1
|
Nam U, Kim J, Yi HG, Jeon JS. Investigation of the Dysfunction Caused by High Glucose, Advanced Glycation End Products, and Interleukin-1 Beta and the Effects of Therapeutic Agents on the Microphysiological Artery Model. Adv Healthc Mater 2024; 13:e2302682. [PMID: 38575148 DOI: 10.1002/adhm.202302682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 03/31/2024] [Indexed: 04/06/2024]
Abstract
Diabetes mellitus (DM) has substantial global implications and contributes to vascular inflammation and the onset of atherosclerotic cardiovascular diseases. However, translating the findings from animal models to humans has inherent limitations, necessitating a novel platform. Therefore, herein, an arterial model is established using a microphysiological system. This model successfully replicates the stratified characteristics of human arteries by integrating collagen, endothelial cells (ECs), and vascular smooth muscle cells (VSMCs). Perfusion via a peristaltic pump shows dynamic characteristics distinct from those of static culture models. High glucose, advanced glycation end products (AGEs), and interleukin-1 beta are employed to stimulate diabetic conditions, resulting in notable cellular changes and different levels of cytokines and nitric oxide. Additionally, the interactions between the disease models and oxidized low-density lipoproteins (LDL) are examined. Finally, the potential therapeutic effects of metformin, atorvastatin, and diphenyleneiodonium are investigated. Metformin and diphenyleneiodonium mitigate high-glucose- and AGE-associated pathological changes, whereas atorvastatin affects only the morphology of ECs. Altogether, the arterial model represents a pivotal advancement, offering a robust and insightful platform for investigating cardiovascular diseases and their corresponding drug development.
Collapse
Affiliation(s)
- Ungsig Nam
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Scientific Instrumentation, Korea Basic Science Institute (KBSI), Daejeon, 34133, Republic of Korea
| | - Jaesang Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hee-Gyeong Yi
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jessie S Jeon
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
2
|
Rodrigues Moro C, Abreu EDL, Kanaan SHH, Márquez A, Uranga-Ocio JA, Rossoni LV, Vassallo DV, Miguel-Castro M, Wiggers GA. Egg white hydrolysate protects white adipose tissue against metabolic insult in deoxycorticosterone acetate-salt rats. Br J Nutr 2024; 131:1827-1840. [PMID: 38410884 DOI: 10.1017/s0007114524000552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The purpose of this study was to investigate the effect of an egg white hydrolysate (EWH) to protect white adipose tissue damage from cardiometabolic changes induced by severe hypertension. Male Wistar rats were uninephrectomised and divided: SHAM (weekly subcutaneous vehicle (mineral oil + propylene glycol, 1:1)), SHAM + EWH (subcutaneous vehicle plus EWH via gavage, 1 g/kg per day), DOCA (deoxycorticosterone acetate diluted in vehicle subcutaneously weekly in subsequent doses of 20 mg/kg -1st week, 12 mg/kg - 2–3th week, and 6 mg/kg -4–8th week, respectively, plus 1 % NaCl and 0·2 % KCl in drinking water), and DOCA + EWH. Body weight gain, food and water intake, glucose and lipid metabolism were evaluated. Oxidative stress was assessed by biochemical assay and immunofluorescence for NOX-1, nuclear factor kappa B (NFκB), and caspase-3 in retroperitoneal white adipose tissue (rtWAT). Proinflammatory cytokines (IL-6 and 1β), CD163+ macrophage infiltration, and immunohistochemistry for TNFα and uncoupling protein-1 were evaluated, as well as histological analysis on rtWAT. Glutathione peroxidase and reductase were also determined in plasma. EWH showed hypocholesterolemic, antioxidant, anti-inflammatory, and anti-apoptotic properties in the arterial hypertension DOCA-salt model. The results demonstrated the presence of functional changes in adipose tissue function by a decrease in macrophage infiltration and in the fluorescence intensity of NFκB, NOX-1, and caspase-3. A reduction of proinflammatory cytokines and restoration of antioxidant enzymatic activity and mitochondrial oxidative damage by reducing uncoupling protein-1 fluorescence intensity were also observed. EWH could be used as a potential alternative therapeutic strategy in the treatment of cardiometabolic complications associated with malignant secondary arterial hypertension.
Collapse
Affiliation(s)
- Camila Rodrigues Moro
- Cardiovascular Physiology Laboratory, Universidade Federal do Pampa, BR 472, Km 592, Uruguaiana, Rio Grande do Sul, Brazil
| | - Edina da Luz Abreu
- Cardiovascular Physiology Laboratory, Universidade Federal do Pampa, BR 472, Km 592, Uruguaiana, Rio Grande do Sul, Brazil
| | - Samia Hassan Husein Kanaan
- Cardiovascular Physiology Laboratory, Universidade Federal do Pampa, BR 472, Km 592, Uruguaiana, Rio Grande do Sul, Brazil
| | - Antonio Márquez
- Department of Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), Avda. de Atenas s/n, 28032 Alcorcón, Spain and High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), URJC, Alcorcón, Spain
| | - Jose Antonio Uranga-Ocio
- Department of Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), Avda. de Atenas s/n, 28032 Alcorcón, Spain and High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), URJC, Alcorcón, Spain
| | - Luciana Venturini Rossoni
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes, nº 2415, São Paulo, Brazil
| | - Dalton Valentim Vassallo
- Cardiac Electromechanical and Vascular Reactivity Laboratory, Universidade Federal do Espírito Santo, Av. Marechal Campos, 1468, Vitória, Espírito Santo, Brazil
| | - Marta Miguel-Castro
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM.), C/Nicolás Cabrera, 9, Campus Universitario de Cantoblanco, Madrid, Spain
| | - Giulia Alessandra Wiggers
- Cardiovascular Physiology Laboratory, Universidade Federal do Pampa, BR 472, Km 592, Uruguaiana, Rio Grande do Sul, Brazil
| |
Collapse
|
3
|
Bernier E, Brien ME, Girard S. Pregnant individuals with uncomplicated pregnancies display pro-inflammatory immune changes when exposed to the COVID-19 pandemic. Am J Reprod Immunol 2024; 91:e13828. [PMID: 38374807 DOI: 10.1111/aji.13828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/04/2023] [Accepted: 02/06/2024] [Indexed: 02/21/2024] Open
Abstract
PROBLEM The COVID-19 pandemic has been shown to have a detrimental impact on the mental health of pregnant individuals, and chronic stress can alter the immune profile. However, the effects of the COVID-19 pandemic on the immune system in pregnancy are still poorly understood. We aimed to evaluate the impact of pandemic exposure on the maternal immune profile in uncomplicated pregnancies. METHOD OF STUDY We collected blood and placenta samples from pregnant individuals exposed and unexposed to the pandemic to compare their immune and inflammatory profiles. We performed co-culture with circulating maternal immune cells and endothelial cells to assess endothelial activation. Statistical analysis was performed using unpaired t-test, Mann-Whitney, or Fisher's exact test as appropriate. RESULTS In exposed individuals, we observed a decreased proportion of Th2 cells (p < .0001) and Treg/Th17 ratio (p < .05), as well as an increased Th1/Th2 ratio (p < .0001). Levels of IL-1β (p < .01) and IL-18 (p < .01) were increased in the circulation of exposed participants, whilst other mediators were significantly decreased (IFNγ, IL-8, MCP-1, amongst others). Furthermore, we observed increased production of ICAM, hallmark of endothelial activation, when we co-cultured endothelial cells with immune cells from exposed individuals. Vaccination status impacted the cellular profile with increased proportions of Th1 and B cells in vaccinated participants. CONCLUSION Overall, we observed a pro-inflammatory bias in the circulation of pregnant individuals exposed to the COVID-19 pandemic, with otherwise uncomplicated pregnancies. Our work also supports an association between the increased risk of endothelial activation/hypertension and SARS-CoV2 infection, which might be driven in part by exposure to the pandemic and associated stressors.
Collapse
Affiliation(s)
- Elsa Bernier
- Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
- Department of Obstetrics and Gynecology, Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| | - Marie-Eve Brien
- Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada
| | - Sylvie Girard
- Department of Obstetrics and Gynecology, Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Obstetrics and Gynecology, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Puertas-Umbert L, Puig N, Camacho M, Dantas AP, Marín R, Martí-Fàbregas J, Jiménez-Xarrié E, Benitez S, Camps-Renom P, Jiménez-Altayó F. Serum from Stroke Patients with High-Grade Carotid Stenosis Promotes Cyclooxygenase-Dependent Endothelial Dysfunction in Non-ischemic Mice Carotid Arteries. Transl Stroke Res 2024; 15:140-152. [PMID: 36536168 PMCID: PMC10796474 DOI: 10.1007/s12975-022-01117-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/15/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Atherosclerosis is responsible for 20% of ischemic strokes, and severe carotid stenosis is associated with a higher incidence of first-ever and recurrent strokes. The release of pro-inflammatory mediators into the blood in severe atherosclerosis may aggravate endothelial dysfunction after stroke contributing to impair disease outcomes. We hypothesize that environments of severe carotid atherosclerotic disease worsen endothelial dysfunction in stroke linked to enhanced risk of further cerebrovascular events. We mounted nonischemic common carotid arteries from 2- to 4-month-old male Oncins France 1 mice in tissue baths for isometric contraction force measurements and exposed them to serum from men with a recent ischemic stroke and different degrees of carotid stenosis: low- or moderate-grade stenosis (LMGS; < 70%) and high-grade stenosis (HGS; ≥ 70%). The results show that serum from stroke patients induced an impairment of acetylcholine relaxations in mice carotid arteries indicative of endothelium dysfunction. This effect was more pronounced after incubation with serum from patients with a recurrent stroke or vascular death within 1 year of follow-up. When patients were stratified according to the degree of stenosis, serum from HGS patients induced more pronounced carotid artery endothelial dysfunction, an effect that was associated with enhanced circulating levels of IL-1β. Mechanistically, endothelial dysfunction was prevented by both nonselective and selective COX blockade. Altogether, the present findings add knowledge on the understanding of the mechanisms involved in the increased risk of stroke in atherosclerosis and suggest that targeting COX in the carotid artery wall may represent a potential novel therapeutic strategy for secondary stroke prevention.
Collapse
Affiliation(s)
- Lídia Puertas-Umbert
- Department of Pharmacology, Therapeutics and Toxicology, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Neuroscience Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
- Institut d'Investigació Biomèdica Sant Pau (IIB, SANT PAU), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Núria Puig
- Institut d'Investigació Biomèdica Sant Pau (IIB, SANT PAU), Barcelona, Spain
- Department of Molecular Biology and Biochemistry, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mercedes Camacho
- Institut d'Investigació Biomèdica Sant Pau (IIB, SANT PAU), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Ana Paula Dantas
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Cardiovascular Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Rebeca Marín
- Department of Neurology, IIB SANT PAU, Hospital de La Santa Creu i Sant Pau, Barcelona, Spain
| | - Joan Martí-Fàbregas
- Department of Neurology, IIB SANT PAU, Hospital de La Santa Creu i Sant Pau, Barcelona, Spain
| | - Elena Jiménez-Xarrié
- Department of Neurology, IIB SANT PAU, Hospital de La Santa Creu i Sant Pau, Barcelona, Spain
| | - Sonia Benitez
- Institut d'Investigació Biomèdica Sant Pau (IIB, SANT PAU), Barcelona, Spain
- CIBER of Diabetes and Related Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Pol Camps-Renom
- Department of Neurology, IIB SANT PAU, Hospital de La Santa Creu i Sant Pau, Barcelona, Spain
| | - Francesc Jiménez-Altayó
- Department of Pharmacology, Therapeutics and Toxicology, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Neuroscience Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
5
|
Carrasco AG, Izquierdo-Lahuerta A, Valverde ÁM, Ni L, Flores-Salguero E, Coward RJ, Medina-Gómez G. The protective role of peroxisome proliferator-activated receptor gamma in lipotoxic podocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159329. [PMID: 37156296 DOI: 10.1016/j.bbalip.2023.159329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/16/2023] [Accepted: 04/20/2023] [Indexed: 05/10/2023]
Abstract
Podocytes are specialized epithelial cells that maintain the glomerular filtration barrier. These cells are susceptible to lipotoxicity in the obese state and irreversibly lost during kidney disease leading to proteinuria and renal injury. PPARγ is a nuclear receptor whose activation can be renoprotective. This study examined the role of PPARγ in the lipotoxic podocyte using a PPARγ knockout (PPARγKO) cell line and since the activation of PPARγ by Thiazolidinediones (TZD) is limited by their side effects, it explored other alternative therapies to prevent podocyte lipotoxic damage. Wild-type and PPARγKO podocytes were exposed to the fatty acid palmitic acid (PA) and treated with the TZD (Pioglitazone) and/or the Retinoid X receptor (RXR) agonist Bexarotene (BX). It revealed that podocyte PPARγ is essential for podocyte function. PPARγ deletion reduced key podocyte proteins including podocin and nephrin while increasing basal levels of oxidative and ER stress causing apoptosis and cell death. A combination therapy of low-dose TZD and BX activated both the PPARγ and RXR receptors reducing PA-induced podocyte damage. This study confirms the crucial role of PPARγ in podocyte biology and that their activation in combination therapy of TZD and BX may be beneficial in the treatment of obesity-related kidney disease.
Collapse
Affiliation(s)
- Almudena G Carrasco
- Universidad Rey Juan Carlos, Dpto. de Ciencias Básicas de la Salud, Avda. de Atenas s/n. 28922, Alcorcón, Madrid, Spain
| | - Adriana Izquierdo-Lahuerta
- Universidad Rey Juan Carlos, Dpto. de Ciencias Básicas de la Salud, Avda. de Atenas s/n. 28922, Alcorcón, Madrid, Spain.
| | - Ángela M Valverde
- Institute of Biomedical Research "Alberto Sols" (CSIC-UAM), 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBER-dem), ISCIII, 28029 Madrid, Spain; MEMORISM Research Unit of University Rey Juan Carlos-Institute of Biomedical Research "Alberto Sols" (CSIC), Madrid, Spain
| | - Lan Ni
- Bristol Renal, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Elena Flores-Salguero
- Universidad Rey Juan Carlos, Dpto. de Ciencias Básicas de la Salud, Avda. de Atenas s/n. 28922, Alcorcón, Madrid, Spain
| | - Richard J Coward
- Bristol Renal, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Gema Medina-Gómez
- Universidad Rey Juan Carlos, Dpto. de Ciencias Básicas de la Salud, Avda. de Atenas s/n. 28922, Alcorcón, Madrid, Spain; MEMORISM Research Unit of University Rey Juan Carlos-Institute of Biomedical Research "Alberto Sols" (CSIC), Madrid, Spain.
| |
Collapse
|
6
|
Piagette JT, Pinheiro Júnior JEG, Kanaan SHH, Herrera CT, Bastilhos LO, Peçanha FM, Vassallo DV, Miguel-Castro M, Wiggers GA. Pretreatment with egg white hydrolysate protects resistance arteries from damage induced after treatment with accidental cadmium exposure values. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
|
7
|
Borghi SM, Zaninelli TH, Saraiva-Santos T, Bertozzi MM, Cardoso RDR, Carvalho TT, Ferraz CR, Camilios-Neto D, Cunha FQ, Cunha TM, Pinho-Ribeiro FA, Casagrande R, Verri WA. Brief research report: Repurposing pentoxifylline to treat intense acute swimming-Induced delayed-onset muscle soreness in mice: Targeting peripheral and spinal cord nociceptive mechanisms. Front Pharmacol 2023; 13:950314. [PMID: 36703752 PMCID: PMC9871252 DOI: 10.3389/fphar.2022.950314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
In this study, we pursue determining the effect of pentoxifylline (Ptx) in delayed-onset muscle soreness (DOMS) triggered by exposing untrained mice to intense acute swimming exercise (120 min), which, to our knowledge, has not been investigated. Ptx treatment (1.5, 4.5, and 13.5 mg/kg; i.p., 30 min before and 12 h after the session) reduced intense acute swimming-induced mechanical hyperalgesia in a dose-dependent manner. The selected dose of Ptx (4.5 mg/kg) inhibited recruitment of neutrophils to the muscle tissue, oxidative stress, and both pro- and anti-inflammatory cytokine production in the soleus muscle and spinal cord. Furthermore, Ptx treatment also reduced spinal cord glial cell activation. In conclusion, Ptx reduces pain by targeting peripheral and spinal cord mechanisms of DOMS.
Collapse
Affiliation(s)
- Sergio M. Borghi
- Department of Pathology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil,Center for Research in Health Science, University of Northern Paraná, Londrina, Brazil,*Correspondence: Sergio M. Borghi, ; Waldiceu A. Verri Jr,
| | - Tiago H. Zaninelli
- Department of Pathology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Telma Saraiva-Santos
- Department of Pathology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Mariana M. Bertozzi
- Department of Pathology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Renato D. R. Cardoso
- Department of Pathology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Thacyana T. Carvalho
- Department of Pathology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Camila R. Ferraz
- Department of Pathology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Doumit Camilios-Neto
- Department of Biochemistry and Biotechnology, Exact Sciences Center, State University of Londrina, Londrina, Brazil
| | - Fernando Q. Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Thiago M. Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Felipe A. Pinho-Ribeiro
- Department of Pathology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Sciences, State University of Londrina, Londrina, Brazil
| | - Waldiceu A. Verri
- Department of Pathology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil,*Correspondence: Sergio M. Borghi, ; Waldiceu A. Verri Jr,
| |
Collapse
|
8
|
González-Carnicero Z, Hernanz R, Martínez-Casales M, Barrús MT, Martín Á, Alonso MJ. Regulation by Nrf2 of IL-1β-induced inflammatory and oxidative response in VSMC and its relationship with TLR4. Front Pharmacol 2023; 14:1058488. [PMID: 36937865 PMCID: PMC10018188 DOI: 10.3389/fphar.2023.1058488] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction: Vascular oxidative stress and inflammation play an important role in the pathogenesis of cardiovascular diseases (CVDs). The proinflammatory cytokine Interleukin-1β (IL-1β) participates in the vascular inflammatory and oxidative responses and influences vascular smooth muscle cells (VSMC) phenotype and function, as well as vascular remodelling in cardiovascular diseases. The Toll-like receptor 4 (TLR4) is also involved in the inflammatory response in cardiovascular diseases. A relationship between Interleukin-1β and Toll-like receptor 4 pathway has been described, although the exact mechanism of this interaction remains still unknown. Moreover, the oxidative stress sensitive transcription factor nuclear factor-erythroid 2-related factor 2 (Nrf2) promotes the transcription of several antioxidant and anti-inflammatory genes. Nuclear factor-erythroid 2-related factor 2 activators have shown to possess beneficial effects in cardiovascular diseases in which oxidative stress and inflammation are involved, such as hypertension and atherosclerosis; however, the molecular mechanisms are not fully understood. Here, we analysed the role of Toll-like receptor 4 in the oxidative and inflammatory effects of Interleukin-1β as well as whether nuclear factor-erythroid 2-related factor 2 activation contributes to vascular alterations by modulating these effects. Materials: For this purpose, vascular smooth muscle cells and mice aortic segments stimulated with Interleukin-1β were used. Results: Interleukin-1β induces MyD88 expression while the Toll-like receptor 4 inhibitor CLI-095 reduces the Interleukin-1β-elicited COX-2 protein expression, reactive oxygen species (ROS) production, vascular smooth muscle cells migration and endothelial dysfunction. Additionally, Interleukin-1β increases nuclear factor-erythroid 2-related factor 2 nuclear translocation and expression of its downstream proteins heme oxygenase-1, NAD(P)H:quinone oxidoreductase 1 and superoxide dismutase-2, by an oxidative stress-dependent mechanism; moreover, Interleukin-1β reduces the expression of the nuclear factor-erythroid 2-related factor 2 inhibitor Keap1. The nuclear factor-erythroid 2-related factor 2 activator tert-butylhydroquinone (tBHQ) reduces the effects of Interleukin-1β on the increased reactive oxygen species production and the expression of the proinflammatory markers (p-p38, p-JNK, p-c-Jun, COX-2), the increased cell proliferation and migration and prevents the Interleukin-1β-induced endothelial dysfunction in mice aortas. Additionally, tert-butylhydroquinone also reduces the increased MyD88 expression, NADPHoxidase activity and cell migration induced by lipopolysaccharide. Conclusions: In summary, this study reveals that Toll-like receptor 4 pathway contributes to the prooxidant and proinflammatory Interleukin-1β-induced effects. Moreover, activation of nuclear factor-erythroid 2-related factor 2 prevents the deleterious effects of Interleukin-1β, likely by reducing Toll-like receptor 4-dependent pathway. Although further research is needed, the results are promising as they suggest that nuclear factor-erythroid 2-related factor 2 activators might protect against the oxidative stress and inflammation characteristic of cardiovascular diseases.
Collapse
Affiliation(s)
- Zoe González-Carnicero
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Raquel Hernanz
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Marta Martínez-Casales
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - María Teresa Barrús
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Ángela Martín
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
- *Correspondence: Ángela Martín, ; María Jesús Alonso,
| | - María Jesús Alonso
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
- *Correspondence: Ángela Martín, ; María Jesús Alonso,
| |
Collapse
|
9
|
ROS Suppression by Egg White Hydrolysate in DOCA-Salt Rats—An Alternative Tool against Vascular Dysfunction in Severe Hypertension. Antioxidants (Basel) 2022; 11:antiox11091713. [PMID: 36139783 PMCID: PMC9495903 DOI: 10.3390/antiox11091713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
This study aimed to evaluate the potential for lowering blood pressure and beneficial effects on mesenteric resistance arteries (MRA) and conductance vessels (aorta) produced by dietary supplementation of an egg white hydrolysate (EWH) in rats with severe hypertension induced by deoxycorticosterone plus salt treatment (DOCA-salt), as well as the underlying mechanisms involved. The DOCA-salt model presented higher blood pressure, which was significantly reduced by EWH. The impaired acetylcholine-induced relaxation and eNOS expression observed in MRA and aorta from DOCA-salt rats was ameliorated by EWH. This effect on vessels (MRA and aorta) was related to the antioxidant effect of EWH, since hydrolysate intake prevented the NF-κB/TNFα inflammatory pathway and NADPH oxidase-induced reactive oxygen species (ROS) generation, as well as the mitochondrial source of ROS in MRA. At the plasma level, EWH blocked the higher ROS and MDA generation by DOCA-salt treatment, without altering the antioxidant marker. In conclusion, EWH demonstrated an antihypertensive effect in a model of severe hypertension. This effect could be related to its endothelium-dependent vasodilator properties mediated by an ameliorated vessel’s redox imbalance and inflammatory state.
Collapse
|
10
|
Moraes PZ, Júnior JEGP, Martinez CS, Moro CR, da Silva GC, Rodriguez MD, Simões MR, Junior FB, Peçanha FM, Vassallo DV, Miguel M, Wiggers GA. Multi-functional egg white hydrolysate prevent hypertension and vascular dysfunction induced by cadmium in rats. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
11
|
Abstract
Cells respond to stress by activating a variety of defense signaling pathways, including cell survival and cell death pathways. Although cell survival signaling helps the cell to recover from acute insults, cell death or senescence pathways induced by chronic insults can lead to unresolved pathologies. Arterial hypertension results from chronic physiological maladaptation against various stressors represented by abnormal circulating or local neurohormonal factors, mechanical stress, intracellular accumulation of toxic molecules, and dysfunctional organelles. Hypertension and aging share common mechanisms that mediate or prolong chronic cell stress, such as endoplasmic reticulum stress and accumulation of protein aggregates, oxidative stress, metabolic mitochondrial stress, DNA damage, stress-induced senescence, and proinflammatory processes. This review discusses common adaptive signaling mechanisms against these stresses including unfolded protein responses, antioxidant response element signaling, autophagy, mitophagy, and mitochondrial fission/fusion, STING (signaling effector stimulator of interferon genes)-mediated responses, and activation of pattern recognition receptors. The main molecular mechanisms by which the vasculature copes with hypertensive and aging stressors are presented and recent advancements in stress-adaptive signaling mechanisms as well as potential therapeutic targets are discussed.
Collapse
Affiliation(s)
- Stephanie M. Cicalese
- These authors contributed equally and are considered co-first authors
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Josiane Fernandes da Silva
- These authors contributed equally and are considered co-first authors
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Fernanda Priviero
- These authors contributed equally and are considered co-first authors
- Cardiovascular Translational Research Center and Department of Cell Biology and Anatomy, University of South Carolina, Columbia, South Carolina, USA
| | - R. Clinton Webb
- Cardiovascular Translational Research Center and Department of Cell Biology and Anatomy, University of South Carolina, Columbia, South Carolina, USA
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Rita C. Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| |
Collapse
|
12
|
Olivencia MA, Martínez-Casales M, Peraza DA, García-Redondo AB, Mondéjar-Parreño G, Hernanz R, Salaices M, Cogolludo A, Pennington MW, Valenzuela C, Briones AM. K V 1.3 channels are novel determinants of macrophage-dependent endothelial dysfunction in angiotensin II-induced hypertension in mice. Br J Pharmacol 2021; 178:1836-1854. [PMID: 33556997 DOI: 10.1111/bph.15407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/28/2021] [Accepted: 01/31/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE KV 1.3 channels are expressed in vascular smooth muscle cells (VSMCs), where they contribute to proliferation rather than contraction and participate in vascular remodelling. KV 1.3 channels are also expressed in macrophages, where they assemble with KV 1.5 channels (KV 1.3/KV 1.5), whose activation generates a KV current. In macrophages, the KV 1.3/KV 1.5 ratio is increased by classical activation (M1). Whether these channels are involved in angiotensin II (AngII)-induced vascular remodelling, and whether they can modulate the macrophage phenotype in hypertension, remains unknown. We characterized the role of KV 1.3 channels in vascular damage in hypertension. EXPERIMENTAL APPROACH We used AngII-infused mice treated with two selective KV 1.3 channel inhibitors (HsTX[R14A] and [EWSS]ShK). Vascular function and structure were measured using wire and pressure myography, respectively. VSMC and macrophage electrophysiology were studied using the patch-clamp technique; gene expression was analysed using RT-PCR. KEY RESULTS AngII increased KV 1.3 channel expression in mice aorta and peritoneal macrophages which was abolished by HsTX[R14A] treatment. KV 1.3 inhibition did not prevent hypertension, vascular remodelling, or stiffness but corrected AngII-induced macrophage infiltration and endothelial dysfunction in the small mesenteric arteries and/or aorta, via a mechanism independent of electrophysiological changes in VSMCs. AngII modified the electrophysiological properties of peritoneal macrophages, indicating an M1-like activated state, with enhanced expression of proinflammatory cytokines that induced endothelial dysfunction. These effects were prevented by KV 1.3 blockade. CONCLUSIONS AND IMPLICATIONS We unravelled a new role for KV 1.3 channels in the macrophage-dependent endothelial dysfunction induced by AngII in mice which might be due to modulation of macrophage phenotype.
Collapse
Affiliation(s)
- Miguel A Olivencia
- Departamento de Farmacología, Universidad Autónoma de Madrid, Instituto de Investigación Hospital La Paz, Madrid, Spain.,Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Ciber de Enfermedades Respiratorias (CIBERES), Spain
| | - Marta Martínez-Casales
- Departamento de Farmacología, Universidad Autónoma de Madrid, Instituto de Investigación Hospital La Paz, Madrid, Spain.,Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Diego A Peraza
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
| | - Ana B García-Redondo
- Departamento de Farmacología, Universidad Autónoma de Madrid, Instituto de Investigación Hospital La Paz, Madrid, Spain.,Ciber de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Gema Mondéjar-Parreño
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Ciber de Enfermedades Respiratorias (CIBERES), Spain
| | - Raquel Hernanz
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Ciber de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Mercedes Salaices
- Departamento de Farmacología, Universidad Autónoma de Madrid, Instituto de Investigación Hospital La Paz, Madrid, Spain.,Ciber de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Angel Cogolludo
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Ciber de Enfermedades Respiratorias (CIBERES), Spain
| | | | - Carmen Valenzuela
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain.,Ciber de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Ana M Briones
- Departamento de Farmacología, Universidad Autónoma de Madrid, Instituto de Investigación Hospital La Paz, Madrid, Spain.,Ciber de Enfermedades Cardiovasculares (CIBERCV), Spain
| |
Collapse
|
13
|
Pereira MM, Torrado J, Sosa C, Zócalo Y, Bia D. Shedding light on the pathophysiology of preeclampsia-syndrome in the era of Cardio-Obstetrics: Role of inflammation and endothelial dysfunction. Curr Hypertens Rev 2021; 18:17-33. [DOI: 10.2174/1573402117666210218105951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/02/2021] [Accepted: 01/18/2021] [Indexed: 11/22/2022]
Abstract
:
Preeclampsia (PE) is a worldwide pregnancy complication with serious maternal and neonatal consequences. Our understanding of PE pathophysiology has significantly evolved over the last decades by recognizing that endothelial dysfunction and systemic inflammation, with an associated angiogenic imbalance, are key pieces of this still incomplete puzzle. In the present era, where no single treatment to cure or treat this obstetric condition has been developed so far, PE prevention and early prediction poses the most useful clinical approach to reduce the PE burden. Although most PE episodes occur in healthy nulliparous women, the identification of specific clinical conditions that increase dramatically the risk of PE provides a critical opportunity to improve outcomes by acting on potential reversible factors, and also contribute to better understand this pathophysiologic enigma. In this review, we highlight major clinical contributors of PE and shed light about their potential link with endothelial dysfunction and inflammation.
Collapse
Affiliation(s)
- María M. Pereira
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, United States
| | - Juan Torrado
- Department of Internal Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Claudio Sosa
- Department of Obstetrics and Gynecology “C”, Pereira-Rossell Hospital, School of Medicine, Republic University, Montevideo, Uruguay
| | - Yanina Zócalo
- Centro Universitario de Investigación, Innovación y Diagnóstico Arterial, Department of Physiology, School of Medicine, Republic University, Montevideo, Uruguay
| | - Daniel Bia
- Centro Universitario de Investigación, Innovación y Diagnóstico Arterial, Department of Physiology, School of Medicine, Republic University, Montevideo, Uruguay
| |
Collapse
|
14
|
Bakkar NMZ, Mougharbil N, Mroueh A, Kaplan A, Eid AH, Fares S, Zouein FA, El-Yazbi AF. Worsening baroreflex sensitivity on progression to type 2 diabetes: localized vs. systemic inflammation and role of antidiabetic therapy. Am J Physiol Endocrinol Metab 2020; 319:E835-E851. [PMID: 32865011 DOI: 10.1152/ajpendo.00145.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cardiac autonomic neuropathy (CAN) is an early cardiovascular manifestation of type 2 diabetes (T2D) that constitutes an independent risk factor for cardiovascular mortality and morbidity. Nevertheless, its underlying pathophysiology remains poorly understood. We recently showed that localized perivascular adipose tissue (PVAT) inflammation underlies the incidence of parasympathetic CAN in prediabetes. Here, we extend our investigation to provide a mechanistic framework for the evolution of autonomic impairment as the metabolic insult worsens. Early metabolic dysfunction was induced in rats fed a mild hypercaloric diet. Two low-dose streptozotocin injections were used to evoke a state of late decompensated T2D. Cardiac autonomic function was assessed by invasive measurement of baroreflex sensitivity using the vasoactive method. Progression into T2D was associated with aggravation of CAN to include both sympathetic and parasympathetic arms. Unlike prediabetic rats, T2D rats showed markers of brainstem neuronal injury and inflammation as well as increased serum levels of IL-1β. Experiments on PC12 cells differentiated into sympathetic-like neurons demonstrated that brainstem injury observed in T2D rats resulted from exposure to possible proinflammatory mediators in rat serum rather than a direct effect of the altered metabolic profile. CAN and the associated cardiovascular damage in T2D only responded to combined treatment with insulin to manage hyperglycemia in addition to a nonhypoglycemic dose of metformin or pioglitazone providing an anti-inflammatory effect, coincident with the effect of these combinations on serum IL-1β. Our present results indicate that CAN worsening upon progression to T2D involves brainstem inflammatory changes likely triggered by systemic inflammation.
Collapse
Affiliation(s)
- Nour-Mounira Z Bakkar
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| | - Nahed Mougharbil
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| | - Ali Mroueh
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| | - Abdullah Kaplan
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| | - Ali H Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
- College of Medicine, Qatar University, Doha, Qatar
| | - Souha Fares
- Rafic Hariri School of Nursing, The American University of Beirut, Beirut, Lebanon
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| | - Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
15
|
Galán M, Jiménez-Altayó F. Small Resistance Artery Disease and ACE2 in Hypertension: A New Paradigm in the Context of COVID-19. Front Cardiovasc Med 2020; 7:588692. [PMID: 33195477 PMCID: PMC7661633 DOI: 10.3389/fcvm.2020.588692] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/02/2020] [Indexed: 01/08/2023] Open
Abstract
Cardiovascular disease causes almost one third of deaths worldwide, and more than half are related to primary arterial hypertension (PAH). The occurrence of several deleterious events, such as hyperactivation of the renin–angiotensin system (RAS), and oxidative and inflammatory stress, contributes to the development of small vessel disease in PAH. Small resistance arteries are found at various points through the arterial tree, act as the major site of vascular resistance, and actively regulate local tissue perfusion. Experimental and clinical studies demonstrate that alterations in small resistance artery properties are important features of PAH pathophysiology. Diseased small vessels in PAH show decreased lumens, thicker walls, endothelial dysfunction, and oxidative stress and inflammation. These events may lead to altered blood flow supply to tissues and organs, and can increase the risk of thrombosis. Notably, PAH is prevalent among patients diagnosed with COVID-19, in whom evidence of small vessel disease leading to cardiovascular pathology is reported. The SARS-Cov2 virus, responsible for COVID-19, achieves cell entry through an S (spike) high-affinity protein binding to the catalytic domain of the angiotensin-converting enzyme 2 (ACE2), a negative regulator of the RAS pathway. Therefore, it is crucial to examine the relationship between small resistance artery disease, ACE2, and PAH, to understand COVID-19 morbidity and mortality. The scope of the present review is to briefly summarize available knowledge on the role of small resistance artery disease and ACE2 in PAH, and critically discuss their clinical relevance in the context of cardiovascular pathology associated to COVID-19.
Collapse
Affiliation(s)
- María Galán
- Institut de Recerca del Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain.,Centro de Investigación en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Francesc Jiménez-Altayó
- Departament de Farmacologia, de Terapèutica i de Toxicologia, Facultat de Medicina, Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
16
|
Alves JV, da Costa RM, Pereira CA, Fedoce AG, Silva CAA, Carneiro FS, Lobato NS, Tostes RC. Supraphysiological Levels of Testosterone Induce Vascular Dysfunction via Activation of the NLRP3 Inflammasome. Front Immunol 2020; 11:1647. [PMID: 32849566 PMCID: PMC7411079 DOI: 10.3389/fimmu.2020.01647] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Both supraphysiological and subphysiological testosterone levels are associated with increased cardiovascular risk. Testosterone consumption at supraphysiological doses has been linked to increased blood pressure, left ventricular hypertrophy, vascular dysfunction, and increased levels of inflammatory markers. Activation of the NLRP3 inflammasome contributes to the production of proinflammatory cytokines, leading to cardiovascular dysfunction. We hypothesized that supraphysiological levels of testosterone, via generation of mitochondrial reactive oxygen species (mROS), activates the NLRP3 inflammasome and promotes vascular dysfunction. Methods: Male, 12 week-old C57Bl/6J (WT) and NLRP3 knockout (NLRP3-/-) mice were used. Mice were treated with testosterone propionate [TP (10 mg/kg) in vivo] or vehicle for 30 days. In addition, vessels were incubated with testosterone [Testo (10-6 M, 2 h) in vitro]. Testosterone levels, blood pressure, vascular function (thoracic aortic rings), pro-caspase-1/caspase-1 and interleukin-1β (IL-1β) expression, and generation of reactive oxygen species were determined. Results: Testosterone increased contractile responses and reduced endothelium-dependent vasodilation, both in vivo and in vitro. These effects were not observed in arteries from NLRP3-/- mice. Aortas of TP-treated WT mice (in vivo), as well as aortas from WT mice incubated with testo (in vitro), exhibited increased mROS levels and increased caspase-1 and IL-1β expression. These effects were not observed in arteries from NLRP3-/- mice. Flutamide [Flu, 10-5 M, androgen receptor (AR) antagonist], carbonyl cyanide m-chlorophenyl hydrazone (CCCP, 10-6 M, mitochondrial uncoupler) and MCC950 (MCC950, 10-6 M, a NLRP3 receptor inhibitor) prevented testosterone-induced mROS generation. Conclusion: Supraphysiological levels of testosterone induce vascular dysfunction via mROS generation and NLRP3 inflammasome activation. These events may contribute to increased cardiovascular risk.
Collapse
MESH Headings
- Androgens/toxicity
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/physiopathology
- Caspase 1/metabolism
- Inflammasomes/agonists
- Inflammasomes/genetics
- Inflammasomes/metabolism
- Interleukin-1beta/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Mitochondria/drug effects
- Mitochondria/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/agonists
- NLR Family, Pyrin Domain-Containing 3 Protein/deficiency
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Reactive Oxygen Species/metabolism
- Receptors, Androgen/drug effects
- Receptors, Androgen/metabolism
- Testosterone Propionate/toxicity
- Tissue Culture Techniques
- Vasoconstriction/drug effects
- Vasodilation/drug effects
Collapse
Affiliation(s)
- Juliano Vilela Alves
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Rafael Menezes da Costa
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- Special Academic Unit of Health Sciences, Federal University of Jataí, Jataí, Brazil
| | - Camila André Pereira
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Aline Garcia Fedoce
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | | | - Fernando Silva Carneiro
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Núbia Souza Lobato
- Special Academic Unit of Health Sciences, Federal University of Jataí, Jataí, Brazil
| | - Rita C. Tostes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
17
|
Pinheiro Júnior JEG, Moraes PZ, Rodriguez MD, Simões MR, Cibin F, Pinton S, Barbosa Junior F, Peçanha FM, Vassallo DV, Miguel M, Wiggers GA. Cadmium exposure activates NADPH oxidase, renin-angiotensin system and cyclooxygenase 2 pathways in arteries, inducing hypertension and vascular damage. Toxicol Lett 2020; 333:80-89. [PMID: 32738273 DOI: 10.1016/j.toxlet.2020.07.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/20/2020] [Accepted: 07/26/2020] [Indexed: 10/23/2022]
Abstract
Exposure to high concentrations of cadmium (Cd), widely used in many industries and found in air, food and contaminated water, is not uncommon. Cd damages the cardiovascular system, but the vascular mechanisms involved are not fully understood. This study investigated the mechanisms involved in cardiovascular damage after exposure to high Cd concentrations. Three-month-old male Wistar rats were treated intraperitoneally for 14 days with distilled water (Untreated group) or 1 mg/kg cadmium chloride (Cd group). We investigated the systolic blood pressure (SBP) and vascular reactivity of mesenteric resistance arteries (MRA) and the aorta by analysing contractile and relaxation responses in the absence and presence of the endothelium; we also evaluated pathways involved in vascular tone regulation. Superoxide anion production, COX-2 protein expression and in situ detection of COX-2, AT-1, and NOX-1 were evaluated. Oxidative status, creatinine level and angiotensin-converting enzyme (ACE) activity in plasma were also evaluated. Fourteen-day exposure to a high Cd concentration induced hypertension associated with vascular dysfunction in MRA and the aorta. In both vessels, there was increased participation of cyclooxygenase 2 (COX2), angiotensin II type 1 (AT1) receptor and NOX1. MRA also presented endothelial dysfunction, denoted by impaired acetylcholine-mediated relaxation. All vascular changes were accompanied by increased reactive oxygen species production and COX2, NOX1 and AT1 receptor expression in vascular tissue. Overall, high Cd concentrations induced cardiovascular damage: hypertension, endothelial dysfunction and vascular damage in conductance and resistance arteries, NADPH oxidase, renin-angiotensin system and COX2 pathway activation.
Collapse
Affiliation(s)
- José Eudes Gomes Pinheiro Júnior
- Graduate Program in Biochemistry, Universidade Federal do Pampa, BR 472 - Km 592 - PO box 118, Zip Code: 97500-970, Uruguaiana, Rio Grande do Sul, Brazil
| | - Paola Zambelli Moraes
- Graduate Program in Biochemistry, Universidade Federal do Pampa, BR 472 - Km 592 - PO box 118, Zip Code: 97500-970, Uruguaiana, Rio Grande do Sul, Brazil
| | - Marina Diaz Rodriguez
- Graduate Program in Biochemistry, Universidade Federal do Pampa, BR 472 - Km 592 - PO box 118, Zip Code: 97500-970, Uruguaiana, Rio Grande do Sul, Brazil
| | - Maylla Ronacher Simões
- Departments of Physiological Sciences, Universidade Federal do Espírito Santo and School of Medicine of Santa Casa de Misericórdia (EMESCAM), Av. Marechal Campos 1468, Zip Code: 29040-090, Vitória, Espírito Santo, Brazil
| | - Francielli Cibin
- Graduate Program in Biochemistry, Universidade Federal do Pampa, BR 472 - Km 592 - PO box 118, Zip Code: 97500-970, Uruguaiana, Rio Grande do Sul, Brazil
| | - Simone Pinton
- Graduate Program in Biochemistry, Universidade Federal do Pampa, BR 472 - Km 592 - PO box 118, Zip Code: 97500-970, Uruguaiana, Rio Grande do Sul, Brazil
| | - Fernando Barbosa Junior
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, Av. do Café s/n, 14049-903, Ribeirão Preto, São Paulo, Brazil
| | - Franck Maciel Peçanha
- Graduate Program in Biochemistry, Universidade Federal do Pampa, BR 472 - Km 592 - PO box 118, Zip Code: 97500-970, Uruguaiana, Rio Grande do Sul, Brazil
| | - Dalton Valentim Vassallo
- Departments of Physiological Sciences, Universidade Federal do Espírito Santo and School of Medicine of Santa Casa de Misericórdia (EMESCAM), Av. Marechal Campos 1468, Zip Code: 29040-090, Vitória, Espírito Santo, Brazil
| | - Marta Miguel
- Bioactivity and Food Analysis Laboratory, Instituto de Investigación en Ciencias de la Alimentación, Nicolás Cabrera, 9, Campus Universitario de Cantoblanco, Madrid, Spain
| | - Giulia Alessandra Wiggers
- Graduate Program in Biochemistry, Universidade Federal do Pampa, BR 472 - Km 592 - PO box 118, Zip Code: 97500-970, Uruguaiana, Rio Grande do Sul, Brazil.
| |
Collapse
|
18
|
Krishnan SM, Ling YH, Huuskes BM, Ferens DM, Saini N, Chan CT, Diep H, Kett MM, Samuel CS, Kemp-Harper BK, Robertson AAB, Cooper MA, Peter K, Latz E, Mansell AS, Sobey CG, Drummond GR, Vinh A. Pharmacological inhibition of the NLRP3 inflammasome reduces blood pressure, renal damage, and dysfunction in salt-sensitive hypertension. Cardiovasc Res 2020; 115:776-787. [PMID: 30357309 PMCID: PMC6432065 DOI: 10.1093/cvr/cvy252] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 08/02/2018] [Accepted: 10/22/2018] [Indexed: 11/29/2022] Open
Abstract
Aims Renal inflammation, leading to fibrosis and impaired function is a major contributor to the development of hypertension. The NLRP3 inflammasome mediates inflammation in several chronic diseases by processing the cytokines pro-interleukin (IL)-1β and pro-IL-18. In this study, we investigated whether MCC950, a recently-identified inhibitor of NLRP3 activity, reduces blood pressure (BP), renal inflammation, fibrosis and dysfunction in mice with established hypertension. Methods and results C57BL6/J mice were made hypertensive by uninephrectomy and treatment with deoxycorticosterone acetate (2.4 mg/day, s.c.) and 0.9% NaCl in the drinking water (1K/DOCA/salt). Normotensive controls were uninephrectomized and received normal drinking water. Ten days later, mice were treated with MCC950 (10 mg/kg/day, s.c.) or vehicle (saline, s.c.) for up to 25 days. BP was monitored by tail-cuff or radiotelemetry; renal function by biochemical analysis of 24-h urine collections; and kidney inflammation/pathology was assessed by real-time PCR for inflammatory gene expression, flow cytometry for leucocyte influx, and Picrosirius red histology for collagen. Over the 10 days post-surgery, 1K/DOCA/salt-treated mice became hypertensive, developed impaired renal function, and displayed elevated renal levels of inflammatory markers, collagen and immune cells. MCC950 treatment from day 10 attenuated 1K/DOCA/salt-induced increases in renal expression of inflammasome subunits (NLRP3, ASC, pro-caspase-1) and inflammatory/injury markers (pro-IL-18, pro-IL-1β, IL-17A, TNF-α, osteopontin, ICAM-1, VCAM-1, CCL2, vimentin), each by 25–40%. MCC950 reduced interstitial collagen and accumulation of certain leucocyte subsets in kidneys of 1K/DOCA/salt-treated mice, including CD206+ (M2-like) macrophages and interferon-gamma-producing T cells. Finally, MCC950 partially reversed 1K/DOCA/salt-induced elevations in BP, urine output, osmolality, [Na+], and albuminuria (each by 20–25%). None of the above parameters were altered by MCC950 in normotensive mice. Conclusion MCC950 was effective at reducing BP and limiting renal inflammation, fibrosis and dysfunction in mice with established hypertension. This study provides proof-of-concept that pharmacological inhibition of the NLRP3 inflammasome is a viable anti-hypertensive strategy.
Collapse
Affiliation(s)
- Shalini M Krishnan
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Yeong H Ling
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Brooke M Huuskes
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne Campus, Bundoora, Victoria, Australia
| | - Dorota M Ferens
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Narbada Saini
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne Campus, Bundoora, Victoria, Australia
| | - Christopher T Chan
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Henry Diep
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia.,Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne Campus, Bundoora, Victoria, Australia
| | - Michelle M Kett
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Chrishan S Samuel
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | | | - Avril A B Robertson
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Matthew A Cooper
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Karlheinz Peter
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital Bonn, University of Bonn, Bonn, Germany.,Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Ashley S Mansell
- Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Christopher G Sobey
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia.,Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne Campus, Bundoora, Victoria, Australia
| | - Grant R Drummond
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia.,Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne Campus, Bundoora, Victoria, Australia
| | - Antony Vinh
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia.,Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne Campus, Bundoora, Victoria, Australia
| |
Collapse
|
19
|
Knock GA. NADPH oxidase in the vasculature: Expression, regulation and signalling pathways; role in normal cardiovascular physiology and its dysregulation in hypertension. Free Radic Biol Med 2019; 145:385-427. [PMID: 31585207 DOI: 10.1016/j.freeradbiomed.2019.09.029] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/29/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023]
Abstract
The last 20-25 years have seen an explosion of interest in the role of NADPH oxidase (NOX) in cardiovascular function and disease. In vascular smooth muscle and endothelium, NOX generates reactive oxygen species (ROS) that act as second messengers, contributing to the control of normal vascular function. NOX activity is altered in response to a variety of stimuli, including G-protein coupled receptor agonists, growth-factors, perfusion pressure, flow and hypoxia. NOX-derived ROS are involved in smooth muscle constriction, endothelium-dependent relaxation and smooth muscle growth, proliferation and migration, thus contributing to the fine-tuning of blood flow, arterial wall thickness and vascular resistance. Through reversible oxidative modification of target proteins, ROS regulate the activity of protein tyrosine phosphatases, kinases, G proteins, ion channels, cytoskeletal proteins and transcription factors. There is now considerable, but somewhat contradictory evidence that NOX contributes to the pathogenesis of hypertension through oxidative stress. Specific NOX isoforms have been implicated in endothelial dysfunction, hyper-contractility and vascular remodelling in various animal models of hypertension, pulmonary hypertension and pulmonary arterial hypertension, but also have potential protective effects, particularly NOX4. This review explores the multiplicity of NOX function in the healthy vasculature and the evidence for and against targeting NOX for antihypertensive therapy.
Collapse
Affiliation(s)
- Greg A Knock
- Dpt. of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, UK.
| |
Collapse
|
20
|
Henrique Silva F, Yotsumoto Fertrin K, Costa Alexandre E, Beraldi Calmasini F, Fernanda Franco-Penteado C, Ferreira Costa F. Impairment of Nitric Oxide Pathway by Intravascular Hemolysis Plays a Major Role in Mice Esophageal Hypercontractility: Reversion by Soluble Guanylyl Cyclase Stimulator. J Pharmacol Exp Ther 2018; 367:194-202. [PMID: 30108160 DOI: 10.1124/jpet.118.249581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 07/30/2018] [Indexed: 01/18/2023] Open
Abstract
Paroxysmal nocturnal hemoglobinuria (PNH) patients display exaggerated intravascular hemolysis and esophageal disorders. Since excess hemoglobin in the plasma causes reduced nitric oxide (NO) bioavailability and oxidative stress, we hypothesized that esophageal contraction may be impaired by intravascular hemolysis. This study aimed to analyze the alterations of the esophagus contractile mechanisms in a murine model of exaggerated intravascular hemolysis induced by phenylhydrazine (PHZ). For comparative purposes, sickle cell disease (SCD) mice were also studied, a less severe intravascular hemolysis model. Esophagus rings were dissected free and placed in organ baths. Plasma hemoglobin was higher in PHZ compared with SCD mice, as expected. The contractile responses produced by carbachol (CCh), KCl, and electrical-field stimulation (EFS) were superior in PHZ esophagi compared with control but remained unchanged in SCD mice. Preincubation with the NO-independent soluble guanylate cyclase stimulator 3-(4-amino-5-cyclopropylpyrimidin-2-yl)-1-(2-fluorobenzyl)-1H-pyrazolo[3,4-b]pyridine (BAY 41-2272; 1 μM) completely reversed the increased contractile responses to CCh, KCl, and EFS in PHZ mice, but responses remained unchanged with prior treatment with NO donor sodium nitroprusside (300 μM). Protein expression of 3-nitrotyrosine and 4-hydroxynonenal increased in esophagi from PHZ mice, suggesting a state of oxidative stress. In endothelial nitric oxide synthase gene-deficient mice, the contractile responses elicited by KCl and CCh were increased in the esophagus but remained unchanged with the intravascular hemolysis induced by PHZ. In conclusion, our results show that esophagus hypercontractile state occurs in association with lower NO bioavailability due to exaggerated hemolysis intravascular and oxidative stress. Moreover, our study supports the hypothesis that esophageal disorders in PNH patients are secondary to intravascular hemolysis affecting the NO-cGMP pathway.
Collapse
Affiliation(s)
- Fabio Henrique Silva
- Hematology and Hemotherapy Center (F.H.S., K.Y.F., C.F.F.-P., F.F.C.) and Department of Pharmacology, Faculty of Medical Sciences (E.C.A., F.B.C.), University of Campinas, Campinas, São Paulo, Brazil; and Division of Hematology, University of Washington, Seattle, Washington (K.Y.F.)
| | - Kleber Yotsumoto Fertrin
- Hematology and Hemotherapy Center (F.H.S., K.Y.F., C.F.F.-P., F.F.C.) and Department of Pharmacology, Faculty of Medical Sciences (E.C.A., F.B.C.), University of Campinas, Campinas, São Paulo, Brazil; and Division of Hematology, University of Washington, Seattle, Washington (K.Y.F.)
| | - Eduardo Costa Alexandre
- Hematology and Hemotherapy Center (F.H.S., K.Y.F., C.F.F.-P., F.F.C.) and Department of Pharmacology, Faculty of Medical Sciences (E.C.A., F.B.C.), University of Campinas, Campinas, São Paulo, Brazil; and Division of Hematology, University of Washington, Seattle, Washington (K.Y.F.)
| | - Fabiano Beraldi Calmasini
- Hematology and Hemotherapy Center (F.H.S., K.Y.F., C.F.F.-P., F.F.C.) and Department of Pharmacology, Faculty of Medical Sciences (E.C.A., F.B.C.), University of Campinas, Campinas, São Paulo, Brazil; and Division of Hematology, University of Washington, Seattle, Washington (K.Y.F.)
| | - Carla Fernanda Franco-Penteado
- Hematology and Hemotherapy Center (F.H.S., K.Y.F., C.F.F.-P., F.F.C.) and Department of Pharmacology, Faculty of Medical Sciences (E.C.A., F.B.C.), University of Campinas, Campinas, São Paulo, Brazil; and Division of Hematology, University of Washington, Seattle, Washington (K.Y.F.)
| | - Fernando Ferreira Costa
- Hematology and Hemotherapy Center (F.H.S., K.Y.F., C.F.F.-P., F.F.C.) and Department of Pharmacology, Faculty of Medical Sciences (E.C.A., F.B.C.), University of Campinas, Campinas, São Paulo, Brazil; and Division of Hematology, University of Washington, Seattle, Washington (K.Y.F.)
| |
Collapse
|
21
|
|
22
|
Schmid PM, Bouazzaoui A, Schmid K, Birner CM, Schach C, Maier LS, Holler E, Endemann DH. Vascular Alterations in a Murine Model of Acute Graft-Versus-Host Disease Are Associated with Decreased Serum Levels of Adiponectin and an Increased Activity and Vascular Expression of Indoleamine 2,3-Dioxygenase. Cell Transplant 2018; 25:2051-2062. [PMID: 27196361 DOI: 10.3727/096368916x691646] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Graft-versus-host disease (GVHD) is the limiting complication after bone marrow transplantation (BMT), and its pathophysiology seems to be highly influenced by vascular factors. Our study aimed at elucidating possible mechanisms involved in vascular GVHD. For this purpose, we used a fully MHC-mismatched model of BALB/c mice conditioned according to two different intensity protocols with total body irradiation and transplantation of allogeneic (C57BL/6) or syngeneic bone marrow cells and splenocytes. Mesenteric resistance arteries were studied in a pressurized myograph. We also quantified the expression of indoleamine 2,3-dioxygenase (IDO), endothelial (eNOS), and inducible NO synthase (iNOS), as well as several pro- and anti-inflammatory cytokines. We measured the serum levels of tryptophan (trp) and kynurenine (kyn), the kyn/trp ratio (KTR) as a marker of IDO activity, and adiponectin (APN). The myographic study showed a correlation of GVHD severity after allogeneic BMT with functional vessel alterations that started with increased vessel stress and ended in eccentric vessel remodeling, increased vessel strain, and endothelial dysfunction. These alterations were accompanied by increasing IDO activity and decreasing APN levels in the serum of allogeneic animals. The mRNA expression showed significantly elevated IDO, decreased eNOS, and elevation of most studied pro- and anti-inflammatory cytokines. Our study provides further data supporting the importance of vessel alterations in GVHD and is the first to show an association of vascular GVHD with hypoadiponectinemia and an increased activity and vascular expression of IDO. Whether there is also a causative involvement of these two factors in the development of GVHD needs to be further investigated.
Collapse
Affiliation(s)
- Peter M Schmid
- Department of Internal Medicine 2-Cardiology, University Medical Center Regensburg, Regensburg, Germany
| | - Abdellatif Bouazzaoui
- Department of Internal Medicine 3-Hematology and Oncology, University Medical Center Regensburg, Regensburg, Germany
| | - Karin Schmid
- Department of Internal Medicine 3-Hematology and Oncology, University Medical Center Regensburg, Regensburg, Germany
| | - Christoph M Birner
- Department of Internal Medicine 2-Cardiology, University Medical Center Regensburg, Regensburg, Germany
| | - Christian Schach
- Department of Internal Medicine 2-Cardiology, University Medical Center Regensburg, Regensburg, Germany
| | - Lars S Maier
- Department of Internal Medicine 2-Cardiology, University Medical Center Regensburg, Regensburg, Germany
| | - Ernst Holler
- Department of Internal Medicine 3-Hematology and Oncology, University Medical Center Regensburg, Regensburg, Germany
| | - Dierk H Endemann
- Department of Internal Medicine 2-Cardiology, University Medical Center Regensburg, Regensburg, Germany
| |
Collapse
|
23
|
Chronic Mild Hyperhomocysteinemia Alters Inflammatory and Oxidative/Nitrative Status and Causes Protein/DNA Damage, as well as Ultrastructural Changes in Cerebral Cortex: Is Acetylsalicylic Acid Neuroprotective? Neurotox Res 2017; 33:580-592. [PMID: 29243196 DOI: 10.1007/s12640-017-9847-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 02/06/2023]
Abstract
Homocysteine is a sulfur-containing amino acid derived from methionine metabolism. When plasma homocysteine levels exceed 10-15 μM, there is a condition known as hyperhomocysteinemia, which occur as a result of an inborn error of methionine metabolism or by non-genetic causes. Mild hyperhomocysteinemia is considered a risk factor for development of neurodegenerative diseases. The objective of the present study was to evaluate whether acetylsalicylic acid has neuroprotective role on the effect of homocysteine on inflammatory, oxidative/nitrative stress, and morphological parameters in cerebral cortex of rats subjected to chronic mild hyperhomocysteinemia. Wistar male rats received homocysteine (0.03 μmol/g of body weight) by subcutaneous injections twice a day and acetylsalicylic acid (25 mg/Kg of body weight) by intraperitoneal injections once a day from the 30th to the 60th postpartum day. Control rats received vehicle solution in the same volume. Results showed that rats subjected to chronic mild hyperhomocysteinemia significantly increased IL-1β, IL-6, and acetylcholinesterase activity and reduced nitrite levels. Homocysteine decreased catalase activity and immunocontent and superoxide dismutase activity, caused protein and DNA damage, and altered neurons ultrastructure. Acetylsalicylic acid totally prevented the effect of homocysteine on acetylcholinesterase activity and catalase activity and immunocontent, as well as the ultrastructural changes, and partially prevented alterations on IL-1β levels, superoxide dismutase activity, sulfhydryl content, and comet assay. Acetylsalicylic acid per se increased DNA damage index. In summary, our findings showed that chronic chemically induced model of mild hyperhomocysteinemia altered some parameters and acetylsalicylic acid administration seemed to be neuroprotective, at least in part, on neurotoxicity of homocysteine.
Collapse
|
24
|
Rodriguez-Iturbe B, Pons H, Johnson RJ. Role of the Immune System in Hypertension. Physiol Rev 2017; 97:1127-1164. [PMID: 28566539 PMCID: PMC6151499 DOI: 10.1152/physrev.00031.2016] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 03/02/2017] [Accepted: 03/02/2017] [Indexed: 02/07/2023] Open
Abstract
High blood pressure is present in more than one billion adults worldwide and is the most important modifiable risk factor of death resulting from cardiovascular disease. While many factors contribute to the pathogenesis of hypertension, a role of the immune system has been firmly established by a large number of investigations from many laboratories around the world. Immunosuppressive drugs and inhibition of individual cytokines prevent or ameliorate experimental hypertension, and studies in genetically-modified mouse strains have demonstrated that lymphocytes are necessary participants in the development of hypertension and in hypertensive organ injury. Furthermore, immune reactivity may be the driving force of hypertension in autoimmune diseases. Infiltration of immune cells, oxidative stress, and stimulation of the intrarenal angiotensin system are induced by activation of the innate and adaptive immunity. High blood pressure results from the combined effects of inflammation-induced impairment in the pressure natriuresis relationship, dysfunctional vascular relaxation, and overactivity of the sympathetic nervous system. Imbalances between proinflammatory effector responses and anti-inflammatory responses of regulatory T cells to a large extent determine the severity of inflammation. Experimental and human studies have uncovered autoantigens (isoketal-modified proteins and heat shock protein 70) of potential clinical relevance. Further investigations on the immune reactivity in hypertension may result in the identification of new strategies for the treatment of the disease.
Collapse
Affiliation(s)
- Bernardo Rodriguez-Iturbe
- Renal Service, Hospital Universitario, Universidad del Zulia, and Instituto Venezolano de Investigaciones Científicas (IVIC)-Zulia, Maracaibo, Venezuela; and Division of Renal Diseases and Hypertension, University of Colorado, Anschutz Campus, Aurora, Colorado
| | - Hector Pons
- Renal Service, Hospital Universitario, Universidad del Zulia, and Instituto Venezolano de Investigaciones Científicas (IVIC)-Zulia, Maracaibo, Venezuela; and Division of Renal Diseases and Hypertension, University of Colorado, Anschutz Campus, Aurora, Colorado
| | - Richard J Johnson
- Renal Service, Hospital Universitario, Universidad del Zulia, and Instituto Venezolano de Investigaciones Científicas (IVIC)-Zulia, Maracaibo, Venezuela; and Division of Renal Diseases and Hypertension, University of Colorado, Anschutz Campus, Aurora, Colorado
| |
Collapse
|
25
|
Peiró C, Lorenzo Ó, Carraro R, Sánchez-Ferrer CF. IL-1β Inhibition in Cardiovascular Complications Associated to Diabetes Mellitus. Front Pharmacol 2017; 8:363. [PMID: 28659798 PMCID: PMC5468794 DOI: 10.3389/fphar.2017.00363] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 05/26/2017] [Indexed: 01/15/2023] Open
Abstract
Diabetes mellitus (DM) is a chronic disease that affects nowadays millions of people worldwide. In adults, type 2 diabetes mellitus (T2DM) accounts for the majority of all diagnosed cases of diabetes. The course of the T2DM is characterized by insulin resistance and a progressive loss of β-cell mass. DM is associated with a number of related complications, among which cardiovascular complications and atherosclerosis are the main cause of morbidity and mortality in patients suffering from the disease. DM is acknowledged as a low-grade chronic inflammatory state characterized by the over-secretion of pro-inflammatory cytokines, including interleukin (IL)-1β, which reinforce inflammatory signals thus contributing to the development of complications. In this context, the pharmacological approaches to treat diabetes should not only correct hyperglycaemia, but also attenuate inflammation and prevent the development of metabolic and cardiovascular complications. Over the last years, novel biological drugs have been developed to antagonize the pathophysiological actions of IL-1β. The drugs currently used in clinical practice are anakinra, a recombinant form of the naturally occurring IL-1 receptor antagonist, the soluble decoy receptor rilonacept and the monoclonal antibodies canakinumab and gevokizumab. This review will summarize the main experimental and clinical findings obtained with pharmacological IL-1β inhibitors in the context of the cardiovascular complications of DM, and discuss the perspectives of IL-1β inhibitors as novel therapeutic tools for treating these patients.
Collapse
Affiliation(s)
- Concepción Peiró
- Department of Pharmacology, School of Medicine, Universidad Autónoma de MadridMadrid, Spain.,Instituto de Investigación Sanitaria Hospital Universitario de La Paz (IdiPAZ)Madrid, Spain
| | - Óscar Lorenzo
- Department of Medicine, School of Medicine, Universidad Autónoma de MadridMadrid, Spain.,Instituto de Investigación Sanitaria Fundación Jiménez DíazMadrid, Spain
| | - Raffaele Carraro
- Department of Medicine, School of Medicine, Universidad Autónoma de MadridMadrid, Spain.,Service of Endocrinology, Hospital de La PrincesaMadrid, Spain.,Instituto de Investigación Sanitaria Hospital de La PrincesaMadrid, Spain
| | - Carlos F Sánchez-Ferrer
- Department of Pharmacology, School of Medicine, Universidad Autónoma de MadridMadrid, Spain.,Instituto de Investigación Sanitaria Hospital Universitario de La Paz (IdiPAZ)Madrid, Spain
| |
Collapse
|
26
|
Tempol, a Superoxide Dismutase Mimetic Agent, Inhibits Superoxide Anion-Induced Inflammatory Pain in Mice. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9584819. [PMID: 28589150 PMCID: PMC5446866 DOI: 10.1155/2017/9584819] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/26/2017] [Accepted: 04/12/2017] [Indexed: 01/16/2023]
Abstract
The present study evaluated the anti-inflammatory and analgesic effects of the superoxide dismutase mimetic agent tempol in superoxide anion-induced pain and inflammation. Mice were treated intraperitoneally with tempol (10–100 mg/kg) 40 min before the intraplantar injection of a superoxide anion donor, potassium superoxide (KO2, 30 μg). Mechanical hyperalgesia and thermal hyperalgesia, paw edema, and mRNA expression of peripheral and spinal cord mediators involved in inflammatory pain, TNFα, IL-1β, IL-10, COX-2, preproET-1, gp91phox, Nrf2, GFAP, and Iba-1, were evaluated. Peripheral and spinal cord reductions of antioxidant defenses and superoxide anion were also assessed. Tempol reduced KO2-induced mechanical hyperalgesia and thermal hyperalgesia and paw edema. The increased mRNA expression of the evaluated mediators and oxidative stress in the paw skin and spinal cord and increased mRNA expression of glial markers in the spinal cord induced by KO2 were successfully inhibited by tempol. KO2-induced reduction in Nrf2 mRNA expression in paw skin and spinal cord was also reverted by tempol. Corroborating the effect of tempol in the KO2 model, tempol also inhibited carrageenan and CFA inflammatory hyperalgesia. The present study demonstrates that tempol inhibits superoxide anion-induced molecular and behavioral alterations, indicating that tempol deserves further preclinical studies as a promising analgesic and anti-inflammatory molecule for the treatment of inflammatory pain.
Collapse
|
27
|
Familtseva A, Jeremic N, Kunkel GH, Tyagi SC. Toll-like receptor 4 mediates vascular remodeling in hyperhomocysteinemia. Mol Cell Biochem 2017; 433:177-194. [PMID: 28386844 DOI: 10.1007/s11010-017-3026-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/01/2017] [Indexed: 01/12/2023]
Abstract
Although hyperhomocysteinemia (HHcy) is known to promote downstream pro-inflammatory cytokine elevation, the precise mechanism is still unknown. One of the possible receptors that could have significant attention in the field of hypertension is toll-like receptor 4 (TLR-4). TLR-4 is a cellular membrane protein that is ubiquitously expressed in all cell types of the vasculature. Its mutation can attenuate the effects of HHcy-mediated vascular inflammation and mitochondria- dependent cell death that suppresses hypertension. In this review, we observed that HHcy induces vascular remodeling through immunological adaptation, promoting inflammatory cytokine up-regulation (IL-1β, IL-6, TNF-α) and initiation of mitochondrial dysfunction leading to cell death and chronic vascular inflammation. The literature suggests that HHcy promotes TLR-4-driven chronic vascular inflammation and mitochondria-mediated cell death inducing peripheral vascular remodeling. In the previous studies, we have characterized the role of TLR-4 mutation in attenuating vascular remodeling in hyperhomocysteinemia. This review includes, but is not limited to, the physiological synergistic aspects of the downstream elevation of cytokines found within the vascular inflammatory cascade. These events subsequently induce mitochondrial dysfunction defined by excessive mitochondrial fission and mitochondrial apoptosis contributing to vascular remodeling followed by hypertension.
Collapse
Affiliation(s)
- Anastasia Familtseva
- Department of Physiology, School of Medicine, Health Sciences Centre, University of Louisville, A-1215, 500, South Preston Street, Louisville, KY, 40202, USA
| | - Nevena Jeremic
- Department of Physiology, School of Medicine, Health Sciences Centre, University of Louisville, A-1215, 500, South Preston Street, Louisville, KY, 40202, USA.
| | - George H Kunkel
- Department of Physiology, School of Medicine, Health Sciences Centre, University of Louisville, A-1215, 500, South Preston Street, Louisville, KY, 40202, USA
| | - Suresh C Tyagi
- Department of Physiology, School of Medicine, Health Sciences Centre, University of Louisville, A-1215, 500, South Preston Street, Louisville, KY, 40202, USA
| |
Collapse
|
28
|
Verhoeven F, Totoson P, Maguin-Gaté K, Prigent-Tessier A, Marie C, Wendling D, Moretto J, Prati C, Demougeot C. Glucocorticoids improve endothelial function in rheumatoid arthritis: a study in rats with adjuvant-induced arthritis. Clin Exp Immunol 2017; 188:208-218. [PMID: 28152574 DOI: 10.1111/cei.12938] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2017] [Indexed: 12/15/2022] Open
Abstract
To determine the effect of glucocorticoids (GCs) on endothelial dysfunction (ED) and on traditional cardiovascular (CV) risk factors in the adjuvant-induced arthritis (AIA) rat model. At the first signs of AIA, a high dose (HD) [10 mg/kg/day, intraperitoneally (i.p.), GC-HD] or low dose (LD) (1 mg/kg/day, i.p., GC-LD) of prednisolone was administered for 3 weeks. Endothelial function was studied in aortic rings relaxed with acetylcholine (Ach) with or without inhibitors of nitric oxide synthase (NOS), cyclooxygenase 2 (COX-2), arginase, endothelium derived hyperpolarizing factor (EDHF) and superoxide anions ( O2-°) production. Aortic expression of endothelial NOS (eNOS), Ser1177-phospho-eNOS, COX-2, arginase-2, p22phox and p47phox was evaluated by Western blotting analysis. Arthritis scores, blood pressure, heart rate and blood levels of cytokines, triglycerides, cholesterol and glucose were measured. GC-HD but not GC-LD reduced arthritis score significantly and improved Ach-induced relaxation (P < 0·05). The positive effect of GC-HD resulted from increased NOS activity and EDHF production and decreased COX-2/arginase activities and O2-° production. These functional effects relied upon increased phospho-eNOS expression and decreased COX-2, arginase-2 and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase expression. Despite the lack of effect of GC-LD on ED, it increased NOS and EDHF and down-regulated O2-° pathways but did not change arginase and COX-2 pathways. GC-HD increased triglycerides levels and blood pressure significantly (P < 0·05). Both doses of GCs decreased to the same extent as plasma interleukin (IL)-1β and tumour necrosis factor (TNF)-α levels (P < 0·05). Our data demonstrated that subchronic treatment with prednisolone improved endothelial function in AIA via pleiotropic effects on endothelial pathways. These effects occurred independently of the deleterious cardiometabolic effects and the impact of prednisolone on systemic inflammation.
Collapse
Affiliation(s)
- F Verhoeven
- PEPITE EA4267, FHU INCREASE, Université Bourgogne Franche-Comté, Besançon, France.,Service de Rhumatologie, CHRU Besançon, France
| | - P Totoson
- PEPITE EA4267, FHU INCREASE, Université Bourgogne Franche-Comté, Besançon, France
| | - K Maguin-Gaté
- PEPITE EA4267, FHU INCREASE, Université Bourgogne Franche-Comté, Besançon, France
| | | | - C Marie
- INSERM U1093, Université Bourgogne Franche-Comté, Dijon, France
| | - D Wendling
- Service de Rhumatologie, CHRU Besançon, France.,EA 4266, Université Bourgogne Franche-Comté, Besançon, France
| | - J Moretto
- PEPITE EA4267, FHU INCREASE, Université Bourgogne Franche-Comté, Besançon, France
| | - C Prati
- PEPITE EA4267, FHU INCREASE, Université Bourgogne Franche-Comté, Besançon, France.,Service de Rhumatologie, CHRU Besançon, France
| | - C Demougeot
- PEPITE EA4267, FHU INCREASE, Université Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
29
|
Bomfim GF, Rodrigues FL, Carneiro FS. Are the innate and adaptive immune systems setting hypertension on fire? Pharmacol Res 2017; 117:377-393. [PMID: 28093357 DOI: 10.1016/j.phrs.2017.01.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/06/2016] [Accepted: 01/09/2017] [Indexed: 02/08/2023]
Abstract
Hypertension is the most common chronic cardiovascular disease and is associated with several pathological states, being an important cause of morbidity and mortality around the world. Low-grade inflammation plays a key role in hypertension and the innate and adaptive immune systems seem to contribute to hypertension development and maintenance. Hypertension is associated with vascular inflammation, increased vascular cytokines levels and infiltration of immune cells in the vasculature, kidneys and heart. However, the mechanisms that trigger inflammation and immune system activation in hypertension are completely unknown. Cells from the innate immune system express pattern recognition receptors (PRR), which detect conserved pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) that induce innate effector mechanisms to produce endogenous signals, such as inflammatory cytokines and chemokines, to alert the host about danger. Additionally, antigen-presenting cells (APC) act as sentinels that are activated by PAMPs and DAMPs to sense the presence of the antigen/neoantigen, which ensues the adaptive immune system activation. In this context, different lymphocyte types are activated and contribute to inflammation and end-organ damage in hypertension. This review will focus on experimental and clinical evidence demonstrating the contribution of the innate and adaptive immune systems to the development of hypertension.
Collapse
Affiliation(s)
- Gisele F Bomfim
- Institute of Health Sciences, Federal University of Mato Grosso, Sinop, MT, Brazil
| | - Fernanda Luciano Rodrigues
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Fernando S Carneiro
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av Bandeirantes, 3900, 14049-900 Ribeirao Preto, SP, Brazil.
| |
Collapse
|
30
|
Ling YH, Krishnan SM, Chan CT, Diep H, Ferens D, Chin-Dusting J, Kemp-Harper BK, Samuel CS, Hewitson TD, Latz E, Mansell A, Sobey CG, Drummond GR. Anakinra reduces blood pressure and renal fibrosis in one kidney/DOCA/salt-induced hypertension. Pharmacol Res 2016; 116:77-86. [PMID: 27986554 DOI: 10.1016/j.phrs.2016.12.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 12/12/2016] [Accepted: 12/12/2016] [Indexed: 01/02/2023]
Abstract
OBJECTIVE To determine whether a clinically-utilised IL-1 receptor antagonist, anakinra, reduces renal inflammation, structural damage and blood pressure (BP) in mice with established hypertension. METHODS Hypertension was induced in male mice by uninephrectomy, deoxycorticosterone acetate (2.4mg/d,s.c.) and replacement of drinking water with saline (1K/DOCA/salt). Control mice received uninephrectomy, a placebo pellet and normal drinking water. 10days post-surgery, mice commenced treatment with anakinra (75mg/kg/d, i.p.) or vehicle (0.9% saline, i.p.) for 11days. Systolic BP was measured by tail cuff while qPCR, immunohistochemistry and flow cytometry were used to measure inflammatory markers, collagen and immune cell infiltration in the kidneys. RESULTS By 10days post-surgery, 1K/DOCA/salt-treated mice displayed elevated systolic BP (148.3±2.4mmHg) compared to control mice (121.7±2.7mmHg; n=18, P<0.0001). The intervention with anakinra reduced BP in 1K/DOCA/salt-treated mice by ∼20mmHg (n=16, P<0.05), but had no effect in controls. In 1K/DOCA/salt-treated mice, anakinra modestly reduced (∼30%) renal expression of some (CCL5, CCL2; n=7-8; P<0.05) but not all (ICAM-1, IL-6) inflammatory markers, and had no effect on immune cell infiltration (n=7-8, P>0.05). Anakinra reduced renal collagen content (n=6, P<0.01) but paradoxically appeared to exacerbate the renal and glomerular hypertrophy (n=8-9, P<0.001) that accompanied 1K/DOCA/salt-induced hypertension. CONCLUSION Despite its anti-hypertensive and renal anti-fibrotic actions, anakinra had minimal effects on inflammation and leukocyte infiltration in mice with 1K/DOCA/salt-induced hypertension. Future studies will assess whether the anti-hypertensive actions of anakinra are mediated by protective actions in other BP-regulating or salt-handling organs such as the arteries, skin and brain.
Collapse
Affiliation(s)
- Yeong Hann Ling
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Australia
| | - Shalini M Krishnan
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Australia
| | - Christopher T Chan
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Australia
| | - Henry Diep
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Australia
| | - Dorota Ferens
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Australia
| | - Jaye Chin-Dusting
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Australia
| | - Barbara K Kemp-Harper
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Australia
| | - Chrishan S Samuel
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Australia
| | - Timothy D Hewitson
- Department of Nephrology, Royal Melbourne Hospital, Parkville, Australia
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital Bonn, University of Bonn, Bonn, Germany; Department of Infectious Diseases and Immunology, University of Massachusetts Medical School,Worcester, Massachusetts, USA; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Ashley Mansell
- Hudson Institute of Medical Research, Clayton, Australia
| | - Christopher G Sobey
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Australia; Department of Surgery, School of Clinical Sciences, Monash Health, Clayton, Australia
| | - Grant R Drummond
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Australia; Department of Surgery, School of Clinical Sciences, Monash Health, Clayton, Australia.
| |
Collapse
|
31
|
Bruder-Nascimento T, Ferreira NS, Zanotto CZ, Ramalho F, Pequeno IO, Olivon VC, Neves KB, Alves-Lopes R, Campos E, Silva CAA, Fazan R, Carlos D, Mestriner FL, Prado D, Pereira FV, Braga T, Luiz JPM, Cau SB, Elias PC, Moreira AC, Câmara NO, Zamboni DS, Alves-Filho JC, Tostes RC. NLRP3 Inflammasome Mediates Aldosterone-Induced Vascular Damage. Circulation 2016; 134:1866-1880. [PMID: 27803035 DOI: 10.1161/circulationaha.116.024369] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 10/04/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND Inflammation is a key feature of aldosterone-induced vascular damage and dysfunction, but molecular mechanisms by which aldosterone triggers inflammation remain unclear. The NLRP3 inflammasome is a pivotal immune sensor that recognizes endogenous danger signals triggering sterile inflammation. METHODS We analyzed vascular function and inflammatory profile of wild-type (WT), NLRP3 knockout (NLRP3-/-), caspase-1 knockout (Casp-1-/-), and interleukin-1 receptor knockout (IL-1R-/-) mice treated with vehicle or aldosterone (600 µg·kg-1·d-1 for 14 days through osmotic mini-pump) while receiving 1% saline to drink. RESULTS Here, we show that NLRP3 inflammasome plays a central role in aldosterone-induced vascular dysfunction. Long-term infusion of aldosterone in mice resulted in elevation of plasma interleukin-1β levels and vascular abnormalities. Mice lacking the IL-1R or the inflammasome components NLRP3 and caspase-1 were protected from aldosterone-induced vascular damage. In vitro, aldosterone stimulated NLRP3-dependent interleukin-1β secretion by bone marrow-derived macrophages by activating nuclear factor-κB signaling and reactive oxygen species generation. Moreover, chimeric mice reconstituted with NLRP3-deficient hematopoietic cells showed that NLRP3 in immune cells mediates aldosterone-induced vascular damage. In addition, aldosterone increased the expression of NLRP3, active caspase-1, and mature interleukin-1β in human peripheral blood mononuclear cells. Hypertensive patients with hyperaldosteronism or normal levels of aldosterone exhibited increased activity of NLRP3 inflammasome, suggesting that the effect of hyperaldosteronism on the inflammasome may be mediated through high blood pressure. CONCLUSIONS Together, these data demonstrate that NLRP3 inflammasome, through activation of IL-1R, is critically involved in the deleterious vascular effects of aldosterone, placing NLRP3 as a potential target for therapeutic interventions in conditions with high aldosterone levels.
Collapse
MESH Headings
- Acetylcholine/pharmacology
- Aldosterone/pharmacology
- Animals
- Bone Marrow Cells/cytology
- Bone Marrow Transplantation
- Caspase 1/deficiency
- Caspase 1/genetics
- Humans
- Intercellular Adhesion Molecule-1/genetics
- Intercellular Adhesion Molecule-1/metabolism
- Interleukin-1beta/blood
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/metabolism
- Macrophages/cytology
- Macrophages/drug effects
- Macrophages/metabolism
- Male
- Mesenteric Arteries/drug effects
- Mesenteric Arteries/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- NF-kappa B/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/deficiency
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Nigericin/pharmacology
- Reactive Oxygen Species/metabolism
- Receptors, Interleukin-1/deficiency
- Receptors, Interleukin-1/genetics
- Signal Transduction/drug effects
- Vascular Diseases/chemically induced
Collapse
Affiliation(s)
- Thiago Bruder-Nascimento
- From Department of Pharmacology (T.B.-N., N.S.F., C.Z.Z., F.R., I.O.P., V.C.O., K.B.N., R.A.-L., E.C., F.L.M., D.P., J.P.M.L., J.C.A.F., R.C.T.), Department of Physiology (C.A.A.S., R.F.), Department of Biochemistry and Immunology (D.C.), Department of Clinical Medicine, Division of Endocrinology (P.C.E., A.C.M.), and Department of Cell and Molecular Biology (D.S.Z.), Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil (F.V.P., T.B., N.O.); and Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil (S.B.C.).
| | - Nathanne S Ferreira
- From Department of Pharmacology (T.B.-N., N.S.F., C.Z.Z., F.R., I.O.P., V.C.O., K.B.N., R.A.-L., E.C., F.L.M., D.P., J.P.M.L., J.C.A.F., R.C.T.), Department of Physiology (C.A.A.S., R.F.), Department of Biochemistry and Immunology (D.C.), Department of Clinical Medicine, Division of Endocrinology (P.C.E., A.C.M.), and Department of Cell and Molecular Biology (D.S.Z.), Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil (F.V.P., T.B., N.O.); and Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil (S.B.C.)
| | - Camila Z Zanotto
- From Department of Pharmacology (T.B.-N., N.S.F., C.Z.Z., F.R., I.O.P., V.C.O., K.B.N., R.A.-L., E.C., F.L.M., D.P., J.P.M.L., J.C.A.F., R.C.T.), Department of Physiology (C.A.A.S., R.F.), Department of Biochemistry and Immunology (D.C.), Department of Clinical Medicine, Division of Endocrinology (P.C.E., A.C.M.), and Department of Cell and Molecular Biology (D.S.Z.), Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil (F.V.P., T.B., N.O.); and Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil (S.B.C.)
| | - Fernanda Ramalho
- From Department of Pharmacology (T.B.-N., N.S.F., C.Z.Z., F.R., I.O.P., V.C.O., K.B.N., R.A.-L., E.C., F.L.M., D.P., J.P.M.L., J.C.A.F., R.C.T.), Department of Physiology (C.A.A.S., R.F.), Department of Biochemistry and Immunology (D.C.), Department of Clinical Medicine, Division of Endocrinology (P.C.E., A.C.M.), and Department of Cell and Molecular Biology (D.S.Z.), Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil (F.V.P., T.B., N.O.); and Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil (S.B.C.)
| | - Isabela O Pequeno
- From Department of Pharmacology (T.B.-N., N.S.F., C.Z.Z., F.R., I.O.P., V.C.O., K.B.N., R.A.-L., E.C., F.L.M., D.P., J.P.M.L., J.C.A.F., R.C.T.), Department of Physiology (C.A.A.S., R.F.), Department of Biochemistry and Immunology (D.C.), Department of Clinical Medicine, Division of Endocrinology (P.C.E., A.C.M.), and Department of Cell and Molecular Biology (D.S.Z.), Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil (F.V.P., T.B., N.O.); and Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil (S.B.C.)
| | - Vania C Olivon
- From Department of Pharmacology (T.B.-N., N.S.F., C.Z.Z., F.R., I.O.P., V.C.O., K.B.N., R.A.-L., E.C., F.L.M., D.P., J.P.M.L., J.C.A.F., R.C.T.), Department of Physiology (C.A.A.S., R.F.), Department of Biochemistry and Immunology (D.C.), Department of Clinical Medicine, Division of Endocrinology (P.C.E., A.C.M.), and Department of Cell and Molecular Biology (D.S.Z.), Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil (F.V.P., T.B., N.O.); and Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil (S.B.C.)
| | - Karla B Neves
- From Department of Pharmacology (T.B.-N., N.S.F., C.Z.Z., F.R., I.O.P., V.C.O., K.B.N., R.A.-L., E.C., F.L.M., D.P., J.P.M.L., J.C.A.F., R.C.T.), Department of Physiology (C.A.A.S., R.F.), Department of Biochemistry and Immunology (D.C.), Department of Clinical Medicine, Division of Endocrinology (P.C.E., A.C.M.), and Department of Cell and Molecular Biology (D.S.Z.), Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil (F.V.P., T.B., N.O.); and Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil (S.B.C.)
| | - Rheure Alves-Lopes
- From Department of Pharmacology (T.B.-N., N.S.F., C.Z.Z., F.R., I.O.P., V.C.O., K.B.N., R.A.-L., E.C., F.L.M., D.P., J.P.M.L., J.C.A.F., R.C.T.), Department of Physiology (C.A.A.S., R.F.), Department of Biochemistry and Immunology (D.C.), Department of Clinical Medicine, Division of Endocrinology (P.C.E., A.C.M.), and Department of Cell and Molecular Biology (D.S.Z.), Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil (F.V.P., T.B., N.O.); and Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil (S.B.C.)
| | - Eduardo Campos
- From Department of Pharmacology (T.B.-N., N.S.F., C.Z.Z., F.R., I.O.P., V.C.O., K.B.N., R.A.-L., E.C., F.L.M., D.P., J.P.M.L., J.C.A.F., R.C.T.), Department of Physiology (C.A.A.S., R.F.), Department of Biochemistry and Immunology (D.C.), Department of Clinical Medicine, Division of Endocrinology (P.C.E., A.C.M.), and Department of Cell and Molecular Biology (D.S.Z.), Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil (F.V.P., T.B., N.O.); and Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil (S.B.C.)
| | - Carlos Alberto A Silva
- From Department of Pharmacology (T.B.-N., N.S.F., C.Z.Z., F.R., I.O.P., V.C.O., K.B.N., R.A.-L., E.C., F.L.M., D.P., J.P.M.L., J.C.A.F., R.C.T.), Department of Physiology (C.A.A.S., R.F.), Department of Biochemistry and Immunology (D.C.), Department of Clinical Medicine, Division of Endocrinology (P.C.E., A.C.M.), and Department of Cell and Molecular Biology (D.S.Z.), Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil (F.V.P., T.B., N.O.); and Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil (S.B.C.)
| | - Rubens Fazan
- From Department of Pharmacology (T.B.-N., N.S.F., C.Z.Z., F.R., I.O.P., V.C.O., K.B.N., R.A.-L., E.C., F.L.M., D.P., J.P.M.L., J.C.A.F., R.C.T.), Department of Physiology (C.A.A.S., R.F.), Department of Biochemistry and Immunology (D.C.), Department of Clinical Medicine, Division of Endocrinology (P.C.E., A.C.M.), and Department of Cell and Molecular Biology (D.S.Z.), Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil (F.V.P., T.B., N.O.); and Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil (S.B.C.)
| | - Daniela Carlos
- From Department of Pharmacology (T.B.-N., N.S.F., C.Z.Z., F.R., I.O.P., V.C.O., K.B.N., R.A.-L., E.C., F.L.M., D.P., J.P.M.L., J.C.A.F., R.C.T.), Department of Physiology (C.A.A.S., R.F.), Department of Biochemistry and Immunology (D.C.), Department of Clinical Medicine, Division of Endocrinology (P.C.E., A.C.M.), and Department of Cell and Molecular Biology (D.S.Z.), Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil (F.V.P., T.B., N.O.); and Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil (S.B.C.)
| | - Fabiola L Mestriner
- From Department of Pharmacology (T.B.-N., N.S.F., C.Z.Z., F.R., I.O.P., V.C.O., K.B.N., R.A.-L., E.C., F.L.M., D.P., J.P.M.L., J.C.A.F., R.C.T.), Department of Physiology (C.A.A.S., R.F.), Department of Biochemistry and Immunology (D.C.), Department of Clinical Medicine, Division of Endocrinology (P.C.E., A.C.M.), and Department of Cell and Molecular Biology (D.S.Z.), Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil (F.V.P., T.B., N.O.); and Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil (S.B.C.)
| | - Douglas Prado
- From Department of Pharmacology (T.B.-N., N.S.F., C.Z.Z., F.R., I.O.P., V.C.O., K.B.N., R.A.-L., E.C., F.L.M., D.P., J.P.M.L., J.C.A.F., R.C.T.), Department of Physiology (C.A.A.S., R.F.), Department of Biochemistry and Immunology (D.C.), Department of Clinical Medicine, Division of Endocrinology (P.C.E., A.C.M.), and Department of Cell and Molecular Biology (D.S.Z.), Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil (F.V.P., T.B., N.O.); and Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil (S.B.C.)
| | - Felipe V Pereira
- From Department of Pharmacology (T.B.-N., N.S.F., C.Z.Z., F.R., I.O.P., V.C.O., K.B.N., R.A.-L., E.C., F.L.M., D.P., J.P.M.L., J.C.A.F., R.C.T.), Department of Physiology (C.A.A.S., R.F.), Department of Biochemistry and Immunology (D.C.), Department of Clinical Medicine, Division of Endocrinology (P.C.E., A.C.M.), and Department of Cell and Molecular Biology (D.S.Z.), Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil (F.V.P., T.B., N.O.); and Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil (S.B.C.)
| | - Tarcio Braga
- From Department of Pharmacology (T.B.-N., N.S.F., C.Z.Z., F.R., I.O.P., V.C.O., K.B.N., R.A.-L., E.C., F.L.M., D.P., J.P.M.L., J.C.A.F., R.C.T.), Department of Physiology (C.A.A.S., R.F.), Department of Biochemistry and Immunology (D.C.), Department of Clinical Medicine, Division of Endocrinology (P.C.E., A.C.M.), and Department of Cell and Molecular Biology (D.S.Z.), Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil (F.V.P., T.B., N.O.); and Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil (S.B.C.)
| | - Joao Paulo M Luiz
- From Department of Pharmacology (T.B.-N., N.S.F., C.Z.Z., F.R., I.O.P., V.C.O., K.B.N., R.A.-L., E.C., F.L.M., D.P., J.P.M.L., J.C.A.F., R.C.T.), Department of Physiology (C.A.A.S., R.F.), Department of Biochemistry and Immunology (D.C.), Department of Clinical Medicine, Division of Endocrinology (P.C.E., A.C.M.), and Department of Cell and Molecular Biology (D.S.Z.), Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil (F.V.P., T.B., N.O.); and Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil (S.B.C.)
| | - Stefany B Cau
- From Department of Pharmacology (T.B.-N., N.S.F., C.Z.Z., F.R., I.O.P., V.C.O., K.B.N., R.A.-L., E.C., F.L.M., D.P., J.P.M.L., J.C.A.F., R.C.T.), Department of Physiology (C.A.A.S., R.F.), Department of Biochemistry and Immunology (D.C.), Department of Clinical Medicine, Division of Endocrinology (P.C.E., A.C.M.), and Department of Cell and Molecular Biology (D.S.Z.), Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil (F.V.P., T.B., N.O.); and Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil (S.B.C.)
| | - Paula C Elias
- From Department of Pharmacology (T.B.-N., N.S.F., C.Z.Z., F.R., I.O.P., V.C.O., K.B.N., R.A.-L., E.C., F.L.M., D.P., J.P.M.L., J.C.A.F., R.C.T.), Department of Physiology (C.A.A.S., R.F.), Department of Biochemistry and Immunology (D.C.), Department of Clinical Medicine, Division of Endocrinology (P.C.E., A.C.M.), and Department of Cell and Molecular Biology (D.S.Z.), Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil (F.V.P., T.B., N.O.); and Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil (S.B.C.)
| | - Ayrton C Moreira
- From Department of Pharmacology (T.B.-N., N.S.F., C.Z.Z., F.R., I.O.P., V.C.O., K.B.N., R.A.-L., E.C., F.L.M., D.P., J.P.M.L., J.C.A.F., R.C.T.), Department of Physiology (C.A.A.S., R.F.), Department of Biochemistry and Immunology (D.C.), Department of Clinical Medicine, Division of Endocrinology (P.C.E., A.C.M.), and Department of Cell and Molecular Biology (D.S.Z.), Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil (F.V.P., T.B., N.O.); and Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil (S.B.C.)
| | - Niels O Câmara
- From Department of Pharmacology (T.B.-N., N.S.F., C.Z.Z., F.R., I.O.P., V.C.O., K.B.N., R.A.-L., E.C., F.L.M., D.P., J.P.M.L., J.C.A.F., R.C.T.), Department of Physiology (C.A.A.S., R.F.), Department of Biochemistry and Immunology (D.C.), Department of Clinical Medicine, Division of Endocrinology (P.C.E., A.C.M.), and Department of Cell and Molecular Biology (D.S.Z.), Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil (F.V.P., T.B., N.O.); and Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil (S.B.C.)
| | - Dario S Zamboni
- From Department of Pharmacology (T.B.-N., N.S.F., C.Z.Z., F.R., I.O.P., V.C.O., K.B.N., R.A.-L., E.C., F.L.M., D.P., J.P.M.L., J.C.A.F., R.C.T.), Department of Physiology (C.A.A.S., R.F.), Department of Biochemistry and Immunology (D.C.), Department of Clinical Medicine, Division of Endocrinology (P.C.E., A.C.M.), and Department of Cell and Molecular Biology (D.S.Z.), Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil (F.V.P., T.B., N.O.); and Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil (S.B.C.)
| | - Jose Carlos Alves-Filho
- From Department of Pharmacology (T.B.-N., N.S.F., C.Z.Z., F.R., I.O.P., V.C.O., K.B.N., R.A.-L., E.C., F.L.M., D.P., J.P.M.L., J.C.A.F., R.C.T.), Department of Physiology (C.A.A.S., R.F.), Department of Biochemistry and Immunology (D.C.), Department of Clinical Medicine, Division of Endocrinology (P.C.E., A.C.M.), and Department of Cell and Molecular Biology (D.S.Z.), Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil (F.V.P., T.B., N.O.); and Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil (S.B.C.)
| | - Rita C Tostes
- From Department of Pharmacology (T.B.-N., N.S.F., C.Z.Z., F.R., I.O.P., V.C.O., K.B.N., R.A.-L., E.C., F.L.M., D.P., J.P.M.L., J.C.A.F., R.C.T.), Department of Physiology (C.A.A.S., R.F.), Department of Biochemistry and Immunology (D.C.), Department of Clinical Medicine, Division of Endocrinology (P.C.E., A.C.M.), and Department of Cell and Molecular Biology (D.S.Z.), Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil (F.V.P., T.B., N.O.); and Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil (S.B.C.).
| |
Collapse
|
32
|
Dimassi S, Chahed K, Boumiza S, Canault M, Tabka Z, Laurant P, Riva C. Role of eNOS- and NOX-containing microparticles in endothelial dysfunction in patients with obesity. Obesity (Silver Spring) 2016; 24:1305-12. [PMID: 27130266 DOI: 10.1002/oby.21508] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/19/2016] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To explore the pathophysiological profile of patients who have obesity and to investigate the potential role of circulating microparticles (MPs) in endothelial dysfunction in patients who have obesity. METHODS The inflammatory and oxidative status and the cutaneous microvascular blood flow were characterized in 69 patients with android obesity and 46 subjects with normal weight (controls) by using laser Doppler flowmetry. Circulating MP levels were measured by flow cytometry, and endothelial nitric oxide synthase (eNOS) and NADPH oxidase (NOX) expression in MPs was investigated by Western blotting. MP effect on vascular reactivity was assessed in rat aorta rings. RESULTS Patients with obesity showed endothelial dysfunction, hyperglycemia, inflammation, and oxidative stress. In controls, low MP levels were positively correlated with normal microvascular function. Western blot analysis revealed reduced eNOS and increased NOX4D expression in MPs from subjects with obesity compared with controls. However, this was not correlated with endothelial dysfunction parameters and did not impair ex vivo endothelium-dependent vasodilation. CONCLUSIONS These results suggest that MPs do not contribute directly to endothelial dysfunction associated with obesity. Conversely, eNOS- and NOX-containing MPs could be involved in the compensatory mechanism of vascular endothelial cells to counteract the pathologic mechanisms underlying endothelial dysfunction.
Collapse
Affiliation(s)
- Saloua Dimassi
- Avignon University, LAPEC EA4278, Avignon, France
- Faculty of Medicine, Sousse University, UR12ES06, Physiologie de l'Exercice et Physiopathologie: de l'Intégré au Moléculaire, Biologie, Médecine et Santé, Sousse, Tunisia
| | - Karim Chahed
- Faculty of Medicine, Sousse University, UR12ES06, Physiologie de l'Exercice et Physiopathologie: de l'Intégré au Moléculaire, Biologie, Médecine et Santé, Sousse, Tunisia
| | - Soumaya Boumiza
- Faculty of Medicine, Sousse University, UR12ES06, Physiologie de l'Exercice et Physiopathologie: de l'Intégré au Moléculaire, Biologie, Médecine et Santé, Sousse, Tunisia
| | - Matthias Canault
- INRA, UMR 1260, Marseille, France
- INSERM, UMR 1062, Nutrition, Obésité et Risque Thrombotique, Marseille, France
- Aix Marseille University, Faculté de Médecine, Marseille, France
| | - Zouhair Tabka
- Faculty of Medicine, Sousse University, UR12ES06, Physiologie de l'Exercice et Physiopathologie: de l'Intégré au Moléculaire, Biologie, Médecine et Santé, Sousse, Tunisia
| | | | | |
Collapse
|
33
|
Zhu DD, Tang RN, Lv LL, Wen Y, Liu H, Zhang XL, Ma KL, Liu BC. Interleukin-1β mediates high glucose induced phenotypic transition in human aortic endothelial cells. Cardiovasc Diabetol 2016; 15:42. [PMID: 26944557 PMCID: PMC4779230 DOI: 10.1186/s12933-016-0358-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/19/2016] [Indexed: 11/28/2022] Open
Abstract
Background Previous studies have shown that high glucose (HG) induced endothelial cell (EC) damage via a phenotypic transition of EC. There is increasing evidence suggesting the role of inflammatory cytokines in mediated HG-induced EC damage. However, little is known about the potential role of interleukin-1β (IL-1β) in the process. The aim of present study was to investigate whether IL-1β mediated HG–induced phenotypic transition in human aortic endothelial cells (HAECs) and to determine the possible underlying mechanism. Methods Primary HAECs were exposed to normal glucose (NG, 5.5 nM), high glucose (HG,30 nM), IL-1β (10 ng/ml), HG + IL-1β (10 ng/ml) and HG + anti-IL-1β antibodies (1000 ng/ml) or HG + IL-1β small interfering RNA (siRNA). Pathological changes were investigated using confocal microscopy and electron microscopy. Confocal microscopy was performed to detect the co-expression of CD31 and fibroblast specific protein 1 (FSP1). To study the effect of protein kinase C-β (PKCβ) activation on IL-1β in HAECs, HAECs were stimulated with 30 nM PMA (PKCβ activator) and 0.3 μM PKCβ inhibition (LY317615) for 48 h in the NG or HG group. The expressions of PKCβ and IL-1β were detected by RT-PCR and Western blot. And the concentration of IL-1β in the supernatant of HAECs was measured by ELISA. The expressions of FSP1, a-SMA and CD31 were detected by Western blot. Results It was shown that the HG resulted in significant increase in the expressions of PKCβ and IL-1β in dose-and time-dependent manners. The HG or exogenous IL-1β alone inhibited the expression of CD31 and markly increased the expressions of FSP1 and α-SMA. Furthermore, we observed that the HG and IL-1β synergistically increased FSP1 and a-SMA expressions compared with the HG or IL-1β alone group (P < 0.05). Confocal microscopy revealed a colocalization of CD31 and FSP1 and that some cells acquired spindle-shaped morphologies and a loss of CD31 staining. Electron microscopy showed that the HG resulted in the increased microfilamentation and a roughened endoplasmic reticulum structure in the cytoplasm. However, the changes above were attenuated by the intervention of anti-IL-1β antibodies or IL-1β siRNA (P < 0.05). In addition, the PMA induced the expressions of PKCβ and IL-1β in HAECs. The PKCβ activation may mediate the effect of the HG on IL-1β production, which could be attenuated by the PKCβ selective inhibitor (LY317615) (P < 0.05). Conclusions Our findings suggested that HG-induced phenotypic transition of HAECs might require IL-β activation via the PKCβ pathway.
Collapse
Affiliation(s)
- Dong-Dong Zhu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, 210009, China.
| | - Ri-Ning Tang
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, 210009, China.
| | - Lin-Li Lv
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, 210009, China.
| | - Yi Wen
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, 210009, China.
| | - Hong Liu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, 210009, China.
| | - Xiao-Liang Zhang
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, 210009, China.
| | - Kun-Ling Ma
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, 210009, China.
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, 210009, China.
| |
Collapse
|
34
|
Totoson P, Maguin-Gaté K, Nappey M, Wendling D, Demougeot C. Endothelial Dysfunction in Rheumatoid Arthritis: Mechanistic Insights and Correlation with Circulating Markers of Systemic Inflammation. PLoS One 2016; 11:e0146744. [PMID: 26761790 PMCID: PMC4711944 DOI: 10.1371/journal.pone.0146744] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/20/2015] [Indexed: 12/30/2022] Open
Abstract
Objectives To determine mechanisms involved in endothelial dysfunction (ED) during the course of arthritis and to investigate the link between cytokines, chemokines and osteoprotegerin. Approach and Results Experiments were conducted on aortic rings at day 4 (preclinical), day 11 (onset of disease), day 33 (acute disease) and day 90 (chronic disease) after adjuvant-induced arthritis (AIA) in Lewis rats. At day 4, the unique vascular abnormality was a reduced norepinephrine-induced constriction. At day 11, endothelial function assessed by the relaxation to acetylcholine was normal despite increased cyclo-oxygenase-2 activity (COX-2) and overproduction of superoxide anions that was compensated by increased nitric oxide synthase (NOS) activity. At day 33, ED apparition coincides with the normalization of NOS activity. At day 90, ED was only observed in rats with a persisting imbalance between endothelial NOS and COX-2 pathways and higher plasma levels of IL-1β and TNFα. Plasma levels of IL-1β, TNFα and MIP-1α negatively correlated with Ach-induced relaxation throughout the course of AIA. Conclusions Our data identified increased endothelial NOS activity as an important compensatory response that opposes the ED in the early arthritis. Thereafter, a cross-talk between endothelial COX-2/NOS pathways appears as an important element for the occurrence of ED. Our results encourage determining the clinical value of IL-1β, TNFα and MIP-1α as biomarkers of ED in RA.
Collapse
MESH Headings
- Acetylcholine/pharmacology
- Animals
- Arthritis, Experimental/blood
- Arthritis, Experimental/diagnostic imaging
- Arthritis, Experimental/physiopathology
- Arthritis, Rheumatoid/blood
- Arthritis, Rheumatoid/diagnostic imaging
- Arthritis, Rheumatoid/physiopathology
- Biomarkers/blood
- Chemokines/blood
- Cyclic N-Oxides/pharmacology
- Cyclooxygenase 2/metabolism
- Disease Progression
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiopathology
- Immunization
- Inflammation/blood
- Inflammation/complications
- Male
- NG-Nitroarginine Methyl Ester/pharmacology
- Nitric Oxide Synthase Type III/metabolism
- Nitrobenzenes/pharmacology
- Nitroprusside/pharmacology
- Osteoprotegerin/blood
- Radiography
- Rats, Inbred Lew
- Spin Labels
- Sulfonamides/pharmacology
- Superoxides/metabolism
- Time Factors
- Vasoconstriction/drug effects
- Vasodilation/drug effects
Collapse
Affiliation(s)
- Perle Totoson
- EA 4267 FDE, FHU INCREASE, Univ. Bourgogne Franche-Comté, Besançon, France
| | - Katy Maguin-Gaté
- EA 4267 FDE, FHU INCREASE, Univ. Bourgogne Franche-Comté, Besançon, France
| | - Maude Nappey
- EA 4267 FDE, FHU INCREASE, Univ. Bourgogne Franche-Comté, Besançon, France
| | - Daniel Wendling
- Service de Rhumatologie, CHRU Besançon, Besançon, France
- EA 4266, Univ. Bourgogne Franche-Comté, Besançon, France
| | - Céline Demougeot
- EA 4267 FDE, FHU INCREASE, Univ. Bourgogne Franche-Comté, Besançon, France
- * E-mail:
| |
Collapse
|
35
|
Liu P, Xie Q, Wei T, Chen Y, Chen H, Shen W. Activation of the NLRP3 inflammasome induces vascular dysfunction in obese OLETF rats. Biochem Biophys Res Commun 2015; 468:319-25. [DOI: 10.1016/j.bbrc.2015.10.105] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 10/20/2015] [Indexed: 10/22/2022]
|
36
|
Martínez-García C, Izquierdo-Lahuerta A, Vivas Y, Velasco I, Yeo TK, Chen S, Medina-Gomez G. Renal Lipotoxicity-Associated Inflammation and Insulin Resistance Affects Actin Cytoskeleton Organization in Podocytes. PLoS One 2015; 10:e0142291. [PMID: 26545114 PMCID: PMC4636358 DOI: 10.1371/journal.pone.0142291] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/19/2015] [Indexed: 01/01/2023] Open
Abstract
In the last few decades a change in lifestyle has led to an alarming increase in the prevalence of obesity and obesity-associated complications. Obese patients are at increased risk of developing hypertension, heart disease, insulin resistance (IR), dyslipidemia, type 2 diabetes and renal disease. The excess calories are stored as triglycerides in adipose tissue, but also may accumulate ectopically in other organs, including the kidney, which contributes to the damage through a toxic process named lipotoxicity. Recently, the evidence suggests that renal lipid accumulation leads to glomerular damage and, more specifically, produces dysfunction in podocytes, key cells that compose and maintain the glomerular filtration barrier. Our aim was to analyze the early mechanisms underlying the development of renal disease associated with the process of lipotoxicity in podocytes. Our results show that treatment of podocytes with palmitic acid produced intracellular accumulation of lipid droplets and abnormal glucose and lipid metabolism. This was accompanied by the development of inflammation, oxidative stress and endoplasmic reticulum stress and insulin resistance. We found specific rearrangements of the actin cytoskeleton and slit diaphragm proteins (Nephrin, P-Cadherin, Vimentin) associated with this insulin resistance in palmitic-treated podocytes. We conclude that lipotoxicity accelerates glomerular disease through lipid accumulation and inflammation. Moreover, saturated fatty acids specifically promote insulin resistance by disturbing the cytoarchitecture of podocytes. These data suggest that renal lipid metabolism and cytoskeleton rearrangements may serve as a target for specific therapies aimed at slowing the progression of podocyte failure during metabolic syndrome.
Collapse
Affiliation(s)
- Cristina Martínez-García
- Departamento de Ciencias Básicas de la Salud, Área de Bioquímica y Genética Molecular. Universidad Rey Juan Carlos, Avda. de Atenas s/n, Alcorcón, Madrid, Spain
| | - Adriana Izquierdo-Lahuerta
- Departamento de Ciencias Básicas de la Salud, Área de Bioquímica y Genética Molecular. Universidad Rey Juan Carlos, Avda. de Atenas s/n, Alcorcón, Madrid, Spain
| | - Yurena Vivas
- Departamento de Ciencias Básicas de la Salud, Área de Bioquímica y Genética Molecular. Universidad Rey Juan Carlos, Avda. de Atenas s/n, Alcorcón, Madrid, Spain
| | - Ismael Velasco
- Departamento de Ciencias Básicas de la Salud, Área de Bioquímica y Genética Molecular. Universidad Rey Juan Carlos, Avda. de Atenas s/n, Alcorcón, Madrid, Spain
| | - Tet-Kin Yeo
- Division of Nephrology/Hypertension, Northwestern University, Chicago, Illinois, United States of America
| | - Sheldon Chen
- Division of Nephrology/Hypertension, Northwestern University, Chicago, Illinois, United States of America
| | - Gema Medina-Gomez
- Departamento de Ciencias Básicas de la Salud, Área de Bioquímica y Genética Molecular. Universidad Rey Juan Carlos, Avda. de Atenas s/n, Alcorcón, Madrid, Spain
| |
Collapse
|
37
|
Yuui K, Kudo R, Kasuda S, Hatake K. Ethanol attenuates vasorelaxation via inhibition of inducible nitric oxide synthase in rat artery exposed to interleukin-1β. Hum Exp Toxicol 2015; 35:938-45. [PMID: 26500219 DOI: 10.1177/0960327115611944] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Nitric oxide produced by inducible nitric oxide synthase (iNOS) regulates sepsis-induced hypotension. During septic shock, interleukin (IL)-1β is synthesized in endothelial cells and smooth muscle cells by endotoxin. Ethanol (EtOH) suppresses endotoxin-induced hypotension. The present study aimed to elucidate the effect of EtOH on gradual relaxation and iNOS expression induced by IL-1β in isolated rat superior mesenteric arteries (SMAs). Exposure to IL-1β-induced contraction in SMA rings, followed by a gradual relaxation of phenylephrine precontracted tone. Contraction was abolished by indomethacin (IM), cycloheximide (Chx), and endothelium denudation. In contrast, the gradual relaxation was abolished by NOS inhibitors, Chx, endothelium denudation, and inhibited by EtOH (50 and 100 mM). However, IM had no effect on relaxation. Western blot analysis demonstrated that iNOS expression was induced by IL-1β and was inhibited by EtOH and endothelium denudation. Furthermore, messenger RNA expression of iNOS, but not endothelial NOS, was inhibited by EtOH. These data suggest that IL-1β-induced contraction is mediated by thromboxane A2, whereas IL-1β-induced relaxation occurs via NO derived from iNOS. The endothelium plays an important role in vasorelaxation. Taken together, EtOH inhibits IL-1β-mediated vasorelaxation by suppressing endothelium iNOS expression. This study provides the first evidence of EtOH -induced inhibition of IL-1β-mediated vasorelaxation.
Collapse
Affiliation(s)
- K Yuui
- Department of Legal Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - R Kudo
- Department of Legal Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - S Kasuda
- Department of Legal Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - K Hatake
- Department of Legal Medicine, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
38
|
Krishnan SM, Sobey CG, Latz E, Mansell A, Drummond GR. IL-1β and IL-18: inflammatory markers or mediators of hypertension? Br J Pharmacol 2015; 171:5589-602. [PMID: 25117218 PMCID: PMC4290704 DOI: 10.1111/bph.12876] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/30/2014] [Accepted: 08/06/2014] [Indexed: 12/11/2022] Open
Abstract
Chronic inflammation in the kidneys and vascular wall is a major contributor to hypertension. However, the stimuli and cellular mechanisms responsible for such inflammatory responses remain poorly defined. Inflammasomes are crucial initiators of sterile inflammation in other diseases such as rheumatoid arthritis and gout. These pattern recognition receptors detect host-derived danger-associated molecular patterns (DAMPs), such as microcrystals and reactive oxygen species, and respond by inducing activation of caspase-1. Caspase-1 then processes the cytokines pro-IL-1β and pro-IL-18 into their active forms thus triggering inflammation. While IL-1β and IL-18 are known to be elevated in hypertensive patients, no studies have examined whether this occurs downstream of inflammasome activation or whether inhibition of inflammasome and/or IL-1β/IL-18 signalling prevents hypertension. In this review, we will discuss some known actions of IL-1β and IL-18 on leukocyte and vessel wall function that could potentially underlie a prohypertensive role for these cytokines. We will describe the major classes of inflammasome-activating DAMPs and present evidence that at least some of these are elevated in the setting of hypertension. Finally, we will provide information on drugs that are currently used to inhibit inflammasome/IL-1β/IL-18 signalling and how these might ultimately be used as therapeutic agents for the clinical management of hypertension.
Collapse
Affiliation(s)
- S M Krishnan
- Department of Pharmacology, Monash University, Clayton, Vic, Australia
| | | | | | | | | |
Collapse
|
39
|
Vallejo S, Palacios E, Romacho T, Villalobos L, Peiró C, Sánchez-Ferrer CF. The interleukin-1 receptor antagonist anakinra improves endothelial dysfunction in streptozotocin-induced diabetic rats. Cardiovasc Diabetol 2014; 13:158. [PMID: 25518980 PMCID: PMC4276125 DOI: 10.1186/s12933-014-0158-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 11/21/2014] [Indexed: 01/06/2023] Open
Abstract
Background Endothelial dysfunction is a crucial early phenomenon in vascular diseases linked to diabetes mellitus and associated to enhanced oxidative stress. There is increasing evidence about the role for pro-inflammatory cytokines, like interleukin-1β (IL-1β), in developing diabetic vasculopathy. We aimed to determine the possible involvement of this cytokine in the development of diabetic endothelial dysfunction, analysing whether anakinra, an antagonist of IL-1 receptors, could reduce this endothelial alteration by interfering with pro-oxidant and pro-inflammatory pathways into the vascular wall. Results In control and two weeks evolution streptozotocin-induced diabetic rats, either untreated or receiving anakinra, vascular reactivity and NADPH oxidase activity were measured, respectively, in isolated rings and homogenates from mesenteric microvessels, while nuclear factor (NF)-κB activation was determined in aortas. Plasma levels of IL-1β and tumor necrosis factor (TNF)-α were measured by ELISA. In isolated mesenteric microvessels from control rats, two hours incubation with IL-1β (1 to 10 ng/mL) produced a concentration-dependent impairment of endothelium-dependent relaxations, which were mediated by enhanced NADPH oxidase activity via IL-1 receptors. In diabetic rats treated with anakinra (100 or 160 mg/Kg/day for 3 or 7 days before sacrifice) a partial improvement of diabetic endothelial dysfunction occurred, together with a reduction of vascular NADPH oxidase and NF-κB activation. Endothelial dysfunction in diabetic animals was also associated to higher activities of the pro-inflammatory enzymes cyclooxygenase (COX) and the inducible isoform of nitric oxide synthase (iNOS), which were markedly reduced after anakinra treatment. Circulating IL-1β and TNF-α levels did not change in diabetic rats, but they were lowered by anakinra treatment. Conclusions In this short-term model of type 1 diabetes, endothelial dysfunction is associated to an IL-1 receptor-mediated activation of vascular NADPH oxidase and NF-κB, as well as to vascular inflammation. Moreover, endothelial dysfunction, vascular oxidative stress and inflammation were reduced after anakinra treatment. Whether this mechanism can be extrapolated to a chronic situation or whether it may apply to diabetic patients remain to be established. However, it may provide new insights to further investigate the therapeutic use of IL-1 receptor antagonists to obtain vascular benefits in patients with diabetes mellitus and/or atherosclerosis.
Collapse
Affiliation(s)
- Susana Vallejo
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo 4, 29029, Madrid, Spain.
| | - Erika Palacios
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo 4, 29029, Madrid, Spain. .,Present address: Departamento de Ciencias de la Salud, Edificio CN208, Oficina O, Universidad de las Américas, Puebla, México.
| | - Tania Romacho
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo 4, 29029, Madrid, Spain. .,Present address: Paul Langerhans-Group, Integrative Physiology, German Diabetes Center, Auf'm Hennekamp 65, 40225, Düsseldorf, Germany.
| | - Laura Villalobos
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo 4, 29029, Madrid, Spain.
| | - Concepción Peiró
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo 4, 29029, Madrid, Spain.
| | - Carlos F Sánchez-Ferrer
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo 4, 29029, Madrid, Spain.
| |
Collapse
|
40
|
Integrin-linked kinase plays a key role in the regulation of angiotensin II-induced renal inflammation. Clin Sci (Lond) 2014; 127:19-31. [PMID: 24383472 DOI: 10.1042/cs20130412] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
ILK (integrin-linked kinase) is an intracellular serine/threonine kinase involved in cell-matrix interactions. ILK dysregulation has been described in chronic renal disease and modulates podocyte function and fibrosis, whereas data about its role in inflammation are scarce. AngII (angiotensin II) is a pro-inflammatory cytokine that promotes renal inflammation. AngII blockers are renoprotective and down-regulate ILK in experimental kidney disease, but the involvement of ILK in the actions of AngII in the kidney has not been addressed. Therefore we have investigated whether ILK signalling modulates the kidney response to systemic AngII infusion in wild-type and ILK-conditional knockout mice. In wild-type mice, AngII induced an inflammatory response, characterized by infiltration of monocytes/macrophages and lymphocytes, and up-regulation of pro-inflammatory factors (chemokines, adhesion molecules and cytokines). AngII activated several intracellular signalling mechanisms, such as the NF-κB (nuclear factor κB) transcription factor, Akt and production of ROS (reactive oxygen species). All these responses were prevented in AngII-infused ILK-deficient mice. In vitro studies characterized further the mechanisms regulating the inflammatory response modulated by ILK. In cultured tubular epithelial cells ILK blockade, by siRNA, inhibited AngII-induced NF-κB subunit p65 phosphorylation and its nuclear translocation. Moreover, ILK gene silencing prevented NF-κB-related pro-inflammatory gene up-regulation. The results of the present study demonstrate that ILK plays a key role in the regulation of renal inflammation by modulating the canonical NF-κB pathway, and suggest a potential therapeutic target for inflammatory renal diseases.
Collapse
|
41
|
Virdis A, Duranti E, Rossi C, Dell'Agnello U, Santini E, Anselmino M, Chiarugi M, Taddei S, Solini A. Tumour necrosis factor-alpha participates on the endothelin-1/nitric oxide imbalance in small arteries from obese patients: role of perivascular adipose tissue. Eur Heart J 2014; 36:784-94. [PMID: 24578389 DOI: 10.1093/eurheartj/ehu072] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 02/02/2014] [Indexed: 11/14/2022] Open
Abstract
AIMS We assessed the impact of vascular and perivascular tumour necrosis factor-alpha (TNF-α) on the endothelin (ET)-1/nitric oxide (NO) system and the molecular pathways involved in small arteries from visceral fat of obese patients (Obese) and Controls. METHODS AND RESULTS Isolated small arteries from 16 Obese and 14 Controls were evaluated on a pressurized micromyograph. Endogenous ET-1 activity was assessed by the ETA blocker BQ-123. TNF-α and NO were tested by anti-TNF-α infliximab (IFX) and N(ω)-nitro-l-arginine methylester (L-NAME). Gene and protein expression of TNF-α, ET-1, ETA, and ETB receptors were determined by RT-PCR and IHC on arterial wall and in isolated adipocytes. Obese showed a blunted L-NAME-induced vasoconstriction, which was potentiated by IFX, and an increased relaxation to BQ-123, unaffected by L-NAME but attenuated by IFX. Perivascular adipose tissue (PVAT) removal reversed these effects. Obese showed intravascular superoxide excess, which was decreased by apocynin (NAD(P)H oxidase inhibitor), L-NAME, and BQ-123 incubations, and abolished by IFX. An increased vascular expression of ET-1, ETA, and ETB receptors, and higher vascular/perivascular TNF-α and TNF-α receptor expression were also detected. The arterial expression and phosphorylation of c-Jun N-terminal kinase (JNK) were higher in Obese vs. Controls, and downregulated by IFX. CONCLUSIONS In small arteries of Obese, PVAT-derived TNF-α excess, and an increased vascular expression of ET-1 and ETA receptor, contribute to the ET-1/NO system imbalance, by impairing tonic NO release. Reactive oxygen species excess, via NAD(P)H oxidase activation, induces the endothelial nitric oxide synthase uncoupling, which in turn generates superoxide and impairs NO production. The up-regulated JNK pathway represents a crucial molecular signalling involved in this process.
Collapse
Affiliation(s)
- Agostino Virdis
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 67, 56100 Pisa, Italy
| | - Emiliano Duranti
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 67, 56100 Pisa, Italy
| | - Chiara Rossi
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 67, 56100 Pisa, Italy
| | - Umberto Dell'Agnello
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 67, 56100 Pisa, Italy
| | - Eleonora Santini
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 67, 56100 Pisa, Italy
| | | | - Massimo Chiarugi
- Department of Surgery, Medical, Molecular, and Critical Area Pathology, University of Pisa, Pisa, Italy
| | - Stefano Taddei
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 67, 56100 Pisa, Italy
| | - Anna Solini
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 67, 56100 Pisa, Italy
| |
Collapse
|
42
|
Borghi SM, Zarpelon AC, Pinho-Ribeiro FA, Cardoso RDR, Cunha TM, Alves-Filho JC, Ferreira SH, Cunha FQ, Casagrande R, Verri WA. Targeting interleukin-1β reduces intense acute swimming-induced muscle mechanical hyperalgesia in mice. J Pharm Pharmacol 2014; 66:1009-20. [DOI: 10.1111/jphp.12226] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 01/01/2014] [Indexed: 11/27/2022]
Abstract
Abstract
Objectives
The role of interleukin (IL)-1β in intense acute swimming-induced muscle mechanical hyperalgesia was investigated in mice.
Methods
Untrained mice were submitted to one session of intense acute swimming for 120 min or were submitted to sham conditions (30 s exposure to water), and muscle mechanical hyperalgesia (before and 6–48 h after swimming session), IL-1β production (skeletal muscle and spinal cord), myeloperoxidase activity, reduced glutathione (GSH) levels (skeletal muscle and spinal cord), and cortisol, glucose, lactate and creatine kinase (CK) levels (plasma) were analysed.
Key findings
Intense acute swimming-induced muscle mechanical hyperalgesia was dose-dependently inhibited by IL-1ra treatment. IL-1β levels were increased in soleus, but not gastrocnemius muscle and spinal cord 2 and 4 h after the session, respectively. Intense acute swimming-induced increase of myeloperoxidase activity and reduced GSH levels in soleus muscle were reversed by IL-1ra treatment. In the spinal cord, exercise induced an increase of GSH levels, which was reduced by IL-1ra. Finally, IL-1ra treatment reduced plasma levels of CK, an indicator of myocyte damage.
Conclusions
IL-1β mediates intense acute swimming-induced muscle mechanical hyperalgesia by peripheral (soleus muscle) and spinal cord integrative mechanisms and could be considered a potential target to treat exercise-induced muscle pain.
Collapse
Affiliation(s)
- Sergio M Borghi
- Departamento de Patologia, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Ana C Zarpelon
- Departamento de Patologia, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | | | - Renato D R Cardoso
- Departamento de Patologia, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, São Paulo, Brazil
| | - José C Alves-Filho
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Sergio H Ferreira
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rubia Casagrande
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Waldiceu A Verri
- Departamento de Patologia, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| |
Collapse
|
43
|
Simvastatin treatment increases nitrite levels in obese women: Modulation by T−786C polymorphism of eNOS. Nitric Oxide 2013; 33:83-7. [DOI: 10.1016/j.niox.2013.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 07/11/2013] [Accepted: 07/14/2013] [Indexed: 11/23/2022]
|
44
|
Diosgenin improves vascular function by increasing aortic eNOS expression, normalize dyslipidemia and ACE activity in chronic renal failure rats. Mol Cell Biochem 2013; 384:113-20. [DOI: 10.1007/s11010-013-1788-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 08/09/2013] [Indexed: 10/26/2022]
|
45
|
Zhao M, He X, Bi XY, Yu XJ, Gil Wier W, Zang WJ. Vagal stimulation triggers peripheral vascular protection through the cholinergic anti-inflammatory pathway in a rat model of myocardial ischemia/reperfusion. Basic Res Cardiol 2013; 108:345. [PMID: 23519622 DOI: 10.1007/s00395-013-0345-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 02/25/2013] [Accepted: 03/06/2013] [Indexed: 12/14/2022]
Abstract
Myocardial ischemia/reperfusion (I/R) induces inflammatory response that may lead to remote vascular injury. Vagal nerve elicits the cholinergic anti-inflammatory pathway by activating α7 nicotinic acetylcholine receptors (α7nAChR). Nevertheless, the role of vagal nerve-mediated anti-inflammatory pathway in the vasculature has not been studied previously. Therefore, we aimed to clarify the potential role of vagal stimulation (VNS) in regulating remote vascular injury after myocardial I/R. Adult male Sprague-Dawley rats were subjected to VNS starting 15 min prior to ischemia until the end of reperfusion. VNS not only reduced infarct size and improved cardiac function, but also ameliorated myocardial I/R-induced dysfunctional vasoconstriction and vasodilatation and degradation of endothelial structure in mesenteric arteries. VNS decreased serum and vascular levels of tumor necrosis factor-α and IL-1β. Interestingly, in vivo microdialysis studies demonstrated that VNS increased ACh concentration in the mesenteric circulation. Furthermore, VNS up-regulated expressions of muscarinic ACh receptors-3 (M3AChR) and α7nAChR in mesenteric arteries. Preserved endothelial relaxations by VNS were inhibited by atropine or methyllycaconitine, indicating that functional protection was associated with M3 and α7nAChR activation. Finally, VNS increased STAT3 phosphorylation and inhibited NF-κB activation in mesenteric arteries, and these effects were abolished by α7nAChR shRNA treatment, indicating VNS-mediated anti-inflammatory effect mainly involved α7nAChR. These results demonstrated for the first time that VNS protected against remote vascular dysfunction, through the cholinergic anti-inflammatory pathway which is dependent on α7nAChR. Our findings represent a significant addition to the understanding of vagal nerve-mediated pathways and the potential roles they play in regulating the vasculature.
Collapse
Affiliation(s)
- Ming Zhao
- Department of Pharmacology, College of Medicine, Xi'an Jiaotong University, No. 76 Yanta West Road, P.O. Box 77#, Xi'an, 710061, People's Republic of China
| | | | | | | | | | | |
Collapse
|
46
|
Silva FH, Mónica FZ, Báu FR, Brugnerotto AF, Priviero FBM, Toque HA, Antunes E. Superoxide anion production by NADPH oxidase plays a major role in erectile dysfunction in middle-aged rats: prevention by antioxidant therapy. J Sex Med 2013; 10:960-71. [PMID: 23347406 DOI: 10.1111/jsm.12063] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION.: Prevalence of erectile dysfunction (ED) increases progressively with aging, but the ED pathophysiology at its early stages is still poorly investigated. AIM.: This study aimed to evaluate the functional and molecular alterations of erectile function at middle age, focusing on the contribution of oxidative stress in erectile tissue for the ED. METHODS.: Young (3.5-month) and middle-aged (10-month) male Wistar rats were used. Rat corpus cavernosum (RCC) was dissected free and mounted in 10-mL organ baths containing Krebs solution. Intracavernosal pressure (ICP) in anesthetized rats was evaluated. MAIN OUTCOME MEASURES.: Concentration-response curves to endothelium-dependent and endothelium-independent agents, as well as to electrical field stimulation (EFS), were obtained in RCC strips. Measurement of cyclic guanosine monophosphate (cGMP) and expressions of neuronal nitric oxide synthase (nNOS) and endothelial NOS (eNOS), gp91(phox) and superoxide dismutase-1 (SOD-1) expressions in RCC were evaluated. RESULTS.: ICP was significantly reduced in middle-aged compared with young rats. RCC relaxations to acetylcholine (10(-8) to 10(-2) M), sodium nitroprusside (10(-8) to 10(-2) M), sildenafil (10(-9) to 10(-5) M), BAY 41-2272 (10(-9) to 10(-5) M), and EFS (4-32 Hz) were decreased in middle-aged group, which were nearly normalized by apocynin (NADPH oxidase inhibitor; 10(-4) M) or SOD (75 U/mL). Prolonged treatment with apocynin (85 mg/rat/day, 4 weeks) also restored the impaired relaxations in middle-aged rats. Relaxations to 8-bromoguanosine 3',5'-cyclic monophosphate sodium salt (8-Br-cGMP; 10(-8) to 3 × 10(-4) M) remained unchanged between groups. Basal and stimulated cGMP production were lower in middle-aged group, an effect fully restored by apocynin and SOD. Protein expression of nNOS and phosphorylated eNOS (p-eNOS) (Ser-1177) reduced, whereas gp(91phox) mRNA expression increased in RCC from middle-aged rats. CONCLUSIONS.: ED in middle-aged rats is associated with decreased NO bioavailability in erectile tissue due to upregulation of NADPH oxidase subunit gp91(phox) and downregulation of nNOS/p-eNOS. Antioxidant therapies may be a good pharmacological approach to prevent ED at its early stages.
Collapse
Affiliation(s)
- Fábio H Silva
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
47
|
Palomares SM, Gardner-Morse I, Sweet JG, Cipolla MJ. Peroxynitrite decomposition with FeTMPyP improves plasma-induced vascular dysfunction and infarction during mild but not severe hyperglycemic stroke. J Cereb Blood Flow Metab 2012; 32:1035-45. [PMID: 22373645 PMCID: PMC3367219 DOI: 10.1038/jcbfm.2012.14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We investigated mechanisms by which circulating factors during hyperglycemic (HG) stroke affect cerebrovascular function and the role of peroxynitrite in stroke outcome. Middle cerebral arteries (MCAs) were isolated from male Wistar rats and perfused with plasma from rats that were hyperglycemic for 5 to 6 days by streptozotocin and underwent either MCA occlusion (HG MCAO) or Sham surgery (HG Sham) compared with MCA perfused with physiologic saline (No plasma). Myogenic responses and endothelial function were compared in untreated MCA (n=8/group) or with inhibitors of NADPH oxidase (apocynin; n=8), peroxynitrite (FeTMPyP; n=8) or endothelin-1 (ET-1)(A) (BQ-123; n=8). Finally, animals were treated in vivo before reperfusion after mild (<68% cerebral blood flow (CBF) decrease) or severe (>68% CBF decrease) MCAO with FeTMPyP (n=12) or vehicle (n=12) and CBF and infarction measured. The HG MCAO plasma increased tone in MCA versus No plasma (P<0.05) that was reversed by FeTMPyP, but not by apocynin or BQ-123. The HG Sham plasma also increased tone in MCA (P<0.05) that was reversed by BQ-123 only. In vivo, FeTMPyP was neuroprotective during mild, but not severe ischemia. These results show that circulating factors in plasma can affect cerebrovascular function through peroxynitrite generation and ET-1. In addition, peroxynitrite decomposition improves stroke outcome acutely during mild, but not severe HG ischemia.
Collapse
Affiliation(s)
- Sara Morales Palomares
- Departments of Neurology, Obstetrics, Gynecology and Reproductive Sciences, and Pharmacology, University of Vermont College of Medicine, Burlington, VT, USA
| | | | | | | |
Collapse
|
48
|
Davel AP, Lemos M, Pastro LM, Pedro SC, de André PA, Hebeda C, Farsky SH, Saldiva PH, Rossoni LV. Endothelial dysfunction in the pulmonary artery induced by concentrated fine particulate matter exposure is associated with local but not systemic inflammation. Toxicology 2012; 295:39-46. [DOI: 10.1016/j.tox.2012.02.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 01/21/2012] [Accepted: 02/07/2012] [Indexed: 11/25/2022]
|
49
|
Caracuel L, Jiménez-Altayó F, Romo M, Márquez-Martín A, Dantas AP, Vila E. Transient mesenteric ischemia leads to remodeling of rat mesenteric resistance arteries. Front Physiol 2012; 2:118. [PMID: 22291659 PMCID: PMC3251824 DOI: 10.3389/fphys.2011.00118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 12/15/2011] [Indexed: 11/16/2022] Open
Abstract
Mesenteric ischemia/reperfusion (I/R) is associated with high rates of morbidity and mortality. We studied the effect of mesenteric I/R on structural and mechanical properties of rat mesenteric resistance artery (MRA) that, once disrupted, might impact the outcome of this devastating clinical condition. Superior mesenteric artery from Wistar–Kyoto rats was occluded (90 min) and reperfused (24 h). The effect of tezosentan, a dual endothelin (ET)-receptor antagonist, was studied in ischemic (IO) and sham-operated (SO) animals. MRA structure and mechanics were assessed by pressure myography. Nuclei distribution, elastin content and organization, collagen I/III and ET-1 expression, ET-1 plasma levels, superoxide anion (O2⋅−) production, and mRNA levels of NAD(P)H-oxidase subunits were measured. To assess ET-1 effects on O2⋅− production, MRA from non-operated rats were incubated in culture medium with ET-1. Mesenteric I/R increased MRA wall thickness (P < 0.05) and cross-sectional area (P < 0.05) but decreased wall stiffness (P < 0.05). Arterial remodeling was paralleled by enhancement of: (i) collagen I/III expression (P < 0.01), ET-1 expression (P < 0.05), and O2⋅− formation (P < 0.01) in the vessel wall; (ii) number of internal elastic lamina (IEL) fenestrae (P < 0.05); and (iii) plasma levels of ET-1 (P < 0.05). Moreover, ET-1 increased O2⋅− (P < 0.05) production in cultured MRA. Tezosentan prevented hypertrophic remodeling and collagen I/III deposition, and enhanced O2⋅− production, but it did not affect the decreased wall stiffness after mesenteric I/R. These results indicate that 90 min occlusion/24 h reperfusion induces hypertrophic remodeling of MRA linked to ET-1-mediated increase of collagen and O2⋅−. Decreased stiffness may be associated with increased number of IEL fenestrae. The resulting MRA remodeling, initially adaptive, might become maladaptive contributing to the pathology and poor outcome of mesenteric I/R, and might be a valuable treatment target for mesenteric I/R.
Collapse
Affiliation(s)
- Laura Caracuel
- Departament de Farmacologia, Terapèutica i Toxicología, Universitat Autònoma de Barcelona Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
50
|
Morita T, Okada M, Hara Y, Yamawaki H. Mechanisms underlying impairment of endothelium-dependent relaxation by fetal bovine serum in organ-cultured rat mesenteric artery. Eur J Pharmacol 2011; 668:401-6. [DOI: 10.1016/j.ejphar.2011.07.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 07/21/2011] [Accepted: 07/30/2011] [Indexed: 11/29/2022]
|