1
|
Tzoupis H, Papavasileiou KD, Papatzelos S, Mavrogiorgis A, Zacharia LC, Melagraki G, Afantitis A. Systematic Review of Naturally Derived Substances That Act as Inhibitors of the Nicotine Metabolizing Enzyme Cytochrome P450 2A6. Int J Mol Sci 2024; 25:8031. [PMID: 39125600 PMCID: PMC11312336 DOI: 10.3390/ijms25158031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024] Open
Abstract
Tobacco smoking has been highlighted as a major health challenge in modern societies. Despite not causing death directly, smoking has been associated with several health issues, such as cardiovascular diseases, respiratory disorders, and several cancer types. Moreover, exposure to nicotine during pregnancy has been associated with adverse neurological disorders in babies. Nicotine Replacement Therapy (NRT) is the most common strategy employed for smoking cessation, but despite its widespread use, NRT presents with low success and adherence rates. This is attributed partially to the rate of nicotine metabolism by cytochrome P450 2A6 (CYP2A6) in each individual. Nicotine addiction is correlated with the high rate of its metabolism, and thus, novel strategies need to be implemented in NRT protocols. Naturally derived products are a cost-efficient and rich source for potential inhibitors, with the main advantages being their abundance and ease of isolation. This systematic review aims to summarize the natural products that have been identified as CYP2A6 inhibitors, validated through in vitro and/or in vivo assays, and could be implemented as nicotine metabolism inhibitors. The scope is to present the different compounds and highlight their possible implementation in NRT strategies. Additionally, this information would provide valuable insight regarding CYP2A6 inhibitors, that can be utilized in drug development via the use of in silico methodologies and machine-learning models to identify new potential lead compounds for optimization and implementation in NRT regimes.
Collapse
Affiliation(s)
- Haralampos Tzoupis
- Department of ChemInformatics, NovaMechanics Ltd., Nicosia 1070, Cyprus; (H.T.); (K.D.P.); (S.P.); (A.M.)
| | - Konstantinos D. Papavasileiou
- Department of ChemInformatics, NovaMechanics Ltd., Nicosia 1070, Cyprus; (H.T.); (K.D.P.); (S.P.); (A.M.)
- Department of ChemInformatics, NovaMechanics MIKE, 18545 Piraeus, Greece
| | - Stavros Papatzelos
- Department of ChemInformatics, NovaMechanics Ltd., Nicosia 1070, Cyprus; (H.T.); (K.D.P.); (S.P.); (A.M.)
| | - Angelos Mavrogiorgis
- Department of ChemInformatics, NovaMechanics Ltd., Nicosia 1070, Cyprus; (H.T.); (K.D.P.); (S.P.); (A.M.)
| | - Lefteris C. Zacharia
- School of Life and Health Sciences, University of Nicosia, Nicosia 1700, Cyprus;
| | - Georgia Melagraki
- Division of Physical Sciences and Applications, Hellenic Military Academy, 16672 Vari, Greece;
| | - Antreas Afantitis
- Department of ChemInformatics, NovaMechanics Ltd., Nicosia 1070, Cyprus; (H.T.); (K.D.P.); (S.P.); (A.M.)
- Department of ChemInformatics, NovaMechanics MIKE, 18545 Piraeus, Greece
- Division of Data Driven Innovation, Entelos Institute, Larnaca 6059, Cyprus
| |
Collapse
|
2
|
Vivarelli F, Granata S, Rullo L, Mussoni M, Candeletti S, Romualdi P, Fimognari C, Cruz-Chamorro I, Carrillo-Vico A, Paolini M, Canistro D. On the toxicity of e-cigarettes consumption: Focus on pathological cellular mechanisms. Pharmacol Res 2022; 182:106315. [PMID: 35724819 DOI: 10.1016/j.phrs.2022.106315] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 10/18/2022]
Abstract
Tobacco smoking remains without a doubt one of the leading causes of premature death worldwide. In combination with conventional protocols for smoking cessation, e-cigarettes have been proposed as a useful tool to quit smoking. Advertised as almost free of toxic effects, e-cigarettes have rapidly increased their popularity, becoming a sought-after device, especially among young people. Recently some health concerns about e-cigarette consumption are being raised. It is well known that they can release several toxic compounds, some of which are carcinogenic to humans, and emerging results are now outlining the risks related to the onset of respiratory and cardiovascular diseases and even cancer. The present review shows the emerging evidence about the role of technical components of the devices, the e-liquid composition as well as customization by consumers. The primary topics we discuss are the main toxicological aspects associated with e-cigarette consumption, focusing on the molecular pathways involved. Here it will be shown how exposure to e-cigarette aerosol induces stress/mitochondrial toxicity, DNA breaks/fragmentation following the same pathological pathways triggered by tobacco smoke, including the deregulation of molecular signalling axis associated with cancer progression and cell migration. Risk to fertility and pregnancy, as well as cardiovascular risk associated with e-cigarette use, have also been reported.
Collapse
Affiliation(s)
- Fabio Vivarelli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| | - Silvia Granata
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; Department of Medicine and Surgery - University of Milano - Bicocca
| | - Laura Rullo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Matilde Mussoni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Sanzio Candeletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Carmela Fimognari
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | - Ivan Cruz-Chamorro
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), 41013 Seville, Spain; Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, 41009 Seville, Spain
| | - Antonio Carrillo-Vico
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), 41013 Seville, Spain; Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, 41009 Seville, Spain
| | - Moreno Paolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| | - Donatella Canistro
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| |
Collapse
|
3
|
Sadgrove NJ, Padilla-González GF, Leuner O, Melnikovova I, Fernandez-Cusimamani E. Pharmacology of Natural Volatiles and Essential Oils in Food, Therapy, and Disease Prophylaxis. Front Pharmacol 2021; 12:740302. [PMID: 34744723 PMCID: PMC8566702 DOI: 10.3389/fphar.2021.740302] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/04/2021] [Indexed: 12/19/2022] Open
Abstract
This commentary critically examines the modern paradigm of natural volatiles in 'medical aromatherapy', first by explaining the semantics of natural volatiles in health, then by addressing chemophenetic challenges to authenticity or reproducibility, and finally by elaborating on pharmacokinetic and pharmacodynamic processes in food, therapy, and disease prophylaxis. Research over the last 50 years has generated substantial knowledge of the chemical diversity of volatiles, and their strengths and weaknesses as antimicrobial agents. However, due to modest in vitro outcomes, the emphasis has shifted toward the ability to synergise or potentiate non-volatile natural or pharmaceutical drugs, and to modulate gene expression by binding to the lipophilic domain of mammalian cell receptors. Because essential oils and natural volatiles are small and lipophilic, they demonstrate high skin penetrating abilities when suitably encapsulated, or if derived from a dietary item they bioaccumulate in fatty tissues in the body. In the skin or body, they may synergise or drive de novo therapeutic outcomes that range from anti-inflammatory effects through to insulin sensitisation, dermal rejuvenation, keratinocyte migration, upregulation of hair follicle bulb stem cells or complementation of anti-cancer therapies. Taking all this into consideration, volatile organic compounds should be examined as candidates for prophylaxis of cardiovascular disease. Considering the modern understanding of biology, the science of natural volatiles may need to be revisited in the context of health and nutrition.
Collapse
Affiliation(s)
| | | | - Olga Leuner
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Ingrid Melnikovova
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Eloy Fernandez-Cusimamani
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| |
Collapse
|
4
|
Nour OA, Ghoniem HA, Nader MA, Suddek GM. Impact of protocatechuic acid on high fat diet-induced metabolic syndrome sequelae in rats. Eur J Pharmacol 2021; 907:174257. [PMID: 34129881 DOI: 10.1016/j.ejphar.2021.174257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/02/2021] [Accepted: 06/11/2021] [Indexed: 01/03/2023]
Abstract
The study aimed to assess the possible protective impact of protocatechuic acid (PCA) on high fat diet (HFD)-induced metabolic syndrome (Mets) sequelae in rats. Forty-two male Sprague-Dawley (SD) rats were randomly grouped as follows: CTR group; PCA group; HFD group; HFD-PCA group and HFD-MET group. Rats were fed on standard diet or HFD for 14 weeks. HFD-fed rats exhibited significant decreases in food intake and adiponectin (ADP) level; yet, body weight and anthropometrical parameters were significantly increased. Moreover, insulin sensitivity was impaired as indicated by significant elevation in glucose AUC during oral glucose tolerance test (OGTT), fasting serum glucose, fasting serum insulin and homeostasis model assessment of insulin resistance (HOMA-IR) index. Furthermore, chronic HFD feeding elicited significant increases in serum lipid profile and free fatty acids (FFAs) with concomitant hepatic steatosis. Additionally, serum C-reactive protein (CRP), interleukin 1b (Il-1b) and monocyte chemoattractant protein 1(MCP-1) levels were increased. Also, HFD-fed rats exhibited an increase in MDA level, while superoxide dismutase (SOD) and glutathione (GSH) activities were decreased. Moreover, the insulin-signaling pathway was markedly impaired in soleus muscles as indicated by a decrease in insulin-induced AKT phosphorylation. Histopathologically, adipose tissues showed significant increase in adipocyte size. Also, flow cytometry analysis of adipose tissue confirmed a significant increase in the percentage of number of CD68+ cells. PCA administration succeeded to attenuate HFD-induced obesity, insulin resistance, oxidative stress and inflammation. In conclusion, PCA administration could protect against HFD-induced Mets, possibly via its hypoglycemic, insulin-sensitizing, anti-oxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Omnia A Nour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| | - Hamdy A Ghoniem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Manar A Nader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Ghada M Suddek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
5
|
Eleftheriou C, Zacharia LC. Ginkgo biloba L. flavonoids inhibit CYP 2A5; potential dietary supplement for nicotine replacement therapy enhancement. Nat Prod Res 2021; 36:4210-4214. [PMID: 34498955 DOI: 10.1080/14786419.2021.1972419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Smoking is a public health concern, and even though smoking cessation methods exist, nicotine replacement therapy (NRT) is often ineffective. Smoking behavior is related to the nicotine metabolizing enzyme (NME) P450 2A6 (mouse 2A5) polymorphisms. Accordingly, fast metabolizers are nicotine dependent, and have low quitting rates compared to slow metabolizers. In this study we examined the ability of Ginkgo biloba L (GB) and its constituents to inhibit the NME, using mouse liver microsomes containing the 2A5 enzyme. Our results indicate that GB can inhibit 2A5 (25% inhibition at 5%v/v), with the flavonoids quercetin, isorhamnetin, and kaempferol being responsible for this inhibition (23.5%, 10.7%, 25.2% inhibition at 60 ng/μL, respectively). Importantly, the flavonoids inhibited 2A5 via mechanism based inhibition (for quercetin 30 ng/μl inhibition increased from 20.8% to 26.9% within 15 minutes). Our results suggest that GB if consumed on a regular basis can help NRT enhancement particularly in fast nicotine metabolizers.
Collapse
Affiliation(s)
- Constantina Eleftheriou
- Department of Life and Health Sciences, School of Sciences and Engineering, University of Nicosia, Nicosia, Cyprus
| | - Lefteris C Zacharia
- Department of Life and Health Sciences, School of Sciences and Engineering, University of Nicosia, Nicosia, Cyprus
| |
Collapse
|
6
|
Cox EJ, Tian DD, Clarke JD, Rettie AE, Unadkat JD, Thummel KE, McCune JS, Paine MF. Modeling Pharmacokinetic Natural Product-Drug Interactions for Decision-Making: A NaPDI Center Recommended Approach. Pharmacol Rev 2021; 73:847-859. [PMID: 33712517 PMCID: PMC7956993 DOI: 10.1124/pharmrev.120.000106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The popularity of botanical and other purported medicinal natural products (NPs) continues to grow, especially among patients with chronic illnesses and patients managed on complex prescription drug regimens. With few exceptions, the risk of a given NP to precipitate a clinically significant pharmacokinetic NP-drug interaction (NPDI) remains understudied or unknown. Application of static or dynamic mathematical models to predict and/or simulate NPDIs can provide critical information about the potential clinical significance of these complex interactions. However, methods used to conduct such predictions or simulations are highly variable. Additionally, published reports using mathematical models to interrogate NPDIs are not always sufficiently detailed to ensure reproducibility. Consequently, guidelines are needed to inform the conduct and reporting of these modeling efforts. This recommended approach from the Center of Excellence for Natural Product Drug Interaction Research describes a systematic method for using mathematical models to interpret the interaction risk of NPs as precipitants of potential clinically significant pharmacokinetic NPDIs. A framework for developing and applying pharmacokinetic NPDI models is presented with the aim of promoting accuracy, reproducibility, and generalizability in the literature. SIGNIFICANCE STATEMENT: Many natural products (NPs) contain phytoconstituents that can increase or decrease systemic or tissue exposure to, and potentially the efficacy of, a pharmaceutical drug; however, no regulatory agency guidelines exist to assist in predicting the risk of these complex interactions. This recommended approach from a multi-institutional consortium designated by National Institutes of Health as the Center of Excellence for Natural Product Drug Interaction Research provides a framework for modeling pharmacokinetic NP-drug interactions.
Collapse
Affiliation(s)
- Emily J Cox
- Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (J.D.C., A.E.R., J.D.U., K.E.T., J.S.M., M.F.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (E.J.C., D.-D.T., J.D.C., M.F.P.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (J.D.U., K.E.T.), University of Washington, Seattle, Washington; and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| | - Dan-Dan Tian
- Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (J.D.C., A.E.R., J.D.U., K.E.T., J.S.M., M.F.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (E.J.C., D.-D.T., J.D.C., M.F.P.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (J.D.U., K.E.T.), University of Washington, Seattle, Washington; and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| | - John D Clarke
- Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (J.D.C., A.E.R., J.D.U., K.E.T., J.S.M., M.F.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (E.J.C., D.-D.T., J.D.C., M.F.P.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (J.D.U., K.E.T.), University of Washington, Seattle, Washington; and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| | - Allan E Rettie
- Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (J.D.C., A.E.R., J.D.U., K.E.T., J.S.M., M.F.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (E.J.C., D.-D.T., J.D.C., M.F.P.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (J.D.U., K.E.T.), University of Washington, Seattle, Washington; and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| | - Jashvant D Unadkat
- Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (J.D.C., A.E.R., J.D.U., K.E.T., J.S.M., M.F.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (E.J.C., D.-D.T., J.D.C., M.F.P.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (J.D.U., K.E.T.), University of Washington, Seattle, Washington; and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| | - Kenneth E Thummel
- Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (J.D.C., A.E.R., J.D.U., K.E.T., J.S.M., M.F.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (E.J.C., D.-D.T., J.D.C., M.F.P.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (J.D.U., K.E.T.), University of Washington, Seattle, Washington; and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| | - Jeannine S McCune
- Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (J.D.C., A.E.R., J.D.U., K.E.T., J.S.M., M.F.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (E.J.C., D.-D.T., J.D.C., M.F.P.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (J.D.U., K.E.T.), University of Washington, Seattle, Washington; and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| | - Mary F Paine
- Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (J.D.C., A.E.R., J.D.U., K.E.T., J.S.M., M.F.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (E.J.C., D.-D.T., J.D.C., M.F.P.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (J.D.U., K.E.T.), University of Washington, Seattle, Washington; and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| |
Collapse
|
7
|
Hakkola J, Hukkanen J, Turpeinen M, Pelkonen O. Inhibition and induction of CYP enzymes in humans: an update. Arch Toxicol 2020; 94:3671-3722. [PMID: 33111191 PMCID: PMC7603454 DOI: 10.1007/s00204-020-02936-7] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022]
Abstract
The cytochrome P450 (CYP) enzyme family is the most important enzyme system catalyzing the phase 1 metabolism of pharmaceuticals and other xenobiotics such as herbal remedies and toxic compounds in the environment. The inhibition and induction of CYPs are major mechanisms causing pharmacokinetic drug–drug interactions. This review presents a comprehensive update on the inhibitors and inducers of the specific CYP enzymes in humans. The focus is on the more recent human in vitro and in vivo findings since the publication of our previous review on this topic in 2008. In addition to the general presentation of inhibitory drugs and inducers of human CYP enzymes by drugs, herbal remedies, and toxic compounds, an in-depth view on tyrosine-kinase inhibitors and antiretroviral HIV medications as victims and perpetrators of drug–drug interactions is provided as examples of the current trends in the field. Also, a concise overview of the mechanisms of CYP induction is presented to aid the understanding of the induction phenomena.
Collapse
Affiliation(s)
- Jukka Hakkola
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, POB 5000, 90014, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Janne Hukkanen
- Biocenter Oulu, University of Oulu, Oulu, Finland.,Research Unit of Internal Medicine, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Miia Turpeinen
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, POB 5000, 90014, Oulu, Finland.,Administration Center, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Olavi Pelkonen
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, POB 5000, 90014, Oulu, Finland.
| |
Collapse
|
8
|
Espiritu MJ, Chen J, Yadav J, Larkin M, Pelletier RD, Chan JM, Gc JB, Natesan S, Harrelson JP. Mechanisms of Herb-Drug Interactions Involving Cinnamon and CYP2A6: Focus on Time-Dependent Inhibition by Cinnamaldehyde and 2-Methoxycinnamaldehyde. Drug Metab Dispos 2020; 48:1028-1043. [PMID: 32788161 PMCID: PMC7543486 DOI: 10.1124/dmd.120.000087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/15/2020] [Indexed: 12/21/2022] Open
Abstract
Information is scarce regarding pharmacokinetic-based herb-drug interactions (HDI) with trans-cinnamaldehyde (CA) and 2-methoxycinnamaldehyde (MCA), components of cinnamon. Given the presence of cinnamon in food and herbal treatments for various diseases, HDIs involving the CYP2A6 substrates nicotine and letrozole with MCA (KS = 1.58 µM; Hill slope = 1.16) and CA were investigated. The time-dependent inhibition (TDI) by MCA and CA of CYP2A6-mediated nicotine metabolism is a complex process involving multiple mechanisms. Molecular dynamic simulations showed that CYP2A6's active site accommodates two dynamic ligands. The preferred binding orientations for MCA and CA were consistent with the observed metabolism: epoxidation, O-demethylation, and aromatic hydroxylation of MCA and cinnamic acid formation from CA. The percent remaining activity plots for TDI by MCA and CA were curved, and they were analyzed with a numerical method using models of varying complexity. The best-fit models support multiple inactivator binding, inhibitor depletion, and partial inactivation. Deconvoluted mass spectra indicated that MCA and CA modified CYP2A6 apoprotein with mass additions of 156.79 (142.54-171.04) and 132.67 (123.37-141.98), respectively, and it was unaffected by glutathione. Heme degradation was observed in the presence of MCA (48.5% ± 13.4% loss; detected by liquid chromatography-tandem mass spectrometry). In the absence of clinical data, HDI predictions were made for nicotine and letrozole using inhibition parameters from the best-fit TDI models and parameters scaled from rats. Predicted area under the concentration-time curve fold changes were 4.29 (CA-nicotine), 4.92 (CA-letrozole), 4.35 (MCA-nicotine), and 5.00 (MCA-letrozole). These findings suggest that extensive exposure to cinnamon (corresponding to ≈ 275 mg CA) would lead to noteworthy interactions. SIGNIFICANCE STATEMENT: Human exposure to cinnamon is common because of its presence in food and cinnamon-based herbal treatments. Little is known about the risk for cinnamaldehyde and methoxycinnamaldehyde, two components of cinnamon, to interact with drugs that are eliminated by CYP2A6-mediated metabolism. The interactions with CYP2A6 are complex, involving multiple-ligand binding, time-dependent inhibition of nicotine metabolism, heme degradation, and apoprotein modification. An herb-drug interaction prediction suggests that extensive exposure to cinnamon would lead to noteworthy interactions with nicotine.
Collapse
Affiliation(s)
- Michael J Espiritu
- School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon (M.J.E., M.L., J.P.H.); College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.C., J.B.G., S.N.); Amgen, Cambridge, Massachusetts (J.Y.); Department of Medicinal Chemistry, University of Washington, Seattle, Washington (R.D.P.); and Chemistry Department, Pacific University Oregon, Forest Grove, Oregon (J.M.C.)
| | - Justin Chen
- School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon (M.J.E., M.L., J.P.H.); College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.C., J.B.G., S.N.); Amgen, Cambridge, Massachusetts (J.Y.); Department of Medicinal Chemistry, University of Washington, Seattle, Washington (R.D.P.); and Chemistry Department, Pacific University Oregon, Forest Grove, Oregon (J.M.C.)
| | - Jaydeep Yadav
- School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon (M.J.E., M.L., J.P.H.); College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.C., J.B.G., S.N.); Amgen, Cambridge, Massachusetts (J.Y.); Department of Medicinal Chemistry, University of Washington, Seattle, Washington (R.D.P.); and Chemistry Department, Pacific University Oregon, Forest Grove, Oregon (J.M.C.)
| | - Michael Larkin
- School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon (M.J.E., M.L., J.P.H.); College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.C., J.B.G., S.N.); Amgen, Cambridge, Massachusetts (J.Y.); Department of Medicinal Chemistry, University of Washington, Seattle, Washington (R.D.P.); and Chemistry Department, Pacific University Oregon, Forest Grove, Oregon (J.M.C.)
| | - Robert D Pelletier
- School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon (M.J.E., M.L., J.P.H.); College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.C., J.B.G., S.N.); Amgen, Cambridge, Massachusetts (J.Y.); Department of Medicinal Chemistry, University of Washington, Seattle, Washington (R.D.P.); and Chemistry Department, Pacific University Oregon, Forest Grove, Oregon (J.M.C.)
| | - Jeannine M Chan
- School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon (M.J.E., M.L., J.P.H.); College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.C., J.B.G., S.N.); Amgen, Cambridge, Massachusetts (J.Y.); Department of Medicinal Chemistry, University of Washington, Seattle, Washington (R.D.P.); and Chemistry Department, Pacific University Oregon, Forest Grove, Oregon (J.M.C.)
| | - Jeevan B Gc
- School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon (M.J.E., M.L., J.P.H.); College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.C., J.B.G., S.N.); Amgen, Cambridge, Massachusetts (J.Y.); Department of Medicinal Chemistry, University of Washington, Seattle, Washington (R.D.P.); and Chemistry Department, Pacific University Oregon, Forest Grove, Oregon (J.M.C.)
| | - Senthil Natesan
- School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon (M.J.E., M.L., J.P.H.); College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.C., J.B.G., S.N.); Amgen, Cambridge, Massachusetts (J.Y.); Department of Medicinal Chemistry, University of Washington, Seattle, Washington (R.D.P.); and Chemistry Department, Pacific University Oregon, Forest Grove, Oregon (J.M.C.)
| | - John P Harrelson
- School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon (M.J.E., M.L., J.P.H.); College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.C., J.B.G., S.N.); Amgen, Cambridge, Massachusetts (J.Y.); Department of Medicinal Chemistry, University of Washington, Seattle, Washington (R.D.P.); and Chemistry Department, Pacific University Oregon, Forest Grove, Oregon (J.M.C.)
| |
Collapse
|
9
|
Winters BR, Kochar TK, Clapp PW, Jaspers I, Madden MC. Impact of E-Cigarette Liquid Flavoring Agents on Activity of Microsomal Recombinant CYP2A6, the Primary Nicotine-Metabolizing Enzyme. Chem Res Toxicol 2020; 33:1689-1697. [PMID: 32496054 PMCID: PMC7422938 DOI: 10.1021/acs.chemrestox.9b00514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nicotine is the primary psychoactive chemical in both traditional and electronic cigarettes (e-cigarettes). Nicotine levels in both traditional cigarettes and e-cigarettes are an important concern for public health. Nicotine exposure due to e-cigarette use is of importance primarily due to the addictive potential of nicotine, but there is also concern for nicotine poisoning in e-cigarette users. Nicotine concentrations in e-liquids vary widely. Additionally, there is significant genetic variability in the rate of metabolism of nicotine due to polymorphisms of CYP2A6, the enzyme responsible for the metabolism of approximately 80% of nicotine. Recent studies have shown CYP2A6 activity is also reduced by aromatic aldehydes such as those added to e-liquids as flavoring agents, which may increase nicotine serum concentrations. However, the impacts of flavored e-liquids on CYP2A6 activity are unknown. In this study, we investigated the impact of three flavored e-liquids on microsomal recombinant CYP2A6. Microsomal recombinant CYP2A6 was challenged at e-liquid concentrations ranging up to 0.125% (v/v) and monitored for metabolic activity using a probe molecule approach. Two e-liquids exhibited dose-dependent inhibition of CYP2A6 activity. Mass spectrometry was conducted to identify flavoring agents in flavored e-liquids that inhibited CYP2A6. Microsomal recombinant CYP2A6 was subsequently exposed to flavoring agents at concentrations ranging from 0.03 μM to 500 μM. Cinnamaldehyde and benzaldehyde were found to be the most potent inhibitors of microsomal CYP2A6 of the flavoring agents tested, with identified IC50 values of 1.1 μM and 3.0 μM, respectively. These data indicate certain aromatic aldehyde flavoring agents are potent inhibitors of CYP2A6, which may reduce nicotine metabolism in vivo. These findings indicate an urgent need to evaluate the effects of flavoring agents in e-cigarette liquids on the pharmacokinetics of nicotine in vivo.
Collapse
Affiliation(s)
- Brett R Winters
- Curriculum in Toxicology and Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
- GSI Environmental Inc., Oakland, California 94612, United States
| | - Tavleen K Kochar
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Phillip W Clapp
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Ilona Jaspers
- Curriculum in Toxicology and Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Michael C Madden
- Public Health and Integrative Toxicology Division, Office of Research and Development, United States Environmental Protection Agency, Chapel Hill, North Carolina 27514, United States
| |
Collapse
|
10
|
Zehetner P, Höferl M, Buchbauer G. Essential oil components and cytochrome P450 enzymes: a review. FLAVOUR FRAG J 2019. [DOI: 10.1002/ffj.3496] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Petra Zehetner
- Department of Pharmaceutical ChemistryFaculty of Life SciencesUniversity of Vienna Vienna Austria
| | - Martina Höferl
- Department of Pharmaceutical ChemistryFaculty of Life SciencesUniversity of Vienna Vienna Austria
| | - Gerhard Buchbauer
- Department of Pharmaceutical ChemistryFaculty of Life SciencesUniversity of Vienna Vienna Austria
| |
Collapse
|
11
|
Elbarbry F, Ung A, Abdelkawy K. Studying the Inhibitory Effect of Quercetin and Thymoquinone on Human Cytochrome P450 Enzyme Activities. Pharmacogn Mag 2018; 13:S895-S899. [PMID: 29491651 PMCID: PMC5822518 DOI: 10.4103/0973-1296.224342] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/22/2017] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Quercetin (QR) and thymoquinone (TQ) are herbal remedies that are currently extensively used by the general population to prevent and treat various chronic conditions. Therefore, investigating the potential of pharmacokinetic interactions caused by the concomitant use of these herbal remedies and conventional medicine is warranted to ensure patient safety. PURPOSE OF THE STUDY This study was conducted to determine the inhibitory effect of QR and TQ, two commonly used remedies, on the activities of selected cytochrome P450 (CYP) enzymes that play an important role in drug metabolism and/or toxicology. MATERIALS AND METHODS The in vitro studies were conducted using fluorescence-based high throughput assays using human c-DNA baculovirus expressed CYP enzymes. For measuring CYP2E1 activity, a validated High-performance liquid chromatography (HPLC) assay was utilized to measure the formation of 6-hydroxychlorzoxazone. RESULTS The obtained half-maximum inhibitory concentration values with known positive control inhibitors of this study were comparable to the published values indicating accurate experimental techniques. Although QR did not show any significant effect on CYP1A2 and CYP2E1, it exhibited a strong inhibitory effect against CYP2D6 and a moderate effect against CYP2C19 and CYP3A4. On the other hand, TQ demonstrated a strong and a moderate inhibitory effect against CYP3A4 and CYP2C19, respectively. CONCLUSIONS The findings of this study may indicate that consumption of QR or TQ, in the form of food or dietary supplements, with drugs that are metabolized by CYP2C19, CYP2D6, or CYP3A4 may cause significant herb-drug interactions. SUMMARY Neither QR nor TQ has any significant inhibitory effect on the activity of CYP1A2 or CYP2E1 enzymesBoth QR and TQ have a moderate to strong inhibitory effect on CYP3A4 activityQR has a moderate inhibitory effect on CYP2C19 and a strong inhibitory effect on CYP2D6Both QR and TQ are moderate inhibitors of the CYP2C9 activity. Abbreviations used: ABT: Aminobenztriazole, BZF: 7,8 Benzoflavone, CYP: Cytochrome P450, GB: Gingko Biloba, IC50: Half-maximum inhibitory concentration, KTZ: Ketoconazole, QND: Quinidine, QR: Quercetin, TCP: Tranylcypromine, TQ: Thymoquinone.
Collapse
Affiliation(s)
| | - Aimy Ung
- School of Pharmacy, Pacific University, Oregon, USA
| | - Khaled Abdelkawy
- College of Pharmacy, Kafr ElSheikh University, Kafr El Sheikh Governorate, Egypt
| |
Collapse
|
12
|
Friedman M. Chemistry, Antimicrobial Mechanisms, and Antibiotic Activities of Cinnamaldehyde against Pathogenic Bacteria in Animal Feeds and Human Foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10406-10423. [PMID: 29155570 DOI: 10.1021/acs.jafc.7b04344] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cinnamaldehyde is a major constituent of cinnamon essential oils produced by aromatic cinnamon plants. This compound has been reported to exhibit antimicrobial properties in vitro in laboratory media and in animal feeds and human foods contaminated with disease-causing bacteria including Bacillus cereus, Campylobacter jejuni, Clostridium perfringens, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. This integrated review surveys and interprets our current knowledge of the chemistry, analysis, safety, mechanism of action, and antibiotic activities of cinnamaldehyde in food animal (cattle, lambs, calves, pigs, poultry) diets and in widely consumed liquid (apple, carrot, tomato, and watermelon juices, milk) and solid foods. Solid foods include various fruits (bayberries, blueberries, raspberries, and strawberries), vegetables (carrots, celery, lettuce, spinach, cucumbers, and tomatoes), meats (beef, ham, pork, and frankfurters), poultry (chickens and turkeys), seafood (oysters and shrimp), bread, cheese, eggs, infant formula, and peanut paste. The described findings are not only of fundamental interest but also have practical implications for food safety, nutrition, and animal and human health. The collated information and suggested research needs will hopefully facilitate and guide further studies needed to optimize the use of cinnamaldehyde alone and in combination with other natural antimicrobials and medicinal antibiotics to help prevent and treat food animal and human diseases.
Collapse
Affiliation(s)
- Mendel Friedman
- Healthy Processed Foods Research, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture , Albany, California 94710, United States
| |
Collapse
|
13
|
Tanner JA, Tyndale RF. Variation in CYP2A6 Activity and Personalized Medicine. J Pers Med 2017; 7:jpm7040018. [PMID: 29194389 PMCID: PMC5748630 DOI: 10.3390/jpm7040018] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/17/2017] [Accepted: 11/27/2017] [Indexed: 12/16/2022] Open
Abstract
The cytochrome P450 2A6 (CYP2A6) enzyme metabolizes several clinically relevant substrates, including nicotine-the primary psychoactive component in cigarette smoke. The gene that encodes the CYP2A6 enzyme is highly polymorphic, resulting in extensive interindividual variation in CYP2A6 enzyme activity and the rate of metabolism of nicotine and other CYP2A6 substrates including cotinine, tegafur, letrozole, efavirenz, valproic acid, pilocarpine, artemisinin, artesunate, SM-12502, caffeine, and tyrosol. CYP2A6 expression and activity are also impacted by non-genetic factors, including induction or inhibition by pharmacological, endogenous, and dietary substances, as well as age-related changes, or interactions with other hepatic enzymes, co-enzymes, and co-factors. As variation in CYP2A6 activity is associated with smoking behavior, smoking cessation, tobacco-related lung cancer risk, and with altered metabolism and resulting clinical responses for several therapeutics, CYP2A6 expression and enzyme activity is an important clinical consideration. This review will discuss sources of variation in CYP2A6 enzyme activity, with a focus on the impact of CYP2A6 genetic variation on metabolism of the CYP2A6 substrates.
Collapse
Affiliation(s)
- Julie-Anne Tanner
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Rachel F Tyndale
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada.
| |
Collapse
|
14
|
Harrelson JP, Lee MW. Expanding the view of breast cancer metabolism: Promising molecular targets and therapeutic opportunities. Pharmacol Ther 2016; 167:60-73. [DOI: 10.1016/j.pharmthera.2016.07.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/21/2016] [Indexed: 12/23/2022]
|