tension (pCO 2 ) levels within physiologic values up to moderate permissive hypercapnia, and to examine if the derived estimate of metabolic rate of oxygen would stay constant, during the same variations. Approach We enrolled clinically stable mechanically ventilated newborns at postnatal age > 24 h without brain abnormalities at ultrasound. StO 2 and blood flow index were measured using a non-invasive device (BabyLux), which combine time-resolved NIRS and diffuse-correlation spectroscopy. The effect of changes in transcutaneous pCO 2 on StO 2 , cerebral blood flow (CBF), and cerebral metabolic rate of oxygen index (tCMRO 2 i ) were estimated. Results Ten babies were enrolled and three were excluded. Median GA at enrollment was 39 weeks and median weight 2720 g. StO 2 increased 0.58% (95% CI 0.55; 0.61, p < 0.001 ), CBF 2% (1.9; 2.3, p < 0.001 ), and tCMRO 2 0.3% (0.05; 0.46, p = 0.017 ) per mmHg increase in pCO 2 . Conclusions BabyLux device detected pCO 2 -induced changes in cerebral StO 2 and CBF, as expected. The small statistically significant positive relationship between pCO 2 and tCMRO 2 i variation is not considered clinically relevant and we are inclined to consider it as an artifact.
Collapse
Affiliation(s)
- Sofia Passera
- NICU Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milan, Milan, Italy
| | - Agnese De Carli
- NICU Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milan, Milan, Italy
| | - Monica Fumagalli
- NICU Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milan, Milan, Italy
- University of Milan, Department of Clinical Sciences and Community Health, Milan, Italy
| | - Davide Contini
- Politecnico di Milano, Dipartimento di Fisica, Milan, Italy
| | - Nicola Pesenti
- University of Milano-Bicocca, Division of Biostatistics, Epidemiology and Public Health, Department of Statistics and Quantitative Methods, Milan, Italy
| | | | - Martina Giovannella
- ICFO – Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Casteldefells, Spain
| | - Turgut Durduran
- ICFO – Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Casteldefells, Spain
- ICREA – Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | | | - Lorenzo Spinelli
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Alessandro Torricelli
- Politecnico di Milano, Dipartimento di Fisica, Milan, Italy
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Gorm Greisen
- Rigshospitalet and University of Copenhagen, Department of Neonatology, Copenhagen, Denmark
| |
Collapse
|
7
|
Parfentyeva V, Colombo L, Lanka P, Pagliazzi M, Brodu A, Noordzij N, Kolarczik M, Dalla Mora A, Re R, Contini D, Torricelli A, Durduran T, Pifferi A. Fast time-domain diffuse correlation spectroscopy with superconducting nanowire single-photon detector: system validation and in vivo results. Sci Rep 2023; 13:11982. [PMID: 37488188 PMCID: PMC10366131 DOI: 10.1038/s41598-023-39281-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/22/2023] [Indexed: 07/26/2023] Open
Abstract
Time-domain diffuse correlation spectroscopy (TD-DCS) has been introduced as an advancement of the "classical" continuous wave DCS (CW-DCS) allowing one to not only to measure depth-resolved blood flow index (BFI) but also to extract optical properties of the measured medium without using any additional diffuse optics technique. However, this method is a photon-starved technique, specially when considering only the late photons that are of primary interest which has limited its in vivo application. In this work, we present a TD-DCS system based on a superconducting nanowire single-photon detector (SNSPD) with a high quantum efficiency, a narrow timing response, and a negligibly low dark count noise. We compared it to the typically used single-photon avalanche diode (SPAD) detector. In addition, this system allowed us to conduct fast in vivo measurements and obtain gated pulsatile BFI on the adult human forehead.
Collapse
Affiliation(s)
- Veronika Parfentyeva
- Institut de Ciéncies Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, 08860, Spain
| | - Lorenzo Colombo
- Dipartimento di Fisica, Politecnico di Milano, Milan, 20133, Italy
| | - Pranav Lanka
- Dipartimento di Fisica, Politecnico di Milano, Milan, 20133, Italy
| | - Marco Pagliazzi
- Institut de Ciéncies Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, 08860, Spain
| | | | | | | | | | - Rebecca Re
- Dipartimento di Fisica, Politecnico di Milano, Milan, 20133, Italy
- Consiglio Nazionale delle Ricerche, Istituto di Fotonica e Nanotecnologie, Milan, 20133, Italy
| | - Davide Contini
- Dipartimento di Fisica, Politecnico di Milano, Milan, 20133, Italy
| | - Alessandro Torricelli
- Dipartimento di Fisica, Politecnico di Milano, Milan, 20133, Italy
- Consiglio Nazionale delle Ricerche, Istituto di Fotonica e Nanotecnologie, Milan, 20133, Italy
| | - Turgut Durduran
- Institut de Ciéncies Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, 08860, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08015, Spain
| | - Antonio Pifferi
- Dipartimento di Fisica, Politecnico di Milano, Milan, 20133, Italy
- Consiglio Nazionale delle Ricerche, Istituto di Fotonica e Nanotecnologie, Milan, 20133, Italy
| |
Collapse
|
8
|
Ko TS, Catennacio E, Shin SS, Stern J, Massey SL, Kilbaugh TJ, Hwang M. Advanced Neuromonitoring Modalities on the Horizon: Detection and Management of Acute Brain Injury in Children. Neurocrit Care 2023; 38:791-811. [PMID: 36949362 PMCID: PMC10241718 DOI: 10.1007/s12028-023-01690-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 01/31/2023] [Indexed: 03/24/2023]
Abstract
Timely detection and monitoring of acute brain injury in children is essential to mitigate causes of injury and prevent secondary insults. Increasing survival in critically ill children has emphasized the importance of neuroprotective management strategies for long-term quality of life. In emergent and critical care settings, traditional neuroimaging modalities, such as computed tomography and magnetic resonance imaging (MRI), remain frontline diagnostic techniques to detect acute brain injury. Although detection of structural and anatomical abnormalities remains crucial, advanced MRI sequences assessing functional alterations in cerebral physiology provide unique diagnostic utility. Head ultrasound has emerged as a portable neuroimaging modality for point-of-care diagnosis via assessments of anatomical and perfusion abnormalities. Application of electroencephalography and near-infrared spectroscopy provides the opportunity for real-time detection and goal-directed management of neurological abnormalities at the bedside. In this review, we describe recent technological advancements in these neurodiagnostic modalities and elaborate on their current and potential utility in the detection and management of acute brain injury.
Collapse
Affiliation(s)
- Tiffany S Ko
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, USA.
| | - Eva Catennacio
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Samuel S Shin
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, USA
| | - Joseph Stern
- Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, USA
| | - Shavonne L Massey
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Todd J Kilbaugh
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Misun Hwang
- Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
9
|
Tierradentro-García LO, Saade-Lemus S, Freeman C, Kirschen M, Huang H, Vossough A, Hwang M. Cerebral Blood Flow of the Neonatal Brain after Hypoxic-Ischemic Injury. Am J Perinatol 2023; 40:475-488. [PMID: 34225373 PMCID: PMC8974293 DOI: 10.1055/s-0041-1731278] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Hypoxic-ischemic encephalopathy (HIE) in infants can have long-term adverse neurodevelopmental effects and markedly reduce quality of life. Both the initial hypoperfusion and the subsequent rapid reperfusion can cause deleterious effects in brain tissue. Cerebral blood flow (CBF) assessment in newborns with HIE can help detect abnormalities in brain perfusion to guide therapy and prognosticate patient outcomes. STUDY DESIGN The review will provide an overview of the pathophysiological implications of CBF derangements in neonatal HIE, current and emerging techniques for CBF quantification, and the potential to utilize CBF as a physiologic target in managing neonates with acute HIE. CONCLUSION The alterations of CBF in infants during hypoxia-ischemia have been studied by using different neuroimaging techniques, including nitrous oxide and xenon clearance, transcranial Doppler ultrasonography, contrast-enhanced ultrasound, arterial spin labeling MRI, 18F-FDG positron emission tomography, near-infrared spectroscopy (NIRS), functional NIRS, and diffuse correlation spectroscopy. Consensus is lacking regarding the clinical significance of CBF estimations detected by these different modalities. Heterogeneity in the imaging modality used, regional versus global estimations of CBF, time for the scan, and variables impacting brain perfusion and cohort clinical characteristics should be considered when translating the findings described in the literature to routine practice and implementation of therapeutic interventions. KEY POINTS · Hypoxic-ischemic injury in infants can result in adverse long-term neurologic sequelae.. · Cerebral blood flow is a useful biomarker in neonatal hypoxic-ischemic injury.. · Imaging modality, variables affecting cerebral blood flow, and patient characteristics affect cerebral blood flow assessment..
Collapse
Affiliation(s)
| | - Sandra Saade-Lemus
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Neurology, Brigham and Women’s Hospital & Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Colbey Freeman
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Matthew Kirschen
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Hao Huang
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Arastoo Vossough
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Misun Hwang
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
10
|
Phillips V Z, Canoy RJ, Paik SH, Lee SH, Kim BM. Functional Near-Infrared Spectroscopy as a Personalized Digital Healthcare Tool for Brain Monitoring. J Clin Neurol 2023; 19:115-124. [PMID: 36854332 PMCID: PMC9982178 DOI: 10.3988/jcn.2022.0406] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 03/02/2023] Open
Abstract
The sustained growth of digital healthcare in the field of neurology relies on portable and cost-effective brain monitoring tools that can accurately monitor brain function in real time. Functional near-infrared spectroscopy (fNIRS) is one such tool that has become popular among researchers and clinicians as a practical alternative to functional magnetic resonance imaging, and as a complementary tool to modalities such as electroencephalography. This review covers the contribution of fNIRS to the personalized goals of digital healthcare in neurology by identifying two major trends that drive current fNIRS research. The first major trend is multimodal monitoring using fNIRS, which allows clinicians to access more data that will help them to understand the interconnection between the cerebral hemodynamics and other physiological phenomena in patients. This allows clinicians to make an overall assessment of physical health to obtain a more-detailed and individualized diagnosis. The second major trend is that fNIRS research is being conducted with naturalistic experimental paradigms that involve multisensory stimulation in familiar settings. Cerebral monitoring of multisensory stimulation during dynamic activities or within virtual reality helps to understand the complex brain activities that occur in everyday life. Finally, the scope of future fNIRS studies is discussed to facilitate more-accurate assessments of brain activation and the wider clinical acceptance of fNIRS as a medical device for digital healthcare.
Collapse
Affiliation(s)
- Zephaniah Phillips V
- Global Health Technology Research Center, College of Health Science, Korea University, Seoul, Korea.
| | - Raymart Jay Canoy
- Program in Biomicro System Technology, College of Engineering, Korea University, Seoul, Korea
| | - Seung-Ho Paik
- Global Health Technology Research Center, College of Health Science, Korea University, Seoul, Korea
- KLIEN Inc., Seoul Biohub, Seoul, Korea
| | - Seung Hyun Lee
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, Korea
| | - Beop-Min Kim
- Department of Bio-Convergence Engineering, Korea University, Seoul, Korea
| |
Collapse
|
11
|
Scholkmann F, Vollenweider FX. Psychedelics and fNIRS neuroimaging: exploring new opportunities. NEUROPHOTONICS 2023; 10:013506. [PMID: 36474478 PMCID: PMC9717437 DOI: 10.1117/1.nph.10.1.013506] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
In this Outlook paper, we explain to the optical neuroimaging community as well as the psychedelic research community the great potential of using optical neuroimaging with functional near-infrared spectroscopy (fNIRS) to further explore the changes in brain activity induced by psychedelics. We explain why we believe now is the time to exploit the momentum of the current resurgence of research on the effects of psychedelics and the momentum of the increasing progress and popularity of the fNIRS technique to establish fNIRS in psychedelic research. With this article, we hope to contribute to this development.
Collapse
Affiliation(s)
- Felix Scholkmann
- University Hospital Zurich, University of Zurich, Biomedical Optics Research Laboratory, Department of Neonatology, Zurich, Switzerland
- University of Bern, Institute of Complementary and Integrative Medicine, Bern, Switzerland
| | - Franz X. Vollenweider
- University Hospital of Psychiatry, University of Zurich, Neuropsychopharmacology and Brain Imaging, Department of Psychiatry, Psychotherapy and Psychosomatics, Zurich, Switzerland
| |
Collapse
|
12
|
Efficient computation of the steady-state and time-domain solutions of the photon diffusion equation in layered turbid media. Sci Rep 2022; 12:18979. [PMID: 36347893 PMCID: PMC9643457 DOI: 10.1038/s41598-022-22649-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
Accurate and efficient forward models of photon migration in heterogeneous geometries are important for many applications of light in medicine because many biological tissues exhibit a layered structure of independent optical properties and thickness. However, closed form analytical solutions are not readily available for layered tissue-models, and often are modeled using computationally expensive numerical techniques or theoretical approximations that limit accuracy and real-time analysis. Here, we develop an open-source accurate, efficient, and stable numerical routine to solve the diffusion equation in the steady-state and time-domain for a layered cylinder tissue model with an arbitrary number of layers and specified thickness and optical coefficients. We show that the steady-state ([Formula: see text] ms) and time-domain ([Formula: see text] ms) fluence (for an 8-layer medium) can be calculated with absolute numerical errors approaching machine precision. The numerical implementation increased computation speed by 3 to 4 orders of magnitude compared to previously reported theoretical solutions in layered media. We verify our solutions asymptotically to homogeneous tissue geometries using closed form analytical solutions to assess convergence and numerical accuracy. Approximate solutions to compute the reflected intensity are presented which can decrease the computation time by an additional 2-3 orders of magnitude. We also compare our solutions for 2, 3, and 5 layered media to gold-standard Monte Carlo simulations in layered tissue models of high interest in biomedical optics (e.g. skin/fat/muscle and brain). The presented routine could enable more robust real-time data analysis tools in heterogeneous tissues that are important in many clinical applications such as functional brain imaging and diffuse optical spectroscopy.
Collapse
|
13
|
Maruccia F, Tagliabue S, Fischer JB, Kacprzak M, Pérez-Hoyos S, Rosas K, Álvarez ID, Sahuquillo J, Durduran T, Poca MA. Transcranial optical monitoring for detecting intracranial pressure alterations in children with benign external hydrocephalus: a proof-of-concept study. NEUROPHOTONICS 2022; 9:045005. [PMID: 36405998 PMCID: PMC9670160 DOI: 10.1117/1.nph.9.4.045005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
SIGNIFICANCE Benign external hydrocephalus (BEH) is considered a self-limiting pathology with a good prognosis. However, some children present a pathological intracranial pressure (ICP) characterized by quantitative and qualitative alterations (the so-called B-waves) that can lead to neurological sequelae. AIM Our purpose was to evaluate whether there were cerebral hemodynamic changes associated with ICP B-waves that could be evaluated with noninvasive neuromonitoring. APPROACH We recruited eleven patients (median age 16 months, range 7 to 55 months) with BEH and an unfavorable evolution requiring ICP monitoring. Bedside, nocturnal monitoring using near-infrared time-resolved and diffuse correlation spectroscopies synchronized to the clinical monitoring was performed. RESULTS By focusing on the timing of different ICP patterns that were identified manually by clinicians, we detected significant tissue oxygen saturation ( StO 2 ) changes ( p = 0.002 ) and blood flow index (BFI) variability ( p = 0.005 ) between regular and high-amplitude B-wave patterns. A blinded analysis looking for analogs of ICP patterns in BFI time traces achieved 90% sensitivity in identifying B-waves and 76% specificity in detecting the regular patterns. CONCLUSIONS We revealed the presence of StO 2 and BFI variations-detectable with optical techniques-during ICP B-waves in BEH children. Finally, the feasibility of detecting ICP B-waves in hemodynamic time traces obtained noninvasively was shown.
Collapse
Affiliation(s)
- Federica Maruccia
- Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Research Institute, Neurotraumatology and Neurosurgery Research Unit, Barcelona, Spain
- ICFO-Insitut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Susanna Tagliabue
- ICFO-Insitut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Jonas B. Fischer
- ICFO-Insitut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
- HemoPhotonics S.L., Barcelona, Spain
| | - Michał Kacprzak
- ICFO-Insitut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | - Santi Pérez-Hoyos
- Vall d’Hebron Research Institute, Statistics and Bioinformatics Unit, Barcelona, Spain
| | - Katiuska Rosas
- Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Research Institute, Neurotraumatology and Neurosurgery Research Unit, Barcelona, Spain
- Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Department of Neurosurgery and Pediatric Neurosurgery Unit, Barcelona, Spain
| | - Ignacio Delgado Álvarez
- Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Department of Pediatric Neuroradiology, Barcelona, Spain
| | - Juan Sahuquillo
- Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Research Institute, Neurotraumatology and Neurosurgery Research Unit, Barcelona, Spain
- Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Department of Neurosurgery and Pediatric Neurosurgery Unit, Barcelona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Turgut Durduran
- ICFO-Insitut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Maria A. Poca
- Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Research Institute, Neurotraumatology and Neurosurgery Research Unit, Barcelona, Spain
- Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Department of Neurosurgery and Pediatric Neurosurgery Unit, Barcelona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
14
|
Ayaz H, Baker WB, Blaney G, Boas DA, Bortfeld H, Brady K, Brake J, Brigadoi S, Buckley EM, Carp SA, Cooper RJ, Cowdrick KR, Culver JP, Dan I, Dehghani H, Devor A, Durduran T, Eggebrecht AT, Emberson LL, Fang Q, Fantini S, Franceschini MA, Fischer JB, Gervain J, Hirsch J, Hong KS, Horstmeyer R, Kainerstorfer JM, Ko TS, Licht DJ, Liebert A, Luke R, Lynch JM, Mesquida J, Mesquita RC, Naseer N, Novi SL, Orihuela-Espina F, O’Sullivan TD, Peterka DS, Pifferi A, Pollonini L, Sassaroli A, Sato JR, Scholkmann F, Spinelli L, Srinivasan VJ, St. Lawrence K, Tachtsidis I, Tong Y, Torricelli A, Urner T, Wabnitz H, Wolf M, Wolf U, Xu S, Yang C, Yodh AG, Yücel MA, Zhou W. Optical imaging and spectroscopy for the study of the human brain: status report. NEUROPHOTONICS 2022; 9:S24001. [PMID: 36052058 PMCID: PMC9424749 DOI: 10.1117/1.nph.9.s2.s24001] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
This report is the second part of a comprehensive two-part series aimed at reviewing an extensive and diverse toolkit of novel methods to explore brain health and function. While the first report focused on neurophotonic tools mostly applicable to animal studies, here, we highlight optical spectroscopy and imaging methods relevant to noninvasive human brain studies. We outline current state-of-the-art technologies and software advances, explore the most recent impact of these technologies on neuroscience and clinical applications, identify the areas where innovation is needed, and provide an outlook for the future directions.
Collapse
Affiliation(s)
- Hasan Ayaz
- Drexel University, School of Biomedical Engineering, Science, and Health Systems, Philadelphia, Pennsylvania, United States
- Drexel University, College of Arts and Sciences, Department of Psychological and Brain Sciences, Philadelphia, Pennsylvania, United States
| | - Wesley B. Baker
- Children’s Hospital of Philadelphia, Division of Neurology, Philadelphia, Pennsylvania, United States
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Giles Blaney
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - David A. Boas
- Boston University Neurophotonics Center, Boston, Massachusetts, United States
- Boston University, College of Engineering, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Heather Bortfeld
- University of California, Merced, Departments of Psychological Sciences and Cognitive and Information Sciences, Merced, California, United States
| | - Kenneth Brady
- Lurie Children’s Hospital, Northwestern University Feinberg School of Medicine, Department of Anesthesiology, Chicago, Illinois, United States
| | - Joshua Brake
- Harvey Mudd College, Department of Engineering, Claremont, California, United States
| | - Sabrina Brigadoi
- University of Padua, Department of Developmental and Social Psychology, Padua, Italy
| | - Erin M. Buckley
- Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
- Emory University School of Medicine, Department of Pediatrics, Atlanta, Georgia, United States
| | - Stefan A. Carp
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Robert J. Cooper
- University College London, Department of Medical Physics and Bioengineering, DOT-HUB, London, United Kingdom
| | - Kyle R. Cowdrick
- Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Joseph P. Culver
- Washington University School of Medicine, Department of Radiology, St. Louis, Missouri, United States
| | - Ippeita Dan
- Chuo University, Faculty of Science and Engineering, Tokyo, Japan
| | - Hamid Dehghani
- University of Birmingham, School of Computer Science, Birmingham, United Kingdom
| | - Anna Devor
- Boston University, College of Engineering, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Turgut Durduran
- ICFO – The Institute of Photonic Sciences, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| | - Adam T. Eggebrecht
- Washington University in St. Louis, Mallinckrodt Institute of Radiology, St. Louis, Missouri, United States
| | - Lauren L. Emberson
- University of British Columbia, Department of Psychology, Vancouver, British Columbia, Canada
| | - Qianqian Fang
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Sergio Fantini
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - Maria Angela Franceschini
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Jonas B. Fischer
- ICFO – The Institute of Photonic Sciences, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Judit Gervain
- University of Padua, Department of Developmental and Social Psychology, Padua, Italy
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center, Paris, France
| | - Joy Hirsch
- Yale School of Medicine, Department of Psychiatry, Neuroscience, and Comparative Medicine, New Haven, Connecticut, United States
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Keum-Shik Hong
- Pusan National University, School of Mechanical Engineering, Busan, Republic of Korea
- Qingdao University, School of Automation, Institute for Future, Qingdao, China
| | - Roarke Horstmeyer
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
- Duke University, Department of Electrical and Computer Engineering, Durham, North Carolina, United States
- Duke University, Department of Physics, Durham, North Carolina, United States
| | - Jana M. Kainerstorfer
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
- Carnegie Mellon University, Neuroscience Institute, Pittsburgh, Pennsylvania, United States
| | - Tiffany S. Ko
- Children’s Hospital of Philadelphia, Division of Cardiothoracic Anesthesiology, Philadelphia, Pennsylvania, United States
| | - Daniel J. Licht
- Children’s Hospital of Philadelphia, Division of Neurology, Philadelphia, Pennsylvania, United States
| | - Adam Liebert
- Polish Academy of Sciences, Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | - Robert Luke
- Macquarie University, Department of Linguistics, Sydney, New South Wales, Australia
- Macquarie University Hearing, Australia Hearing Hub, Sydney, New South Wales, Australia
| | - Jennifer M. Lynch
- Children’s Hospital of Philadelphia, Division of Cardiothoracic Anesthesiology, Philadelphia, Pennsylvania, United States
| | - Jaume Mesquida
- Parc Taulí Hospital Universitari, Critical Care Department, Sabadell, Spain
| | - Rickson C. Mesquita
- University of Campinas, Institute of Physics, Campinas, São Paulo, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, São Paulo, Brazil
| | - Noman Naseer
- Air University, Department of Mechatronics and Biomedical Engineering, Islamabad, Pakistan
| | - Sergio L. Novi
- University of Campinas, Institute of Physics, Campinas, São Paulo, Brazil
- Western University, Department of Physiology and Pharmacology, London, Ontario, Canada
| | | | - Thomas D. O’Sullivan
- University of Notre Dame, Department of Electrical Engineering, Notre Dame, Indiana, United States
| | - Darcy S. Peterka
- Columbia University, Zuckerman Mind Brain Behaviour Institute, New York, United States
| | | | - Luca Pollonini
- University of Houston, Department of Engineering Technology, Houston, Texas, United States
| | - Angelo Sassaroli
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - João Ricardo Sato
- Federal University of ABC, Center of Mathematics, Computing and Cognition, São Bernardo do Campo, São Paulo, Brazil
| | - Felix Scholkmann
- University of Bern, Institute of Complementary and Integrative Medicine, Bern, Switzerland
- University of Zurich, University Hospital Zurich, Department of Neonatology, Biomedical Optics Research Laboratory, Zürich, Switzerland
| | - Lorenzo Spinelli
- National Research Council (CNR), IFN – Institute for Photonics and Nanotechnologies, Milan, Italy
| | - Vivek J. Srinivasan
- University of California Davis, Department of Biomedical Engineering, Davis, California, United States
- NYU Langone Health, Department of Ophthalmology, New York, New York, United States
- NYU Langone Health, Department of Radiology, New York, New York, United States
| | - Keith St. Lawrence
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| | - Ilias Tachtsidis
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Yunjie Tong
- Purdue University, Weldon School of Biomedical Engineering, West Lafayette, Indiana, United States
| | - Alessandro Torricelli
- Politecnico di Milano, Dipartimento di Fisica, Milan, Italy
- National Research Council (CNR), IFN – Institute for Photonics and Nanotechnologies, Milan, Italy
| | - Tara Urner
- Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Heidrun Wabnitz
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Martin Wolf
- University of Zurich, University Hospital Zurich, Department of Neonatology, Biomedical Optics Research Laboratory, Zürich, Switzerland
| | - Ursula Wolf
- University of Bern, Institute of Complementary and Integrative Medicine, Bern, Switzerland
| | - Shiqi Xu
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
| | - Changhuei Yang
- California Institute of Technology, Department of Electrical Engineering, Pasadena, California, United States
| | - Arjun G. Yodh
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
| | - Meryem A. Yücel
- Boston University Neurophotonics Center, Boston, Massachusetts, United States
- Boston University, College of Engineering, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Wenjun Zhou
- University of California Davis, Department of Biomedical Engineering, Davis, California, United States
- China Jiliang University, College of Optical and Electronic Technology, Hangzhou, Zhejiang, China
| |
Collapse
|
15
|
Lanka P, Yang L, Orive-Miguel D, Veesa JD, Tagliabue S, Sudakou A, Samaei S, Forcione M, Kovacsova Z, Behera A, Gladytz T, Grosenick D, Hervé L, Durduran T, Bejm K, Morawiec M, Kacprzak M, Sawosz P, Gerega A, Liebert A, Belli A, Tachtsidis I, Lange F, Bale G, Baratelli L, Gioux S, Alexander K, Wolf M, Sekar SKV, Zanoletti M, Pirovano I, Lacerenza M, Qiu L, Ferocino E, Maffeis G, Amendola C, Colombo L, Frabasile L, Levoni P, Buttafava M, Renna M, Di Sieno L, Re R, Farina A, Spinelli L, Dalla Mora A, Contini D, Taroni P, Tosi A, Torricelli A, Dehghani H, Wabnitz H, Pifferi A. Multi-laboratory performance assessment of diffuse optics instruments: the BitMap exercise. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-210373SSR. [PMID: 35701869 PMCID: PMC9199954 DOI: 10.1117/1.jbo.27.7.074716] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 05/05/2022] [Indexed: 05/06/2023]
Abstract
SIGNIFICANCE Multi-laboratory initiatives are essential in performance assessment and standardization-crucial for bringing biophotonics to mature clinical use-to establish protocols and develop reference tissue phantoms that all will allow universal instrument comparison. AIM The largest multi-laboratory comparison of performance assessment in near-infrared diffuse optics is presented, involving 28 instruments and 12 institutions on a total of eight experiments based on three consolidated protocols (BIP, MEDPHOT, and NEUROPT) as implemented on three kits of tissue phantoms. A total of 20 synthetic indicators were extracted from the dataset, some of them defined here anew. APPROACH The exercise stems from the Innovative Training Network BitMap funded by the European Commission and expanded to include other European laboratories. A large variety of diffuse optics instruments were considered, based on different approaches (time domain/frequency domain/continuous wave), at various stages of maturity and designed for different applications (e.g., oximetry, spectroscopy, and imaging). RESULTS This study highlights a substantial difference in hardware performances (e.g., nine decades in responsivity, four decades in dark count rate, and one decade in temporal resolution). Agreement in the estimates of homogeneous optical properties was within 12% of the median value for half of the systems, with a temporal stability of <5 % over 1 h, and day-to-day reproducibility of <3 % . Other tests encompassed linearity, crosstalk, uncertainty, and detection of optical inhomogeneities. CONCLUSIONS This extensive multi-laboratory exercise provides a detailed assessment of near-infrared Diffuse optical instruments and can be used for reference grading. The dataset-available soon in an open data repository-can be evaluated in multiple ways, for instance, to compare different analysis tools or study the impact of hardware implementations.
Collapse
Affiliation(s)
- Pranav Lanka
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
- Address all correspondence to Pranav Lanka, ; Heidrun Wabnitz,
| | - Lin Yang
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | | | - Joshua Deepak Veesa
- University of Birmingham, School of Computer Science, Birmingham, United Kingdom
| | | | - Aleh Sudakou
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | - Saeed Samaei
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | - Mario Forcione
- University Hospitals Birmingham, National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Birmingham, United Kingdom
| | - Zuzana Kovacsova
- UCL, Department of Medical Physics & Biomedical Engineering, London, United Kingdom
| | - Anurag Behera
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
| | - Thomas Gladytz
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Dirk Grosenick
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Lionel Hervé
- Université Grenoble Alpes, CEA, LETI, DTBS, Grenoble, France
| | - Turgut Durduran
- The Institute of Photonic Sciences (ICFO), Castelldefels, Spain
| | - Karolina Bejm
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | - Magdalena Morawiec
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | - Michał Kacprzak
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | - Piotr Sawosz
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | - Anna Gerega
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | - Adam Liebert
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | - Antonio Belli
- University Hospitals Birmingham, National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Birmingham, United Kingdom
| | - Ilias Tachtsidis
- UCL, Department of Medical Physics & Biomedical Engineering, London, United Kingdom
| | - Frédéric Lange
- UCL, Department of Medical Physics & Biomedical Engineering, London, United Kingdom
| | - Gemma Bale
- University of Cambridge, Department of Engineering and Department of Physics, Cambridge, United Kingdom
| | - Luca Baratelli
- University of Strasbourg, ICube Laboratory, Strasbourg, France
| | - Sylvain Gioux
- University of Strasbourg, ICube Laboratory, Strasbourg, France
| | - Kalyanov Alexander
- University Hospital Zurich, Biomedical Optics Research Laboratory, Department of Neonatology, Zurich, Switzerland
| | - Martin Wolf
- University Hospital Zurich, Biomedical Optics Research Laboratory, Department of Neonatology, Zurich, Switzerland
| | | | - Marta Zanoletti
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
| | - Ileana Pirovano
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
| | | | - Lina Qiu
- South China Normal University, School of Software, Guangzhou, China
| | | | - Giulia Maffeis
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
| | | | - Lorenzo Colombo
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
| | | | - Pietro Levoni
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
| | | | - Marco Renna
- Istituto di Fotonica e Nanotecnologie, Milano, Italy
| | - Laura Di Sieno
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
| | - Rebecca Re
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
- Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Milano, Italy
| | - Andrea Farina
- Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Milano, Italy
| | - Lorenzo Spinelli
- Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Milano, Italy
| | | | - Davide Contini
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
| | - Paola Taroni
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
| | - Alberto Tosi
- Istituto di Fotonica e Nanotecnologie, Milano, Italy
| | | | - Hamid Dehghani
- University of Birmingham, School of Computer Science, Birmingham, United Kingdom
| | - Heidrun Wabnitz
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
- Address all correspondence to Pranav Lanka, ; Heidrun Wabnitz,
| | - Antonio Pifferi
- Politecnico di Milano, Dipartimento di Fisica, Milano, Italy
| |
Collapse
|
16
|
Renna M, Peruch A, Sunwoo J, Starkweather Z, Martin A, Franceschini MA. A Contact-Sensitive Probe for Biomedical Optics. SENSORS (BASEL, SWITZERLAND) 2022; 22:2361. [PMID: 35336531 PMCID: PMC8953277 DOI: 10.3390/s22062361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 01/27/2023]
Abstract
Capacitive proximity sensing is widespread in our everyday life, but no sensor for biomedical optics takes advantage of this technology to monitor the probe attachment to the subject's skin. In particular, when using optical monitoring devices, the capability to quantitatively measure the probe contact can significantly improve data quality and ensure the subject's safety. We present a custom novel optical probe based on a flexible printed circuit board which integrates a capacitive contact sensor, 3D-printed optic fiber holders and an accelerometer sensor. The device can be effectively adopted during continuous monitoring optical measurements to detect contact quality, motion artifacts, probe detachment and ensure optimal signal quality.
Collapse
Affiliation(s)
- Marco Renna
- Optics at Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.P.); (J.S.); (Z.S.); (A.M.); (M.A.F.)
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Adriano Peruch
- Optics at Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.P.); (J.S.); (Z.S.); (A.M.); (M.A.F.)
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - John Sunwoo
- Optics at Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.P.); (J.S.); (Z.S.); (A.M.); (M.A.F.)
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Zachary Starkweather
- Optics at Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.P.); (J.S.); (Z.S.); (A.M.); (M.A.F.)
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alyssa Martin
- Optics at Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.P.); (J.S.); (Z.S.); (A.M.); (M.A.F.)
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Maria Angela Franceschini
- Optics at Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.P.); (J.S.); (Z.S.); (A.M.); (M.A.F.)
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
17
|
Silvera F, Gagliardi T, Vollono P, Fernández C, García-Bayce A, Berardi A, Badía M, Beltrán B, Cabral T, Abella P, Farías L, Vaamonde L, Martell M, Blasina F. Study of the relationship between regional cerebral saturation and pCO2 changes during mechanical ventilation to evaluate modifications in cerebral perfusion in a newborn piglet model. Braz J Med Biol Res 2022; 55:e11543. [PMID: 35239775 PMCID: PMC8905677 DOI: 10.1590/1414-431x2022e11543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 01/04/2022] [Indexed: 11/22/2022] Open
Abstract
Near-infrared spectroscopy (NIRS) could be a useful continuous, non-invasive technique for monitoring the effect of partial pressure of carbon dioxide (PaCO2) fluctuations in the cerebral circulation during ventilation. The aim of this study was to examine the efficacy of NIRS to detect acute changes in cerebral blood flow following PaCO2 fluctuations after confirming the autoregulation physiology in piglets. Fourteen piglets (<72 h of life) were studied. Mean arterial blood pressure, oxygen saturation, pH, glycemia, hemoglobin, electrolytes, and temperature were monitored. Eight animals were used to evaluate brain autoregulation, assessing superior cava vein Doppler as a proxy of cerebral blood flow changing mean arterial blood pressure. Another 6 animals were used to assess hypercapnia generated by decreasing ventilatory settings and complementary CO2 through the ventilator circuit and hypocapnia due to increasing ventilatory settings. Cerebral blood flow was determined by jugular vein blood flow by Doppler and continuously monitored with NIRS. A decrease in PaCO2 was observed after hyperventilation (47.6±2.4 to 29.0±4.9 mmHg). An increase in PaCO2 was observed after hypoventilation (48.5±5.5 to 90.4±25.1 mmHg). A decrease in cerebral blood flow after hyperventilation (21.8±10.4 to 15.1±11.0 mL/min) and an increase after hypoventilation (23.4±8.4 to 38.3±10.5 mL/min) were detected by Doppler ultrasound. A significant correlation was found between cerebral oxygenation and Doppler-derived parameters of blood flow and PaCO2. Although cerebral NIRS monitoring is mainly used to detect changes in regional brain oxygenation, modifications in cerebral blood flow following experimental PaCO2 changes were detected in newborn piglets when no other important variables were modified.
Collapse
Affiliation(s)
- F Silvera
- Department of Neonatology, Centro Hospitalario Pereira Rossell, Administración de los Servicios de Salud del Estado, and Faculty of Medicine, Republic University, Montevideo, Uruguay
| | - T Gagliardi
- Department of Neonatology, Hospital de Clínicas Dr. Manuel Quintela, Faculty of Medicine, Republic University, Montevideo, Uruguay
| | - P Vollono
- Department of Neonatology, Hospital de Clínicas Dr. Manuel Quintela, Faculty of Medicine, Republic University, Montevideo, Uruguay
| | - C Fernández
- Department of Neonatology, Hospital de Clínicas Dr. Manuel Quintela, Faculty of Medicine, Republic University, Montevideo, Uruguay
| | - A García-Bayce
- Division of Pediatric Imagenology, Centro Hospitalario Pereira Rossell, Administración de los Servicios de Salud del Estado, and Faculty of Medicine, Republic University, Montevideo, Uruguay
| | - A Berardi
- Department of Neonatology, Centro Hospitalario Pereira Rossell, Administración de los Servicios de Salud del Estado, and Faculty of Medicine, Republic University, Montevideo, Uruguay
| | - M Badía
- Department of Neonatology, Hospital de Clínicas Dr. Manuel Quintela, Faculty of Medicine, Republic University, Montevideo, Uruguay
| | - B Beltrán
- Department of Neonatology, Hospital de Clínicas Dr. Manuel Quintela, Faculty of Medicine, Republic University, Montevideo, Uruguay
| | - T Cabral
- Department of Neonatology, Hospital de Clínicas Dr. Manuel Quintela, Faculty of Medicine, Republic University, Montevideo, Uruguay
| | - P Abella
- Department of Neonatology, Hospital de Clínicas Dr. Manuel Quintela, Faculty of Medicine, Republic University, Montevideo, Uruguay
| | - L Farías
- Department of Neonatology, Hospital de Clínicas Dr. Manuel Quintela, Faculty of Medicine, Republic University, Montevideo, Uruguay
| | - L Vaamonde
- Department of Neonatology, Hospital de Clínicas Dr. Manuel Quintela, Faculty of Medicine, Republic University, Montevideo, Uruguay
| | - M Martell
- Department of Neonatology, Hospital de Clínicas Dr. Manuel Quintela, Faculty of Medicine, Republic University, Montevideo, Uruguay
| | - F Blasina
- Department of Neonatology, Hospital de Clínicas Dr. Manuel Quintela, Faculty of Medicine, Republic University, Montevideo, Uruguay
| |
Collapse
|
18
|
Helton M, Mycek MA, Vishwanath K. Reconstruction of optical coefficients in turbid media using time-resolved reflectance and calibration-free instrument response functions. BIOMEDICAL OPTICS EXPRESS 2022; 13:1595-1608. [PMID: 35414997 PMCID: PMC8973157 DOI: 10.1364/boe.447685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/25/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Measurements of time-resolved reflectance from a homogenous turbid medium can be employed to retrieve the absolute values of its optical transport coefficients. However, the uncertainty in the temporal shift of the experimentally determined instrument response function (IRF) with respect to the real system response can lead to errors in optical property reconstructions. Instrument noise and measurement of the IRF in a reflectance geometry can exacerbate these errors. Here, we examine three reconstruction approaches that avoid requiring direct measurements of photon launch times. They work by (a) fitting relative shapes of the reflectance profile with a pre-determined constraint on the scattering coefficient, (b) calibrating launch-time differences via a reference sample, and (c) freely fitting for the launch-time difference within the inverse problem. Analysis methods that can place a tight bound on the scattering coefficient can produce errors within 5-15% for both absorption and scattering at source-detector separations of 10 and 15 mm. Including the time-shift in the fitting procedure also recovered optical coefficients to under 20% but showed large crosstalk between extracted scattering and absorption coefficients. We find that the uncertainty in the temporal shift greatly impacts the reconstructed reduced scattering coefficient compared to absorption.
Collapse
Affiliation(s)
- Michael Helton
- University of Michigan, Applied Physics Program, Ann Arbor, MI 48109, USA
| | - Mary-Ann Mycek
- University of Michigan, Applied Physics Program, Ann Arbor, MI 48109, USA
- University of Michigan, Department of Biomedical Engineering, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
19
|
Rajaram A, Milej D, Suwalski M, Kebaya L, Kewin M, Yip L, de Ribaupierre S, Han V, Diop M, Bhattacharya S, St Lawrence K. Assessing cerebral blood flow, oxygenation and cytochrome c oxidase stability in preterm infants during the first 3 days after birth. Sci Rep 2022; 12:181. [PMID: 34996949 PMCID: PMC8741949 DOI: 10.1038/s41598-021-03830-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023] Open
Abstract
A major concern with preterm birth is the risk of neurodevelopmental disability. Poor cerebral circulation leading to periods of hypoxia is believed to play a significant role in the etiology of preterm brain injury, with the first three days of life considered the period when the brain is most vulnerable. This study focused on monitoring cerebral perfusion and metabolism during the first 72 h after birth in preterm infants weighing less than 1500 g. Brain monitoring was performed by combining hyperspectral near-infrared spectroscopy to assess oxygen saturation and the oxidation state of cytochrome c oxidase (oxCCO), with diffuse correlation spectroscopy to monitor cerebral blood flow (CBF). In seven of eight patients, oxCCO remained independent of CBF, indicating adequate oxygen delivery despite any fluctuations in cerebral hemodynamics. In the remaining infant, a significant correlation between CBF and oxCCO was found during the monitoring periods on days 1 and 3. This infant also had the lowest baseline CBF, suggesting the impact of CBF instabilities on metabolism depends on the level of blood supply to the brain. In summary, this study demonstrated for the first time how continuous perfusion and metabolic monitoring can be achieved, opening the possibility to investigate if CBF/oxCCO monitoring could help identify preterm infants at risk of brain injury.
Collapse
Affiliation(s)
- Ajay Rajaram
- Imaging Program, Lawson Health Research Institute, London, ON, Canada.
- Department of Medical Biophysics, Western University, London, Canada.
| | - Daniel Milej
- Imaging Program, Lawson Health Research Institute, London, ON, Canada
- Department of Medical Biophysics, Western University, London, Canada
| | - Marianne Suwalski
- Imaging Program, Lawson Health Research Institute, London, ON, Canada
- Department of Medical Biophysics, Western University, London, Canada
| | - Lilian Kebaya
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, London Health Sciences Centre, London, ON, N6A 3K7, Canada
| | - Matthew Kewin
- Imaging Program, Lawson Health Research Institute, London, ON, Canada
- Department of Medical Biophysics, Western University, London, Canada
| | - Lawrence Yip
- Imaging Program, Lawson Health Research Institute, London, ON, Canada
- Department of Medical Biophysics, Western University, London, Canada
| | - Sandrine de Ribaupierre
- Department of Medical Biophysics, Western University, London, Canada
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, London Health Sciences Centre, London, ON, N6A 3K7, Canada
| | - Victor Han
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, London Health Sciences Centre, London, ON, N6A 3K7, Canada
| | - Mamadou Diop
- Imaging Program, Lawson Health Research Institute, London, ON, Canada
- Department of Medical Biophysics, Western University, London, Canada
| | - Soume Bhattacharya
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, London Health Sciences Centre, London, ON, N6A 3K7, Canada
| | - Keith St Lawrence
- Imaging Program, Lawson Health Research Institute, London, ON, Canada.
- Department of Medical Biophysics, Western University, London, Canada.
| |
Collapse
|
20
|
Sudakou A, Lange F, Isler H, Lanka P, Wojtkiewicz S, Sawosz P, Ostojic D, Wolf M, Pifferi A, Tachtsidis I, Liebert A, Gerega A. Time-domain NIRS system based on supercontinuum light source and multi-wavelength detection: validation for tissue oxygenation studies. BIOMEDICAL OPTICS EXPRESS 2021; 12:6629-6650. [PMID: 34745761 PMCID: PMC8548017 DOI: 10.1364/boe.431301] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/06/2021] [Accepted: 09/07/2021] [Indexed: 05/15/2023]
Abstract
We present and validate a multi-wavelength time-domain near-infrared spectroscopy (TD-NIRS) system that avoids switching wavelengths and instead exploits the full capability of a supercontinuum light source by emitting and acquiring signals for the whole chosen range of wavelengths. The system was designed for muscle and brain oxygenation monitoring in a clinical environment. A pulsed supercontinuum laser emits broadband light and each of two detection modules acquires the distributions of times of flight of photons (DTOFs) for 16 spectral channels (used width 12.5 nm / channel), providing a total of 32 DTOFs at up to 3 Hz. Two emitting fibers and two detection fiber bundles allow simultaneous measurements at two positions on the tissue or at two source-detector separations. Three established protocols (BIP, MEDPHOT, and nEUROPt) were used to quantitatively assess the system's performance, including linearity, coupling, accuracy, and depth sensitivity. Measurements were performed on 32 homogeneous phantoms and two inhomogeneous phantoms (solid and liquid). Furthermore, measurements on two blood-lipid phantoms with a varied amount of blood and Intralipid provide the strongest validation for accurate tissue oximetry. The retrieved hemoglobin concentrations and oxygen saturation match well with the reference values that were obtained using a commercially available NIRS system (OxiplexTS) and a blood gas analyzer (ABL90 FLEX), except a discrepancy occurs for the lowest amount of Intralipid. In-vivo measurements on the forearm of three healthy volunteers during arterial (250 mmHg) and venous (60 mmHg) cuff occlusions provide an example of tissue monitoring during the expected hemodynamic changes that follow previously well-described physiologies. All results, including quantitative parameters, can be compared to other systems that report similar tests. Overall, the presented TD-NIRS system has an exemplary performance evaluated with state-of-the-art performance assessment methods.
Collapse
Affiliation(s)
- Aleh Sudakou
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | - Frédéric Lange
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Helene Isler
- Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Pranav Lanka
- Dipartimento di Fisica, Politecnico di Milano, Milano, Italy
| | | | - Piotr Sawosz
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | - Daniel Ostojic
- Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Martin Wolf
- Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Antonio Pifferi
- Dipartimento di Fisica, Politecnico di Milano, Milano, Italy
| | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Adam Liebert
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | - Anna Gerega
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| |
Collapse
|
21
|
Cortese L, Lo Presti G, Pagliazzi M, Contini D, Dalla Mora A, Dehghani H, Ferri F, Fischer JB, Giovannella M, Martelli F, Weigel UM, Wojtkiewicz S, Zanoletti M, Durduran T. Recipes for diffuse correlation spectroscopy instrument design using commonly utilized hardware based on targets for signal-to-noise ratio and precision. BIOMEDICAL OPTICS EXPRESS 2021; 12:3265-3281. [PMID: 34221659 PMCID: PMC8221932 DOI: 10.1364/boe.423071] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/18/2021] [Accepted: 05/04/2021] [Indexed: 05/09/2023]
Abstract
Over the recent years, a typical implementation of diffuse correlation spectroscopy (DCS) instrumentation has been adapted widely. However, there are no detailed and accepted recipes for designing such instrumentation to meet pre-defined signal-to-noise ratio (SNR) and precision targets. These require specific attention due to the subtleties of the DCS signals. Here, DCS experiments have been performed using liquid tissue simulating phantoms to study the effect of the detected photon count-rate, the number of parallel detection channels and the measurement duration on the precision and SNR to suggest scaling relations to be utilized for device design.
Collapse
Affiliation(s)
- Lorenzo Cortese
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- These authors equally contributed to this work. Authors are listed in alphabetical order except for the first three and the last
| | - Giuseppe Lo Presti
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- These authors equally contributed to this work. Authors are listed in alphabetical order except for the first three and the last
| | - Marco Pagliazzi
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Davide Contini
- Politecnico di Milano, Dipartimento di Fisica, 20133 Milano, Italy
| | | | - Hamid Dehghani
- University of Birmingham, School of Computer Science, Edgbaston, Birmingham, B15 2TT, UK
| | - Fabio Ferri
- Università degli Studi dell’Insubria, Dipartimento di Scienza e Alta Tecnologia and To. Sca. Lab., 22100 Como, Italy
| | - Jonas B. Fischer
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- HemoPhotonics S.L., 08860 Castelldefels (Barcelona), Spain
| | - Martina Giovannella
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Fabrizio Martelli
- Università degli Studi di Firenze, Dipartimento di Fisica, 50100 Firenze, Italy
| | - Udo M. Weigel
- HemoPhotonics S.L., 08860 Castelldefels (Barcelona), Spain
| | - Stanislaw Wojtkiewicz
- University of Birmingham, School of Computer Science, Edgbaston, Birmingham, B15 2TT, UK
| | - Marta Zanoletti
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- Politecnico di Milano, Dipartimento di Fisica, 20133 Milano, Italy
| | - Turgut Durduran
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08015 Barcelona, Spain
| |
Collapse
|
22
|
Cortese L, Lo Presti G, Zanoletti M, Aranda G, Buttafava M, Contini D, Dalla Mora A, Dehghani H, Di Sieno L, de Fraguier S, Hanzu FA, Mora Porta M, Nguyen-Dinh A, Renna M, Rosinski B, Squarcia M, Tosi A, Weigel UM, Wojtkiewicz S, Durduran T. The LUCA device: a multi-modal platform combining diffuse optics and ultrasound imaging for thyroid cancer screening. BIOMEDICAL OPTICS EXPRESS 2021; 12:3392-3409. [PMID: 34221667 PMCID: PMC8221941 DOI: 10.1364/boe.416561] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 05/07/2023]
Abstract
We present the LUCA device, a multi-modal platform combining eight-wavelength near infrared time resolved spectroscopy, sixteen-channel diffuse correlation spectroscopy and a clinical ultrasound in a single device. By simultaneously measuring the tissue hemodynamics and performing ultrasound imaging, this platform aims to tackle the low specificity and sensitivity of the current thyroid cancer diagnosis techniques, improving the screening of thyroid nodules. Here, we show a detailed description of the device, components and modules. Furthermore, we show the device tests performed through well established protocols for phantom validation, and the performance assessment for in vivo. The characterization tests demonstrate that LUCA device is capable of performing high quality measurements, with a precision in determining in vivo tissue optical and dynamic properties of better than 3%, and a reproducibility of better than 10% after ultrasound-guided probe repositioning, even with low photon count-rates, making it suitable for a wide variety of clinical applications.
Collapse
Affiliation(s)
- Lorenzo Cortese
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- These authors equally contributed to this work. Authors are listed in alphabetical order except for the first three and the last
| | - Giuseppe Lo Presti
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- These authors equally contributed to this work. Authors are listed in alphabetical order except for the first three and the last
| | - Marta Zanoletti
- Politecnico di Milano, Dipartimento di Fisica, 20133 Milano, Italy
| | - Gloria Aranda
- IDIBAPS, Fundació Clínic per la Recerca Biomèdica, Barcelona, Spain
| | - Mauro Buttafava
- Politecnico di Milano, Dipartimento di Elettronica Informazione e Bioingegneria, 20133 Milano, Italy
| | - Davide Contini
- Politecnico di Milano, Dipartimento di Fisica, 20133 Milano, Italy
| | | | - Hamid Dehghani
- University of Birmingham, School of Computer Science, Edgbaston, Birmingham, B15 2TT, UK
| | - Laura Di Sieno
- Politecnico di Milano, Dipartimento di Fisica, 20133 Milano, Italy
| | | | - Felicia A. Hanzu
- IDIBAPS, Fundació Clínic per la Recerca Biomèdica, Barcelona, Spain
- Endocrinology and Nutrition Department, Hospital Clínic of Barcelona, Barcelona, Spain
- Centro de Investigación Biomèdica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Mireia Mora Porta
- IDIBAPS, Fundació Clínic per la Recerca Biomèdica, Barcelona, Spain
- Endocrinology and Nutrition Department, Hospital Clínic of Barcelona, Barcelona, Spain
- Centro de Investigación Biomèdica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | | | - Marco Renna
- Politecnico di Milano, Dipartimento di Elettronica Informazione e Bioingegneria, 20133 Milano, Italy
- Athinoula A. Martinos Center for Biomedical Imaging, MGH, Harvard Medical School, Charlestown, MA 02129, USA
| | | | - Mattia Squarcia
- IDIBAPS, Fundació Clínic per la Recerca Biomèdica, Barcelona, Spain
- Neuroradiology Department, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Alberto Tosi
- Politecnico di Milano, Dipartimento di Elettronica Informazione e Bioingegneria, 20133 Milano, Italy
| | - Udo M. Weigel
- HemoPhotonics S.L., 08860 Castelldefels (Barcelona), Spain
| | - Stanislaw Wojtkiewicz
- University of Birmingham, School of Computer Science, Edgbaston, Birmingham, B15 2TT, UK
| | - Turgut Durduran
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08015 Barcelona, Spain
| |
Collapse
|
23
|
Amendola C, Spinelli L, Contini D, Carli AD, Martinelli C, Fumagalli M, Torricelli A. Accuracy of homogeneous models for photon diffusion in estimating neonatal cerebral hemodynamics by TD-NIRS. BIOMEDICAL OPTICS EXPRESS 2021; 12:1905-1921. [PMID: 33996206 PMCID: PMC8086468 DOI: 10.1364/boe.417357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
We assessed the accuracy of homogenous (semi-infinite, spherical) photon diffusion models in estimating absolute hemodynamic parameters of the neonatal brain in realistic scenarios (ischemia, hyperoxygenation, and hypoventilation) from 1.5 cm interfiber distance TD NIRS measurements. Time-point-spread-functions in 29- and 44-weeks postmenstrual age head meshes were simulated by the Monte Carlo method, convoluted with a real instrument response function, and then fitted with photon diffusion models. The results show good accuracy in retrieving brain oxygen saturation, and severe underestimation of total cerebral hemoglobin, suggesting the need for more complex models of analysis or of larger interfiber distances to precisely monitor all hemodynamic parameters.
Collapse
Affiliation(s)
| | - Lorenzo Spinelli
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Davide Contini
- Dipartimento di Fisica, Politecnico di Milano, Milan, Italy
| | - Agnese De Carli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, NICU, Milan, Italy
| | - Cesare Martinelli
- University of Milan - Department of Clinical Sciences and Community Health, Milan, Italy
| | - Monica Fumagalli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, NICU, Milan, Italy
- University of Milan - Department of Clinical Sciences and Community Health, Milan, Italy
| | - Alessandro Torricelli
- Dipartimento di Fisica, Politecnico di Milano, Milan, Italy
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milan, Italy
| |
Collapse
|
24
|
Amendola C, Lacerenza M, Buttafava M, Tosi A, Spinelli L, Contini D, Torricelli A. A Compact Multi-Distance DCS and Time Domain NIRS Hybrid System for Hemodynamic and Metabolic Measurements. SENSORS 2021; 21:s21030870. [PMID: 33525488 PMCID: PMC7866011 DOI: 10.3390/s21030870] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 01/17/2023]
Abstract
In this work, we present a new multi-distance diffuse correlation spectroscopy (DCS) device integrated with a compact state-of-the-art time domain near infrared spectroscopy (TD-NIRS) device. The hybrid DCS and TD-NIRS system allows to retrieve information on blood flow, tissue oxygenation, and oxygen metabolic rate. The DCS device performances were estimated in terms of stability, repeatability, ability in retrieving variations of diffusion coefficient, influence of the tissue optical properties, effect of varying count rates and depth sensitivity. Crosstalk between DCS and TD-NIRS optical signals was also evaluated. Finally, in vivo experiments (venous and arterial cuff occlusions on the arm) were conducted to test the ability of the hybrid system in measuring blood flow variations.
Collapse
Affiliation(s)
- Caterina Amendola
- Dipartimento di Fisica, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milan, Italy; (M.L.); (D.C.)
- Correspondence: (C.A.); (A.T.)
| | - Michele Lacerenza
- Dipartimento di Fisica, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milan, Italy; (M.L.); (D.C.)
| | - Mauro Buttafava
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, via Ponzio 34/5, 20133 Milan, Italy; (M.B.); (A.T.)
| | - Alberto Tosi
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, via Ponzio 34/5, 20133 Milan, Italy; (M.B.); (A.T.)
| | - Lorenzo Spinelli
- Consiglio Nazionale delle Ricerche, Istituto di Fotonica e Nanotecnologie, piazza Leonardo da Vinci 32, 20133 Milan, Italy;
| | - Davide Contini
- Dipartimento di Fisica, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milan, Italy; (M.L.); (D.C.)
| | - Alessandro Torricelli
- Dipartimento di Fisica, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milan, Italy; (M.L.); (D.C.)
- Consiglio Nazionale delle Ricerche, Istituto di Fotonica e Nanotecnologie, piazza Leonardo da Vinci 32, 20133 Milan, Italy;
- Correspondence: (C.A.); (A.T.)
| |
Collapse
|
25
|
Neonatal NIRS monitoring: recommendations for data capture and review of analytics. J Perinatol 2021; 41:675-688. [PMID: 33589724 PMCID: PMC7883881 DOI: 10.1038/s41372-021-00946-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/20/2020] [Accepted: 01/19/2021] [Indexed: 01/29/2023]
Abstract
Brain injury is one of the most consequential problems facing neonates, with many preterm and term infants at risk for cerebral hypoxia and ischemia. To develop effective neuroprotective strategies, the mechanistic basis for brain injury must be understood. The fragile state of neonates presents unique research challenges; invasive measures of cerebral blood flow and oxygenation assessment exceed tolerable risk profiles. Near-infrared spectroscopy (NIRS) can safely and non-invasively estimate cerebral oxygenation, a correlate of cerebral perfusion, offering insight into brain injury-related mechanisms. Unfortunately, lack of standardization in device application, recording methods, and error/artifact correction have left the field fractured. In this article, we provide a framework for neonatal NIRS research. Our goal is to provide a rational basis for NIRS data capture and processing that may result in better comparability between studies. It is also intended to serve as a primer for new NIRS researchers and assist with investigation initiation.
Collapse
|
26
|
Harvey-Jones K, Lange F, Tachtsidis I, Robertson NJ, Mitra S. Role of Optical Neuromonitoring in Neonatal Encephalopathy-Current State and Recent Advances. Front Pediatr 2021; 9:653676. [PMID: 33898363 PMCID: PMC8062863 DOI: 10.3389/fped.2021.653676] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/15/2021] [Indexed: 11/19/2022] Open
Abstract
Neonatal encephalopathy (NE) in term and near-term infants is a significant global health problem; the worldwide burden of disease remains high despite the introduction of therapeutic hypothermia. Assessment of injury severity and effective management in the neonatal intensive care unit (NICU) relies on multiple monitoring modalities from systemic to brain-specific. Current neuromonitoring tools provide information utilized for seizure management, injury stratification, and prognostication, whilst systemic monitoring ensures multi-organ dysfunction is recognized early and supported wherever needed. The neuromonitoring technologies currently used in NE however, have limitations in either their availability during the active treatment window or their reliability to prognosticate and stratify injury confidently in the early period following insult. There is therefore a real need for a neuromonitoring tool that provides cot side, early and continuous monitoring of brain health which can reliably stratify injury severity, monitor response to current and emerging treatments, and prognosticate outcome. The clinical use of near-infrared spectroscopy (NIRS) technology has increased in recent years. Research studies within this population have also increased, alongside the development of both instrumentation and signal processing techniques. Increasing use of commercially available cerebral oximeters in the NICU, and the introduction of advanced optical measurements using broadband NIRS (BNIRS), frequency domain NIRS (FDNIRS), and diffuse correlation spectroscopy (DCS) have widened the scope by allowing the direct monitoring of oxygen metabolism and cerebral blood flow, both key to understanding pathophysiological changes and predicting outcome in NE. This review discusses the role of optical neuromonitoring in NE and why this modality may provide the next significant piece of the puzzle toward understanding the real time state of the injured newborn brain.
Collapse
Affiliation(s)
- Kelly Harvey-Jones
- Neonatology, EGA Institute for Women's Health, University College London, London, United Kingdom
| | - Frederic Lange
- Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Ilias Tachtsidis
- Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Nicola J Robertson
- Neonatology, EGA Institute for Women's Health, University College London, London, United Kingdom.,Edinburgh Neuroscience & Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Subhabrata Mitra
- Neonatology, EGA Institute for Women's Health, University College London, London, United Kingdom
| |
Collapse
|
27
|
Lacerenza M, Buttafava M, Renna M, Mora AD, Spinelli L, Zappa F, Pifferi A, Torricelli A, Tosi A, Contini D. Wearable and wireless time-domain near-infrared spectroscopy system for brain and muscle hemodynamic monitoring. BIOMEDICAL OPTICS EXPRESS 2020; 11:5934-5949. [PMID: 33149997 PMCID: PMC7587270 DOI: 10.1364/boe.403327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 05/04/2023]
Abstract
We present a wearable time-domain near infrared spectroscopy (TD-NIRS) system (two wavelengths, one detection channel), which fits in a backpack and performs real-time hemodynamic measurements on the brain and muscle tissues of freely moving subjects. It can provide concentration values of oxygenated hemoglobin (O2Hb), deoxygenated hemoglobin (HHb), total hemoglobin (tHb = O2Hb + HHb) and tissue oxygen saturation (StO2). The system is battery-operated and can be wirelessly controlled. By following established characterization protocols for performance assessment of diffuse optics instruments, we achieved results comparable with state-of-the-art research-grade TD-NIRS systems. We also performed in-vivo measurements such as finger tapping (motor cortex monitoring), breath holding (prefrontal cortex monitoring and forearm muscle monitoring), and outdoor bike riding (vastus lateralis muscle monitoring), in order to test the system capabilities in evaluating both muscle and brain hemodynamics.
Collapse
Affiliation(s)
| | - Mauro Buttafava
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milano, Italy
| | - Marco Renna
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milano, Italy
| | | | - Lorenzo Spinelli
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, 20133 Milano, Italy
| | - Franco Zappa
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milano, Italy
| | - Antonio Pifferi
- Dipartimento di Fisica, Politecnico di Milano, 20133 Milano, Italy
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, 20133 Milano, Italy
| | - Alessandro Torricelli
- Dipartimento di Fisica, Politecnico di Milano, 20133 Milano, Italy
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, 20133 Milano, Italy
| | - Alberto Tosi
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milano, Italy
| | - Davide Contini
- Dipartimento di Fisica, Politecnico di Milano, 20133 Milano, Italy
| |
Collapse
|
28
|
Giovannella M, Andresen B, Andersen JB, El-Mahdaoui S, Contini D, Spinelli L, Torricelli A, Greisen G, Durduran T, Weigel UM, Law I. Validation of diffuse correlation spectroscopy against 15O-water PET for regional cerebral blood flow measurement in neonatal piglets. J Cereb Blood Flow Metab 2020; 40:2055-2065. [PMID: 31665953 PMCID: PMC7786848 DOI: 10.1177/0271678x19883751] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 09/06/2019] [Accepted: 09/19/2019] [Indexed: 11/15/2022]
Abstract
Diffuse correlation spectroscopy (DCS) can non-invasively and continuously asses regional cerebral blood flow (rCBF) at the cot-side by measuring a blood flow index (BFI) in non-traditional units of cm2/s. We have validated DCS against positron emission tomography using 15O-labeled water (15O-water PET) in a piglet model allowing us to derive a conversion formula for BFI to rCBF in conventional units (ml/100g/min). Neonatal piglets were continuously monitored by the BabyLux device integrating DCS and time resolved near infrared spectroscopy (TRS) while acquiring 15O-water PET scans at baseline, after injection of acetazolamide and during induced hypoxic episodes. BFI by DCS was highly correlated with rCBF (R = 0.94, p < 0.001) by PET. A scaling factor of 0.89 (limits of agreement for individual measurement: 0.56, 1.39)×109× (ml/100g/min)/(cm2/s) was used to derive baseline rCBF from baseline BFI measurements of another group of piglets and of healthy newborn infants showing an agreement with expected values. These results pave the way towards non-invasive, cot-side absolute CBF measurements by DCS on neonates.
Collapse
Affiliation(s)
- Martina Giovannella
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Bjørn Andresen
- Department of Neonatology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Julie B Andersen
- Department of Clinical Physiology, Nuclear Medicine & PET, Copenhagen University Hospital -Rigshospitalet, Copenhagen, Denmark
| | - Sahla El-Mahdaoui
- Department of Neonatology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Davide Contini
- Politecnico di Milano-Dipartimento di Fisica, Milan, Italy
| | - Lorenzo Spinelli
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Alessandro Torricelli
- Politecnico di Milano-Dipartimento di Fisica, Milan, Italy
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Gorm Greisen
- Department of Neonatology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Turgut Durduran
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Udo M Weigel
- HemoPhotonics S.L., Castelldefels (Barcelona), Spain
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine & PET, Copenhagen University Hospital -Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
29
|
Bale G, Mitra S, Tachtsidis I. Metabolic brain measurements in the newborn: Advances in optical technologies. Physiol Rep 2020; 8:e14548. [PMID: 32889790 PMCID: PMC7507543 DOI: 10.14814/phy2.14548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 01/12/2023] Open
Abstract
Neonatal monitoring in neonatal intensive care is pushing the technological boundaries of newborn brain monitoring in order to improve patient outcome. There is an urgent need of a cot side, real time monitoring for assessment of brain injury severity and neurodevelopmental outcome, in particular for term newborn infants with hypoxic-ischemic brain injury. This topical review discusses why brain tissue metabolic monitoring is important in this group of infants and introduces the currently used neuromonitoring techniques for metabolic monitoring in the neonatal intensive care unit (NICU). New optical techniques that can monitor changes in brain metabolism together with brain hemodynamics at the cot side are presented. Early studies from these emerging technologies have demonstrated their potential to deliver continuous information regarding cerebral physiological changes in sick newborn infants in real time. The promises of these new tools as well as their potential limitations are discussed.
Collapse
Affiliation(s)
- Gemma Bale
- Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Subhabrata Mitra
- Neonatology, EGA Institute for Women's HealthUniversity College LondonLondonUK
| | - Ilias Tachtsidis
- Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| |
Collapse
|
30
|
Thiele RH, Shaw AD, Bartels K, Brown CH, Grocott H, Heringlake M, Gan TJ, Miller TE, McEvoy MD. American Society for Enhanced Recovery and Perioperative Quality Initiative Joint Consensus Statement on the Role of Neuromonitoring in Perioperative Outcomes: Cerebral Near-Infrared Spectroscopy. Anesth Analg 2020; 131:1444-1455. [DOI: 10.1213/ane.0000000000005081] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
31
|
Helton M, Mycek MA, Vishwanath K. Direct estimation of the reduced scattering coefficient from experimentally measured time-resolved reflectance via Monte Carlo based lookup tables. BIOMEDICAL OPTICS EXPRESS 2020; 11:4366-4378. [PMID: 32923049 PMCID: PMC7449726 DOI: 10.1364/boe.398256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
A heuristic method for estimating the reduced scattering coefficient (µs') of turbid media using time-resolved reflectance is presented. The technique requires measurements of the distributions of times-of-flight (DTOF) of photons arriving at two identical detection channels placed at unique distances relative to a source. Measured temporal shifts in DTOF peak intensities at the two channels were used to estimate µs' of the medium using Monte Carlo (MC) simulation-based lookup tables. MC simulations were used to compute temporal shifts in modeled reflectance at experimentally employed source-detector separations (SDS) for media spanning a wide range of optical properties to construct look up tables. Experiments in Intralipid (IL) phantoms demonstrated that we could retrieve µs' with errors ranging between 6-25% of expected (literature) values, using reflectance measured across 650-800 nm and SDS of 5-15 mm. Advantages of the technique include direct processing of measured data without requiring iterative non-linear curve fitting. We also discuss applicability of this approach for media with low scattering coefficients where the commonly employed diffusion theory analysis could be inaccurate, with practical recommendations for use.
Collapse
Affiliation(s)
- Michael Helton
- Applied Physics Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mary-Ann Mycek
- Applied Physics Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
32
|
Rajaram A, Yip LCM, Milej D, Suwalski M, Kewin M, Lo M, Carson JJL, Han V, Bhattacharya S, Diop M, de Ribaupierre S, St. Lawrence K. Perfusion and Metabolic Neuromonitoring during Ventricular Taps in Infants with Post-Hemorrhagic Ventricular Dilatation. Brain Sci 2020; 10:E452. [PMID: 32679665 PMCID: PMC7407524 DOI: 10.3390/brainsci10070452] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/03/2020] [Accepted: 07/13/2020] [Indexed: 01/08/2023] Open
Abstract
Post-hemorrhagic ventricular dilatation (PHVD) is characterized by a build-up of cerebral spinal fluid (CSF) in the ventricles, which increases intracranial pressure and compresses brain tissue. Clinical interventions (i.e., ventricular taps, VT) work to mitigate these complications through CSF drainage; however, the timing of these procedures remains imprecise. This study presents Neonatal NeuroMonitor (NNeMo), a portable optical device that combines broadband near-infrared spectroscopy (B-NIRS) and diffuse correlation spectroscopy (DCS) to provide simultaneous assessments of cerebral blood flow (CBF), tissue saturation (StO2), and the oxidation state of cytochrome c oxidase (oxCCO). In this study, NNeMo was used to monitor cerebral hemodynamics and metabolism in PHVD patients selected for a VT. Across multiple VTs in four patients, no significant changes were found in any of the three parameters: CBF increased by 14.6 ± 37.6% (p = 0.09), StO2 by 1.9 ± 4.9% (p = 0.2), and oxCCO by 0.4 ± 0.6 µM (p = 0.09). However, removing outliers resulted in significant, but small, increases in CBF (6.0 ± 7.7%) and oxCCO (0.1 ± 0.1 µM). The results of this study demonstrate NNeMo's ability to provide safe, non-invasive measurements of cerebral perfusion and metabolism for neuromonitoring applications in the neonatal intensive care unit.
Collapse
Affiliation(s)
- Ajay Rajaram
- Imaging Program, Lawson Health Research Institute, London, ON N6A 4V2, Canada; (L.C.M.Y.); (D.M.); (M.S.); (M.K.); (M.L.); (J.J.L.C.); (M.D.); (K.S.L.)
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada;
| | - Lawrence C. M. Yip
- Imaging Program, Lawson Health Research Institute, London, ON N6A 4V2, Canada; (L.C.M.Y.); (D.M.); (M.S.); (M.K.); (M.L.); (J.J.L.C.); (M.D.); (K.S.L.)
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada;
| | - Daniel Milej
- Imaging Program, Lawson Health Research Institute, London, ON N6A 4V2, Canada; (L.C.M.Y.); (D.M.); (M.S.); (M.K.); (M.L.); (J.J.L.C.); (M.D.); (K.S.L.)
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada;
| | - Marianne Suwalski
- Imaging Program, Lawson Health Research Institute, London, ON N6A 4V2, Canada; (L.C.M.Y.); (D.M.); (M.S.); (M.K.); (M.L.); (J.J.L.C.); (M.D.); (K.S.L.)
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada;
| | - Matthew Kewin
- Imaging Program, Lawson Health Research Institute, London, ON N6A 4V2, Canada; (L.C.M.Y.); (D.M.); (M.S.); (M.K.); (M.L.); (J.J.L.C.); (M.D.); (K.S.L.)
| | - Marcus Lo
- Imaging Program, Lawson Health Research Institute, London, ON N6A 4V2, Canada; (L.C.M.Y.); (D.M.); (M.S.); (M.K.); (M.L.); (J.J.L.C.); (M.D.); (K.S.L.)
| | - Jeffrey J. L. Carson
- Imaging Program, Lawson Health Research Institute, London, ON N6A 4V2, Canada; (L.C.M.Y.); (D.M.); (M.S.); (M.K.); (M.L.); (J.J.L.C.); (M.D.); (K.S.L.)
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada;
| | - Victor Han
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, London Health Sciences Centre, London, ON N6A 3K7, Canada; (V.H.); (S.B.)
| | - Soume Bhattacharya
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, London Health Sciences Centre, London, ON N6A 3K7, Canada; (V.H.); (S.B.)
| | - Mamadou Diop
- Imaging Program, Lawson Health Research Institute, London, ON N6A 4V2, Canada; (L.C.M.Y.); (D.M.); (M.S.); (M.K.); (M.L.); (J.J.L.C.); (M.D.); (K.S.L.)
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada;
| | - Sandrine de Ribaupierre
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada;
- Department of Clinical Neurological Sciences, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Keith St. Lawrence
- Imaging Program, Lawson Health Research Institute, London, ON N6A 4V2, Canada; (L.C.M.Y.); (D.M.); (M.S.); (M.K.); (M.L.); (J.J.L.C.); (M.D.); (K.S.L.)
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada;
| |
Collapse
|
33
|
Mitra S, Bale G, Meek J, Tachtsidis I, Robertson NJ. Cerebral Near Infrared Spectroscopy Monitoring in Term Infants With Hypoxic Ischemic Encephalopathy-A Systematic Review. Front Neurol 2020; 11:393. [PMID: 32536901 PMCID: PMC7267214 DOI: 10.3389/fneur.2020.00393] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/17/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Neonatal hypoxic ischemic encephalopathy (HIE) remains a significant cause of mortality and morbidity worldwide. Cerebral near infrared spectroscopy (NIRS) can provide cot side continuous information about changes in brain hemodynamics, oxygenation and metabolism in real time. Objective: To perform a systematic review of cerebral NIRS monitoring in term and near-term infants with HIE. Search Methods: A systematic search was performed in Ovid EMBASE and Medline database from inception to November 2019. The search combined three broad categories: measurement (NIRS monitoring), disease condition [hypoxic ischemic encephalopathy (HIE)] and subject category (newborn infants) using a stepwise approach as per PRISMA guidance. Selection Criteria: Only human studies published in English were included. Data Collection and Analysis: Two authors independently selected, assessed the quality, and extracted data from the studies for this review. Results: Forty-seven studies on term and near-term infants following HIE were identified. Most studies measured multi-distance NIRS based cerebral tissue saturation using monitors that are referred to as cerebral oximeters. Thirty-nine studies were published since 2010; eight studies were published before this. Fifteen studies reviewed the neurodevelopmental outcome in relation to NIRS findings. No randomized study was identified. Conclusion: Commercial NIRS cerebral oximeters can provide important information regarding changes in cerebral oxygenation and hemodynamics following HIE and can be particularly helpful when used in combination with other neuromonitoring tools. Optical measurements of brain metabolism using broadband NIRS and cerebral blood flow using diffuse correlation spectroscopy add additional pathophysiological information. Further randomized clinical trials and large observational studies are necessary with proper study design to assess the utility of NIRS in predicting neurodevelopmental outcome and guiding therapeutic interventions.
Collapse
Affiliation(s)
- Subhabrata Mitra
- Neonatology, Institute for Women's Health, University College London, London, United Kingdom
| | - Gemma Bale
- Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Judith Meek
- Neonatology, Institute for Women's Health, University College London, London, United Kingdom
| | - Ilias Tachtsidis
- Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Nicola J. Robertson
- Neonatology, Institute for Women's Health, University College London, London, United Kingdom
| |
Collapse
|
34
|
Pirovano I, Re R, Candeo A, Contini D, Torricelli A, Spinelli L. Instrument response function acquisition in reflectance geometry for time-resolved diffuse optical measurements. BIOMEDICAL OPTICS EXPRESS 2020; 11:240-250. [PMID: 32010513 PMCID: PMC6968769 DOI: 10.1364/boe.380996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 05/21/2023]
Abstract
In time-domain diffuse optical spectroscopy, the simultaneous acquisition of the time-of-flight distribution (DTOF) of photons traveling in a diffusive medium and of the instrument response function (IRF) is necessary to perform quantitative measurements of optical properties (absorption and reduced scattering coefficients) while taking into account the non-idealities of a real system (e.g. temporal resolution and time delays). The IRF acquisition can be a non-trivial and time-consuming operation that requires directly facing the injection and collection fibers. Since this operation is not always possible, a new IRF measurement scheme is here proposed where the IRF is acquired in reflectance geometry from a corrugate reflective surface. Validation measurements on a set of reference homogenous phantoms have been performed, resulting in an error in the optical properties estimation lower than 10% with respect to the typical IRF configuration. Thus, the proposed method proved to be a reliable approach that after a preliminary calibration can be exploited in a laboratory and clinical set-ups, leading to faster and more accurate measurements and reducing the operator-dependent performance.
Collapse
Affiliation(s)
- Ileana Pirovano
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Rebecca Re
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- Consiglio Nazionale delle Ricerche, Istituto di Fotonica e Nanotecnologie, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Alessia Candeo
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- Central Laser Facility, Science and Technology Facility Council (STFC), Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, OX11 0QX, United Kingdom
| | - Davide Contini
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Alessandro Torricelli
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- Consiglio Nazionale delle Ricerche, Istituto di Fotonica e Nanotecnologie, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Lorenzo Spinelli
- Consiglio Nazionale delle Ricerche, Istituto di Fotonica e Nanotecnologie, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
35
|
Quaresima V, Farzam P, Anderson P, Farzam PY, Wiese D, Carp SA, Ferrari M, Franceschini MA. Diffuse correlation spectroscopy and frequency-domain near-infrared spectroscopy for measuring microvascular blood flow in dynamically exercising human muscles. J Appl Physiol (1985) 2019; 127:1328-1337. [PMID: 31513443 DOI: 10.1152/japplphysiol.00324.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In the last 20 yr, near-infrared diffuse correlation spectroscopy (DCS) has been developed for providing a noninvasive estimate of microvascular blood flow (BF) as a BF index (BFi) in the human skin, muscle, breast, brain, and other tissue types. In this study, we proposed a new motion correction algorithm for DCS-derived BFi able to remove motion artifacts during cycling exercise. We tested this algorithm on DCS data collected during cycling exercise and demonstrated that DCS can be used to quantify muscle BFi during dynamic high-intensity exercise. In addition, we measured tissue regional oxygen metabolic rate (MRO2i) by combining frequency-domain multidistance near-infrared spectroscopy (FDNIRS) oximetry with DCS flow measures. Recreationally active subjects (n = 12; 31 ± 8 yr, 183 ± 4 cm, 79 ± 10 kg) pedaled at 80-100 revolutions/min until volitional fatigue with a work rate increase of 30 W every 4 min. Exercise intensity was normalized in each subject to the cycling power peak (Wpeak). Both rectus femoris BFi and MRO2i increased from 15% up to 75% Wpeak and then plateaued to the end of the exercise. During the recovery at 30 W cycling power, BFi remained almost constant, whereas MRO2i started to decrease. The BFi/MRO2i plateau was associated with the rising of the lactate concentration, indicating the progressive involvement of the anaerobic metabolism. These findings further highlight the utility of DCS and FDNIRS oximetry as effective, reproducible, and noninvasive techniques to assess muscle BFi and MRO2i in real time during a dynamic exercise such as cycling.NEW & NOTEWORTHY To the best of our knowledge, this study is the first to demonstrate that diffuse correlation spectroscopy in combination with frequency-domain near-infrared spectroscopy can monitor human quadriceps microvascular blood flow and oxygen metabolism with high temporal resolution during a cycling exercise. The optically measured parameters confirm the expected relationship between blood flow, muscle oxidative metabolism, and lactate production during exercise.
Collapse
Affiliation(s)
- Valentina Quaresima
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Parisa Farzam
- Optics at Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | | | - Parya Y Farzam
- Optics at Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | | | - Stefan A Carp
- Optics at Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Marco Ferrari
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Maria Angela Franceschini
- Optics at Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| |
Collapse
|
36
|
Giovannella M, Spinelli L, Pagliazzi M, Contini D, Greisen G, Weigel UM, Torricelli A, Durduran T. Accuracy and precision of tissue optical properties and hemodynamic parameters estimated by the BabyLux device: a hybrid time-resolved near-infrared and diffuse correlation spectroscopy neuro-monitor. BIOMEDICAL OPTICS EXPRESS 2019; 10:2556-2579. [PMID: 31149383 PMCID: PMC6524603 DOI: 10.1364/boe.10.002556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/29/2019] [Accepted: 04/17/2019] [Indexed: 05/20/2023]
Abstract
We have investigated the accuracy and precision of "the BabyLux device", a hybrid time-resolved near-infrared (TRS) and diffuse correlation spectroscopy (DCS) neuro-monitor for the pre-term infant. Numerical data with realistic noise were simulated and analyzed using the BabyLux device as a reference system and different experimental and analysis parameters. The results describe the limits for the precision and the accuracy to be expected. The dependence of these limits on different experimental conditions and choices of the analysis method is also described. Experiments demonstrate comparable values for precision with respect to the simulation results.
Collapse
Affiliation(s)
- Martina Giovannella
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona),
Spain
| | - Lorenzo Spinelli
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milan,
Italy
| | - Marco Pagliazzi
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona),
Spain
| | - Davide Contini
- Politecnico di Milano-Dipartimento di Fisica, Milan,
Italy
| | - Gorm Greisen
- Department of Neonatology, Rigshopitalet, Copenhagen,
Denmark
| | - Udo M. Weigel
- HemoPhotonics S.L., Castelldefels (Barcelona),
Spain
| | - Alessandro Torricelli
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milan,
Italy
- Politecnico di Milano-Dipartimento di Fisica, Milan,
Italy
| | - Turgut Durduran
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona),
Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona,
Spain
| |
Collapse
|