1
|
Neumann J, Hofmann B, Kirchhefer U, Dhein S, Gergs U. Function and Role of Histamine H 1 Receptor in the Mammalian Heart. Pharmaceuticals (Basel) 2023; 16:734. [PMID: 37242517 PMCID: PMC10223319 DOI: 10.3390/ph16050734] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Histamine can change the force of cardiac contraction and alter the beating rate in mammals, including humans. However, striking species and regional differences have been observed. Depending on the species and the cardiac region (atrium versus ventricle) studied, the contractile, chronotropic, dromotropic, and bathmotropic effects of histamine vary. Histamine is present and is produced in the mammalian heart. Thus, histamine may exert autocrine or paracrine effects in the mammalian heart. Histamine uses at least four heptahelical receptors: H1, H2, H3 and H4. Depending on the species and region studied, cardiomyocytes express only histamine H1 or only histamine H2 receptors or both. These receptors are not necessarily functional concerning contractility. We have considerable knowledge of the cardiac expression and function of histamine H2 receptors. In contrast, we have a poor understanding of the cardiac role of the histamine H1 receptor. Therefore, we address the structure, signal transduction, and expressional regulation of the histamine H1 receptor with an eye on its cardiac role. We point out signal transduction and the role of the histamine H1 receptor in various animal species. This review aims to identify gaps in our knowledge of cardiac histamine H1 receptors. We highlight where the published research shows disagreements and requires a new approach. Moreover, we show that diseases alter the expression and functional effects of histamine H1 receptors in the heart. We found that antidepressive drugs and neuroleptic drugs might act as antagonists of cardiac histamine H1 receptors, and believe that histamine H1 receptors in the heart might be attractive targets for drug therapy. The authors believe that a better understanding of the role of histamine H1 receptors in the human heart might be clinically relevant for improving drug therapy.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Magdeburger Straße 4, Martin-Luther-Universität Halle-Wittenberg, 06097 Halle, Germany
| | - Britt Hofmann
- Herzchirurgie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Ernst-Grube Straße 40, 06097 Halle, Germany
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Domagkstraße 12, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Stefan Dhein
- Rudolf-Boehm Institut für Pharmakologie und Toxikologie, Härtelstraße 16-18, Universität Leipzig, 04107 Leipzig, Germany
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Magdeburger Straße 4, Martin-Luther-Universität Halle-Wittenberg, 06097 Halle, Germany
| |
Collapse
|
2
|
Biringer RG. Migraine signaling pathways: amino acid metabolites that regulate migraine and predispose migraineurs to headache. Mol Cell Biochem 2022; 477:2269-2296. [PMID: 35482233 DOI: 10.1007/s11010-022-04438-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
Migraine is a common, debilitating disorder for which attacks typically result in a throbbing, pulsating headache. Although much is known about migraine, its complexity renders understanding the complete etiology currently out of reach. However, two important facts are clear, the brain and the metabolism of the migraineur differ from that of the non-migraineur. This review centers on the altered amino acid metabolism in migraineurs and how it helps define the pathology of migraine.
Collapse
Affiliation(s)
- Roger Gregory Biringer
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
3
|
Singh K, Senatorov IS, Cheshmehkani A, Karmokar PF, Moniri NH. The Skeletal Muscle Relaxer Cyclobenzaprine Is a Potent Non-Competitive Antagonist of Histamine H1 Receptors. J Pharmacol Exp Ther 2022; 380:202-209. [PMID: 34992159 DOI: 10.1124/jpet.121.000998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/02/2021] [Indexed: 11/22/2022] Open
Abstract
Cyclobenzaprine is a tricyclic dimethylpropanamine skeletal muscle relaxant, which is used clinically to decrease muscle spasm and hypercontractility, as well as acute musculoskeletal pain. Although the absolute mechanism of action of cyclobenzaprine remains elusive, it is known to mediate its effects centrally via inhibition of tonic somatic motor function, likely through modulation of noradrenergic and serotonergic systems. While cyclobenzaprine is effective as a muscle relaxant, greater than 30% of patients experience drowsiness and sedative-hypnotic effects, yet the mechanisms that cause this adverse effect are also undescribed. Based on this common adverse effect profile and the structural similarity of cyclobenzaprine to tricyclic antidepressants, as well as ethanolamine first-generation antihistamines, we hypothesized that cyclobenzaprine facilitates sedative effects via off-target antagonism of central histamine H1 receptors (H1Rs). Here, for the first time, we present data that demonstrate that cyclobenzaprine exhibits low nanomolar affinity for the cloned human H1R, as well as that expressed in both rat and mouse brain. Using saturation radioligand binding, we also demonstrate that cyclobenzaprine binds to the H1R in a noncompetitive manner. Similarly, functional assays measuring both Ca+2 influx and novel TRUPATH G-protein subunit bioluminescence resonance energy transfer biosensors reveal that cyclobenzaprine also blocks histamine-mediated H1R functional activity in a noncompetitive manner, whereas the classical H1R antagonist diphenhydramine does so competitively. Given that cyclobenzaprine readily crosses the blood-brain barrier and its muscle relaxant effects occur centrally, our data suggest that off-target central antagonism of H1R by cyclobenzaprine facilitates the significant sedative effect of this agent seen in patients. SIGNIFICANCE STATEMENT: Cyclobenzaprine, a clinically used muscle relaxant that is strongly linked to sedation, demonstrates high-affinity noncompetitive antagonism at the histamine H1 receptor. This effect likely modulates the high degree of sedation that patients experience.
Collapse
Affiliation(s)
- Kirti Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, Georgia (K.S., I.S.S., A.C., P.F.K., N.H.M.) and Department of Biomedical Sciences, School of Medicine, Mercer University Health Sciences Center, Mercer University, Macon, Georgia (N.H.M.)
| | - Ilya S Senatorov
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, Georgia (K.S., I.S.S., A.C., P.F.K., N.H.M.) and Department of Biomedical Sciences, School of Medicine, Mercer University Health Sciences Center, Mercer University, Macon, Georgia (N.H.M.)
| | - Ameneh Cheshmehkani
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, Georgia (K.S., I.S.S., A.C., P.F.K., N.H.M.) and Department of Biomedical Sciences, School of Medicine, Mercer University Health Sciences Center, Mercer University, Macon, Georgia (N.H.M.)
| | - Priyanka F Karmokar
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, Georgia (K.S., I.S.S., A.C., P.F.K., N.H.M.) and Department of Biomedical Sciences, School of Medicine, Mercer University Health Sciences Center, Mercer University, Macon, Georgia (N.H.M.)
| | - Nader H Moniri
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, Georgia (K.S., I.S.S., A.C., P.F.K., N.H.M.) and Department of Biomedical Sciences, School of Medicine, Mercer University Health Sciences Center, Mercer University, Macon, Georgia (N.H.M.)
| |
Collapse
|
4
|
Casey AB, Mukherjee M, McGlynn RP, Cui M, Kohut SJ, Booth RG. A new class of serotonin 5-HT 2A /5-HT 2C receptor inverse agonists: Synthesis, molecular modeling, in vitro and in vivo pharmacology of novel 2-aminotetralins. Br J Pharmacol 2021; 179:2610-2630. [PMID: 34837227 DOI: 10.1111/bph.15756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE The 5-HT receptor (5-HTR) subtypes 5-HT2A and 5-HT2C are important neurotherapeutic targets, though, obtaining selectivity over 5-HT2B and closely related histamine H1 Rs is challenging. Here, we delineated molecular determinants of selective binding to 5-HT2A and 5-HT2C Rs for novel 4-phenyl-2-dimethylaminotetralins (4-PATs). EXPERIMENTAL APPROACH We synthesized 42 novel 4-PATs with halogen or aryl moieties at the C(4)-phenyl meta position. Affinity, function, molecular modeling, and 5-HT2A R mutagenesis studies were undertaken to understand structure-activity relationships at 5-HT2 -type and H1 Rs. Lead 4-PAT-type selective 5-HT2A /5-HT2C R inverse agonists were compared to pimavanserin, a selective 5-HT2A /5-HT2C R inverse agonist approved to treat psychoses, in the mouse head twitch response, and locomotor activity assays, as models relevant to antipsychotic drug development. KEY RESULTS Most 4-PAT diastereomers in the (2S,4R)-configuration bound non-selectively to 5-HT2A , 5-HT2C, and H1 Rs, with >100-fold selectivity over 5-HT2B Rs, whereas, diastereomers in the (2R,4R)-configuration bound preferentially to 5-HT2A over 5-HT2C Rs and had >100-fold selectivity over 5-HT2B and H1 Rs. Results suggest that G2385.42 and V2355.39 in 5-HT2A Rs (conserved in 5-HT2C Rs) are important for high affinity binding, whereas, interactions with T1945.42 and W1584.56 determine H1 R affinity. The 4-PAT (2S,4R)-2k, a potent and selective 5-HT2A /5-HT2C R inverse agonist, had activity like pimavanserin in the mouse head-twitch response assay, but was distinct in not suppressing locomotor activity. CONCLUSIONS AND IMPLICATIONS We provide evidence that the novel 4-PAT chemotype can yield selective 5-HT2A /5-HT2C R inverse agonists for antipsychotic drug development by optimizing ligand-receptor interactions in transmembrane domain 5. We also show that chirality can be exploited to attain selectivity over H1 Rs which may circumvent sedative effects.
Collapse
Affiliation(s)
- Austen B Casey
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts, United States.,Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, United States.,Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts, United States
| | - Munmun Mukherjee
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts, United States.,Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, United States.,Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts, United States
| | - Ryan P McGlynn
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts, United States.,Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, United States.,Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts, United States
| | - Meng Cui
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts, United States.,Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, United States
| | - Stephen J Kohut
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts, United States.,Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, United States.,Behavioral Neuroimaging Laboratory, McLean Hospital and Department of Psychiatry, Harvard Medical School, Belmont, Massachusetts, United States
| | - Raymond G Booth
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts, United States.,Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, United States.,Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts, United States
| |
Collapse
|
5
|
Seyedabadi M, Ghahremani MH, Albert PR. Biased signaling of G protein coupled receptors (GPCRs): Molecular determinants of GPCR/transducer selectivity and therapeutic potential. Pharmacol Ther 2019; 200:148-178. [PMID: 31075355 DOI: 10.1016/j.pharmthera.2019.05.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023]
Abstract
G protein coupled receptors (GPCRs) convey signals across membranes via interaction with G proteins. Originally, an individual GPCR was thought to signal through one G protein family, comprising cognate G proteins that mediate canonical receptor signaling. However, several deviations from canonical signaling pathways for GPCRs have been described. It is now clear that GPCRs can engage with multiple G proteins and the line between cognate and non-cognate signaling is increasingly blurred. Furthermore, GPCRs couple to non-G protein transducers, including β-arrestins or other scaffold proteins, to initiate additional signaling cascades. Receptor/transducer selectivity is dictated by agonist-induced receptor conformations as well as by collateral factors. In particular, ligands stabilize distinct receptor conformations to preferentially activate certain pathways, designated 'biased signaling'. In this regard, receptor sequence alignment and mutagenesis have helped to identify key receptor domains for receptor/transducer specificity. Furthermore, molecular structures of GPCRs bound to different ligands or transducers have provided detailed insights into mechanisms of coupling selectivity. However, receptor dimerization, compartmentalization, and trafficking, receptor-transducer-effector stoichiometry, and ligand residence and exposure times can each affect GPCR coupling. Extrinsic factors including cell type or assay conditions can also influence receptor signaling. Understanding these factors may lead to the development of improved biased ligands with the potential to enhance therapeutic benefit, while minimizing adverse effects. In this review, evidence for ligand-specific GPCR signaling toward different transducers or pathways is elaborated. Furthermore, molecular determinants of biased signaling toward these pathways and relevant examples of the potential clinical benefits and pitfalls of biased ligands are discussed.
Collapse
Affiliation(s)
- Mohammad Seyedabadi
- Department of Pharmacology, School of Medicine, Bushehr University of Medical Sciences, Iran; Education Development Center, Bushehr University of Medical Sciences, Iran
| | | | - Paul R Albert
- Ottawa Hospital Research Institute, Neuroscience, University of Ottawa, Canada.
| |
Collapse
|
6
|
Murnane KS, Guner OF, Bowen JP, Rambacher KM, Moniri NH, Murphy TJ, Daphney CM, Oppong-Damoah A, Rice KC. The adrenergic receptor antagonist carvedilol interacts with serotonin 2A receptors both in vitro and in vivo. Pharmacol Biochem Behav 2019; 181:37-45. [PMID: 30998954 DOI: 10.1016/j.pbb.2019.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/08/2019] [Accepted: 04/12/2019] [Indexed: 11/19/2022]
Abstract
There is increasing support for the potential clinical use of compounds that interact with serotonin 2A (5-HT2A) receptors. It is therefore of interest to discover novel compounds that interact with 5-HT2A receptors. In the present study, we used computational chemistry to identify critical ligand structural features of 5-HT2A receptor binding and function. Query of compound databases using those ligand features revealed the adrenergic receptor antagonist carvedilol as a high priority match. As carvedilol is used clinically for cardiovascular diseases, we conducted experiments to assess whether it has any interactions with 5-HT2A receptors. In vitro experiments demonstrated that carvedilol has high nanomolar affinity for 5-HT2A receptors. In vivo experiments demonstrated that carvedilol increases the ethanol-induced loss of the righting reflex and suppresses operant responding in mice, and that these effects are attenuated by pretreatment with the selective 5-HT2A receptor antagonist M100907. Moreover, carvedilol did not induce the head-twitch response in mice, suggesting a lack of psychedelic effects. However, carvedilol did not activate canonical 5-HT2A receptor signaling pathways and antagonized serotonin-mediated signaling. It also reduced the head-twitch response induced by 2,5-Dimethoxy-4-iodoamphetamine, suggesting potential in vivo antagonism, allosteric modulation, or functional bias. These data suggest that carvedilol has functionally relevant interactions with 5-HT2A receptors, providing a novel mechanism of action for a clinically used compound. However, our findings do not clearly delineate the precise mechanism of action of carvedilol at 5-HT2A receptors, and additional experiments are needed to elucidate the role of 5-HT2A receptors in the behavioral and clinical effects of carvedilol.
Collapse
Affiliation(s)
- Kevin Sean Murnane
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, GA, USA.
| | - Osman F Guner
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, GA, USA
| | - J Phillip Bowen
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, GA, USA
| | - Kalyn M Rambacher
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, GA, USA
| | - Nader H Moniri
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, GA, USA
| | - Tyler J Murphy
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, GA, USA; Department of Biology, Oglethorpe University, Atlanta, GA, USA
| | - Cedrick Maceo Daphney
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, GA, USA
| | - Aboagyewaah Oppong-Damoah
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, GA, USA
| | - Kenner C Rice
- Section on Drug Design and Synthesis, National Institute on Drug Abuse and Chemical Biology Research Branch, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Panettieri RA, Pera T, Liggett SB, Benovic JL, Penn RB. Pepducins as a potential treatment strategy for asthma and COPD. Curr Opin Pharmacol 2018; 40:120-125. [PMID: 29729548 DOI: 10.1016/j.coph.2018.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 12/18/2022]
Abstract
Current therapies to treat asthma and other airway diseases primarily include anti-inflammatory agents and bronchodilators. Anti-inflammatory agents target trafficking and resident immunocytes and structural cells, while bronchodilators act to prevent or reverse shortening of airway smooth muscle (ASM), the pivotal tissue regulating bronchomotor tone. Advances in our understanding of the biology of G protein-coupled receptors (GPCRs) and biased agonism offers unique opportunities to modulate GPCR function that include the use of pepducins and allosteric modulators. Recent evidence suggests that small molecule inhibitors of Gαq as well as pepducins targeting Gq-coupled receptors can broadly inhibit contractile agonist-induced ASM function. Given these advances, new therapeutic approaches can be leveraged to diminish the global rise in morbidity and mortality associated with asthma and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 89 French Street, Suite 4211, New Brunswick, NJ 08901, United States.
| | - Tonio Pera
- Sidney Kimmel Medical College, Center for Translational Medicine, Jane and Leonard Korman Lung Institute, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Stephen B Liggett
- USF Health Office of Research, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Jeffrey L Benovic
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Raymond B Penn
- Sidney Kimmel Medical College, Center for Translational Medicine, Jane and Leonard Korman Lung Institute, Thomas Jefferson University, Philadelphia, PA 19107, United States
| |
Collapse
|
8
|
Emirbayer PE, Sinha A, Ignatchenko V, Hoyer S, Dörrie J, Schaft N, Pischetsrieder M, Kislinger T. Proteomic Response of Human Umbilical Vein Endothelial Cells to Histamine Stimulation. Proteomics 2017; 17. [PMID: 28921918 DOI: 10.1002/pmic.201700116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The histamine receptors (HRs) represent a subclass of G protein-coupled receptors (GPCRs) and comprise four subtypes. Due to their numerous physiological and pathological effects, HRs are popular drug targets for the treatment of allergic reactions or the regulation of gastric acid secretion. Hence, an understanding of the functional selectivity of HR ligands has gained importance. These ligands can bind to specific GPCRs and selectively activate defined pathways. Supporting the activation of a therapeutically necessary pathway without the activation of other signaling cascades can result in drugs with more specific activity and fewer side effects. To evaluate the cellular consequences resulting from receptor binding, comprehensive analyses of cellular protein alterations upon incubation with ligands are required. For this purpose, endothelial cells are treated with histamine, as the endogenous ligand of HRs, to obtain a global overview of its cellular effects. Quantitative proteomics and pathway analyses of histamine-treated and untreated cells reveal enrichment of the nuclear factor-κB and tumor necrosis factor signaling pathways, cytokine-cytokine receptor interactions, complement and coagulation cascades, and acute inflammatory processes upon histamine treatment. This strategy offers the opportunity to monitor HR-mediated signaling in a multidimensional manner.
Collapse
Affiliation(s)
- Pelin Esma Emirbayer
- Food Chemistry Unit, Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ankit Sinha
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | | | - Stefanie Hoyer
- Department of Dermatology, Forschungscampus, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, Forschungscampus, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Forschungscampus, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Monika Pischetsrieder
- Food Chemistry Unit, Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Monczor F, Fernandez N. Current Knowledge and Perspectives on Histamine H1 and H2 Receptor Pharmacology: Functional Selectivity, Receptor Crosstalk, and Repositioning of Classic Histaminergic Ligands. Mol Pharmacol 2016; 90:640-648. [PMID: 27625037 DOI: 10.1124/mol.116.105981] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/12/2016] [Indexed: 12/14/2022] Open
Abstract
H1 and H2 histamine receptor antagonists, although developed many decades ago, are still effective for the treatment of allergic and gastric acid-related conditions. This article focuses on novel aspects of the pharmacology and molecular mechanisms of histamine receptors that should be contemplated for optimizing current therapies, repositioning histaminergic ligands for new therapeutic uses, or even including agonists of the histaminergic system in the treatment of different pathologies such as leukemia or neurodegenerative disorders. In recent years, new signaling phenomena related to H1 and H2 receptors have been described that make them suitable for novel therapeutic approaches. Crosstalk between histamine receptors and other membrane or nuclear receptors can be envisaged as a way to modulate other signaling pathways and to potentiate the efficacy of drugs acting on different receptors. Likewise, biased signaling at histamine receptors seems to be a pharmacological feature that can be exploited to investigate nontraditional therapeutic uses for H1 and H2 biased agonists in malignancies such as acute myeloid leukemia and to avoid undesired side effects when used in standard treatments. It is hoped that the molecular mechanisms discussed in this review contribute to a better understanding of the different aspects involved in histamine receptor pharmacology, which in turn will contribute to increased drug efficacy, avoidance of adverse effects, or repositioning of histaminergic ligands.
Collapse
Affiliation(s)
- Federico Monczor
- Instituto de Investigaciones Farmacológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Fernandez
- Instituto de Investigaciones Farmacológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
10
|
Panula P, Chazot PL, Cowart M, Gutzmer R, Leurs R, Liu WLS, Stark H, Thurmond RL, Haas HL. International Union of Basic and Clinical Pharmacology. XCVIII. Histamine Receptors. Pharmacol Rev 2016; 67:601-55. [PMID: 26084539 DOI: 10.1124/pr.114.010249] [Citation(s) in RCA: 390] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Histamine is a developmentally highly conserved autacoid found in most vertebrate tissues. Its physiological functions are mediated by four 7-transmembrane G protein-coupled receptors (H1R, H2R, H3R, H4R) that are all targets of pharmacological intervention. The receptors display molecular heterogeneity and constitutive activity. H1R antagonists are long known antiallergic and sedating drugs, whereas the H2R was identified in the 1970s and led to the development of H2R-antagonists that revolutionized stomach ulcer treatment. The crystal structure of ligand-bound H1R has rendered it possible to design new ligands with novel properties. The H3R is an autoreceptor and heteroreceptor providing negative feedback on histaminergic and inhibition on other neurons. A block of these actions promotes waking. The H4R occurs on immuncompetent cells and the development of anti-inflammatory drugs is anticipated.
Collapse
Affiliation(s)
- Pertti Panula
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Paul L Chazot
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Marlon Cowart
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Ralf Gutzmer
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Rob Leurs
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Wai L S Liu
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Holger Stark
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Robin L Thurmond
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Helmut L Haas
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| |
Collapse
|
11
|
Sakhuja R, Kondabolu K, Córdova-Sintjago T, Travers S, Vincek AS, Kim MS, Abboud KA, Fang L, Sun Z, Canal CE, Booth RG. Novel 4-substituted-N,N-dimethyltetrahydronaphthalen-2-amines: synthesis, affinity, and in silico docking studies at serotonin 5-HT2-type and histamine H1 G protein-coupled receptors. Bioorg Med Chem 2015; 23:1588-600. [PMID: 25703249 PMCID: PMC4363177 DOI: 10.1016/j.bmc.2015.01.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/22/2015] [Accepted: 01/30/2015] [Indexed: 10/24/2022]
Abstract
Syntheses were undertaken of derivatives of (2S,4R)-(-)-trans-4-phenyl-N,N-dimethyl-1,2,3,4-tetrahydronaphthalen-2-amine (4-phenyl-2-dimethylaminotetralin, PAT), a stereospecific agonist at the serotonin 5-HT2C G protein-coupled receptor (GPCR), with inverse agonist activity at 5-HT2A and 5-HT2B GPCRs. Molecular changes were made at the PAT C(4)-position, while preserving N,N-dimethyl substitution at the 2-position as well as trans-stereochemistry, structural features previously shown to be optimal for 5-HT2 binding. Affinities of analogs were determined at recombinant human 5-HT2 GPCRs in comparison to the phylogenetically closely-related histamine H1 GPCR, and in silico ligand docking studies were conducted at receptor molecular models to help interpret pharmacological results and guide future ligand design. In most cases, C(4)-substituted PAT analogs exhibited the same stereoselectivity ([-]-trans>[+]-trans) as the parent PAT across 5-HT2 and H1 GPCRs, albeit, with variable receptor selectivity. 4-(4'-substituted)-PAT analogs, however, demonstrated reversed stereoselectivity ([2S,4R]-[+]-trans>[2S,4R]-[-]-trans), with absolute configuration confirmed by single X-ray crystallographic data for the 4-(4'-Cl)-PAT analog. Pharmacological affinity results and computational results herein support further PAT drug development studies and provide a basis for predicting and interpreting translational results, including, for (+)-trans-4-(4'-Cl)-PAT and (-)-trans-4-(3'-Br)-PAT that were previously shown to be more potent and efficacious than their corresponding enantiomers in rodent models of psychoses, psychostimulant-induced behaviors, and compulsive feeding ('binge-eating').
Collapse
MESH Headings
- Binding Sites
- Binding, Competitive/physiology
- Computer Simulation
- Crystallography, X-Ray
- Humans
- Naphthalenes/chemical synthesis
- Naphthalenes/metabolism
- Protein Structure, Secondary
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Histamine H1/chemistry
- Receptors, Histamine H1/metabolism
- Receptors, Serotonin, 5-HT2/chemistry
- Receptors, Serotonin, 5-HT2/metabolism
Collapse
Affiliation(s)
- Rajeev Sakhuja
- Department of Medicinal Chemistry and Department of Chemistry, University of Florida, Gainesville, FL 32610-0485, United States
| | - Krishnakanth Kondabolu
- Department of Medicinal Chemistry and Department of Chemistry, University of Florida, Gainesville, FL 32610-0485, United States
| | - Tania Córdova-Sintjago
- Department of Medicinal Chemistry and Department of Chemistry, University of Florida, Gainesville, FL 32610-0485, United States; Center for Drug Discovery, Department of Pharmaceutical Sciences and Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115-5000, United States
| | - Sean Travers
- Department of Medicinal Chemistry and Department of Chemistry, University of Florida, Gainesville, FL 32610-0485, United States
| | - Adam S Vincek
- Department of Medicinal Chemistry and Department of Chemistry, University of Florida, Gainesville, FL 32610-0485, United States
| | - Myong Sang Kim
- Department of Medicinal Chemistry and Department of Chemistry, University of Florida, Gainesville, FL 32610-0485, United States
| | - Khalil A Abboud
- Department of Medicinal Chemistry and Department of Chemistry, University of Florida, Gainesville, FL 32610-0485, United States
| | - Lijuan Fang
- Department of Medicinal Chemistry and Department of Chemistry, University of Florida, Gainesville, FL 32610-0485, United States
| | - Zhuming Sun
- Department of Medicinal Chemistry and Department of Chemistry, University of Florida, Gainesville, FL 32610-0485, United States
| | - Clinton E Canal
- Department of Medicinal Chemistry and Department of Chemistry, University of Florida, Gainesville, FL 32610-0485, United States; Center for Drug Discovery, Department of Pharmaceutical Sciences and Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115-5000, United States
| | - Raymond G Booth
- Department of Medicinal Chemistry and Department of Chemistry, University of Florida, Gainesville, FL 32610-0485, United States; Center for Drug Discovery, Department of Pharmaceutical Sciences and Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115-5000, United States.
| |
Collapse
|
12
|
Rdova-Sintjago TC, Villa N, Canal C, Booth R. Human Serotonin 5-HT 2C G Protein-Coupled Receptor Homology Model from the β2 Adrenoceptor Structure: Ligand Docking and Mutagenesis Studies. INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 2012; 112:10.1002/qua.23231. [PMID: 24244046 PMCID: PMC3826658 DOI: 10.1002/qua.23231] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Activation of the serotonin (5-hydroxytryptamine, 5-HT) 5HT2C G protein-coupled receptor (GPCR) is proposed as novel pharmacotherapy for obesity and neuropsychiatric disorders. In contrast, activation of the 5-HT2A and 5-HT2B GPCRs is associated with untoward hallucinogenic and cardiopulmonary effects, respectively. There is no crystal structure available to guide design of 5-HT2C receptor-specific ligands. For this reason, a homology model of the 5-HT2C receptor was built based on the crystal structure of the human β2 adrenoceptor GPCR to delineate molecular determinants of ligand-receptor interactions for drug design purposes. Computational and experimental studies were carried out to validate the model. Binding of N(CH3)2-PAT [(1R, 3S)-(-)-trans-1-phenyl-3-N,N-dimethylamino-1,2,3,4-tetrahydronaphthalene], a novel 5-HT2C agonist/5-HT2A/2B inverse agonist, and its secondary [NH(CH3)-PAT] and primary (NH2-PAT) amine analogs were studied at the 5-HT2C wild type (WT) and D3.32A, S3.36A, and Y7.43A 5-HT2C point-mutated receptors. Reference ligands included the tertiary amines lisuride and mesulergine and the primary amine 5-HT. Modeling results indicated that 5-HT2C residues D3.32, S3.36, and Y7.43 play a role in ligand binding. Experimental ligand binding results with WT and point-mutated receptors confirmed the impact of D3.32, S3.36, and Y7.43 on ligand affinity.
Collapse
Affiliation(s)
- Tania Có Rdova-Sintjago
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610
| | | | | | | |
Collapse
|
13
|
Canal CE, Cordova-Sintjago TC, Villa NY, Fang LJ, Booth RG. Drug discovery targeting human 5-HT(2C) receptors: residues S3.36 and Y7.43 impact ligand-binding pocket structure via hydrogen bond formation. Eur J Pharmacol 2011; 673:1-12. [PMID: 22020288 DOI: 10.1016/j.ejphar.2011.10.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 09/27/2011] [Accepted: 10/02/2011] [Indexed: 11/28/2022]
Abstract
Specific activation of serotonin (5-HT) 5-HT(2C) G protein-coupled receptors may be therapeutic for obesity and neuropsychiatric disorders. Mutagenesis coupled with computational and molecular modeling experiments based on the human β₂ adrenergic receptor structure was employed to delineate the interactions of different ligands at human 5-HT(2C) residues D3.32, S3.36 and Y7.43. No binding of the tertiary amine radioligand ([³H]-mesulergine) could be detected when the 5-HT(2C) D3.32 residue was mutated to alanine (D3.32A). The S3.36A point-mutation greatly reduced affinity of primary amine ligands, modestly reduced affinity of a secondary amine, and except for the 5-HT(2C)-specific agonist N(CH₃)₂-PAT, affinity of tertiary amines was unaffected. Molecular modeling results indicated that the primary amines form hydrogen bonds with the S3.36 residue, whereas, with the exception of N(CH₃)₂-PAT, tertiary amines do not interact considerably with this residue. The Y7.43A point-mutation greatly reduced affinity of 5-HT, yet reduced to a lesser extent the affinity of tryptamine that lacks the 5-hydroxy moiety present in 5-HT; modeling results indicated that the 5-HT 5-hydroxy moiety hydrogen bonds with Y7.43 at the 5-HT(2C) receptor. Additional modeling results showed that 5-HT induced a hydrogen bond between Y7.43 and D3.32. Finally, modeling results revealed two low-energy binding modes for 5-HT in the 5-HT(2C) binding pocket, supporting the concept that multiple agonist binding modes may stabilize different receptor active conformations to influence signaling. Ligand potencies for modulating WT and point-mutated 5-HT(2C) receptor-mediated phospholipase C activity were in accordance with the affinity data. Ligand efficacies, however, were altered considerably by the S3.36A mutation only.
Collapse
Affiliation(s)
- Clinton E Canal
- Department of Medicinal Chemistry, University of Florida, P.O. Box 100485, 1600 SW Archer Road, Gainesville, FL 32610-0485, USA
| | | | | | | | | |
Collapse
|
14
|
Comps-Agrar L, Kniazeff J, Nørskov-Lauritsen L, Maurel D, Gassmann M, Gregor N, Prézeau L, Bettler B, Durroux T, Trinquet E, Pin JP. The oligomeric state sets GABA(B) receptor signalling efficacy. EMBO J 2011; 30:2336-49. [PMID: 21552208 PMCID: PMC3116278 DOI: 10.1038/emboj.2011.143] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 04/11/2011] [Indexed: 12/20/2022] Open
Abstract
G protein-coupled receptors (GPCRs) have key roles in cell-cell communication. Recent data suggest that these receptors can form large complexes, a possibility expected to expand the complexity of this regulatory system. Among the brain GPCRs, the heterodimeric GABA(B) receptor is one of the most abundant, being distributed in most brain regions, on either pre- or post-synaptic elements. Here, using specific antibodies labelled with time-resolved FRET compatible fluorophores, we provide evidence that the heterodimeric GABA(B) receptor can form higher-ordered oligomers in the brain, as suggested by the close proximity of the GABA(B1) subunits. Destabilizing the oligomers using a competitor or a GABA(B1) mutant revealed different G protein coupling efficiencies depending on the oligomeric state of the receptor. By examining, in heterologous system, the G protein coupling properties of such GABA(B) receptor oligomers composed of a wild-type and a non-functional mutant heterodimer, we provide evidence for a negative functional cooperativity between the GABA(B) heterodimers.
Collapse
Affiliation(s)
- Laëtitia Comps-Agrar
- CNRS, UMR5203, Institut de Génomique Fonctionnelle, Department of Molecular Pharmacology, Montpellier, France
- INSERM, U661, Montpellier, France
- Universités de Montpellier 1 and 2, UMR5203, Montpellier, France
- Cisbio, Parc Technologique Marcel Boiteux, Bagnols/Cèze Cedex, France
| | - Julie Kniazeff
- CNRS, UMR5203, Institut de Génomique Fonctionnelle, Department of Molecular Pharmacology, Montpellier, France
- INSERM, U661, Montpellier, France
- Universités de Montpellier 1 and 2, UMR5203, Montpellier, France
| | - Lenea Nørskov-Lauritsen
- CNRS, UMR5203, Institut de Génomique Fonctionnelle, Department of Molecular Pharmacology, Montpellier, France
- INSERM, U661, Montpellier, France
- Universités de Montpellier 1 and 2, UMR5203, Montpellier, France
| | - Damien Maurel
- CNRS, UMR5203, Institut de Génomique Fonctionnelle, Department of Molecular Pharmacology, Montpellier, France
- INSERM, U661, Montpellier, France
- Universités de Montpellier 1 and 2, UMR5203, Montpellier, France
- Cisbio, Parc Technologique Marcel Boiteux, Bagnols/Cèze Cedex, France
| | - Martin Gassmann
- Department of Biomedicine, Institute of Physiology, Pharmazentrum, University of Basel, Basel, Switzerland
| | - Nathalie Gregor
- Cisbio, Parc Technologique Marcel Boiteux, Bagnols/Cèze Cedex, France
| | - Laurent Prézeau
- CNRS, UMR5203, Institut de Génomique Fonctionnelle, Department of Molecular Pharmacology, Montpellier, France
- INSERM, U661, Montpellier, France
- Universités de Montpellier 1 and 2, UMR5203, Montpellier, France
| | - Bernhard Bettler
- Department of Biomedicine, Institute of Physiology, Pharmazentrum, University of Basel, Basel, Switzerland
| | - Thierry Durroux
- CNRS, UMR5203, Institut de Génomique Fonctionnelle, Department of Molecular Pharmacology, Montpellier, France
- INSERM, U661, Montpellier, France
- Universités de Montpellier 1 and 2, UMR5203, Montpellier, France
| | - Eric Trinquet
- Cisbio, Parc Technologique Marcel Boiteux, Bagnols/Cèze Cedex, France
| | - Jean-Philippe Pin
- CNRS, UMR5203, Institut de Génomique Fonctionnelle, Department of Molecular Pharmacology, Montpellier, France
- INSERM, U661, Montpellier, France
- Universités de Montpellier 1 and 2, UMR5203, Montpellier, France
| |
Collapse
|
15
|
Pinto O, Sardinha J, Vaz PD, Piedade F, Calhorda MJ, Abramovitch R, Nazareth N, Pinto M, Nascimento MSJ, Rauter AP. Synthesis of Tetrahydronaphthalene Lignan Esters by Intramolecular Cyclization of Ethyl p-Azidophenyl-2-phenylalkanoates and Evaluation of the Growth Inhibition of Human Tumor Cell Lines. J Med Chem 2011; 54:3175-87. [DOI: 10.1021/jm101182s] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Orlando Pinto
- Universidade de Lisboa, Faculdade de Ciências, Centro de Química e Bioquímica/Departamento de Química e Bioquímica (CQB/DQB), Ed. C8, Piso 5, 1749-016 Lisboa, Portugal
| | - João Sardinha
- Universidade de Lisboa, Faculdade de Ciências, Centro de Química e Bioquímica/Departamento de Química e Bioquímica (CQB/DQB), Ed. C8, Piso 5, 1749-016 Lisboa, Portugal
| | - Pedro D. Vaz
- Universidade de Lisboa, Faculdade de Ciências, Centro de Química e Bioquímica/Departamento de Química e Bioquímica (CQB/DQB), Ed. C8, Piso 5, 1749-016 Lisboa, Portugal
| | - Fátima Piedade
- Universidade de Lisboa, Faculdade de Ciências, Centro de Química e Bioquímica/Departamento de Química e Bioquímica (CQB/DQB), Ed. C8, Piso 5, 1749-016 Lisboa, Portugal
| | - Maria J. Calhorda
- Universidade de Lisboa, Faculdade de Ciências, Centro de Química e Bioquímica/Departamento de Química e Bioquímica (CQB/DQB), Ed. C8, Piso 5, 1749-016 Lisboa, Portugal
| | - Rudolph Abramovitch
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634-0973, United States
| | - Nair Nazareth
- Centro de Estudos de Química Medicinal da Universidade do Porto (CEQUIMED-UP), Departamento de Ciências Químicas, Laboratório de Química Orgânica e Farmacêutica, Faculdade de Farmácia, Universidade do Porto, Rua Aníbal Cunha 164, 4050-047 Porto, Portugal
| | - Madalena Pinto
- Centro de Estudos de Química Medicinal da Universidade do Porto (CEQUIMED-UP), Departamento de Ciências Químicas, Laboratório de Química Orgânica e Farmacêutica, Faculdade de Farmácia, Universidade do Porto, Rua Aníbal Cunha 164, 4050-047 Porto, Portugal
| | - Maria S. J. Nascimento
- Centro de Estudos de Química Medicinal da Universidade do Porto (CEQUIMED-UP), Departamento de Ciências Químicas, Laboratório de Química Orgânica e Farmacêutica, Faculdade de Farmácia, Universidade do Porto, Rua Aníbal Cunha 164, 4050-047 Porto, Portugal
| | - Amélia P. Rauter
- Universidade de Lisboa, Faculdade de Ciências, Centro de Química e Bioquímica/Departamento de Química e Bioquímica (CQB/DQB), Ed. C8, Piso 5, 1749-016 Lisboa, Portugal
| |
Collapse
|
16
|
Berlin M, Boyce CW, de Lera Ruiz M. Histamine H3 Receptor as a Drug Discovery Target. J Med Chem 2010; 54:26-53. [DOI: 10.1021/jm100064d] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Michael Berlin
- Chemical Research, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Christopher W. Boyce
- Chemical Research, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Manuel de Lera Ruiz
- Chemical Research, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| |
Collapse
|
17
|
Beaton G, Moree WJ. The expanding role of H1antihistamines: a patent survey of selective and dual activity compounds 2005 – 2010. Expert Opin Ther Pat 2010; 20:1197-218. [DOI: 10.1517/13543776.2010.510516] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
18
|
Kenakin T, Miller LJ. Seven transmembrane receptors as shapeshifting proteins: the impact of allosteric modulation and functional selectivity on new drug discovery. Pharmacol Rev 2010; 62:265-304. [PMID: 20392808 DOI: 10.1124/pr.108.000992] [Citation(s) in RCA: 464] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
It is useful to consider seven transmembrane receptors (7TMRs) as disordered proteins able to allosterically respond to a number of binding partners. Considering 7TMRs as allosteric systems, affinity and efficacy can be thought of in terms of energy flow between a modulator, conduit (the receptor protein), and a number of guests. These guests can be other molecules, receptors, membrane-bound proteins, or signaling proteins in the cytosol. These vectorial flows of energy can yield standard canonical guest allostery (allosteric modification of drug effect), effects along the plane of the cell membrane (receptor oligomerization), or effects directed into the cytosol (differential signaling as functional selectivity). This review discusses these apparently diverse pharmacological effects in terms of molecular dynamics and protein ensemble theory, which tends to unify 7TMR behavior toward cells. Special consideration will be given to functional selectivity (biased agonism and biased antagonism) in terms of mechanism of action and potential therapeutic application. The explosion of technology that has enabled observation of diverse 7TMR behavior has also shown how drugs can have multiple (pluridimensional) efficacies and how this can cause paradoxical drug classification and nomenclatures.
Collapse
Affiliation(s)
- Terry Kenakin
- GlaxoSmithKline, 5 Moore Drive, Mailtstop V-287, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
19
|
Booth RG, Fang L, Huang Y, Wilczynski A, Sivendran S. (1R, 3S)-(-)-trans-PAT: a novel full-efficacy serotonin 5-HT2C receptor agonist with 5-HT2A and 5-HT2B receptor inverse agonist/antagonist activity. Eur J Pharmacol 2009; 615:1-9. [PMID: 19397907 DOI: 10.1016/j.ejphar.2009.04.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 04/20/2009] [Indexed: 11/26/2022]
Abstract
The serotonin 5-HT(2A), 5-HT(2B), and 5-HT(2C) G protein-coupled receptors signal primarily through G alpha(q) to activate phospholipase C (PLC) and formation of inositol phosphates (IP) and diacylglycerol. The human 5-HT(2C) receptor, expressed exclusively in the central nervous system, is involved in several physiological and psychological processes. Development of 5-HT(2C) agonists that do not also activate 5-HT(2A) or 5-HT(2B) receptors is challenging because transmembrane domain identity is about 75% among 5-HT(2) subtypes. This paper reports 5-HT(2) receptor affinity and function of (1R,3S)-(-)-trans-1-phenyl-3-dimethylamino-1,2,3,4-tetrahydronaphthalene (PAT), a small molecule that produces anorexia and weight-loss after peripheral administration to mice. (-)-Trans-PAT is a stereoselective full-efficacy agonist at human 5-HT(2C) receptors, plus, it is a 5-HT(2A)/5-HT(2B) inverse agonist and competitive antagonist. The K(i) of (-)-trans-PAT at 5-HT(2A), 5-HT(2B), and 5-HT(2C) receptors is 410, 1200, and 37 nM, respectively. Functional studies measured activation of PLC/[(3)H]-IP formation in clonal cells expressing human 5-HT(2) receptors. At 5-HT(2C) receptors, (-)-trans-PAT is an agonist (EC(50) = 20 nM) comparable to serotonin in potency and efficacy. At 5-HT(2A) and 5-HT(2B) receptors, (-)-trans-PAT is an inverse agonist (IC(50) = 490 and 1,000 nM, respectively) and competitive antagonist (K(B) = 460 and 1400 nM, respectively) of serotonin. Experimental results are interpreted in light of molecular modeling studies indicating the (-)-trans-PAT protonated amine can form an ionic bond with D3.32 of 5-HT(2A) and 5-HT(2C) receptors, but, not with 5-HT(2B) receptors. In addition to probing 5-HT(2) receptor structure and function, (-)-trans-PAT is a novel lead regarding 5-HT(2C) agonist/5-HT(2A) inverse agonist drug development for obesity and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Raymond G Booth
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610-0485, United States.
| | | | | | | | | |
Collapse
|
20
|
Booth RG, Fang L, Wilczynski A, Sivendren S, Sun Z, Travers S, Bruysters M, Sansuk K, Leurs R. Molecular determinants of ligand-directed signaling for the histamine H1 receptor. Inflamm Res 2008; 57 Suppl 1:S43-4. [PMID: 18345497 DOI: 10.1007/s00011-007-0621-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- R G Booth
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Rudolph MI, Boza Y, Yefi R, Luza S, Andrews E, Penissi A, Garrido P, Rojas IG. The influence of mast cell mediators on migration of SW756 cervical carcinoma cells. J Pharmacol Sci 2008; 106:208-18. [PMID: 18296861 DOI: 10.1254/jphs.fp0070736] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The role of mast cell mediators on cervical cancer cell migration was assessed using an in vitro assay of scratch wound healing onto monolayers of HPV18-positive cervical carcinoma cells (SW756). Migration of SW756 cells was accelerated by co-culture with the mast cell line LAD2. This effect was inhibited by the H1R antagonist pyrilamine and the cannabinoid agonists 2-arachidonylglycerol (2AG) and Win 55,212-2. Therefore, the specific effects of histamine and cannabinoids on SW756 migration and LAD2 activation were analyzed. Histamine added to the in vitro assay of scratch wound healing either increased or inhibited SW756 migration rate by acting either on H1R or H4R, respectively. Cannabinoids acted on CB1 receptors to inhibit SW756 migration. Supernatants from SW756 cells stimulated LAD2 cell degranulation, which in turn was inhibited by cannabinoids acting via CB2 receptors. RT-PCR showed that SW756 expressed mRNA for CB1, CB2, H1R, H2R, and H4R. On the other hand, LAD2 expressed mRNA for all four HRs and CB2. The results suggest that mast cells could be contributing to cervical cancer cell invasion and spreading by the release of histamine and cannabinoids. Therefore, therapeutic modulation of specific mast cell mediators may be beneficial for cervical cancer treatment.
Collapse
Affiliation(s)
- M Isolde Rudolph
- Faculty of Biological Sciences, Universidad de Concepción, Chile.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Penn RB. Embracing emerging paradigms of G protein-coupled receptor agonism and signaling to address airway smooth muscle pathobiology in asthma. Naunyn Schmiedebergs Arch Pharmacol 2008; 378:149-69. [PMID: 18278482 DOI: 10.1007/s00210-008-0263-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2007] [Accepted: 01/15/2008] [Indexed: 01/04/2023]
Abstract
G protein-coupled receptors (GPCRs) regulate numerous airway cell functions, and signaling events transduced by GPCRs are important in both asthma pathogenesis and therapy. Indeed, most asthma therapies target GPCRs either directly or indirectly. Within recent years, our understating of how GPCRs signal and are regulated has changed significantly as new concepts have emerged and traditional ideas have evolved. In this review, we discuss current concepts regarding constitutive GPCR activity and receptor agonism, functional selectivity, compartmentalized signaling, and GPCR desensitization. We further discuss the relevance of these ideas to asthma and asthma therapy, while emphasizing their potential application to the GPCR signaling in airway smooth muscle that regulates airway patency and thus disease severity.
Collapse
Affiliation(s)
- Raymond B Penn
- Department of Internal Medicine, Wake Forest University Health Sciences Center, Winston-Salem, NC 27157, USA.
| |
Collapse
|
23
|
Galandrin S, Oligny-Longpré G, Bouvier M. The evasive nature of drug efficacy: implications for drug discovery. Trends Pharmacol Sci 2007; 28:423-30. [PMID: 17659355 DOI: 10.1016/j.tips.2007.06.005] [Citation(s) in RCA: 281] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 05/23/2007] [Accepted: 06/27/2007] [Indexed: 11/26/2022]
Abstract
The efficacy of a drug is generally determined by the drug's ability to promote a quantifiable biological response. In the context of the classical receptor-occupancy theory, the efficacy is considered an intrinsic property of the ligand/receptor pair, and it is often assumed to be the same for all the responses evoked by this pair. The recognition that a single receptor can engage different signalling pathways and that various drugs binding to this receptor might differentially influence each of these pathways led to the reassessment of the efficacy concept. Of particular notice is the fact that ligands that behave as agonists toward a given signalling pathway can act, through the same receptor, as antagonists or even inverse agonists on a different pathway in the same cell. These observations, variously referred to as 'ligand-directed trafficking of receptor signalling' (LDTRS), 'functional selectivity', 'biased agonism', 'ligand-biased efficacy', 'collateral efficacy' or 'pluridimensional efficacy', have important implications for the molecular definition of efficacy and the process of drug discovery.
Collapse
Affiliation(s)
- Ségolène Galandrin
- Department of Biochemistry and Groupe de Recherche Universitaire sur le Médicament, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal (Québec), H3C 3J7, Canada
| | | | | |
Collapse
|
24
|
Bosier B, Hermans E. Versatility of GPCR recognition by drugs: from biological implications to therapeutic relevance. Trends Pharmacol Sci 2007; 28:438-46. [PMID: 17629964 DOI: 10.1016/j.tips.2007.06.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 05/22/2007] [Accepted: 06/26/2007] [Indexed: 01/13/2023]
Abstract
Most drugs acting on G-protein-coupled receptors (GPCRs) are classically defined as agonists, partial agonists or antagonists. This simplified classification seems sufficient to explain most of their therapeutic properties. The more recent description of inverse agonism has helped to revise theoretical models of GPCR function, but the therapeutic implications of the new concepts remain clearly restricted. Further complexity has arisen with demonstrations that a given receptor can adopt various conformations that support coupling with distinct G proteins. Because the related signaling pathways seem to be differentially affected by some ligands, the concept of 'functional selectivity' has been proposed, calling for a revision of the definitions of agonism and intrinsic efficacy. Evidence of complexity in G-protein coupling and examples of functional selectivity are accumulating, opening perspectives for drug development. Although such complexity should be regarded as an opportunity to gain pharmacological specificity, unraveling the physiological implications of these concepts is essential before their therapeutic relevance can be defined.
Collapse
Affiliation(s)
- Barbara Bosier
- Unité de Chimie Pharmaceutique et de Radiopharmacie (UCL 7340), Université Catholique de Louvain, B-1200 Brussels, Belgium
| | | |
Collapse
|
25
|
Ramos-Jiménez J, Soria-Jasso LE, López-Colombo A, Reyes-Esparza JA, Camacho J, Arias-Montaño JA. Histamine augments beta2-adrenoceptor-induced cyclic AMP accumulation in human prostate cancer cells DU-145 independently of known histamine receptors. Biochem Pharmacol 2006; 73:814-23. [PMID: 17196553 DOI: 10.1016/j.bcp.2006.11.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 11/24/2006] [Accepted: 11/27/2006] [Indexed: 11/26/2022]
Abstract
Androgen-independent prostate cancer cells DU-145 express a number of G protein-coupled receptors, including histamine H1 receptors. There is evidence for the presence of beta-adrenoceptors in the human prostate, and in this work we set out to characterise the expression of beta-adrenoceptors by DU-145 cells, their linking to cyclic AMP (cAMP) formation and the possible modulation by histamine H1 receptors of beta-adrenoceptor function. Saturation [3H]-dihydroalprenolol binding indicated that DU-145 cells express moderate levels of beta-adrenoceptors (22.7+/-2.5 fmol/mg protein), which belong to the beta2-subtype as assessed by inhibition by the antagonists ICI-118,551 and CGP-20712A. Inhibition of [3H]-dihydroalprenolol binding by agonists (noradrenaline, adrenaline and isoproterenol) showed the presence of both high-(53-59%) and low-affinity binding sites. beta-Adrenoceptor stimulation with isoproterenol resulted in robust [3H]-cAMP accumulation (10-30-fold of basal, EC50 142 nM; pEC50 6.85+/-0.05). While not having effect of its own on basal [3H]-cAMP accumulation, histamine significantly augmented the beta2-adrenoceptor-induced response (overall effect 152+/-6% of isoproterenol alone) with EC50 1.35 microM (pEC50 5.87+/-0.06). This effect was independent of extracellular Ca2+, insensitive to antagonists/agonists at H1, H2 or H3/H4 receptors and mimicked by drugs containing an imidazole ring in their chemical structure and by imidazole itself. Taken together, our results show that in DU-145 cells histamine augments beta2-adrenoceptor-induced cAMP independently of the activation of known histamine receptors. The effect may involve other mechanisms such as allosteric modulation of beta2-adrenoceptors by the imidazole moiety of histamine.
Collapse
Affiliation(s)
- Judith Ramos-Jiménez
- Departamento de Fisiología, Biofísica y Neurociencias, Cinvestav, México, D.F., Mexico; Sección Externa de Farmacología, Cinvestav, México, D.F., Mexico
| | | | | | | | | | | |
Collapse
|
26
|
Galandrin S, Bouvier M. Distinct signaling profiles of beta1 and beta2 adrenergic receptor ligands toward adenylyl cyclase and mitogen-activated protein kinase reveals the pluridimensionality of efficacy. Mol Pharmacol 2006; 70:1575-84. [PMID: 16901982 DOI: 10.1124/mol.106.026716] [Citation(s) in RCA: 230] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Drug efficacy is typically considered an intrinsic property of a ligand/receptor couple. However, recent observations suggest that efficacy may also be influenced by the signaling effectors engaged by a unique receptor. To directly and systematically test this possibility, we assessed the ability of a panel of beta-adrenergic ligands to modulate the activity of two effector systems, the adenylyl cyclase (AC) and the mitogen-activated protein kinase (MAPK), via beta(1) and beta(2) adrenergic receptors. Although some compounds displayed similar efficacies toward the two pathways, others showed complex efficacy profiles. For example, compounds that are inverse agonists for the AC activity were found to be either agonists, neutral antagonists, or inverse agonists for the MAPK pathway. Likewise, agonists for the AC were either agonists or neutral antagonists for MAPK. Given this complexity, we propose a Cartesian representation of the efficacies that takes into account the activities of the different effectors that can be engaged by a given receptor. In addition, compounds considered as nonselective for beta(1) and beta(2) adrenergic receptors, based on their binding affinities, showed distinct relative efficacy profiles toward AC and MAPK, adding a new dimension to the concept of ligand selectivity. Taken together, the results suggest that binding of different ligands promote distinct conformational changes leading to specific signaling outcomes. Our data therefore clearly illustrate that efficacy is a pluridimensional parameter that is not an intrinsic characteristic of a ligand/receptor couple. This should have important implications for the future design of screening assays used in drug discovery campaigns.
Collapse
Affiliation(s)
- Ségolène Galandrin
- Department of Biochemistry, Groupe de Recherche Universitaire sur le Médicament and Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montréal, QC, Canada, H3C 3J7
| | | |
Collapse
|
27
|
Ghoneim OM, Legere JA, Golbraikh A, Tropsha A, Booth RG. Novel ligands for the human histamine H1 receptor: Synthesis, pharmacology, and comparative molecular field analysis studies of 2-dimethylamino-5-(6)-phenyl-1,2,3,4-tetrahydronaphthalenes. Bioorg Med Chem 2006; 14:6640-58. [PMID: 16782354 DOI: 10.1016/j.bmc.2006.05.077] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 05/31/2006] [Accepted: 05/31/2006] [Indexed: 10/24/2022]
Abstract
This paper reports the synthesis of a novel series of (+/-)-2-dimethylamino- 5- and 6-phenyl-1,2,3,4-tetrahydronaphthalene derivatives (5- and 6-APTs), and, corresponding affinity, functional activity, and, molecular modeling studies with regard to drug design targeting the human histamine H1 receptor. The 5-APTs have 2- to 4-fold higher H1 receptor affinity than the endogenous agonist histamine. The chemical nature of a meta-substituent on the 5-APT pendant phenyl moiety does not significantly affect H1 affinity. In contrast, analogous meta-substitution for the 6-APTs increases H1 affinity up to 100-fold. The new APTs do not activate H1 receptor-linked intracellular signaling and apparently are competitive H1 antagonists. A new model that establishes structural parameters for binding to the human H1 receptor by APTs and other ligands was developed using 3-D QSAR (CoMFA). The model predicts H1 ligand binding with a higher degree of external predictability compared to a previously reported model. The APTs also were examined for activity at human serotonin 5-HT2A and 5-HT2C receptors, which are phylogenetically closely related to the H1 receptor. 5-APT and m-Cl-6-APT were identified as novel agonists that selectively activate 5-HT2C receptors. It is concluded that the lipophilic (brain-penetrating) APT molecular scaffold may have pharmacotherapeutic potential in neuropsychiatric diseases.
Collapse
Affiliation(s)
- Ola M Ghoneim
- Division of Medicinal Chemistry and Natural Products, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7360, USA
| | | | | | | | | |
Collapse
|
28
|
Moniri NH, Booth RG. Role of PKA and PKC in histamine H1 receptor-mediated activation of catecholamine neurotransmitter synthesis. Neurosci Lett 2006; 407:249-53. [PMID: 16978782 DOI: 10.1016/j.neulet.2006.08.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 08/11/2006] [Accepted: 08/21/2006] [Indexed: 11/21/2022]
Abstract
Activation of the histamine H1 receptor stimulates tyrosine hydroxylase (TH) to increase catecholamine neurotransmitter synthesis in mammalian brain and adrenal tissues. Histamine non-selectively activates both H1-linked phospholipase (PL) C/inositol phosphates (IP)/diacylglycerol (DAG) signaling and adenylyl cyclase (AC)/adenosine 3',5'-cyclic monophosphate (cAMP) signaling, confounding determination of signaling events involved in H(1)-mediated TH activation. This research uses two new functionally-selective H1 agonists, cis-PAB and trans-PAT, that selectively activate H1/PLC/IP/DAG and H1/AC/cAMP signaling, respectively, to characterize H(1)-mediated activation of TH in rat striatum and bovine adrenal chromaffin (BAC) cells. Histamine, cis-PAB, and trans-PAT produced a two-fold maximal TH activation by an H1 receptor mechanism in rat striatum and BAC cells. Histamine is more potent and efficacious in BAC cells (EC50 approximately 0.2 microM, Emax approximately 200% basal) versus rat striatum (EC50 approximately 0.4 microM; Emax approximately 150%). Cis-PAB and trans-PAT are more potent in rat striatum (EC50 approximately 0.1 microM for both agonists) versus BAC cells (EC50 approximately 1.0 microM for both), with similar efficacy in both preparations (Emax approximately 160% for both agonists). Signaling studies in BAC cells revealed that protein kinase (PK) A but not PKC is involved in H1 -mediated TH activation by trans-PAT and histamine, while, both PKA and PKC are involved for cis-PAB. Results for cis-PAB suggest H1/PLC/IP/DAG/PKC signaling activates PKA, downstream of cAMP formation, indicating apparent direct activation of PKA by PKC.
Collapse
Affiliation(s)
- Nader H Moniri
- Division of Medicinal Chemistry and Natural Products, School of Pharmacy, University of North Carolina, Chapel Hill, NC 25799-7360, USA
| | | |
Collapse
|
29
|
Maruko T, Nakahara T, Sakamoto K, Saito M, Sugimoto N, Takuwa Y, Ishii K. Involvement of the βγ subunits of G proteins in the cAMP response induced by stimulation of the histamine H1 receptor. Naunyn Schmiedebergs Arch Pharmacol 2005; 372:153-9. [PMID: 16189696 DOI: 10.1007/s00210-005-0001-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Accepted: 08/17/2005] [Indexed: 11/29/2022]
Abstract
Stimulation of the histamine H1 receptor has been shown to enhance adenosine 3', 5'-cyclic monophosphate (cAMP) accumulation in various cell types but, to date, the mechanism by which this occurs is still unclear. In the present study, we examined the possibility that the betagamma subunits of G proteins (G betagamma) are involved in this process in cultured Chinese hamster ovary cells transfected with the human histamine H1 receptor (CHO-H1). Histamine increased intracellular cAMP levels in a concentration-dependent manner in CHO-H1 cells, and this histamine action was abolished by pyrilamine (1 microM). Inhibition of histamine H1 receptor-G(q) protein coupling by stable expression of the C-terminal peptide of G alpha(q) protein significantly attenuated the cAMP accumulation induced by histamine. By comparison, neither BAPTA/AM (50 microM), an intracellular Ca2+ chelator, nor GF 109203X (1 microM), an inhibitor of protein kinase C, influenced the cAMP response. Histamine H1 receptor-mediated cAMP accumulation was significantly inhibited by transient transfection of CHO-H1 cells with the C-terminal peptide of beta-adrenoceptor kinase I (residues 542-685), a scavenger of G betagamma. Stable expression of the C-terminal peptide of the G alpha(s) protein, but not treatment with pertussis toxin (200 ng/ml for 24 h), attenuated the histamine H1 receptor-mediated cAMP accumulation. These results suggest that stimulation of histamine H1 receptors activates adenylyl cyclase through the release of G betagamma subunits from G proteins, thereby elevating intracellular cAMP levels.
Collapse
Affiliation(s)
- Takeshi Maruko
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | | | | | | | | | | | | |
Collapse
|