1
|
Amir Hamzah K, Lipp OV, Ney LJ. Allopregnanolone and intrusive memories: A potential therapeutic target for PTSD treatment? Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111168. [PMID: 39369808 DOI: 10.1016/j.pnpbp.2024.111168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/22/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Significant amounts of research have been devoted to treatment of post-traumatic stress disorder (PTSD) and the understanding of its fear and stress-related symptoms. However, current interventions are only effective in 60 % of the patient population. Allopregnanolone has become a topic of interest for PTSD due to its influences on inhibitory neurotransmission and the physiological stress response. This review explores available literature that suggests that allopregnanolone has an influence on (a) chronic stress and anxiety-like symptoms, (b) fear conditioning and contextual fear, and (c) intrusive and emotional memories. A relationship between allopregnanolone and PTSD is suggested, postulating that allopregnanolone is a potential target for the treatment of PTSD. This very exciting prospect calls for the expansion of research investigating a direct relationship between allopregnanolone and PTSD.
Collapse
Affiliation(s)
- Khalisa Amir Hamzah
- School of Psychology and Counselling, Queensland University of Technology, Australia.
| | - Ottmar V Lipp
- School of Psychology and Counselling, Queensland University of Technology, Australia
| | - Luke J Ney
- School of Psychology and Counselling, Queensland University of Technology, Australia
| |
Collapse
|
2
|
Nenchovska Z, Atanasova M, Stoynova T, Toteva G, Tchekalarova J. Detrimental effect of prenatal progesterone exposure on anxiety and depressive-like responses in adult male and female rat offspring: Role of plasma, hippocampal corticosterone and hippocampal progesterone receptors. Physiol Behav 2024; 287:114712. [PMID: 39393450 DOI: 10.1016/j.physbeh.2024.114712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/13/2024]
Abstract
In clinical practice, the use of exogenous progesterone (Pro) is often required in assisted reproduction programs due to reduced levels of the hormone and the risk of miscarriage. Exposure to the hormone reduces anxiety in rodents, but the long-term effects of prenatal exposure in adult offspring are unknown. Therefore, the present study was designed to investigate the effect of prenatal Pro treatment on anxiety- and depression-like behavior and the effect on plasma, hippocampal corticosterone (CORT) and hippocampal progesterone receptor (PR) in young adult male and female rat offspring. The behavioral responses of offspring of both sexes were tested in the open field, and the elevated plus maze tests, and for depressive-like behavior in the sucrose preference test, the forced swimming test and the splash test. CORT levels and PR expression were measured by ELISA. The results indicate that prenatal Pro exposure at low and high doses (10 and 50 mg kg-1, s.c. during G0-G10) induces anxiogenic and depressive-like effects compared to vehicle-treated controls, which are associated with high plasma and hippocampal CORT levels and upregulated hippocampal PR in male and female adult offspring. Our results demonstrate that prenatal Pro exposure has detrimental effects on the emotional status of male and female adult offspring, which may be associated with long-term changes in hormonal homeostasis.
Collapse
Affiliation(s)
- Zlatina Nenchovska
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Milena Atanasova
- Medical University of Pleven, Department of Biology, Pleven 5800, Bulgaria
| | - Tsveta Stoynova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Gergana Toteva
- Medical University of Pleven, Department of Biology, Pleven 5800, Bulgaria
| | - Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria.
| |
Collapse
|
3
|
Weerts EM, Jenkins BW, Kuang RY, Hausker A, Moore CF. Orally administered Cannabigerol (CBG) in rats: Cannabimimetic actions, anxiety-like behavior, and inflammation-induced pain. Pharmacol Biochem Behav 2024; 245:173883. [PMID: 39322049 DOI: 10.1016/j.pbb.2024.173883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/16/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Cannabigerol (CBG) is a phytocannabinoid found in cannabis that is promoted for medical use and other health benefits, but current empirical data on the behavioral effects of CBG are lacking. The purpose of this study was to evaluate the effects of a wide dose range of orally administered CBG on outcomes related to its potential cannabimimetic effects (cannabinoid tetrad), as well as effects on anxiety-like behavior, inflammation and related pain hypersensitivity. In a series of experiments, male and female Sprague Dawley rats received oral CBG (per os [p.o.]) or vehicle prior to testing of effects on 1) the cannabinoid tetrad (30-600 mg/kg, p.o.): assessments of locomotor activity, body temperature, antinociception (tail flick test), and catalepsy (bar test); 2) acoustic startle response (ASR) test of anxiety-like behavior (30-300 mg/kg, p.o.); 3) carrageenan-induced inflammation (paw edema), hyperalgesia (Hargreaves test), and allodynia (von Frey test) tests (10-60 mg/kg, p.o.). Positive control groups were administered THC (0-30 mg/kg, p.o.) for the cannabinoid tetrad assay, the benzodiazepine lorazepam (0-3 mg/kg, intraperitoneal [i.p.]) for the ASR test, or the opioid analgesic morphine (0-10 mg/kg, i.p.) for the carrageenan-induced inflammation and pain hypersensitivity tests. CBG did not produce cannabimimetic actions in the tetrad, but increased locomotor activity at the highest doses (300-600 mg/kg). THC produced typical dose-related cannabimimetic effects. CBG did not produce anxiolytic effects in the ASR test, while groups pretreated with lorazepam showed reductions in ASR. Finally, pretreatment with CBG prior to an intraplantar injection of carrageenan did not prevent the induction of an acute inflammatory state (i.e., increased paw edema and associated hyperalgesia and allodynia). In contrast, morphine alleviated hyperalgesia and allodynia induced by intraplantar carrageenan but did not affect the development of paw edema. In sum, these data do not support the use of oral CBG for anxiety or inflammatory pain.
Collapse
Affiliation(s)
- Elise M Weerts
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA
| | - Bryan W Jenkins
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA
| | - Robbie Y Kuang
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA
| | - Alma Hausker
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA
| | - Catherine F Moore
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA.
| |
Collapse
|
4
|
Nisbett KE. Moxie begets MOXI: The journey to a novel hypothesis about Mu-opioid and OXytocin system Interactions. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2024; 19:100244. [PMID: 39104824 PMCID: PMC11298892 DOI: 10.1016/j.cpnec.2024.100244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 08/07/2024] Open
Abstract
This narrative review summarizes the early life of the author, Khalin E. Nisbett, and highlights the factors that led to her career in research and her development of two novel research hypotheses: the Mu-opioid and OXytocin system Interaction (MOXI) hypothesis and Mu-Opioid receptor antagonist and OXytocin receptor Agonist In Combination (MOXAIC) treatment hypothesis. Notably, Nisbett's career began in the era after countless studies demonstrated that oxytocin is not just a female neurotransmitter and not just a female reproductive hormone, an era in which researchers are exploring the role of oxytocin in emotion regulation, social interaction, and cognitive processing across both sexes. As such, the previously held perspective that oxytocin is "just a female hormone" did not impede Nisbett's ideas. Intrigued by science, emotion regulation, and social interaction, she began to explore the role of oxytocin and opioids in emotion regulation. On the heels of earlier theories, such as the Tend-and-Befriend theory and Opioid Theory of Social Attachment, she began to develop the MOXI hypothesis, which postulates that the μ-opioid receptor and oxytocin systems interact to mediate social interaction and emotion regulation. In this narrative review, Nisbett summarizes two studies that explored (i) the role of oxytocin in anxiety- and depression-like behavior and (ii) the effect of opioid receptor blockade on the anxiolytic-like effect of oxytocin, which led to a revision of the MOXI hypothesis and postulation of the Mu-Opioid receptor antagonist and OXytocin receptor Agonist In Combination (MOXAIC) treatment hypothesis. Nisbett also discusses several limitations of these hypotheses and her current research interests and aspirations.
Collapse
Affiliation(s)
- Khalin E. Nisbett
- Graduate Program in Neuroscience, Graduate College, University of Illinois Chicago, Chicago, IL, 60607, USA
- Stress & Addiction Neuroscience Unit, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, 21224, USA
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| |
Collapse
|
5
|
Sikes-Keilp C, Rubinow DR. GABA-ergic Modulators: New Therapeutic Approaches to Premenstrual Dysphoric Disorder. CNS Drugs 2023; 37:679-693. [PMID: 37542704 DOI: 10.1007/s40263-023-01030-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/20/2023] [Indexed: 08/07/2023]
Abstract
Premenstrual dysphoric disorder (PMDD) is characterized by the predictable onset of mood and physical symptoms secondary to gonadal steroid fluctuation during the luteal phase of the menstrual cycle. Although menstrual-related affective dysfunction is responsible for considerable functional impairment and reduction in quality of life worldwide, currently approved treatments for PMDD are suboptimal in their effectiveness. Research over the past two decades has suggested that the interaction between allopregnanolone, a neurosteroid derivative of progesterone, and the gamma-aminobutyric acid (GABA) system represents an important relationship underlying symptom genesis in reproductive-related mood disorders, including PMDD. The objective of this narrative review is to discuss the plausible link between changes in GABAergic transmission secondary to the fluctuation of allopregnanolone during the luteal phase and mood impairment in susceptible individuals. As part of this discussion, we explore promising findings from early clinical trials of several compounds that stabilize allopregnanolone signaling during the luteal phase, including dutasteride, a 5-alpha reductase inhibitor; isoallopregnanolone, a GABA-A modulating steroid antagonist; and ulipristal acetate, a selective progesterone receptor modulator. We then reflect on the implications of these therapeutic advances, including how they may promote our knowledge of affective regulation more generally. We conclude that these and other studies of PMDD may yield critical insight into the etiopathogenesis of affective disorders, considering that (1) symptoms in PMDD have a predictable onset and offset, allowing for examination of affective state kinetics, and (2) GABAergic interventions in PMDD can be used to better understand the relationship between mood states, network regulation, and the balance between excitatory and inhibitory signaling in the brain.
Collapse
Affiliation(s)
- Christopher Sikes-Keilp
- Department of Psychiatry, University of North Carolina Hospitals, 101 Manning Drive, Chapel Hill, NC, 27514, USA.
| | - David R Rubinow
- Department of Psychiatry, University of North Carolina Hospitals, 101 Manning Drive, Chapel Hill, NC, 27514, USA
| |
Collapse
|
6
|
Bäckström T, Bengtsson SKS, Sjöstedt J, Malinina E, Johansson M, Ragagnin G, Ekberg K, Lundgren P. Isoallopregnanolone Inhibits Estrus Cycle-Dependent Aggressive Behavior. Biomolecules 2023; 13:1017. [PMID: 37371597 DOI: 10.3390/biom13061017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/11/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Among female rats, some individuals show estrus cycle-dependent irritability/aggressive behaviors, and these individual rats may be used as a model for premenstrual dysphoric disorder (PMDD). We wanted to investigate if these behaviors are related to the estrus cycle phase containing moderately increased levels of positive GABA-A receptor-modulating steroids (steroid-PAM), especially allopregnanolone (ALLO), and if the adverse behavior can be antagonized. The electrophysiology studies in this paper show that isoallopregnanolone (ISO) is a GABA-A-modulating steroid antagonist (GAMSA), meaning that ISO can antagonize the agonistic effects of positive GABA-A receptor-modulating steroids in both α1β2γ2L and α4β3δ GABA-A receptor subtypes. In this study, we also investigated whether ISO could antagonize the estrus cycle-dependent aggressive behaviors in female Wistar rats using a resident-intruder test. Our results confirmed previous reports of estrus cycle-dependent behaviors in that 42% of the tested rats showed higher levels of irritability/aggression at diestrus compared to those at estrus. Furthermore, we found that, during the treatment with ISO, the aggressive behavior at diestrus was alleviated to a level comparable to that of estrus. We noticed an 89% reduction in the increase in aggressive behavior at diestrus compared to that at estrus. Vehicle treatment in the same animals showed a minimal effect on the diestrus-related aggressive behavior. In conclusion, we showed that ISO can antagonize Steroid-PAM both in α1β2γ2L and α4β3δ GABA-A receptor subtypes and inhibit estrus cycle-dependent aggressive behavior.
Collapse
Affiliation(s)
- Torbjörn Bäckström
- Umeå Neurosteroid Research Center, Department of Clinical Science, Umeå University, SE-901 85 Umea, Sweden
| | - Sara K S Bengtsson
- Umeå Neurosteroid Research Center, Department of Clinical Science, Umeå University, SE-901 85 Umea, Sweden
| | - Jessica Sjöstedt
- Umeå Neurosteroid Research Center, Department of Clinical Science, Umeå University, SE-901 85 Umea, Sweden
| | - Evgenya Malinina
- Umeå Neurosteroid Research Center, Department of Clinical Science, Umeå University, SE-901 85 Umea, Sweden
| | - Maja Johansson
- Umeå Neurosteroid Research Center, Department of Clinical Science, Umeå University, SE-901 85 Umea, Sweden
| | - Gianna Ragagnin
- Umeå Neurosteroid Research Center, Department of Clinical Science, Umeå University, SE-901 85 Umea, Sweden
| | - Karin Ekberg
- Asarina Pharma AB, Fogdevreten 2, SE-171 65 Solna, Sweden
| | - Per Lundgren
- Umeå Neurosteroid Research Center, Department of Clinical Science, Umeå University, SE-901 85 Umea, Sweden
| |
Collapse
|
7
|
Rudzinskas SA, Mazzu MA, Schiller CE, Meltzer-Brody S, Rubinow DR, Schmidt PJ, Goldman D. Divergent Transcriptomic Effects of Allopregnanolone in Postpartum Depression. Genes (Basel) 2023; 14:1234. [PMID: 37372414 PMCID: PMC10298697 DOI: 10.3390/genes14061234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Brexanolone, a formulation of the neurosteroid allopregnanolone (ALLO), is approved for treating postpartum depression (PPD) and is being investigated for therapeutic efficacy across numerous neuropsychiatric disorders. Given ALLO's beneficial effects on mood in women with PPD compared to healthy control women, we sought to characterize and compare the cellular response to ALLO in women with (n = 9) or without (n = 10, i.e., Controls) past PPD, utilizing our previously established patient-derived lymphoblastoid cell lines (LCLs). To mimic in vivo PPD ALLO-treatment, LCLs were exposed to ALLO or DMSO vehicle for 60 h and RNA-sequenced to detect differentially expressed genes (DEGs, pnominal < 0.05). Between ALLO-treated Control and PPD LCLs, 269 DEGs were identified, including Glutamate Decarboxylase 1 (GAD1), which was decreased 2-fold in PPD. Network analysis of PPD:ALLO DEGs revealed enriched terms related to synaptic activity and cholesterol biosynthesis. Within-diagnosis analyses (i.e., DMSO vs. ALLO) detected 265 ALLO-induced DEGs in Control LCLs compared to only 98 within PPD LCLs, with just 11 DEGs overlapping. Likewise, the gene ontologies underlying ALLO-induced DEGs in PPD and Control LCLs were divergent. These data suggest that ALLO may activate unique and opposing molecular pathways in women with PPD, which may be tied to its antidepressant mechanism.
Collapse
Affiliation(s)
- Sarah A. Rudzinskas
- Behavioral Endocrinology Branch, National Institute of Mental Health (NIMH), NIH, 10 Center Drive MSC 1277, Bethesda, MD 20892, USA; (S.A.R.)
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), NIH, Rockville, MD 20855, USA
| | - Maria A. Mazzu
- Behavioral Endocrinology Branch, National Institute of Mental Health (NIMH), NIH, 10 Center Drive MSC 1277, Bethesda, MD 20892, USA; (S.A.R.)
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), NIH, Rockville, MD 20855, USA
| | | | | | - David R. Rubinow
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Peter J. Schmidt
- Behavioral Endocrinology Branch, National Institute of Mental Health (NIMH), NIH, 10 Center Drive MSC 1277, Bethesda, MD 20892, USA; (S.A.R.)
| | - David Goldman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), NIH, Rockville, MD 20855, USA
| |
Collapse
|
8
|
Hantsoo L, Payne JL. Towards understanding the biology of premenstrual dysphoric disorder: From genes to GABA. Neurosci Biobehav Rev 2023; 149:105168. [PMID: 37059403 PMCID: PMC10176022 DOI: 10.1016/j.neubiorev.2023.105168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/10/2023] [Accepted: 04/10/2023] [Indexed: 04/16/2023]
Abstract
Premenstrual dysphoric disorder (PMDD) is a severe mood disorder, with affective symptoms that rise and fall in concert with the hormonal fluctuations of the menstrual cycle. PMDD's pathophysiology is poorly understood. This review describes recent research on potential biological contributors to PMDD, with a focus on neuroactive steroids, genetics, neuroimaging and cellular studies. Studies suggest that a key contributor is abnormal central nervous system (CNS) response to fluctuations in neuroactive steroid hormones. Imaging studies are limited but support alterations in serotonergic and GABA transmission. Genetic studies suggest heritability, yet specific genetic contributors have not been characterized. Finally, recent cutting-edge cellular studies indicate an underlying vulnerability to the effect of sex hormones at a cellular level. Overall the findings across studies do not yet fit together into a complete description of the underlying biology of PMDD. It is possible that PMDD consists of biological subtypes, and future research may benefit from a subtyping approach.
Collapse
Affiliation(s)
- Liisa Hantsoo
- Department of Psychiatry & Behavioral Sciences, The Johns Hopkins University School of Medicine, 550 N. Broadway Street, Baltimore, MD 21205, USA.
| | - Jennifer L Payne
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, PO Box 800548, Charlottesville, VA 22908, USA
| |
Collapse
|
9
|
Kaplan A, Nash AI, Freeman AAH, Lewicki LG, Rye DB, Trotti LM, Brandt AL, Jenkins A. Commonly Used Therapeutics Associated with Changes in Arousal Inhibit GABA AR Activation. Biomolecules 2023; 13:biom13020365. [PMID: 36830736 PMCID: PMC9953295 DOI: 10.3390/biom13020365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
GABAA receptor-positive modulators are well-known to induce sedation, sleep, and general anesthesia. Conversely, GABAA receptor negative allosteric modulators (GABAARNAMs) can increase arousal and induce seizures. Motivated by our studies with patients with hypersomnia, and our discovery that two GABAARNAMs can restore the Excitation/Inhibition (E/I) balance in vitro and arousal in vivo, we chose to screen 11 compounds that have been reported to modulate arousal, to see if they shared a GABA-related mechanism. We determined modulation with both conventional and microfluidic patch clamp methods. We found that receptor activation was variably modulated by all 11 compounds: Rifampicin (RIF), Metronidazole (MET), Minocycline (MIN), Erythromycin (ERY), Ofloxacin (OFX), Chloroquine (CQ), Hydroxychloroquine sulfate (HCQ), Flumazenil (FLZ), Pentylenetetrazol (PTZ), (-)-Epigallocatechin Gallate (EGCG), and clarithromycin (CLR). The computational modeling of modulator-receptor interactions predicted drug action at canonical binding sites and novel orphan sites on the receptor. Our findings suggest that multiple avenues of investigation are now open to investigate large and brain-penetrant molecules for the treatment of patients with diminished CNS E/I balance.
Collapse
Affiliation(s)
- Anling Kaplan
- Department of Anesthesiology, Emory University, Atlanta, GA 30322, USA
| | - Abigail I. Nash
- Department of Medical Affairs, Janssen Scientific Affairs LLC, Titusville, NJ 08560, USA
| | | | - Lauren G. Lewicki
- School of Pharmacy, University of Saint Joseph, West Hartford, CT 06117, USA
| | - David B. Rye
- Department of Neurology, Emory University, Atlanta, GA 30322, USA
| | | | - Asher L. Brandt
- Department of Chemistry, University of Saint Joseph, West Hartford, CT 06117, USA
| | - Andrew Jenkins
- Department of Pharmaceutical Sciences, University of Saint Joseph, West Hartford, CT 06117, USA
- Correspondence:
| |
Collapse
|
10
|
Fox HC, Milivojevic V, Sinha R. Therapeutics for Substance-Using Women: The Need to Elucidate Sex-Specific Targets for Better-Tailored Treatments. Handb Exp Pharmacol 2023; 282:127-161. [PMID: 37592081 DOI: 10.1007/164_2023_687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
In the last decade, alcohol consumption in the US has risen by 84% in women compared with 35% in men. Furthermore, research has shown that sex- and gender-related differences may disadvantage women in terms of developing a range of psychological, cognitive, and medical problems considerably earlier in their drinking history than men, and despite consuming a similar quantity of substances. While this "telescoping" process has been acknowledged in the literature, a concomitant understanding of the underlying biobehavioral mechanisms, and an increase in the development of specific treatments tailored to women, has not occurred. In the current chapter we focus on understanding why the need for personalized, sex-specific medications is imperative, and highlight some of the potential sex-specific gonadal and stress-related adaptations underpinning the accelerated progress from controlled to compulsive drug and alcohol seeking in women. We additionally discuss the efficacy of these mechanisms as novel targets for medications development, using exogenous progesterone and guanfacine as examples. Finally, we assess some of the challenges faced and progress made in terms of developing innovative medications in women. We suggest that agents such as exogenous progesterone and adrenergic medications, such as guanfacine, may provide some efficacy in terms of attenuating stress-induced craving for several substances, as well as improving the ability to emotionally regulate in the face of stress, preferentially in women. However, to fully leverage the potential of these therapeutics in substance-using women, greater focus needs to the placed on reducing barriers to treatment and research by encouraging women into clinical trials.
Collapse
Affiliation(s)
- Helen C Fox
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA.
| | - Verica Milivojevic
- The Yale Stress Center, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Rajita Sinha
- The Yale Stress Center, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
11
|
Gao Q, Sun W, Wang YR, Li ZF, Zhao F, Geng XW, Xu KY, Chen D, Liu K, Xing Y, Liu W, Wei S. Role of allopregnanolone-mediated γ-aminobutyric acid A receptor sensitivity in the pathogenesis of premenstrual dysphoric disorder: Toward precise targets for translational medicine and drug development. Front Psychiatry 2023; 14:1140796. [PMID: 36937732 PMCID: PMC10017536 DOI: 10.3389/fpsyt.2023.1140796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/09/2023] [Indexed: 03/06/2023] Open
Abstract
Premenstrual dysphoric disorder (PMDD) can be conceptualized as a disorder of suboptimal sensitivity to neuroactive steroid hormones. Its core symptoms (emotional instability, irritability, depression, and anxiety) are related to the increase of stress sensitivity due to the fluctuation of hormone level in luteal phase of the menstrual cycle. In this review, we describe the emotional regulatory effect of allopregnanolone (ALLO), and summarize the relationship between ALLO and γ-aminobutyric acid A (GABAA) receptor subunits based on rodent experiments and clinical observations. A rapid decrease in ALLO reduces the sensitivity of GABAA receptor, and reduces the chloride influx, hindered the inhibitory effect of GABAergic neurons on pyramidal neurons, and then increased the excitability of pyramidal neurons, resulting in PMDD-like behavior. Finally, we discuss in depth the treatment of PMDD with targeted GABAA receptors, hoping to find a precise target for drug development and subsequent clinical application. In conclusion, PMDD pathophysiology is rooted in GABAA receptor sensitivity changes caused by rapid changes in ALLO levels. Targeting GABAA receptors may alleviate the occurrence of PMDD.
Collapse
Affiliation(s)
- Qian Gao
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- Chinese Medicine and Brain Science Core Facility, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Sun
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yue-Rui Wang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- Chinese Medicine and Brain Science Core Facility, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zi-Fa Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Feng Zhao
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xi-Wen Geng
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- Chinese Medicine and Brain Science Core Facility, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kai-Yong Xu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dan Chen
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kun Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- Chinese Medicine and Brain Science Core Facility, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying Xing
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- Chinese Medicine and Brain Science Core Facility, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Liu
- Department of Encephalopathy, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- Wei Liu,
| | - Sheng Wei
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- Chinese Medicine and Brain Science Core Facility, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Sheng Wei,
| |
Collapse
|
12
|
Laham BJ, Murthy SS, Hanani M, Clappier M, Boyer S, Vasquez B, Gould E. The estrous cycle modulates early-life adversity effects on mouse avoidance behavior through progesterone signaling. Nat Commun 2022; 13:7537. [PMID: 36476469 PMCID: PMC9729614 DOI: 10.1038/s41467-022-35068-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
Early-life adversity (ELA) increases the likelihood of neuropsychiatric diagnoses, which are more prevalent in women than men. Since changes in reproductive hormone levels can also increase the probability of anxiety disorders in women, we examined the effects of ELA on adult female mice across the estrous cycle. We found that during diestrus, when progesterone levels are relatively high, ELA mice exhibit increased avoidance behavior and increased theta oscillation power in the ventral hippocampus (vHIP). We also found that diestrus ELA mice had higher levels of progesterone and lower levels of allopregnanolone, a neurosteroid metabolite of progesterone, in the vHIP compared with control-reared mice. Progesterone receptor antagonism normalized avoidance behavior in ELA mice, while treatment with a negative allosteric modulator of allopregnanolone promoted avoidance behavior in control mice. These results suggest that altered vHIP progesterone and allopregnanolone signaling during diestrus increases avoidance behavior in ELA mice.
Collapse
Affiliation(s)
- Blake J Laham
- Princeton Neuroscience Institute, Princeton, NJ, 08450, USA
| | | | - Monica Hanani
- Princeton Neuroscience Institute, Princeton, NJ, 08450, USA
| | - Mona Clappier
- Princeton Neuroscience Institute, Princeton, NJ, 08450, USA
| | - Sydney Boyer
- Princeton Neuroscience Institute, Princeton, NJ, 08450, USA
| | - Betsy Vasquez
- Princeton Neuroscience Institute, Princeton, NJ, 08450, USA
| | - Elizabeth Gould
- Princeton Neuroscience Institute, Princeton, NJ, 08450, USA.
| |
Collapse
|
13
|
Winek K, Tzur Y, Soreq H. Biological underpinnings of sex differences in neurological disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 164:27-67. [PMID: 36038206 DOI: 10.1016/bs.irn.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The importance of sex differences in neurological disorders has been increasingly acknowledged in recent clinical and basic research studies, but the complex biology and genetics underlying sex-linked biological heterogeneity and its brain-to-body impact remained incompletely understood. Men and women differ substantially in their susceptibility to certain neurological diseases, in the severity of symptoms, prognosis as well as the nature and efficacy of their response to treatments. The detailed mechanisms underlying these differences, especially at the molecular level, are being addressed in many studies but leave a lot to be further revealed. Here, we provide an overview of recent advances in our understanding of how sex differences in the brain and brain-body signaling contribute to neurological disorders and further present some future prospects entailed in terms of diagnostics and therapeutics.
Collapse
Affiliation(s)
- Katarzyna Winek
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel; The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yonat Tzur
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hermona Soreq
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel; The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
14
|
Schoenberg HL, Bremer GP, Carasi-Schwartz F, VonDoepp S, Arntsen C, Anacker AMJ, Toufexis DJ. Cyclic estrogen and progesterone during instrumental acquisition contributes to habit formation in female rats. Horm Behav 2022; 142:105172. [PMID: 35405411 DOI: 10.1016/j.yhbeh.2022.105172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 03/02/2022] [Accepted: 04/02/2022] [Indexed: 11/22/2022]
Abstract
Habit formation is thought to involve two parallel processes that are mediated by distinct neural substates: one that suppresses goal-directed behavior, and one that facilitates stimulus-response (S-R) learning, which underscores habitual behavior. In previous studies we showed that habitual responding emerges early during instrumental training in gonadally-intact female, compared to male, rats. The present study aimed to determine the role of ovarian hormones during instrumental acquisition in the transition from goal-directed to habitual behavior in female rats. Ovariectomized (OVX) female rats were given subcutaneous silastic capsules that released low levels of 17-β estradiol (E2) to maintain estrogen receptor availability. Rats were assigned to one of three hormone treatment conditions: no additional hormone replacement (Control group), replacement with high E2 (High E2 group), or replacement with high E2 followed by progesterone (High E2 + P4 group). Hormone replacement occurred twice during acquisition to mimic natural hormone fluctuations. At test, the Control and High E2 groups demonstrated responding that was sensitive to devaluation by lithium chloride-induced illness, indicating goal-directed behavior. In contrast, the High E2 + P4 group exhibited a pattern of devaluation-insensitive, habitual responding, that suggested the suppression of goal-directed processes. In a follow-up experiment, similar procedures were conducted, however during acquisition, OVX rats were given cyclic high E2 plus medroxy-progesterone (MPA), a form of progesterone that does not metabolize to neuroactive metabolites. In this group, goal-directed behavior was observed. These data indicate that habit formation is not facilitated in low estrogen states, nor in the presence of cyclic high E2. However, cyclic high E2, together with progesterone during acquisition, appears to facilitate the early emergence of habitual responding. Furthermore, these data suggest that a neuroactive progesterone metabolite, like allopregnanolone, in combination with high cyclic E2, supports this phenomenon.
Collapse
Affiliation(s)
- Hannah L Schoenberg
- Department of Psychological Science, University of Vermont, Burlington, VT 05401, United States of America.
| | - Gillian P Bremer
- Department of Psychological Science, University of Vermont, Burlington, VT 05401, United States of America
| | - Francesca Carasi-Schwartz
- Department of Psychological Science, University of Vermont, Burlington, VT 05401, United States of America
| | - Sarah VonDoepp
- Department of Psychological Science, University of Vermont, Burlington, VT 05401, United States of America
| | - Christian Arntsen
- Department of Psychological Science, University of Vermont, Burlington, VT 05401, United States of America
| | - Allison M J Anacker
- Department of Psychological Science, University of Vermont, Burlington, VT 05401, United States of America
| | - Donna J Toufexis
- Department of Psychological Science, University of Vermont, Burlington, VT 05401, United States of America.
| |
Collapse
|
15
|
Abstract
BACKGROUND Anxiety disorders are highly prevalent affecting up to 33.7% of people over a lifetime. Although many treatment options are available, they are often associated with unacceptable side-effect profiles and approximately one in three patients are treatment resistant. Allopregnanolone, a neuroactive steroid acting as a positive allosteric modulator at the GABAA receptor, is synthesised in response to stress and acts to negatively modulate the hypothalamic-pituitary-adrenal axis. FINDINGS After chronic exposure to and withdrawal from allopregnanolone, an increase in α4β2δ GABAA receptors results in a reduced inhibitory effect of allopregnanolone, resulting in decreased inhibition and, therefore, increased neuronal excitability. The relationship between allopregnanolone and increased α4β2δ GABAA receptors has been demonstrated in animal models during methamphetamine withdrawal and puberty, events both associated with stress. The effect of allopregnanolone during these events is anxiogenic, a paradoxical action to its usual anxiolytic effects. Flumazenil, the GABAA receptor antagonist, has been shown to cause receptor internalisation of α4β2δ GABAA receptors, which may results in anxiolysis. CONCLUSION We propose that chronic stress and chronic exposure to and withdrawal from allopregnanolone in anxiety disorders result in alterations in GABAA receptor function, which can be corrected by flumazenil. As such, flumazenil may exhibit anxiolytic properties in patients with increased α4β2δ GABAA receptor expression.
Collapse
Affiliation(s)
- Alexander T Gallo
- Division of Psychiatry, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Gary K Hulse
- Division of Psychiatry, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Fresh Start Recovery Programme, Subiaco, WA, Australia
| |
Collapse
|
16
|
Fakira AK, Lueptow LM, Trimbake NA, Devi LA. PEN Receptor GPR83 in Anxiety-Like Behaviors: Differential Regulation in Global vs Amygdalar Knockdown. Front Neurosci 2021; 15:675769. [PMID: 34512237 PMCID: PMC8427670 DOI: 10.3389/fnins.2021.675769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Anxiety disorders are prevalent across the United States and result in a large personal and societal burden. Currently, numerous therapeutic and pharmaceutical treatment options exist. However, drugs to classical receptor targets have shown limited efficacy and often come with unpleasant side effects, highlighting the need to identify novel targets involved in the etiology and treatment of anxiety disorders. GPR83, a recently deorphanized receptor activated by the abundant neuropeptide PEN, has also been identified as a glucocorticoid regulated receptor (and named GIR) suggesting that this receptor may be involved in stress-responses that underlie anxiety. Consistent with this, GPR83 null mice have been found to be resistant to stress-induced anxiety. However, studies examining the role of GPR83 within specific brain regions or potential sex differences have been lacking. In this study, we investigate anxiety-related behaviors in male and female mice with global knockout and following local GPR83 knockdown in female mice. We find that a global knockdown of GPR83 has minimal impact on anxiety-like behaviors in female mice and a decrease in anxiety-related behaviors in male mice. In contrast, a local GPR83 knockdown in the basolateral amygdala leads to more anxiety-related behaviors in female mice. Local GPR83 knockdown in the central amygdala or nucleus accumbens (NAc) showed no significant effect on anxiety-related behaviors. Finally, dexamethasone administration leads to a significant decrease in receptor expression in the amygdala and NAc of female mice. Together, our studies uncover a significant, but divergent role for GPR83 in different brain regions in the regulation of anxiety-related behaviors, which is furthermore dependent on sex.
Collapse
Affiliation(s)
| | | | | | - Lakshmi A. Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
17
|
Reddy DS. Brain structural and neuroendocrine basis of sex differences in epilepsy. HANDBOOK OF CLINICAL NEUROLOGY 2021; 175:223-233. [PMID: 33008527 DOI: 10.1016/b978-0-444-64123-6.00016-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This chapter reviews the current information about sex differences in epilepsy and potential mechanisms underlying sex differences in seizure susceptibility and epilepsy. The susceptibility to and occurrence of seizures are generally higher in men than women. There is gender-specific epilepsies such as catamenial epilepsy, a neuroendocrine condition in which seizures are most often clustered around the perimenstrual or periovulatory period in adult women. Structural differences in cerebral morphology, the structural and functional circuits may render men and women differentially vulnerable to seizure disorders and epileptogenic processes. Changes in seizure sensitivity are evident at puberty, pregnancy, and menopause, often attributed to circulating steroid hormones and neurosteroids as well as neuroplasticity in receptor systems. An improved understanding of the sexual dimorphism in neural circuits and the neuroendocrine basis of sex differences or resistance to protective drugs is essential to develop sex-specific therapies for seizure conditions.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, United States.
| |
Collapse
|
18
|
Christian CA, Reddy DS, Maguire J, Forcelli PA. Sex Differences in the Epilepsies and Associated Comorbidities: Implications for Use and Development of Pharmacotherapies. Pharmacol Rev 2021; 72:767-800. [PMID: 32817274 DOI: 10.1124/pr.119.017392] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The epilepsies are common neurologic disorders characterized by spontaneous recurrent seizures. Boys, girls, men, and women of all ages are affected by epilepsy and, in many cases, by associated comorbidities as well. The primary courses of treatment are pharmacological, dietary, and/or surgical, depending on several factors, including the areas of the brain affected and the severity of the epilepsy. There is a growing appreciation that sex differences in underlying brain function and in the neurobiology of epilepsy are important factors that should be accounted for in the design and development of new therapies. In this review, we discuss the current knowledge on sex differences in epilepsy and associated comorbidities, with emphasis on those aspects most informative for the development of new pharmacotherapies. Particular focus is placed on sex differences in the prevalence and presentation of various focal and generalized epilepsies; psychiatric, cognitive, and physiologic comorbidities; catamenial epilepsy in women; sex differences in brain development; the neural actions of sex and stress hormones and their metabolites; and cellular mechanisms, including brain-derived neurotrophic factor signaling and neuronal-glial interactions. Further attention placed on potential sex differences in epilepsies, comorbidities, and drug effects will enhance therapeutic options and efficacy for all patients with epilepsy. SIGNIFICANCE STATEMENT: Epilepsy is a common neurological disorder that often presents together with various comorbidities. The features of epilepsy and seizure activity as well as comorbid afflictions can vary between men and women. In this review, we discuss sex differences in types of epilepsies, associated comorbidities, pathophysiological mechanisms, and antiepileptic drug efficacy in both clinical patient populations and preclinical animal models.
Collapse
Affiliation(s)
- Catherine A Christian
- Department of Molecular and Integrative Physiology, Neuroscience Program, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois (C.A.C.); Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas (D.S.R.); Neuroscience Department, Tufts University School of Medicine, Boston, Massachusetts (J.M.); and Departments of Pharmacology and Physiology and Neuroscience, Georgetown University, Washington, D.C. (P.A.F.)
| | - Doodipala Samba Reddy
- Department of Molecular and Integrative Physiology, Neuroscience Program, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois (C.A.C.); Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas (D.S.R.); Neuroscience Department, Tufts University School of Medicine, Boston, Massachusetts (J.M.); and Departments of Pharmacology and Physiology and Neuroscience, Georgetown University, Washington, D.C. (P.A.F.)
| | - Jamie Maguire
- Department of Molecular and Integrative Physiology, Neuroscience Program, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois (C.A.C.); Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas (D.S.R.); Neuroscience Department, Tufts University School of Medicine, Boston, Massachusetts (J.M.); and Departments of Pharmacology and Physiology and Neuroscience, Georgetown University, Washington, D.C. (P.A.F.)
| | - Patrick A Forcelli
- Department of Molecular and Integrative Physiology, Neuroscience Program, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois (C.A.C.); Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas (D.S.R.); Neuroscience Department, Tufts University School of Medicine, Boston, Massachusetts (J.M.); and Departments of Pharmacology and Physiology and Neuroscience, Georgetown University, Washington, D.C. (P.A.F.)
| |
Collapse
|
19
|
Slyepchenko A, Minuzzi L, Frey BN. Comorbid Premenstrual Dysphoric Disorder and Bipolar Disorder: A Review. Front Psychiatry 2021; 12:719241. [PMID: 34512419 PMCID: PMC8423998 DOI: 10.3389/fpsyt.2021.719241] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/03/2021] [Indexed: 12/20/2022] Open
Abstract
Bipolar disorder (BD) differs in its clinical presentation in females compared to males. A number of clinical characteristics have been associated with BD in females: more rapid cycling and mixed features; higher number of depressive episodes; and a higher prevalence of BD type II. There is a strong link between BD and risk for postpartum mood episodes, and a substantial percentage of females with BD experience premenstrual mood worsening of varying degrees of severity. Females with premenstrual dysphoric disorder (PMDD)-the most severe form of premenstrual disturbances-comorbid with BD appear to have a more complex course of illness, including increased psychiatric comorbidities, earlier onset of BD, and greater number of mood episodes. Importantly, there may be a link between puberty and the onset of BD in females with comorbid PMDD and BD, marked by a shortened gap between the onset of BD and menarche. In terms of neurobiology, comorbid BD and PMDD may have unique structural and functional neural correlates. Treatment of BD comorbid with PMDD poses challenges, as the first line treatment of PMDD in the general population is selective serotonin reuptake inhibitors, which produce risk of treatment-emergent manic symptoms. Here, we review current literature concerning the clinical presentation, illness burden, and unique neurobiology of BD comorbid with PMDD. We additionally discuss obstacles faced in symptom tracking, and management of these comorbid disorders.
Collapse
Affiliation(s)
- Anastasiya Slyepchenko
- Women's Health Concerns Clinic and Mood Disorders Treatment and Research Centre, St Joseph's Healthcare Hamilton, Hamilton, ON, Canada.,Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Luciano Minuzzi
- Women's Health Concerns Clinic and Mood Disorders Treatment and Research Centre, St Joseph's Healthcare Hamilton, Hamilton, ON, Canada.,Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Benicio N Frey
- Women's Health Concerns Clinic and Mood Disorders Treatment and Research Centre, St Joseph's Healthcare Hamilton, Hamilton, ON, Canada.,Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
20
|
Hantsoo L, Epperson CN. Allopregnanolone in premenstrual dysphoric disorder (PMDD): Evidence for dysregulated sensitivity to GABA-A receptor modulating neuroactive steroids across the menstrual cycle. Neurobiol Stress 2020; 12:100213. [PMID: 32435664 PMCID: PMC7231988 DOI: 10.1016/j.ynstr.2020.100213] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/24/2020] [Accepted: 01/31/2020] [Indexed: 01/01/2023] Open
Abstract
Premenstrual dysphoric disorder (PMDD) is a severe mood disorder with core symptoms (affective lability, irritability, depressed mood, anxiety) and increased sensitivity to stress occurring in the luteal phase of the menstrual cycle. PMDD can be conceptualized as a disorder of suboptimal sensitivity to neuroactive steroid hormones (NASs). In this review, we describe the role of the NAS allopregnanolone (ALLO), a positive allosteric modulator of the GABAA receptor (GABAA-R), in PMDD's pathophysiology. We review evidence of impaired interaction between ALLO and GABAA-Rs in terms of affective symptom expression, with evidence from rodent and human studies. We discuss evidence of increased luteal phase stress sensitivity as a result of poor ALLO-GABA control of the HPA axis. Finally, we describe how treatments such as selective serotonin reuptake inhibitors (SSRIs) and new drugs targeting GABAA-Rs provide evidence for impaired ALLO-GABA function in PMDD. In sum, the literature supports the hypothesis that PMDD pathophysiology is rooted in impaired GABAA-R response to dynamic ALLO fluctuations across the menstrual cycle, manifesting in affective symptoms and poor regulation of physiologic stress response.
Collapse
Affiliation(s)
- Liisa Hantsoo
- Department of Psychiatry & Behavioral Sciences, The Johns Hopkins University School of Medicine, 550 N, Broadway Street Baltimore, MD, 21205, USA
| | - C Neill Epperson
- Department of Psychiatry, University of Colorado School of Medicine Anschutz Medical Campus, 13001 E 17th Place, MS F546, Aurora, CO, 80045, USA
| |
Collapse
|
21
|
Frau R, Traccis F, Bortolato M. Neurobehavioural complications of sleep deprivation: Shedding light on the emerging role of neuroactive steroids. J Neuroendocrinol 2020; 32:e12792. [PMID: 31505075 PMCID: PMC6982588 DOI: 10.1111/jne.12792] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/06/2019] [Accepted: 09/05/2019] [Indexed: 01/05/2023]
Abstract
Sleep deprivation (SD) is associated with a broad spectrum of cognitive and behavioural complications, including emotional lability and enhanced stress reactivity, as well as deficits in executive functions, decision making and impulse control. These impairments, which have profound negative consequences on the health and productivity of many individuals, reflect alterations of the prefrontal cortex (PFC) and its connectivity with subcortical regions. However, the molecular underpinnings of these alterations remain elusive. Our group and others have begun examining how the neurobehavioural outcomes of SD may be influenced by neuroactive steroids, a family of molecules deeply implicated in sleep regulation and the stress response. These studies have revealed that, similar to other stressors, acute SD leads to increased synthesis of the neurosteroid allopregnanolone in the PFC. Whereas this up-regulation is likely aimed at counterbalancing the detrimental impact of oxidative stress induced by SD, the increase in prefrontal allopregnanolone levels contributes to deficits in sensorimotor gating and impulse control, signalling a functional impairment of PFC. This scenario suggests that the synthesis of neuroactive steroids during acute SD may be enacted as a neuroprotective response in the PFC; however, such compensation may in turn set off neurobehavioural complications by interfering with the corticolimbic connections responsible for executive functions and emotional regulation.
Collapse
Affiliation(s)
- Roberto Frau
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Monserrato (CA), Italy
- National Institute of Neuroscience (INN), University of Cagliari, Monserrato (CA), Italy
| | - Francesco Traccis
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Monserrato (CA), Italy
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City (UT), USA
| |
Collapse
|
22
|
Moffett SX, Klein EA, Brannigan G, Martin JV. L-3,3',5-triiodothyronine and pregnenolone sulfate inhibit Torpedo nicotinic acetylcholine receptors. PLoS One 2019; 14:e0223272. [PMID: 31584962 PMCID: PMC6777777 DOI: 10.1371/journal.pone.0223272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 09/17/2019] [Indexed: 11/19/2022] Open
Abstract
The nicotinic acetylcholine receptor (nAChR) is an excitatory pentameric ligand-gated ion channel (pLGIC), homologous to the inhibitory γ-aminobutyric acid (GABA) type A receptor targeted by pharmaceuticals and endogenous sedatives. Activation of the GABAA receptor by the neurosteroid allopregnanolone can be inhibited competitively by thyroid hormone (L-3,3’,5-triiodothyronine, or T3), but modulation of nAChR by T3 or neurosteroids has not been investigated. Here we show that allopregnanolone inhibits the nAChR from Torpedo californica at micromolar concentrations, as do T3 and the anionic neurosteroid pregnenolone sulfate (PS). We test for the role of protein and ligand charge in mediated receptor inhibition by varying pH in a narrow range around physiological pH. We find that both T3 and PS become less potent with increasing pH, with remarkably similar trends in IC50 when T3 is neutral at pH < 7.3. After deprotonation of T3 (but no additional deprotonation of PS) at pH 7.3, T3 loses potency more slowly with increasing pH than PS. We interpret this result as indicating the negative charge is not required for inhibition but does increase activity. Finally, we show that both T3 and PS affect nAChR channel desensitization, which may implicate a binding site homologous to one that was recently indicated for accelerated desensitization of the GABAA receptor by PS.
Collapse
Affiliation(s)
- Steven X. Moffett
- Center for Computational and Integrative Biology, Rutgers University—Camden, Camden, New Jersey, United States of America
| | - Eric A. Klein
- Center for Computational and Integrative Biology, Rutgers University—Camden, Camden, New Jersey, United States of America
- Department of Biology, Rutgers University—Camden, Camden, New Jersey, United States of America
| | - Grace Brannigan
- Center for Computational and Integrative Biology, Rutgers University—Camden, Camden, New Jersey, United States of America
- Department of Physics, Rutgers University—Camden, Camden, New Jersey, United States of America
| | - Joseph V. Martin
- Center for Computational and Integrative Biology, Rutgers University—Camden, Camden, New Jersey, United States of America
- Department of Biology, Rutgers University—Camden, Camden, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
23
|
Estrada-Camarena E, Sollozo-Dupont I, Islas-Preciado D, González-Trujano ME, Carro-Juárez M, López-Rubalcava C. Anxiolytic- and anxiogenic-like effects of Montanoa tomentosa (Asteraceae): Dependence on the endocrine condition. JOURNAL OF ETHNOPHARMACOLOGY 2019; 241:112006. [PMID: 31153863 DOI: 10.1016/j.jep.2019.112006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Montanoa tomentosa Cerv. (MT) is a native plant from Mexico used in traditional medicine as a remedy for reproductive impairments and relaxing effects. In previous studies, it has been shown that the endocrine state could modify the antianxiety-like actions of anxiolytic compounds. Although women are the primary user of MT, no studies have evaluated the potential impact of the endocrine milieu on its anti-anxiety actions. AIMS OF THE STUDY Ascertain the antianxiety effects of M. tomentosa in rats with different hormonal conditions, and to analyze the participation of the GABAA receptor in ovariectomized rats treated with MT. MATERIALS AND METHODS The animal model of anxiety used was the elevated plus-maze (EPM). Rats' endocrine conditions were: a) Low hormone levels (rats in diestrus I and II phases); b) High hormone levels (proestrus/estrus phases); c) No hormones (ovariectomized rats); and d) Rats under progesterone withdrawal (PW). To evaluate the participation of the GABAA receptor in the anxiolytic-like action of MT the antagonist picrotoxin was used. RESULTS Results showed that MT induced dose-dependent anxiolytic-like actions in rats with low hormone level conditions. Also, MT reduced anxiety-like behavior in female rats under PW, in contrast to diazepam which was ineffective. MT's anxiolytic-like effect was blocked by picrotoxin, suggesting the participation of the GABAA receptor complex. However, increased anxiety-like behavior was observed in rats with a high hormone level condition and low doses of MT. CONCLUSIONS Beneficial anxiolytic-like actions of MT are observed under low hormone conditions, particularly in the PW challenge (a condition that can be related to a premenstrual period). Furthermore, the participation of the GABAA receptor is evidenced. However, hormonal variations could induce the opposite effects, hence women should be cautious.
Collapse
Affiliation(s)
- Erika Estrada-Camarena
- Laboratorio de Neuropsicofarmacología, Dirección de Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñíz", Calzada México Xochimilco 101, Col San Lorenzo Huipulco, Delegación Tlalpan, Ciudad de México, Mexico.
| | - Isabel Sollozo-Dupont
- Departamento de Farmacobiología, CINVESTAV-Sede Sur. Calzada de los Tenorios 235, Col Granjas Coapa, Delegación Tlalpan, Ciudad de México, Mexico.
| | - Dannia Islas-Preciado
- Laboratorio de Neuropsicofarmacología, Dirección de Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñíz", Calzada México Xochimilco 101, Col San Lorenzo Huipulco, Delegación Tlalpan, Ciudad de México, Mexico.
| | - María Eva González-Trujano
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñíz", Calzada México, Xochimilco 101, Col San Lorenzo Huipulco, Delegación Tlalpan, Ciudad de México, Mexico.
| | | | - Carolina López-Rubalcava
- Departamento de Farmacobiología, CINVESTAV-Sede Sur. Calzada de los Tenorios 235, Col Granjas Coapa, Delegación Tlalpan, Ciudad de México, Mexico.
| |
Collapse
|
24
|
Machado Figueiredo R, de Carvalho MC, Brandão ML, Lovick TA. Short-term, low-dose fluoxetine prevents oestrous cycle-linked increase in anxiety-like behaviour in female rats. J Psychopharmacol 2019; 33:548-557. [PMID: 31012390 DOI: 10.1177/0269881119841833] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND AIMS We sought a robust behavioural test that evoked increased anxiety-like behaviour during the late dioestrus phase of the oestrous cycle (similar to the premenstrual period in women) and tested whether this could be prevented by acute low-dose fluoxetine (FLX). METHODS Female Wistar rats in different stages of their cycle were exposed to four different tests of anxiety-like behaviour. RESULTS No oestrous cycle differences were detected in fear potentiated startle or conditioned freezing to an aversive context. In a light switch-off test where rats move from one compartment of a shuttle-box to the other to turn off an aversive light, females displayed enhanced responding in late dioestrus. During isolation restraint stress females in late dioestrus emitted three times more 22 kHz ultrasound vocalisations (USV) than at other cycle stages. Using the USV test, short-term administration of low-dose FLX (1.75 mg kg-1, i.p.) designed to blunt the sharp fall in brain allopregnanolone concentration during late dioestrus but without affecting 5-HT systems, prevented the increase in isolation stress-evoked USVs. CONCLUSIONS The light switch-off and isolation restraint-induced USV tests evoke unconditioned adverse emotional responses that are ethologically relevant and sensitive to oestrous cycle stage. The USV test fulfils many criteria required of a model for premenstrual syndrome in women. Using the USV test, short-term administration of FLX to increase brain allopregnanolone concentration without affecting 5-HT systems prevented the increased USV responding in late dioestrus. Short-term low-dose FLX treatment may have potential to alleviate development of adverse premenstrual symptoms in women.
Collapse
Affiliation(s)
- Rebeca Machado Figueiredo
- 1 Laboratório de Neuropsicofarmacologia, FFCLRP, Universidade de São Paulo, Campus USP, Ribeirão Preto, SP, Brazil.,2 Instituto de Neurociências e Comportamento, Avenida do Café 2450, Ribeirão Preto, SP, Brazil
| | - Milene Cristina de Carvalho
- 1 Laboratório de Neuropsicofarmacologia, FFCLRP, Universidade de São Paulo, Campus USP, Ribeirão Preto, SP, Brazil.,2 Instituto de Neurociências e Comportamento, Avenida do Café 2450, Ribeirão Preto, SP, Brazil
| | - Marcus Lira Brandão
- 1 Laboratório de Neuropsicofarmacologia, FFCLRP, Universidade de São Paulo, Campus USP, Ribeirão Preto, SP, Brazil.,2 Instituto de Neurociências e Comportamento, Avenida do Café 2450, Ribeirão Preto, SP, Brazil
| | - Thelma Anderson Lovick
- 2 Instituto de Neurociências e Comportamento, Avenida do Café 2450, Ribeirão Preto, SP, Brazil.,3 School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
25
|
GABA A dysregulation as an explanatory model for late-onset postpartum depression associated with weaning and resumption of menstruation. Arch Womens Ment Health 2019; 22:55-63. [PMID: 29968131 DOI: 10.1007/s00737-018-0871-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 06/06/2018] [Indexed: 01/26/2023]
Abstract
It is well established that a subgroup of women are particularly vulnerable to affective dysregulation during times of hormonal fluctuation. One underrecognized reproductive transition may be late-onset postpartum depression (PPD) in the context of weaning from breastfeeding and the resumption of menstruation. The goal of this review is to propose a biologically plausible mechanism for affective dysregulation during these transitions. The relationship between affective symptoms and neurohormonal changes associated with weaning will be investigated through a hypothesis-driven review of relevant literature. Neurosteroids, like allopregnanolone (ALLO), are widely recognized for augmenting GABAergic inhibition and having a powerful anxiolytic effect (Belelli D and Lambert JL, Nature Reviews Neuroscience 6:565-575, 2005). However, when ALLO is administered after prolonged withdrawal, there may be a paradoxical anxiogenic effect (Smith et al., Psychopharmacology 186:323-333, 2006; Shen et al., Nat Neurosci 10:469-477, 2007). Weaning from breastfeeding is a physiologic example of fluctuating levels of ALLO after prolonged withdrawal. We propose that the complex hormonal milieu during weaning and resumption of menstruation may modify GABAA receptors such that ALLO may contribute to rather than ameliorate depressive symptoms in vulnerable individuals. The proposed model provides an initial step for understanding the mechanisms by which the changing hormonal environment during weaning and resumption of menstruation may contribute to an increased risk of depression in a subgroup of women who are hormonally sensitive. Future research investigating this model would be valuable both to identify women at increased risk for developing mood symptoms late in postpartum and to inform treatment for this and related reproductive depressive disorders.
Collapse
|
26
|
Rezzani R, Franco C, Rodella LF. Sex differences of brain and their implications for personalized therapy. Pharmacol Res 2019; 141:429-442. [PMID: 30659897 DOI: 10.1016/j.phrs.2019.01.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 01/06/2023]
Abstract
Nowadays, it is known that the sex differences regard many organs, e.g., liver, vessels, pancreas, lungs, bronchi and also the brain. Sex differences are not just a matter of ethical and moral principles, as they are central to explain many still unknown diseases and their understanding is a prerequisite to develop an effective therapy for each individual. This review reports on those sex differences that are not only macroscopic and morphological, but also involve molecular and functional dimorphism in the brain. It will recapitulate the main structural differences between male and female brain including the neurotransmission systems; in particular, the main objective is to identify a correlation, already known or to be investigated in the future, between the differences that characterize male and female brains from a morphological and biochemical point of view and neurological syndromes. This correlation could provide a starting point for future scientific research aimed to investigate and define a personalized therapy.
Collapse
Affiliation(s)
- Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs-(ARTO)", University of Brescia, 25123 Brescia, Italy.
| | - Caterina Franco
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Luigi F Rodella
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs-(ARTO)", University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
27
|
Wei SM, Schiller CE, Schmidt PJ, Rubinow DR. The role of ovarian steroids in affective disorders. Curr Opin Behav Sci 2018. [DOI: 10.1016/j.cobeha.2018.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
28
|
Gravielle MC. Regulation of GABAA receptors by prolonged exposure to endogenous and exogenous ligands. Neurochem Int 2018; 118:96-104. [DOI: 10.1016/j.neuint.2018.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/22/2018] [Accepted: 05/30/2018] [Indexed: 02/08/2023]
|
29
|
Liang JJ, Rasmusson AM. Overview of the Molecular Steps in Steroidogenesis of the GABAergic Neurosteroids Allopregnanolone and Pregnanolone. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2018; 2:2470547018818555. [PMID: 32440589 PMCID: PMC7219929 DOI: 10.1177/2470547018818555] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/19/2018] [Indexed: 12/23/2022]
Abstract
Allopregnanolone and pregnanolone-neurosteroids synthesized from progesterone in the brain, adrenal gland, ovary and testis-have been implicated in a range of neuropsychiatric conditions including seizure disorders, post-traumatic stress disorder, major depression, post-partum depression, pre-menstrual dysphoric disorder, chronic pain, Parkinson's disease, Alzheimer's disease, neurotrauma, and stroke. Allopregnanolone and pregnanolone equipotently facilitate the effects of gamma-amino-butyric acid (GABA) at GABAA receptors, and when sulfated, antagonize N-methyl-D-aspartate receptors. They play myriad roles in neurophysiological homeostasis and adaptation to stress while exerting anxiolytic, antidepressant, anti-nociceptive, anticonvulsant, anti-inflammatory, sleep promoting, memory stabilizing, neuroprotective, pro-myelinating, and neurogenic effects. Given that these neurosteroids are synthesized de novo on demand, this review details the molecular steps involved in the biochemical conversion of cholesterol to allopregnanolone and pregnanolone within steroidogenic cells. Although much is known about the early steps in neurosteroidogenesis, less is known about transcriptional, translational, and post-translational processes in allopregnanolone- and pregnanolone-specific synthesis. Further research to elucidate these mechanisms as well as to optimize the timing and dose of interventions aimed at altering the synthesis or levels of these neurosteroids is much needed. This should include the development of novel therapeutics for the many neuropsychiatric conditions to which dysregulation of these neurosteroids contributes.
Collapse
Affiliation(s)
| | - Ann M. Rasmusson
- Boston
University School of Medicine, Boston, MA,
USA
- National Center for PTSD, Women’s Health
Science Division, Department of Veterans Affairs, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA,
USA
| |
Collapse
|
30
|
Samba Reddy D. Sex differences in the anticonvulsant activity of neurosteroids. J Neurosci Res 2017; 95:661-670. [PMID: 27870400 DOI: 10.1002/jnr.23853] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/21/2016] [Accepted: 07/06/2016] [Indexed: 12/11/2022]
Abstract
Epilepsy is one of the leading causes of chronic neurological morbidity worldwide. Acquired epilepsy may result from a number of conditions, such as brain injury, anoxia, tumors, stroke, neurotoxicity, and prolonged seizures. Sex differences have been observed in many seizure types; however, some sex-specific seizure disorders are much more prevalent in women. Despite some inconsistencies, substantial data indicates that sensitivity to seizure stimuli differs between the sexes. Men generally exhibit greater seizure susceptibility than women, whereas many women with epilepsy experience a cyclical occurrence of seizures that tends to center around the menstrual period, which has been termed catamenial epilepsy. Some epilepsy syndromes show gender differences with female predominance or male predominance. Steroid hormones, endogenous neurosteroids, and sexually dimorphic neural networks appear to play a key role in sex differences in seizure susceptibility. Neurosteroids, such as allopregnanolone, reflect sex differences in their anticonvulsant activity. This Review provides a brief overview of the evidence for sex differences in epilepsy and how sex differences influence the use of neurosteroids in epilepsy and epileptogenesis. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Sciences Center, College of Medicine, Bryan, Texas
| |
Collapse
|
31
|
Schmidt PJ, Martinez PE, Nieman LK, Koziol DE, Thompson KD, Schenkel L, Wakim PG, Rubinow DR. Premenstrual Dysphoric Disorder Symptoms Following Ovarian Suppression: Triggered by Change in Ovarian Steroid Levels But Not Continuous Stable Levels. Am J Psychiatry 2017; 174:980-989. [PMID: 28427285 PMCID: PMC5624833 DOI: 10.1176/appi.ajp.2017.16101113] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Premenstrual dysphoric disorder (PMDD) symptoms are eliminated by ovarian suppression and stimulated by administration of ovarian steroids, yet they appear with ovarian steroid levels indistinguishable from those in women without PMDD. Thus, symptoms could be precipitated either by an acute change in ovarian steroid levels or by stable levels above a critical threshold playing a permissive role in expression of an underlying infradian affective "pacemaker." The authors attempted to determine which condition triggers PMDD symptoms. METHOD The study included 22 women with PMDD, ages 30 to 50 years. Twelve women who experienced symptom remission after 2-3 months of GnRH agonist-induced ovarian suppression (leuprolide) then received 1 month of single-blind (participant only) placebo and then 3 months of continuous combined estradiol/progesterone. Primary outcome measures were the Rating for Premenstrual Tension observer and self-ratings completed every 2 weeks during clinic visits. Multivariate repeated-measure ANOVA for mixed models was employed. RESULTS Both self- and observer-rated scores on the Rating for Premenstrual Tension were significantly increased (more symptomatic) during the first month of combined estradiol/progesterone compared with the last month of leuprolide alone, the placebo month, and the second and third months of estradiol/progesterone. There were no significant differences in symptom severity between the last month of leuprolide alone, placebo month, or second and third months of estradiol/progesterone. Finally, the Rating for Premenstrual Tension scores in the second and third estradiol/progesterone months did not significantly differ. CONCLUSIONS The findings demonstrate that the change in estradiol/progesterone levels from low to high, and not the steady-state level, was associated with onset of PMDD symptoms. Therapeutic efforts to modulate the change in steroid levels proximate to ovulation merit further study.
Collapse
Affiliation(s)
| | | | - Lynnette K. Nieman
- Intramural Research Program on Reproductive and Adult Endocrinology, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, DHSS
| | - Deloris E. Koziol
- Biostatistics & Clinical Epidemiology Service, Clinical Center, National Institutes of Health
| | | | | | - Paul G. Wakim
- Biostatistics & Clinical Epidemiology Service, Clinical Center, National Institutes of Health
| | - David R. Rubinow
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
32
|
Lovick TA, Guapo VG, Anselmo-Franci JA, Loureiro CM, Faleiros MCM, Del Ben CM, Brandão ML. A specific profile of luteal phase progesterone is associated with the development of premenstrual symptoms. Psychoneuroendocrinology 2017; 75:83-90. [PMID: 27810707 DOI: 10.1016/j.psyneuen.2016.10.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/12/2016] [Accepted: 10/27/2016] [Indexed: 01/18/2023]
Abstract
There is a consensus that the development of premenstrual dysphoric states is related to cyclical change in gonadal hormone secretion during the menstrual cycle. However, results from studies seeking to link symptom severity to luteal phase progesterone concentration have been equivocal. In the present study we evaluated not only the absolute concentrations of progesterone but also the kinetics of the change in progesterone concentration in relation to development of premenstrual symptoms during the last 10days of the luteal phase in a population of 46 healthy young adult Brazilian women aged 18-39 years, mean 26.5±6.7years. In participants who developed symptoms of premenstrual distress, daily saliva progesterone concentration remained stable during most of the mid-late luteal phase, before declining sharply during the last 3days prior to onset of menstruation. In contrast, progesterone concentration in asymptomatic women underwent a gradual decline over the last 8days prior to menstruation. Neither maximum nor minimum concentrations of progesterone in the two groups were related to the appearance or severity of premenstrual symptoms. We propose that individual differences in the kinetics of progesterone secretion and/or metabolism may confer differential susceptibility to the development of premenstrual syndrome.
Collapse
Affiliation(s)
- Thelma A Lovick
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol B15 2TT, UK; Instituto de Neurociências e Comportamento, Avenida do Café, 2450, Ribeirão Preto, SP, Brazil.
| | - Vinicius G Guapo
- Departments of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo - Campus, Ribeirão Preto, SP, Brazil
| | - Janete A Anselmo-Franci
- Departamento de Morfologia, Fisiologia, e Patologia Básica, Faculdade de Odontologia, Universidade de São Paulo - Campus, Ribeirão Preto, SP, Brazil
| | - Camila M Loureiro
- Departments of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo - Campus, Ribeirão Preto, SP, Brazil
| | - Maria Clara M Faleiros
- Departments of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo - Campus, Ribeirão Preto, SP, Brazil
| | - Cristina M Del Ben
- Departments of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo - Campus, Ribeirão Preto, SP, Brazil
| | - Marcus L Brandão
- Instituto de Neurociências e Comportamento, Avenida do Café, 2450, Ribeirão Preto, SP, Brazil
| |
Collapse
|
33
|
Silva AF, Sousa DS, Medeiros AM, Macêdo PT, Leão AH, Ribeiro AM, Izídio GS, Silva RH. Sex and estrous cycle influence diazepam effects on anxiety and memory: Possible role of progesterone. Prog Neuropsychopharmacol Biol Psychiatry 2016; 70:68-76. [PMID: 27208614 DOI: 10.1016/j.pnpbp.2016.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/10/2016] [Accepted: 05/17/2016] [Indexed: 12/13/2022]
Abstract
Studies with rodents and humans show the relationship between female sex hormones and cognitive/emotional tasks. However, despite the greater incidence of anxiety disorders in women, the data are still inconclusive regarding the mechanisms related to this phenomenon. We evaluated the effects of a classical anxiolytic/amnestic drug (diazepam; DZP) on female (at different estrous cycle phases) and male rats tested in the plus-maze discriminative avoidance task (PMDAT), that allows the concomitant evaluation of memory and anxiety-like behavior. Further, in order to investigate the role of progesterone and its metabolites in the effects of DZP in the PMDAT, female rats were pre-treated with the progesterone receptor antagonist mifepristone or the 5-alpha-reductase inhibitor finasteride. The main findings were: (1) DZP caused memory impairment and anxiolysis in both sexes, but only the highest dose induced the anxiolytic effect in females; (2) females in proestrus did not present the amnestic and anxiolytic effects of DZP (at 2.0 and 4.0mg/kg, respectively) and (3) the co-administration of mifepristone reestablished both amnestic and anxiolytic effects of DZP, while finasteride reinstated the amnestic effect in proestrus female rats. These results suggest that changes in the endogenous levels of progesterone and its metabolites are important in the modulation of emotional/cognitive behavior in female rats. Based on the influence on different aspects of DZP action, the mechanisms related to this modulation are probably linked to GABAergic transmission, but this point remains to be investigated. Further, the variation in therapeutic and adverse effects of DZP depending on sex and hormonal state is of great relevance considering the higher prevalence of anxiety disorders in women.
Collapse
Affiliation(s)
- Anatildes Feitosa Silva
- Memory Studies Laboratory, Physiology Department, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Diego Silveira Sousa
- Memory Studies Laboratory, Physiology Department, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - André Macêdo Medeiros
- Laboratory of Behavioral Neuroscience, Pharmacology Department, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Priscila Tavares Macêdo
- Memory Studies Laboratory, Physiology Department, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Anderson Henrique Leão
- Memory Studies Laboratory, Physiology Department, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Alessandra Mussi Ribeiro
- Laboratory of Neuroscience and Bioprospecting of Natural Products, Biosciences Department, Universidade Federal de São Paulo, Santos, Brazil
| | - Geison Souza Izídio
- Laboratory of Behavioral Genetics, Cell Biology, Embryology and Genetics Department, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Regina Helena Silva
- Memory Studies Laboratory, Physiology Department, Universidade Federal do Rio Grande do Norte, Natal, Brazil; Laboratory of Behavioral Neuroscience, Pharmacology Department, Universidade Federal de São Paulo, São Paulo, Brazil.
| |
Collapse
|
34
|
Islas-Preciado D, López-Rubalcava C, González-Olvera J, Gallardo-Tenorio A, Estrada-Camarena E. Environmental enrichment prevents anxiety-like behavior induced by progesterone withdrawal in two strains of rats. Neuroscience 2016; 336:123-132. [PMID: 27600948 DOI: 10.1016/j.neuroscience.2016.08.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/10/2016] [Accepted: 08/29/2016] [Indexed: 10/21/2022]
Abstract
Stress vulnerability could influence the treatment response to anxiety associated with abrupt hormonal suppression. The present study explored the effects of different treatments on experimental anxiety induced by progesterone withdrawal (PW) in a stress-sensitive rat strain, Wistar Kyoto (WKY), in the burying behavior test (BBT). The following experimental series was conducted using independent groups of Wistar (control strain) and WKY ovariectomized rats: Experiment 1: Rats were treated for 5days with oil, a constant dose of progesterone (0.5mg/rat, s.c) or a combination of progesterone (0.5mg/rat, s.c) plus fluoxetine (10 mg/kg, i.p); on day 6, all rats were subjected to BBT. Experiment 2: Rats received corn oil or decreasing doses of progesterone (0.84, 0.67, 0.5, 0.33 and 0.17mg/rat; one dose daily); on day 6, the rats were subjected to BBT. Experiment 3: Rats were divided into two groups that were subjected to 30days of standard conditions or environmental enrichment (EE); from days 25 to 30, all rats received a fixed dose of progesterone (0.5mg/rat, s.c.) or vehicle. On day 31, the rats were tested with BBT. Results showed that PW increased anxiety in both strains, and fluoxetine prevented anxiety in WKY rats. In contrast, a gradual reduction of progesterone prevents the anxiety in Wistar but not in WKY. EE was preventive against the anxiety induced by PW in both strains of rats. Thus, the results suggest that anxiety induced by PW is prevented by EE while the anxiolytic effect of pharmacological treatments depends on stress vulnerability.
Collapse
Affiliation(s)
- D Islas-Preciado
- Laboratorio de Neuropsicofarmacología, Dirección de Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente, Calzada México-Xochimilco 101, San Lorenzo Huipulco, C.P. 14370 México, D.F., Mexico
| | - C López-Rubalcava
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados-IPN, Calzada de los Tenorios 235, Granjas Coapa, C.P. 14330 México, D.F., Mexico
| | - J González-Olvera
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría "Ramón de la Fuente", Calzada México-Xochimilco 101, San Lorenzo Huipulco, C.P. 14370 México, D.F., Mexico
| | - A Gallardo-Tenorio
- Laboratorio de Neuropsicofarmacología, Dirección de Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente, Calzada México-Xochimilco 101, San Lorenzo Huipulco, C.P. 14370 México, D.F., Mexico
| | - E Estrada-Camarena
- Laboratorio de Neuropsicofarmacología, Dirección de Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente, Calzada México-Xochimilco 101, San Lorenzo Huipulco, C.P. 14370 México, D.F., Mexico.
| |
Collapse
|
35
|
Reddy DS. The neuroendocrine basis of sex differences in epilepsy. Pharmacol Biochem Behav 2016; 152:97-104. [PMID: 27424276 DOI: 10.1016/j.pbb.2016.07.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/25/2016] [Accepted: 07/12/2016] [Indexed: 01/22/2023]
Abstract
Epilepsy affects people of all ages and both genders. Sex differences are well known in epilepsy. Seizure susceptibility and the incidence of epilepsy are generally higher in men than women. In addition, there are gender-specific epilepsies such as catamenial epilepsy, a neuroendocrine condition in which seizures are most often clustered around the perimenstrual or periovulatory period in adult women with epilepsy. Changes in seizure sensitivity are also evident at puberty, pregnancy, and menopause. Sex differences in seizure susceptibility and resistance to antiseizure drugs can be studied in experimental models. An improved understanding of the neuroendocrine basis of sex differences or resistance to protective drugs is essential to develop targeted therapies for sex-specific seizure conditions. This article provides a brief overview of the current status of sex differences in seizure susceptibility and the potential mechanisms underlying the gender differences in seizure sensitivity.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA.
| |
Collapse
|
36
|
5α-Reductase Inhibition Prevents the Luteal Phase Increase in Plasma Allopregnanolone Levels and Mitigates Symptoms in Women with Premenstrual Dysphoric Disorder. Neuropsychopharmacology 2016; 41:1093-102. [PMID: 26272051 PMCID: PMC4748434 DOI: 10.1038/npp.2015.246] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/07/2015] [Accepted: 07/18/2015] [Indexed: 11/08/2022]
Abstract
Changes in neurosteroid levels during the luteal phase of the menstrual cycle may precipitate affective symptoms. To test this hypothesis, we stabilized neurosteroid levels by administering the 5α-reductase inhibitor dutasteride to block conversion of progesterone to its neurosteroid metabolite allopregnanolone in women with premenstrual dysphoric disorder (PMDD) and in asymptomatic control women. Sixteen women with prospectively confirmed PMDD and 16 control women participated in one of two separate randomized, double-blind, placebo-controlled, cross-over trials, each lasting three menstrual cycles. After one menstrual cycle of single-blind placebo, participants were randomized to receive, for the next two menstrual cycles, either double-blind placebo or dutasteride (low-dose 0.5 mg/day in the first eight PMDD and eight control women or high-dose 2.5 mg/day in the second group of women). All women completed the daily rating form (DRF) and were evaluated in clinic during the follicular and luteal phases of each menstrual cycle. Main outcome measures were the DRF symptoms of irritability, sadness, and anxiety. Analyses were performed with SAS PROC MIXED. In the low-dose group, no significant effect of dutasteride on PMDD symptoms was observed compared with placebo (ie, symptom cyclicity maintained), and plasma allopregnanolone levels increased in women with PMDD from follicular to the luteal phases, suggesting the absence of effect of the low-dose dutasteride on 5α-reductase. In contrast, the high-dose group experienced a statistically significant reduction in several core PMDD symptoms (ie, irritability, sadness, anxiety, food cravings, and bloating) on dutasteride compared with placebo. Dutasteride had no effect on mood in controls. Stabilization of allopregnanolone levels from the follicular to the luteal phase of the menstrual cycle by blocking the conversion of progesterone to its 5α-reduced neurosteroid metabolite mitigates symptoms in PMDD. These data provide preliminary support for the pathophysiologic relevance of neurosteroids in this condition.
Collapse
|
37
|
Rahmani B, Ghasemi R, Dargahi L, Ahmadiani A, Haeri A. Neurosteroids; potential underpinning roles in maintaining homeostasis. Gen Comp Endocrinol 2016; 225:242-250. [PMID: 26432100 DOI: 10.1016/j.ygcen.2015.09.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/14/2015] [Accepted: 09/28/2015] [Indexed: 12/31/2022]
Abstract
The neuroactive steroids which are synthesized in the brain and nervous system are known as "Neurosteroids". These steroids have crucial functions such as contributing to the myelination and organization of the brain connectivity. Under the stressful circumstances, the concentrations of neurosteroid products such as allopregnanolone (ALLO) and allotetrahydrodeoxycorticosterone (THDOC) alter. It has been suggested that these stress-derived neurosteroids modulate the physiological response to stress. Moreover, it has been demonstrated that the hypothalamic-pituitary-adrenal (HPA) axis mediates the physiological adaptation following stress in order to maintain homeostasis. Although several regulatory pathways have been introduced, the exact role of neurosteroids in controlling HPA axis is not clear to date. In this review, we intend to discern specific pathways associated with regulation of HPA axis in which neuroactive steroids have the main role. In this respect, we propose pathways that may be initiated after neurosteroidogenesis in different brain subregions following acute stress which are potentially capable of activating or inhibiting the HPA axis.
Collapse
Affiliation(s)
- Behrouz Rahmani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Ghasemi
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ali Haeri
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
38
|
Poisbeau P, Keller AF, Aouad M, Kamoun N, Groyer G, Schumacher M. Analgesic strategies aimed at stimulating the endogenous production of allopregnanolone. Front Cell Neurosci 2014; 8:174. [PMID: 24987335 PMCID: PMC4060572 DOI: 10.3389/fncel.2014.00174] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 06/05/2014] [Indexed: 01/07/2023] Open
Abstract
A growing number of studies indicate that 3-alpha reduced neurosteroids are remarkable analgesics in various pain states. This is the case for allopregnanolone (AP), one of the most potent endogenous positive allosteric modulators of GABAA receptor function. From the pioneering work of Hans Selye, who described the sedative properties of steroids, synthetic compounds resembling the progesterone metabolite AP have been developed. If some of them have been used as anesthetics, it seems difficult to propose them as a therapeutic option for pain since they display several adverse side effects such as sedation, amnesia and functional tolerance. An alternative strategy, chosen by few laboratories around the world, is aimed at stimulating the local production of 3-alpha reduced neurosteroids in order to limit these well-known side effects. This pharmacological approach has the advantage of targeting specific structures, fully equipped with the necessary biosynthetic enzymatic machinery, where neurosteroids already act as endogenous pain modulators. The various pharmacological trials which attempted to treat pain symptoms by stimulating the production of 3-alpha reduced neurosteroids are reviewed here, as well as novel neurotransmitter systems possibly regulating their endogenous production.
Collapse
Affiliation(s)
- Pierrick Poisbeau
- Molecular Determinants of Pain, Institute for Cellular and Integrative Neurosciences (INCI), UPR Centre National de la Recherche Scientifique (CNRS) 3212 and University of Strasbourg Strasbourg, France
| | - Anne Florence Keller
- Molecular Determinants of Pain, Institute for Cellular and Integrative Neurosciences (INCI), UPR Centre National de la Recherche Scientifique (CNRS) 3212 and University of Strasbourg Strasbourg, France ; Rhenovia Pharma Mulhouse, France
| | - Maya Aouad
- Molecular Determinants of Pain, Institute for Cellular and Integrative Neurosciences (INCI), UPR Centre National de la Recherche Scientifique (CNRS) 3212 and University of Strasbourg Strasbourg, France
| | - Nisrine Kamoun
- Molecular Determinants of Pain, Institute for Cellular and Integrative Neurosciences (INCI), UPR Centre National de la Recherche Scientifique (CNRS) 3212 and University of Strasbourg Strasbourg, France
| | - Ghislaine Groyer
- UMR 788 Neuroprotection and Neuroregeneration: Neuroactive Small Molecules, Institut National de la Santé et de la Recherche Médicale (INSERM) and University Paris-Sud Kremlin-Bicêtre, France
| | - Michael Schumacher
- UMR 788 Neuroprotection and Neuroregeneration: Neuroactive Small Molecules, Institut National de la Santé et de la Recherche Médicale (INSERM) and University Paris-Sud Kremlin-Bicêtre, France
| |
Collapse
|
39
|
Dihydromyricetin prevents fetal alcohol exposure-induced behavioral and physiological deficits: the roles of GABAA receptors in adolescence. Neurochem Res 2014; 39:1147-61. [PMID: 24676702 DOI: 10.1007/s11064-014-1291-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 10/25/2022]
Abstract
Fetal alcohol exposure (FAE) can lead to a variety of behavioral and physiological disturbances later in life. Understanding how alcohol (ethanol, EtOH) affects fetal brain development is essential to guide the development of better therapeutics for FAE. One of EtOH's many pharmacological targets is the γ-aminobutyric acid type A receptor (GABAAR), which plays a prominent role in early brain development. Acute EtOH potentiates inhibitory currents carried by certain GABAAR subtypes, whereas chronic EtOH leads to persistent alterations in GABAAR subunit composition, localization and function. We recently introduced a flavonoid compound, dihydromyricetin (DHM), which selectively antagonizes EtOH's intoxicating effects in vivo and in vitro at enhancing GABAAR function as a candidate for alcohol abuse pharmacotherapy. Here, we studied the effect of FAE on physiology, behavior and GABAAR function of early adolescent rats and tested the utility of DHM as a preventative treatment for FAE-induced disturbances. Gavage administration of EtOH (1.5, 2.5, or 5.0 g/kg) to rat dams on day 5, 8, 10, 12, and 15 of pregnancy dose-dependently reduced female/male offspring ratios (largely through decreased numbers of female offspring) and offspring body weights. FAE (2.5 g/kg) rats tested on postnatal days (P) 25-32 also exhibited increased anxiety and reduced pentylenetetrazol (PTZ)-induced seizure threshold. Patch-clamp recordings from dentate gyrus granule cells (DGCs) in hippocampal slices from FAE (2.5 g/kg) rats at P25-35 revealed reduced sensitivity of GABAergic miniature inhibitory postsynaptic currents (mIPSCs) and tonic current (Itonic) to potentiation by zolpidem (0.3 μM). Interestingly, potentiation of mIPSCs by gaboxadol increased, while potentiation of Itonic decreased in DGCs from FAE rats. Co-administration of EtOH (1.5 or 2.5 g/kg) with DHM (1.0 mg/kg) in pregnant dams prevented all of the behavioral, physiological, and pharmacological alterations observed in FAE offspring. DHM administration alone in pregnant rats had no adverse effect on litter size, progeny weight, anxiety level, PTZ seizure threshold, or DGC GABAAR function. Our results indicate that FAE induces long-lasting alterations in physiology, behavior, and hippocampal GABAAR function and that these deficits are prevented by DHM co-treatment of EtOH-exposed dams. The absence of adverse side effects and the ability of DHM to prevent FAE consequences suggest that DHM is an attractive candidate for development as a treatment for prevention of fetal alcohol spectrum disorders.
Collapse
|
40
|
Neonatal finasteride administration alters hippocampal α4 and δ GABAAR subunits expression and behavioural responses to progesterone in adult rats. Int J Neuropsychopharmacol 2014; 17:259-73. [PMID: 24011224 DOI: 10.1017/s1461145713000989] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Allopregnanolone is a neurosteroid that has been reported to fluctuate during early developmental stages. Previous experiments reported the importance of neonatal endogenous allopregnanolone levels for the maturation of the central nervous system and particularly for the hippocampus. Changes in neonatal allopregnanolone levels have been related to altered adult behaviour and with psychopathological susceptibility, including anxiety disorders, schizophrenia and drug abuse. However, the mechanism underlying these changes remains to be elucidated. In the present study we assessed changes in hippocampal expression of α4 and δ GABAA receptor (GABAAR) subunits as a consequence of neonatal finasteride (a 5-α reductase inhibitor) administration during early development (PD6 to PD15) in male rats. We observed that the treatment altered the temporal window of the natural peak in the expression of these subunits during development. Additionally, the level of these subunits were higher than in non-handled and control animals in the adult hippocampus. We observed that in adulthood, neonatal finasteride-treated animals presented an anxiogenic-like profile in response to progesterone administration which was absent in the rest of the groups. In conclusion, these results corroborate the relevance of neonatal maintenance of neurosteroid levels for behavioural anxiety responses in the adult, and point to some of the mechanisms involved in this alterations.
Collapse
|
41
|
Bali A, Jaggi AS. Multifunctional aspects of allopregnanolone in stress and related disorders. Prog Neuropsychopharmacol Biol Psychiatry 2014; 48:64-78. [PMID: 24044974 DOI: 10.1016/j.pnpbp.2013.09.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/05/2013] [Accepted: 09/05/2013] [Indexed: 12/22/2022]
Abstract
Allopregnanolone (3α-hydroxy-5α-pregnan-20-one) is a major cholesterol-derived neurosteroid in the central nervous system and is synthesized from progesterone by steroidogenic enzymes, 5α-reductase (the rate-limiting enzyme) and 3α-hydroxysteroid dehydrogenase. The pathophysiological role of allopregnanolone in neuropsychiatric disorders has been highlighted in several investigations. The changes in neuroactive steroid levels are detected in stress and stress-related disorders including anxiety, panic and depression. The changes in allopregnanolone in response to acute stressor tend to restore the homeostasis by dampening the hyper-activated HPA axis. However, long standing stressors leading to development of neuropsychiatric disorders including depression and anxiety are associated with decrease in the allopregnanolone levels. GABAA receptor complex has been considered as the primary target of allopregnanolone and majority of its inhibitory actions are mediated through GABA potentiation or direct activation of GABA currents. The role of progesterone receptors in producing the late actions of allopregnanolone particularly in lordosis facilitation has also been described. Moreover, recent studies have also described the involvement of other multiple targets including brain-derived neurotrophic factor (BDNF), glutamate, dopamine, opioids, oxytocin, and calcium channels. The present review discusses the various aspects of allopregnanolone in stress and stress-related disorders including anxiety, depression and panic.
Collapse
Affiliation(s)
- Anjana Bali
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, 147002, India
| | | |
Collapse
|
42
|
Poromaa IS. Physiological Correlates of Premenstrual Dysphoric Disorder (PMDD). Curr Top Behav Neurosci 2014; 21:229-43. [PMID: 24590826 DOI: 10.1007/7854_2014_296] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Premenstrual dysphoric disorder (PMDD) is a mood disorder with onset of functionally impairing or distressing mood symptoms in the late luteal phase of the menstrual cycle. Psychophysiologic findings in PMDD broadly fall into two categories: vulnerability trait findings, thus categorized because they are present in the asymptomatic phases of the menstrual cycle, and state findings, which are only present in the symptomatic late luteal phase and which are potentially representative of the hormonal events and biological mechanisms that lead to PMDD. Trait vulnerability markers in PMDD include diminished cardiovascular stress responses, lower heart rate variability (reflecting increased vagal tone), and lower P300 amplitude, eventually suggesting that women with PMDD share a number of physiological correlates with related anxiety and mood disorders. State findings in PMDD include lower luteal phase prepulse inhibition and altered luteal phase emotion processing. Lower prepulse inhibition in the late luteal phase may be an important ovarian steroid-influenced indicative of altered serotonergic neurotransmission, of relevance for women with PMDD. Attempts to determine the neural correlates of emotion processing in the late luteal phase are thus far inconsistent, but promising.
Collapse
|
43
|
Armario A, Nadal R. Individual differences and the characterization of animal models of psychopathology: a strong challenge and a good opportunity. Front Pharmacol 2013; 4:137. [PMID: 24265618 PMCID: PMC3821037 DOI: 10.3389/fphar.2013.00137] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 10/16/2013] [Indexed: 02/06/2023] Open
Abstract
Despite the development of valuable new techniques (i.e., genetics, neuroimage) for the study of the neurobiological substrate of psychiatric diseases, there are strong limitations in the information that can be gathered from human studies. It is thus critical to develop appropriate animal models of psychiatric diseases to characterize their putative biological bases and the development of new therapeutic strategies. The present review tries to offer a general perspective and several examples of how individual differences in animals can contribute to explain differential susceptibility to develop behavioral alterations, but also emphasizes methodological problems that can lead to inappropriate or over-simplistic interpretations. A critical analysis of the approaches currently used could contribute to obtain more reliable data and allow taking full advantage of new and sophisticated technologies. The discussion is mainly focused on anxiety-like and to a lower extent on depression-like behavior in rodents.
Collapse
Affiliation(s)
- Antonio Armario
- Institut de Neurociències, Universitat Autònoma de Barcelona Bellaterra, Barcelona, Spain ; Unitat de Fisiologia Animal, Facultat de Biociències, Universitat Autònoma de Barcelona Bellaterra, Barcelona, Spain
| | | |
Collapse
|
44
|
Carver CM, Reddy DS. Neurosteroid interactions with synaptic and extrasynaptic GABA(A) receptors: regulation of subunit plasticity, phasic and tonic inhibition, and neuronal network excitability. Psychopharmacology (Berl) 2013; 230:151-88. [PMID: 24071826 PMCID: PMC3832254 DOI: 10.1007/s00213-013-3276-5] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 08/29/2013] [Indexed: 12/25/2022]
Abstract
RATIONALE Neurosteroids are steroids synthesized within the brain with rapid effects on neuronal excitability. Allopregnanolone, allotetrahydrodeoxycorticosterone, and androstanediol are three widely explored prototype endogenous neurosteroids. They have very different targets and functions compared to conventional steroid hormones. Neuronal γ-aminobutyric acid (GABA) type A (GABA(A)) receptors are one of the prime molecular targets of neurosteroids. OBJECTIVE This review provides a critical appraisal of recent advances in the pharmacology of endogenous neurosteroids that interact with GABA(A) receptors in the brain. Neurosteroids possess distinct, characteristic effects on the membrane potential and current conductance of the neuron, mainly via potentiation of GABA(A) receptors at low concentrations and direct activation of receptor chloride channel at higher concentrations. The GABA(A) receptor mediates two types of inhibition, now characterized as synaptic (phasic) and extrasynaptic (tonic) inhibition. Synaptic release of GABA results in the activation of low-affinity γ2-containing synaptic receptors, while high-affinity δ-containing extrasynaptic receptors are persistently activated by the ambient GABA present in the extracellular fluid. Neurosteroids are potent positive allosteric modulators of synaptic and extrasynaptic GABA(A) receptors and therefore enhance both phasic and tonic inhibition. Tonic inhibition is specifically more sensitive to neurosteroids. The resulting tonic conductance generates a form of shunting inhibition that controls neuronal network excitability, seizure susceptibility, and behavior. CONCLUSION The growing understanding of the mechanisms of neurosteroid regulation of the structure and function of the synaptic and extrasynaptic GABA(A) receptors provides many opportunities to create improved therapies for sleep, anxiety, stress, epilepsy, and other neuropsychiatric conditions.
Collapse
Affiliation(s)
- Chase Matthew Carver
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, 2008 Medical Research and Education Building, 8447 State Highway 47, Bryan, TX, 77807-3260, USA
| | | |
Collapse
|
45
|
Tyrosine phosphorylation of GABAA receptor γ2-subunit regulates tonic and phasic inhibition in the thalamus. J Neurosci 2013; 33:12718-27. [PMID: 23904608 PMCID: PMC4400286 DOI: 10.1523/jneurosci.0388-13.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
GABA-mediated tonic and phasic inhibition of thalamic relay neurons of the dorsal lateral geniculate nucleus (dLGN) was studied after ablating tyrosine (Y) phosphorylation of receptor γ2-subunits. As phosphorylation of γ2 Y365 and Y367 reduces receptor internalization, to understand their importance for inhibition we created a knock-in mouse in which these residues are replaced by phenylalanines. On comparing wild-type (WT) and γ2(Y365/367F)+/- (HT) animals (homozygotes are not viable in utero), the expression levels of GABAA receptor α4-subunits were increased in the thalamus of female, but not male mice. Raised δ-subunit expression levels were also observed in female γ2(Y365/367F) +/- thalamus. Electrophysiological analyses revealed no difference in the level of inhibition in male WT and HT dLGN, while both the spontaneous inhibitory postsynaptic activity and the tonic current were significantly augmented in female HT relay cells. The sensitivity of tonic currents to the δ-subunit superagonist THIP, and the blocker Zn(2+), were higher in female HT relay cells. This is consistent with upregulation of extrasynaptic GABAA receptors containing α4- and δ-subunits to enhance tonic inhibition. In contrast, the sensitivity of GABAA receptors mediating inhibition in the female γ2(Y356/367F) +/- to neurosteroids was markedly reduced compared with WT. We conclude that disrupting tyrosine phosphorylation of the γ2-subunit activates a sex-specific increase in tonic inhibition, and this most likely reflects a genomic-based compensation mechanism for the reduced neurosteroid sensitivity of inhibition measured in female HT relay neurons.
Collapse
|
46
|
Aouad M, Petit-Demoulière N, Goumon Y, Poisbeau P. Etifoxine stimulates allopregnanolone synthesis in the spinal cord to produce analgesia in experimental mononeuropathy. Eur J Pain 2013; 18:258-68. [PMID: 23881562 DOI: 10.1002/j.1532-2149.2013.00367.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2013] [Indexed: 02/04/2023]
Abstract
BACKGROUND Pathological pain states are often associated with neuronal hyperexcitability in the spinal cord. Reducing this excitability could theoretically be achieved by amplifying the existing spinal inhibitory control mediated by GABAA receptors (GABAARs). In this study, we used the non-benzodiazepine anxiolytic etifoxine (EFX) to characterize its interest as pain killer and spinal mechanisms of action. EFX potentiates GABAAR function but can also increase its function by stimulating the local synthesis of 3α-reduced neurosteroids (3αNS), the most potent endogenous modulators of this receptor. METHODS The efficacy of EFX analgesia and the contribution of 3αNS were evaluated in a rat model of mononeuropathy. Spinal contribution of EFX was characterized through changes in pain symptoms after intrathecal injections, spinal content of EFX and 3αNS, and expression of FosB-related genes, a marker of long-term plasticity. RESULTS We found that a 2-week treatment with EFX (>5 mg/kg, i.p.) fully suppressed neuropathic pain symptoms. This effect was fully mediated by 3αNS and probably by allopregnanolone, which was found at a high concentration in the spinal cord. In good agreement, the level of EFX analgesia after intrathecal injections confirmed that the spinal cord is a privileged target as well as the limited expression of FosB/ΔFosB gene products that are highly expressed in persistent pain states. CONCLUSIONS This preclinical study shows that stimulating the production of endogenous analgesics such as 3αNS represents an interesting strategy to reduce neuropathic pain symptoms. Since EFX is already prescribed as an anxiolytic in several countries, a translation to the human clinic needs to be rapidly evaluated.
Collapse
Affiliation(s)
- M Aouad
- Nociception and Pain Department, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | | | | | | |
Collapse
|
47
|
Villafuerte S, Heitzeg MM, Foley S, Yau WYW, Majczenko K, Zubieta JK, Zucker RA, Burmeister M. Impulsiveness and insula activation during reward anticipation are associated with genetic variants in GABRA2 in a family sample enriched for alcoholism. Mol Psychiatry 2012; 17:511-9. [PMID: 21483437 PMCID: PMC3166450 DOI: 10.1038/mp.2011.33] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genetic factors, externalizing personality traits such as impulsivity, and brain processing of salient stimuli all can affect individual risk for alcoholism. One of very few confirmed genetic association findings differentiating alcoholics from non-alcoholics is with variants in the inhibitory γ-amino butyric acid α2 receptor subunit (GABRA2) gene. Here we report the association of two of these GABRA2 variants with measures of alcohol symptoms, impulsivity and with insula cortex activation during anticipation of reward or loss using functional magnetic resonance imaging (fMRI). In a sample of 173 families (449 subjects), 129 of whom had at least one member diagnosed with alcohol dependence or abuse, carriers for the G allele in two single-nucleotide polymorphisms (SNPs) and haplotypes were more likely to have alcohol dependence symptoms (rs279858, P=0.01; rs279826, P=0.05; haplotype, P=0.02) and higher NEO Personality Inventory-Revised (NEO-PI-R) Impulsiveness scores (rs279858, P=0.016; rs279826, P=0.012; haplotype, P=0.032) with a stronger effect in women (rs279858, P=0.011; rs279826, P=0.002; haplotype, P=0.006), all P-values are corrected for family history and age. A subset of offspring from these families (n=44, 20 females), genotyped for GABRA2, participated in an fMRI study using a monetary incentive delay task. Increased insula activation during reward (r(2)=0.4; P=0.026) and loss (r(2)=0.38; P=0.039) anticipation was correlated with NEO-PI-R Impulsiveness and further associated with the GG genotype for both SNPs (P's<0.04). Our results suggest that GABRA2 genetic variation is associated with Impulsiveness through variation of insula activity responses, here evidenced during anticipatory responses.
Collapse
Affiliation(s)
- Sandra Villafuerte
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA, Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Mary M. Heitzeg
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA, Addiction Research Center, University of Michigan, Ann Arbor, MI, USA
| | - Sara Foley
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Wai-Ying Wendy Yau
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA, Addiction Research Center, University of Michigan, Ann Arbor, MI, USA
| | - Karen Majczenko
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA, Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA, Addiction Research Center, University of Michigan, Ann Arbor, MI, USA
| | - Jon-Kar Zubieta
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA, Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Robert A. Zucker
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA, Addiction Research Center, University of Michigan, Ann Arbor, MI, USA
| | - Margit Burmeister
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA, Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA, Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
48
|
Harte-Hargrove LC, Dow-Edwards DL. Withdrawal from THC during adolescence: sex differences in locomotor activity and anxiety. Behav Brain Res 2012; 231:48-59. [PMID: 22421367 DOI: 10.1016/j.bbr.2012.02.048] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 02/21/2012] [Accepted: 02/27/2012] [Indexed: 01/01/2023]
Abstract
Research suggests that the use and abuse of marijuana can be especially harmful if it occurs during adolescence, a period of vast developmental changes throughout the brain. Due to the localization of cannabinoid receptors within the limbic system and the established effects of cannabinoids on emotional states and anxiety levels of rats and humans, we studied the sex- and dose-related effects of Δ⁹-tetrahydrocannabinol (THC, the main psychoactive component in marijuana) on behavior and anxiety during spontaneous withdrawal. Male and female Sprague Dawley rats were administered 2, 7.5 or 15 mg/kg THC or vehicle from postnatal day 35-41 (approximating mid-adolescence in humans). Locomotor activity and anxiety-related behaviors were measured during drug administration and abstinence. THC caused significant dose-dependent locomotor depression during drug administration. Locomotor depression initially abated upon drug cessation, but re-emerged by the end of the abstinence period and was greater in female than male rats. We found sensitization to the locomotor-depressing effects of THC in middle- and high-dose rats and the subsequent development of tolerance in high-dose rats. The high dose of THC increased anxiety-like behaviors while the low dose decreased anxiety-like behaviors during drug administration, with females more sensitive to the anxiogenic effects of THC than males. During abstinence, females were again especially sensitive to the anxiogenic effects of THC. This study demonstrates sexually-dimorphic effects of THC on anxiety-related behaviors and locomotor activity during and after THC administration during adolescence. This information may be useful in the development of therapeutic approaches for the treatment of marijuana withdrawal in adolescents.
Collapse
Affiliation(s)
- Lauren C Harte-Hargrove
- Department of Physiology/Pharmacology, Program in Neural and Behavioral Sciences, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | | |
Collapse
|
49
|
Aoki C, Sabaliauskas N, Chowdhury T, Min JY, Colacino AR, Laurino K, Barbarich-Marsteller NC. Adolescent female rats exhibiting activity-based anorexia express elevated levels of GABA(A) receptor α4 and δ subunits at the plasma membrane of hippocampal CA1 spines. Synapse 2012; 66:391-407. [PMID: 22213233 DOI: 10.1002/syn.21528] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/06/2011] [Accepted: 12/14/2011] [Indexed: 12/26/2022]
Abstract
Activity-based anorexia (ABA) is an animal model for anorexia nervosa that has revealed genetic links to anxiety traits and neurochemical characteristics within the hypothalamus. However, few studies have used this animal model to investigate the biological basis for vulnerability of pubertal and adolescent females to ABA, even though the great majority of the anorexia nervosa cases are females exhibiting the first symptoms during puberty. GABAergic inhibition of the hippocampus strongly regulates anxiety as well as plasticity throughout life. We recently showed that the hippocampal CA1 of female mice undergo a dramatic change at puberty onset--from expressing virtually none of the nonsynaptic α4βδ GABA(A) receptors (GABARs) prepubertally to expressing these GABARs at ~7% of the CA1 dendritic spine membranes at puberty onset. Furthermore, we showed that this change underlies the enhanced modulation of anxiety, neuronal excitability, and NMDA receptor-dependent synaptic plasticity in the hippocampus by the stress neurosteroid, THP (3α-OH-5α[β]-pregnan-20-one or [allo]pregnanolone). Here, we used quantitative electron microscopy to determine whether ABA induction in female rats during adolescence also elevates the expression of α4 and δ subunits of α4βδ GABARs, as was observed at puberty onset for mice. Our analysis revealed that rats also exhibit a rise of α4 and δ subunits of α4βδ GABARs at puberty onset, in that these subunits are detectable at ~6% of the dendritic spine membranes of CA1 pyramidal cells at puberty onset (postnatal day 32-36; P32-36) but this drops to about 2% by P40-P44. The levels of α4 and δ subunits at the CA1 spines remained low following exposure of females to either of the two environmental factors needed to generate ABA--food restriction and access to a running wheel for 4 days--from P40 to P44. This pattern contrasted greatly from those of ABA animals, for which the two environmental factors were combined. Within the hippocampus of ABA animals, 12% of the spine profiles were labeled for α4, reflecting a sixfold increase, relative to hippocampi of age-matched (P44) control females (p < 0.005). Concurrently, 7% of the spine profiles were labeled for δ, reflecting a 130% increase from the control values of 3% (p = 0.01). No measurable change was detected for spine size. The observed magnitude of increase in the α4 and δ subunits at spines is sufficient to increase both tonic inhibition of hippocampus and anxiety during stress, thereby likely to exacerbate hyperactivity and weight loss.
Collapse
Affiliation(s)
- Chiye Aoki
- Center for Neural Science, New York University, New York, New York 10003, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Smith PW. Hormone Replacement in Women. Integr Med (Encinitas) 2012. [DOI: 10.1016/b978-1-4377-1793-8.00035-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|