1
|
Koide E, Pietz HL, Beltran J, Chen J. Structural basis for the transport and regulation mechanism of the Multidrug resistance-associated protein 2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600277. [PMID: 38979242 PMCID: PMC11230190 DOI: 10.1101/2024.06.24.600277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Multidrug resistance-associated protein 2 (MRP2) is an ATP-powered exporter important for maintaining liver homeostasis and a potential contributor to chemotherapeutic resistance. Deficiencies in MRP2 function are associated with Dubin-Johnson Syndrome and increased vulnerability to liver injury from cytotoxic drugs. Using cryogenic electron microscopy (cryo-EM), we determined the structures of human MRP2 in three conformational states: an autoinhibited state, a substrate-bound pre-translocation state, and an ATP-bound post-translocation state. These structures show that MRP2 functions through the classic alternating access model, driven by ATP binding and hydrolysis. Its cytosolic regulatory (R) domain serves as a selectivity gauge, wherein only sufficiently high concentrations of substrates can effectively compete with and disengage the R domain to initiate transport. Comparative structural analyses of MRP2 in complex with different substrates reveal how the transporter recognizes a diverse array of compounds, highlighting the transporter's role in multidrug resistance.
Collapse
|
2
|
Chen W, Ding M, Ji L, Yao J, Guo Y, Yan W, Yu S, Shen Q, Huang M, Zheng Y, Lin Y, Wang Y, Liu Z, Lu L, Jin X. Bile acids promote the development of HCC by activating inflammasome. Hepatol Commun 2023; 7:e0217. [PMID: 37556375 PMCID: PMC10412435 DOI: 10.1097/hc9.0000000000000217] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 06/06/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is associated with chronic inflammation caused by different factors; especially, the interaction of inflammatory pathways and bile acids (BAs) can affect hepatocyte proliferation, death, and regeneration, but whether BAs promote HCC progression through inflammatory pathways and the mechanisms is still unclear. METHODS AND RESULTS By examining cancer and tumor-adjacent tissue BA levels and genes associated with BA homeostasis in 37 HCC patients, we found that total bile acids (TBAs) were decreased by 36% and varying degrees of changes in factors regulating BA homeostasis (p < 0.05). In addition, we found that BA homeostasis was disturbed in diethylnitrosamine-induced HCC mouse models, and TBA was correlated with inflammasome activation during HCC progression (6-24 W) (p < 0.05). Similarly, the inflammasome and chenodeoxycholic acid (CDCA) content were suppressed in cholestasis model mice (Mrp2-deficient mice) (p < 0.05). In vitro, CDCA significantly promoted the malignant transformation of hepatocytes (p < 0.001), activated the inflammasome by triggering the release of mitochondrial reactive oxygen species and mitochondrial DNA, and ultimately induced pyroptosis. Furthermore, we found that CDCA has a targeted binding effect with HO-1 through molecular docking and Cellular Thermal Shift Assay experiments. CONCLUSIONS In conclusion, we found that CDCA can trigger the excessive accumulation of mitochondrial reactive oxygen species by targeting HO-1 to promote the activation of the inflammasome and ultimately promote the progression of HCC. Our study provides a novel mechanism by which BAs promote HCC by activating the inflammasome and establishes the important role of BA homeostasis imbalance in the progression of HCC from the aspect of inflammation.
Collapse
Affiliation(s)
- Wenbo Chen
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ming Ding
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liyan Ji
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingjing Yao
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yajuan Guo
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenxin Yan
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shaofang Yu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qinghong Shen
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Huang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yaqiu Zheng
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuefang Lin
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Wang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhongqiu Liu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR, China
| | - Linlin Lu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR, China
| | - Xin Jin
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
3
|
Ramayo-Caldas Y, Crespo-Piazuelo D, Morata J, González-Rodríguez O, Sebastià C, Castello A, Dalmau A, Ramos-Onsins S, Alexiou KG, Folch JM, Quintanilla R, Ballester M. Copy Number Variation on ABCC2-DNMBP Loci Affects the Diversity and Composition of the Fecal Microbiota in Pigs. Microbiol Spectr 2023; 11:e0527122. [PMID: 37255458 PMCID: PMC10433821 DOI: 10.1128/spectrum.05271-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/16/2023] [Indexed: 06/01/2023] Open
Abstract
Genetic variation in the pig genome partially modulates the composition of porcine gut microbial communities. Previous studies have been focused on the association between single nucleotide polymorphisms (SNPs) and the gut microbiota, but little is known about the relationship between structural variants and fecal microbial traits. The main goal of this study was to explore the association between porcine genome copy number variants (CNVs) and the diversity and composition of pig fecal microbiota. For this purpose, we used whole-genome sequencing data to undertake a comprehensive identification of CNVs followed by a genome-wide association analysis between the estimated CNV status and the fecal bacterial diversity in a commercial Duroc pig population. A CNV predicted as gain (DUP) partially harboring ABCC2-DNMBP loci was associated with richness (P = 5.41 × 10-5, false discovery rate [FDR] = 0.022) and Shannon α-diversity (P = 1.42 × 10-4, FDR = 0.057). The in silico predicted gain of copies was validated by real-time quantitative PCR (qPCR), and its segregation, and positive association with the richness and Shannon α-diversity of the porcine fecal bacterial ecosystem was confirmed in an unrelated F1 (Duroc × Iberian) cross. Our results advise the relevance of considering the role of host-genome structural variants as potential modulators of microbial ecosystems and suggest the ABCC2-DNMBP CNV as a host-genetic factor for the modulation of the diversity and composition of the fecal microbiota in pigs. IMPORTANCE A better understanding of the environmental and host factors modulating gut microbiomes is a topic of greatest interest. Recent evidence suggests that genetic variation in the pig genome partially controls the composition of porcine gut microbiota. However, since previous studies have been focused on the association between single nucleotide polymorphisms and the fecal microbiota, little is known about the relationship between other sources of genetic variation, like the structural variants and microbial traits. Here, we identified, experimentally validated, and replicated in an independent population a positive link between the gain of copies of ABCC2-DNMBP loci and the diversity and composition of pig fecal microbiota. Our results advise the relevance of considering the role of host-genome structural variants as putative modulators of microbial ecosystems and open the possibility of implementing novel holobiont-based management strategies in breeding programs for the simultaneous improvement of microbial traits and host performance.
Collapse
Affiliation(s)
- Yuliaxis Ramayo-Caldas
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology, Caldes de Montbui, Spain
| | - Daniel Crespo-Piazuelo
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology, Caldes de Montbui, Spain
| | - Jordi Morata
- Centro Nacional de Análisis Genómico, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Olga González-Rodríguez
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology, Caldes de Montbui, Spain
| | - Cristina Sebastià
- Plant and Animal Genomics Program, Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas (CSIC)-Institute of Agrifood Research and Technology-Autonomous University of Barcelona-UB, Bellaterra, Spain
- Animal and Food Science Department, Autonomous University of Barcelona, Bellaterra, Spain
| | - Anna Castello
- Plant and Animal Genomics Program, Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas (CSIC)-Institute of Agrifood Research and Technology-Autonomous University of Barcelona-UB, Bellaterra, Spain
- Animal and Food Science Department, Autonomous University of Barcelona, Bellaterra, Spain
| | - Antoni Dalmau
- Animal Welfare Program, Institute of Agrifood Research and Technology, Girona, Spain
| | - Sebastian Ramos-Onsins
- Plant and Animal Genomics Program, Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas (CSIC)-Institute of Agrifood Research and Technology-Autonomous University of Barcelona-UB, Bellaterra, Spain
| | - Konstantinos G. Alexiou
- Plant and Animal Genomics Program, Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas (CSIC)-Institute of Agrifood Research and Technology-Autonomous University of Barcelona-UB, Bellaterra, Spain
| | - Josep M. Folch
- Plant and Animal Genomics Program, Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas (CSIC)-Institute of Agrifood Research and Technology-Autonomous University of Barcelona-UB, Bellaterra, Spain
- Animal and Food Science Department, Autonomous University of Barcelona, Bellaterra, Spain
| | - Raquel Quintanilla
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology, Caldes de Montbui, Spain
| | - Maria Ballester
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology, Caldes de Montbui, Spain
| |
Collapse
|
4
|
Zhang R, Li X, Su Z, Ning F, Gao Y. Effect of dietary antioxidants on excretion of perfluorooctanoic acid (PFOA) via regulating uptake transporters expression and intestinal permeability in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115224. [PMID: 37413964 DOI: 10.1016/j.ecoenv.2023.115224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Dietary antioxidants, including 2,6-di-tert-butyl-hydroxytoluene (BHT), α-tocopherol (αT) and tea polyphenol (TP), have been widely used in food. However, no data about the effect of food antioxidants on PFOA excretion were available. In this study, excretion of PFOA toward mice (four mice in each group) under the influence of co-ingested food antioxidants (i.e., BHT, αT, and TP) were investigated, and mechanism involved in excretion of PFOA, including RNA expression of uptake and efflux transporters in kidneys and liver involved in PFOA transport and intestinal permeability were also investigated. Chronic exposure to BHT (1.56 mg/kg) increased urinary PFOA excretion from 1795 ± 340 ng/mL (control) to 3340 ± 29.9 ng/mL (BHT treatment). TP treatment (12.5 mg/kg) decreased urinary excretion of PFOA, i.e., with a decrease percentage of 70% compared to the control. Organic anion transporting polypeptides (Oatps) act as uptake transporter mediate renal elimination or reabsorption of PFOA in the kidney. The decrease in urinary excretion of PFOA under TP treatment was associated with significantly (p < 0.05) enhanced expression of Oatp1a1 in the kidney (1.78 ± 0.58 vs 1.00 ± 0.18 in control), which facilitated renal reabsorption of PFOA and in turn decreased urinary excretion of PFOA. αT treatment (12.5 mg/kg) increased fecal PFOA excretion with a value of 228 ± 95.8 ng/g vs control (96.8 ± 22.7 ng/g). Mechanistic investigation revealed that αT treatment reduced intestinal permeability, resulting in increased fecal PFOA excretion.
Collapse
Affiliation(s)
- Ruirui Zhang
- Jinan Environmental Research Academy, Jinan 250100, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China.
| | - Xin Li
- Jinan Environmental Research Academy, Jinan 250100, China
| | - Zhaoxin Su
- Jinan Environmental Research Academy, Jinan 250100, China
| | - Fangyuan Ning
- Jinan Environmental Research Academy, Jinan 250100, China
| | - Yuxue Gao
- Jinan Environmental Research Academy, Jinan 250100, China
| |
Collapse
|
5
|
Altalal A, Almomen A, Alkholief M, Binkhathlan Z, Alzoman NZ, Alshamsan A. Development and validation of a UPLC-MS/MS method for simultaneous detection of doxorubicin and sorafenib in plasma: Application to pharmacokinetic studies in rats. Saudi Pharm J 2023; 31:1317-1326. [PMID: 37323919 PMCID: PMC10267530 DOI: 10.1016/j.jsps.2023.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/25/2023] [Indexed: 06/17/2023] Open
Abstract
An ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was developed for the simultaneous quantitation of doxorubicin (DOX) and sorafenib (SOR) in rat plasma. Chromatographic separation was performed using a reversed-phase column C18 (1.7 μm, 1.0 × 100 mm Acquity UPLC BEH™). The gradient mobile phase system consisted of water containing 0.1% acetic acid (mobile phase A) and methanol (mobile phase B) with a flow rate of 0.40 mL/min over 8 min. Erlotinib (ERL) was used as an internal standard (IS). The quantitation of conversion of [M + H]+, which was the protonated precursor ion, to the corresponding product ions was performed using multiple reaction monitoring (MRM) with a mass-to-charge ratio (m/z) of 544 > 397.005 for DOX, 465.05 > 252.03 for SOR, and 394 > 278 for the IS. Different parameters were used to validate the method including accuracy, precision, linearity, and stability. The developed UPLC-MS/MS method was linear over the concentration ranges of 9-2000 ng/mL and 7-2000 ng/mL with LLOQ of 9 and 7 ng/mL for DOX and SOR, respectively. The intra-day and inter-day accuracy, expressed as % relative standard deviation (RSD%), was below 10% for both DOX and SOR in all QC samples that have drug concentrations above the LLOQ. The intra-day and inter-day precision, expressed as percent relative error (Er %), was within the limit of 15.0% for all concentrations above LLOQ. Four groups of Wistar rats (250-280 g) were used to conduct the pharmacokinetic study. Group I received a single intraperitoneal (IP) injection of DOX (5 mg/kg); Group II received a single oral dose of SOR (40 mg/kg), Group III received a combination of both drugs; and Group IV received sterile water for injection IP and 0.9% w/v sodium chloride solution orally to serve as a control. Non-compartmental analysis was used to calculate the different pharmacokinetic parameters. Data revealed that coadministration of DOX and SOR altered some of the pharmacokinetic parameters of both agents and resulted in an increase in the Cmax and AUC and reduction in the apparent clearance (CL/F). In conclusion, our newly developed method is sensitive, specific, and can reliably be used to simultaneously determine DOX and SOR concentrations in rat plasma. Moreover, the results of the pharmacokinetic study suggest that coadministration of DOX and SOR might cause an increase in exposure of both drugs.
Collapse
Affiliation(s)
- Alanoud Altalal
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Aliyah Almomen
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
- Nanobiotechnology Unit, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Musaed Alkholief
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
- Nanobiotechnology Unit, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Ziyad Binkhathlan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
- Nanobiotechnology Unit, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Nourah Z. Alzoman
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Aws Alshamsan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| |
Collapse
|
6
|
Dean M, Moitra K, Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily. Hum Mutat 2022; 43:1162-1182. [PMID: 35642569 PMCID: PMC9357071 DOI: 10.1002/humu.24418] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/12/2022]
Abstract
The ATP-binding cassette (ABC) transporter superfamily comprises membrane proteins that efflux various substrates across extra- and intracellular membranes. Mutations in ABC genes cause 21 human disorders or phenotypes with Mendelian inheritance, including cystic fibrosis, adrenoleukodystrophy, retinal degeneration, cholesterol, and bile transport defects. To provide tools to study the function of human ABC transporters we compiled data from multiple genomics databases. We analyzed ABC gene conservation within human populations and across vertebrates and surveyed phenotypes of ABC gene mutations in mice. Most mouse ABC gene disruption mutations have a phenotype that mimics human disease, indicating they are applicable models. Interestingly, several ABCA family genes, whose human function is unknown, have cholesterol level phenotypes in the mouse. Genome-wide association studies confirm and extend ABC traits and suggest several new functions to investigate. Whole-exome sequencing of tumors from diverse cancer types demonstrates that mutations in ABC genes are not common in cancer, but specific genes are overexpressed in select tumor types. Finally, an analysis of the frequency of loss-of-function mutations demonstrates that many human ABC genes are essential with a low level of variants, while others have a higher level of genetic diversity.
Collapse
Affiliation(s)
- Michael Dean
- Laboratory of Translational Genomics, National Cancer Institute, Gaithersburg, Maryland 21702
| | | | - Rando Allikmets
- Department of Ophthalmology, Columbia University, New York, New York, 10032
- Department of Pathology & Cell Biology, Columbia University, New York, New York, 10032
| |
Collapse
|
7
|
Expression and Functional Contribution of Different Organic Cation Transporters to the Cellular Uptake of Doxorubicin into Human Breast Cancer and Cardiac Tissue. Int J Mol Sci 2021; 23:ijms23010255. [PMID: 35008681 PMCID: PMC8745601 DOI: 10.3390/ijms23010255] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/14/2021] [Accepted: 12/24/2021] [Indexed: 01/19/2023] Open
Abstract
Doxorubicin is a frequently used anticancer drug to treat many types of tumors, such as breast cancer or bronchial carcinoma. The clinical use of doxorubicin is limited by its poorly predictable cardiotoxicity, the reasons of which are so far not fully understood. The drug is a substrate of several efflux transporters such as P-gp or BCRP and was recently reported to be a substrate of cation uptake transporters. To evaluate the potential role of transporter proteins in the accumulation of doxorubicin at its site of action (e.g., mammary carcinoma cells) or adverse effects (e.g., heart muscle cells), we studied the expression of important uptake and efflux transporters in human breast cancer and cardiac tissue, and investigated the affinity of doxorubicin to the identified transporters. The cellular uptake studies on doxorubicin were performed with OATP1A2*1, OATP1A2*2, and OATP1A2*3-overexpressing HEK293 cells, as well as OCT1-, OCT2-, and OCT3- overexpressing MDCKII cells. To assess the contribution of transporters to the cytotoxic effect of doxorubicin, we determined the cell viability in the presence and absence of transporter inhibitors in different cell lines. Several transporters, including P-gp, BCRP, OCT1, OCT3, and OATP1A2 were expressed in human heart and/or breast cancer tissue. Doxorubicin could be identified as a substrate of OCT1, OCT2, OCT3, and OATP1A2. The cellular uptake into cells expressing genetic OATP1A2 variants was markedly reduced and correlated well with the increased cellular viability. Inhibition of OATP1A2 (naringin) and OCT transporters (1-methyl-4-phenylpyridinium) resulted in a significant decrease of doxorubicin-mediated cytotoxicity in cell lines expressing the respective transporters. Similarly, the excipient Cremophor EL significantly inhibited the OCT1-3- and OATP1A2-mediated cellular uptake and attenuated the cytotoxicity of doxorubicin. In conclusion, genetic and environmental-related variability in the expression and function of these transporters may contribute to the substantial variability seen in terms of doxorubicin efficacy and toxicity.
Collapse
|
8
|
Guo Z, Liu M, Meng J, Xue Y, Huang Q, Zheng Y, Wu Y, Chen Z, Yu J, Zhong D, Li G, Chen X, Diao X. Mechanistic study on the species differences in excretion pathway of HR011303 in human and rats. Drug Metab Dispos 2021; 50:809-818. [PMID: 34862251 DOI: 10.1124/dmd.121.000582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022] Open
Abstract
Excretion of [14C]HR011303-derived radioactivity showed significant species difference. Urine (81.50% of dose) was the main excretion route in healthy male subjects, whereas feces (87.16% of dose) was the main excretion route in rats. To further elucidate the underlying cause for excretion species differences of HR011303, studies were conducted to uncover its metabolism and excretion mechanism. M5, a glucuronide metabolite of HR011303, is the main metabolite in humans and rats. Results of rat microsomes incubation study suggested that HR011303 was metabolized to M5 in the rat liver. According to previous studies, M5 is produced in both human liver and kidney microsomes. We found M5 in human liver can be transported to the blood by multidrug resistance-associated protein (MRP) 3 and then the majority of M5 can be hydrolyzed to HR011303. HR011303 enters the human kidney or liver through passive diffusion, whereas M5 is taken up through organic anion transporter (OAT) 3, organic anion-transporting polypeptide (OATP) 1B1, and OATP1B3. When HR011303 alone was present, it can be metabolized to M5 in both sandwich-cultured rat hepatocytes (SCRH) and sandwich-cultured human hepatocytes (SCHH) and excreted into bile as M5 in SCRH. Using transporter inhibitors in sandwich-cultured model and membrane vesicles that expressing MRP2 or Mrp2, we found M5 was substance of MRP2/Mrp2 and the bile efflux of M5 mainly mediated by MRP2/Mrp2. Considering the significant role of MRP3/Mrp3 and MRP2/Mrp2 in the excretion of glucuronides, the competition between them for M5 was possibly the determinant for the different excretion routes in humans and rats. Significance Statement Animal experiments are necessary to predict dosage and safety of candidate drugs prior to clinical trials. However, extrapolation results often differ from actual situation. For HR011303, excretory pathways exhibited a complete reversal, through urine in humans and feces in rats. Such phenomena have been observed in several drugs, but no in-depth studies have been conducted to date. In the present study, the excretion species differences of HR011303 can be explained by the competition for M5 between MRP2/Mrp2 and MRP3/Mrp3.
Collapse
Affiliation(s)
- Zitao Guo
- Shanghai Institute of Materia Medica, China
| | - Mengling Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| | - Jian Meng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| | - Yaru Xue
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| | - Qi Huang
- Jiangsu Hengrui Medicine Co. Ltd., China
| | - Yuandong Zheng
- DMPK, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| | - Yali Wu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| | - Zhendong Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| | - Jinghua Yu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| | - Dafang Zhong
- Center for Drug Metabolism and Pharmacokinet, China
| | - Guangze Li
- Jiangsu Hengrui Medicine Co. Ltd., China
| | | | - Xingxing Diao
- DMPK, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| |
Collapse
|
9
|
Wang J, Zhang Y, Liu L, Yang T, Song J. Circular RNAs: new biomarkers of chemoresistance in cancer. Cancer Biol Med 2021; 18:j.issn.2095-3941.2020.0312. [PMID: 33738995 PMCID: PMC8185855 DOI: 10.20892/j.issn.2095-3941.2020.0312] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/27/2020] [Indexed: 12/17/2022] Open
Abstract
Chemotherapeutics are validated conventional treatments for patients with advanced cancer. However, with continual application of chemotherapeutics, chemoresistance, which is often predictive of poor prognosis, has gradually become a concern in recent years. Circular RNAs (circRNAs), a class of endogenous noncoding RNAs (ncRNAs) with a closed-loop structure, have been reported to be notable targets and markers for the prognosis, diagnosis, and treatment of many diseases, particularly cancer. Although dozens of studies have shown that circRNAs play major roles in drug-resistance activity in tumors, the mechanisms by which circRNAs affect chemoresistance have yet to be explored. In this review, we describe the detailed mechanisms of circRNAs and chemotherapeutics in various cancers and summarize potential therapeutic targets for drug-resistant tumors.
Collapse
Affiliation(s)
- Jiaqi Wang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
- Institute of Digestive Diseases of Xuzhou Medical University, Xuzhou 221002, China
| | - Yi Zhang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Lianyu Liu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
- Institute of Digestive Diseases of Xuzhou Medical University, Xuzhou 221002, China
| | - Ting Yang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Jun Song
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
- Institute of Digestive Diseases of Xuzhou Medical University, Xuzhou 221002, China
| |
Collapse
|
10
|
Li J, Jiang M, Zhou J, Ding J, Guo Z, Li M, Ding F, Chai W, Yan J, Liang X. Characterization of rat and mouse acidic milk oligosaccharides based on hydrophilic interaction chromatography coupled with electrospray tandem mass spectrometry. Carbohydr Polym 2021; 259:117734. [PMID: 33673995 DOI: 10.1016/j.carbpol.2021.117734] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/05/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023]
Abstract
Oligosaccharides are one of the most important components in mammalian milk. Milk oligosaccharides can promote colonization of gut microbiota and protect newborns from infections. The diversity and structures of MOs differ among mammalian species. MOs in human and farm animals have been well-documented. However, the knowledge on MOs in rat and mouse have been very limited even though they are the most-widely used models for studies of human physiology and disease. Herein, we use a high-sensitivity online solid-phase extraction and HILIC coupled with electrospray tandem mass spectrometry to analyze the acidic MOs in rat and mouse. Among the fifteen MOs identified, twelve were reported for the first time in rat and mouse together with two novel sulphated oligosaccharides. The complete list of acidic oligosaccharides present in rat and mouse milk is the baseline information of these animals and should contribute to biological/biomedical studies using rats and mice as models.
Collapse
Affiliation(s)
- Jiaqi Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Key Laboratory of Separation Science for Analytical Chemistry, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Maorong Jiang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, 226001, China
| | - JiaoRui Zhou
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Junjie Ding
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Key Laboratory of Separation Science for Analytical Chemistry, Dalian, 116023, China
| | - Zhimou Guo
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Key Laboratory of Separation Science for Analytical Chemistry, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Li
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, 226001, China
| | - Wengang Chai
- Glycosciences Laboratory, Faculty of Medicine, Imperial College London, Hammersmith Campus, London, W12 0NN, United Kingdom
| | - Jingyu Yan
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Key Laboratory of Separation Science for Analytical Chemistry, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xinmiao Liang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Key Laboratory of Separation Science for Analytical Chemistry, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
11
|
Gao J, Wang C, Wei W. The effects of drug transporters on the efficacy of methotrexate in the treatment of rheumatoid arthritis. Life Sci 2021; 268:118907. [PMID: 33428880 DOI: 10.1016/j.lfs.2020.118907] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
The ATP-binding cassette (ABC) and solute carrier (SLC) transporter families consist of common drug transporters that mediate the efflux and uptake of drugs, respectively, and play an important role in the absorption, distribution, metabolism and excretion of drugs in vivo. Rheumatoid arthritis (RA) is an autoimmune disease characterized by erosive arthritis, and there are many RA patients worldwide. Methotrexate (MTX), the first-choice treatment for RA, can reduce the level of inflammation, prevent joint erosion and functional damage, and greatly reduce pain in RA patients. However, many patients show resistance to MTX, greatly affecting the efficacy of MTX. Many factors, such as irrational drug use and heredity, are associated with drug resistance. Considering the effect of drug transporters on drugs, many studies have compared the expression of drug transporters in drug-resistant and drug-sensitive patients, and abnormal transporter expression and transport activity have been found in patients with MTX resistance. Thus, drug transporters are involved in drug resistance. This article reviews the effects of transporters on the efficacy of MTX in the treatment of RA.
Collapse
Affiliation(s)
- Jinzhang Gao
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Chun Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, China.
| |
Collapse
|
12
|
Li X, Xing H, Qin Z, Yang J, Wang P, Zhang X, Yao Z, Yao X. Potential metabolism determinants and drug-drug interactions of a natural flavanone bavachinin. RSC Adv 2020; 10:35141-35152. [PMID: 35515695 PMCID: PMC9056855 DOI: 10.1039/d0ra06961b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/16/2020] [Indexed: 12/26/2022] Open
Abstract
Bavachinin, a natural bioactive flavanone, is reported to have many pharmacological proprieties, especially anti-osteoporosis activity. Here we aim to determine the roles of cytochrome P450s (CYP), UDP-glucuronosyltransferases (UGT), and efflux transporters in metabolism and drug-drug interactions (DDI) of bavachinin. Phase I metabolism and glucuronidation were performed by human liver microsomes (HLM) and human intestine microsomes (HIM). Reaction phenotyping was used to identify the main CYPs and UGTs. Gene silencing methods were employed to investigate the roles of breast cancer resistance protein (BCRP) and multidrug resistance-associated proteins (MRPs) in HeLa1A1 cells. Inhibition mechanisms towards CYPs and UGTs were explored through kinetic modeling. Three phase I metabolites (M1-M3) and one glucuronide (G1) were detected after incubation of bavachinin with HLM and HIM. The intrinsic clearance (CLint) values of M1 and G1 by HLM were 89.4 and 270.2 μL min-1 mg-1, respectively, while those of M3 and G1 by HIM were 25.8 and 247.1 μL min-1 mg-1, respectively. CYP1A1, 1A2, 1B1, 2C8, 2C19, and UGT1A1, 1A8 participated more in bavachinin metabolism. The metabolism showed marked species difference. BCRP and MRP4 were identified as the main contributors. Bavachinin displayed potent inhibitory effects against several CYP and UGT isozymes (K i = 0.28-2.53 μM). Bavachinin was subjected to undergo metabolism and disposition by CYPs, UGTs, BCRP, MRP4, and was also a potent non-selective inhibitor against several CYPs and UGTs.
Collapse
Affiliation(s)
- Xinqiang Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052 China
| | - Han Xing
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052 China
| | - Zifei Qin
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052 China
| | - Jing Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052 China
| | - Peile Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052 China
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052 China
| | - Zhihong Yao
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development Ministry of P. R. China, Jinan University Guangzhou 510632 China
- College of Pharmacy, Jinan University Guangzhou 510632 China
| | - Xinsheng Yao
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development Ministry of P. R. China, Jinan University Guangzhou 510632 China
- College of Pharmacy, Jinan University Guangzhou 510632 China
| |
Collapse
|
13
|
Willers C, Svitina H, Rossouw MJ, Swanepoel RA, Hamman JH, Gouws C. Models used to screen for the treatment of multidrug resistant cancer facilitated by transporter-based efflux. J Cancer Res Clin Oncol 2019; 145:1949-1976. [PMID: 31292714 DOI: 10.1007/s00432-019-02973-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/04/2019] [Indexed: 01/09/2023]
Abstract
PURPOSE Efflux transporters of the adenosine triphosphate-binding cassette (ABC)-superfamily play an important role in the development of multidrug resistance (multidrug resistant; MDR) in cancer. The overexpression of these transporters can directly contribute to the failure of chemotherapeutic drugs. Several in vitro and in vivo models exist to screen for the efficacy of chemotherapeutic drugs against MDR cancer, specifically facilitated by efflux transporters. RESULTS This article reviews a range of efflux transporter-based MDR models used to test the efficacy of compounds to overcome MDR in cancer. These models are classified as either in vitro or in vivo and are further categorised as the most basic, conventional models or more complex and advanced systems. Each model's origin, advantages and limitations, as well as specific efflux transporter-based MDR applications are discussed. Accordingly, future modifications to existing models or new research approaches are suggested to develop prototypes that closely resemble the true nature of multidrug resistant cancer in the human body. CONCLUSIONS It is evident from this review that a combination of both in vitro and in vivo preclinical models can provide a better understanding of cancer itself, than using a single model only. However, there is still a clear lack of progression of these models from basic research to high-throughput clinical practice.
Collapse
Affiliation(s)
- Clarissa Willers
- Pharmacen™, Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Hanna Svitina
- Pharmacen™, Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Michael J Rossouw
- Pharmacen™, Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Roan A Swanepoel
- Pharmacen™, Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Josias H Hamman
- Pharmacen™, Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Chrisna Gouws
- Pharmacen™, Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| |
Collapse
|
14
|
ABC transporters Mdr1a/1b, Bcrp1, Mrp2 and Mrp3 determine the sensitivity to PhIP/DSS-induced colon carcinogenesis and inflammation. Arch Toxicol 2019; 93:775-790. [DOI: 10.1007/s00204-019-02394-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/10/2019] [Indexed: 12/29/2022]
|
15
|
Current Research Method in Transporter Study. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:203-240. [PMID: 31571166 DOI: 10.1007/978-981-13-7647-4_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transporters play an important role in the absorption, distribution, metabolism, and excretion (ADME) of drugs. In recent years, various in vitro, in situ/ex vivo, and in vivo methods have been established for studying transporter function and drug-transporter interaction. In this chapter, the major types of in vitro models for drug transport studies comprise membrane-based assays, cell-based assays (such as primary cell cultures, immortalized cell lines), and transporter-transfected cell lines with single transporters or multiple transporters. In situ/ex vivo models comprise isolated and perfused organs or tissues. In vivo models comprise transporter gene knockout models, natural mutant animal models, and humanized animal models. This chapter would be focused on the methods for the study of drug transporters in vitro, in situ/ex vivo, and in vivo. The applications, advantages, or limitations of each model and emerging technologies are also mentioned in this chapter.
Collapse
|
16
|
Abstract
The transport of specific molecules across lipid membranes is an essential function of all living organisms. The processes are usually mediated by specific transporters. One of the largest transporter families is the ATP-binding cassette (ABC) family. More than 40 ABC transporters have been identified in human, which are divided into 7 subfamilies (ABCA to ABCG) based on their gene structure, amino acid sequence, domain organization, and phylogenetic analysis. Of them, at least 11 ABC transporters including P-glycoprotein (P-GP/ABCB1), multidrug resistance-associated proteins (MRPs/ABCCs), and breast cancer resistance protein (BCRP/ABCG2) are involved in multidrug resistance (MDR) development. These ABC transporters are expressed in various tissues such as the liver, intestine, kidney, and brain, playing important roles in absorption, distribution, and excretion of drugs. Some ABC transporters are also involved in diverse cellular processes such as maintenance of osmotic homeostasis, antigen processing, cell division, immunity, cholesterol, and lipid trafficking. Several human diseases such as cystic fibrosis, sitosterolemia, Tangier disease, intrahepatic cholestasis, and retinal degeneration are associated with mutations in corresponding transporters. This chapter will describe function and expression of several ABC transporters (such as P-GP, BCRP, and MRPs), their substrates and inhibitors, as well as their clinical significance.
Collapse
Affiliation(s)
- Xiaodong Liu
- China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
17
|
Tocchetti GN, Domínguez CJ, Zecchinati F, Arana MR, Ruiz ML, Villanueva SSM, Mottino AD, Weiss J, Rigalli JP. Inhibition of multidrug resistance-associated protein 2 (MRP2) activity by the contraceptive nomegestrol acetate in HepG2 and Caco-2 cells. Eur J Pharm Sci 2018; 122:205-213. [DOI: 10.1016/j.ejps.2018.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 12/28/2022]
|
18
|
Oh JH, Lee JH, Han DH, Cho S, Lee YJ. Circadian Clock Is Involved in Regulation of Hepatobiliary Transport Mediated by Multidrug Resistance-Associated Protein 2. J Pharm Sci 2017; 106:2491-2498. [PMID: 28479363 DOI: 10.1016/j.xphs.2017.04.071] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/21/2017] [Accepted: 04/25/2017] [Indexed: 11/25/2022]
Abstract
There has been a growing interest in circadian regulation of the expression and function of drug transporters. In this study, we investigated circadian rhythm in the expression and function of multidrug resistance-associated protein 2 (Mrp2) in mouse liver and involvement of circadian clock in their regulations by using the circadian clock genes (period 1 and period 2) knockout mice. The mRNA and protein expression of Mrp2, P-glycoprotein, and breast cancer resistance protein was measured in the mouse liver at different times of the day. Circadian variation of hepatobiliary excretion of phenolsulfonphthalein, a model substrate of Mrp2, was also investigated in mice. Circadian oscillation of Mrp2 protein expression was clearly observed in the mouse liver with levels down at the light phase and up at the dark phase. The cumulative biliary excretion and biliary clearance of phenolsulfonphthalein from the liver to the bile was 2.37- and 1.74-fold greater in mice administered during the dark phase than in those administered during the light phase, respectively. The circadian oscillation in mRNA expression of Mrp2 disappeared in period 1 and period 2 double knockout mice. These results suggest that the expression and function of Mrp2 show the circadian rhythm, controlled by circadian clock genes.
Collapse
Affiliation(s)
- Ju-Hee Oh
- Division of Biopharmaceutics, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joo Hyun Lee
- Division of Biopharmaceutics, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dong-Hee Han
- Neurodegeneration Control Research Center & Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sehyung Cho
- Neurodegeneration Control Research Center & Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Young-Joo Lee
- Division of Biopharmaceutics, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
19
|
Lee HH, Leake BF, Kim RB, Ho RH. Contribution of Organic Anion-Transporting Polypeptides 1A/1B to Doxorubicin Uptake and Clearance. Mol Pharmacol 2016; 91:14-24. [PMID: 27777271 PMCID: PMC5198512 DOI: 10.1124/mol.116.105544] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/18/2016] [Indexed: 11/22/2022] Open
Abstract
The organic anion-transporting polypeptides represent an important family of drug uptake transporters that mediate the cellular uptake of a broad range of substrates including numerous drugs. Doxorubicin is a highly efficacious and well-established anthracycline chemotherapeutic agent commonly used in the treatment of a wide range of cancers. Although doxorubicin is a known substrate for efflux transporters such as P-glycoprotein (P-gp; MDR1, ABCB1), significantly less is known regarding its interactions with drug uptake transporters. Here, we investigated the role of organic anion transporting polypeptide (OATP) transporters to the disposition of doxorubicin. A recombinant vaccinia-based method for expressing uptake transporters in HeLa cells revealed that OATP1A2, but not OATP1B1 or OATP1B3, and the rat ortholog Oatp1a4 were capable of significant doxorubicin uptake. Interestingly, transwell assays using Madin-Darby canine kidney II cell line cells stably expressing specific uptake and/or efflux transporters revealed that OATP1B1, OATP1B3, and OATP1A2, either alone or in combination with MDR1, significantly transported doxorubicin. An assessment of polymorphisms in SLCO1A2 revealed that four variants were associated with significantly impaired doxorubicin transport in vitro. In vivo doxorubicin disposition studies revealed that doxorubicin plasma area under the curve was significantly higher (1.7-fold) in Slco1a/1b-/- versus wild-type mice. The liver-to-plasma ratio of doxorubicin was significantly decreased (2.3-fold) in Slco1a/1b2-/- mice and clearance was reduced by 40% compared with wild-type mice, suggesting Oatp1b transporters are important for doxorubicin hepatic uptake. In conclusion, we demonstrate important roles for OATP1A/1B in transporter-mediated uptake and disposition of doxorubicin.
Collapse
Affiliation(s)
- Hannah H Lee
- Division of Hematology and Oncology, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee (H.H.L., B.F.L., R.H.H.); and Division of Clinical Pharmacology, Department of Medicine, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada (R.B.K.)
| | - Brenda F Leake
- Division of Hematology and Oncology, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee (H.H.L., B.F.L., R.H.H.); and Division of Clinical Pharmacology, Department of Medicine, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada (R.B.K.)
| | - Richard B Kim
- Division of Hematology and Oncology, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee (H.H.L., B.F.L., R.H.H.); and Division of Clinical Pharmacology, Department of Medicine, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada (R.B.K.)
| | - Richard H Ho
- Division of Hematology and Oncology, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee (H.H.L., B.F.L., R.H.H.); and Division of Clinical Pharmacology, Department of Medicine, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada (R.B.K.)
| |
Collapse
|
20
|
Mandal A, Agrahari V, Khurana V, Pal D, Mitra AK. Transporter effects on cell permeability in drug delivery. Expert Opin Drug Deliv 2016; 14:385-401. [PMID: 27449574 DOI: 10.1080/17425247.2016.1214565] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION The role of drug transporters as one of the determinants of cellular drug permeability has become increasingly evident. Despite the lipophilicity of a drug molecule as rate-limiting factor for passive diffusion across biological membranes, carrier-mediated and active transport have gained attention over the years. A better understanding of the effects and roles of these influx transporters towards transmembrane permeability of a drug molecule need to be delineated for drug development and delivery. Areas covered: This review focuses on findings relative to role of transporters in drug absorption and bioavailability. Particularly the areas demanding further research have been emphasized. This review will also highlight various transporters expressed on vital organs and their effects on drug pharmacokinetics. Expert opinion: Significant efforts have been devoted to understand the role of transporters, their iterative interplay with metabolizing enzymes through molecular enzymology, binding and structure-activity relationship studies. A few assays such as parallel artificial membrane permeation assay (PAMPA) have been developed to analyze drug transport across phospholipid membranes. Although large web-accessible databases on tissue selective expression profiles at transcriptomic as well as proteomic are available, there is a need to collocate the scattered literature on the role of transporters in drug development and delivery.
Collapse
Affiliation(s)
- Abhirup Mandal
- a Division of Pharmaceutical Sciences, School of Pharmacy , University of Missouri-Kansas City , Kansas City , MO , USA
| | - Vibhuti Agrahari
- a Division of Pharmaceutical Sciences, School of Pharmacy , University of Missouri-Kansas City , Kansas City , MO , USA
| | - Varun Khurana
- b R&D , INSYS Therapeutics Inc , Chandler , AZ , USA
| | - Dhananjay Pal
- a Division of Pharmaceutical Sciences, School of Pharmacy , University of Missouri-Kansas City , Kansas City , MO , USA
| | - Ashim K Mitra
- c UMKC School of Pharmacy, Division of Pharmaceutical Sciences , University of Missouri-Kansas City , Kansas City , MO , USA
| |
Collapse
|
21
|
Akazawa T, Uchida Y, Tachikawa M, Ohtsuki S, Terasaki T. Quantitative Targeted Absolute Proteomics of Transporters and Pharmacoproteomics-Based Reconstruction of P-Glycoprotein Function in Mouse Small Intestine. Mol Pharm 2016; 13:2443-56. [PMID: 27276518 DOI: 10.1021/acs.molpharmaceut.6b00196] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The purpose of this study was to investigate whether a pharmacokinetic model integrating in vitro mdr1a efflux activity (which we previously reported) with in vitro/in vivo differences in protein expression level can reconstruct intestinal mdr1a function. In situ intestinal permeability-surface area product ratio between wild-type and mdr1a/1b (-/-) mice is one of the parameters used to describe intestinal mdr1a function. The reconstructed ratios of six mdr1a substrates (dexamethasone, digoxin, loperamide, quinidine, verapamil, vinblastine) and one nonsubstrate (diazepam) were consistent with the observed values reported by Adachi et al. within 2.1-fold difference. Thus, intestinal mdr1a function can be reconstructed by our pharmacoproteomic modeling approach. Furthermore, we evaluated regional differences in protein expression levels of mouse intestinal transporters. Sixteen (mdr1a, mrp4, bcrp, abcg5, abcg8, glut1, 4f2hc, sglt1, lat2, pept1, mct1, slc22a18, ostβ, villin1, Na(+)/K(+)-ATPase, γ-gtp) out of 46 target molecules were detected by employing our established quantitative targeted absolute proteomics technique. The protein expression amounts of mdr1a and bcrp increased progressively from duodenum to ileum. Sglt1, lat2, and 4f2hc were highly expressed in jejunum and ileum. Mct1 and ostβ were highly expressed in ileum. The quantitative expression profiles established here should be helpful to understand and predict intestinal transporter functions.
Collapse
Affiliation(s)
- Takanori Akazawa
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University , 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Yasuo Uchida
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University , 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Masanori Tachikawa
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University , 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University , 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Tetsuya Terasaki
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University , 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
22
|
Brzozowska N, Li KM, Wang XS, Booth J, Stuart J, McGregor IS, Arnold JC. ABC transporters P-gp and Bcrp do not limit the brain uptake of the novel antipsychotic and anticonvulsant drug cannabidiol in mice. PeerJ 2016; 4:e2081. [PMID: 27257556 PMCID: PMC4888295 DOI: 10.7717/peerj.2081] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/03/2016] [Indexed: 12/14/2022] Open
Abstract
Cannabidiol (CBD) is currently being investigated as a novel therapeutic for the treatment of CNS disorders like schizophrenia and epilepsy. ABC transporters such as P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) mediate pharmacoresistance in these disorders. P-gp and Bcrp are expressed at the blood brain barrier (BBB) and reduce the brain uptake of substrate drugs including various antipsychotics and anticonvulsants. It is therefore important to assess whether CBD is prone to treatment resistance mediated by P-gp and Bcrp. Moreover, it has become common practice in the drug development of CNS agents to screen against ABC transporters to help isolate lead compounds with optimal pharmacokinetic properties. The current study aimed to assess whether P-gp and Bcrp impacts the brain transport of CBD by comparing CBD tissue concentrations in wild-type (WT) mice versus mice devoid of ABC transporter genes. P-gp knockout (Abcb1a/b (-∕-)), Bcrp knockout (Abcg2 (-∕-)), combined P-gp/Bcrp knockout (Abcb1a/b (-∕-) Abcg2 (-∕-)) and WT mice were injected with CBD, before brain and plasma samples were collected at various time-points. CBD results were compared with the positive control risperidone and 9-hydroxy risperidone, antipsychotic drugs that are established ABC transporter substrates. Brain and plasma concentrations of CBD were not greater in P-gp, Bcrp or P-gp/Bcrp knockout mice than WT mice. In comparison, the brain/plasma concentration ratios of risperidone and 9-hydroxy risperidone were profoundly higher in P-gp knockout mice than WT mice. These results suggest that CBD is not a substrate of P-gp or Bcrp and may be free from the complication of reduced brain uptake by these transporters. Such findings provide favorable evidence for the therapeutic development of CBD in the treatment of various CNS disorders.
Collapse
Affiliation(s)
- Natalia Brzozowska
- Discipline of Pharmacology, School of Medical Science, University of Sydney , Sydney, NSW , Australia
| | - Kong M Li
- Discipline of Pharmacology, School of Medical Science, University of Sydney , Sydney, NSW , Australia
| | - Xiao Suo Wang
- Bosch Mass Spectrometry Facility, Bosch Institute, Sydney Medical School, University of Sydney , Sydney, NSW , Australia
| | - Jessica Booth
- Psychopharmacology Laboratory, School of Psychology, Faculty of Science, University of Sydney , Sydney, NSW , Australia
| | - Jordyn Stuart
- The Lambert Initiative of Cannabinoid Therapeutics, The Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia; Psychopharmacology Laboratory, School of Psychology, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Iain S McGregor
- The Lambert Initiative of Cannabinoid Therapeutics, The Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia; Psychopharmacology Laboratory, School of Psychology, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Jonathon C Arnold
- Discipline of Pharmacology, School of Medical Science, University of Sydney, Sydney, NSW, Australia; The Lambert Initiative of Cannabinoid Therapeutics, The Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
23
|
Fletcher JI, Williams RT, Henderson MJ, Norris MD, Haber M. ABC transporters as mediators of drug resistance and contributors to cancer cell biology. Drug Resist Updat 2016; 26:1-9. [PMID: 27180306 DOI: 10.1016/j.drup.2016.03.001] [Citation(s) in RCA: 286] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 03/04/2016] [Accepted: 03/12/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Jamie I Fletcher
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, Randwick, NSW, Australia
| | - Rebekka T Williams
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, Randwick, NSW, Australia
| | - Michelle J Henderson
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, Randwick, NSW, Australia
| | - Murray D Norris
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, Randwick, NSW, Australia
| | - Michelle Haber
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, Randwick, NSW, Australia.
| |
Collapse
|
24
|
|
25
|
Ditzel EJ, Li H, Foy CE, Perrera AB, Parker P, Renquist BJ, Cherrington NJ, Camenisch TD. Altered Hepatic Transport by Fetal Arsenite Exposure in Diet-Induced Fatty Liver Disease. J Biochem Mol Toxicol 2016; 30:321-30. [PMID: 26890134 DOI: 10.1002/jbt.21796] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 01/09/2016] [Accepted: 01/15/2016] [Indexed: 12/21/2022]
Abstract
Non-alcoholic fatty liver disease can result in changes to drug metabolism and disposition potentiating adverse drug reactions. Furthermore, arsenite exposure during development compounds the severity of diet-induced fatty liver disease. This study examines the effects of arsenite potentiated diet-induced fatty liver disease on hepatic transport in male mice. Changes were detected for Mrp2/3/4 hepatic transporter gene expression as well as for Oatp1a4/2b1/1b2. Plasma concentrations of Mrp and Oatp substrates were increased in arsenic exposure groups compared with diet-only controls. In addition, murine embryonic hepatocytes and adult primary hepatocytes show significantly altered transporter expression after exposure to arsenite alone: a previously unreported phenomenon. These data indicate that developmental exposure to arsenite leads to changes in hepatic transport which could increase the risk for ADRs during fatty liver disease.
Collapse
Affiliation(s)
- Eric J Ditzel
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA.
| | - Hui Li
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
| | - Caroline E Foy
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, 85721, USA
| | - Alec B Perrera
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
| | - Patricia Parker
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
| | - Benjamin J Renquist
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, 85721, USA
| | - Nathan J Cherrington
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA.,Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, AZ, 85721, USA
| | - Todd D Camenisch
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA.,Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, AZ, 85721, USA.,Steele Children's Research Center, Arizona Health Sciences Center, The University of Arizona, Tucson, AZ, 85724, USA.,Sarver Heart Center, The University of Arizona, Tucson, AZ, 85724, USA.,Bio5 Institute, The University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
26
|
Tang SC, Kort A, Cheung KL, Rosing H, Fukami T, Durmus S, Wagenaar E, Hendrikx JJMA, Nakajima M, van Vlijmen BJM, Beijnen JH, Schinkel AH. P-glycoprotein, CYP3A, and Plasma Carboxylesterase Determine Brain Disposition and Oral Availability of the Novel Taxane Cabazitaxel (Jevtana) in Mice. Mol Pharm 2015; 12:3714-23. [PMID: 26317243 DOI: 10.1021/acs.molpharmaceut.5b00470] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We aimed to clarify the roles of the multidrug-detoxifying proteins ABCB1, ABCG2, ABCC2, and CYP3A in oral availability and brain accumulation of cabazitaxel, a taxane developed for improved therapy of docetaxel-resistant prostate cancer. Cabazitaxel pharmacokinetics were studied in Abcb1a/1b, Abcg2, Abcc2, Cyp3a, and combination knockout mice. We found that human ABCB1, but not ABCG2, transported cabazitaxel in vitro. Upon oral cabazitaxel administration, total plasma levels were greatly increased due to binding to plasma carboxylesterase Ces1c, which is highly upregulated in several knockout strains. Ces1c inhibition and in vivo hepatic Ces1c knockdown reversed these effects. Correcting for Ces1c effects, Abcb1a/1b, Abcg2, and Abcc2 did not restrict cabazitaxel oral availability, whereas Abcb1a/1b, but not Abcg2, dramatically reduced cabazitaxel brain accumulation (>10-fold). Coadministration of the ABCB1 inhibitor elacridar completely reversed this brain accumulation effect. After correction for Ces1c effects, Cyp3a knockout mice demonstrated a strong (six-fold) increase in cabazitaxel oral availability, which was completely reversed by transgenic human CYP3A4 in intestine and liver. Cabazitaxel markedly inhibited mouse Ces1c, but human CES1 and CES2 only weakly. Ces1c upregulation can thus complicate preclinical cabazitaxel studies. In summary, ABCB1 limits cabazitaxel brain accumulation and therefore potentially therapeutic efficacy against (micro)metastases or primary tumors positioned wholly or partly behind a functional blood-brain barrier. This can be reversed with elacridar coadministration, and similar effects may apply to ABCB1-expressing tumors. CYP3A4 profoundly reduces the oral availability of cabazitaxel. This may potentially be greatly improved by coadministering ritonavir or other CYP3A inhibitors, suggesting the option of patient-friendly oral cabazitaxel therapy.
Collapse
Affiliation(s)
- Seng Chuan Tang
- Department of Molecular Oncology, The Netherlands Cancer Institute , 1066 CX Amsterdam, The Netherlands
| | - Anita Kort
- Department of Molecular Oncology, The Netherlands Cancer Institute , 1066 CX Amsterdam, The Netherlands.,Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek , 1066 CX Amsterdam, The Netherlands
| | - Ka Lei Cheung
- Department of Thrombosis and Hemostasis, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center , 2333 ZA Leiden, The Netherlands
| | - Hilde Rosing
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek , 1066 CX Amsterdam, The Netherlands
| | - Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University , Kakuma-machi, Kanazawa 920-1192, Japan
| | - Selvi Durmus
- Department of Molecular Oncology, The Netherlands Cancer Institute , 1066 CX Amsterdam, The Netherlands
| | - Els Wagenaar
- Department of Molecular Oncology, The Netherlands Cancer Institute , 1066 CX Amsterdam, The Netherlands
| | - Jeroen J M A Hendrikx
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek , 1066 CX Amsterdam, The Netherlands
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University , Kakuma-machi, Kanazawa 920-1192, Japan
| | - Bart J M van Vlijmen
- Department of Thrombosis and Hemostasis, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center , 2333 ZA Leiden, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek , 1066 CX Amsterdam, The Netherlands.,Division of Pharmacoepidemiology and Clinical Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University , 3512 JE Utrecht, The Netherlands
| | - Alfred H Schinkel
- Department of Molecular Oncology, The Netherlands Cancer Institute , 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
27
|
Zhang W, Deng J, Sunkara M, Morris AJ, Wang C, St Clair D, Vore M. Loss of multidrug resistance-associated protein 1 potentiates chronic doxorubicin-induced cardiac dysfunction in mice. J Pharmacol Exp Ther 2015; 355:280-7. [PMID: 26354995 DOI: 10.1124/jpet.115.225581] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 08/26/2015] [Indexed: 12/20/2022] Open
Abstract
Doxorubicin (DOX), an effective cancer chemotherapeutic agent, induces dose-dependent cardiotoxicity, in part due to its ability to cause oxidative stress. We investigated the role of multidrug resistance-associated protein 1 (Mrp1/Abcc1) in DOX-induced cardiotoxicity in C57BL wild-type (WT) mice and their Mrp1 null (Mrp1(-/-)) littermates. Male mice were administered intraperitoneal DOX (3 or 2 mg/kg body weight) or saline twice a week for 3 weeks and examined 2 weeks after the last dose (protocol A total dose: 18 mg/kg) or for 5 weeks, and mice were examined 48 hours and 2 weeks after the last dose (protocol B total dose: 20 mg/kg). Chronic DOX induced body weight loss and hemotoxicity, adverse effects significantly exacerbated in Mrp1(-/-) versus WT mice. In the heart, significantly higher basal levels of glutathione (1.41-fold ± 0.27-fold) and glutathione disulfide (1.35-fold ± 0.16-fold) were detected in Mrp1(-/-) versus WT mice, and there were comparable decreases in the glutathione/glutathione disulfide ratio in WT and Mrp1(-/-) mice after DOX administration. Surprisingly, DOX induced comparable increases in 4-hydroxynonenal glutathione conjugate concentration in hearts from WT and Mrp1(-/-) mice. However, more DOX-induced apoptosis was detected in Mrp1(-/-) versus WT hearts (P < 0.05) (protocol A), and cardiac function, assessed by measurement of fractional shortening and ejection fraction with echocardiography, was significantly decreased by DOX in Mrp1(-/-) versus WT mice (P < 0.05; 95% confidence intervals of 20.0%-24.3% versus 23.7%-29.5% for fractional shortening, and 41.5%-48.4% versus 47.7%-56.7% for ejection fraction; protocol B). Together, these data indicate that Mrp1 protects the mouse heart against chronic DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Toxicology and Cancer Biology (W.Z., J.D., D.S.C., M.V.), Division of Cardiovascular Medicine, (M.S., A.J.M), and Markey Cancer Center (C.W.), College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Jun Deng
- Department of Toxicology and Cancer Biology (W.Z., J.D., D.S.C., M.V.), Division of Cardiovascular Medicine, (M.S., A.J.M), and Markey Cancer Center (C.W.), College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Manjula Sunkara
- Department of Toxicology and Cancer Biology (W.Z., J.D., D.S.C., M.V.), Division of Cardiovascular Medicine, (M.S., A.J.M), and Markey Cancer Center (C.W.), College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Andrew J Morris
- Department of Toxicology and Cancer Biology (W.Z., J.D., D.S.C., M.V.), Division of Cardiovascular Medicine, (M.S., A.J.M), and Markey Cancer Center (C.W.), College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Chi Wang
- Department of Toxicology and Cancer Biology (W.Z., J.D., D.S.C., M.V.), Division of Cardiovascular Medicine, (M.S., A.J.M), and Markey Cancer Center (C.W.), College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Daret St Clair
- Department of Toxicology and Cancer Biology (W.Z., J.D., D.S.C., M.V.), Division of Cardiovascular Medicine, (M.S., A.J.M), and Markey Cancer Center (C.W.), College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Mary Vore
- Department of Toxicology and Cancer Biology (W.Z., J.D., D.S.C., M.V.), Division of Cardiovascular Medicine, (M.S., A.J.M), and Markey Cancer Center (C.W.), College of Medicine, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
28
|
Qiu L, Finley J, Taimi M, Aleo MD, Strock C, Gilbert J, Qin S, Will Y. High-Content Imaging in Human and Rat Hepatocytes Using the Fluorescent Dyes CLF and CMFDA Is Not Specific Enough to Assess BSEP/Bsep and/or MRP2/Mrp2 Inhibition by Cholestatic Drugs. ACTA ACUST UNITED AC 2015. [DOI: 10.1089/aivt.2015.0014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Luping Qiu
- Center for Therapeutic Innovation, Pfizer Global R&D, New York, New York
| | - James Finley
- Drug Safety Research and Development, Global Pfizer R&D, Groton, Connecticut
| | - Mohammed Taimi
- Drug Safety Research and Development, Global Pfizer R&D, Groton, Connecticut
| | - Michael D. Aleo
- Drug Safety Research and Development, Global Pfizer R&D, Groton, Connecticut
| | | | | | | | - Yvonne Will
- Drug Safety Research and Development, Global Pfizer R&D, Groton, Connecticut
| |
Collapse
|
29
|
Alfarouk KO, Stock CM, Taylor S, Walsh M, Muddathir AK, Verduzco D, Bashir AHH, Mohammed OY, Elhassan GO, Harguindey S, Reshkin SJ, Ibrahim ME, Rauch C. Resistance to cancer chemotherapy: failure in drug response from ADME to P-gp. Cancer Cell Int 2015; 15:71. [PMID: 26180516 PMCID: PMC4502609 DOI: 10.1186/s12935-015-0221-1] [Citation(s) in RCA: 369] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/30/2015] [Indexed: 12/15/2022] Open
Abstract
Cancer chemotherapy resistance (MDR) is the innate and/or acquired ability of cancer cells to evade the effects of chemotherapeutics and is one of the most pressing major dilemmas in cancer therapy. Chemotherapy resistance can arise due to several host or tumor-related factors. However, most current research is focused on tumor-specific factors and specifically genes that handle expression of pumps that efflux accumulated drugs inside malignantly transformed types of cells. In this work, we suggest a wider and alternative perspective that sets the stage for a future platform in modifying drug resistance with respect to the treatment of cancer.
Collapse
Affiliation(s)
- Khalid O Alfarouk
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | | | - Sophie Taylor
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Megan Walsh
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | | | | | - Adil H H Bashir
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | | | - Gamal O Elhassan
- Uneizah Pharmacy College, Qassim University, AL-Qassim, Kingdom of Saudi Arabia ; Faculty of Pharmacy, Omdurman Islamic University, Khartoum, Sudan
| | | | - Stephan J Reshkin
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | | | - Cyril Rauch
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| |
Collapse
|
30
|
Myint K, Li Y, Paxton J, McKeage M. Multidrug Resistance-Associated Protein 2 (MRP2) Mediated Transport of Oxaliplatin-Derived Platinum in Membrane Vesicles. PLoS One 2015; 10:e0130727. [PMID: 26131551 PMCID: PMC4488857 DOI: 10.1371/journal.pone.0130727] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/24/2015] [Indexed: 12/15/2022] Open
Abstract
The platinum-based anticancer drug oxaliplatin is important clinically in cancer treatment. However, the role of multidrug resistance-associated protein 2 (MRP2) in controlling oxaliplatin membrane transport, in vivo handling, toxicity and therapeutic responses is unclear. In the current study, preparations of MRP2-expressing and control membrane vesicles, containing inside-out orientated vesicles, were used to directly characterise the membrane transport of oxaliplatin-derived platinum measured by inductively coupled plasma mass spectrometry. Oxaliplatin inhibited the ATP-dependent accumulation of the model MRP2 fluorescent probe, 5(6)-carboxy-2,'7'-dichlorofluorescein, in MRP2-expressing membrane vesicles. MRP2-expressing membrane vesicles accumulated up to 19-fold more platinum during their incubation with oxaliplatin and ATP as compared to control membrane vesicles and in the absence of ATP. The rate of ATP-dependent MRP2-mediated active transport of oxaliplatin-derived platinum increased non-linearly with increasing oxaliplatin exposure concentration, approaching a plateau value (Vmax) of 2680 pmol Pt/mg protein/10 minutes (95%CI, 2010 to 3360 pmol Pt/mg protein/10 minutes), with the half-maximal platinum accumulation rate (Km) at an oxaliplatin exposure concentration of 301 μM (95% CI, 163 to 438 μM), in accordance with Michaelis-Menten kinetics (r2 = 0.954). MRP2 inhibitors (myricetin and MK571) reduced the ATP-dependent accumulation of oxaliplatin-derived platinum in MRP2-expressing membrane vesicles in a concentration-dependent manner. To identify whether oxaliplatin, or perhaps a degradation product, was the likely substrate for this active transport, HPLC studies were undertaken showing that oxaliplatin degraded slowly in membrane vesicle incubation buffer containing chloride ions and glutathione, with approximately 95% remaining intact after a 10 minute incubation time and a degradation half-life of 2.24 hours (95%CI, 2.08 to 2.43 hours). In conclusion, MRP2 mediates the ATP-dependent active membrane transport of oxaliplatin-derived platinum. Intact oxaliplatin and its anionic monochloro oxalate ring-opened intermediate appear likely candidates as substrates for MRP2-mediated transport.
Collapse
Affiliation(s)
- Khine Myint
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand
| | - Yan Li
- School of Applied Sciences, Auckland University of Technology, Auckland, New Zealand
| | - James Paxton
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Mark McKeage
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
- * E-mail:
| |
Collapse
|
31
|
Shin N, Oh JH, Lee YJ. Role of drug transporters: an overview based on knockout animal model studies. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2015. [DOI: 10.1007/s40005-015-0178-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Baiceanu E, Crisan G, Loghin F, Falson P. Modulators of the human ABCC2: hope from natural sources? Future Med Chem 2015; 7:2041-63. [PMID: 26496229 DOI: 10.4155/fmc.15.131] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Human ABCC2 is an ATP-binding cassette transporter involved in the export of endobiotics and xenobiotics. It is involved in cisplatin resistance in cancer cells, particularly in ovarian cancer. The few known ABCC2 modulators are poorly efficient, so it is necessary to explore new ways to select and optimize efficient compounds ABCC2. Natural products offer an original scaffold for such a strategy and brings hope for this aim. This review covers basic knowledge about ABCC2, from distribution and topology aspects to physiological and pathological functions. It summarizes the effect of natural products as ABCC2 modulators. Certain plant metabolites act on different ABCC2 regulation levels and therefore are promising candidates to block the multidrug resistance mediated by ABCC2 in cancer cells.
Collapse
Affiliation(s)
- Elisabeta Baiceanu
- Drug Resistance Modulation & Membrane Proteins Laboratory, Molecular & Structural Basis of Infectious Systems, Mixed Research Unit between the National Centre for Scientific Research & Lyon I University n 5086, Institute of Biology & Chemistry of Proteins, 7 passage du Vercors 69367, Lyon, Cedex, France
- Pharmaceutical Botany Department, Faculty of Pharmacy, University of Medicine & Pharmacy 'Iuliu Haţieganu' Cluj-Napoca, 23 Marinescu Street, Cluj-Napoca, Romania
| | - Gianina Crisan
- Pharmaceutical Botany Department, Faculty of Pharmacy, University of Medicine & Pharmacy 'Iuliu Haţieganu' Cluj-Napoca, 23 Marinescu Street, Cluj-Napoca, Romania
| | - Felicia Loghin
- Toxicology Department, Faculty of Pharmacy, University of Medicine & Pharmacy 'Iuliu Haţieganu' Cluj-Napoca, 5-9 Louis Pasteur Street, Cluj-Napoca, Romania
| | - Pierre Falson
- Drug Resistance Modulation & Membrane Proteins Laboratory, Molecular & Structural Basis of Infectious Systems, Mixed Research Unit between the National Centre for Scientific Research & Lyon I University n 5086, Institute of Biology & Chemistry of Proteins, 7 passage du Vercors 69367, Lyon, Cedex, France
| |
Collapse
|
33
|
van der Schoor LWE, Verkade HJ, Kuipers F, Jonker JW. New insights in the biology of ABC transporters ABCC2 and ABCC3: impact on drug disposition. Expert Opin Drug Metab Toxicol 2014; 11:273-93. [PMID: 25380746 DOI: 10.1517/17425255.2015.981152] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION For the elimination of environmental chemicals and metabolic waste products, the body is equipped with a range of broad specificity transporters that are present in excretory organs as well as in several epithelial blood-tissue barriers. AREAS COVERED ABCC2 and ABCC3 (also known as MRP2 and MRP3) mediate the transport of various conjugated organic anions, including many drugs, toxicants and endogenous compounds. This review focuses on the physiology of these transporters, their roles in drug disposition and how they affect drug sensitivity and toxicity. It also examines how ABCC2 and ABCC3 are coordinately regulated at the transcriptional level by members of the nuclear receptor (NR) family of ligand-modulated transcription factors and how this can be therapeutically exploited. EXPERT OPINION Mutations in both ABCC2 and ABCC3 have been associated with changes in drug disposition, sensitivity and toxicity. A defect in ABCC2 is associated with Dubin-Johnson syndrome, a recessively inherited disorder characterized by conjugated hyperbilirubinemia. Pharmacological manipulation of the activity of these transporters can potentially improve the pharmacokinetics and thus therapeutic activity of substrate drugs but also affect the physiological function of these transporters and consequently ameliorate associated disease states.
Collapse
Affiliation(s)
- Lori W E van der Schoor
- University of Groningen, University Medical Center Groningen, Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics , Hanzeplein 1, 9713 GZ Groningen , The Netherlands
| | | | | | | |
Collapse
|
34
|
The role of the efflux carriers Abcg2 and Abcc2 for the hepatobiliary elimination of benzo[a]pyrene and its metabolites in mice. Chem Biol Interact 2014; 224:36-41. [PMID: 25451572 DOI: 10.1016/j.cbi.2014.10.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/16/2014] [Accepted: 10/06/2014] [Indexed: 01/20/2023]
Abstract
The ATP-binding cassette transporters Breast Cancer Resistance Protein (Abcg2) and Multidrug Resistance-associated Protein 2 (Abcc2) play an important role for the hepatobiliary elimination of drugs and toxins as well as their metabolites. Previous in vitro transport studies showed that both transporters are involved in the active efflux of phase II metabolites of carcinogenic benzo[a]pyrene (BP), however the role of these carriers in hepatobiliary elimination in vivo is still unknown. In the present study, Abcg2(-/-) and Abcc2(-/-) knockout mice were used to elucidate the role of Abcg2 and Abcc2 for the hepatobiliary excretion of BP and its metabolites. After intravenous application of [(3)H]BP the hepatobiliary excretion was significantly reduced in these mice: whereas wild type mice excreted on average 25.4% of the applied dose into the bile over 90min, Abcg2(-/-) knockout mice only excreted 10.7% and Abcc2(-/-) knockout mice 8.6%. As a consequence, [(3)H]BP concentrations were in general higher in the plasma and in most of the organs of the Abcg2 and Abcc2 knockout mice. Both transporters may have a protective function for BP-induced carcinogenesis in humans, due to its crucial importance for the hepatobiliary elimination of BP via bile. Subjects with reduced ABCG2 or ABCC2 expression might have higher oral bioavailability for BP due to a reduced excretion and so might be more susceptible to BP-induced carcinogenesis.
Collapse
|
35
|
Clinical Relevance of Multidrug-Resistance-Proteins (MRPs) for Anticancer Drug Resistance and Prognosis. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/978-3-319-09801-2_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
36
|
Benz-de Bretagne I, Zahr N, Le Gouge A, Hulot JS, Houillier C, Hoang-Xuan K, Gyan E, Lissandre S, Choquet S, Le Guellec C. Urinary coproporphyrin I/(I + III) ratio as a surrogate for MRP2 or other transporter activities involved in methotrexate clearance. Br J Clin Pharmacol 2014; 78:329-42. [PMID: 24433481 PMCID: PMC4137825 DOI: 10.1111/bcp.12326] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 01/03/2014] [Indexed: 12/21/2022] Open
Abstract
AIMS The urinary coproporphyrin I/(I + III) ratio may be a surrogate for MRP2 activity. We conducted a prospective study in patients receiving methotrexate (MTX) to examine the relationship between this ratio and the pharmacokinetics of a MRP2 substrate. METHODS Three urine samples were collected from 81 patients for UCP I/(I + III) ratio determination: one before (P1), one at the end of MTX infusion (P2), and one on the day of hospital discharge (P3). Three polymorphisms of ABCC2 were analysed and their relationships with basal UCP I/(I + III) ratio values assessed. All associated drugs were recorded and a drug interaction score (DIS) was assigned. Population pharmacokinetic analysis was conducted to assess whether MTX clearance (MTXCL) was associated with the basal UCP I/(I + III) ratio, its variation during MTX infusion, the DIS or other common covariates. RESULTS The basal UCP I/(I + III) ratio was not associated with ABCC2 polymorphisms and did not differ according to the DIS. Significant changes in the ratio were observed over time, with an increase between P1 and P2 and a decrease at P3 (P < 0.001). No association was found between basal UCP I/(I + III) ratio and MTXCL. The final model indicates that MTXCL was dependent on the change in the ratio between P1 and P3, DIS and creatinine clearance. CONCLUSION The basal UCP I/(I + III) ratio is not predictive of MTXCL. However, it is sensitive to the presence of MTX, so it is plausible that it reflects a function modified in response to the drug.
Collapse
Affiliation(s)
- Isabelle Benz-de Bretagne
- Laboratoire de Biochimie et Biologie Moléculaire, CHRU de ToursTours, France
- Université François Rabelais de Tours, PRES Centre Val de Loire UniversitéEA4245, Tours, France
| | - Noël Zahr
- Service de Pharmacologie, CHU Pitié-SalpêtrièreAP-HP, Paris, France
| | - Amélie Le Gouge
- CHRU de Tours, Centre d'investigation cliniqueTours, France
- Université François Rabelais de Tours, PRES Centre Val de Loire UniversitéInserm 202, Tours, France
| | - Jean-Sébastien Hulot
- Service de Pharmacologie, CHU Pitié-SalpêtrièreAP-HP, Paris, France
- UPMC Université Paris 06UMR_S 956, Paris, France
| | - Caroline Houillier
- Service de Neurologie, CHU Pitié-Salpêtrière, Centre expert national LOCAP-HP, Paris, France
| | - Khe Hoang-Xuan
- Service de Neurologie, CHU Pitié-Salpêtrière, Centre expert national LOCAP-HP, Paris, France
| | - Emmanuel Gyan
- Service d'Hématologie et Thérapie Cellulaire, CHRU de ToursTours, France
| | - Séverine Lissandre
- Service d'Hématologie et Thérapie Cellulaire, CHRU de ToursTours, France
| | - Sylvain Choquet
- Service d'Hématologie, CHU Pitié-SalpêtrièreAP-HP, Paris, France
| | - Chantal Le Guellec
- Laboratoire de Biochimie et Biologie Moléculaire, CHRU de ToursTours, France
- Université François Rabelais de Tours, PRES Centre Val de Loire UniversitéEA4245, Tours, France
| |
Collapse
|
37
|
Structure and function of BCRP, a broad specificity transporter of xenobiotics and endobiotics. Arch Toxicol 2014; 88:1205-48. [DOI: 10.1007/s00204-014-1224-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 03/06/2014] [Indexed: 12/20/2022]
|
38
|
Wen X, Buckley B, McCandlish E, Goedken MJ, Syed S, Pelis R, Manautou JE, Aleksunes LM. Transgenic expression of the human MRP2 transporter reduces cisplatin accumulation and nephrotoxicity in Mrp2-null mice. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1299-308. [PMID: 24641901 DOI: 10.1016/j.ajpath.2014.01.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/06/2014] [Accepted: 01/13/2014] [Indexed: 12/22/2022]
Abstract
The chemotherapeutic drug cisplatin is actively transported into proximal tubules, leading to acute renal injury. Previous studies suggest that the multidrug resistance-associated protein 2 (Mrp2) transporter may efflux cisplatin conjugates from cells. We sought to determine whether the absence of Mrp2 alters the accumulation and toxicity of platinum in the kidneys of mice and whether transgenic expression of the human MRP2 gene could protect against cisplatin injury in vivo. Plasma, kidneys, and livers from vehicle- and cisplatin-treated wild-type and Mrp2-null mice were collected for quantification of platinum and toxicity. By 24 hours, twofold higher concentrations of platinum were detected in the kidneys and livers of Mrp2-null mice compared with wild types. Enhanced platinum concentrations in Mrp2-null mice were observed in DNA and cytosolic fractions of the kidneys. Four days after cisplatin treatment, more extensive proximal tubule injury was observed in Mrp2-null mice compared with wild-type mice. Kidneys from naive Mrp2-null mice had elevated glutathione S-transferase mRNA levels, which could increase the formation of cisplatin-glutathione conjugates that may be metabolized to toxic thiol intermediates. Transgenic expression of the human MRP2 gene in Mrp2-null mice reduced the accumulation and nephrotoxicity of cisplatin to levels observed in wild-type mice. These data suggest that deficiency in Mrp2 lowers platinum excretion and increases susceptibility to kidney injury, which can be rescued by the human MRP2 ortholog.
Collapse
Affiliation(s)
- Xia Wen
- Department of Pharmacology and Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Brian Buckley
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Elizabeth McCandlish
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Michael J Goedken
- Department of Pharmacology and Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Samira Syed
- Department of Pharmacology and Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Ryan Pelis
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - José E Manautou
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey; Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey.
| |
Collapse
|
39
|
Dubbelboer IR, Lilienberg E, Hedeland M, Bondesson U, Piquette-Miller M, Sjögren E, Lennernäs H. The effects of lipiodol and cyclosporin A on the hepatobiliary disposition of doxorubicin in pigs. Mol Pharm 2014; 11:1301-13. [PMID: 24558959 DOI: 10.1021/mp4007612] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Doxorubicin (DOX) emulsified in Lipiodol (LIP) is used as local palliative treatment for unresectable intermediate stage hepatocellular carcinoma. The objective of this study was to examine the poorly understood effects of the main excipient in the drug delivery system, LIP, alone or together with cyclosporin A (CsA), on the in vivo liver disposition of DOX and its active metabolite doxorubicinol (DOXol). The advanced, multi-sampling-site, acute pig model was used; samples were collected from three blood vessels (v. portae, v. hepatica and v. femoralis), bile and urine. The four treatment groups (TI-TIV) all received two intravenous 5 min infusions of DOX into an ear vein: at 0 and 200 min. Before the second dose, the pigs received a portal vein infusion of saline (TI), LIP (TII), CsA (TIII) or LIP and CsA (TIV). Concentrations of DOX and DOXol were analyzed using UPLC-MS/MS. The developed multicompartment model described the distribution of DOX and DOXol in plasma, bile and urine. LIP did not affect the pharmacokinetics of DOX or DOXol. CsA (TIII and TIV) had no effect on the plasma pharmacokinetics of DOX, but a 2-fold increase in exposure to DOXol and a significant decrease in hepatobiliary clearance of DOX and DOXol were observed. Model simulations supported that CsA inhibits 99% of canalicular biliary secretion of both DOX and DOXol, but does not affect the metabolism of DOX to DOXol. In conclusion, LIP did not directly interact with transporters, enzymes and/or biological membranes important for the hepatobiliary disposition of DOX.
Collapse
Affiliation(s)
- Ilse R Dubbelboer
- Department of Pharmacy, Uppsala University , Box 580, 751 23 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
40
|
Durmus S, Naik J, Buil L, Wagenaar E, van Tellingen O, Schinkel AH. In vivo disposition of doxorubicin is affected by mouse Oatp1a/1b and human OATP1A/1B transporters. Int J Cancer 2014; 135:1700-10. [PMID: 24554572 DOI: 10.1002/ijc.28797] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 02/04/2014] [Indexed: 01/30/2023]
Abstract
Organic anion-transporting polypeptides (OATPs) are important drug uptake transporters, mediating distribution of substrates to several pharmacokinetically relevant organs. Doxorubicin is a widely used anti-cancer drug extensively studied for its interactions with various drug transporters, but not OATPs. Here, we investigated the role of OATP1A/1B proteins in the distribution of doxorubicin. In vitro, we observed ∼ 2-fold increased doxorubicin uptake in HEK293 cells overexpressing human OATP1A2, but not OATP1B1 or OATP1B3. In mice, absence of Oatp1a/1b transporters led to up to 2-fold higher doxorubicin plasma concentrations and 1.3-fold higher plasma AUC. Conversely, liver AUC and liver-to-plasma ratios of Oatp1a/1b(-/-) mice were 1.4-fold and up to 4.1-fold lower than in wild-type mice, respectively. Decreased doxorubicin levels in the small intestinal content reflected those in the liver, indicating a reduced biliary excretion of doxorubicin in Oatp1a/1b(-/-) mice. These results demonstrate important control of doxorubicin plasma clearance and hepatic uptake by mouse Oatp1a/1b transporters. This is unexpected, as the fairly hydrophobic weak base doxorubicin is an atypical OATP1A/1B substrate. Interestingly, transgenic liver-specific expression of human OATP1A2, OATP1B1 or OATP1B3 could partially rescue the increased doxorubicin plasma levels of Oatp1a/1b(-/-) mice. Hepatic uptake and bile-derived intestinal excretion of doxorubicin were completely reverted to wild-type levels by OATP1A2, and partially by OATP1B1 and OATP1B3. Thus, doxorubicin is transported by hepatocyte-expressed OATP1A2, -1B1 and -1B3 in vivo, illustrating an unexpectedly wide substrate specificity. These findings have possible implications for the uptake, disposition, therapy response and toxicity of doxorubicin, also in human tumors and tissues expressing these transporters.
Collapse
Affiliation(s)
- Selvi Durmus
- Division of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
41
|
Vlaming MLH, Teunissen SF, van de Steeg E, van Esch A, Wagenaar E, Brunsveld L, de Greef TFA, Rosing H, Schellens JHM, Beijnen JH, Schinkel AH. Bcrp1;Mdr1a/b;Mrp2 combination knockout mice: altered disposition of the dietary carcinogen PhIP (2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine) and its genotoxic metabolites. Mol Pharmacol 2014; 85:520-30. [PMID: 24334255 DOI: 10.1124/mol.113.088823] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
The multidrug transporters breast cancer resistance protein (BCRP), multidrug-resistance protein 1 (MDR1), and multidrug-resistance-associated protein (MRP) 2 and 3 eliminate toxic compounds from tissues and the body and affect the pharmacokinetics of many drugs and other potentially toxic compounds. The food-derived carcinogen PhIP (2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine) is transported by BCRP, MDR1, and MRP2. To investigate the overlapping functions of Bcrp1, Mdr1a/b, and Mrp2 in vivo, we generated Bcrp1;Mdr1a/b;Mrp2(-/-) mice, which are viable and fertile. These mice, together with Bcrp1;Mrp2;Mrp3(-/-) mice, were used to study the effects of the multidrug transporters on the pharmacokinetics of PhIP and its metabolites. Thirty minutes after oral or intravenous administration of PhIP (1 mg/kg), the PhIP levels in the small intestine were reduced 4- to 6-fold in Bcrp1;Mdr1a/b;Mrp2(-/) (-) and Bcrp1;Mrp2;Mrp3(-/-) mice compared with wild-type mice. Fecal excretion of PhIP was reduced 8- to 20-fold in knockouts. Biliary PhIP excretion was reduced 41-fold in Bcrp1;Mdr1a/b;Mrp2(-/-) mice. Biliary and small intestine levels of PhIP metabolites were reduced in Bcrp1;Mrp2-deficient mice. Furthermore, in both knockout strains, kidney levels and urinary excretion of genotoxic PhIP-metabolites were significantly increased, suggesting that reduced biliary excretion of PhIP and PhIP metabolites leads to increased urinary excretion of these metabolites and increased systemic exposure. Bcrp1 and Mdr1a limited PhIP brain accumulation. In Bcrp1;Mrp2;Mrp3(-/-), but not Bcrp1;Mdr1a/b;Mrp(-/-) mice, the carcinogenic metabolites N2-OH-PhIP (2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine) and PhIP-5-sulfate (a genotoxicity marker) accumulated in liver tissue, indicating that Mrp3 is involved in the sinusoidal secretion of these compounds. We conclude that Bcrp1, Mdr1a/b, Mrp2, and Mrp3 significantly affect tissue disposition and biliary and fecal elimination of PhIP and its carcinogenic metabolites and may affect PhIP-induced carcinogenesis as a result.
Collapse
Affiliation(s)
- Maria L H Vlaming
- Divisions of Molecular Oncology (M.L.H.V., E.v.d.S., A.v.E., E.W., A.H.S.) and Clinical Pharmacology (J.H.M.S.), The Netherlands Cancer Institute, Amsterdam, The Netherlands; Division of Pharmacy & Pharmacology, Slotervaart Hospital, Amsterdam, The Netherlands (S.F.T., H.R., J.H.B.); Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands (L.B., T.F.A.d.G.); and Department of Pharmaceutical Sciences, Science Faculty, Utrecht University, Utrecht, The Netherlands (J.H.M.S., J.H.B.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Döring B, Petzinger E. Phase 0 and phase III transport in various organs: combined concept of phases in xenobiotic transport and metabolism. Drug Metab Rev 2014; 46:261-82. [PMID: 24483608 DOI: 10.3109/03602532.2014.882353] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The historical phasing concept of drug metabolism and elimination was introduced to comprise the two phases of metabolism: phase I metabolism for oxidations, reductions and hydrolyses, and phase II metabolism for synthesis. With this concept, biological membrane barriers obstructing the accessibility of metabolism sites in the cells for drugs were not considered. The concept of two phases was extended to a concept of four phases when drug transporters were detected that guided drugs and drug metabolites in and out of the cells. In particular, water soluble or charged drugs are virtually not able to overcome the phospholipid membrane barrier. Drug transporters belong to two main clusters of transporter families: the solute carrier (SLC) families and the ATP binding cassette (ABC) carriers. The ABC transporters comprise seven families with about 20 carriers involved in drug transport. All of them operate as pumps at the expense of ATP splitting. Embedded in the former phase concept, the term "phase III" was introduced by Ishikawa in 1992 for drug export by ABC efflux pumps. SLC comprise 52 families, from which many carriers are drug uptake transporters. Later on, this uptake process was referred to as the "phase 0 transport" of drugs. Transporters for xenobiotics in man and animal are most expressed in liver, but they are also present in extra-hepatic tissues such as in the kidney, the adrenal gland and lung. This review deals with the function of drug carriers in various organs and their impact on drug metabolism and elimination.
Collapse
Affiliation(s)
- Barbara Döring
- Institute of Pharmacology and Toxicology, Biomedical Research Center Seltersberg, Justus-Liebig-University Giessen , Giessen , Germany
| | | |
Collapse
|
43
|
Cuperus FJC, Claudel T, Gautherot J, Halilbasic E, Trauner M. The role of canalicular ABC transporters in cholestasis. Drug Metab Dispos 2014; 42:546-60. [PMID: 24474736 DOI: 10.1124/dmd.113.056358] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cholestasis, a hallmark feature of hepatobiliary disease, is characterized by the retention of biliary constituents. Some of these constituents, such as bile acids, inflict damage to hepatocytes and bile duct cells. This damage may lead to inflammation, fibrosis, cirrhosis, and eventually carcinogenesis, sequelae that aggravate the underlying disease and deteriorate clinical outcome. Canalicular ATP-binding cassette (ABC) transporters, which mediate the excretion of individual bile constituents, play a key role in bile formation and cholestasis. The study of these transporters and their regulatory nuclear receptors has revolutionized our understanding of cholestatic disease. This knowledge has served as a template to develop novel treatment strategies, some of which are currently already undergoing phase III clinical trials. In this review we aim to provide an overview of the structure, function, and regulation of canalicular ABC transporters. In addition, we will focus on the role of these transporters in the pathogenesis and treatment of cholestatic bile duct and liver diseases.
Collapse
Affiliation(s)
- Frans J C Cuperus
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
44
|
Clinical relevance of drug efflux pumps in the gut. Curr Opin Pharmacol 2013; 13:847-52. [DOI: 10.1016/j.coph.2013.08.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/02/2013] [Accepted: 08/21/2013] [Indexed: 12/16/2022]
|
45
|
Kwatra D, Venugopal A, Standing D, Ponnurangam S, Dhar A, Mitra A, Anant S. Bitter melon extracts enhance the activity of chemotherapeutic agents through the modulation of multiple drug resistance. J Pharm Sci 2013; 102:4444-54. [PMID: 24129966 DOI: 10.1002/jps.23753] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/25/2013] [Accepted: 09/27/2013] [Indexed: 12/29/2022]
Abstract
Recently, we demonstrated that extracts of bitter melon (BME) can be used as a preventive/therapeutic agent in colon cancers. Here, we determined BME effects on anticancer activity and bioavailability of doxorubicin (DOX) in colon cancer cells. BME enhanced the effect of DOX on cell proliferation and sensitized the cells toward DOX upon pretreatment. Furthermore, there was both increased drug uptake and reduced drug efflux. We also observed a reduction in the expression of multidrug resistance conferring proteins (MDRCP) P-glycoprotein, MRP-2, and BCRP. Further BME suppressed DOX efflux in MDCK cells overexpressing the three efflux proteins individually, suggesting that BME is a potent inhibitor of MDR function. Next, we determined the effect of BME on PXR, a xenobiotic sensing nuclear receptor and a transcription factor that controls the expression of the three MDR genes. BME suppressed PXR promoter activity thereby suppressing its expression. Finally, we determined the effect of AMPK pathway on drug efflux because we have previously demonstrated that BME affects the pathway. However, inhibiting AMPK did not affect drug resistance, suggesting that BME may use different pathways for the anticancer and MDR modulating activities. Together, these results suggest that BME can enhance the bioavailability and efficacy of conventional chemotherapy.
Collapse
Affiliation(s)
- Deep Kwatra
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, 66160
| | | | | | | | | | | | | |
Collapse
|
46
|
Scheer N, Wolf CR. Genetically humanized mouse models of drug metabolizing enzymes and transporters and their applications. Xenobiotica 2013; 44:96-108. [DOI: 10.3109/00498254.2013.815831] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
47
|
Grimsley A, Gallagher R, Hutchison M, Pickup K, Wilson ID, Samuelsson K. Drug-drug interactions and metabolism in cytochrome P450 2C knockout mice: application to troleandomycin and midazolam. Biochem Pharmacol 2013; 86:529-38. [PMID: 23732297 DOI: 10.1016/j.bcp.2013.05.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/22/2013] [Accepted: 05/22/2013] [Indexed: 12/11/2022]
Abstract
Drug-drug interactions (DDIs) may cause serious drug toxicity and delay development of candidate drugs. Screening using human liver microsomes and hepatocytes can help predict DDIs but do not always provide the degree of certainty required for confident progression of a candidate drug. Thus a suitable in vivo test system could be of great value. Here a Cyp2c knockout (KO) mouse was investigated for studying DDIs using midazolam (MDZ) a standard human CYP3A4 substrate and troleandomycin (TAO) a potent human CYP3A4 inhibitor. Pharmacokinetics (PK) and biotransformation of MDZ were investigated following dosing to Cyp2c KO and wild type mice before and after TAO treatment. The noteworthy differences in the metabolism of MDZ in Cyp2c KO compared to wild type mice confirms the important role that Cyp2c enzymes play in the murine metabolism of MDZ in vivo. The impact of Cyp3a inhibition produced a further increase in circulating MDZ concentrations in all individuals from both strains of mice though the impact of the elimination of the Cyp2c pathway in the KO mice on the AUC was less than perhaps expected. We have shown that TAO produces an increase in the MDZ concentration and a reduction in the 1'hydroxymidazolam/midazolam formation ratio but the expected difference in the magnitude of this effect between the wild type and the Cyp2c KO mice was not seen. The magnitude of the TAO effect was also smaller than is reported in humans. Hence further work is required before this animal model could be used to predict clinical interactions.
Collapse
Affiliation(s)
- Aidan Grimsley
- Global DMPK, AstraZeneca UK Ltd., Alderley Park, Macclesfield SK10 4TG, United Kingdom
| | | | | | | | | | | |
Collapse
|
48
|
Choi YH, Lee YK, Lee MG. Effects of 17α-ethynylestradiol-induced cholestasis on the pharmacokinetics of doxorubicin in rats: reduced biliary excretion and hepatic metabolism of doxorubicin. Xenobiotica 2013; 43:901-7. [PMID: 23574017 DOI: 10.3109/00498254.2013.783250] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
1. Since the prevalent hormonal combination therapy with estrogen analogues in cancer patients has frequency and possibility to induce the cholestasis, the frequent combination therapy with 17α-ethynylestradiol (EE, an oral contraceptive) and doxorubicin (an anticancer drug) might be monitored in aspect of efficacy and safety. Doxorubicin is mainly excreted into the bile via P-glycoprotein (P-gp) and multidrug resistance-associated protein 2 (Mrp2) in hepatobiliary route and metabolized via cytochrome P450 (CYP) 3A subfamily. Also the hepatic Mrp2 (not P-gp) and CYP3A subfamily levels were reduced in EE-induced cholestatic (EEC) rats. Thus, we herein report the pharmacokinetic changes of doxorubicin with respect to the changes in its biliary excretion and hepatic metabolism in EEC rats. 2. The pharmacokinetic study of doxorubicin after intravenous administration of its hydrochloride was conducted along with the investigation of bile flow rate and hepatobiliary excretion of doxorubicin in control and EEC rats. 3. The significantly greater AUC (58.7% increase) of doxorubicin in EEC rats was due to the slower CL (32.9% decrease). The slower CL was due to the reduction of hepatic biliary excretion (67.0% decrease) and hepatic CYP3A subfamily-mediated metabolism (21.9% decrease) of doxorubicin. These results might have broader implications to understand the altered pharmacokinetics and/or pharmacologic effects of doxorubicin via biliary excretion and hepatic metabolism in experimental and clinical estrogen-induced cholestasis.
Collapse
Affiliation(s)
- Young Hee Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Dongguk University-Seoul, Goyang, South Korea and
| | | | | |
Collapse
|
49
|
Neyt S, Huisman MT, Vanhove C, De Man H, Vliegen M, Moerman L, Dumolyn C, Mannens G, De Vos F. In vivo visualization and quantification of (Disturbed) Oatp-mediated hepatic uptake and Mrp2-mediated biliary excretion of 99mTc-mebrofenin in mice. J Nucl Med 2013; 54:624-30. [PMID: 23440558 DOI: 10.2967/jnumed.112.108233] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Hepatic transport of (99m)Tc-mebrofenin through organic anion transport protein 1a and 1b (Oatp1a/1b) and multidrug resistance protein 2 (Mrp2) was investigated by small-animal SPECT. On the basis of the results, a noninvasive method to visualize and quantify disturbances in hepatic transport is proposed. METHODS Friend virus B wild-type mice (untreated, bile duct-ligated, vehicle- or rifampicin-treated) and strain-matched knockout mice unable to express the uptake transporters Oatp1a/1b (Slco1a/1b(-/-)/(-/-)) or the efflux transporter Mrp2 (Abcc2(-/-)) were intravenously injected with (99m)Tc-mebrofenin (n = 3 per group). After dynamic small-animal SPECT and short CT acquisitions, time-activity curves of the liver and of the gallbladder and intestines were obtained and correlated with direct blood samples. RESULTS Normal hepatobiliary clearance of (99m)Tc-mebrofenin was severely impaired in the bile duct-ligated animal, as evidenced by elevated hepatic tracer levels. In Slco1a/1b(-/-)/(-/-) mice, a lower area under the curve (AUC) for the liver (P = 0.014) was obtained and no activity was detected in the gallbladder and intestines. Renal rerouting was observed, along with an increase in the blood AUC (P = 0.01). Abcc2(-/-) mice had a higher liver AUC (P = 0.009), a delayed emergence time of (99m)Tc-mebrofenin in the gallbladder (P = 0.009), and a lower AUC for the gallbladder and intestines (P = 0.001). The blood curve was similar to that of wild-type mice. (99m)Tc-mebrofenin disposition was altered after rifampicin treatments. We observed a dose-dependent delayed time point at which tracer maximized in liver, an increased AUC for liver, and a lower AUC for gallbladder and intestines (P = 0.042, 0.034, and 0.001, respectively, highest dose). Emergence in the gallbladder occurred later (P = 0.009, highest dose), and blood AUC was higher (P = 0.006). CONCLUSION The current study visualized and quantified hepatic uptake and biliary efflux of (99m)Tc-mebrofenin. Our results demonstrated the possibility of discriminating, on a quantitative level, between lack of functional activity of sinusoidal uptake versus that of biliary efflux transporters.
Collapse
Affiliation(s)
- Sara Neyt
- Laboratory of Radiopharmacy, Ghent University, Ghent, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Li L, Agarwal S, Elmquist WF. Brain efflux index to investigate the influence of active efflux on brain distribution of pemetrexed and methotrexate. Drug Metab Dispos 2013; 41:659-67. [PMID: 23297298 DOI: 10.1124/dmd.112.049254] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Antifolates, in particular methotrexate (MTX), have been widely used in the treatment of primary and secondary tumors of the central nervous system (CNS). Pemetrexed (PMX) is a novel antifolate that also exhibits potent antitumor activity against CNS malignancies. Studies have shown that brain distribution of both antifolates is significantly restricted, possible due to active efflux transport at the blood-brain barrier (BBB). This study characterizes the brain-to-blood transport of PMX and MTX and examines the role of several efflux transporters in brain distribution of the antifolates by use of the intracerebral microinjection technique (brain efflux index). The results from this study show that both PMX and MTX undergo saturable efflux transport across the BBB, with elimination half-lives of approximately 39 minutes and 29 minutes, respectively. Of the various efflux transporters this study investigated, multidrug resistance-associated protein 2 (Mrp2) does not play an important role in the brain distribution of the two antifolate drugs. Interestingly, breast-cancer resistance protein (Bcrp) makes a significant contribution to the brain elimination of MTX but not PMX. In addition, the brain-to-blood transport of both antifolates was inhibited by probenecid and benzylpenicillin, suggesting the involvement of organic anion transporters in the efflux of these compounds from the brain, with organic anion transporter 3 (Oat3) being a possibility. Our results suggest that one of the underlying mechanisms behind the limited brain distribution of PMX and MTX is active efflux transport processes at the BBB, including a benzylpenicillin-sensitive transport system and/or the active transporter Bcrp.
Collapse
Affiliation(s)
- Li Li
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|