1
|
Navarro SL, Pinto N, Hawkins DS, Park JR, Dilmaghani S, Rimorin C, Wurscher M, McCune JS. Pharmacogenomic associations of cyclophosphamide pharmacokinetic candidate genes with 4hydroxycyclophosphamide formation in children with Cancer. Cancer Chemother Pharmacol 2024; 94:627-633. [PMID: 39080017 PMCID: PMC11438565 DOI: 10.1007/s00280-024-04703-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/12/2024] [Indexed: 09/29/2024]
Abstract
PURPOSE 4-hydroxycyclophosphamide (4HCY) is the principal precursor to the cytotoxic metabolite of cyclophosphamide (CY), which is often used as first-line treatment of children with cancer. There is conflicting data regarding the relationship between CY efficacy, toxicity, and pharmacokinetics with the genes encoding proteins involved in 4HCY pharmacokinetics, specifically its formation and elimination. METHODS We evaluated germline pharmacogenetics in children with various malignancies receiving their first CY dose. Using linear regression, we analyzed the associations between two pharmacokinetic outcomes - how fast a child cleared CY (i.e., CY clearance) and the ratio of the 4HCY/CY exposure, specifically area under the plasma concentration-time curve (AUC), and 372 single nucleotide polymorphisms (SNP) in 14 drug-metabolizing transporters or enzymes involved in 4HCY formation or elimination. RESULTS Age was associated with the ratio of 4HCY/CY AUC (P = 0.004); Chemotherapy regimen was associated with CY clearance (P = 0.003). No SNPs were associated with CY clearance or the ratio of 4HCY/CY AUC after controlling for a false discovery rate. CONCLUSION Age and chemotherapy regimen, but not germline pharmacogenomics, were associated with CY clearance or the ratio of 4HCY/CY AUC. Other methods, such as metabolomics or lipidomics, should be explored.
Collapse
Affiliation(s)
- Sandi L Navarro
- Fred Hutchinson Cancer Center, Division of Public Health Sciences, Seattle, WA, 98109, USA
| | - Navin Pinto
- Department of Hematology/Oncology, Seattle Children's Hospital, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Douglas S Hawkins
- Department of Hematology/Oncology, Seattle Children's Hospital, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Julie R Park
- Department of Hematology/Oncology, Seattle Children's Hospital, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Saam Dilmaghani
- School of Public Health, University of Washington, Seattle, WA, USA
| | - Christine Rimorin
- Fred Hutchinson Cancer Center, Division of Public Health Sciences, Seattle, WA, 98109, USA
| | - Michelle Wurscher
- Fred Hutchinson Cancer Center, Division of Public Health Sciences, Seattle, WA, 98109, USA
| | - Jeannine S McCune
- Fred Hutchinson Cancer Center, Division of Public Health Sciences, Seattle, WA, 98109, USA.
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
Cai Z, Gao L, Hu K, Wang QM. Parthenolide enhances the metronomic chemotherapy effect of cyclophosphamide in lung cancer by inhibiting the NF-kB signaling pathway. World J Clin Oncol 2024; 15:895-907. [PMID: 39071467 PMCID: PMC11271733 DOI: 10.5306/wjco.v15.i7.895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/11/2024] [Accepted: 06/06/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Parthenolide (PTL), a sesquiterpene lactone derived from the medicinal herb Chrysanthemum parthenium, exhibits various biological effects by targeting NF-kB, STAT3, and other pathways. It has emerged as a promising adjunct therapy for multiple malignancies. AIM To evaluate the in vitro and in vivo effect of PTL on cyclophosphamide (CTX) metronomic chemotherapy. METHODS The cytotoxicity of PTL and CTX on Lewis lung cancer cells (LLC cells) was assessed by measuring cell activity and apoptosis. The anti-tumor efficiency was evaluated using a tumor xenograft mice model, and the survival of mice and tumor volume were monitored. Additionally, the collected tumor tissues were analyzed for tumor microenvironment indicators and inflammatory factors. RESULTS In vitro, PTL demonstrated a synergistic effect with CTX in inhibiting the growth of LLC cells and promoting apoptosis. In vivo, metronomic chemotherapy combined with PTL and CTX improved the survival rate of tumor-bearing mice and reduced tumor growth rate. Furthermore, metronomic chemotherapy combined with PTL and CTX reduced NF-κB activation and improved the tumor immune microenvironment by decreasing tumor angiogenesis, reducing Transforming growth factor β, and α-SMA positive cells. CONCLUSION PTL is an efficient compound that enhances the metronomic chemotherapy effects of CTX both in vitro and in vivo, suggesting its potential as a supplementary therapeutic strategy in metronomic chemotherapy to improve the chemotherapy effects.
Collapse
Affiliation(s)
- Zheng Cai
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, Henan Province, China
- Department of Oncology, The No. 1 Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming 650021, Yunnan Province, China
| | - Lang Gao
- Department of Oncology, The No. 1 Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming 650021, Yunnan Province, China
| | - Kai Hu
- Department of Oncology, The No. 1 Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming 650021, Yunnan Province, China
| | - Qi-Ming Wang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, Henan Province, China
| |
Collapse
|
3
|
El-Serafi I, Steele S. Cyclophosphamide Pharmacogenomic Variation in Cancer Treatment and Its Effect on Bioactivation and Pharmacokinetics. Adv Pharmacol Pharm Sci 2024; 2024:4862706. [PMID: 38966316 PMCID: PMC11223907 DOI: 10.1155/2024/4862706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024] Open
Abstract
Cyclophosphamide (Cy) is a prodrug that is mainly bioactivated by cytochrome P450 (CYP) 2B6 enzyme. Several other enzymes are also involved in its bioactivation and affect its kinetics. Previous studies have shown the effect of the enzymes' genetic polymorphisms on Cy kinetics and its clinical outcome. These results were controversial primarily because of the involvement of several interacting enzymes in the Cy metabolic pathway, which can also be affected by several clinical factors as well as other drug interactions. In this review article, we present the effect of CYP2B6 polymorphisms on Cy kinetics since it is the main bioactivating enzyme, as well as discussing all previously reported enzymes and clinical factors that can alter Cy efficacy. Additionally, we present explanations for key Cy side effects related to the nature and site of its bioactivation. Finally, we discuss the role of busulphan in conditioning regimens in the Cy metabolic pathway as a clinical example of drug-drug interactions involving several enzymes. By the end of this article, our aim is to have provided a comprehensive summary of Cy pharmacogenomics and the effect on its kinetics. The utility of these findings in the development of new strategies for Cy personalized patient dose adjustment will aid in the future optimization of patient specific Cy dosages and ultimately in improving clinical outcomes. In conclusion, CYP2B6 and several other enzyme polymorphisms can alter Cy kinetics and consequently the clinical outcomes. However, the precise quantification of Cy kinetics in any individual patient is complex as it is clearly under multifactorial genetic control. Additionally, other clinical factors such as the patient's age, diagnosis, concomitant medications, and clinical status should also be considered.
Collapse
Affiliation(s)
- Ibrahim El-Serafi
- Basic Medical Sciences DepartmentCollege of MedicineAjman University, Ajman, UAE
- Department of Hand Surgery, and Plastic Surgery and BurnsLinköping University Hospital, Linkoöping, Sweden
| | - Sinclair Steele
- Pathological Sciences DepartmentCollege of MedicineAjman University, Ajman, UAE
| |
Collapse
|
4
|
Mangó K, Fekete F, Kiss ÁF, Erdős R, Fekete JT, Bűdi T, Bruckner E, Garami M, Micsik T, Monostory K. Association between CYP2B6 genetic variability and cyclophosphamide therapy in pediatric patients with neuroblastoma. Sci Rep 2023; 13:11770. [PMID: 37479763 PMCID: PMC10361978 DOI: 10.1038/s41598-023-38983-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023] Open
Abstract
Cyclophosphamide, an oxazaphosphorine prodrug is frequently used in treatment of neuroblastoma, which is one of the most prevalent solid organ malignancies in infants and young children. Cytochrome P450 2B6 (CYP2B6) is the major catalyst and CYP2C19 is the minor enzyme in bioactivation and inactivation pathways of cyclophosphamide. CYP-mediated metabolism may contribute to the variable pharmacokinetics of cyclophosphamide and its toxic byproducts leading to insufficient response to the therapy and development of clinically significant side effects. The aim of the study was to reveal the contribution of pharmacogenetic variability in CYP2B6 and CYP2C19 to the treatment efficacy and cyclophosphamide-induced side effects in pediatric neuroblastoma patients under cyclophosphamide therapy (N = 50). Cyclophosphamide-induced hematologic toxicities were pivotal in all patients, whereas only moderate hepatorenal toxicity was developed. The patients' CYP2B6 metabolizer phenotypes were associated with the occurrence of lymphopenia, thrombocytopenia, and monocytopenia as well as of liver injury, but not with kidney or urinary bladder (hemorrhagic cystitis) toxicities. Furthermore, the patients' age (< 1.5 years, P = 0.03) and female gender (P ≤ 0.02), but not CYP2B6 or CYP2C19 metabolizer phenotypes appeared as significant prognostic factors in treatment outcomes. Our results may contribute to a better understanding of the impact of CYP2B6 variability on cyclophosphamide-induced side effects.
Collapse
Affiliation(s)
- Katalin Mangó
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok 2, 1117, Budapest, Hungary
- Doctoral School of Pharmaceutical Sciences, Semmelweis University, Üllői 26, 1085, Budapest, Hungary
| | - Ferenc Fekete
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok 2, 1117, Budapest, Hungary
| | - Ádám Ferenc Kiss
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok 2, 1117, Budapest, Hungary
| | - Réka Erdős
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok 2, 1117, Budapest, Hungary
| | - János Tibor Fekete
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok 2, 1117, Budapest, Hungary
- Department of Bioinformatics, Semmelweis University, Tűzoltó 7-9, 1094, Budapest, Hungary
| | - Tamás Bűdi
- Center of Pediatrics, Semmelweis University, Tűzoltó 7-9, 1094, Budapest, Hungary
| | - Edit Bruckner
- Center of Pediatrics, Semmelweis University, Tűzoltó 7-9, 1094, Budapest, Hungary
| | - Miklós Garami
- Center of Pediatrics, Semmelweis University, Tűzoltó 7-9, 1094, Budapest, Hungary
| | - Tamás Micsik
- Fejér County Saint George University Teaching Hospital, Seregélyesi 3, 8000, Székesfehérvár, Hungary
| | - Katalin Monostory
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok 2, 1117, Budapest, Hungary.
| |
Collapse
|
5
|
Angle ED, Cox PM. Multidisciplinary Insights into the Structure-Function Relationship of the CYP2B6 Active Site. Drug Metab Dispos 2023; 51:369-384. [PMID: 36418184 DOI: 10.1124/dmd.122.000853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 10/12/2022] [Accepted: 11/04/2022] [Indexed: 11/27/2022] Open
Abstract
Cytochrome P450 2B6 (CYP2B6) is a highly polymorphic human enzyme involved in the metabolism of many clinically relevant drugs, environmental toxins, and endogenous molecules with disparate structures. Over the last 20-plus years, in silico and in vitro studies of CYP2B6 using various ligands have provided foundational information regarding the substrate specificity and structure-function relationship of this enzyme. Approaches such as homology modeling, X-ray crystallography, molecular docking, and kinetic activity assays coupled with CYP2B6 mutagenesis have done much to characterize this originally neglected monooxygenase. However, a complete understanding of the structural details that make new chemical entities substrates of CYP2B6 is still lacking. Surprisingly little in vitro data has been obtained about the structure-function relationship of amino acids identified to be in the CYP2B6 active site. Since much attention has already been devoted to elucidating the function of CYP2B6 allelic variants, here we review the salient findings of in silico and in vitro studies of the CYP2B6 structure-function relationship with a deliberate focus on the active site. In addition to summarizing these complementary approaches to studying structure-function relationships, we note gaps/challenges in existing data such as the need for more CYP2B6 crystal structures, molecular docking results with various ligands, and data coupling CYP2B6 active site mutagenesis with kinetic parameter measurement under standard expression conditions. Harnessing in silico and in vitro techniques in tandem to understand the CYP2B6 structure-function relationship will likely offer further insights into CYP2B6-mediated metabolism. SIGNIFICANCE STATEMENT: The apparent importance of cytochrome P450 2B6 (CYP2B6) in the metabolism of various xenobiotics and endogenous molecules has grown since its discovery with many in silico and in vitro studies offering a partial description of its structure-function relationship. Determining the structure-function relationship of CYP2B6 is difficult but may be aided by thorough biochemical investigations of the CYP2B6 active site that provide a more complete pharmacological understanding of this important enzyme.
Collapse
Affiliation(s)
- Ethan D Angle
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, Azusa Pacific University, Azusa, California (E.D.A., P.M.C.) and Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa (E.D.A.)
| | - Philip M Cox
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, Azusa Pacific University, Azusa, California (E.D.A., P.M.C.) and Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa (E.D.A.)
| |
Collapse
|
6
|
Wang PF, Sharma A, Montana M, Neiner A, Juriga L, Reddy KN, Tallchief D, Blood J, Kharasch ED. Methadone pharmacogenetics in vitro and in vivo: Metabolism by CYP2B6 polymorphic variants and genetic variability in paediatric disposition. Br J Clin Pharmacol 2022; 88:4881-4893. [PMID: 35538637 PMCID: PMC10908252 DOI: 10.1111/bcp.15393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/06/2022] [Accepted: 04/22/2022] [Indexed: 11/02/2022] Open
Abstract
AIMS Methadone metabolism and clearance are determined principally by polymorphic cytochrome P4502B6 (CYP2B6). Some CYP2B6 allelic variants affect methadone metabolism in vitro and disposition in vivo. We assessed methadone metabolism by CYP2B6 minor variants in vitro. We also assessed the influence of CYP2B6 variants, and P450 oxidoreductase (POR) and CYP2C19 variants, on methadone clearance in surgical patients in vivo. METHODS CYP2B6 and P450 oxidoreductase variants were coexpressed with cytochrome b5 . The metabolism of methadone racemate and enantiomers was measured at therapeutic concentrations and intrinsic clearances were determined. Adolescents receiving methadone for surgery were genotyped for CYP2B6, CYP2C19 and POR, and methadone clearance and metabolite formation clearance were determined. RESULTS In vitro, CYP2B6.4 was more active than wild-type CYP2B6.1. CYPs 2B6.5, 2B6.6, 2B6.7, 2B6.9, 2B6.17, 2B6.19 and 2B6.26 were less active. CYPs 2B6.16 and 2B6.18 were inactive. CYP2B6.1 expressed with POR variants POR.28, POR.5 and P228L had lower rates of methadone metabolism than wild-type reductase. In vivo, methadone clinical clearance decreased linearly with the number of CYP2B6 slow metabolizer alleles, but was not different in CYP2C19 slow or rapid metabolizer phenotypes, or in carriers of the POR*28 allele. CONCLUSIONS Several CYP2B6 and POR variants were slow metabolizers of methadone in vitro. Polymorphisms in CYP2B6, but not CYP2C19 or P450 reductase, affected methadone clearance in vivo. CYP2B6 polymorphisms 516G>T and 983T>C code for canonical loss of function variants and should be assessed when considering genetic influences on clinical methadone disposition. These complementary translational in vitro and in vivo results inform on pharmacogenetic variability affecting methadone disposition in patients.
Collapse
Affiliation(s)
- Pan-Fen Wang
- Department of Anesthesiology, Duke University, Durham, NC, USA
| | - Anshuman Sharma
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Michael Montana
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Alicia Neiner
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Kavya Narayana Reddy
- Department of Pediatric Anesthesiology, Arkansas Children's Hospital, Little Rock, AK, USA
| | - Dani Tallchief
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jane Blood
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Evan D Kharasch
- Department of Anesthesiology, Duke University, Durham, NC, USA
| |
Collapse
|
7
|
Mangó K, Kiss ÁF, Fekete F, Erdős R, Monostory K. CYP2B6 allelic variants and non-genetic factors influence CYP2B6 enzyme function. Sci Rep 2022; 12:2984. [PMID: 35194103 PMCID: PMC8863776 DOI: 10.1038/s41598-022-07022-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/10/2022] [Indexed: 12/20/2022] Open
Abstract
Human CYP2B6 enzyme although constitutes relatively low proportion (1–4%) of hepatic cytochrome P450 content, it is the major catalyst of metabolism of several clinically important drugs (efavirenz, cyclophosphamide, bupropion, methadone). High interindividual variability in CYP2B6 function, contributing to impaired drug-response and/or adverse reactions, is partly elucidated by genetic polymorphisms, whereas non-genetic factors can significantly modify the CYP2B6 phenotype. The influence of genetic and phenoconverting non-genetic factors on CYP2B6-selective activity and CYP2B6 expression was investigated in liver tissues from Caucasian subjects (N = 119). Strong association was observed between hepatic S-mephenytoin N-demethylase activity and CYP2B6 mRNA expression (P < 0.0001). In less than one third of the tissue donors, the CYP2B6 phenotype characterized by S-mephenytoin N-demethylase activity and/or CYP2B6 expression was concordant with CYP2B6 genotype, whereas in more than 35% of the subjects, an altered CYP2B6 phenotype was attributed to phenoconverting non-genetic factors (to CYP2B6-specific inhibitors and inducers, non-specific amoxicillin + clavulanic acid treatment and chronic alcohol consumption, but not to the gender). Furthermore, CYP2B6 genotype–phenotype mismatch still existed in one third of tissue donors. In conclusion, identifying potential sources of CYP2B6 variability and considering both genetic variations and non-genetic factors is a pressing requirement for appropriate elucidation of CYP2B6 genotype–phenotype mismatch.
Collapse
Affiliation(s)
- Katalin Mangó
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok 2, Budapest, 1117, Hungary.,Doctoral School of Pharmaceutical Sciences, Semmelweis University, Budapest, Hungary
| | - Ádám Ferenc Kiss
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok 2, Budapest, 1117, Hungary
| | - Ferenc Fekete
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok 2, Budapest, 1117, Hungary
| | - Réka Erdős
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok 2, Budapest, 1117, Hungary
| | - Katalin Monostory
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok 2, Budapest, 1117, Hungary.
| |
Collapse
|
8
|
Pinto N, Navarro SL, Rimorin C, Wurscher M, Hawkins DS, McCune JS. Pharmacogenomic associations of cyclophosphamide pharmacokinetic candidate genes with event-free survival in intermediate-risk rhabdomyosarcoma: A report from the Children's Oncology Group. Pediatr Blood Cancer 2021; 68:e29203. [PMID: 34245211 PMCID: PMC8719493 DOI: 10.1002/pbc.29203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/02/2021] [Accepted: 06/16/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND In vitro data suggest that the growth of rhabdomyosarcoma (RMS) cells is suppressed in a concentration-dependent manner by 4-hydroxycyclophosphamide (4HCY), the principal precursor to the cytotoxic metabolite of cyclophosphamide (CY). Various retrospective studies on the relationship between genes encoding proteins involved in the formation and elimination of 4HCY (i.e., 4HCY pharmacokinetics) and cyclophosphamide (CY) efficacy and toxicity have been conflicting. PROCEDURES We evaluated germline pharmacogenetics in 262 patients with newly diagnosed intermediate-risk RMS who participated in one prospective Children's Oncology Group clinical trial, ARST0531. Patients were treated with either vincristine/actinomycin/cyclophosphamide (VAC) or VAC alternating with vincristine/irinotecan (VAC/VI). We analyzed the associations between event-free survival and 394 single-nucleotide polymorphisms (SNP) in 14 drug metabolizing enzymes or transporters involved in 4HCY pharmacokinetics. RESULTS Eight SNPs were associated (p-value < .05 by univariate analysis) with 3-year event-free survival; no SNPs survived a false discovery rate < 0.05. CONCLUSIONS Our data suggest that a pharmacogenomic approach to therapy personalization of cyclophosphamide in intermediate-risk rhabdomyosarcoma is not viable. Other methods to personalize therapy should be explored.
Collapse
Affiliation(s)
- Navin Pinto
- Seattle Children’s Hospital, Seattle, Washington, USA,Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Sandi L. Navarro
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Christine Rimorin
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Michelle Wurscher
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Douglas S. Hawkins
- Seattle Children’s Hospital, Seattle, Washington, USA,Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Jeannine S. McCune
- Department of Hematologic Malignances Translational Sciences, City of Hope, Duarte, California, USA
| |
Collapse
|
9
|
Langmia IM, Just KS, Yamoune S, Brockmöller J, Masimirembwa C, Stingl JC. CYP2B6 Functional Variability in Drug Metabolism and Exposure Across Populations-Implication for Drug Safety, Dosing, and Individualized Therapy. Front Genet 2021; 12:692234. [PMID: 34322158 PMCID: PMC8313315 DOI: 10.3389/fgene.2021.692234] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022] Open
Abstract
Adverse drug reactions (ADRs) are one of the major causes of morbidity and mortality worldwide. It is well-known that individual genetic make-up is one of the causative factors of ADRs. Approximately 14 million single nucleotide polymorphisms (SNPs) are distributed throughout the entire human genome and every patient has a distinct genetic make-up which influences their response to drug therapy. Cytochrome P450 2B6 (CYP2B6) is involved in the metabolism of antiretroviral, antimalarial, anticancer, and antidepressant drugs. These drug classes are commonly in use worldwide and face specific population variability in side effects and dosing. Parts of this variability may be caused by single nucleotide polymorphisms (SNPs) in the CYP2B6 gene that are associated with altered protein expression and catalytic function. Population variability in the CYP2B6 gene leads to changes in drug metabolism which may result in adverse drug reactions or therapeutic failure. So far more than 30 non-synonymous variants in CYP2B6 gene have been reported. The occurrence of these variants show intra and interpopulation variability, thus affecting drug efficacy at individual and population level. Differences in disease conditions and affordability of drug therapy further explain why some individuals or populations are more exposed to CYP2B6 pharmacogenomics associated ADRs than others. Variabilities in drug efficacy associated with the pharmacogenomics of CYP2B6 have been reported in various populations. The aim of this review is to highlight reports from various ethnicities that emphasize on the relationship between CYP2B6 pharmacogenomics variability and the occurrence of adverse drug reactions. In vitro and in vivo studies evaluating the catalytic activity of CYP2B6 variants using various substrates will also be discussed. While implementation of pharmacogenomic testing for personalized drug therapy has made big progress, less data on pharmacogenetics of drug safety has been gained in terms of CYP2B6 substrates. Therefore, reviewing the existing evidence on population variability in CYP2B6 and ADR risk profiles suggests that, in addition to other factors, the knowledge on pharmacogenomics of CYP2B6 in patient treatment may be useful for the development of personalized medicine with regards to genotype-based prescription.
Collapse
Affiliation(s)
- Immaculate M. Langmia
- Institute of Clinical Pharmacology, University Hospital of Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Katja S. Just
- Institute of Clinical Pharmacology, University Hospital of Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Sabrina Yamoune
- Institute of Clinical Pharmacology, University Hospital of Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Jürgen Brockmöller
- Department of Clinical Pharmacology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Collen Masimirembwa
- African Institute of Biomedical Science and Technology (AiBST), Harare, Zimbabwe
| | - Julia C. Stingl
- Institute of Clinical Pharmacology, University Hospital of Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| |
Collapse
|
10
|
Barnett S, Errington J, Sludden J, Jamieson D, Poinsignon V, Paci A, Veal GJ. Pharmacokinetics and Pharmacogenetics of Cyclophosphamide in a Neonate and Infant Childhood Cancer Patient Population. Pharmaceuticals (Basel) 2021; 14:ph14030272. [PMID: 33809608 PMCID: PMC8002238 DOI: 10.3390/ph14030272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/10/2021] [Accepted: 03/13/2021] [Indexed: 01/11/2023] Open
Abstract
Infants and young children represent an important but much understudied childhood cancer patient population. The pharmacokinetics and pharmacogenetics of the widely used anticancer prodrug cyclophosphamide were investigated in children <2 years of age. Concentrations of cyclophosphamide and selected metabolites were determined in patients administered cyclophosphamide at doses ranging from 100–1500 mg/m2 (5–75 mg/kg), with various infusion times as determined by the standard treatment regimen that each patient was receiving. Polymorphisms in genes including CYP2B6 and CYP2C19 were investigated. Data generated for cyclophosphamide were analysed using a previously published population pharmacokinetic model. Cyclophosphamide pharmacokinetics was assessed in 111 samples obtained from 25 patients ranging from 4–23 months of age. The average cyclophosphamide clearance for the patients was 46.6 mL/min/m2 (ranging from 9.4–153 mL/min/m2), with marked inter-patient variability observed (CV 41%). No significant differences in cyclophosphamide clearance or exposure (AUC) were observed between patient groups as separated by age or body weight. However, marked differences in drug clearance and metabolism were noted between the current data in children <2 years of age and recently published results from a comparable study conducted by our group in older children, which reported significantly lower cyclophosphamide clearance values and metabolite exposures using the same population pharmacokinetic model for analysis. Whilst this study demonstrates no significant differences in cyclophosphamide clearance in patients <2 years, it highlights large differences in dosing protocols across tumour types. Furthermore, the study suggests marked differences in cyclophosphamide clearance in children less than two years of age as compared to older patients.
Collapse
Affiliation(s)
- Shelby Barnett
- Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (S.B.); (J.E.); (J.S.); (D.J.)
| | - Julie Errington
- Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (S.B.); (J.E.); (J.S.); (D.J.)
| | - Julieann Sludden
- Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (S.B.); (J.E.); (J.S.); (D.J.)
| | - David Jamieson
- Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (S.B.); (J.E.); (J.S.); (D.J.)
| | - Vianney Poinsignon
- Department of Pharmacology and Drug Analysis, Gustave Roussy Cancer Campus Grand Paris, Université Paris-Sud, 94805 Villejuif, France; (V.P.); (A.P.)
| | - Angelo Paci
- Department of Pharmacology and Drug Analysis, Gustave Roussy Cancer Campus Grand Paris, Université Paris-Sud, 94805 Villejuif, France; (V.P.); (A.P.)
| | - Gareth J. Veal
- Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (S.B.); (J.E.); (J.S.); (D.J.)
- Correspondence:
| |
Collapse
|
11
|
Ahmed JH, Makonnen E, Bisaso RK, Mukonzo JK, Fotoohi A, Aseffa A, Howe R, Hassan M, Aklillu E. Population Pharmacokinetic, Pharmacogenetic, and Pharmacodynamic Analysis of Cyclophosphamide in Ethiopian Breast Cancer Patients. Front Pharmacol 2020; 11:406. [PMID: 32390827 PMCID: PMC7191301 DOI: 10.3389/fphar.2020.00406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/17/2020] [Indexed: 12/18/2022] Open
Abstract
Cyclophosphamide (CPA) containing chemotherapy regimen is the standard of care for breast cancer treatment in sub-Saharan Africa. Wide inter-individual variations in pharmacokinetics (PK) of cyclophosphamide (CPA) influence the efficacy and toxicity of CPA containing chemotherapy. Data on the pharmacokinetics (PK) profile of CPA and its covariates among black African patients is lacking. We investigated population pharmacokinetic/pharmacogenetic/pharmacodynamic (PK-PG-PD) of CPA in Ethiopian breast cancer patients. During the first cycle of CPA-based chemotherapy, the population PK parameters for CPA were determined in 267 breast cancer patients. Absolute neutrophil count was recorded at baseline and day 20 post-CPA administration. A population PK and covariate model analysis was performed using non-linear mixed effects modeling. Semi-mechanistic and empiric drug response models were explored to describe the relationship between the area under concentration-time curve (AUC), and neutrophil toxicity. One compartment model better described CPA PK with population clearance and apparent volume of distribution (VD) of 5.41 L/h and 46.5 L, respectively. Inter-patient variability in CPA clearance was 54.5%. Patients carrying CYP3A5*3 or *6 alleles had lower elimination rate constant and longer half-life compared to wild type carriers. CYP2C9 *2 or *3 carriers were associated with increased clearance of CPA. Patients who received 500 mg/m2 based CPA regimen were associated with a 32.3% lower than average clearance and 37.1% lower than average VD compared to patients who received 600 mg/m2. A 0.1 m2 unit increase in body surface area (BSA) was associated with a 5.6% increment in VD. The mean VD (33.5 L) in underweight group (BMI < 18.5 kg/m2) was significantly lower compared to those of overweight (48.1 L) or obese patients (51.9 L) (p < 0.001). AUC of CPA was positively correlated with neutropenic toxicity. In conclusion, we report large between-patient variability in clearance of CPA. CYP3A5 and CYP2C9 genotypes, BSA, BMI, and CPA dosage regimen influence PK of CPA. Plasma CPA exposure positively predicts chemotherapy-associated neutropenic toxicity.
Collapse
Affiliation(s)
- Jemal Hussien Ahmed
- Department of Pharmacology and Clinical Pharmacy, Addis Ababa University, Addis Ababa, Ethiopia.,Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Eyasu Makonnen
- Department of Pharmacology and Clinical Pharmacy, Addis Ababa University, Addis Ababa, Ethiopia.,Center for Innovative Drug Development and Therapeutic Trials, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ronald Kuteesa Bisaso
- Department of Pharmacology and Therapeutics, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Jackson Kijumba Mukonzo
- Department of Pharmacology and Therapeutics, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Alan Fotoohi
- Division of Clinical Pharmacology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Abraham Aseffa
- Non-Communicable Diseases (NCD) Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Rawleigh Howe
- Non-Communicable Diseases (NCD) Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Moustapha Hassan
- Experimental Cancer Medicine (ECM), Clinical Research Center (KFC), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Eleni Aklillu
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
12
|
Wang PF, Neiner A, Kharasch ED. Stereoselective Bupropion Hydroxylation by Cytochrome P450 CYP2B6 and Cytochrome P450 Oxidoreductase Genetic Variants. Drug Metab Dispos 2020; 48:438-445. [PMID: 32238417 DOI: 10.1124/dmd.119.090407] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Bioactivation of the antidepressant and smoking cessation drug bupropion is catalyzed predominantly by CYP2B6. The metabolite hydroxybupropion derived from t-butylhydroxylation is considered to contribute to the antidepressant and smoking-cessation effects of the parent drug. Bupropion hydroxylation is the canonical in vitro and in vivo probe for CYP2B6 activity. P450 also requires obligate partnership with P450 oxidoreductase (POR). Human CYP2B6 and POR genes are highly polymorphic. Some CYP2B6 variants affect bupropion disposition. This investigation evaluated the influence of several human CYP2B6 and POR genetic variants on stereoselective bupropion metabolism, using an insect cell coexpression system containing CYP2B6, POR, and cytochrome b 5 Based on intrinsic clearances (Clints), relative activities for S,S-hydroxybupropion formation were in the order CYP2B6.4 > CYP2B6.1 > CYP2B6.17 > CYP2B6.5 > CYP2B6.6 ≈ CYP2B6.26 ≈ CYP2B6.19 > CYP2B6.7 > CYP2B6.9 > > CYP2B6.16 and CYP2B6.18; relative activities for R,R-hydroxybupropion formation were in the order CYP2B6.17 > CYP2B6.4 > CYP2B6.1 > CYP2B6.5 ≈ CYP2B6.19 ≈ CYP2B6.26 > CYP2B6.6 > CYP2B6.7 ≈ CYP2B6.9 > > CYP2B6.16 and CYP2B6.18. Bupropion hydroxylation was not influenced by POR variants. CYP2B6-catalyzed bupropion hydroxylation is stereoselective. Though Vmax and Km varied widely among CYP2B6 variants, stereoselectivity was preserved, reflected by similar Clint(S,S-hydroxybupropion)/Clint(R,R-hydroxybupropion) ratios (1.8-2.9), except CYP2B6.17, which was less enantioselective. Established concordance between human bupropion hydroxylation in vitro and in vivo, together with these new results, suggests additional CYP2B6 variants may influence human bupropion disposition. SIGNIFICANCE STATEMENT: Bupropion pharmacokinetics, metabolism, and clinical effects are affected by the CYP2B6*6 polymorphism. Other expressed CYP2B6 polymorphisms had diminished (*5, *6, *7, *9, *19, *26) or defective (*16, *18) in vitro bupropion hydroxylation. P450 oxidoreductase genetic variants had no effect on metabolism, suggesting no clinical consequence of this polymorphism. These CYP2B6 polymorphisms may portend diminished in vivo bupropion hydroxylation and predict additional clinically important variant alleles.
Collapse
Affiliation(s)
- Pan-Fen Wang
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina (P.-F.W., E.D.K.) and Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri (A.N.)
| | - Alicia Neiner
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina (P.-F.W., E.D.K.) and Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri (A.N.)
| | - Evan D Kharasch
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina (P.-F.W., E.D.K.) and Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri (A.N.)
| |
Collapse
|
13
|
Genetic Polymorphism of GSTP-1 Affects Cyclophosphamide Treatment of Autoimmune Diseases. Molecules 2020; 25:molecules25071542. [PMID: 32231024 PMCID: PMC7180851 DOI: 10.3390/molecules25071542] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/22/2020] [Accepted: 03/25/2020] [Indexed: 11/17/2022] Open
Abstract
Cyclophosphamide is one of the most potent and reliable anti-cancer and immunosuppressive drugs. In our study, 33 individuals with different autoimmune diseases were treated with cyclophosphamide according to standard protocols. The responses to the treatments were determined by measuring the alteration of several typical parameters characterizing the given autoimmune diseases over time. We concluded that about 45% of the patients responded to the treatment. Patients were genotyped for polymorphisms of the CYP3A4, CYP2B6, GSTM1, GSTT1, and GSTP1 genes and disease remission cases were compared to the individual polymorphic genotypes. It was found that the GSTP1 I105V allelic variation significantly associated with the cyclophosphamide treatment-dependent disease-remissions. At the same time the GSH content of the erythrocytes in the patients with I105V allelic variation did not change. It appears that the individuals carrying the Ile105Val SNP in at least one copy had a significantly higher response rate to the treatment. Since this variant of GSTP1 can be characterized by lower conjugation capacity that results in an elongated and higher therapeutic dose of cyclophosphamide, our data suggest that the decreased activity of this variant of GSTP1 can be in the background of the more effective disease treatment.
Collapse
|
14
|
Helsby NA, Yong M, van Kan M, de Zoysa JR, Burns KE. The importance of both CYP2C19 and CYP2B6 germline variations in cyclophosphamide pharmacokinetics and clinical outcomes. Br J Clin Pharmacol 2019; 85:1925-1934. [PMID: 31218720 DOI: 10.1111/bcp.14031] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 12/17/2022] Open
Abstract
Cyclophosphamide is an alkylating agent used in the treatment of solid and haematological malignancies and as an immunosuppressive agent. As a prodrug, it is dependent on bioactivation to the active phosphoramide mustard metabolite to elicit its therapeutic effect. This focused review will highlight the evidence for the role of germline pharmacogenetic variation in both plasma pharmacokinetics and clinical outcomes. There is a substantial indication from 13 pharmacokinetic and 17 therapeutic outcome studies, in contexts as diverse as haematological malignancy, breast cancer, systemic lupus erythematosus and myeloablation, that pharmacogenetic variation in both CYP2C19 and CYP2B6 influence the bioactivation of cyclophosphamide. An additional role for pharmacogenetic variation in ALDH1A1 has also been reported. Future studies should comprehensively assess these 3 pharmacogenes and undertake appropriate statistical analysis of gene-gene interactions to confirm these findings and may allow personalised treatment regimens.
Collapse
Affiliation(s)
- N A Helsby
- Molecular Medicine and Pathology, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand
| | - M Yong
- Molecular Medicine and Pathology, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand
| | - M van Kan
- Molecular Medicine and Pathology, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand
| | - J R de Zoysa
- Renal Service, North Shore Hospital, Waitemata District Health Board, Auckland, New Zealand.,Department of Medicine, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand
| | - K E Burns
- Molecular Medicine and Pathology, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
15
|
McCune JS, Wang T, Bo-Subait K, Aljurf M, Beitinjaneh A, Bubalo J, Cahn JY, Cerny J, Chhabra S, Cumpston A, Dupuis LL, Lazarus HM, Marks DI, Maziarz RT, Norkin M, Prestidge T, Mineishi S, Krem MM, Pasquini M, Martin PJ. Association of Antiepileptic Medications with Outcomes after Allogeneic Hematopoietic Cell Transplantation with Busulfan/Cyclophosphamide Conditioning. Biol Blood Marrow Transplant 2019; 25:1424-1431. [PMID: 30871976 PMCID: PMC6615968 DOI: 10.1016/j.bbmt.2019.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 03/03/2019] [Indexed: 01/07/2023]
Abstract
High-dose busulfan (BU) followed by high-dose cyclophosphamide (CY) before allogeneic hematopoietic cell transplantation (HCT) has long been used as treatment for hematologic malignancies. Administration of phenytoin or newer alternative antiepileptic medications (AEMs) prevents seizures caused by BU. Phenytoin induces enzymes that increase exposure to active CY metabolites in vivo, whereas alternative AEMs do not have this effect. Lower exposure to active CY metabolites with the use of alternative AEMs could decrease the risk of toxicity but might increase the risk of recurrent malignancy after HCT. Previous studies have not determined whether outcomes with alternative AEMs differ from those with phenytoin in patients treated with BU/CY before allogeneic HCT. We studied a cohort of 2155 patients, including 1460 treated with phenytoin and 695 treated with alternative AEMs, who received BU/CY before allogeneic HCT between 2004 and 2014. We found no differences suggesting decreased overall survival or relapse-free survival or increased risks of relapse, nonrelapse mortality, acute or chronic graft-versus-host disease, or regimen-related toxicity associated with the use of alternative AEMs compared with phenytoin. The risk of dialysis was lower in the alternative AEM group than in the phenytoin group. Alternative AEMs are safe for prevention of seizures after BU administration and can avoid the undesirable toxicities and drug interactions caused by phenytoin.
Collapse
Affiliation(s)
- Jeannine S McCune
- Clinical Research Division, Fred Hutchinson Cancer Research Center and Department of Medicine, University of Washington, Seattle, WA, USA; Department of Population Sciences, City of Hope, Duarte, CA, USA.
| | - Tao Wang
- Division of Biostatistics, Institute for Health and Society, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Khalid Bo-Subait
- CIBMTR (Center for International Blood and Marrow Transplant Research), Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Mahmoud Aljurf
- Adult HSCT Program, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Amer Beitinjaneh
- Department of Medicine, University of Miami/Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Joseph Bubalo
- Department of Medicine, Oregon Health and Science University Hospital, Portland, OR, USA
| | - Jean-Yves Cahn
- Department of Medicine, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - Jan Cerny
- Department of Medicine, University of Massachusetts Memorial Medical Center, Worcester, MA, USA
| | - Saurabh Chhabra
- Department of Hematology/Oncology, Medical College of Wisconsin, Milwaukee, WI
| | - Aaron Cumpston
- Division of Oncology, West Virginia University Hospitals, Morgantown, WV, USA
| | - L Lee Dupuis
- The Hospital for Sick Children and Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Hillard M Lazarus
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - David I Marks
- Bristol Haematology and Oncology Centre, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Richard T Maziarz
- Department of Medicine, Oregon Health and Science University Hospital, Portland, OR, USA
| | - Maxim Norkin
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Tim Prestidge
- Blood and Cancer Centre, Starship Child Health, Central Auckland, New Zealand
| | - Shin Mineishi
- Department of Medicine, Penn State Hershey Medical Center, Hershey, PA, USA
| | - Maxwell M Krem
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Marcelo Pasquini
- CIBMTR (Center for International Blood and Marrow Transplant Research), Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Paul J Martin
- Clinical Research Division, Fred Hutchinson Cancer Research Center and Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
16
|
Bloom AJ, Wang P, Kharasch ED. Nicotine oxidation by genetic variants of CYP2B6 and in human brain microsomes. Pharmacol Res Perspect 2019; 7:e00468. [PMID: 30906561 PMCID: PMC6411694 DOI: 10.1002/prp2.468] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/20/2019] [Indexed: 11/16/2022] Open
Abstract
Common variation in the CYP2B6 gene, encoding the cytochrome P450 2B6 enzyme, is associated with substrate-specific altered clearance of multiple drugs. CYP2B6 is a minor contributor to hepatic nicotine metabolism, but the enzyme has been proposed as relevant to nicotine-related behaviors because of reported CYP2B6 mRNA expression in human brain tissue. Therefore, we hypothesized that CYP2B6 variants would be associated with altered nicotine oxidation, and that nicotine metabolism by CYP2B6 would be detected in human brain microsomes. We generated recombinant enzymes in insect cells corresponding to nine common CYP2B6 haplotypes and demonstrate genetically determined differences in nicotine oxidation to nicotine iminium ion and nornicotine for both (S) and (R)-nicotine. Notably, the CYP2B6.6 and CYP2B6.9 variants demonstrated lower intrinsic clearance relative to the reference enzyme, CYP2B6.1. In the presence of human brain microsomes, along with nicotine-N-oxidation, we also detect nicotine oxidation to nicotine iminium ion. However, unlike N-oxidation, this activity is NADPH independent, does not follow Michaelis-Menten kinetics, and is not inhibited by NADP or carbon monoxide. Furthermore, metabolism of common CYP2B6 probe substrates, methadone and ketamine, is not detected in the presence of brain microsomes. We conclude that CYP2B6 metabolizes nicotine stereoselectively and common CYP2B6 variants differ in nicotine metabolism activity, but did not find evidence of CYP2B6 activity in human brain.
Collapse
Affiliation(s)
- Adam Joseph Bloom
- Department of Psychiatry and AnesthesiologyWashington UniversitySt. LouisMissouri
| | - Pan‐Fen Wang
- Department of AnesthesiologyDuke University School of MedicineDurhamNorth Carolina
| | - Evan D. Kharasch
- Department of AnesthesiologyDuke University School of MedicineDurhamNorth Carolina
| |
Collapse
|
17
|
Kharasch ED, Crafford A. Common Polymorphisms of CYP2B6 Influence Stereoselective Bupropion Disposition. Clin Pharmacol Ther 2018; 105:142-152. [PMID: 29756345 DOI: 10.1002/cpt.1116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/08/2018] [Indexed: 12/12/2022]
Abstract
Bupropion hydroxylation is a bioactivation and metabolic pathway, and the standard clinical CYP2B6 probe. This investigation determined the influence of CYP2B6 allelic variants on clinical concentrations and metabolism of bupropion enantiomers. Secondary objectives evaluated the influence of CYP2C19 and P450 oxidoreductase variants. Healthy volunteers in specific cohorts (CYP2B6*1/*1, CYP2B6*1/*6, CYP2B6*6/*6, and also CYP2B6*4 carriers) received single-dose oral bupropion. Plasma and urine bupropion and hydroxybupropion was quantified. Subjects were also genotyped for CYP2C19 and P450 oxidoreductase variants. Hydroxylation of both bupropion enantiomers, assessed by plasma hydroxybupropion/bupropion AUC ratios and urine hydroxybupropion formation clearances, was lower in CYP2B6*6/*6 but not CYP2B6*1/*6 compared with CYP2B6*1/*1 genotypes, and numerically greater in CYP2B6*4 carriers. CYP2C19 and P450 oxidoreductase variants did not influence bupropion enantiomers hydroxylation or plasma concentrations. The results show that clinical hydroxylation of both bupropion enantiomers was equivalently influenced by CYP2B6 allelic variation. CYP2B6 polymorphisms affect S-bupropion bioactivation, which may affect therapeutic outcomes.
Collapse
Affiliation(s)
- Evan D Kharasch
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, Missouri, USA.,Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University in St. Louis, St. Louis, Missouri, USA
| | - Amanda Crafford
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
18
|
Yu KN, Kang SY, Hong S, Lee MY. High-throughput metabolism-induced toxicity assays demonstrated on a 384-pillar plate. Arch Toxicol 2018; 92:2501-2516. [PMID: 29974144 DOI: 10.1007/s00204-018-2249-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/20/2018] [Indexed: 01/01/2023]
Abstract
The US Environmental Protection Agency (EPA) launched the Transform Tox Testing Challenge in 2016 with the goal of developing practical methods that can be integrated into conventional high-throughput screening (HTS) assays to better predict the toxicity of parent compounds and their metabolites in vivo. In response to this need and to retrofit existing HTS assays for assessing metabolism-induced toxicity of compounds, we have developed a 384-pillar plate that is complementary to traditional 384-well plates and ideally suited for culturing human cells in three dimensions at a microscale. Briefly, human embryonic kidney (HEK) 293 cells in a mixture of alginate and Matrigel were printed on the 384-pillar plates using a microarray spotter, which were coupled with 384-well plates containing nine model compounds provided by the EPA, five representative Phase I and II drug metabolizing enzymes (DMEs), and one no enzyme control. Viability and membrane integrity of HEK 293 cells were measured with the calcein AM and CellTiter-Glo® kit to determine the IC50 values of the nine parent compounds and DME-generated metabolites. The Z' factors and the coefficient of variation measured were above 0.6 and below 14%, respectively, indicating that the assays established on the 384-pillar plate are robust and reproducible. Out of nine compounds tested, six compounds showed augmented toxicity with DMEs and one compound showed detoxification with a Phase II DME. This result indicates that the 384-pillar plate platform can be used to measure metabolism-induced toxicity of compounds in high-throughput with individual DMEs. As xenobiotics metabolism is a complex process with a variety of DMEs involved, the predictivity of our approach could be further improved with mixtures of DMEs.
Collapse
Affiliation(s)
- Kyeong-Nam Yu
- Department of Chemical and Biomedical Engineering, Cleveland State University, 455 Fenn Hall (FH), 1960 East 24th Street, Cleveland, OH, 44115-2214, USA
| | - Soo-Yeon Kang
- Department of Chemical and Biomedical Engineering, Cleveland State University, 455 Fenn Hall (FH), 1960 East 24th Street, Cleveland, OH, 44115-2214, USA
| | - Stephen Hong
- Department of Chemical and Biomedical Engineering, Cleveland State University, 455 Fenn Hall (FH), 1960 East 24th Street, Cleveland, OH, 44115-2214, USA
| | - Moo-Yeal Lee
- Department of Chemical and Biomedical Engineering, Cleveland State University, 455 Fenn Hall (FH), 1960 East 24th Street, Cleveland, OH, 44115-2214, USA.
| |
Collapse
|
19
|
El-Serafi I, Terelius Y, Abedi-Valugerdi M, Naughton S, Saghafian M, Moshfegh A, Mattsson J, Potácová Z, Hassan M. Flavin-containing monooxygenase 3 (FMO3) role in busulphan metabolic pathway. PLoS One 2017; 12:e0187294. [PMID: 29121650 PMCID: PMC5679629 DOI: 10.1371/journal.pone.0187294] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/17/2017] [Indexed: 12/21/2022] Open
Abstract
Busulphan (Bu) is an alkylating agent used in the conditioning regimen prior to hematopoietic stem cell transplantation (HSCT). Bu is extensively metabolized in the liver via conjugations with glutathione to form the intermediate metabolite (sulfonium ion) which subsequently is degraded to tetrahydrothiophene (THT). THT was reported to be oxidized forming THT-1-oxide that is further oxidized to sulfolane and finally 3-hydroxysulfolane. However, the underlying mechanisms for the formation of these metabolites remain poorly understood. In the present study, we performed in vitro and in vivo investigations to elucidate the involvement of flavin-containing monooxygenase-3 (FMO3) and cytochrome P450 enzymes (CYPs) in Bu metabolic pathway. Rapid clearance of THT was observed when incubated with human liver microsomes. Furthermore, among different recombinant microsomal enzymes, the highest intrinsic clearance for THT was obtained via FMO3 followed by several CYPs including 2B6, 2C8, 2C9, 2C19, 2E1 and 3A4. In Bu- or THT-treated mice, inhibition of FMO3 by phenylthiourea significantly suppressed the clearance of both Bu and THT. Moreover, the simultaneous administration of a high dose of THT (200μmol/kg) to Bu-treated mice reduced the clearance of Bu. Consistently, in patients undergoing HSCT, repeated administration of Bu resulted in a significant up-regulation of FMO3 and glutathione-S-transfrase -1 (GSTA1) genes. Finally, in a Bu-treated patient, additional treatment with voriconazole (an antimycotic drug known as an FMO3-substrate) significantly altered the Bu clearance. In conclusion, we demonstrate for the first time that FMO3 along with CYPs contribute a major part in busulphan metabolic pathway and certainly can affect its kinetics. The present results have high clinical impact. Furthermore, these findings might be important for reducing the treatment-related toxicity of Bu, through avoiding interaction with other concomitant used drugs during conditioning and hence improving the clinical outcomes of HSCT.
Collapse
Affiliation(s)
- Ibrahim El-Serafi
- Experimental Cancer Medicine (ECM), Clinical Research Centre (KFC), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Ylva Terelius
- Experimental Cancer Medicine (ECM), Clinical Research Centre (KFC), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Manuchehr Abedi-Valugerdi
- Experimental Cancer Medicine (ECM), Clinical Research Centre (KFC), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Seán Naughton
- Experimental Cancer Medicine (ECM), Clinical Research Centre (KFC), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Maryam Saghafian
- Experimental Cancer Medicine (ECM), Clinical Research Centre (KFC), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Ali Moshfegh
- Cancer Center of Karolinska (CCK), Department of Oncology-Pathology, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Jonas Mattsson
- Centre for Allogeneic Stem Cell Transplantation, Karolinska University Hospital-Huddinge, Stockholm, Sweden.,Department of Oncology and Pathology, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Zuzana Potácová
- Experimental Cancer Medicine (ECM), Clinical Research Centre (KFC), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden.,ECM, Clinical Research Centre (KFC), Novum, Karolinska University Hospital, Huddinge, Sweden
| | - Moustapha Hassan
- Experimental Cancer Medicine (ECM), Clinical Research Centre (KFC), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden.,ECM, Clinical Research Centre (KFC), Novum, Karolinska University Hospital, Huddinge, Sweden
| |
Collapse
|
20
|
Martin M, Fornecker LM, Marcellin L, Mousseaux E, Hij A, Snowden JA, Farge D, Martin T. Acute and fatal cardiotoxicity following high-dose cyclophosphamide in a patient undergoing autologous stem cell transplantation for systemic sclerosis despite satisfactory cardiopulmonary screening. Bone Marrow Transplant 2017; 52:1674-1677. [DOI: 10.1038/bmt.2017.188] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
21
|
Nicoletti P, Aithal GP, Bjornsson ES, Andrade RJ, Sawle A, Arrese M, Barnhart HX, Bondon-Guitton E, Hayashi PH, Bessone F, Carvajal A, Cascorbi I, Cirulli ET, Chalasani N, Conforti A, Coulthard SA, Daly MJ, Day CP, Dillon JF, Fontana RJ, Grove JI, Hallberg P, Hernández N, Ibáñez L, Kullak-Ublick GA, Laitinen T, Larrey D, Lucena MI, Maitland-van der Zee AH, Martin JH, Molokhia M, Pirmohamed M, Powell EE, Qin S, Serrano J, Stephens C, Stolz A, Wadelius M, Watkins PB, Floratos A, Shen Y, Nelson MR, Urban TJ, Daly AK. Association of Liver Injury From Specific Drugs, or Groups of Drugs, With Polymorphisms in HLA and Other Genes in a Genome-Wide Association Study. Gastroenterology 2017; 152:1078-1089. [PMID: 28043905 PMCID: PMC5367948 DOI: 10.1053/j.gastro.2016.12.016] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 11/30/2016] [Accepted: 12/21/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS We performed a genome-wide association study (GWAS) to identify genetic risk factors for drug-induced liver injury (DILI) from licensed drugs without previously reported genetic risk factors. METHODS We performed a GWAS of 862 persons with DILI and 10,588 population-matched controls. The first set of cases was recruited before May 2009 in Europe (n = 137) and the United States (n = 274). The second set of cases were identified from May 2009 through May 2013 from international collaborative studies performed in Europe, the United States, and South America. For the GWAS, we included only cases with patients of European ancestry associated with a particular drug (but not flucloxacillin or amoxicillin-clavulanate). We used DNA samples from all subjects to analyze HLA genes and single nucleotide polymorphisms. After the discovery analysis was concluded, we validated our findings using data from 283 European patients with diagnosis of DILI associated with various drugs. RESULTS We associated DILI with rs114577328 (a proxy for A*33:01 a HLA class I allele; odds ratio [OR], 2.7; 95% confidence interval [CI], 1.9-3.8; P = 2.4 × 10-8) and with rs72631567 on chromosome 2 (OR, 2.0; 95% CI, 1.6-2.5; P = 9.7 × 10-9). The association with A*33:01 was mediated by large effects for terbinafine-, fenofibrate-, and ticlopidine-related DILI. The variant on chromosome 2 was associated with DILI from a variety of drugs. Further phenotypic analysis indicated that the association between DILI and A*33:01 was significant genome wide for cholestatic and mixed DILI, but not for hepatocellular DILI; the polymorphism on chromosome 2 was associated with cholestatic and mixed DILI as well as hepatocellular DILI. We identified an association between rs28521457 (within the lipopolysaccharide-responsive vesicle trafficking, beach and anchor containing gene) and only hepatocellular DILI (OR, 2.1; 95% CI, 1.6-2.7; P = 4.8 × 10-9). We did not associate any specific drug classes with genetic polymorphisms, except for statin-associated DILI, which was associated with rs116561224 on chromosome 18 (OR, 5.4; 95% CI, 3.0-9.5; P = 7.1 × 10-9). We validated the association between A*33:01 terbinafine- and sertraline-induced DILI. We could not validate the association between DILI and rs72631567, rs28521457, or rs116561224. CONCLUSIONS In a GWAS of persons of European descent with DILI, we associated HLA-A*33:01 with DILI due to terbinafine and possibly fenofibrate and ticlopidine. We identified polymorphisms that appear to be associated with DILI from statins, as well as 2 non-drug-specific risk factors.
Collapse
Affiliation(s)
- Paola Nicoletti
- Department of Systems Biology, Columbia University, New York, New York
| | - Guruprasad P Aithal
- National Institute for Health Research, Nottingham Digestive Diseases Biomedical Research Unit, Nottingham University Hospital, National Health Service Trust, and University of Nottingham, Nottingham, United Kingdom
| | - Einar S Bjornsson
- Department of Internal Medicine, Landspitali University Hospital, Reykjavik, Iceland
| | - Raul J Andrade
- Unidad de Gestión Clínica Digestivo, Instituto de Investigación Biomédica de Málaga, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Málaga, Spain
| | - Ashley Sawle
- Department of Systems Biology, Columbia University, New York, New York
| | - Marco Arrese
- Departmento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | - Paul H Hayashi
- Department of Internal Medicine, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina
| | - Fernando Bessone
- Servicio de Gastroenterología y Hepatología, Universidad Nacional de Rosario, Rosario, Argentina
| | | | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel, Germany
| | | | - Naga Chalasani
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Sally A Coulthard
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Mark J Daly
- Broad Institute of Harvard and Massachusetts Institute of Technology, Boston, Massachusetts
| | - Christopher P Day
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - John F Dillon
- Medical Research Institute, University of Dundee, Ninewells Hospital, Dundee, United Kingdom
| | | | - Jane I Grove
- National Institute for Health Research, Nottingham Digestive Diseases Biomedical Research Unit, Nottingham University Hospital, National Health Service Trust, and University of Nottingham, Nottingham, United Kingdom
| | - Pär Hallberg
- Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Nelia Hernández
- Facultad de Medicina, Universidad de la Republica, Montevideo, Uruguay
| | - Luisa Ibáñez
- Fundació Institut Català de Farmacologia, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Tarja Laitinen
- Clinical Research Unit for Pulmonary Diseases, Helsinki University Central Hospital, Helsinki, Finland
| | - Dominique Larrey
- Liver Unit, Centre Hospitalier Universitaire, St Eloi Hospital, Montpellier, France
| | - M Isabel Lucena
- Unidad de Gestión Clínica Digestivo, Instituto de Investigación Biomédica de Málaga, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Málaga, Spain
| | | | - Jennifer H Martin
- School of Medicine and Public Health, University of Newcastle, New South Wales, Australia
| | - Mariam Molokhia
- Department of Primary Care and Public Health Sciences, King's College, London, United Kingdom
| | - Munir Pirmohamed
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Elizabeth E Powell
- Centre for Liver Disease Research, School of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Shengying Qin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Jose Serrano
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland
| | - Camilla Stephens
- Unidad de Gestión Clínica Digestivo, Instituto de Investigación Biomédica de Málaga, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Málaga, Spain
| | - Andrew Stolz
- University of Southern California, Los Angeles, California
| | - Mia Wadelius
- Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Paul B Watkins
- University of North Carolina Institute for Drug Safety Sciences, Eshelman School of Pharmacy, Chapel Hill, North Carolina
| | - Aris Floratos
- Department of Systems Biology, Columbia University, New York, New York
| | - Yufeng Shen
- Department of Systems Biology, Columbia University, New York, New York
| | | | - Thomas J Urban
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - Ann K Daly
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom.
| | | |
Collapse
|
22
|
Cytochrome P450 Genetic Variations Can Predict mRNA Expression, Cyclophosphamide 4-Hydroxylation, and Treatment Outcomes in Chinese Patients With Non-Hodgkin's Lymphoma. J Clin Pharmacol 2017; 57:886-898. [DOI: 10.1002/jcph.878] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/27/2016] [Indexed: 01/09/2023]
|
23
|
de Castro FA, Simões BP, Coelho EB, Lanchote VL. Enantioselectivity in the Metabolism of Cyclophosphamide in Patients With Multiple or Systemic Sclerosis. J Clin Pharmacol 2017; 57:784-795. [PMID: 28083951 DOI: 10.1002/jcph.863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 11/30/2016] [Indexed: 12/20/2022]
Abstract
The aim of this study was to evaluate the enantioselective pharmacokinetics of cyclophosphamide and its metabolites 4-hydroxycyclophosphamide and carboxyethylphosphoramide mustard in patients with systemic or multiple sclerosis. Patients with systemic sclerosis (n = 10) or multiple sclerosis (n = 10), genotyped for the allelic variants of CYP2C9*2 and CYP2C9*3 and of the CYP2B6 G516T polymorphism, were treated with 50 mg cyclophosphamide/kg daily for 4 days. Serial blood samples were collected up to 24 hours after administration of the last cyclophosphamide dose. Cyclophosphamide, 4-hydroxycyclophosphamide, and carboxyethylphosphoramide enantiomers were analyzed in plasma samples using liquid chromatography-tandem mass spectrometry coupled to chiral column Chiralcel OD-R or Chiralpak AD-RH. Cytokines IL-2, IL-4, IL-6, IL-8, IL-10, IL- 12p70, IL-17, TNF-α, and INT-δ in the plasma samples collected before cyclophosphamide infusion were analyzed by Milliplex MAP human cytokine/chemokine. Pharmacokinetic parameters showed higher plasma concentrations of (S)-(-)-cyclophosphamide (AUC 215.0 vs 186.2 μg·h/mL for multiple sclerosis patients and 219.1 vs 179.2 μg·h/mL for systemic sclerosis patients) and (R)-4-hydroxycyclophosphamide (AUC 5.6 vs 3.7 μg·h/mL for multiple sclerosis patients and 6.3 vs 5.6 μg·h/mL for systemic sclerosis patients) when compared to their enantiomers in both groups of patients, whereas the pharmacokinetics of the carboxyethylphosphoramide metabolite was not enantioselective. Cytokines' plasma concentrations were similar between multiple and systemic sclerosis groups. The pharmacokinetics of cyclophosphamide is enantioselective in patients with systemic sclerosis and multiple sclerosis, with higher plasma concentrations of the (S)-(-)-cyclophosphamide enantiomer due to the preferential formation of the (R)-4-hydroxycyclophosphamide metabolite.
Collapse
Affiliation(s)
- Francine Attié de Castro
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Belinda Pinto Simões
- Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Eduardo Barbosa Coelho
- Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Vera Lucia Lanchote
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
24
|
Kuno T, Hirayama-Kurogi M, Ito S, Ohtsuki S. Effect of Intestinal Flora on Protein Expression of Drug-Metabolizing Enzymes and Transporters in the Liver and Kidney of Germ-Free and Antibiotics-Treated Mice. Mol Pharm 2016; 13:2691-701. [PMID: 27376980 DOI: 10.1021/acs.molpharmaceut.6b00259] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Takuya Kuno
- Department
of Pharmaceutical Microbiology, Graduate School of Pharmaceutical
Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- Department
of Drug Metabolism and Pharmacokinetics, Drug Safety Research Center,
Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno, Kawauchi-cho, Tokushima, Tokushima 771-0192, Japan
| | - Mio Hirayama-Kurogi
- Department
of Pharmaceutical Microbiology, Graduate School of Pharmaceutical
Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- Department
of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- AMED-CREST, Japan
Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda, Tokyo 100-0004, Japan
| | - Shingo Ito
- Department
of Pharmaceutical Microbiology, Graduate School of Pharmaceutical
Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- Department
of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- AMED-CREST, Japan
Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda, Tokyo 100-0004, Japan
| | - Sumio Ohtsuki
- Department
of Pharmaceutical Microbiology, Graduate School of Pharmaceutical
Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- Department
of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- AMED-CREST, Japan
Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda, Tokyo 100-0004, Japan
| |
Collapse
|
25
|
Labib RM, A Abdelrahim ME, Elnadi E, Hesham RM, Yassin D. CYP2B6rs2279343 Is Associated with Improved Survival of Pediatric Rhabdomyosarcoma Treated with Cyclophosphamide. PLoS One 2016; 11:e0158890. [PMID: 27388155 PMCID: PMC4936837 DOI: 10.1371/journal.pone.0158890] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 06/23/2016] [Indexed: 01/11/2023] Open
Abstract
Background Rhabdomyosarcoma (RMS) is a small round blue cell malignant tumor, representing 7% of childhood malignancies, and over 50% of all soft tissue sarcomas. Cyclophosphamide (CPA) is a prodrug and is the mainstay of RMS treatment. CYP2B6 is a highly polymorphic drug metabolizing enzyme involved in CPA bioactivation. The influence of CYP2B6 single nucleotide polymorphisms (SNPs) on the survival of RMS is still unknown. Methods We genotyped CYP2B6SNPs rs2279343, rs3745274, and rs3211371 by restriction fragment polymorphism (RFLP) after PCR amplification in a cohort of 73 pediatric RMS patients treated with CPA-based first line treatment. We then analyzed the association between those genotypes and survival outcome of RMS. Results The frequencies of CYP2B6 rs2279343, rs3745274, and rs3211371 were 63%, 45.2%, and 5.5%, respectively. There was no association between rs3745274, rs3211371 genotypes and survival outcomes of RMS. However, the carriers of at least one mutant allele CYP2B6rs2279343 had significantly longer event-free survival (p-value = 0.03). Conclusion Our results demonstrated that CYP2B6 rs2279343 may predict EFS in RMS patients and warrants future studies to clarify the pharmacogenetics of CPA in pediatrics. If validated, integration of genetic factors with clinical and molecular characteristics could be used for a composite algorithm to better stratify risk prior to treatment.
Collapse
Affiliation(s)
- Rania M Labib
- Research Department, Children's Cancer Hospital Egypt 57357, Cairo, Egypt.,Clinical Pharmacy, Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed E A Abdelrahim
- Clinical Pharmacy, Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Enas Elnadi
- Pediatric Oncology Department, Beni-Suef University Faculty of medicine, Beni-Suef, Egypt.,Pediatric Oncology Department, Children's Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Reem M Hesham
- Biochemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Dina Yassin
- Molecular Biology Department, Children's Cancer Hospital Egypt 57357, Cairo, Egypt
| |
Collapse
|
26
|
El-Serafi I, Afsharian P, Moshfegh A, Hassan M, Terelius Y. Cytochrome P450 Oxidoreductase Influences CYP2B6 Activity in Cyclophosphamide Bioactivation. PLoS One 2015; 10:e0141979. [PMID: 26544874 PMCID: PMC4636385 DOI: 10.1371/journal.pone.0141979] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 10/15/2015] [Indexed: 12/19/2022] Open
Abstract
Introduction Cyclophosphamide is commonly used as an important component in conditioning prior to hematopoietic stem cell transplantation, a curative treatment for several hematological diseases. Cyclophosphamide is a prodrug activated mainly by cytochrome P450 2B6 (CYP2B6) in the liver. A high degree of inter- and intra-individual variation in cyclophosphamide kinetics has been reported in several studies. Materials and Methods Hydroxylation of cyclophosphamide was investigated in vitro using three microsomal batches of CYP2B6*1 with different ratios of POR/CYP expression levels. Twenty patients undergoing hematopoietic stem cell transplantation were also included in the study. All patients received an i.v. infusion of cyclophosphamide (60 mg/kg/day, for two days) as a part of their conditioning. Blood samples were collected from each patient before cyclophosphamide infusion, 6 h after the first dose and before and 6 h after the second dose. POR gene expression was measured by mRNA analysis and the pharmacokinetics of cyclophosphamide and its active metabolite were determined. Results A strong correlation between the in vitro intrinsic clearance of cyclophosphamide and the POR/CYP ratio was found. The apparent Km for CYP2B6.1 was almost constant (3-4 mM), while the CLint values were proportional to the POR/CYP ratio (3-34 μL/min/nmol CYP). In patients, the average expression of the POR gene in blood was significantly (P <0.001) up-regulated after cyclophosphamide infusion, with high inter-individual variations and significant correlation with the concentration ratio of the active metabolite 4-hydroxy-cyclophosphamide/cyclophosphamide. Nine patients were carriers for POR*28; four patients had relatively high POR expression. Conclusions This investigation shows for the first time that POR besides CYP2B6 can influence cyclophosphamide metabolism. Our results indicate that not only CYPs are important, but also POR expression and/or activity may influence cyclophosphamide bioactivation, affecting therapeutic efficacy and treatment related toxicity and hence on clinical outcome. Thus, both POR and CYP genotype and expression levels may have to be taken into account when personalizing treatment schedules to achieve optimal therapeutic drug plasma concentrations of cyclophosphamide.
Collapse
Affiliation(s)
- Ibrahim El-Serafi
- Experimental Cancer Medicine (ECM), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Parvaneh Afsharian
- Experimental Cancer Medicine (ECM), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Ali Moshfegh
- Cancer Center of Karolinska (CCK), Department of Oncology-Pathology, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Moustapha Hassan
- Experimental Cancer Medicine (ECM), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
- Department of Clinical Research Centre, Karolinska University Hospital-Huddinge, Stockholm, Sweden
- * E-mail:
| | - Ylva Terelius
- Department of Discovery Research, Medivir AB, Huddinge, Sweden
| |
Collapse
|
27
|
Bachanova V, Shanley R, Malik F, Chauhan L, Lamba V, Weisdorf DJ, Burns LJ, Lamba JK. Cytochrome P450 2B6*5 Increases Relapse after Cyclophosphamide-Containing Conditioning and Autologous Transplantation for Lymphoma. Biol Blood Marrow Transplant 2015; 21:944-8. [PMID: 25677220 PMCID: PMC4772424 DOI: 10.1016/j.bbmt.2015.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/03/2015] [Indexed: 01/11/2023]
Abstract
Cyclophosphamide (Cy) is a prodrug that depends on bioactivation by hepatic cytochrome P450 (CYP) enzymes for its cytotoxicity. We evaluated the influence of single nucleotide polymorphisms (SNPs) of CYP enzymes on the efficacy of autologous hematopoietic cell transplantation (HCT) for lymphoma. SNPs of 22 genes were analyzed in 93 patients with Hodgkin (n = 52) and non-Hodgkin lymphoma (n = 41) treated with high-dose Cy followed by autologous HCT between 2004 and 2012. Preparative regimens contained Cy (120 mg/kg) combined with carmustine/etoposide (n = 61) or Cy (6000 mg/m(2)) with total body irradiation (n = 32). Lack of complete remission as measured by pretransplant positron emission tomography was the sole clinical factor associated with increased risk of relapse (HR, 2.1). In genomic analysis, we identified a single SNP (rs3211371) in exon 9 (C > T) of the CYP2B6 gene (allele designation 2B6*5) that significantly impacted patient outcomes. After adjusting for disease status and conditioning regimen, patients with the CYP2B6*1/*5 genotype had a higher 2-year relapse rate (HR, 3.3; 95% CI, 1.6 to 6.5; P = .041) and decreased overall survival (HR, 13.5; 95% CI, 3.5 to 51.9; P = .008) than patients with the wild-type allele. Two-year progression-free survival for patients with 2 hypofunctional CYP2B6 variant genotypes (*5 and *6) was only 11% (95% CI, 1% to 39%) compared with 67% (95% CI, 55% to 77%) for patients with the wild-type CYP2B6*1 allele in exon 9. Our results suggest that CYP2B6 SNPs influence the efficacy of high-dose Cy and significantly reduce the success of autologous HCT for lymphoma patients with the CYP2B6*5 variant.
Collapse
Affiliation(s)
- Veronika Bachanova
- Blood and Marrow Transplant Program, University of Minnesota, Minneapolis, Minnesota.
| | - Ryan Shanley
- Blood and Marrow Transplant Program, University of Minnesota, Minneapolis, Minnesota
| | - Farhana Malik
- Blood and Marrow Transplant Program, University of Minnesota, Minneapolis, Minnesota
| | - Lata Chauhan
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida
| | - Vishal Lamba
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida
| | - Daniel J Weisdorf
- Blood and Marrow Transplant Program, University of Minnesota, Minneapolis, Minnesota
| | - Linda J Burns
- Blood and Marrow Transplant Program, University of Minnesota, Minneapolis, Minnesota
| | - Jatinder Kaur Lamba
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida
| |
Collapse
|
28
|
Shu WY, Li JL, Wang XD, Huang M. Pharmacogenomics and personalized medicine: a review focused on their application in the Chinese population. Acta Pharmacol Sin 2015; 36:535-43. [PMID: 25891088 DOI: 10.1038/aps.2015.10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/21/2015] [Indexed: 12/22/2022] Open
Abstract
The field of pharmacogenomics was initiated in the 1950s and began to thrive after the completion of the human genome project 10 years ago. Thus far, more than 100 drug labels and clinical guidelines referring to pharmacogenomic biomarkers have been published, and several key pharmacogenomic markers for either drug safety or efficacy have been identified and subsequently adopted in clinical practice as pre-treatment genetic tests. However, a tremendous variation of genetic backgrounds exists between different ethnic groups. The application of pharmacogenomics in the Chinese population is still a long way off, since the published guidelines issued by the organizations such as US Food and Drug Administration require further confirmation in the Chinese population. This review highlights important pharmacogenomic discoveries in the Chinese population and compares the Chinese population with other nations regarding the pharmacogenomics of five most commonly used drugs, ie, tacrolimus, cyclosporine A, warfarin, cyclophosphamide and azathioprine.
Collapse
|
29
|
Gadel S, Friedel C, Kharasch ED. Differences in Methadone Metabolism by CYP2B6 Variants. Drug Metab Dispos 2015; 43:994-1001. [PMID: 25897175 DOI: 10.1124/dmd.115.064352] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 04/20/2015] [Indexed: 12/22/2022] Open
Abstract
Methadone is a long-acting opioid with considerable unexplained interindividual variability in clearance. Cytochrome P450 2B6 (CYP2B6) mediates clinical methadone clearance and metabolic inactivation via N-demethylation to 2-ethyl-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP). Retrospective studies suggest that individuals with the CYP2B6*6 allelic variant have higher methadone plasma concentrations. Catalytic activities of CYP2B6 variants are highly substrate- and expression-system dependent. This investigation evaluated methadone N-demethylation by expressed human CYP2B6 allelic variants in an insect cell coexpression system containing P450 reductase. Additionally, the influence of coexpressing cytochrome b5, whose role in metabolism can be inhibitory or stimulatory depending on the P450 isoform and substrate, on methadone metabolism, was evaluated. EDDP formation from therapeutic (0.25-1 μM) R- and S-methadone concentrations was CYP2B6.4 ≥ CYP2B6.1 ≥ CYP2B6.5 >> CYP2B6.9 ≈ CYP2B6.6, and undetectable from CYP2B6.18. Coexpression of b5 had small and variant-specific effects at therapeutic methadone concentrations but at higher concentrations stimulated EDDP formation by CYP2B6.1, CYP2B6.4, CYP2B6.5, and CYP2B6.9 but not CYP2B6.6. In vitro intrinsic clearances were generally CYP2B6.4 ≥ CYP2B6.1 > CYP2B6.5 > CYP2B6.9 ≥ CYP2B6.6. Stereoselective methadone metabolism (S>R) was maintained with all CYP2B6 variants. These results show that methadone N-demethylation by CYP2B6.4 is greater compared with CYP2B6.1, whereas CYP2B6.9 and CYP2B6.6 (which both contain the 516G>T, Q172H polymorphism), are catalytically deficient. The presence or absence of b5 in expression systems may explain previously reported disparate catalytic activities of CYP2B6 variants for specific substrates. Differences in methadone metabolism by CYP2B6 allelic variants provide a mechanistic understanding of pharmacogenetic variability in clinical methadone metabolism and clearance.
Collapse
Affiliation(s)
- Sarah Gadel
- Department of Anesthesiology, Division of Clinical and Translational Research (S.G., C.F., E.D.K.) and the Department of Biochemistry and Molecular Biophysics (E.D.K.), Washington University in St. Louis, St. Louis, Missouri
| | - Christina Friedel
- Department of Anesthesiology, Division of Clinical and Translational Research (S.G., C.F., E.D.K.) and the Department of Biochemistry and Molecular Biophysics (E.D.K.), Washington University in St. Louis, St. Louis, Missouri
| | - Evan D Kharasch
- Department of Anesthesiology, Division of Clinical and Translational Research (S.G., C.F., E.D.K.) and the Department of Biochemistry and Molecular Biophysics (E.D.K.), Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
30
|
Nirogi R, Palacharla RC, Mohammed AR, Manoharan A, Ponnamaneni RK, Bhyrapuneni G. Evaluation of metabolism dependent inhibition of CYP2B6 mediated bupropion hydroxylation in human liver microsomes by monoamine oxidase inhibitors and prediction of potential as perpetrators of drug interaction. Chem Biol Interact 2015; 230:9-20. [DOI: 10.1016/j.cbi.2015.01.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 01/13/2015] [Accepted: 01/24/2015] [Indexed: 12/31/2022]
|
31
|
Cytochrome P450 2J2, a new key enzyme in cyclophosphamide bioactivation and a potential biomarker for hematological malignancies. THE PHARMACOGENOMICS JOURNAL 2015; 15:405-13. [PMID: 25601761 DOI: 10.1038/tpj.2014.82] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/08/2014] [Accepted: 11/05/2014] [Indexed: 12/29/2022]
Abstract
The role of cytochrome P450 2J2 (CYP2J2) in cyclophosphamide (Cy) bioactivation was investigated in patients, cells and microsomes. Gene expression analysis showed that CYP2J2 mRNA expression was significantly (P<0.01) higher in 20 patients with hematological malignancies compared with healthy controls. CYP2J2 expression showed significant upregulation (P<0.05) during Cy treatment before stem cell transplantation. Cy bioactivation was significantly correlated to CYP2J2 expression. Studies in HL-60 cells expressing CYP2J2 showed reduced cell viability when incubated with Cy (half maximal inhibitory concentration=3.6 mM). Inhibition of CYP2J2 using telmisartan reduced Cy bioactivation by 50% and improved cell survival. Cy incubated with recombinant CYP2J2 microsomes has resulted in apparent Km and Vmax values of 3.7-6.6 mM and 2.9-10.3 pmol/(min·pmol) CYP, respectively. This is the first study demonstrating that CYP2J2 is equally important to CYP2B6 in Cy metabolism. The heart, intestine and urinary bladder express high levels of CYP2J2; local Cy bioactivation may explain Cy-treatment-related toxicities in these organs.
Collapse
|
32
|
Optimizing drug therapy in pediatric SCT: focus on pharmacokinetics. Bone Marrow Transplant 2014; 50:165-72. [PMID: 25347008 DOI: 10.1038/bmt.2014.235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 08/08/2014] [Accepted: 08/27/2014] [Indexed: 12/19/2022]
Abstract
Given age-related differences in drug metabolism and indications for hematopoietic SCT (HSCT), personalized drug dosing of the conditioning regimen and post-transplant immunosuppression may reduce graft rejection, relapse rates and toxicity in pediatric HSCT recipients. This manuscript summarizes the pharmacokinetic/dynamic data of HSCT conditioning and post-grafting immunosuppression, presented at the First Annual Pediatric Bone Marrow Transplant Consortium (PBMTC) meeting in April 2013. Personalized dosing of BU to a target plasma exposure reduces graft rejection in children and improves relapse/toxicity rates in adults. Current weight-based dosing achieves the target BU exposure in only a minority (24.3%) of children. The initial BU dose should be based on the European Medicines Agency nomogram or population pharmacokinetic models to improve the numbers of children achieving the target exposure. There are limited pharmacokinetic data for treosulfan, CY, fludarabine and alemtuzumab as HSCT conditioning in children. For post-grafting immunosuppression, mycophenolic acid (MPA) clearance may be increased in younger children (<12 years). The preferred MPA pharmacokinetic monitoring parameters and target range are still evolving in HSCT recipients. Multi-institutional trials incorporating properly powered pharmacokinetic/dynamic studies are needed to assess the effect of variability in the plasma exposure of drugs/metabolites on clinical outcomes in pediatric HSCT recipients.
Collapse
|
33
|
|
34
|
Bemer MJ, Sorror M, Sandmaier BM, O’Donnell PV, McCune JS. A pilot pharmacologic biomarker study in HLA-haploidentical hematopoietic cell transplant recipients. Cancer Chemother Pharmacol 2013; 72:607-18. [PMID: 23907443 PMCID: PMC3786586 DOI: 10.1007/s00280-013-2232-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 07/09/2013] [Indexed: 10/26/2022]
Abstract
PURPOSE Eleven patients diagnosed with various hematologic malignancies receiving an HLA-haploidentical hematopoietic cell transplant (HCT) participated in an ancillary biomarker trial. The goal of the trial was to evaluate potential pharmacologic biomarkers pertinent to the conditioning regimen [fludarabine monophosphate (fludarabine) and cyclophosphamide (CY)] or postgrafting immunosuppression [CY and mycophenolate mofetil (MMF)] in these patients. METHODS We characterized the interpatient variability of nine pharmacologic biomarkers. The biomarkers evaluated were relevant to fludarabine (i.e., area under the curve (AUC) of 2-fluoro-ara-A or F-ara-A), CY (i.e., AUCs of CY and four of its metabolites), and MMF (i.e., total mycophenolic acid (MPA) AUC, unbound MPA AUC, and inosine monophosphate dehydrogenase (IMPDH) activity). RESULTS Interpatient variability in the pharmacologic biomarkers was high. Among those related to HCT conditioning, the interpatient variability ranged from 1.5-fold (CY AUC) to 4.0-fold (AUC of carboxyethylphosphoramide mustard, a metabolite of CY). Among biomarkers evaluated as part of postgrafting immunosuppression, the interpatient variability ranged from 1.7-fold (CY AUC) to 4.9-fold (IMPDH area under the effect curve). There was a moderate correlation (R (2) = 0.441) of within-patient 4-hydroxycyclophosphamide formation clearance. CONCLUSIONS Considerable interpatient variability exists in the pharmacokinetic and drug-specific biomarkers potentially relevant to clinical outcomes in HLA-haploidentical HCT recipients. Pharmacodynamic studies are warranted to optimize the conditioning regimen and postgrafting immunosuppression administered to HLA-haploidentical HCT recipients.
Collapse
Affiliation(s)
| | - Mohamed Sorror
- Fred Hutchinson Cancer Research Center, Seattle, WA
- University of Washington Schools of Medicine, Seattle, WA
| | - Brenda M. Sandmaier
- Fred Hutchinson Cancer Research Center, Seattle, WA
- University of Washington Schools of Medicine, Seattle, WA
| | - Paul V. O’Donnell
- Fred Hutchinson Cancer Research Center, Seattle, WA
- University of Washington Schools of Medicine, Seattle, WA
| | - Jeannine S. McCune
- Fred Hutchinson Cancer Research Center, Seattle, WA
- Pharmacy, Seattle, WA
| |
Collapse
|
35
|
Zanger UM, Klein K. Pharmacogenetics of cytochrome P450 2B6 (CYP2B6): advances on polymorphisms, mechanisms, and clinical relevance. Front Genet 2013; 4:24. [PMID: 23467454 PMCID: PMC3588594 DOI: 10.3389/fgene.2013.00024] [Citation(s) in RCA: 206] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 02/14/2013] [Indexed: 12/22/2022] Open
Abstract
Cytochrome P450 2B6 (CYP2B6) belongs to the minor drug metabolizing P450s in human liver. Expression is highly variable both between individuals and within individuals, owing to non-genetic factors, genetic polymorphisms, inducibility, and irreversible inhibition by many compounds. Drugs metabolized mainly by CYP2B6 include artemisinin, bupropion, cyclophosphamide, efavirenz, ketamine, and methadone. CYP2B6 is one of the most polymorphic CYP genes in humans and variants have been shown to affect transcriptional regulation, splicing, mRNA and protein expression, and catalytic activity. Some variants appear to affect several functional levels simultaneously, thus, combined in haplotypes, leading to complex interactions between substrate-dependent and -independent mechanisms. The most common functionally deficient allele is CYP2B6*6 [Q172H, K262R], which occurs at frequencies of 15 to over 60% in different populations. The allele leads to lower expression in liver due to erroneous splicing. Recent investigations suggest that the amino acid changes contribute complex substrate-dependent effects at the activity level, although data from recombinant systems used by different researchers are not well in agreement with each other. Another important variant, CYP2B6*18 [I328T], occurs predominantly in Africans (4-12%) and does not express functional protein. A large number of uncharacterized variants are currently emerging from different ethnicities in the course of the 1000 Genomes Project. The CYP2B6 polymorphism is clinically relevant for HIV-infected patients treated with the reverse transcriptase inhibitor efavirenz, but it is increasingly being recognized for other drug substrates. This review summarizes recent advances on the functional and clinical significance of CYP2B6 and its genetic polymorphism, with particular emphasis on the comparison of kinetic data obtained with different substrates for variants expressed in different recombinant expression systems.
Collapse
Affiliation(s)
- Ulrich M Zanger
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology Stuttgart, Germany ; The University of Tuebingen Tuebingen, Germany
| | | |
Collapse
|
36
|
Martinez MN, Antonovic L, Court M, Dacasto M, Fink-Gremmels J, Kukanich B, Locuson C, Mealey K, Myers MJ, Trepanier L. Challenges in exploring the cytochrome P450 system as a source of variation in canine drug pharmacokinetics. Drug Metab Rev 2013; 45:218-30. [PMID: 23432217 DOI: 10.3109/03602532.2013.765445] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
37
|
Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther 2013; 138:103-41. [PMID: 23333322 DOI: 10.1016/j.pharmthera.2012.12.007] [Citation(s) in RCA: 2628] [Impact Index Per Article: 219.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 12/27/2012] [Indexed: 02/06/2023]
Abstract
Cytochromes P450 (CYP) are a major source of variability in drug pharmacokinetics and response. Of 57 putatively functional human CYPs only about a dozen enzymes, belonging to the CYP1, 2, and 3 families, are responsible for the biotransformation of most foreign substances including 70-80% of all drugs in clinical use. The highest expressed forms in liver are CYPs 3A4, 2C9, 2C8, 2E1, and 1A2, while 2A6, 2D6, 2B6, 2C19 and 3A5 are less abundant and CYPs 2J2, 1A1, and 1B1 are mainly expressed extrahepatically. Expression of each CYP is influenced by a unique combination of mechanisms and factors including genetic polymorphisms, induction by xenobiotics, regulation by cytokines, hormones and during disease states, as well as sex, age, and others. Multiallelic genetic polymorphisms, which strongly depend on ethnicity, play a major role for the function of CYPs 2D6, 2C19, 2C9, 2B6, 3A5 and 2A6, and lead to distinct pharmacogenetic phenotypes termed as poor, intermediate, extensive, and ultrarapid metabolizers. For these CYPs, the evidence for clinical significance regarding adverse drug reactions (ADRs), drug efficacy and dose requirement is rapidly growing. Polymorphisms in CYPs 1A1, 1A2, 2C8, 2E1, 2J2, and 3A4 are generally less predictive, but new data on CYP3A4 show that predictive variants exist and that additional variants in regulatory genes or in NADPH:cytochrome P450 oxidoreductase (POR) can have an influence. Here we review the recent progress on drug metabolism activity profiles, interindividual variability and regulation of expression, and the functional and clinical impact of genetic variation in drug metabolizing P450s.
Collapse
|
38
|
Gadel S, Crafford A, Regina K, Kharasch ED. Methadone N-demethylation by the common CYP2B6 allelic variant CYP2B6.6. Drug Metab Dispos 2013; 41:709-13. [PMID: 23298862 DOI: 10.1124/dmd.112.050625] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The long-acting opioid methadone displays considerable unexplained interindividual pharmacokinetic variability. Methadone metabolism clinically occurs primarily by N-demethylation to 2-ethyl-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP), catalyzed predominantly by CYP2B6. Retrospective studies suggest that the common allele variant CYP2B6*6 may influence methadone plasma concentrations. The catalytic activity of CYP2B6.6, encoded by CYP2B6*6, is highly substrate-dependent. This investigation compared methadone N-demethylation by CYP2B6.6 with that by wild-type CYP2B6.1. Methadone enantiomer and racemate N-demethylation by recombinant-expressed CYP2B6.6 and CYP2B6.1 was determined. At substrate concentrations (0.25-2 µM) approximating plasma concentrations occurring clinically, rates of methadone enantiomer N-demethylation by CYP2B6.6, incubated individually or as the racemate, were one-third to one-fourth those by CYP2B6.1. For methadone individual enantiomers and metabolism by CYP2B6.6 compared with CYP2B6.1, Vmax was diminished, Ks was greater and the in vitro intrinsic clearance was diminished 5- to 6-fold. The intrinsic clearance for R- and S-EDDP formation from racemic methadone was diminished approximately 6-fold and 3-fold for R- and S-methadone, respectively. Both CYP2B6.6 and CYP2B6.1 showed similar stereoselectivity (S>R-methadone). Human liver microsomes with diminished CYP2B6 content due to a CYP2B6*6 allele had lower rates of methadone N-demethylation. Results show that methadone N-demethylation catalyzed by CYP2B6.6, the CYP2B6 variant encoded by the CYP2B6*6 polymorphism, is catalytically deficient compared with wild-type CYP2B6.1. Diminished methadone N-demethylation by CYP2B6.6 may provide a mechanistic explanation for clinical observations of altered methadone disposition in individuals carrying the CYP2B6*6 polymorphism.
Collapse
Affiliation(s)
- Sarah Gadel
- Department of Anesthesiology, Division of Clinical and Translational Research, Washington University in St. Louis, St. Louis, Missouri 63110-1093, USA
| | | | | | | |
Collapse
|
39
|
Hassan M, Andersson BS. Role of pharmacogenetics in busulfan/cyclophosphamide conditioning therapy prior to hematopoietic stem cell transplantation. Pharmacogenomics 2013; 14:75-87. [PMID: 23252950 DOI: 10.2217/pgs.12.185] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is a curative treatment for several malignant and nonmalignant disorders. Busulfan (Bu) and cyclophosphamide (Cy) are the most commonly used alkylators in high-dose pretransplant conditioning for HSCT; a treatment that is correlated with drug-related toxicity and relapse. Pharmacogenetic investigations have shown that CYP450, as well as aldehyde dehydrogenase, are clearly involved with Cy metabolism and are associated with altered treatment response, Cy metabolism and the unique stem-cell sparing capacity. Moreover, glutathione-S-transferase isoenzymes have been associated with cellular outward transport of various alkylating agents, including Cy metabolites, melphalan, Bu and chlorambucil. A shift from genetic-based studies to whole-genome-based investigations of Cy- and Bu-associated markers may contribute to personalizing the conditioning therapy and enhancing the clinical outcome of HSCT.
Collapse
Affiliation(s)
- Moustapha Hassan
- Experimental Cancer Medicine (ECM), Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | |
Collapse
|
40
|
|