1
|
Noor S, Ali S, Summer M, Riaz A, Nazakat L, Aqsa. Therapeutic Role of Probiotics Against Environmental-Induced Hepatotoxicity: Mechanisms, Clinical Perspectives, Limitations, and Future. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10365-6. [PMID: 39316257 DOI: 10.1007/s12602-024-10365-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2024] [Indexed: 09/25/2024]
Abstract
Hepatotoxicity is one of the biggest health challenges, particularly in the context of liver diseases, often aggravated by gut microbiota dysbiosis. The gut-liver axis has been regarded as a key idea in liver health. It indicates that changes in gut flora caused by various hepatotoxicants, including alcoholism, acetaminophen, carbon tetrachloride, and thioacetamide, can affect the balance of the gut's microflora, which may lead to increased dysbiosis and intestinal permeability. As a result, bacterial endotoxins would eventually enter the bloodstream and liver, causing hepatotoxicity and inducing inflammatory reactions. Many treatments, including liver transplantation and modern drugs, can be used to address these issues. However, because of the many side effects of these approaches, scientists and medical experts are still hoping for a therapeutic approach with fewer side effects and more positive results. Thus, probiotics have become well-known as an adjunctive strategy for managing, preventing, or reducing hepatotoxicity in treating liver injury. By altering the gut microbiota, probiotics offer a secure, non-invasive, and economical way to improve liver health in the treatment of hepatotoxicity. Through various mechanisms such as regulation of gut microbiota, reduction of pathogenic overgrowth, suppression of inflammatory mediators, modification of hepatic lipid metabolism, improvement in the performance of the epithelial barrier of the gut, antioxidative effects, and modulation of mucosal immunity, probiotics play their role in the treatment and prevention of hepatotoxicity. This review highlights the mechanistic effects of probiotics in environmental toxicants-induced hepatotoxicity and current findings on this therapeutic approach's experimental and clinical trials.
Collapse
Affiliation(s)
- Shehzeen Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Anfah Riaz
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Laiba Nazakat
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Aqsa
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
2
|
Huang Y, Zhang Y, Wu K, Tan X, Lan T, Wang G. Role of Gut Microecology in the Pathogenesis of Drug-Induced Liver Injury and Emerging Therapeutic Strategies. Molecules 2024; 29:2663. [PMID: 38893536 PMCID: PMC11173750 DOI: 10.3390/molecules29112663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/01/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
Drug-induced liver injury (DILI) is a common clinical pharmacogenic disease. In the United States and Europe, DILI is the most common cause of acute liver failure. Drugs can cause hepatic damage either directly through inherent hepatotoxic properties or indirectly by inducing oxidative stress, immune responses, and inflammatory processes. These pathways can culminate in hepatocyte necrosis. The role of the gut microecology in human health and diseases is well recognized. Recent studies have revealed that the imbalance in the gut microecology is closely related to the occurrence and development of DILI. The gut microecology plays an important role in liver injury caused by different drugs. Recent research has revealed significant changes in the composition, relative abundance, and distribution of gut microbiota in both patients and animal models with DILI. Imbalance in the gut microecology causes intestinal barrier destruction and microorganism translocation; the alteration in microbial metabolites may initiate or aggravate DILI, and regulation and control of intestinal microbiota can effectively mitigate drug-induced liver injury. In this paper, we provide an overview on the present knowledge of the mechanisms by which DILI occurs, the common drugs that cause DILI, the gut microbiota and gut barrier composition, and the effects of the gut microbiota and gut barrier on DILI, emphasizing the contribution of the gut microecology to DILI.
Collapse
Affiliation(s)
- Yuqiao Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yu Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Kaireng Wu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xinxin Tan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Tian Lan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Guixiang Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
3
|
Huo X, Jia S, Zhang X, Sun L, Liu X, Liu L, Zuo X, Chen X. Association of dietary live microbe intake with abdominal aortic calcification in US adults: a cross-sectional study of NHANES 2013-2014. Front Nutr 2023; 10:1267607. [PMID: 38075227 PMCID: PMC10704926 DOI: 10.3389/fnut.2023.1267607] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/10/2023] [Indexed: 07/02/2024] Open
Abstract
OBJECT To explore the potential association between dietary live microbe intake and abdominal aortic calcification (AAC). METHODS We conducted a cross-section study based on the National Health and Nutrition Examination Survey (NHANES). We categorized the participants into three groups (low, medium, and high dietary intake of live microbes) according to Sanders's dietary live microbe classification system and participants' 24-h dietary recall data. AAC was quantified by using dual-energy X-ray absorptiometry (DXA) and diagnosed by using the Kauppila AAC-24 score system. The analyses utilized weighted logistic regression and weighted linear regression. RESULTS A total of 2,586 participants were included. After the full adjustment for covariates, compared to participants with a low dietary live microbe intake, participants with a high dietary live microbe intake had a significantly lower risk of severe AAC (OR: 0.39, 95% CI: 0.22, 0.68, p = 0.003), and the AAC score was also significantly decreased (β:-0.53, 95% CI: -0.83, -0.23, p = 0.002). CONCLUSION In this study, more dietary live microbial intake was associated with lower AAC scores and a lower risk of severe AAC. However, more research is needed to verify this.
Collapse
Affiliation(s)
- Xingwei Huo
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shanshan Jia
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin Zhang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lirong Sun
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Second Department of Internal Medicine, Affiliated Hospital of Tibet University for Nationalities, Xianyang, Shaanxi, China
| | - Xueting Liu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lu Liu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xianghao Zuo
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoping Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Cai J, Auster A, Cho S, Lai Z. Dissecting the human gut microbiome to better decipher drug liability: A once-forgotten organ takes center stage. J Adv Res 2023; 52:171-201. [PMID: 37419381 PMCID: PMC10555929 DOI: 10.1016/j.jare.2023.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/25/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND The gut microbiome is a diverse system within the gastrointestinal tract composed of trillions of microorganisms (gut microbiota), along with their genomes. Accumulated evidence has revealed the significance of the gut microbiome in human health and disease. Due to its ability to alter drug/xenobiotic pharmacokinetics and therapeutic outcomes, this once-forgotten "metabolic organ" is receiving increasing attention. In parallel with the growing microbiome-driven studies, traditional analytical techniques and technologies have also evolved, allowing researchers to gain a deeper understanding of the functional and mechanistic effects of gut microbiome. AIM OF REVIEW From a drug development perspective, microbial drug metabolism is becoming increasingly critical as new modalities (e.g., degradation peptides) with potential microbial metabolism implications emerge. The pharmaceutical industry thus has a pressing need to stay up-to-date with, and continue pursuing, research efforts investigating clinical impact of the gut microbiome on drug actions whilst integrating advances in analytical technology and gut microbiome models. Our review aims to practically address this need by comprehensively introducing the latest innovations in microbial drug metabolism research- including strengths and limitations, to aid in mechanistically dissecting the impact of the gut microbiome on drug metabolism and therapeutic impact, and to develop informed strategies to address microbiome-related drug liability and minimize clinical risk. KEY SCIENTIFIC CONCEPTS OF REVIEW We present comprehensive mechanisms and co-contributing factors by which the gut microbiome influences drug therapeutic outcomes. We highlight in vitro, in vivo, and in silico models for elucidating the mechanistic role and clinical impact of the gut microbiome on drugs in combination with high-throughput, functionally oriented, and physiologically relevant techniques. Integrating pharmaceutical knowledge and insight, we provide practical suggestions to pharmaceutical scientists for when, why, how, and what is next in microbial studies for improved drug efficacy and safety, and ultimately, support precision medicine formulation for personalized and efficacious therapies.
Collapse
Affiliation(s)
- Jingwei Cai
- Drug Metabolism & Pharmacokinetics, Genentech Inc., South San Francisco, CA 94080, USA.
| | - Alexis Auster
- Drug Metabolism & Pharmacokinetics, Genentech Inc., South San Francisco, CA 94080, USA
| | - Sungjoon Cho
- Drug Metabolism & Pharmacokinetics, Genentech Inc., South San Francisco, CA 94080, USA
| | - Zijuan Lai
- Drug Metabolism & Pharmacokinetics, Genentech Inc., South San Francisco, CA 94080, USA
| |
Collapse
|
5
|
Purdel C, Ungurianu A, Adam-Dima I, Margină D. Exploring the potential impact of probiotic use on drug metabolism and efficacy. Biomed Pharmacother 2023; 161:114468. [PMID: 36868015 DOI: 10.1016/j.biopha.2023.114468] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023] Open
Abstract
Probiotics are frequently consumed as functional food and widely used as dietary supplements, but are also recommended in treating or preventing various gastrointestinal diseases. Therefore, their co-administration with other drugs is sometimes unavoidable or even compulsory. Recent technological developments in the pharmaceutical industry permitted the development of novel drug-delivery systems for probiotics, allowing their addition to the therapy of severely ill patients. Literature data regarding the changes that probiotics could impose on the efficacy or safety of chronic medication is scarce. In this context, the present paper aims to review probiotics currently recommended by the international medical community, to evaluate the relationship between gut microbiota and various pathologies with high impact worldwide and, most importantly, to assess the literature reports concerning the ability of probiotics to influence the pharmacokinetics/pharmacodynamics of some widely used drugs, especially for those with narrow therapeutic indexes. A better understanding of the potential influence of probiotics on drug metabolism, efficacy and safety could contribute to improving therapy management, facilitating individualized therapy and updating treatment guidelines.
Collapse
Affiliation(s)
- Carmen Purdel
- "Carol Davila" University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Toxicology, Traian Vuia 6, Bucharest 020956, Romania
| | - Anca Ungurianu
- "Carol Davila" University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Biochemistry, Traian Vuia 6, Bucharest 020956, Romania.
| | - Ines Adam-Dima
- "Carol Davila" University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Toxicology, Traian Vuia 6, Bucharest 020956, Romania
| | - Denisa Margină
- "Carol Davila" University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Biochemistry, Traian Vuia 6, Bucharest 020956, Romania
| |
Collapse
|
6
|
Giamaki D, Tsiotsiou M, Oglou SC, Touraki M. Interactions of Bisphenol A with Artemia franciscana and the ameliorative effect of probiotics. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104064. [PMID: 36640920 DOI: 10.1016/j.etap.2023.104064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/25/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
In the present study, the bidirectional interactions of Artemia franciscana with BPA, administered either alone or following treatment with the probiotics Bacillus subtilis, Lactococcus lactis or Lactobacillus plantarum, were evaluated. A 24 h exposure to BPA below LC50 induced oxidative stress to Artemia, indicated by diminished activity of superoxide dismutase, glutathione reductase, glutathione transferase and phenoloxidase, increased lipid peroxidation and decreased survival. Probiotic treatment prior to BPA exposure, led to increased survival, reduced lipid peroxidation and increased enzyme activities. BPA quantification in Artemia and its culture medium, showed a time dependent reduction in its levels, more evident in probiotic series, indicating its biotransformation. ESI-MS analysis confirmed the presence of the tentative BPA metabolites hydroquinone and BPA-sulfate, while BPA-disulfate formation was confirmed in only in the probiotic series. Our results provide evidence that probiotics alleviate the oxidative stress response induced by BPA, by enhancing the BPA biotransformation ability of Artemia.
Collapse
Affiliation(s)
- Despoina Giamaki
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, Department of Biology, School of Sciences, Aristotle University of Thessaloniki (A.U.TH.), 54 124 Thessaloniki, Greece.
| | - Malamati Tsiotsiou
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, Department of Biology, School of Sciences, Aristotle University of Thessaloniki (A.U.TH.), 54 124 Thessaloniki, Greece.
| | - Sevnta Chousein Oglou
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, Department of Biology, School of Sciences, Aristotle University of Thessaloniki (A.U.TH.), 54 124 Thessaloniki, Greece.
| | - Maria Touraki
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, Department of Biology, School of Sciences, Aristotle University of Thessaloniki (A.U.TH.), 54 124 Thessaloniki, Greece.
| |
Collapse
|
7
|
Yun SW, Park HS, Shin YJ, Ma X, Han MJ, Kim DH. Lactobacillus gasseri NK109 and Its Supplement Alleviate Cognitive Impairment in Mice by Modulating NF-κB Activation, BDNF Expression, and Gut Microbiota Composition. Nutrients 2023; 15:nu15030790. [PMID: 36771498 PMCID: PMC9921112 DOI: 10.3390/nu15030790] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 02/09/2023] Open
Abstract
Aging-related gut microbiota dysbiosis initiates gut inflammation and microbiota dysbiosis, which induce the occurrence of psychiatric disorders including dementia. The alleviation of gut microbiota dysbiosis by probiotics is suggested to be able to alleviate psychiatric disorders including cognitive impairment (CI). Therefore, to understand how probiotics could alleviate CI, we examined the effects of anti-inflammatory Lactobacillus gasseri NK109 and its supplement (NS, mixture of NK109 and soybean embryo ethanol extract) on cognitive function in aged (Ag), 5XFAD transgenic (Tg), or mildly cognition-impaired adult fecal microbiota (MCF)-transplanted mice. Oral administration of NK109 or NS decreased CI-like behaviors in Ag mice. Their treatments suppressed TNF-α and p16 expression and NF-κB-activated cell populations in the hippocampus and colon, while BDNF expression was induced. Moreover, they partially shifted the β-diversity of gut microbiota in Ag mice to those of young mice: they decreased Bifidobacteriaceae, Lactobacillaceae, and Helicobacteriaceae populations and increased Rikenellaceae and Prevotellaceae populations. Oral administration of NK109 or NS also reduced CI-like behaviors in Tg mice. Their treatments induced BDNF expression in the hippocampus, decreased hippocampal TNF-α and Aβ expression and hippocampal and colonic NF-κB-activated cell populations. NK109 and NS partially shifted the β-diversity of gut microbiota in Tg mice: they decreased Muribaculaceae and Rhodospiraceae populations and increased Helicobacteriaceae population. Oral administration of NK109 or NS decreased MCF transplantation-induced CI-like behaviors in mice. NK109 and NS increased hippocampal BDNF expression, while hippocampal and colonic TNF-α expression and NF-κB-activated cell populations decreased. These findings suggest that dementia can fluctuate the gut microbiota composition and NK109 and its supplement NS can alleviate CI with systemic inflammation by inducing BDNF expression and suppressing NF-κB activation and gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Soo-Won Yun
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hee-Seo Park
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yoon-Jung Shin
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Xiaoyang Ma
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Myung Joo Han
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence: (M.J.H.); (D.-H.K.); Tel.: +82-2-961-0553 (M.J.H.); +82-2-961-0374 (D.-H.K.)
| | - Dong-Hyun Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence: (M.J.H.); (D.-H.K.); Tel.: +82-2-961-0553 (M.J.H.); +82-2-961-0374 (D.-H.K.)
| |
Collapse
|
8
|
Li H, Wang J, Fu Y, Zhu K, Dong Z, Shan J, Di L, Jiang S, Yuan T. The Bioavailability of Glycyrrhizinic Acid Was Enhanced by Probiotic Lactobacillus rhamnosus R0011 Supplementation in Liver Fibrosis Rats. Nutrients 2022; 14:nu14245278. [PMID: 36558437 PMCID: PMC9782010 DOI: 10.3390/nu14245278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Glycyrrhizinic acid (GL) is clinically applied to treat liver injury, and the bioavailability of orally administered GL is closely related to the gut microbiota. Therefore, the dysbiosis of gut flora in liver injury could significantly influence GL bioavailability. Still, less is known about the impact of probiotic supplementation on the bio-absorption process of oral medication, especially under a pathological state. Herein, probiotic L. rhamnosus R0011 (R0011) with a high viability in the harsh gastrointestinal environment was selected, and the effect of R0011 on the GL bioavailability in rats was investigated. Four groups of rats (n = 6 per group) were included: the normal group (N group), the normal group supplemented with R0011 (NLGG group), CCl4-induced chronic liver injury model (M group), and the model group supplemented with R0011 (MLGG group). Our results showed that liver injury was successfully induced in the M and MLGG groups via an intraperitoneal injection of 50% (v/v) CCl4 solution. Healthy rats supplemented with R0011 could increase the bioavailability of GL by 1.4-fold compared with the normal group by plasma pharmacokinetic analysis. Moreover, the GL bioavailability of MLGG group was significantly increased by 4.5-fold compared with the model group. R0011 directly improved gut microbial glucuronidase and downregulated the host intestinal drug transporter gene expression of multidrug resistance protein 2 (MRP2). More critically, R0011 restored the gut microbiota composition and regulated the metabolic function, significantly enhancing the microbial tryptophan metabolic pathway compared with the pathological state, which may indirectly promote the bioavailability of GL. Overall, these data may provide possible strategies by which to address the low bioavailability of traditional medicine through probiotic intervention.
Collapse
Affiliation(s)
- Huifang Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jing Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yifan Fu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ke Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhiling Dong
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Liuqing Di
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Engineering Research Centre for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shu Jiang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tianjie Yuan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Correspondence:
| |
Collapse
|
9
|
Pant A, Maiti TK, Mahajan D, Das B. Human Gut Microbiota and Drug Metabolism. MICROBIAL ECOLOGY 2022:1-15. [PMID: 35869999 PMCID: PMC9308113 DOI: 10.1007/s00248-022-02081-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 07/18/2022] [Indexed: 05/31/2023]
Abstract
The efficacy of drugs widely varies in individuals, and the gut microbiota plays an important role in this variability. The commensal microbiota living in the human gut encodes several enzymes that chemically modify systemic and orally administered drugs, and such modifications can lead to activation, inactivation, toxification, altered stability, poor bioavailability, and rapid excretion. Our knowledge of the role of the human gut microbiome in therapeutic outcomes continues to evolve. Recent studies suggest the existence of complex interactions between microbial functions and therapeutic drugs across the human body. Therapeutic drugs or xenobiotics can influence the composition of the gut microbiome and the microbial encoded functions. Both these deviations can alter the chemical transformations of the drugs and hence treatment outcomes. In this review, we provide an overview of (i) the genetic ecology of microbially encoded functions linked with xenobiotic degradation; (ii) the effect of drugs on the composition and function of the gut microbiome; and (iii) the importance of the gut microbiota in drug metabolism.
Collapse
Affiliation(s)
- Archana Pant
- Molecular Genetics Lab, National Institute of Immunology, New Delhi, Delhi-110067, India
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad-121001, India
- Molecular Genetics Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, PO box, Gurgaon Expressway, #04 Faridabad-121001, Haryana, India
| | - Tushar K Maiti
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad-121001, India
| | - Dinesh Mahajan
- Chemistry and Pharmacology Lab, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Bhabatosh Das
- Molecular Genetics Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, PO box, Gurgaon Expressway, #04 Faridabad-121001, Haryana, India.
| |
Collapse
|
10
|
Xu B, Hao K, Chen X, Wu E, Nie D, Zhang G, Si H. Broussonetia papyrifera Polysaccharide Alleviated Acetaminophen-Induced Liver Injury by Regulating the Intestinal Flora. Nutrients 2022; 14:nu14132636. [PMID: 35807816 PMCID: PMC9268590 DOI: 10.3390/nu14132636] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
Liver injury caused by an overdose of acetaminophen (APAP) is a major public health problem. This study aimed to evaluate the effects of Broussonetia papyrifera polysaccharide (BPP) on liver injury and intestinal flora induced by APAP. The results showed that BPP could protect against APAP-induced liver injury, alleviate liver apoptosis, improve antioxidant capacity and enhance the liver’s detoxification ability to APAP. At the same time, BPP improved the intestinal flora disorder caused by APAP. More importantly, we found that the hepatoprotective effect of BPP disappeared after the depletion of gut microbiota in mice. Further, we reconstructed the intestinal flora structure of mice through fecal microbiota transplantation and found that the symptoms of APAP—induced liver injury were effectively alleviated. Overall, BPP was a potential hepatoprotective drug that could protect against APAP-induced liver injury and might be mediated by intestinal flora.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hongbin Si
- Correspondence: ; Tel.: +86-136-8771-1878
| |
Collapse
|
11
|
Dewanjee S, Dua TK, Paul P, Dey A, Vallamkondu J, Samanta S, Kandimalla R, De Feo V. Probiotics: Evolving as a Potential Therapeutic Option against Acetaminophen-Induced Hepatotoxicity. Biomedicines 2022; 10:1498. [PMID: 35884803 PMCID: PMC9312935 DOI: 10.3390/biomedicines10071498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/03/2022] Open
Abstract
Acetaminophen (APAP) is the most common prescription medicine around the world for the treatment of pain and fever and is considered to be a safe drug at its therapeutic dose. However, a single overdose or frequent use of APAP can cause severe acute liver injury. APAP hepatotoxicity is a prevalent cause of acute liver disease around the world and the lack of suitable treatment makes it a serious problem. In recent years, there has been a surge in interest in using probiotics and probiotic-derived products, known as postbiotics, as health and disease negotiators. A growing body of evidence revealed that they can be equally effective against APAP hepatotoxicity. Different probiotic bacteria were found to be pre-clinically effective against APAP hepatotoxicity. Different postbiotics have also shown exciting results in preclinical models of APAP hepatotoxicity. This review summarized the protective roles and mechanisms of the different probiotic bacteria and postbiotics against APAP hepatotoxicity, with critical discussion. A brief discussion on potential novel probiotics and postbiotics for oxidative liver injury was also included. This review was written in an attempt to pique the interest of researchers in developing a safe therapeutic option against oxidative liver damage using probiotics and/or postbiotics as dietary supplements.
Collapse
Affiliation(s)
- Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Tarun K. Dua
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur 734013, India; (T.K.D.); (P.P.)
| | - Paramita Paul
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur 734013, India; (T.K.D.); (P.P.)
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, India;
| | | | - Sonalinandini Samanta
- Department of Dermatology (Skin & Venereology), Employee’s State Insurance Corporation Medical College & Hospital, Patna 801103, India;
| | - Ramesh Kandimalla
- Department of Biochemistry, Kakatiya Medical College, Warangal 506007, India;
- Applied Biology, Council of Scientific and Industrial Research-Indian Institute of Chemical Technology, Tarnaka 500007, India
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| |
Collapse
|
12
|
Dua TK, Palai S, Roy A, Paul P. Protective effect of probiotics against acetaminophen induced nephrotoxicity. Mol Biol Rep 2022; 49:8139-8143. [PMID: 35661049 DOI: 10.1007/s11033-022-07534-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 11/24/2022]
Abstract
Acetaminophen (APAP) is commonly prescribed as an antipyretic and analgesic agent in the practical field. Like every other drug(s), APAP also undergo metabolism by oxidation or conjugation by glucuronate and sulphate to form the toxic metabolite N-acetyl-p-benzoquinone imine (NAPQI). Moreover, the NAPQI is detoxified by conjugation with reduced glutathione (GSH). Interestingly, APAP is also metabolized in the kidney by deacetylation reaction in the presence of N-deacetylase enzyme into another severely toxic but minor metabolite, p-aminophenol. Both NAPQI and p-aminophenol shows nephrotoxicity as well as hepatotoxicity. Hence, the long-term therapeutic dose use and unnecessary overdose of APAP are of great concern as prolonged negligence may cost the nephrotoxicity that may lead to uremia and finally to kidney failure. It has recently been investigated that probiotic supplementation inhibits the sequential events associated with APAP-induced nephrotoxicity. This review emphasizes the role of different probiotics that have already been investigated in nephrotoxicity or uremia caused by APAP overdose.
Collapse
Affiliation(s)
- Tarun Kumar Dua
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, 734013, Darjeeling, West Bengal, India.
| | - Sangita Palai
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, 734013, Darjeeling, West Bengal, India
| | - Abani Roy
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, 734013, Darjeeling, West Bengal, India
| | - Paramita Paul
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, 734013, Darjeeling, West Bengal, India
| |
Collapse
|
13
|
Dynamics of Changes in the Gut Microbiota of Healthy Mice Fed with Lactic Acid Bacteria and Bifidobacteria. Microorganisms 2022; 10:microorganisms10051020. [PMID: 35630460 PMCID: PMC9144108 DOI: 10.3390/microorganisms10051020] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 02/06/2023] Open
Abstract
Probiotics are living microorganisms that provide numerous health benefits for their host. Probiotics have various effects on the body; for example, they change gut microbiota, improve the integrity of the epithelial barrier and have anti-inflammatory effects. The use of probiotic supplements that are based on lactic acid bacteria and bifidobacteria is one of the approaches that are used to balance gut microflora. In our study, we evaluated the effects of supplements, which were based on members of the Lactobacillaceae family and bifidobacteria, on the gut microbiome of healthy mice using the 16S rRNA sequencing method. The data that were obtained demonstrated that when mice received the probiotic supplements, statistically significant changes occurred in the composition of the microbiome at the phylum level, which were characterized by an increase in the number of Actinobacteriota, Bacteroidota, Verrucomicrobia and Proteobacteria, all of which have potentially positive effects on health. At the generic level, a decrease in the abundance of members of the Nocardioides, Helicobacter and Mucispirillum genus, which are involved in inflammatory processes, was observed for the group of mice that was fed with lactic acid bacteria. For the group of mice that was fed with bifidobacteria, a decrease was seen in the number of members of the Tyzzerella and Akkermansia genus. The results of our study contribute to the understanding of changes in the gut microbiota of healthy mice under the influence of probiotics. It was shown that probiotics that are based on members of the Lactobacillaceae family have a more positive effect on the gut microbiome than probiotics that are based on bifidobacteria.
Collapse
|
14
|
The Intake of Coffee Increases the Absorption of Aspirin in Mice by Modifying Gut Microbiome. Pharmaceutics 2022; 14:pharmaceutics14040746. [PMID: 35456580 PMCID: PMC9031453 DOI: 10.3390/pharmaceutics14040746] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 11/16/2022] Open
Abstract
The absorption of orally administered aspirin into the blood was affected by gastrointestinal environmental factors such as gut pH, digestive enzymes, and microbiota. The intake of coffee affects the pharmacological effects of aspirin. Therefore, we examined the gut microbiota-mediated effect of coffee bean extract (CBE) intake on the pharmacokinetics of aspirin in mice. The intake of CBE modified the gut microbiota composition and their α- and β-diversities: It decreased the Proteobacteria, Helicobacteriaceae, and Bacteroidaceae populations in the fecal microbiota composition, while the S24-7_f (Muribaculaceae) and Lactobacillaceae populations increased. The fecal aspirin-hydrolyzing activities of humans and mice to salicylic acid were 0.045 ± 0.036 μmole/h/g and 0.032 ± 0.003 μmole/h/g, respectively. However, CBE treatment significantly suppressed the aspirin-hydrolyzing activity in mice. Furthermore, the area under the serum concentration–time curves (AUCs) of aspirin and salicylic acid were 0.265 ± 0.050 µg·h/mL and 16.224 ± 5.578 µg·h/mL in CBE-treated mice, respectively, and 0.248 ± 0.042 µg·h/mL and 10.756 ± 2.071 µg·h/mL in control mice, respectively. Moreover, CBE treatment suppressed the multidrug resistance protein 4 (Mrp4) expression in the intestines of mice, while the P-glycoprotein (P-gp), breast cancer resistance protein (BCRP) expression was not affected. Furthermore, the CBE-treated mouse fecal lysate suppressed Mrp4 expression in Caco-2 cells compared to that of vehicle-treated mice, while CBE treatment did not affect Mrp4 expression. Oral gavage of caffeine also suppressed the Mrp4 expression in the intestines of mice. These findings suggest that intake of coffee can increase the absorption of aspirin by modifying the gut microbiome.
Collapse
|
15
|
Zhang M, Xia F, Xia S, Zhou W, Zhang Y, Han X, Zhao K, Feng L, Dong R, Tian D, Yu Y, Liao J. NSAID-Associated Small Intestinal Injury: An Overview From Animal Model Development to Pathogenesis, Treatment, and Prevention. Front Pharmacol 2022; 13:818877. [PMID: 35222032 PMCID: PMC8864225 DOI: 10.3389/fphar.2022.818877] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
With the wide application of non-steroidal anti-inflammatory drugs (NSAIDs), their gastrointestinal side effects are an urgent health burden. There are currently sound preventive measures for upper gastrointestinal injury, however, there is a lack of effective defense against lower gastrointestinal damage. According to a large number of previous animal experiments, a variety of NSAIDs have been demonstrated to induce small intestinal mucosal injury in vivo. This article reviews the descriptive data on the administration dose, administration method, mucosal injury site, and morphological characteristics of inflammatory sites of various NSAIDs. The cells, cytokines, receptors and ligands, pathways, enzyme inhibition, bacteria, enterohepatic circulation, oxidative stress, and other potential pathogenic factors involved in NSAID-associated enteropathy are also reviewed. We point out the limitations of drug modeling at this stage and are also pleased to discover the application prospects of chemically modified NSAIDs, dietary therapy, and many natural products against intestinal mucosal injury.
Collapse
Affiliation(s)
- Mingyu Zhang
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Xia
- Department of Hepatic Surgery Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suhong Xia
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wangdong Zhou
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Zhang
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Han
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Zhao
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lina Feng
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruonan Dong
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Yu
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiazhi Liao
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Bai X, Liu G, Yang J, Zhu J, Li X. Gut Microbiota as the Potential Mechanism to Mediate Drug Metabolism Under High-Altitude Hypoxia. Curr Drug Metab 2022; 23:8-20. [PMID: 35088664 DOI: 10.2174/1389200223666220128141038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/25/2021] [Accepted: 12/30/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The characteristics of pharmacokinetics and the activity and expression of drug-metabolizing enzymes and transporters significantly change under a high-altitude hypoxic environment. Gut microbiota is an important factor affecting the metabolism of drugs through direct or indirect effects, changing the bioavailability, biological activity, or toxicity of drugs and further affecting the efficacy and safety of drugs in vivo. A high-altitude hypoxic environment significantly changes the structure and diversity of gut microbiota, which may play a key role in drug metabolism under a high-altitude hypoxic environment. METHODS An investigation was carried out by reviewing published studies to determine the role of gut microbiota in the regulation of drug-metabolizing enzymes and transporters. Data and information on expression change in gut microbiota, drug-metabolizing enzymes and transporters under a high-altitude hypoxic environment were explored and proposed. RESULTS High-altitude hypoxia is an important environmental factor that can adjust the structure of the gut microbiota and change the diversity of intestinal microbes. It was speculated that the gut microbiota could regulate drug-metabolizing enzymes through two potential mechanisms, the first being through direct regulation of the metabolism of drugs in vivo and the second being indirect, i.e., through the regulation of drug-metabolizing enzymes and transporters, thereby affecting the activity of drugs. CONCLUSION This article reviews the effects of high-altitude hypoxia on the gut microbiota and the effects of these changes on drug metabolism.
Collapse
Affiliation(s)
- Xue Bai
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Guiqin Liu
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Jianxin Yang
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Junbo Zhu
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Xiangyang Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| |
Collapse
|
17
|
Ahlawat S, Shankar A, Vandna, Mohan H, Sharma KK. Yersinia enterocolitica and Lactobacillus fermentum induces differential cellular and behavioral responses during diclofenac biotransformation in rat gut. Toxicol Appl Pharmacol 2021; 431:115741. [PMID: 34619158 DOI: 10.1016/j.taap.2021.115741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) can induce small-intestinal injuries through inhibition of prostaglandin synthesis. Gut has an important role in building and maintaining the barriers to avoid the luminal gut microbiota from invading the host, and cytoskeleton plays a crucial role in the maintenance of cellular barrier. The recent advances suggest a bi-directional interaction between the drugs and gut microbiota, where gut microbes can metabolize the drugs, and in response drugs can alter the composition of gut microbiota. In the present study, we evaluated the effect of diclofenac on rat gut, when co-administrated with either Yersinia enterocolitica strain 8081 (an enteropathogen) or Lactobacillus fermentum strain 9338 (a probiotic). The LC-MS/MS based label-free quantitation of rat gut proteins revealed 51.38% up-regulated, 48.62% down-regulated in diclofenac-Y. enterocolitica strain 8081 (D*Y), and 74.31% up-regulated, 25.69% down-regulated in diclofenac-L. fermentum strain 9338 (D*L) experiments. The identified proteins belonged to cytoskeleton, metabolism, heme biosynthesis and binding, stress response, apoptosis and redox homeostasis, immune and inflammatory response, and detoxification and antioxidant defence. Further, the histopathological and biochemical analysis indicated more pronounced histological alterations and oxidative stress (enhanced malonaldehyde and altered antioxidant levels) in D*Y rats than D*L rats, compared to control rats. Elevated plus maze (EPM) test performed to determine the behavioral changes, suggested increased anxiety in D*Y rats than D*L rats, compared to control rats. These results together suggest the differential role of either bacterium in biotransformation of diclofenac, and inflammatory and cellular redox response.
Collapse
Affiliation(s)
- Shruti Ahlawat
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India; Presently at SGT University, Gurgaon-Badli Road Chandu, Budhera, Gurugram 122505, Haryana, India
| | - Akshay Shankar
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Vandna
- Department of Medical Biotechnology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Hari Mohan
- Department of Medical Biotechnology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Krishna Kant Sharma
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India.
| |
Collapse
|
18
|
Zhang X, Han Y, Huang W, Jin M, Gao Z. The influence of the gut microbiota on the bioavailability of oral drugs. Acta Pharm Sin B 2021; 11:1789-1812. [PMID: 34386321 PMCID: PMC8343123 DOI: 10.1016/j.apsb.2020.09.013] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/27/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023] Open
Abstract
Due to its safety, convenience, low cost and good compliance, oral administration attracts lots of attention. However, the efficacy of many oral drugs is limited to their unsatisfactory bioavailability in the gastrointestinal tract. One of the critical and most overlooked factors is the symbiotic gut microbiota that can modulate the bioavailability of oral drugs by participating in the biotransformation of oral drugs, influencing the drug transport process and altering some gastrointestinal properties. In this review, we summarized the existing research investigating the possible relationship between the gut microbiota and the bioavailability of oral drugs, which may provide great ideas and useful instructions for the design of novel drug delivery systems or the achievement of personalized medicine.
Collapse
Key Words
- 5-ASA, 5-aminosalicylic acid
- AA, ascorbic acid
- ABC, ATP-binding cassette
- ACS, amphipathic chitosan derivative
- AMI, amiodarone
- AQP4, aquaporin 4
- AR, azoreductase
- ASP, amisulpride
- BBR, berberine
- BCRP, breast cancer resistance protein
- BCS, biopharmaceutics classification system
- BDDCS, the biopharmaceutics drug disposition classification system
- BDEPT, the bacteria-directed enzyme prodrug therapy
- BSH, bile salt hydrolase
- Bioavailability
- CA, cholic acid
- CDCA, chenodeoxycholic acid
- CPP, cell-penetrating peptide
- CS, chitosan
- Colon-specific drug delivery system
- DCA, deoxycholic acid
- DRPs, digoxin reduction products
- EcN, Escherichia coli Nissle 1917
- FA, folate
- FAO, Food and Agriculture Organization of the United Nations
- GCDC, glycochenodeoxycholate
- GL, glycyrrhizic acid
- Gut microbiota
- HFD, high fat diet
- HTC, hematocrit
- IBD, inflammatory bowel disease
- LCA, lithocholic acid
- LPS, lipopolysaccharide
- MATEs, multidrug and toxin extrusion proteins
- MDR1, multidrug resistance gene 1
- MDR1a, multidrug resistance protein-1a
- MKC, monoketocholic acid
- MPA, mycophenolic acid
- MRP2, multidrug resistance-associated protein 2
- NEC, necrotizing enterocolitis
- NMEs, new molecular entities
- NRs, nitroreductases
- NSAIDs, non-steroidal anti-inflammatory drugs
- NaDC, sodium deoxycholate
- NaGC, sodium glycholate
- OATs, organic anion transporters
- OCTNs, organic zwitterion/cation
- OCTs, organic cation transporters
- Oral drugs
- P-gp, P-glycoprotein
- PD, Parkinson's disease
- PPIs, proton pump inhibitors
- PT, pectin
- PWSDs, poorly water-soluble drugs
- Probiotics
- RA, rheumatoid arthritis
- RBC, red blood cell
- SCFAs, short-chain fatty acids
- SGLT-1, sodium-coupled glucose transporter 1
- SLC, solute carrier
- SLN, solid lipid nanoparticle
- SP, sulfapyridine
- SSZ, sulfasalazine
- SVCT-1/2, the sodium-dependent vitamin C transporter-1/2
- T1D, type 1 diabetes
- T1DM, type 1 diabetes mellitus
- T2D, type 2 diabetes
- TCA, taurocholate
- TCDC, taurochenodeoxycholate
- TDCA, taurodeoxycholate
- TLCA, taurolithocholate
- TME, the tumor microenvironment
- UDC, ursodeoxycholic acid
- WHO, World Health Organization
- an OTC drug, an over-the-counter drug
- cgr operon, cardiac glycoside reductase operon
- dhBBR, dihydroberberine
- pKa, dissociation constant
- the GI tract, the gastrointestinal tract
Collapse
Affiliation(s)
- Xintong Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ying Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
19
|
Tagliari E, Campos LF, Casagrande TAC, Fuchs T, de Noronha L, Campos ACL. Effects of oral probiotics administration on the expression of transforming growth factor β and the proinflammatory cytokines interleukin 6, interleukin 17, and tumor necrosis factor α in skin wounds in rats. JPEN J Parenter Enteral Nutr 2021; 46:721-729. [PMID: 34173254 DOI: 10.1002/jpen.2216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Cytokines and growth factors play key roles during the tissue repair process. We aim to evaluate the effect of perioperative oral of probiotics, on the healing process in skin wound in rats, by histological aspects, and by the expression of TGF-β, and the pro-inflammatory cytokines IL6, IL7, and TNF-α. METHODS 72 adult male Wistar rats were split into two groups control (n = 36) and probiotic group (n = 36). Each group was subdivided into three subgroups with 12 animals each according to euthanasia day: 3rd, 7th, and 10th postoperative(PO) day. RESULTS Wound contraction was faster with the use of probiotics (p = .013). Also fibrosis was significantly higher in the Probiotic group in the 7th PO day (p = .028). In the probiotic group, there was a reduction of TNF-α at 3th PO day (p = .023); and a reduction of IL6 in 7th PO day (p = .030). There was also a reduction of the expression of IL-17 in 3rd PO day (p = .039) and 7rd PO day (P = .024). In contrast, TGF-β was lower in the 10th PO day (p = .031) in the probiotic group as compared to controls, indicating that the increase of the fibrosis caused negative feedback with the TGF-β. CONCLUSION Probiotics are associated with a shorter inflammatory phase by attenuating the expression of cytokines IL-6 and TNF-α and accelerating the reduction of IL-17 and TGF-β, leading to faster and improved cutaneous healing in rats.
Collapse
Affiliation(s)
- Eliane Tagliari
- Graduate Program in Surgery, Division of Health Sciences, Federal University of Paraná, Curitiba, Brasil
| | - Letícia Fuganti Campos
- Graduate Program in Surgery, Division of Health Sciences, Federal University of Paraná, Curitiba, Brasil
| | | | - Taise Fuchs
- Professional Masters Program in Industrial Biotechnology, Positivo University
| | - Lúcia de Noronha
- Experimental Pathology Laboratory, Pontifical Catholic University of Paraná, Curitiba, Brasil
| | | |
Collapse
|
20
|
Chen T, Li R, Chen P. Gut Microbiota and Chemical-Induced Acute Liver Injury. Front Physiol 2021; 12:688780. [PMID: 34122150 PMCID: PMC8187901 DOI: 10.3389/fphys.2021.688780] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Drug overdose or chemical exposures are the main causes of acute liver injury (ALI). Severe liver injury can develop into liver failure that is an important cause of liver-related mortality in intensive care units in most countries. Pharmacological studies have utilized a variety of comprehensive chemical induction models that recapitulate the natural pathogenesis of acute liver injury. Their mechanism is always based on redox imbalance-induced direct hepatotoxicity and massive hepatocyte cell death, which can trigger immune cell activation and recruitment to the liver. However, the pathogenesis of these models has not been fully stated. Many studies showed that gut microbiota plays a crucial role in chemical-induced liver injury. Hepatotoxicity is likely induced by imbalanced microbiota homeostasis, gut mucosal barrier damage, systemic immune activation, microbial-associated molecular patterns, and bacterial metabolites. Meanwhile, many preclinical studies have shown that supplementation with probiotics can improve chemical-induced liver injury. In this review, we highlight the pathogenesis of gut microorganisms in chemical-induced acute liver injury animal models and explore the protective mechanism of exogenous microbial supplements on acute liver injury.
Collapse
Affiliation(s)
- Tao Chen
- Department of Physiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China.,Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Rui Li
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Peng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
21
|
Papageorgiou M, Biver E. Interactions of the microbiome with pharmacological and non-pharmacological approaches for the management of ageing-related musculoskeletal diseases. Ther Adv Musculoskelet Dis 2021; 13:1759720X211009018. [PMID: 34104230 PMCID: PMC8172340 DOI: 10.1177/1759720x211009018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/18/2021] [Indexed: 12/18/2022] Open
Abstract
Despite major progress in the understanding of the pathophysiology and therapeutic options for common ageing-related musculoskeletal conditions (i.e. osteoporosis and associated fractures, sarcopenia and osteoarthritis), there is still a considerable proportion of patients who respond sub optimally to available treatments or experience adverse effects. Emerging microbiome research suggests that perturbations in microbial composition, functional and metabolic capacity (i.e. dysbiosis) are associated with intestinal and extra-intestinal disorders including musculoskeletal diseases. Besides its contributions to disease pathogenesis, the role of the microbiome is further extended to shaping individuals' responses to disease therapeutics (i.e. pharmacomicrobiomics). In this review, we focus on the reciprocal interactions between the microbiome and therapeutics for osteoporosis, sarcopenia and osteoarthritis. Specifically, we identify the effects of therapeutics on microbiome's configurations, functions and metabolic output, intestinal integrity and immune function, but also the effects of the microbiome on the metabolism of these therapeutics, which in turn, may influence their bioavailability, efficacy and side-effect profile contributing to variable treatment responses in clinical practice. We further discuss emerging strategies for microbiota manipulation as preventive or therapeutic (alone or complementary to available treatments) approaches for improving outcomes of musculoskeletal health and disease.
Collapse
Affiliation(s)
- Maria Papageorgiou
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Emmanuel Biver
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Rue Gabrielle Perret Gentil 4, Geneva 1205, Switzerland
| |
Collapse
|
22
|
Luo Y, Zhou T. Connecting the dots: Targeting the microbiome in drug toxicity. Med Res Rev 2021; 42:83-111. [PMID: 33856076 DOI: 10.1002/med.21805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/22/2021] [Accepted: 03/31/2021] [Indexed: 12/13/2022]
Abstract
The gut microbiota has a vast influence on human health and its role in initiating, aggravating, or ameliorating diseases is beginning to emerge. Recently, its contribution to heterogeneous toxicological responses is also gaining attention, especially in drug-induced toxicity. Whether they are orally administered or not, drugs may interact with the gut microbiota directly or indirectly, which leads to altered toxicity. Present studies focus more on the unidirectional influence of how xenobiotics disturb intestinal microbial composition and functions, and thus induce altered homeostasis. However, interactions between the gut microbiota and xenobiotics are bidirectional and the impact of the gut microbiota on xenobiotics, especially on drugs, should not be neglected. Thus, in this review, we focus on how the gut microbiota modulates drug toxicity by highlighting the microbiome, microbial enzyme, and microbial metabolites. We connect the dots between drugs, the microbiome, microbial enzymes or metabolites, drug metabolites, and host toxicological responses to facilitate the discovery of microbial targets and mechanisms associated with drug toxicity. Besides this, current mainstream strategies to manipulate drug toxicity by targeting the microbiome are summarized and discussed. The review provides technical reference for the evaluation of medicinal properties in the research and development of innovative drugs, and for the future exploitation of strategies to reduce drug toxicity by targeting the microbiome.
Collapse
Affiliation(s)
- Yusha Luo
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, China.,Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Tingting Zhou
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, China.,Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
23
|
Cussotto S, Walsh J, Golubeva AV, Zhdanov AV, Strain CR, Fouhy F, Stanton C, Dinan TG, Hyland NP, Clarke G, Cryan JF, Griffin BT. The gut microbiome influences the bioavailability of olanzapine in rats. EBioMedicine 2021; 66:103307. [PMID: 33819741 PMCID: PMC8047500 DOI: 10.1016/j.ebiom.2021.103307] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/21/2022] Open
Abstract
Background The role of the gut microbiome in the biotransformation of drugs has recently come under scrutiny. It remains unclear whether the gut microbiome directly influences the extent of drug absorbed after oral administration and thus potentially alters clinical pharmacokinetics. Methods In this study, we evaluated whether changes in the gut microbiota of male Sprague Dawley rats, as a result of either antibiotic or probiotic administration, influenced the oral bioavailability of two commonly prescribed antipsychotics, olanzapine and risperidone. Findings The bioavailability of olanzapine, was significantly increased (1.8-fold) in rats that had undergone antibiotic-induced depletion of gut microbiota, whereas the bioavailability of risperidone was unchanged. There was no direct effect of microbiota depletion on the expression of major CYP450 enzymes involved in the metabolism of either drug. However, the expression of UGT1A3 in the duodenum was significantly downregulated. The reduction in faecal enzymatic activity, observed during and after antibiotic administration, did not alter the ex vivo metabolism of olanzapine or risperidone. The relative abundance of Alistipes significantly correlated with the AUC of olanzapine but not risperidone. Interpretation Alistipes may play a role in the observed alterations in olanzapine pharmacokinetics. The gut microbiome might be an important variable determining the systemic bioavailability of orally administered olanzapine. Additional research exploring the potential implication of the gut microbiota on the clinical pharmacokinetics of olanzapine in humans is warranted. Funding This research is supported by APC Microbiome Ireland, a research centre funded by Science Foundation Ireland (SFI), through the Irish Government's National Development Plan (grant no. 12/RC/2273 P2) and by Nature Research-Yakult (The Global Grants for Gut Health; Ref No. 626891).
Collapse
Affiliation(s)
- Sofia Cussotto
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Jacinta Walsh
- APC Microbiome Ireland, University College Cork, Cork, Ireland; School of Pharmacy, University College Cork, Cavanagh Pharmacy Building, Cork, Ireland
| | - Anna V Golubeva
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Alexander V Zhdanov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Conall R Strain
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, County, Cork, Ireland
| | - Fiona Fouhy
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, County, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, County, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Niall P Hyland
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| | - Brendan T Griffin
- APC Microbiome Ireland, University College Cork, Cork, Ireland; School of Pharmacy, University College Cork, Cavanagh Pharmacy Building, Cork, Ireland.
| |
Collapse
|
24
|
Đanić M, Pavlović N, Stanimirov B, Lazarević S, Vukmirović S, Al-Salami H, Mikov M. PAMPA model of gliclazide permeability: The impact of probiotic bacteria and bile acids. Eur J Pharm Sci 2021; 158:105668. [PMID: 33301903 DOI: 10.1016/j.ejps.2020.105668] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/15/2020] [Accepted: 12/01/2020] [Indexed: 12/01/2022]
Abstract
Gut microbiota and bile acids possess the ability to modify absorption and pharmacokinetic profile of numerous drugs. Since the variability of gliclazide response in patients cannot be explained only by genetic factors, the influence of gut microbiota and bile acids should be considered. The aim of this study was to determine the effects of probiotic bacteria and bile acids on the gliclazide permeability. The permeability of gliclazide with and without probiotic bacteria and bile acids (cholic acid, CA and deoxycholic acid, DCA) was tested using in vitro PAMPA model, at three different pH values (5.8, 6.5 and 7.4). Concentrations of gliclazide were determined by HPLC analysis. The interactions of gliclazide and bile acids were also investigated by molecular mechanics calculations (MM2). Probiotic bacteria significantly increased the permeability of gliclazide across the PAMPA membrane at all observed pH values while the total amount of gliclazide during incubation with bacteria was significantly reduced at pH 7.4, which could be a consequence of partial metabolism of the drug by enzymes of probiotic bacteria. Bile acids decreased the permeability of gliclazide through PAMPA membrane, with more pronounced effects of DCA, by forming more stable complexes with gliclazide. Given that probiotic bacteria and bile acids are naturally present in the gut and that each individual has a specific bacterial fingerprint, future research should extend the explanation of their effect on the gliclazide bioavailability and therapy individualization in in vivo conditions.
Collapse
Affiliation(s)
- Maja Đanić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, Novi Sad, Vojvodina, Serbia.
| | - Nebojša Pavlović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, Novi Sad, Vojvodina, Serbia.
| | - Bojan Stanimirov
- Department of Biochemistry, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, Novi Sad, Vojvodina, Serbia.
| | - Slavica Lazarević
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, Novi Sad, Vojvodina, Serbia.
| | - Saša Vukmirović
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, Novi Sad, Vojvodina, Serbia.
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, B305, Bentley WA 6102, Perth, Australia.
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, Novi Sad, Vojvodina, Serbia.
| |
Collapse
|
25
|
Petersen MJ, Bergien SO, Staerk D. A systematic review of possible interactions for herbal medicines and dietary supplements used concomitantly with disease-modifying or symptom-alleviating multiple sclerosis drugs. Phytother Res 2021; 35:3610-3631. [PMID: 33624893 DOI: 10.1002/ptr.7050] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/18/2022]
Abstract
Multiple Sclerosis (MS) is a demyelinating disease affecting the central nervous system, with no curative medicine available. The use of herbal drugs and dietary supplements is increasing among people with MS (PwMS), raising a need for knowledge about potential interactions between conventional MS medicine and herbal drugs/dietary supplements. This systematic review provides information about the safety of simultaneous use of conventional MS-drugs and herbal drugs frequently used by PwMS. The study included 14 selected disease-modifying treatments and drugs frequently used for symptom-alleviation. A total of 129 published papers found via PubMed and Web of Science were reviewed according to defined inclusion- and exclusion criteria. Findings suggested that daily recommended doses of Panax ginseng and Ginkgo biloba should not be exceeded, and herbal preparations differing from standardized products should be avoided, especially when combined with anticoagulants or substrates of certain cytochrome P450 isoforms. Further studies are required regarding ginseng's ability to increase aspirin bioavailability. Combinations between chronic cannabis use and selective serotonin reuptake inhibitors or non-steroidal antiinflammatory drugs should be carefully monitored, whereas no significant evidence for drug-interactions between conventional MS-drugs and ginger, cranberry, vitamin D, fatty acids, turmeric, probiotics or glucosamine was found.
Collapse
Affiliation(s)
- Malene J Petersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Dan Staerk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Dey P. The role of gut microbiome in chemical-induced metabolic and toxicological murine disease models. Life Sci 2020; 258:118172. [PMID: 32738359 DOI: 10.1016/j.lfs.2020.118172] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
The role of gut microbiome in human health and disease is well established. While evidence-based pharmacological studies utilize a variety of chemical-induced metabolic and toxicological disease models that in part recapitulate the natural mode of disease pathogenesis, the mode of actions of these disease models are likely underexplored. Conventionally, the mechanistic principles of these disease models are established as direct tissue toxicity through redox imbalance and pro-inflammatory injury. However, emerging evidences suggest that the mode of action of these chemicals could be largely associated with changes in gut microbial populations, diversity and metabolic functions, affecting pathological changes along the gut-liver and gut-pancreas axis. Especially in these disease models, reversal of disease severity or less sensitivity to induced disease pathogenesis has been observed when germ-free or antibiotic-supplemented microbiota-depleted rodents were treated with disease causing chemicals. Thus, by summarizing evidences from in vivo pharmacological interventions, this review revisits the mode of action of carbon tetrachloride-induced cirrhosis, diethylnitrosamine-induced hepatocellular carcinoma, acetaminophen-induced hepatotoxicity and alloxan- and streptozotocin-induced diabetes through the light of gut microbiota. How changes in gut microbiome affects tissue-level toxicity likely through intestinal-level mechanisms like gastrointestinal inflammation and gut barrier dysfunction has also been discussed. Additionally, this review discusses potential pitfalls of inconsistent experimental models that precludes defining the gut microbial effects in evidence-based pharmacology. Collectively, this review emphasizes the underexplored role of microbial intervention in experimental pharmacology and aims to provide direction towards redefining and establishing microbiome-centric alternative mode of action of chemical-induced metabolic and toxicological disease models in pharmacological research.
Collapse
Affiliation(s)
- Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India.
| |
Collapse
|
27
|
Vargason AM, Santhosh S, Anselmo AC. Surface Modifications for Improved Delivery and Function of Therapeutic Bacteria. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001705. [PMID: 32410314 DOI: 10.1002/smll.202001705] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Live therapeutic bacteria (LTBs) hold promise to treat microbiome-related diseases. However, few approaches to improve the colonization of LTBs in the gastrointestinal tract exist, despite colonization being a prerequisite for efficacy of many LTBs. Here, a modular platform to rapidly modify the surface of LTBs to enable receptor-specific interactions with target surfaces is reported. Inspired by bacterial adhesins that facilitate colonization, synthetic adhesins (SAs) are developed for LTBs in the form of antibodies conjugated to their surface. The SA platform is nontoxic, does not alter LTB growth kinetics, and can be used with any antibody or bacterial strain combination. By improving adhesion, SA-modified bacteria demonstrate enhanced in vitro pathogen exclusion from cell monolayers. In vivo kinetics of SA-modified LTBs is tracked in the feces and intestines of treated mice, demonstrating that SA-modified bacteria alter short-term intestinal transit and improve LTB colonization and pharmacokinetics. This platform enables rapid formation of an intestinal niche, leading to an increased maximum concentration and a 20% improvement in total LTB exposure. This work is the first application of traditional pharmacokinetic analysis to design and evaluate LTB drug delivery systems and provides a platform toward controlling adhesion, colonization, and efficacy of LTBs.
Collapse
Affiliation(s)
- Ava M Vargason
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, NC, 27599, USA
| | - Shruti Santhosh
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, NC, 27599, USA
| | - Aaron C Anselmo
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, NC, 27599, USA
| |
Collapse
|
28
|
Yuan T, Wang J, Chen L, Shan J, Di L. Lactobacillus murinus Improved the Bioavailability of Orally Administered Glycyrrhizic Acid in Rats. Front Microbiol 2020; 11:597. [PMID: 32390962 PMCID: PMC7193032 DOI: 10.3389/fmicb.2020.00597] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/18/2020] [Indexed: 12/22/2022] Open
Abstract
Intestinal microbiota has been extensively studied in the context of host health benefit, and it has recently become clear that the gut microbiota influences drug pharmacokinetics and correspondingly efficacy. Intestinal microbiota dysbiosis is closely related with liver cirrhosis, especially the depletion of Lactobacillus. Therefore, the bioavailability of orally administered glycyrrhizic acid (GL) was speculated to be influenced under a pathological state. In the present study, L. murinus was isolated and screened for GL bioconversion capacity in vitro. Compared with Lactobacillus rhamnosus and Lactobacillus acidophilus, L. murinus was chosen for further investigation because it has the highest biotransformation rate. Our results showed that L. murinus could significantly improve the translocation of GL on Caco-2 cell models. Meanwhile, L. murinus was observed to have the ability to bind with the surface of Caco-2 cells and prominently downregulate the transporter gene expression level of multidrug resistance gene 1 (MDR1) and multidrug resistance protein 2 (MRP2), which were involved in the efflux of drugs. Furthermore, L. murinus was selected to be orally administred into rats in healthy and liver cirrhosis groups by a daily gavage protocol. Our data highlighted that supplements of L. murinus significantly improved the bioavailability of orally administered GL in rats, especially under a pathological condition, which may provide a novel strategy for improving the clinical therapeutic effect of liver protective drugs.
Collapse
Affiliation(s)
- Tianjie Yuan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Engineering Research Centre for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Letian Chen
- Jiangsu Engineering Research Centre for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liuqing Di
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Engineering Research Centre for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
29
|
Walsh J, Olavarria-Ramirez L, Lach G, Boehme M, Dinan TG, Cryan JF, Griffin BT, Hyland NP, Clarke G. Impact of host and environmental factors on β-glucuronidase enzymatic activity: implications for gastrointestinal serotonin. Am J Physiol Gastrointest Liver Physiol 2020; 318:G816-G826. [PMID: 32146834 DOI: 10.1152/ajpgi.00026.2020] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The gastrointestinal tract houses a reservoir of bacterial-derived enzymes that can directly catalyze the metabolism of drugs, dietary elements and endogenous molecules. Both host and environmental factors may influence this enzymatic activity, with the potential to dictate the availability of the biologically-active form of endogenous molecules in the gut and influence inter-individual variation in drug metabolism. We aimed to investigate the influence of the microbiota, and the modulation of its composition, on fecal enzymatic activity. Intrinsic factors related to the host, including age, sex and genetic background, were also explored. Fecalase, a cell-free extract of feces, was prepared and used in a colorimetric-based assay to quantify enzymatic activity. To demonstrate the functional effects of fecal enzymatic activity, we examined β-glucuronidase-mediated cleavage of serotonin β-d-glucuronide (5-HT-GLU) and the resultant production of free 5-HT by HPLC. As expected, β-glucuronidase and β-glucosidase activity were absent in germ-free mice. Enzymatic activity was significantly influenced by mouse strain and animal species. Sex and age significantly altered metabolic activity with implications for free 5-HT. β-Glucuronidase and β-glucosidase activity remained at reduced levels for nearly two weeks after cessation of antibiotic administration. This effect on fecalase corresponded to significantly lower 5-HT levels as compared with incubation with pre-antibiotic fecalase from the same mice. Dietary targeting of the microbiota using prebiotics did not alter β-glucuronidase or β-glucosidase activity. Our data demonstrate that multiple factors influence the activity of bacterial-derived enzymes which may have potential clinical implications for drug metabolism and the deconjugation of host-produced glucuronides in the gut.NEW & NOTEWORTHY This article explores a comprehensive range of host and environmental factors that introduce variability in the expression of bacterial-derived metabolic enzymes. Our results demonstrate that altered β-glucuronidase activity has implications for the bioavailability of luminal serotonin. The experimental approach employed, fecalase, provides a mechanistic basis and translational platform to further delineate the functional outputs of altered metabolic activity, and the associated physiological effects of microbiota-targeted interventions on host response to drugs and host-produced glucuronides.
Collapse
Affiliation(s)
- Jacinta Walsh
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Pharmacy, University College Cork, Cork, Ireland
| | - Loreto Olavarria-Ramirez
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - Gilliard Lach
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Marcus Boehme
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Brendan T Griffin
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Pharmacy, University College Cork, Cork, Ireland
| | - Niall P Hyland
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland.,Irish Centre for Maternal and Child Health Research (INFANT), University College Cork, Cork, Ireland
| |
Collapse
|
30
|
Malfatti MA, Kuhn EA, Murugesh DK, Mendez ME, Hum N, Thissen JB, Jaing CJ, Loots GG. Manipulation of the Gut Microbiome Alters Acetaminophen Biodisposition in Mice. Sci Rep 2020; 10:4571. [PMID: 32165665 PMCID: PMC7067795 DOI: 10.1038/s41598-020-60982-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 02/19/2020] [Indexed: 12/30/2022] Open
Abstract
The gut microbiota is a vast and diverse microbial community that has co-evolved with its host to perform a variety of essential functions involved in the utilization of nutrients and the processing of xenobiotics. Shifts in the composition of gut microbiota can disturb the balance of organisms which can influence the biodisposition of orally administered drugs. To determine how changes in the gut microbiome can alter drug disposition, the pharmacokinetics (PK), and biodistribution of acetaminophen were assessed in C57Bl/6 mice after treatment with the antibiotics ciprofloxacin, amoxicillin, or a cocktail of ampicillin/neomycin. Altered PK, and excretion profiles of acetaminophen were observed in antibiotic exposed animals. Plasma Cmax was significantly decreased in antibiotic treated animals suggesting decreased bioavailability. Urinary metabolite profiles revealed decreases in acetaminophen-sulfate metabolite levels in both the amoxicillin and ampicillin/neomycin treated animals. The ratio between urinary and fecal excretion was also altered in antibiotic treated animals. Analysis of gut microbe composition revealed that changes in microbe content in antibiotic treated animals was associated with changes in acetaminophen biodisposition. These results suggest that exposure to amoxicillin or ampicillin/neomycin can alter the biodisposition of acetaminophen and that these alterations could be due to changes in gut microbiome composition.
Collapse
Affiliation(s)
- Michael A Malfatti
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA.
| | - Edward A Kuhn
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Deepa K Murugesh
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Melanie E Mendez
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA.,School of Natural Sciences, University of California Merced, Merced, CA, 95343, USA
| | - Nicholas Hum
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA.,School of Natural Sciences, University of California Merced, Merced, CA, 95343, USA
| | - James B Thissen
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Crystal J Jaing
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Gabriela G Loots
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA.,School of Natural Sciences, University of California Merced, Merced, CA, 95343, USA
| |
Collapse
|
31
|
Selig DJ, DeLuca JP, Li Q, Lin H, Nguyen K, Scott SM, Sousa JC, Vuong CT, Xie LH, Livezey JR. Saccharomyces boulardii CNCM I-745 probiotic does not alter the pharmacokinetics of amoxicillin. Drug Metab Pers Ther 2020; 35:/j/dmdi.ahead-of-print/dmpt-2019-0032/dmpt-2019-0032.xml. [PMID: 32134728 DOI: 10.1515/dmpt-2019-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/22/2020] [Indexed: 11/15/2022]
Abstract
Background Probiotics are live microbial organisms that provide benefit to the host while co-habitating in the gastrointestinal tract. Probiotics are safe, available over the counter, and have clinical benefit by reducing the number of antibiotic-associated diarrhea days. Prescriptions from providers and direct consumer demand of probiotics appear to be on the rise. Several recent animal studies have demonstrated that probiotics may have significant effect on absorption of co-administered drugs. However, to date, most probiotic-drug interaction studies in animal models have been limited to bacterial probiotics and nonantibiotic drugs. Methods We performed a traditional pharmacokinetic mouse study examining the interactions between a common commercially available yeast probiotic, Saccharomyces boulardii CNCM I-745 (Florastor®) and an orally administered amoxicillin. Results We showed that there were no significant differences in pharmacokinetic parameters (half-life, area under the curve, peak concentrations, time to reach maximum concentration, elimination rate constant) of amoxicillin between the probiotic treated and untreated control groups. Conclusions Altogether, our findings suggest that coadministration or concurrent use of S. boulardii probiotic and amoxicillin would not likely alter the efficacy of amoxicillin therapy.
Collapse
Affiliation(s)
- Daniel J Selig
- Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910-7500, USA, Phone: (+301) 319-9807, Fax: 301-319-9449
| | - Jesse P DeLuca
- Walter Reed Army Institute of Research, Experimental Therapeutics Branch, Silver Spring, MD, USA
| | - Qigui Li
- Walter Reed Army Institute of Research, Experimental Therapeutics Branch, Silver Spring, MD, USA
| | - Hsiuling Lin
- Walter Reed Army Institute of Research, Experimental Therapeutics Branch, Silver Spring, MD, USA
| | - Ken Nguyen
- Walter Reed Army Institute of Research, Experimental Therapeutics Branch, Silver Spring, MD, USA
| | - Shaylyn M Scott
- Walter Reed Army Institute of Research, Experimental Therapeutics Branch, Silver Spring, MD, USA
| | - Jason C Sousa
- Walter Reed Army Institute of Research, Experimental Therapeutics Branch, Silver Spring, MD, USA
| | - Chau T Vuong
- Walter Reed Army Institute of Research, Experimental Therapeutics Branch, Silver Spring, MD, USA
| | - Lisa H Xie
- Walter Reed Army Institute of Research, Experimental Therapeutics Branch, Silver Spring, MD, USA
| | - Jeffrey R Livezey
- Walter Reed Army Institute of Research, Experimental Therapeutics Branch, Silver Spring, MD, USA
| |
Collapse
|
32
|
Wieërs G, Belkhir L, Enaud R, Leclercq S, Philippart de Foy JM, Dequenne I, de Timary P, Cani PD. How Probiotics Affect the Microbiota. Front Cell Infect Microbiol 2020; 9:454. [PMID: 32010640 PMCID: PMC6974441 DOI: 10.3389/fcimb.2019.00454] [Citation(s) in RCA: 256] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 12/13/2019] [Indexed: 12/15/2022] Open
Abstract
Probiotics have been used to treat a variety of diseases for decades; however, what is the rationale for their application? Such a treatment was first proposed in the early nineteenth century based on observations of decreased bifidobacterial populations in children suffering from diarrhea, suggesting that oral intake of bifidobacteria could replete this subpopulation of the microbiota and improve health. Since then, studies have shown modifications in the gut or skin microbiota in the course of a variety of diseases and suggested positive effects of certain probiotics. Most studies failed to report any impact on the microbiota. The impact of probiotics as well as of bacteria colonizing food does not reside in their ability to graft in the microbiota but rather in sharing genes and metabolites, supporting challenged microbiota, and directly influencing epithelial and immune cells. Such observations argue that probiotics could be associated with conventional drugs for insulin resistance, infectious diseases, inflammatory diseases, and psychiatric disorders and could also interfere with drug metabolism. Nevertheless, in the context of a plethora of probiotic strains and associations produced in conditions that do not allow direct comparisons, it remains difficult to know whether a patient would benefit from taking a particular probiotic. In other words, although several mechanisms are observed when studying a single probiotic strain, not all individual strains are expected to share the same effects. To clarify the role of probiotics in the clinic, we explored the relation between probiotics and the gut and skin microbiota.
Collapse
Affiliation(s)
- Grégoire Wieërs
- Service de Médecine Interne Générale, Clinique Saint Pierre, Ottignies, Belgium
| | - Leila Belkhir
- Service de Médecine Interne et Maladies Infectieuses, Cliniques Universitaires Saint Luc, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Raphaël Enaud
- CHU Bordeaux, CRCM Pédiatrique, CIC 1401, Université de Bordeaux, INSERM, CRCTB, U1045, CHU Bordeaux, Bordeaux, France
| | - Sophie Leclercq
- Institute of Neuroscience and Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | | | | | - Philippe de Timary
- Service de Psychiatrie, Cliniques Universitaires Saint Luc, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Patrice D. Cani
- Walloon Excellence in Life Sciences and BIOtechnology, Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
33
|
Dempsey JL, Cui JY. Microbiome is a functional modifier of P450 drug metabolism. CURRENT PHARMACOLOGY REPORTS 2019; 5:481-490. [PMID: 33312848 PMCID: PMC7731899 DOI: 10.1007/s40495-019-00200-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Host cytochrome P450s (P450s) play important roles in the bioactivation and detoxification of numerous therapeutic drugs, environmental toxicants, dietary factors, as well as endogenous compounds. Gut microbiome is increasingly recognized as our "second genome" that contributes to the xenobiotic biotransformation of the host, and the first pass metabolism of many orally exposed chemicals is a joint effort between host drug metabolizing enzymes including P450s and gut microbiome. Gut microbiome contributes to the drug metabolism via two distinct mechanisms: direct mechanism refers to the metabolism of drugs by microbial enzymes, among which reduction and hydrolysis (or deconjugation) are among the most important reactions; whereas indirect mechanism refers to the influence of host receptors and signaling pathways by microbial metabolites. Many types of microbial metabolites, such as secondary bile acids (BAs), short chain fatty acids (SCFAs), and tryptophan metabolites, are known regulators of human diseases through modulating host xenobiotic-sensing receptors. To study the roles of gut microbiome in regulating host drug metabolism including P450s, several models including germ free mice, antibiotics or probiotics treatments, have been widely used. The present review summarized the current information regarding the interactions between microbiome and the host P450s in xenobiotic biotransformation organs such as liver, intestine, and kidney, highlighting the remote sensing mechanisms underlying gut microbiome mediated regulation of host xenobiotic biotransformation. In addition, the roles of bacterial, fungal, and other microbiome kingdom P450s, which is an understudied area of research in pharmacology and toxicology, are discussed.
Collapse
Affiliation(s)
- Joseph L Dempsey
- Department of Environmental and Occupational Health Sciences, University of Washington
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington
| |
Collapse
|
34
|
Biver E, Berenbaum F, Valdes AM, Araujo de Carvalho I, Bindels LB, Brandi ML, Calder PC, Castronovo V, Cavalier E, Cherubini A, Cooper C, Dennison E, Franceschi C, Fuggle N, Laslop A, Miossec P, Thomas T, Tuzun S, Veronese N, Vlaskovska M, Reginster JY, Rizzoli R. Gut microbiota and osteoarthritis management: An expert consensus of the European society for clinical and economic aspects of osteoporosis, osteoarthritis and musculoskeletal diseases (ESCEO). Ageing Res Rev 2019; 55:100946. [PMID: 31437484 DOI: 10.1016/j.arr.2019.100946] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/09/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022]
Abstract
The prevalence of osteoarthritis (OA) increases not only because of longer life expectancy but also because of the modern lifestyle, in particular physical inactivity and diets low in fiber and rich in sugar and saturated fats, which promote chronic low-grade inflammation and obesity. Adverse alterations of the gut microbiota (GMB) composition, called microbial dysbiosis, may favor metabolic syndrome and inflammaging, two important components of OA onset and evolution. Considering the burden of OA and the need to define preventive and therapeutic interventions targeting the modifiable components of OA, an expert working group was convened by the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO) to review the potential contribution of GMB to OA. Such a contribution is supported by observational or dietary intervention studies in animal models of OA and in humans. In addition, several well-recognized risk factors of OA interact with GMB. Lastly, GMB is a critical determinant of drug metabolism and bioavailability and may influence the response to OA medications. Further research targeting GMB or its metabolites is needed to move the field of OA from symptomatic management to individualized interventions targeting its pathogenesis.
Collapse
Affiliation(s)
- Emmanuel Biver
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | - Francis Berenbaum
- Sorbonne Université, INSERM CRSA, Department of Rheumatology, AP-HP Saint-Antoine Hospital, Paris, France
| | - Ana M Valdes
- Division of Rheumatology, Orthopaedics and Dermatology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Islene Araujo de Carvalho
- Department of Ageing and Life Course, World Health Organization, 20 Avenue Appia, 1211, Geneva 27, Switzerland
| | - Laure B Bindels
- Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Université Catholique de Louvain, Brussels, Belgium
| | - Maria Luisa Brandi
- Bone Metabolic Diseases Unit, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Philip C Calder
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Vincenzo Castronovo
- Metastases Research Laboratory, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Etienne Cavalier
- Department of Clinical Chemistry, University of Liege, CHU de Liège, Liège, Belgium
| | - Antonio Cherubini
- Geriatria, Accettazione geriatrica e Centro di ricerca per l'invecchiamento, IRCCS INRCA, Ancona, Italy
| | - Cyrus Cooper
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK; MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK; NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Elaine Dennison
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Claudio Franceschi
- Department of Specialty, Diagnostic and Experimental Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Nicholas Fuggle
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Andrea Laslop
- Scientific Office, Austrian Medicines & Medical Devices Agency, Federal Office for Safety in Health Care, Vienna, Austria
| | - Pierre Miossec
- Immunogenomics and Inflammation Research Unit, EA 4130, University of Lyon, and Department of Clinical Immunology and Rheumatology, Hospices Civils de Lyon, Lyon, France
| | - Thierry Thomas
- Department of Rheumatology, Hôpital Nord, CHU de Saint-Etienne, and INSERM U1059, University of Lyon, Saint-Etienne, France
| | - Sansin Tuzun
- Department of Physical Medicine and Rehabilitation, Cerrahpaşa Medical Faculty, Istanbul University Cerrahpaşa, Istanbul, Turkey
| | - Nicola Veronese
- National Research Council, Neuroscience Institute, Aging Branch, Padova, Italy
| | - Mila Vlaskovska
- Medical Faculty, Department of Pharmacology, Medical University Sofia, Sofia, Bulgaria
| | - Jean-Yves Reginster
- Department of Public Health, Epidemiology and Health Economics, University of Liège, Liège, Belgium; Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - René Rizzoli
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
35
|
Dam SA, Mostert JC, Szopinska-Tokov JW, Bloemendaal M, Amato M, Arias-Vasquez A. The Role of the Gut-Brain Axis in Attention-Deficit/Hyperactivity Disorder. Gastroenterol Clin North Am 2019; 48:407-431. [PMID: 31383279 DOI: 10.1016/j.gtc.2019.05.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Genetic and environmental factors play a role in the cause and development of attention-deficit/hyperactivity disorder (ADHD). Recent studies have suggested an important role of the gut-brain axis (GBA) and intestinal microbiota in modulating the risk of ADHD. Here, the authors provide a brief overview of the clinical and biological picture of ADHD and how the GBA could be involved in its cause. They discuss key biological mechanisms involved in the GBA and how these may increase the risk of developing ADHD. Understanding these mechanisms may help to characterize novel treatment options via identification of disease biomarkers.
Collapse
Affiliation(s)
- Sarita A Dam
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Kapittelweg 29, 6525 EN, Nijmegen, The Netherlands.
| | - Jeanette C Mostert
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Joanna W Szopinska-Tokov
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Mirjam Bloemendaal
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Maria Amato
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Alejandro Arias-Vasquez
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands; Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| |
Collapse
|
36
|
Effects of Gut Microbiota on the Bioavailability of Bioactive Compounds from Ginkgo Leaf Extracts. Metabolites 2019; 9:metabo9070132. [PMID: 31284440 PMCID: PMC6680440 DOI: 10.3390/metabo9070132] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 01/12/2023] Open
Abstract
Ginkgo leaf extract (GLE) is a popular herbal medicine and dietary supplement for the treatment of various diseases, including cardiovascular disease. GLE contains a variety of secondary plant metabolites, such as flavonoids and terpenoids, as active components. Some of these phytochemicals have been known to be metabolized by gut microbial enzymes. The aim of this study was to investigate the effects of the gut microbiota on the pharmacokinetics of the main constituents of GLE using antibacterial-treated mice. The bilobalide, ginkgolide A, ginkgolide B, ginkgolide C, isorhamnetin, kaempferol, and quercetin pharmacokinetic profiles of orally administered GLE (600 mg/kg), with or without ciprofloxacin pretreatment (150 mg/kg/day for 3 days), were determined. In the antibacterial-treated mice, the maximum plasma concentration (Cmax) and area under the curve (AUC) of isorhamnetin were significantly (p < 0.05) increased when compared with the control group. The Cmax and AUC of kaempferol and quercetin (other flavonol glycosides) were slightly higher than those of the control group, but the difference was not statistically significant, while both parameters for terpenoids of GLE showed no significant difference between the antibacterial-treated and control groups. These results showed that antibacterial consumption may increase the bioavailability of isorhamnetin by suppressing gut microbial metabolic activities.
Collapse
|
37
|
Godoy-Vitorino F. Human microbial ecology and the rising new medicine. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:342. [PMID: 31475212 DOI: 10.21037/atm.2019.06.56] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The first life forms on earth were Prokaryotic, and the evolution of all Eukaryotic life occurred with the help of bacteria. Animal-associated microbiota also includes members of the archaea, fungi, protists, and viruses. The genomes of this host-associated microbial life are called the microbiome. Across the mammalian tree, microbiomes guarantee the development of immunity, physiology, and resistance to pathogens. In humans, all surfaces and cavities are colonized by a microbiome, maintained by a careful balance between the host response and its colonizers-thus humans are considered now supraorganisms. These microbiomes supply essential ecosystem services that benefit health through homeostasis, and the loss of the indigenous microbiota leads to dysbiosis, which can have significant consequences to disease. This educational review aims to describe the importance of human microbial ecology, explain the ecological terms applied to the study of the human microbiome, developments within the cutting-edge microbiome field, and implications to diagnostic and treatment.
Collapse
Affiliation(s)
- Filipa Godoy-Vitorino
- Department of Microbiology and Medical Zoology, University of Puerto Rico School of Medicine, Medical Sciences Campus, San Juan, PR, USA
| |
Collapse
|
38
|
Cussotto S, Clarke G, Dinan TG, Cryan JF. Psychotropics and the Microbiome: a Chamber of Secrets…. Psychopharmacology (Berl) 2019; 236:1411-1432. [PMID: 30806744 PMCID: PMC6598948 DOI: 10.1007/s00213-019-5185-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/30/2019] [Indexed: 02/07/2023]
Abstract
The human gut contains trillions of symbiotic bacteria that play a key role in programming different aspects of host physiology in health and disease. Psychotropic medications act on the central nervous system (CNS) and are used in the treatment of various psychiatric disorders. There is increasing emphasis on the bidirectional interaction between drugs and the gut microbiome. An expanding body of evidence supports the notion that microbes can metabolise drugs and vice versa drugs can modify the gut microbiota composition. In this review, we will first give a comprehensive introduction about this bidirectional interaction, then we will take into consideration different classes of psychotropics including antipsychotics, antidepressants, antianxiety drugs, anticonvulsants/mood stabilisers, opioid analgesics, drugs of abuse, alcohol, nicotine and xanthines. The varying effects of these widely used medications on microorganisms are becoming apparent from in vivo and in vitro studies. This has important implications for the future of psychopharmacology pipelines that will routinely need to consider the host microbiome during drug discovery and development.
Collapse
Affiliation(s)
- Sofia Cussotto
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Room 3.86, Western Gateway Building, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Department of Anatomy and Neuroscience, University College Cork, Room 3.86, Western Gateway Building, Cork, Ireland.
| |
Collapse
|
39
|
Clarke G, Sandhu KV, Griffin BT, Dinan TG, Cryan JF, Hyland NP. Gut Reactions: Breaking Down Xenobiotic–Microbiome Interactions. Pharmacol Rev 2019; 71:198-224. [DOI: 10.1124/pr.118.015768] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
40
|
Bisanz JE, Spanogiannopoulos P, Pieper LM, Bustion AE, Turnbaugh PJ. How to Determine the Role of the Microbiome in Drug Disposition. Drug Metab Dispos 2018; 46:1588-1595. [PMID: 30111623 DOI: 10.1124/dmd.118.083402] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/13/2018] [Indexed: 12/22/2022] Open
Abstract
With a paradigm shift occurring in health care toward personalized and precision medicine, understanding the numerous environmental factors that impact drug disposition is of paramount importance. The highly diverse and variant nature of the human microbiome is now recognized as a factor driving interindividual variation in therapeutic outcomes. The purpose of this review is to provide a practical guide on methodology that can be applied to study the effects of microbes on the absorption, distribution, metabolism, and excretion of drugs. We also highlight recent examples of how these methods have been successfully applied to help build the basis for researching the intersection of the microbiome and pharmacology. Although in vitro and in vivo preclinical models are highlighted, these methods are also relevant in late-phase drug development or even as a part of routine after-market surveillance. These approaches will aid in filling major knowledge gaps for both current and upcoming therapeutics with the long-term goal of achieving a new type of knowledge-based medicine that integrates data on the host and the microbiome.
Collapse
Affiliation(s)
- Jordan E Bisanz
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California (J.E.B., P.S., L.M.P., A.E.B., P.J.T.) and Chan Zuckerberg Biohub, San Francisco, California (P.J.T.)
| | - Peter Spanogiannopoulos
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California (J.E.B., P.S., L.M.P., A.E.B., P.J.T.) and Chan Zuckerberg Biohub, San Francisco, California (P.J.T.)
| | - Lindsey M Pieper
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California (J.E.B., P.S., L.M.P., A.E.B., P.J.T.) and Chan Zuckerberg Biohub, San Francisco, California (P.J.T.)
| | - Annamarie E Bustion
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California (J.E.B., P.S., L.M.P., A.E.B., P.J.T.) and Chan Zuckerberg Biohub, San Francisco, California (P.J.T.)
| | - Peter J Turnbaugh
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California (J.E.B., P.S., L.M.P., A.E.B., P.J.T.) and Chan Zuckerberg Biohub, San Francisco, California (P.J.T.)
| |
Collapse
|
41
|
Walsh J, Griffin BT, Clarke G, Hyland NP. Drug-gut microbiota interactions: implications for neuropharmacology. Br J Pharmacol 2018; 175:4415-4429. [PMID: 29782640 DOI: 10.1111/bph.14366] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 04/04/2018] [Accepted: 04/17/2018] [Indexed: 12/19/2022] Open
Abstract
The fate and activity of drugs are frequently dictated not only by the host per se but also by the microorganisms present in the gastrointestinal tract. The gut microbiome is known to, both directly and indirectly, affect drug metabolism. More evidence now hints at the effects that drugs can have on the function and composition of the gut microbiome. Both microbiota-mediated alterations in drug metabolism and drug-mediated alterations in the gut microbiome can have beneficial or detrimental effects on the host. Greater insights into the mechanisms driving these reciprocal drug-gut microbiota interactions are needed to guide the development of microbiome-targeted dietary or pharmacological interventions, which may have the potential to enhance drug efficacy or reduce drug side effects. In this review, we explore the relationship between drugs and the gut microbiome, with a specific focus on potential mechanisms underpinning the drug-mediated alterations on the gut microbiome and the potential implications for psychoactive drugs. LINKED ARTICLES: This article is part of a themed section on When Pharmacology Meets the Microbiome: New Targets for Therapeutics? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.24/issuetoc.
Collapse
Affiliation(s)
- Jacinta Walsh
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Brendan T Griffin
- School of Pharmacy, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Niall P Hyland
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|