1
|
Kineman RD, Del Rio-Moreno M, Waxman DJ. Liver-specific actions of GH and IGF1 that protect against MASLD. Nat Rev Endocrinol 2025; 21:105-117. [PMID: 39322791 DOI: 10.1038/s41574-024-01037-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/29/2024] [Indexed: 09/27/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD; also known as nonalcoholic fatty liver disease) is a chronic condition associated with metabolic syndrome, a group of conditions that includes obesity, insulin resistance, hyperlipidaemia and cardiovascular disease. Primary growth hormone (GH) deficiency is associated with MASLD, and the decline in circulating levels of GH with weight gain might contribute to the development of MASLD. Raising endogenous GH secretion or administering GH replacement therapy in the context of MASLD enhances insulin-like growth factor 1 (IGF1) production and reduces steatosis and the severity of liver injury. GH and IGF1 indirectly control MASLD progression by regulating systemic metabolic function. Evidence supports the proposal that GH and IGF1 also have a direct role in regulating liver metabolism and health. This Review focuses on how GH acts on the hepatocyte in a sex-dependent manner to limit lipid accumulation, reduce stress, and promote survival and regeneration. In addition, we discuss how GH and IGF1 might regulate non-parenchymal cells of the liver to control inflammation and fibrosis, which have a major effect on hepatocyte survival and regeneration. Development of a better understanding of how GH and IGF1 coordinate the functions of specific, individual liver cell types might provide insight into the aetiology of MASLD initiation and progression and suggest novel approaches for the treatment of MASLD.
Collapse
Affiliation(s)
- Rhonda D Kineman
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL, USA.
- Jesse Brown VA Medical Center, Research and Development Division, Chicago, IL, USA.
| | - Mercedes Del Rio-Moreno
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
- Jesse Brown VA Medical Center, Research and Development Division, Chicago, IL, USA
| | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA, USA
| |
Collapse
|
2
|
MacLeod AK, Coquelin KS, Huertas L, Simeons FRC, Riley J, Casado P, Guijarro L, Casanueva R, Frame L, Pinto EG, Ferguson L, Duncan C, Mutter N, Shishikura Y, Henderson CJ, Cebrian D, Wolf CR, Read KD. Acceleration of infectious disease drug discovery and development using a humanized model of drug metabolism. Proc Natl Acad Sci U S A 2024; 121:e2315069121. [PMID: 38315851 PMCID: PMC10873626 DOI: 10.1073/pnas.2315069121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/27/2023] [Indexed: 02/07/2024] Open
Abstract
A key step in drug discovery, common to many disease areas, is preclinical demonstration of efficacy in a mouse model of disease. However, this demonstration and its translation to the clinic can be impeded by mouse-specific pathways of drug metabolism. Here, we show that a mouse line extensively humanized for the cytochrome P450 gene superfamily ("8HUM") can circumvent these problems. The pharmacokinetics, metabolite profiles, and magnitude of drug-drug interactions of a test set of approved medicines were in much closer alignment with clinical observations than in wild-type mice. Infection with Mycobacterium tuberculosis, Leishmania donovani, and Trypanosoma cruzi was well tolerated in 8HUM, permitting efficacy assessment. During such assessments, mouse-specific metabolic liabilities were bypassed while the impact of clinically relevant active metabolites and DDI on efficacy were well captured. Removal of species differences in metabolism by replacement of wild-type mice with 8HUM therefore reduces compound attrition while improving clinical translation, accelerating drug discovery.
Collapse
Affiliation(s)
- A. Kenneth MacLeod
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, DundeeDD1 5EH, United Kingdom
| | - Kevin-Sebastien Coquelin
- Division of Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Ninewells Hospital, DundeeDD2 4GD, United Kingdom
| | - Leticia Huertas
- Global Health Research & Development, GlaxoSmithKline, Tres Cantos, Madrid28760, Spain
| | - Frederick R. C. Simeons
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, DundeeDD1 5EH, United Kingdom
| | - Jennifer Riley
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, DundeeDD1 5EH, United Kingdom
| | - Patricia Casado
- Global Health Research & Development, GlaxoSmithKline, Tres Cantos, Madrid28760, Spain
| | - Laura Guijarro
- Global Health Research & Development, GlaxoSmithKline, Tres Cantos, Madrid28760, Spain
| | - Ruth Casanueva
- Global Health Research & Development, GlaxoSmithKline, Tres Cantos, Madrid28760, Spain
| | - Laura Frame
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, DundeeDD1 5EH, United Kingdom
| | - Erika G. Pinto
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, DundeeDD1 5EH, United Kingdom
| | - Liam Ferguson
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, DundeeDD1 5EH, United Kingdom
| | - Christina Duncan
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, DundeeDD1 5EH, United Kingdom
| | - Nicole Mutter
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, DundeeDD1 5EH, United Kingdom
| | - Yoko Shishikura
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, DundeeDD1 5EH, United Kingdom
| | - Colin J. Henderson
- Division of Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Ninewells Hospital, DundeeDD2 4GD, United Kingdom
| | - David Cebrian
- Global Health Research & Development, GlaxoSmithKline, Tres Cantos, Madrid28760, Spain
| | - C. Roland Wolf
- Division of Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Ninewells Hospital, DundeeDD2 4GD, United Kingdom
| | - Kevin D. Read
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, DundeeDD1 5EH, United Kingdom
| |
Collapse
|
3
|
Damoiseaux D, Schinkel AH, Beijnen JH, Huitema ADR, Dorlo TPC. Predictability of human exposure by human-CYP3A4-transgenic mouse models: A meta-analysis. Clin Transl Sci 2024; 17:e13668. [PMID: 38037826 PMCID: PMC10766057 DOI: 10.1111/cts.13668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 12/02/2023] Open
Abstract
First-in-human dose predictions are primarily based on no-observed-adverse-effect levels in animal studies. Predictions from these animal models are only as effective as their ability to predict human results. To narrow the gap between human and animals, researchers have, among other things, focused on the replacement of animal cytochrome P450 (CYP) enzymes with their human counterparts (called humanization), especially in mice. Whereas research in humanized mice is extensive, the emphasis has been particularly on qualitative rather than quantitative predictions. Because the CYP3A4 enzyme is most involved in the metabolism of clinically used drugs, most benefit was expected from CYP3A4 models. There are several applications of these mouse models regarding in vivo CYP3A4 functionality, one of which might be their capacity to help improve first-in-human (FIH) dose predictions for CYP3A4-metabolized drugs. To evaluate whether human-CYP3A4-transgenic mouse models are better predictors of human exposure compared to the wild-type mouse model, we performed a meta-analysis comparing both mouse models in their ability to accurately predict human exposure of small-molecule drugs metabolized by CYP3A4. Results showed that, in general, the human-CYP3A4-transgenic mouse model had similar accuracy in the prediction of human exposure compared to the wild-type mouse model, suggesting that there is limited added value in humanization of the mouse Cyp3a enzymes if the primary aim is to acquire more accurate FIH dose predictions. Despite the results of this meta-analysis, corrections for interspecies differences through extension of human-CYP3A4-transgenic mouse models with pharmacokinetic modeling approaches seems a promising contribution to more accurate quantitative predictions of human pharmacokinetics.
Collapse
Affiliation(s)
- David Damoiseaux
- Department of Pharmacy & PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Alfred H. Schinkel
- Division of PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Jos H. Beijnen
- Department of Pharmacy & PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Utrecht Institute of Pharmaceutical Sciences, Utrecht UniversityUtrechtThe Netherlands
| | - Alwin D. R. Huitema
- Department of Pharmacy & PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Department of PharmacologyPrincess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
- Department of Clinical PharmacyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Thomas P. C. Dorlo
- Department of Pharmacy & PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Department of PharmacyUppsala UniversityUppsalaSweden
| |
Collapse
|
4
|
Poudel S, Huber AD, Chen T. Regulation of Nuclear Receptors PXR and CAR by Small Molecules and Signal Crosstalk: Roles in Drug Metabolism and Beyond. Drug Metab Dispos 2023; 51:228-236. [PMID: 36116789 PMCID: PMC9900866 DOI: 10.1124/dmd.122.000858] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/16/2022] [Accepted: 08/29/2022] [Indexed: 01/31/2023] Open
Abstract
Pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are ligand-activated transcription factors that regulate the expression of drug metabolizing enzymes and drug transporters. Since their discoveries, they have been studied as important factors for regulating processes related to drug efficacy, drug toxicity, and drug-drug interactions. However, their vast ligand-binding profiles extend into additional spaces, such as endogenously produced chemicals, microbiome metabolites, dietary compounds, and environmental pollutants. Therefore, PXR and CAR can respond to an enormous abundance of stimuli, resulting in significant shifts in metabolic programs and physiologic homeostasis. Naturally, PXR and CAR have been implicated in various diseases related to homeostatic perturbations, such as inflammatory bowel disorders, diabetes, and certain cancers. Recent findings have injected the field with new signaling mechanisms and tools to dissect the complex PXR and CAR biology and have strengthened the potential for future PXR and CAR modulators in the clinic. Here, we describe the historical and ongoing importance of PXR and CAR in drug metabolism pathways and how this history has evolved into new mechanisms that regulate and are regulated by these xenobiotic receptors, with a specific focus on small molecule ligands. To effectively convey the impact of newly emerging research, we have arranged five diverse and representative key recent advances, four specific challenges, and four perspectives on future directions. SIGNIFICANCE STATEMENT: PXR and CAR are key transcription factors that regulate homeostatic detoxification of the liver and intestines. Diverse chemicals bind to these nuclear receptors, triggering their transcriptional tuning of the cellular metabolic response. This minireview revisits the importance of PXR and CAR in pharmaceutical drug responses and highlights recent results with implications beyond drug metabolism.
Collapse
Affiliation(s)
- Shyaron Poudel
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Andrew D Huber
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
5
|
Hannon SL, Ding X. Assessing cytochrome P450 function using genetically engineered mouse models. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 95:253-284. [PMID: 35953157 PMCID: PMC10544722 DOI: 10.1016/bs.apha.2022.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The ability to knock out and/or humanize different genes in experimental animals, globally or in cell- and tissue-specific patterns, has revolutionized scientific research in many areas. Genetically engineered mouse models, including knockout models, transgenic models, and humanized models, have played important roles in revealing the in vivo functions of various cytochrome P450 (CYP) enzymes. These functions are very diverse, ranging from the biotransformation of drugs and other xenobiotics, events that often dictate their pharmacokinetic or toxicokinetic properties and the associated therapeutic or adverse actions, to the metabolism of endogenous compounds, such as steroid hormones and other bioactive substances, that may determine susceptibility to many diseases, such as cancer and metabolic diseases. In this review, we provide a comprehensive list of Cyp-knockout, human CYP-transgenic, and CYP-humanized mouse models that target genes in the CYP1-4 gene families, and highlight their utility in assessing the in vivo metabolism, bioactivation, and toxicity of various xenobiotic compounds, including therapeutic agents and chemical carcinogens. We aim to showcase the advantages of utilizing these mouse models for in vivo drug metabolism and toxicology studies, and to encourage and facilitate greater utility of engineered mouse models to further improve our knowledge of the in vivo functions of various P450 enzymes, which is integral to our ability to develop safer and more effective therapeutics and to identify individuals predisposed to adverse drug reactions or environmental diseases.
Collapse
Affiliation(s)
- Sarrah L Hannon
- Department of Pharmacology and Toxicology, Ken R. Coit College of Pharmacy, The University of Arizona, Tucson, AZ, United States
| | - Xinxin Ding
- Department of Pharmacology and Toxicology, Ken R. Coit College of Pharmacy, The University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
6
|
Kawamura T, Ichikawa M, Hatogai J, Koyama Y, Tachibana M, Kuwahara M, Negishi K, Matsumoto M, Miyazaki M, Ochiai W. Mouse Cyp2c expression and zonation structure in the liver begins in the early neonatal stage. Biopharm Drug Dispos 2022; 43:130-139. [PMID: 35748067 DOI: 10.1002/bdd.2324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/22/2022] [Accepted: 06/03/2022] [Indexed: 11/08/2022]
Abstract
In the adult liver, drug-metabolizing enzymes such as cytochrome P450 (CYP) efficiently metabolize drugs by forming an expression pattern called "Zonation" structure around central veins. However, most previous studies on CYPs have focused on the expression levels of CYP mRNA and proteins in the whole liver. In this study, we analyzed not only the expression levels of Cyp2c family mRNAs and proteins in mice during fetal liver development, but also the relationship with their localization. In the whole fetal liver, Cyp2c mRNA and protein were hardly expressed. On the other hand, zonation analysis results showed that only some cells around the central vein of the fetal liver expressed Cyp2c. In addition, the protein expression level of Cyp2c in the whole liver during the neonatal period starts from postnatal day (P) 7 in both males and females, while the zonation is weakly formed from P5. This study suggested that fetal liver cannot metabolize Cyp2c substrate drugs transferred from mother to fetus due to low expression of Cyp2c and unformed zonation. The expression level of Cyp2c protein in neonates was lower than that in adult liver, and the zonation structure was not clear, suggesting that drug metabolism was not sufficient. Furthermore, this study revealed that the expression level of Cyp2c does not correlate with the formation of zonation structures, because Cyp2c expression is found in hepatocytes near the central vein even in the fetal and neonatal stages, when Cyp2c protein expression is hardly detectable in the whole liver. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Taisuke Kawamura
- Department of Pharmacokinetics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Mako Ichikawa
- Department of Pharmacokinetics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Jo Hatogai
- Department of Pharmacokinetics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Yuya Koyama
- Department of Pharmacokinetics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Misa Tachibana
- Department of Pharmacokinetics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Misaki Kuwahara
- Department of Pharmacokinetics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Keita Negishi
- Department of Pharmacokinetics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Miyu Matsumoto
- Department of Pharmacokinetics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Masafumi Miyazaki
- Department of Pharmacokinetics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Wataru Ochiai
- Department of Pharmacokinetics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| |
Collapse
|
7
|
Moderie C, Nuñez N, Fielding A, Comai S, Gobbi G. Sex Differences in Responses to Antidepressant Augmentations in Treatment-Resistant Depression. Int J Neuropsychopharmacol 2022; 25:479-488. [PMID: 35167671 PMCID: PMC9211005 DOI: 10.1093/ijnp/pyac017] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/31/2022] [Accepted: 02/14/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Women are nearly twice as likely as men to suffer from major depressive disorder. Yet, there is a dearth of studies comparing the clinical outcomes of women and men with treatment-resistant depression (TRD) treated with similar augmentation strategies. We aimed to evaluate the effects of the augmentation strategies in women and men at the McGill University Health Center. METHODS We reviewed health records of 76 patients (42 women, 34 men) with TRD, treated with augmentation strategies including antidepressants (AD) with mood stabilizers (AD+MS), antipsychotics (AD+AP), or in combination (AD+AP+MS). Clinical outcomes were determined by comparing changes on the 17-item Hamilton Depression Rating Scale (HAMD-17), Montgomery-Åsberg Depression Rating Scale (MADRS), Quick Inventory of Depressive Symptomatology (QIDS-C16), and Clinical Global Impression rating scale (CGI-S) at the beginning and after 3 months of an unchanged treatment. Changes in individual items of the HAMD-17 were also compared between the groups. RESULTS Women and men improved from beginning to 3 months on all scales (P < .001, η p2 ≥ 0.68). There was also a significant sex × time interaction for all scales (P < .05, η p2 ≥ 0.06), reflecting a greater improvement in women compared with men. Specifically, women exhibited greater improvement in early (P = .03, η p2 = 0.08) and middle-of-the-night insomnia (P = .01, η p2 = 0.09) as well as psychomotor retardation (P < .001 η p2 = 0.16) and psychic (P = .02, η p2 = 0.07) and somatic anxiety (P = .01, η p2 = 0.10). CONCLUSIONS The combination of AD+AP/MS generates a significantly greater clinical response in women compared with men with TRD, supporting the existence of distinct pharmacological profiles between sexes in our sample. Moreover, they emphasize the benefit of augmentation strategies in women, underscoring the benefit of addressing symptoms such as insomnia and anxiety with AP and MS.
Collapse
Affiliation(s)
| | | | - Allan Fielding
- Department of Psychiatry, McGill University, Montreal, Canada,McGill University Health Center, Montreal, Canada
| | - Stefano Comai
- Department of Psychiatry, McGill University, Montreal, Canada,Department of Pharmaceutical and Pharmacological Sciences and Department of Biomedical Sciences, Padova, Italy,University of Padova, Padova, Italy
| | - Gabriella Gobbi
- Correspondence: Gabriella Gobbi, MD, PhD, Neurobiological Psychiatry Unit Room 220, 1033 Pine Avenue West, McGill University, Montreal, QC, Canada H3A 1A1 ()
| |
Collapse
|
8
|
Fujino C, Sanoh S, Katsura T. Variation in Expression of Cytochrome P450 3A Isoforms and Toxicological Effects: Endo- and Exogenous Substances as Regulatory Factors and Substrates. Biol Pharm Bull 2021; 44:1617-1634. [PMID: 34719640 DOI: 10.1248/bpb.b21-00332] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The CYP3A subfamily, which includes isoforms CYP3A4, CYP3A5, and CYP3A7 in humans, plays important roles in the metabolism of various endogenous and exogenous substances. Gene and protein expression of CYP3A4, CYP3A5, and CYP3A7 show large inter-individual differences, which are caused by many endogenous and exogenous factors. Inter-individual differences can cause negative outcomes, such as adverse drug events and disease development. Therefore, it is important to understand the variations in CYP3A expression caused by endo- and exogenous factors, as well as the variation in the metabolism and kinetics of endo- and exogenous substrates. In this review, we summarize the factors regulating CYP3A expression, such as bile acids, hormones, microRNA, inflammatory cytokines, drugs, environmental chemicals, and dietary factors. In addition, variations in CYP3A expression under pathological conditions, such as coronavirus disease 2019 and liver diseases, are described as examples of the physiological effects of endogenous factors. We also summarize endogenous and exogenous substrates metabolized by CYP3A isoforms, such as cholesterol, bile acids, hormones, arachidonic acid, vitamin D, and drugs. The relationship between the changes in the kinetics of these substrates and the toxicological effects in our bodies are discussed. The usefulness of these substrates and metabolites as endogenous biomarkers for CYP3A activity is also discussed. Notably, we focused on discrimination between CYP3A4, CYP3A5, and CYP3A7 to understand inter-individual differences in CYP3A expression and function.
Collapse
Affiliation(s)
- Chieri Fujino
- Laboratory of Clinical Pharmaceutics and Therapeutics, College of Pharmaceutical Sciences, Ritsumeikan University
| | - Seigo Sanoh
- Graduate School of Biomedical and Health Sciences, Hiroshima University.,School of Pharmaceutical Sciences, Wakayama Medical University
| | - Toshiya Katsura
- Laboratory of Clinical Pharmaceutics and Therapeutics, College of Pharmaceutical Sciences, Ritsumeikan University
| |
Collapse
|
9
|
Xie Y, Xie W. The Role of Sulfotransferases in Liver Diseases. Drug Metab Dispos 2020; 48:742-749. [PMID: 32587100 PMCID: PMC7469250 DOI: 10.1124/dmd.120.000074] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/08/2020] [Indexed: 12/19/2022] Open
Abstract
The cytosolic sulfotransferases (SULTs) are phase II conjugating enzymes that catalyze the transfer of a sulfonate group from the universal sulfate donor 3'-phosphoadenosine-5'-phosphosulfate to a nucleophilic group of their substrates to generate hydrophilic products. Sulfation has a major effect on the chemical and functional homeostasis of substrate chemicals. SULTs are widely expressed in metabolically active or hormonally responsive tissues, including the liver and many extrahepatic tissues. The expression of SULTs exhibits isoform-, tissue-, sex-, and development-specific regulations. SULTs display a broad range of substrates including xenobiotics and endobiotics. The expression of SULTs has been shown to be transcriptionally regulated by members of the nuclear receptor superfamily, such as the peroxisome proliferator-activated receptors, pregnane X receptor, constitutive androstane receptor, vitamin D receptor, liver X receptors, farnesoid X receptor, retinoid-related orphan receptors, estrogen-related receptors, and hepatocyte nuclear factor 4α These nuclear receptors can be activated by numerous xenobiotics and endobiotics, such as fatty acids, bile acids, and oxysterols, many of which are substrates of SULTs. Due to their metabolism of xenobiotics and endobiotics, SULTs and their regulations are implicated in the pathogenesis of many diseases. This review is aimed to summarize the central role of major SULTs, including the SULT1 and SULT2 subfamilies, in the pathophysiology of liver and liver-related diseases. SIGNIFICANCE STATEMENT: Sulfotransferases (SULTs) are indispensable in the homeostasis of xenobiotics and endobiotics. Knowing SULTs and their regulations are implicated in human diseases, it is hoped that genetic or pharmacological manipulations of the expression and/or activity of SULTs can be used to affect the clinical outcome of diseases.
Collapse
Affiliation(s)
- Yang Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania (Y.X., W.X.) and Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (W.X.)
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania (Y.X., W.X.) and Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (W.X.)
| |
Collapse
|
10
|
van Keulen BJ, Dolan CV, Andrew R, Walker BR, Hulshoff Pol HE, Boomsma DI, Rotteveel J, Finken MJJ. Heritability of Cortisol Production and Metabolism Throughout Adolescence. J Clin Endocrinol Metab 2020; 105:5586817. [PMID: 31608377 PMCID: PMC7046020 DOI: 10.1210/clinem/dgz016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022]
Abstract
CONTEXT Inter-individual differences in cortisol production and metabolism emerge with age and may be explained by genetic factors. OBJECTIVE To estimate the relative contributions of genetic and environmental factors to inter-individual differences in cortisol production and metabolism throughout adolescence. DESIGN Prospective follow-up study of twins. SETTING Nationwide register. PARTICIPANTS 218 mono- and dizygotic twins (N = 109 pairs) born between 1995 amd 1996, recruited from the Netherlands Twin Register. Cortisol metabolites were determined in 213, 169, and 160 urine samples at the ages of 9, 12, and 17, respectively. MAIN OUTCOME MEASURES The total contribution of genetic factors (broad-sense heritability) and shared and unshared environmental influences to inter-individual differences in cortisol production and activities of 5α-reductase, 5β-reductase, and 11β-hydroxysteroid dehydrogenases and cytochrome P450 3A4. RESULTS For cortisol production rate at the ages of 9, 12, and 17, broad-sense heritability was estimated as 42%, 30%, and 0%, respectively, and the remainder of the variance was explained by unshared environmental factors. For cortisol metabolism indices, the following heritability was observed: for the A-ring reductases (5α-and 5β-reductases), broad-sense heritability increased with age (to >50%), while for the other indices (renal 11β-HSD2, global 11β-HSD, and CYP3A4), the contribution of genetic factors was highest (68%, 18%, and 67%, respectively) at age 12. CONCLUSIONS The contribution of genetic factors to inter-individual differences in cortisol production decreased between 12 and 17y, indicative of a predominant role of individual circumstances. For cortisol metabolism, distinct patterns of genetic and environmental influences were observed, with heritability that either increased with age or peaked at age 12y.
Collapse
Affiliation(s)
- Britt J van Keulen
- Emma Children’s Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Pediatric Endocrinology, Amsterdam, The Netherlands
- Correspondence and Requests: Britt J van Keulen, MD, Emma Children’s Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Pediatric endocrinology, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands. E-mail:
| | - Conor V Dolan
- Department of Biological Psychology, Vrije Universiteit Amsterdam, The Netherlands
| | - Ruth Andrew
- Centre for Cardiovascular Science, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, UK
| | - Brian R Walker
- Centre for Cardiovascular Science, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, UK
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Hilleke E Hulshoff Pol
- Department of Psychiatry, Brian Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, The Netherlands
| | - Joost Rotteveel
- Emma Children’s Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Pediatric Endocrinology, Amsterdam, The Netherlands
| | - Martijn J J Finken
- Emma Children’s Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Pediatric Endocrinology, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Kobayashi K, Kuze J, Abe S, Takehara S, Minegishi G, Igarashi K, Kitajima S, Kanno J, Yamamoto T, Oshimura M, Kazuki Y. CYP3A4 Induction in the Liver and Intestine of Pregnane X Receptor/CYP3A-Humanized Mice: Approaches by Mass Spectrometry Imaging and Portal Blood Analysis. Mol Pharmacol 2019; 96:600-608. [DOI: 10.1124/mol.119.117333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/23/2019] [Indexed: 11/22/2022] Open
|
12
|
Crosby M, Riddick DS. Suppression of Hepatic CYP3A4 Expression and Activity by 3-Methylcholanthrene in Humanized PXR-CAR-CYP3A4/3A7 Mice. Drug Metab Dispos 2018; 47:279-282. [PMID: 30573465 DOI: 10.1124/dmd.118.084509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/19/2018] [Indexed: 11/22/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants that activate the aryl hydrocarbon receptor, thereby triggering a range of biologic responses, exemplified by the induction of CYP1A1 PAHs can also regulate the expression of members of the CYP3A subfamily, with reports of mainly suppressive effects on mouse hepatic Cyp3a11 expression, but paradoxically both inductive and suppressive effects on human hepatic CYP3A4 expression. Understanding the regulation of CYP3A4 expression by PAHs is important because of the widespread exposure of humans to these chemicals and the central role of the CYP3A4 enzyme in the metabolism of clinically important drugs and endogenous substances. The present study used 3-methylcholanthrene (MC) as a model PAH to characterize the in vivo regulation of CYP3A4 expression and activity in humanized pregnane X receptor-constitutive androstane receptor-CYP3A4/3A7 mice. Adult mice were treated by intraperitoneal injection with MC (80 mg/kg), or corn oil vehicle, and euthanized 24 or 72 hours later. As a positive control response, pronounced induction of hepatic Cyp1a1 by MC was confirmed at both time points in males and females at the mRNA, protein, and catalytic activity levels. Basal hepatic CYP3A4 expression and activity were significantly higher in female versus male mice. MC treatment suppressed hepatic CYP3A4 in female mice at 72 hours postdosing at the mRNA, protein, and catalytic activity levels. A similar response was observed in male mice, although the suppression of CYP3A4 protein levels did not achieve statistical significance. This mouse model will facilitate further studies of the mechanisms and consequences of CYP3A4 suppression by PAHs.
Collapse
Affiliation(s)
- Michael Crosby
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - David S Riddick
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Bissig KD, Han W, Barzi M, Kovalchuk N, Ding L, Fan X, Pankowicz FP, Zhang QY, Ding X. P450-Humanized and Human Liver Chimeric Mouse Models for Studying Xenobiotic Metabolism and Toxicity. Drug Metab Dispos 2018; 46:1734-1744. [PMID: 30093418 DOI: 10.1124/dmd.118.083303] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/03/2018] [Indexed: 01/01/2023] Open
Abstract
Preclinical evaluation of drug candidates in experimental animal models is an essential step in drug development. Humanized mouse models have emerged as a promising alternative to traditional animal models. The purpose of this mini-review is to provide a brief survey of currently available mouse models for studying human xenobiotic metabolism. Here, we describe both genetic humanization and human liver chimeric mouse models, focusing on the advantages and limitations while outlining their key features and applications. Although this field of biomedical science is relatively young, these humanized mouse models have the potential to transform preclinical drug testing and eventually lead to a more cost-effective and rapid development of new therapies.
Collapse
Affiliation(s)
- Karl-Dimiter Bissig
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Weiguo Han
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Mercedes Barzi
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Nataliia Kovalchuk
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Liang Ding
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Xiaoyu Fan
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Francis P Pankowicz
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Qing-Yu Zhang
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Xinxin Ding
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| |
Collapse
|
14
|
Williams AV, Trainor BC. The impact of sex as a biological variable in the search for novel antidepressants. Front Neuroendocrinol 2018; 50:107-117. [PMID: 29859882 PMCID: PMC6139050 DOI: 10.1016/j.yfrne.2018.05.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/15/2018] [Accepted: 05/30/2018] [Indexed: 12/14/2022]
Abstract
A roadblock to successful treatment for anxiety and depression is the high proportion of individuals that do not respond to existing treatments. Different underlying neurobiological mechanisms may drive similar symptoms, so a more personalized approach to treatment could be more successful. There is increasing evidence that sex is an important biological variable modulating efficacy of antidepressants and anxiolytics. We review evidence for sex-specific effects of traditional monoamine based antidepressants and newer pharmaceuticals targeting kappa opioid receptors (KOR), oxytocin receptors (OTR), and N-methyl-D-aspartate receptors (ketamine). In some cases, similar behavioral effects are observed in both sexes while in other cases strong sex-specific effects are observed. Most intriguing are cases such as ketamine which has similar behavioral effects in males and females, perhaps through sex-specific neurobiological mechanisms. These results show how essential it is to include both males and females in both clinical and preclinical evaluations of novel antidepressants and anxiolytics.
Collapse
Affiliation(s)
- Alexia V Williams
- Department of Psychology, University of California, Davis, CA 95616, United States.
| | - Brian C Trainor
- Department of Psychology, University of California, Davis, CA 95616, United States.
| |
Collapse
|
15
|
Heller AA, Lockwood SY, Janes TM, Spence DM. Technologies for Measuring Pharmacokinetic Profiles. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2018; 11:79-100. [PMID: 29324183 DOI: 10.1146/annurev-anchem-061417-125611] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The creation of a pharmacokinetic (PK) curve, which follows the plasma concentration of an administered drug as a function of time, is a critical aspect of the drug development process and includes such information as the drug's bioavailability, clearance, and elimination half-life. Prior to a drug of interest gaining clearance for use in human clinical trials, research is performed during the preclinical stages to establish drug safety and dosing metrics from data obtained from the PK studies. Both in vivo animal models and in vitro platforms have limitations in predicting human reaction to a drug due to differences in species and associated simplifications, respectively. As a result, in silico experiments using computer simulation have been implemented to accurately predict PK parameters in human studies. This review assesses these three approaches (in vitro, in vivo, and in silico) when establishing PK parameters and evaluates the potential for in silico studies to be the future gold standard of PK preclinical studies.
Collapse
Affiliation(s)
- A A Heller
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA;
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - S Y Lockwood
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - T M Janes
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA;
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - D M Spence
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
16
|
Prytuła AA, Cransberg K, Bouts AHM, van Schaik RHN, de Jong H, de Wildt SN, Mathôt RAA. The Effect of Weight and CYP3A5 Genotype on the Population Pharmacokinetics of Tacrolimus in Stable Paediatric Renal Transplant Recipients. Clin Pharmacokinet 2017; 55:1129-43. [PMID: 27138785 DOI: 10.1007/s40262-016-0390-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND The aim of this study was to develop a population pharmacokinetic model of tacrolimus in paediatric patients at least 1 year after renal transplantation and simulate individualised dosage regimens. PATIENTS AND METHODS We included 54 children with median age of 11.1 years (range 3.8-18.4 years) with 120 pharmacokinetic profiles performed over 2 to 4 h. The pharmacokinetic analysis was performed using the non-linear mixed-effects modelling software (NONMEM(®)). The impact of covariates including concomitant medications, age, the cytochrome P450 (CYP) CYP3A5*3 gene and the adenosine triphosphate binding cassette protein B1 (ABCB1) 3435 C→T gene polymorphism on tacrolimus pharmacokinetics was analysed. The final model was externally validated on an independent dataset and dosing regimens were simulated. RESULTS A two-compartment model adequately described tacrolimus pharmacokinetics. Apparent oral clearance (CL/F) was associated with weight (allometric scaling) but not age. Children with lower weight and CYP3A5 expressers required higher weight-normalised tacrolimus doses. CL/F was inversely associated with haematocrit (P < 0.05) and γ-glutamyl transpeptidase (γGT) (P < 0.001) and was increased by 45 % in carriers of the CYP3A5*1 allele (P < 0.001). CL/F was not associated with concomitant medications. Dose simulations show that a daily tacrolimus dose of 0.2 mg/kg generates a pre-dose concentration (C 0) ranging from 5 to 10 µg/L depending on the weight and CYP3A5 polymorphism. The median area under the plasma concentration-time curve (AUC) corresponding with a tacrolimus C 0 of 4-8 µg/L was 97 h·µg/L (interquartile range 80-120). CONCLUSIONS In patients beyond the first year after transplantation, there is a cumulative effect of CYP3A5*1 polymorphism and weight on the tacrolimus C 0. Children with lower weight and carriers of the CYP3A5*1 allele have higher weight-normalised tacrolimus dose requirements.
Collapse
Affiliation(s)
- Agnieszka A Prytuła
- Paediatric Nephrology Department, University Hospital Ghent, De Pintelaan 185, 9000, Ghent, Belgium. .,Paediatric Nephrology Department, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands.
| | - Karlien Cransberg
- Paediatric Nephrology Department, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Antonia H M Bouts
- Paediatric Nephrology Department, Emma Children's Hospital, Amsterdam, The Netherlands
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus MC, Rotterdam, The Netherlands
| | - Huib de Jong
- Paediatric Nephrology Department, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Saskia N de Wildt
- Intensive Care and Department of Paediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Ron A A Mathôt
- Department of Hospital Pharmacy-Clinical Pharmacology Unit, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Connerney J, Lau-Corona D, Rampersaud A, Waxman DJ. Activation of Male Liver Chromatin Accessibility and STAT5-Dependent Gene Transcription by Plasma Growth Hormone Pulses. Endocrinology 2017; 158:1386-1405. [PMID: 28323953 PMCID: PMC6283433 DOI: 10.1210/en.2017-00060] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/10/2017] [Indexed: 02/07/2023]
Abstract
Sex differences in pituitary growth hormone (GH) secretion (pulsatile in males vs near continuous/persistent in females) impart sex-dependent expression to hundreds of genes in adult mouse liver. Signal transducer and activator of transcription (STAT) 5, a GH-activated transcription factor that is essential for liver sexual dimorphism, is dynamically activated in direct response to each male plasma GH pulse. However, the impact of GH-induced STAT5 pulses on liver chromatin accessibility and downstream transcriptional events is unknown. In this study, we investigated the impact of a single pulse of GH given to hypophysectomized mice on local liver chromatin accessibility (DNase hypersensitive site analysis), transcription rates (heterogeneous nuclear RNA analysis), and gene expression (quantitative polymerase chain reaction and RNA sequencing) determined 30, 90, or 240 minutes later. The STAT5-dependent but sex-independent early GH response genes Igf1 and Cish showed rapid, GH pulse-induced increases in chromatin accessibility and gene transcription, reversing the effects of hypophysectomy. Rapid increases in liver chromatin accessibility and transcriptional activity were also induced in hypophysectomized male mice for some (Ces2b, Ugt2b38) but not for other liver STAT5-dependent male-biased genes (Cyp7b1). Moreover, in pituitary-intact male mice, Igf1, Cish, Ces2b, and Ugt2b38 all showed remarkable cycles of chromatin opening and closing, as well as associated cycles of induced gene transcription, which closely followed each endogenous pulse of liver STAT5 activity. Thus, the endogenous rhythms of male plasma GH pulsation dynamically open and then close liver chromatin at discrete, localized regulatory sites in temporal association with transcriptional activation of Igf1, Cish, and a subset of STAT5-dependent male-biased genes.
Collapse
Affiliation(s)
- Jeannette Connerney
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts 02215
| | - Dana Lau-Corona
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts 02215
| | - Andy Rampersaud
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts 02215
| | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts 02215
| |
Collapse
|
18
|
Uno Y, Takata R, Kito G, Yamazaki H, Nakagawa K, Nakamura Y, Kamataki T, Katagiri T. Sex- and age-dependent gene expression in human liver: An implication for drug-metabolizing enzymes. Drug Metab Pharmacokinet 2017; 32:100-107. [DOI: 10.1016/j.dmpk.2016.10.409] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/17/2016] [Accepted: 10/17/2016] [Indexed: 01/08/2023]
|
19
|
Maruyama M, Fujisawa M, Yokosuka M, Saito TR, Hayama SI, Akimoto T, Hakamata Y. A new in vivo analysis model to detect sexually dimorphic rat liver cytochrome P450 gene expression dependent on growth hormone secretory patterns. Exp Anim 2016; 65:447-454. [PMID: 27356855 PMCID: PMC5111848 DOI: 10.1538/expanim.16-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/31/2016] [Indexed: 11/12/2022] Open
Abstract
Several drug-metabolizing cytochrome P450 (CYP) enzymes exhibit sexual dimorphism depending on the pituitary growth hormone (GH) secretory patterns. However, the mechanism underlying CYP sexual dimorphism remains unclear. We previously established a transgenic (Alb-DsRed2 Tg) rat that expressed red fluorescent DsRed2 protein, particularly in hepatocytes, to visualize cell differentiation and multiplication and found that hepatic DsRed2 expression exhibited sexual dimorphism that was limited to adult males. In this study, we compared the expression patterns between sexual dimorphic Cyps and DsRed2 in Tg rats after experimentally reversing the GH secretory patterns in males and females. Postnatal day 1 male and female Tg rats were gonadectomized and then testosterone propionate (0.25 mg/rat) was subcutaneously administered to ovariectomized females immediately after surgery. Cyp mRNA and DsRed2 expression levels were quantified using RT-PCR and an in vivo imaging system, respectively. GH-dependent Cyps and hepatic DsRed2 expression patterns were reversed in males and females at 9 weeks after birth and were significantly correlated (P<0.05). This suggested that DsRed2 expression in these Tg rats depended on GH secretory patterns. Based on DsRed2 fluorescence, this Tg rat model could become a tool to readily and effectively evaluate changes in GH-dependent Cyp expression.
Collapse
Affiliation(s)
- Motoyo Maruyama
- Divison of Laboratory Animal Science, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Collins D, Reed B, Zhang Y, Kreek MJ. Sex differences in responsiveness to the prescription opioid oxycodone in mice. Pharmacol Biochem Behav 2016; 148:99-105. [PMID: 27316549 DOI: 10.1016/j.pbb.2016.06.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/12/2016] [Accepted: 06/13/2016] [Indexed: 11/29/2022]
Abstract
Over-prescription and increased nonmedical use of oxycodone has become a major concern. Despite its increased use, preclinical data concerning oxycodone's effects are still limited, especially in rodent models. To address this, we examined oxycodone's effects on place preference, locomotor activation, corticosterone levels, and thermal analgesia across a range of doses (between 0.3 and 10mg/kg) in gonadally intact, adult male and female C57BL/6J mice. Males and females showed oxycodone-induced conditioned place preference and did not show significant between-sex differences in their place preference behavior. During both CPP conditioning sessions and open field assay, locomotor activity was increased by 1, 3, and 10mg/kg oxycodone in females and by 3 and 10mg/kg oxycodone in males. Plasma corticosterone levels were higher in females (compared to males) at baseline as well as following acute oxycodone injection and open field testing. The time course of oxycodone-induced analgesia was similar in males and females, however the total antinociceptive effect (AUC0-120min) was larger in males compared to females at the highest dose tested (10mg/kg). Taken together, these data suggest that male and female mice are modestly different in their responses to oxycodone.
Collapse
Affiliation(s)
- Devon Collins
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States.
| | - Brian Reed
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States
| | - Yong Zhang
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States
| | - Mary Jeanne Kreek
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States
| |
Collapse
|
21
|
Kojima M, Degawa M. Sex differences in constitutive mRNA levels of CYP2B22, CYP2C33, CYP2C49, CYP3A22, CYP3A29 and CYP3A46 in the pig liver: Comparison between Meishan and Landrace pigs. Drug Metab Pharmacokinet 2016; 31:185-92. [DOI: 10.1016/j.dmpk.2016.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/24/2015] [Accepted: 02/09/2016] [Indexed: 01/05/2023]
|
22
|
Sexually Dimorphic Expression of eGFP Transgene in the Akr1A1 Locus of Mouse Liver Regulated by Sex Hormone-Related Epigenetic Remodeling. Sci Rep 2016; 6:24023. [PMID: 27087367 PMCID: PMC4834580 DOI: 10.1038/srep24023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/14/2016] [Indexed: 12/19/2022] Open
Abstract
Sexually dimorphic gene expression is commonly found in the liver, and many of these genes are linked to different incidences of liver diseases between sexes. However, the mechanism of sexually dimorphic expression is still not fully understood. In this study, a pCAG-eGFP transgenic mouse strain with a specific transgene integration site in the Akr1A1 locus presented male-biased EGFP expression in the liver, and the expression was activated by testosterone during puberty. The integration of the pCAG-eGFP transgene altered the epigenetic regulation of the adjacent chromatin, including increased binding of STAT5b, a sexually dimorphic expression regulator, and the transformation of DNA methylation from hypermethylation into male-biased hypomethylation. Through this de novo sexually dimorphic expression of the transgene, the Akr1A1eGFP mouse provides a useful model to study the mechanisms and the dynamic changes of sexually dimorphic gene expression during either development or pathogenesis of the liver.
Collapse
|
23
|
Vyhlidal CA, Bi C, Ye SQ, Leeder JS. Dynamics of Cytosine Methylation in the Proximal Promoters of CYP3A4 and CYP3A7 in Pediatric and Prenatal Livers. ACTA ACUST UNITED AC 2016; 44:1020-6. [PMID: 26772622 DOI: 10.1124/dmd.115.068726] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/14/2016] [Indexed: 11/22/2022]
Abstract
Members of the human CYP3A family of metabolizing enzymes exhibit developmental changes in expression whereby CYP3A7 is expressed in fetal tissues, followed by a transition to expression of CYP3A4 in the first months of life. Despite knowledge about the general pattern of CYP3A activity in human development, the mechanisms that regulate developmental expression remain poorly understood. Epigenetic changes, including cytosine methylation, have been suggested to play a role in the regulation of CYP3A expression. The objective of this study was to investigate changes in cytosine methylation of the CYP3A4 and CYP3A7 genes in human pediatric and prenatal livers. The methylation status of cytosine-phospho-guanine dinucleotides was determined in 16 pediatric liver samples using methyl-seq and confirmed by bisulfite sequencing of 48 pediatric and 34 prenatal liver samples. Samples were separated by age into five groups (prenatal, < 1 year of age, 1.8-6 years, 7-11 years, and 12-17 years). Methyl-seq anaylsis revealed that cytosines in the proximal promoter of CYP3A7 are hypomethylated in neonates compared with adolescents (P < 0.001). In contrast, a cytosine 383 base pair upstream of CYP3A4 is hypermethylated in liver samples from neonates compared with adolescents (P = 0.00001). Developmental changes in methylation of cytosines in the proximal promoters of CYP3A4 and CYP3A7 in pediatric livers were confirmed by bisulfite sequencing. In addition, the methylation status of cytosine in the CYP3A4 and CYP3A7 proximal promoters correlated with changes in developmental expression of mRNA for the two enzymes.
Collapse
Affiliation(s)
- Carrie A Vyhlidal
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation (C.A.V., C.B., J.S.L.), and Division of Experimental and Translational Genetics (S.Q.Y.), Department of Pediatrics, Children's Mercy Hospital, Kansas City, Missouri
| | - Chengpeng Bi
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation (C.A.V., C.B., J.S.L.), and Division of Experimental and Translational Genetics (S.Q.Y.), Department of Pediatrics, Children's Mercy Hospital, Kansas City, Missouri
| | - Shui Qing Ye
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation (C.A.V., C.B., J.S.L.), and Division of Experimental and Translational Genetics (S.Q.Y.), Department of Pediatrics, Children's Mercy Hospital, Kansas City, Missouri
| | - J Steven Leeder
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation (C.A.V., C.B., J.S.L.), and Division of Experimental and Translational Genetics (S.Q.Y.), Department of Pediatrics, Children's Mercy Hospital, Kansas City, Missouri
| |
Collapse
|
24
|
Scheer N, Kapelyukh Y, Rode A, Oswald S, Busch D, McLaughlin LA, Lin D, Henderson CJ, Wolf CR. Defining Human Pathways of Drug Metabolism In Vivo through the Development of a Multiple Humanized Mouse Model. Drug Metab Dispos 2015; 43:1679-90. [PMID: 26265742 DOI: 10.1124/dmd.115.065656] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/10/2015] [Indexed: 11/22/2022] Open
Abstract
Variability in drug pharmacokinetics is a major factor in defining drug efficacy and side effects. There remains an urgent need, particularly with the growing use of polypharmacy, to obtain more informative experimental data predicting clinical outcomes. Major species differences in multiplicity, substrate specificity, and regulation of enzymes from the cytochrome P450-dependent mono-oxygenase system play a critical role in drug metabolism. To develop an in vivo model for predicting human responses to drugs, we generated a mouse, where 31 P450 genes from the Cyp2c, Cyp2d, and Cyp3a gene families were exchanged for their relevant human counterparts. The model has been improved through additional humanization for the nuclear receptors constitutive androgen receptor and pregnane X receptor that control the expression of key drug metabolizing enzymes and transporters. In this most complex humanized mouse model reported to date, the cytochromes P450 function as predicted and we illustrate how these mice can be applied to predict drug-drug interactions in humans.
Collapse
Affiliation(s)
- Nico Scheer
- Taconic Biosciences GmbH, Köln, Germany (N.S., A.R.); University Medicine of Greifswald, Center of Drug Absorption and Transport (C_DAT), Department of Clinical Pharmacology, Greifswald, Germany (S.O., D.B); and Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (Y.K., L.A.M., D.L., C.H., C.R.W)
| | - Yury Kapelyukh
- Taconic Biosciences GmbH, Köln, Germany (N.S., A.R.); University Medicine of Greifswald, Center of Drug Absorption and Transport (C_DAT), Department of Clinical Pharmacology, Greifswald, Germany (S.O., D.B); and Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (Y.K., L.A.M., D.L., C.H., C.R.W)
| | - Anja Rode
- Taconic Biosciences GmbH, Köln, Germany (N.S., A.R.); University Medicine of Greifswald, Center of Drug Absorption and Transport (C_DAT), Department of Clinical Pharmacology, Greifswald, Germany (S.O., D.B); and Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (Y.K., L.A.M., D.L., C.H., C.R.W)
| | - Stefan Oswald
- Taconic Biosciences GmbH, Köln, Germany (N.S., A.R.); University Medicine of Greifswald, Center of Drug Absorption and Transport (C_DAT), Department of Clinical Pharmacology, Greifswald, Germany (S.O., D.B); and Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (Y.K., L.A.M., D.L., C.H., C.R.W)
| | - Diana Busch
- Taconic Biosciences GmbH, Köln, Germany (N.S., A.R.); University Medicine of Greifswald, Center of Drug Absorption and Transport (C_DAT), Department of Clinical Pharmacology, Greifswald, Germany (S.O., D.B); and Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (Y.K., L.A.M., D.L., C.H., C.R.W)
| | - Lesley A McLaughlin
- Taconic Biosciences GmbH, Köln, Germany (N.S., A.R.); University Medicine of Greifswald, Center of Drug Absorption and Transport (C_DAT), Department of Clinical Pharmacology, Greifswald, Germany (S.O., D.B); and Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (Y.K., L.A.M., D.L., C.H., C.R.W)
| | - De Lin
- Taconic Biosciences GmbH, Köln, Germany (N.S., A.R.); University Medicine of Greifswald, Center of Drug Absorption and Transport (C_DAT), Department of Clinical Pharmacology, Greifswald, Germany (S.O., D.B); and Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (Y.K., L.A.M., D.L., C.H., C.R.W)
| | - Colin J Henderson
- Taconic Biosciences GmbH, Köln, Germany (N.S., A.R.); University Medicine of Greifswald, Center of Drug Absorption and Transport (C_DAT), Department of Clinical Pharmacology, Greifswald, Germany (S.O., D.B); and Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (Y.K., L.A.M., D.L., C.H., C.R.W)
| | - C Roland Wolf
- Taconic Biosciences GmbH, Köln, Germany (N.S., A.R.); University Medicine of Greifswald, Center of Drug Absorption and Transport (C_DAT), Department of Clinical Pharmacology, Greifswald, Germany (S.O., D.B); and Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (Y.K., L.A.M., D.L., C.H., C.R.W)
| |
Collapse
|
25
|
Birzniece V, Ho KKY. Estrogen receptor antagonism uncovers gender-dimorphic suppression of whole body fat oxidation in humans: differential effects of tamoxifen on the GH and gonadal axes. Eur J Endocrinol 2015. [PMID: 26199431 DOI: 10.1530/eje-15-0426] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CONTEXT Tamoxifen, a selective estrogen receptor modulator, suppresses GH secretion in women but not in men. It increases testosterone levels in men. As GH and testosterone stimulate fat metabolism, the metabolic consequences of tamoxifen may be greater in women than in men. OBJECTIVE To determine whether tamoxifen suppresses fat oxidation (Fox) to a greater degree in women than in men. DESIGN An open-label study of ten healthy postmenopausal women and ten healthy men receiving 2-week treatment with tamoxifen (20 mg/day). ENDPOINT MEASURES GH response to arginine stimulation, serum levels of IGF1, testosterone and LH (men only), sex hormone binding globulin (SHBG) and whole body basal and postprandial Fox. RESULTS In women, tamoxifen significantly reduced the mean GH response to arginine stimulation (Δ -87%, P<0.05) and circulating IGF1 levels (Δ -23.5±5.4%, P<0.01). Tamoxifen reduced postprandial Fox in women (Δ -34.6±10.3%; P<0.05). In men, tamoxifen did not affect the GH response to arginine stimulation but significantly reduced mean IGF1 levels (Δ -24.8±6.1%, P<0.01). Tamoxifen increased mean testosterone levels (Δ 52±14.2%; P<0.01). Fox was not significantly affected by tamoxifen in men. CONCLUSION Tamoxifen attenuated the GH response to stimulation and reduced postprandial Fox in women but not in men. We conclude that at a therapeutic dose, the suppressive effect of tamoxifen on fat metabolism is gender-dependent. Higher testosterone levels may mitigate the suppression of GH secretion and Fox during tamoxifen treatment in men.
Collapse
Affiliation(s)
- Vita Birzniece
- Department of EndocrinologyGarvan Institute of Medical Research, St Vincent's Hospital, Sydney, New South Wales 2010, AustraliaSchool of MedicineUniversity of Western Sydney, Sydney, New South Wales 2148, AustraliaThe University of NSWSydney, New South Wales 2052, AustraliaCentres for Health ResearchPrincess Alexandra Hospital, The University of Queensland, Brisbane, Queensland 4102, Australia Department of EndocrinologyGarvan Institute of Medical Research, St Vincent's Hospital, Sydney, New South Wales 2010, AustraliaSchool of MedicineUniversity of Western Sydney, Sydney, New South Wales 2148, AustraliaThe University of NSWSydney, New South Wales 2052, AustraliaCentres for Health ResearchPrincess Alexandra Hospital, The University of Queensland, Brisbane, Queensland 4102, Australia Department of EndocrinologyGarvan Institute of Medical Research, St Vincent's Hospital, Sydney, New South Wales 2010, AustraliaSchool of MedicineUniversity of Western Sydney, Sydney, New South Wales 2148, AustraliaThe University of NSWSydney, New South Wales 2052, AustraliaCentres for Health ResearchPrincess Alexandra Hospital, The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Ken K Y Ho
- Department of EndocrinologyGarvan Institute of Medical Research, St Vincent's Hospital, Sydney, New South Wales 2010, AustraliaSchool of MedicineUniversity of Western Sydney, Sydney, New South Wales 2148, AustraliaThe University of NSWSydney, New South Wales 2052, AustraliaCentres for Health ResearchPrincess Alexandra Hospital, The University of Queensland, Brisbane, Queensland 4102, Australia Department of EndocrinologyGarvan Institute of Medical Research, St Vincent's Hospital, Sydney, New South Wales 2010, AustraliaSchool of MedicineUniversity of Western Sydney, Sydney, New South Wales 2148, AustraliaThe University of NSWSydney, New South Wales 2052, AustraliaCentres for Health ResearchPrincess Alexandra Hospital, The University of Queensland, Brisbane, Queensland 4102, Australia
| |
Collapse
|
26
|
Sehgal PB, Yang YM, Miller EJ. Hypothesis: Neuroendocrine Mechanisms (Hypothalamus-Growth Hormone-STAT5 Axis) Contribute to Sex Bias in Pulmonary Hypertension. Mol Med 2015; 21:688-701. [PMID: 26252185 PMCID: PMC4749490 DOI: 10.2119/molmed.2015.00122] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/30/2015] [Indexed: 12/12/2022] Open
Abstract
Pulmonary hypertension (PH) is a disease with high morbidity and mortality. The prevalence of idiopathic pulmonary arterial hypertension (IPAH) and hereditary pulmonary arterial hypertension (HPAH) is approximately two- to four-fold higher in women than in men. Paradoxically, there is an opposite male bias in typical rodent models of PH (chronic hypoxia or monocrotaline); in these models, administration of estrogenic compounds (for example, estradiol-17β [E2]) is protective. Further complexities are observed in humans ingesting anorexigens (female bias) and in rodent models, such as after hypoxia plus SU5416/Sugen (little sex bias) or involving serotonin transporter overexpression or dexfenfluramine administration (female bias). These complexities in sex bias in PH remain incompletely understood. We recently discovered that conditional deletion of signal transducer and activator of transcription 5a/b (STAT5a/b) in vascular smooth muscle cells abrogated the male bias in PH in hypoxic mice and that late-stage obliterative lesions in patients of both sexes with IPAH and HPAH showed reduced STAT5a/b, reduced Tyr-P-STAT5 and reduced B-cell lymphoma 6 protein (BCL6). In trying to understand the significance of these observations, we realized that there existed a well-characterized E2-sensitive central neuroendocrine mechanism of sex bias, studied over the last 40 years, that, at its peripheral end, culminated in species-specific male ("pulsatile") versus female ("more continuous") temporal patterns of circulating growth hormone (GH) levels leading to male versus female patterned activation of STAT5a/b in peripheral tissues and thus sex-biased expression of hundreds of genes. In this report, we consider the contribution of this neuroendocrine mechanism (hypothalamus-GH-STAT5) in the generation of sex bias in different PH situations.
Collapse
Affiliation(s)
- Pravin B Sehgal
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York, United States of America
- Department of Medicine, New York Medical College, Valhalla, New York, United States of America
| | - Yang-Ming Yang
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York, United States of America
| | - Edmund J Miller
- Center for Heart and Lung Research, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| |
Collapse
|
27
|
Sehgal PB, Yang YM, Yuan H, Miller EJ. STAT5a/b contribute to sex bias in vascular disease: A neuroendocrine perspective. JAKSTAT 2015; 4:1-20. [PMID: 27141328 DOI: 10.1080/21623996.2015.1090658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 08/25/2015] [Accepted: 08/27/2015] [Indexed: 12/24/2022] Open
Abstract
Previous studies have elucidated a neuroendocrine mechanism consisting of the hypothalamus (growth hormone releasing hormone, GHRH) - pituitary (growth hormone, GH) - STAT5a/b axis that underlies sex-biased gene expression in the liver. It is now established that male vs female patterned secretion of GHRH, and thus of circulating GH levels ("pulsatile" vs "more continuous" respectively), leading to differently patterned activation of PY-STAT5a/b in hepatocytes results in sex-biased gene expression of cohorts of hundreds of downstream genes. This review outlines new data in support of a STAT5a/b-based mechanism of sex bias in the vascular disease pulmonary hypertension (PH). Puzzling observations in PH include its 2-4-fold higher prevalence in women but a male-dominance in many rodent models, and, paradoxically, inhibition of PH development by estrogens in such models. We observed that conditional deletion of STAT5a/b in vascular smooth muscle cells (SMC) in mice converted the male-dominant model of chronic hypoxia-induced PH into a female-dominant phenotype. In human idiopathic PH, there was reduced STAT5a/b and PY-STAT5 in cells in late-stage obliterative pulmonary arterial lesions in both men and women. A juxtaposition of the prior liver data with the newer PH-related data drew attention to the hypothalamus-GH-STAT5 axis, which is the major target of estrogens at the level of the hypothalamus. This hypothesis explains many of the puzzling aspects of sex bias in PH in humans and rodent models. The extension of STAT5-anchored mechanisms of sex bias to vascular disease emphasizes the contribution of central neuroendocrine processes in generating sexual dimorphism in different tissues and cell types.
Collapse
Affiliation(s)
- Pravin B Sehgal
- Departments of Cell Biology & Anatomy; New York Medical College; Valhalla, NY USA; Department of Medicine; New York Medical College; Valhalla, NY USA
| | - Yang-Ming Yang
- Departments of Cell Biology & Anatomy; New York Medical College ; Valhalla, NY USA
| | - Huijuan Yuan
- Departments of Cell Biology & Anatomy; New York Medical College ; Valhalla, NY USA
| | - Edmund J Miller
- Center for Heart and Lung Research; The Feinstein Institute for Medical Research ; Manhasset, NY USA
| |
Collapse
|
28
|
Scheer N, Wilson ID. A comparison between genetically humanized and chimeric liver humanized mouse models for studies in drug metabolism and toxicity. Drug Discov Today 2015; 21:250-63. [PMID: 26360054 DOI: 10.1016/j.drudis.2015.09.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 08/07/2015] [Accepted: 09/01/2015] [Indexed: 12/12/2022]
Abstract
Mice that have been genetically humanized for proteins involved in drug metabolism and toxicity and mice engrafted with human hepatocytes are emerging and promising in vivo models for an improved prediction of the pharmacokinetic, drug-drug interaction and safety characteristics of compounds in humans. The specific advantages and disadvantages of these models should be carefully considered when using them for studies in drug discovery and development. Here, an overview on the corresponding genetically humanized and chimeric liver humanized mouse models described to date is provided and illustrated with examples of their utility in drug metabolism and toxicity studies. We compare the strength and weaknesses of the two different approaches, give guidance for the selection of the appropriate model for various applications and discuss future trends and perspectives.
Collapse
Affiliation(s)
| | - Ian D Wilson
- Imperial College London, South Kensington, London SW7 2AZ, UK.
| |
Collapse
|
29
|
Li J, Wan Y, Na S, Liu X, Dong G, Yang Z, Yang J, Yue J. Sex-dependent regulation of hepatic CYP3A by growth hormone: Roles of HNF6, C/EBPα, and RXRα. Biochem Pharmacol 2014; 93:92-103. [PMID: 25451687 DOI: 10.1016/j.bcp.2014.10.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/11/2014] [Accepted: 10/22/2014] [Indexed: 12/12/2022]
Abstract
Sex-based differences in the pharmacological profiles of many drugs are due in part to the female-predominant expression of CYP3A4, which is the most important CYP isoform responsible for drug metabolism. Transcription factors trigger the sexually dimorphic expression of drug-metabolizing enzymes in response to sex-dependent growth hormone (GH) secretion. We investigated the roles of HNF6, C/EBPα, and RXRα in the regulation of human female-predominant CYP3A4, mouse female-specific CYP3A41, and rat male-specific CYP3A2 expression by GH secretion patterns using HepG2 cells, growth hormone receptor (GHR) knockout mice as well as rat models of orchiectomy and hypophysectomy. The constitutive expression of HNF6 and RXRα was GH-dependent, and GHR deficiency decreased HNF6/C/EBPα complex levels and increased HNF6/RXRα complex levels. Feminine GH secretion induced the binding of HNF6 and C/EBPα to the CYP3A4 and Cyp3a41 promoters and HNF6/C/EBPα complex levels was more efficiently compared with masculine pattern. Additionally, a greater inhibition of the binding of RXRα to the CYP3A4 and Cyp3a41 promoters and HNF6/RXRα complex levels was observed by feminine GH secretion, but less inhibition was observed by masculine pattern. The binding of HNF6, C/EBPα, and RXRα to the CYP3A2 promoter was not directly regulated by androgens. RXRα completely abolished the synergistic activation of the CYP3A4, Cyp3a41, and CYP3A2 promoters by HNF6 and C/EBPα. The results demonstrate that sex-dependent GH secretion patterns affect the expressions and interactions of HNF6, C/EBPα, and RXRα as well as their binding to CYP3A genes. RXRα mediates the sex-dependent influence of GH on CYP3A expression as an important signalling molecule.
Collapse
Affiliation(s)
- Jie Li
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Yu Wan
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Shufang Na
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Xiaochan Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Guicheng Dong
- Baotou Teachers' College, Inner Mongolia University of Science & Technology, Baotou 014030, China
| | - Zheqiong Yang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Jing Yang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Jiang Yue
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China.
| |
Collapse
|
30
|
Gao J, Zhang Y, Yang Y, Yuan C, Qin F, Liu S, Zheng Y, Wang Z. Molecular characterization of PXR and two sulfotransferases and hepatic transcripts of PXR, two sulfotransferases and CYP3A responsive to bisphenol A in rare minnow Gobiocypris rarus. Mol Biol Rep 2014; 41:7153-65. [PMID: 25038724 DOI: 10.1007/s11033-014-3598-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 07/07/2014] [Indexed: 12/23/2022]
Abstract
Bisphenol A (BPA), a wide distributed endocrine-disrupting chemical, has attracted many attentions. To explore the effect of BPA on hepatic metabolic pathways in Gobiocypris rarus, full-length cDNAs of pregnane X receptor (PXR) and two sulfotransferases (SULT1 ST4 and SULT1 ST6) were firstly isolated and characterized. We detected tissues distribution of PXR, CYP3A, SULT1 ST4 and SULT1 ST6 in adult G. rarus. Then we investigated hepatic transcript profiles of these four genes in adult G. rarus exposed to BPA at concentrations of 5, 15, and 50 µg/L for 14 and 35 days. It demonstrates that these four genes are all highly expressed in liver of both male and female adult G. rarus. In response to BPA, sexual dimorphism of expression patterns for PXR, CYP3A, and SULT1 ST6 shows in G. rarus, which includes increase of mRNA levels in females and decrease of mRNA levels in males in both exposure durations of 14 and 35 days. SULT1 ST6 mRNA demonstrates high responsiveness to BPA in both genders and we recommended SULT1 ST6 as a candidate biomarker for BPA exposure.
Collapse
Affiliation(s)
- Jiancao Gao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Scheer N, Snaith M, Wolf CR, Seibler J. Generation and utility of genetically humanized mouse models. Drug Discov Today 2013; 18:1200-11. [PMID: 23872278 DOI: 10.1016/j.drudis.2013.07.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/20/2013] [Accepted: 07/11/2013] [Indexed: 01/15/2023]
Abstract
Identifying in vivo models that are naturally predictive for particular areas of study in humans can be challenging due to the divergence that has occurred during speciation. One solution to this challenge that is gaining increasing traction is the use of genetic engineering to introduce human genes into mice to generate superior models for predicting human responses. This review describes the state-of-the-art for generating such models, provides an overview of the types of genetically humanized mouse models described to date and their applications in basic research, drug discovery and development and to understand clinical drug toxicity. We discuss limitations and explore promising future directions for the use of genetically humanized mice to further improve translational research.
Collapse
Affiliation(s)
- Nico Scheer
- TaconicArtemis, Neurather Ring 1, Koeln 51063, Germany.
| | | | | | | |
Collapse
|
32
|
Scheer N, Wolf CR. Genetically humanized mouse models of drug metabolizing enzymes and transporters and their applications. Xenobiotica 2013; 44:96-108. [DOI: 10.3109/00498254.2013.815831] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
33
|
Holmstock N, Gonzalez FJ, Baes M, Annaert P, Augustijns P. PXR/CYP3A4-humanized mice for studying drug-drug interactions involving intestinal P-glycoprotein. Mol Pharm 2013; 10:1056-62. [PMID: 23360470 PMCID: PMC3594649 DOI: 10.1021/mp300512r] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Rodent models are less suitable for predicting drug-drug interactions at the level of the human intestinal mucosa, especially when nuclear receptors such as pregnane X receptor (PXR) are involved. Recently, a transgenic mouse model, expressing both human PXR and CYP3A4, was developed and shown to be a better predictor of CYP3A4 induction by xenobiotics in humans as compared to wild-type mice. In the present study, we tested the hypothesis that this mouse model can also predict PXR-mediated induction of intestinal P-gp in humans. By use of the in situ intestinal perfusion technique with mesenteric blood sampling, the effect of oral rifampicin treatment on intestinal permeability for the HIV protease inhibitor darunavir, a dual CYP3A4/P-gp substrate, was investigated. Rifampicin treatment lowered the intestinal permeability for darunavir by 50% compared to that in nontreated mice. The P-gp inhibitor GF120918 increased the permeability for darunavir by 400% in rifampicin-treated mice, whereas this was only 56% in mice that were not treated, thus indicating P-gp induction by rifampicin. The nonspecific P450 inhibitor aminobenzotriazole (100 μM) did not affect the permeability for darunavir. Quantitative Western blot analysis of the intestinal tissue showed that rifampicin treatment induced intestinal P-gp levels 4-fold, while CYP3A4 levels remained unchanged. Oral co-administration of rifampicin with the phytochemical sulforaphane for 3 days increased the permeability for darunavir by 50% compared to that with rifampicin treatment alone. These data show that PXR/CYP3A4-humanized mice can be used to study the inducing effects of xenobiotics on intestinal P-gp.
Collapse
Affiliation(s)
- Nico Holmstock
- Laboratory for Pharmacotechnology and Biopharmacy, KU Leuven, Campus Gasthuisberg, O&N 2, Herestraat 49 box 921, B-3000 Leuven, Belgium
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Building 37, Room 3106, Bethesda, MD 20892, USA
| | - Myriam Baes
- Laboratory of Cell Metabolism, KU Leuven, Campus Gasthuisberg, O&N 2, Herestraat 49 box 823, B-3000 Leuven, Belgium
| | - Pieter Annaert
- Laboratory for Pharmacotechnology and Biopharmacy, KU Leuven, Campus Gasthuisberg, O&N 2, Herestraat 49 box 921, B-3000 Leuven, Belgium
| | - Patrick Augustijns
- Laboratory for Pharmacotechnology and Biopharmacy, KU Leuven, Campus Gasthuisberg, O&N 2, Herestraat 49 box 921, B-3000 Leuven, Belgium
| |
Collapse
|
34
|
Zhang D, Luo G, Ding X, Lu C. Preclinical experimental models of drug metabolism and disposition in drug discovery and development. Acta Pharm Sin B 2012. [DOI: 10.1016/j.apsb.2012.10.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
35
|
Scheer N, Kapelyukh Y, Chatham L, Rode A, Buechel S, Wolf CR. Generation and characterization of novel cytochrome P450 Cyp2c gene cluster knockout and CYP2C9 humanized mouse lines. Mol Pharmacol 2012; 82:1022-9. [PMID: 22918969 DOI: 10.1124/mol.112.080036] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Compared with rodents and many other animal species, the human cytochrome P450 (P450) Cyp2c gene cluster varies significantly in the multiplicity of functional genes and in the substrate specificity of its enzymes. As a consequence, the use of wild-type animal models to predict the role of human CYP2C enzymes in drug metabolism and drug-drug interactions is limited. Within the human CYP2C cluster CYP2C9 is of particular importance, because it is one of the most abundant P450 enzymes in human liver, and it is involved in the metabolism of a wide variety of important drugs and environmental chemicals. To investigate the in vivo functions of cytochrome P450 Cyp2c genes and to establish a model for studying the functions of CYP2C9 in vivo, we have generated a mouse model with a deletion of the murine Cyp2c gene cluster and a corresponding humanized model expressing CYP2C9 specifically in the liver. Despite the high number of functional genes in the mouse Cyp2c cluster and the reported roles of some of these proteins in different biological processes, mice deleted for Cyp2c genes were viable and fertile but showed certain phenotypic alterations in the liver. The expression of CYP2C9 in the liver also resulted in viable animals active in the metabolism and disposition of a number of CYP2C9 substrates. These mouse lines provide a powerful tool for studying the role of Cyp2c genes and of CYP2C9 in particular in drug disposition and as a factor in drug-drug interaction.
Collapse
|
36
|
Salyers KL, Xu Y. Animal Models for Studying Drug Metabolizing Enzymes and Transporters. ADME‐ENABLING TECHNOLOGIES IN DRUG DESIGN AND DEVELOPMENT 2012:253-276. [DOI: 10.1002/9781118180778.ch16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
37
|
Shen HW, Jiang XL, Gonzalez FJ, Yu AM. Humanized transgenic mouse models for drug metabolism and pharmacokinetic research. Curr Drug Metab 2012; 12:997-1006. [PMID: 22023319 DOI: 10.2174/138920011798062265] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 07/16/2011] [Accepted: 07/20/2011] [Indexed: 02/08/2023]
Abstract
Extrapolation of the metabolic, pharmacokinetic and toxicological data obtained from animals to humans is not always straightforward, given the remarkable species difference in drug metabolism that is due in large part to the differences in drug-metabolizing enzymes between animals and humans. Furthermore, genetic variations in drug-metabolizing enzymes may significantly alter pharmacokinetics, drug efficacy and safety. Thus, humanized transgenic mouse lines, in which the human drug-metabolizing enzymes are expressed in mouse tissues in the presence or absence of mouse orthologues, have been developed to address such challenges. These humanized transgenic mice are valuable animal models in understanding the significance of specific human drug-metabolizing enzymes in drug clearance and pharmacokinetics, as well as in predicting potential drug-drug interactions and chemical toxicity in humans. This review, therefore, aims to summarize the development and application of some humanized transgenic mouse models expressing human drug-metabolizing enzymes. The limitations of these genetically modified mouse models are also discussed.
Collapse
Affiliation(s)
- Hong-Wu Shen
- Department of Pharmaceutical Sciences University at Buffalo, The State University of New York, 541 Cooke Hall, Buffalo, NY 14260-1200, USA
| | | | | | | |
Collapse
|
38
|
Conforto TL, Waxman DJ. Sex-specific mouse liver gene expression: genome-wide analysis of developmental changes from pre-pubertal period to young adulthood. Biol Sex Differ 2012; 3:9. [PMID: 22475005 PMCID: PMC3350426 DOI: 10.1186/2042-6410-3-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 04/04/2012] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Early liver development and the transcriptional transitions during hepatogenesis are well characterized. However, gene expression changes during the late postnatal/pre-pubertal to young adulthood period are less well understood, especially with regards to sex-specific gene expression. METHODS Microarray analysis of male and female mouse liver was carried out at 3, 4, and 8 wk of age to elucidate developmental changes in gene expression from the late postnatal/pre-pubertal period to young adulthood. RESULTS A large number of sex-biased and sex-independent genes showed significant changes during this developmental period. Notably, sex-independent genes involved in cell cycle, chromosome condensation, and DNA replication were down regulated from 3 wk to 8 wk, while genes associated with metal ion binding, ion transport and kinase activity were up regulated. A majority of genes showing sex differential expression in adult liver did not display sex differences prior to puberty, at which time extensive changes in sex-specific gene expression were seen, primarily in males. Thus, in male liver, 76% of male-specific genes were up regulated and 47% of female-specific genes were down regulated from 3 to 8 wk of age, whereas in female liver 67% of sex-specific genes showed no significant change in expression. In both sexes, genes up regulated from 3 to 8 wk were significantly enriched (p < E-76) in the set of genes positively regulated by the liver transcription factor HNF4α, as determined in a liver-specific HNF4α knockout mouse model, while genes down regulated during this developmental period showed significant enrichment (p < E-65) for negative regulation by HNF4α. Significant enrichment of the developmentally regulated genes in the set of genes subject to positive and negative regulation by pituitary hormone was also observed. Five sex-specific transcriptional regulators showed sex-specific expression at 4 wk (male-specific Ihh; female-specific Cdx4, Cux2, Tox, and Trim24) and may contribute to the developmental changes that lead to global acquisition of liver sex-specificity by 8 wk of age. CONCLUSIONS Overall, the observed changes in gene expression during postnatal liver development reflect the deceleration of liver growth and the induction of specialized liver functions, with widespread changes in sex-specific gene expression primarily occurring in male liver.
Collapse
Affiliation(s)
- Tara L Conforto
- Division of Cell and Molecular Biology, Department of Biology, Boston University, Boston, MA 02215, USA.
| | | |
Collapse
|
39
|
Cheng J, Ma X, Gonzalez FJ. Pregnane X receptor- and CYP3A4-humanized mouse models and their applications. Br J Pharmacol 2011; 163:461-8. [PMID: 21091656 DOI: 10.1111/j.1476-5381.2010.01129.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Pregnane X receptor (PXR) is a pivotal nuclear receptor modulating xenobiotic metabolism primarily through its regulation of CYP3A4, the most important enzyme involved in drug metabolism in humans. Due to the marked species differences in ligand recognition by PXR, PXR-humanized (hPXR) mice, and mice expressing human PXR and CYP3A4 (Tg3A4/hPXR) were established. hPXR and Tg3A4/hPXR mice are valuable models for investigating the role of PXR in xenobiotic metabolism and toxicity, in lipid, bile acid and steroid hormone homeostasis, and in the control of inflammation.
Collapse
Affiliation(s)
- Jie Cheng
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
40
|
Zhang Y, Klein K, Sugathan A, Nassery N, Dombkowski A, Zanger UM, Waxman DJ. Transcriptional profiling of human liver identifies sex-biased genes associated with polygenic dyslipidemia and coronary artery disease. PLoS One 2011; 6:e23506. [PMID: 21858147 PMCID: PMC3155567 DOI: 10.1371/journal.pone.0023506] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 07/19/2011] [Indexed: 01/23/2023] Open
Abstract
Sex-differences in human liver gene expression were characterized on a genome-wide scale using a large liver sample collection, allowing for detection of small expression differences with high statistical power. 1,249 sex-biased genes were identified, 70% showing higher expression in females. Chromosomal bias was apparent, with female-biased genes enriched on chrX and male-biased genes enriched on chrY and chr19, where 11 male-biased zinc-finger KRAB-repressor domain genes are distributed in six clusters. Top biological functions and diseases significantly enriched in sex-biased genes include transcription, chromatin organization and modification, sexual reproduction, lipid metabolism and cardiovascular disease. Notably, sex-biased genes are enriched at loci associated with polygenic dyslipidemia and coronary artery disease in genome-wide association studies. Moreover, of the 8 sex-biased genes at these loci, 4 have been directly linked to monogenic disorders of lipid metabolism and show an expression profile in females (elevated expression of ABCA1, APOA5 and LDLR; reduced expression of LIPC) that is consistent with the lower female risk of coronary artery disease. Female-biased expression was also observed for CYP7A1, which is activated by drugs used to treat hypercholesterolemia. Several sex-biased drug-metabolizing enzyme genes were identified, including members of the CYP, UGT, GPX and ALDH families. Half of 879 mouse orthologs, including many genes of lipid metabolism and homeostasis, show growth hormone-regulated sex-biased expression in mouse liver, suggesting growth hormone might play a similar regulatory role in human liver. Finally, the evolutionary rate of protein coding regions for human-mouse orthologs, revealed by dN/dS ratio, is significantly higher for genes showing the same sex-bias in both species than for non-sex-biased genes. These findings establish that human hepatic sex differences are widespread and affect diverse cell metabolic processes, and may help explain sex differences in lipid profiles associated with sex differential risk of coronary artery disease.
Collapse
Affiliation(s)
- Yijing Zhang
- Division of Cell and Molecular Biology, Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Kathrin Klein
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Aarathi Sugathan
- Division of Cell and Molecular Biology, Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Najlla Nassery
- Division of Cell and Molecular Biology, Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Alan Dombkowski
- Division of Clinical Pharmacology and Toxicology, Department of Pediatrics, Wayne State University, Detroit, Michigan, United States of America
| | - Ulrich M. Zanger
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - David J. Waxman
- Division of Cell and Molecular Biology, Department of Biology, Boston University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
41
|
Uno Y, Kito G. Effect of Estradiol on Gene Expression Profile in Cynomolgus Macaque Liver: Implications for Drug-Metabolizing Enzymes. Drug Metab Dispos 2011; 39:2003-7. [DOI: 10.1124/dmd.111.041004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
42
|
Boverhof DR, Chamberlain MP, Elcombe CR, Gonzalez FJ, Heflich RH, Hernández LG, Jacobs AC, Jacobson-Kram D, Luijten M, Maggi A, Manjanatha MG, Benthem JV, Gollapudi BB. Transgenic animal models in toxicology: historical perspectives and future outlook. Toxicol Sci 2011; 121:207-33. [PMID: 21447610 DOI: 10.1093/toxsci/kfr075] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Transgenic animal models are powerful tools for developing a more detailed understanding on the roles of specific genes in biological pathways and systems. Applications of these models have been made within the field of toxicology, most notably for the screening of mutagenic and carcinogenic potential and for the characterization of toxic mechanisms of action. It has long been a goal of research toxicologists to use the data from these models to refine hazard identification and characterization to better inform human health risk assessments. This review provides an overview on the applications of transgenic animal models in the assessment of mutagenicity and carcinogenicity, their use as reporter systems, and as tools for understanding the roles of xenobiotic-metabolizing enzymes and biological receptors in the etiology of chemical toxicity. Perspectives are also shared on the future outlook for these models in toxicology and risk assessment and how transgenic technologies are likely to be an integral tool for toxicity testing in the 21st century.
Collapse
Affiliation(s)
- Darrell R Boverhof
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, Michigan 48674, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Epidemiological studies suggest there are considerable differences in the prevalence and presentation of depression in men and women. Women are more than twice as likely to be diagnosed with depression and may also report more atypical and anxiety symptoms than men. Men and women also differ in the metabolism and distribution of antidepressants and the presence of oestrogen in women of childbearing age may interfere with the mechanism of action of a number of antidepressants. These differences have led many researchers to question whether antidepressants are equally effective and tolerated in men and women. While some reports suggest that selective serotonin re-uptake inhibitors (SSRIs) are more effective and result in fewer adverse drug reactions in women than tricyclic antidepressants (TCAs), gender differences in antidepressant response remains a controversial topic. The potential effects of antidepressant exposure in utero and in breast milk further complicate treatment options for antenatal and postnatal depression. While some research suggests the SSRI paroxetine is teratogenic, further carefully designed naturalistic studies are required to fully evaluate these effects. Finally, response to antidepressants and the occurrence of adverse drug reactions is marked by inter-individual variability which may be in part due to genetic differences. Future studies should therefore consider genotypes of the mother, foetus and infant in antidepressant response.
Collapse
Affiliation(s)
- Robert Keers
- MRC SGDP Centre, Institute of Psychiatry, King's College London, 16 De Crespigny Park, Denmark Hill, London, UK.
| | | |
Collapse
|
44
|
Abstract
IMPORTANCE OF THE FIELD Recently-discovered tonicity-dependence of human CYP3A expression in vitro may be a novel mechanism of CYP3A regulation in the intestinal epithelia, which exists in a dynamic osmotic environment influenced by food intake. AREAS COVERED IN THIS REVIEW A combination of focused and comprehensive literature searches to identify any relevant reports using Medline (from 1950 to 7 November 2009) through the OVID system. WHAT THE READER WILL GAIN An update on current knowledge on osmotic environment in the gastrointestinal (GI) tract and its impact on intestinal CYP3A expression and function with special emphasis on the tonicity-sensitive transcription factor nuclear factor of activated T cells 5 (NFAT5). TAKE HOME MESSAGE In vitro hypertonicity of ambient osmotic environment in cultured human cells increases expression of CYP3A through transcriptional enhancement by osmosensitive NFAT5. Although post-prandial osmolality in the GI lumen in vivo is substantially increased, NFAT5 activation has not been reported. Similarly, high-salt diet increases intestinal CYP3A function in humans, but it is not known whether these changes are mediated directly by NFAT5.
Collapse
Affiliation(s)
- Andrew I Chuang
- Department of Pharmacology, University of Toronto, Ontario, Canada
| | | |
Collapse
|
45
|
Unbiased, genome-wide in vivo mapping of transcriptional regulatory elements reveals sex differences in chromatin structure associated with sex-specific liver gene expression. Mol Cell Biol 2010; 30:5531-44. [PMID: 20876297 DOI: 10.1128/mcb.00601-10] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We have used a simple and efficient method to identify condition-specific transcriptional regulatory sites in vivo to help elucidate the molecular basis of sex-related differences in transcription, which are widespread in mammalian tissues and affect normal physiology, drug response, inflammation, and disease. To systematically uncover transcriptional regulators responsible for these differences, we used DNase hypersensitivity analysis coupled with high-throughput sequencing to produce condition-specific maps of regulatory sites in male and female mouse livers and in livers of male mice feminized by continuous infusion of growth hormone (GH). We identified 71,264 hypersensitive sites, with 1,284 showing robust sex-related differences. Continuous GH infusion suppressed the vast majority of male-specific sites and induced a subset of female-specific sites in male livers. We also identified broad genomic regions (up to ∼100 kb) showing sex-dependent hypersensitivity and similar patterns of GH responses. We found a strong association of sex-specific sites with sex-specific transcription; however, a majority of sex-specific sites were >100 kb from sex-specific genes. By analyzing sequence motifs within regulatory regions, we identified two known regulators of liver sexual dimorphism and several new candidates for further investigation. This approach can readily be applied to mapping condition-specific regulatory sites in mammalian tissues under a wide variety of physiological conditions.
Collapse
|
46
|
Jiang XL, Gonzalez FJ, Yu AM. Drug-metabolizing enzyme, transporter, and nuclear receptor genetically modified mouse models. Drug Metab Rev 2010; 43:27-40. [PMID: 20854191 DOI: 10.3109/03602532.2010.512294] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Determining the in vivo significance of a specific enzyme, transporter, or xenobiotic receptor in drug metabolism and pharmacokinetics may be hampered by gene multiplicity and complexity, levels of expression, and interaction between various components involved. The development of knockout (loss-of-function) and transgenic (gain-of-function) mouse models opens the door to the improved understanding of gene function in a whole-body system. There is also growing interest in the development of humanized mice to overcome species differences in drug metabolism and disposition. This review, therefore, aims to summarize and discuss some successful examples of drug-metabolizing enzyme, transporter, and nuclear-receptor genetically modified mouse models. These genetically modified mouse models have been proven as invaluable models for understanding in vivo function of drug-metabolizing enzymes, transporters, and xenobiotic receptors in drug metabolism and transport, as well as predicting potential drug-drug interaction and toxicity in humans. Nevertheless, concerns remain about interpretation of data obtained from such genetically modified mouse models, in which the expression of related genes is altered significantly.
Collapse
Affiliation(s)
- Xi-Ling Jiang
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, USA
| | | | | |
Collapse
|
47
|
Wallace K, Fairhall EA, Charlton KA, Wright MC. AR42J-B-13 cell: an expandable progenitor to generate an unlimited supply of functional hepatocytes. Toxicology 2010; 278:277-87. [PMID: 20685382 DOI: 10.1016/j.tox.2010.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 05/17/2010] [Accepted: 05/18/2010] [Indexed: 01/16/2023]
Abstract
Hepatocytes are the preparation of choice for Toxicological research in vitro. However, despite the fact that hepatocytes proliferate in vivo during liver regeneration, they are resistant to proliferation in vitro, do not tolerate sub-culture and tend to enter a de-differentiation program that results in a loss of hepatic function. These limitations have resulted in the search for expandable rodent and human cells capable of being directed to differentiate into functional hepatocytes. Research with stem cells suggests that it may be possible to provide the research community with hepatocytes in vitro although to date, significant challenges remain, notably generating a sufficiently pure population of hepatocytes with a quantitative functionality comparable with hepatocytes. This paper reviews work with the AR42J-B-13 (B-13) cell line. The B-13 cell was cloned from the rodent AR42J pancreatic cell line, express genes associated with pancreatic acinar cells and readily proliferates in simple culture media. When exposed to glucocorticoid, 75-85% of the cells trans-differentiate into hepatocyte-like (B-13/H) cells functioning at a level quantitatively similar to freshly isolated rat hepatocytes (with the remaining cells retaining the B-13 phenotype). Trans-differentiation of pancreatic acinar cells also appears to occur in vivo in rats treated with glucocorticoid; in mice with elevated circulating glucocorticoid and in humans treated for long periods with glucocorticoid. The B-13 response to glucocorticoid therefore appears to be related to a real pathophysiological response of a pancreatic cell to glucocorticoid. An understanding of how this process occurs and if it can be generated or engineered in human cells would result in a cell line with the ability to generate an unlimited supply of functional human hepatocytes in a cost effective manner.
Collapse
Affiliation(s)
- Karen Wallace
- Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | | | | | | |
Collapse
|
48
|
Mačak-Šafranko Z, Sobočanec S, Sarić A, Balog T, Sverko V, Kušić B, Marotti T. Cytochrome P450 gender-related differences in response to hyperoxia in young CBA mice. ACTA ACUST UNITED AC 2010; 63:345-50. [PMID: 20227864 DOI: 10.1016/j.etp.2010.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 02/08/2010] [Accepted: 02/18/2010] [Indexed: 12/22/2022]
Abstract
Cytochrome P450 monooxygenases (CYPs) represent large class of heme-containing enzymes that catalyze the metabolism of various endogenous and exogenous substrates. Although they are found in many tissues, the function of the particular subset of their isoforms does not appear to be the same. Many CYP genes exhibit sexually dimorphic expression, while others are sex-independent. Moreover, as a source of reactive oxygen species (ROS), P450 system is believed to play the important role in various pathological conditions and diseases. The aim of this study was to observe the effect of hyperoxia on oxidant/antioxidant status in the liver of young male and female mice and to determine whether the observed effects are associated with the expression of Heme oxygenase-1 (HO-1) and CYP genes associated with stress (Cyp1a1, Cyp1a2, Cyp2a5, and Cyp2e1) or stress and gender-related responses (Cyp2b9). In this study, we demonstrated gender-related effect of hyperoxia on oxidant/antioxidant status and on expression of certain P450 enzymes. Our results suggest that females are less susceptible to hyperoxia induced oxidative stress by two major mechanisms: upregulated expression of HO-1 genes and different expression of certain P450 enzymes. Therefore, our study could provide additional data of gender-dependent responses in susceptibility to oxidative stress, chemical toxicity and drug efficiency in treatment of diseases.
Collapse
Affiliation(s)
- Zeljka Mačak-Šafranko
- Division of Molecular Medicine, Institute Ruđer Bošković, Bijenička 54, 10000 Zagreb, Croatia
| | | | | | | | | | | | | |
Collapse
|
49
|
Nicolson TJ, Mellor HR, Roberts RRA. Gender differences in drug toxicity. Trends Pharmacol Sci 2010; 31:108-14. [PMID: 20117848 DOI: 10.1016/j.tips.2009.12.001] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 11/16/2009] [Accepted: 12/01/2009] [Indexed: 11/27/2022]
Abstract
Clinical data suggest that gender dimorphic profiles are emerging in terms of both drug efficacy and adverse drug reactions (ADRs). With an increasing emphasis on individualised therapies and the need to prevent drug attrition there is a compelling need to understand the molecular basis for gender dimorphic profiles in ADRs and the consequences. Classes of agents exhibiting gender-based variation in pharmaceutical efficacy and toxicity include anaesthetics, HIV-1 therapies and antiarrhythmic drugs. Body weight differences are often cited as a reason for differences in drug pharmacokinetics and subsequent toxicity. However, some studies accounted for these factors and still found significance suggesting that dosage versus body weight does not explain the outcome. Here, we present an overview of current understanding of gender-specific drug toxicity and present rational molecular explanations for these adverse events. There is mounting evidence in support of hormonal effects underpinning the majority of the ADR differences observed between the sexes.
Collapse
Affiliation(s)
- Tamara J Nicolson
- General Toxicology Sciences, Safety Assessment UK, AstraZeneca R&D, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK.
| | | | | |
Collapse
|
50
|
Waxman DJ, Holloway MG. Sex differences in the expression of hepatic drug metabolizing enzymes. Mol Pharmacol 2009; 76:215-28. [PMID: 19483103 DOI: 10.1124/mol.109.056705] [Citation(s) in RCA: 528] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Sex differences in pharmacokinetics and pharmacodynamics characterize many drugs and contribute to individual differences in drug efficacy and toxicity. Sex-based differences in drug metabolism are the primary cause of sex-dependent pharmacokinetics and reflect underlying sex differences in the expression of hepatic enzymes active in the metabolism of drugs, steroids, fatty acids and environmental chemicals, including cytochromes P450 (P450s), sulfotransferases, glutathione transferases, and UDP-glucuronosyltransferases. Studies in the rat and mouse liver models have identified more than 1000 genes whose expression is sex-dependent; together, these genes impart substantial sexual dimorphism to liver metabolic function and pathophysiology. Sex differences in drug metabolism and pharmacokinetics also occur in humans and are due in part to the female-predominant expression of CYP3A4, the most important P450 catalyst of drug metabolism in human liver. The sexually dimorphic expression of P450s and other liver-expressed genes is regulated by the temporal pattern of plasma growth hormone (GH) release by the pituitary gland, which shows significant sex differences. These differences are most pronounced in rats and mice, where plasma GH profiles are highly pulsatile (intermittent) in male animals versus more frequent (nearly continuous) in female animals. This review discusses key features of the cell signaling and molecular regulatory mechanisms by which these sex-dependent plasma GH patterns impart sex specificity to the liver. Moreover, the essential role proposed for the GH-activated transcription factor signal transducer and activator of transcription (STAT) 5b, and for hepatic nuclear factor (HNF) 4alpha, as mediators of the sex-dependent effects of GH on the liver, is evaluated. Together, these studies of the cellular, molecular, and gene regulatory mechanisms that underlie sex-based differences in liver gene expression have provided novel insights into the physiological regulation of both xenobiotic and endobiotic metabolism.
Collapse
Affiliation(s)
- David J Waxman
- Division of Cell and Molecular Biology, Department of Biology, Boston University, Boston, MA 02215, USA.
| | | |
Collapse
|