1
|
Cipriano GL, Mazzon E, Anchesi I. Estrogen Receptors: A New Frontier in Alzheimer's Disease Therapy. Int J Mol Sci 2024; 25:9077. [PMID: 39201762 PMCID: PMC11354998 DOI: 10.3390/ijms25169077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Alzheimer's disease (AD) is a long-term neurodegenerative condition that leads to the deterioration of neurons and synapses in the cerebral cortex, resulting in severe dementia. AD is significantly more prevalent in postmenopausal women, suggesting a neuroprotective role for estrogen. Estrogen is now known to regulate a wide array of physiological functions in the body by interacting with three known estrogen receptors (ERs) and with the β-amyloid precursor protein, a key factor in AD pathogenesis. Recent experimental evidence indicates that new selective ER modulators and phytoestrogens may be promising treatments for AD for their neuroprotective and anti-apoptotic properties. These alternatives may offer fewer side effects compared to traditional hormone therapies, which are associated with risks such as cardiovascular diseases, cancer, and metabolic dysfunctions. This review sheds light on estrogen-based treatments that may help to partially prevent or control the neurodegenerative processes characteristic of AD, paving the way for further investigation in the development of estrogen-based treatments.
Collapse
Affiliation(s)
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (G.L.C.); (I.A.)
| | | |
Collapse
|
2
|
Branigan GL, Torrandell-Haro G, Chen S, Shang Y, Perez-Miller S, Mao Z, Padilla-Rodriguez M, Cortes-Flores H, Vitali F, Brinton RD. Breast cancer therapies reduce risk of Alzheimer's disease and promote estrogenic pathways and action in brain. iScience 2023; 26:108316. [PMID: 38026173 PMCID: PMC10663748 DOI: 10.1016/j.isci.2023.108316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/08/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Worldwide, an ever-increasing number of women are prescribed estrogen-modulating therapies (EMTs) for the treatment of breast cancer. In parallel, aging of the global population of women will contribute to risk of both breast cancer and Alzheimer's disease. To address the impact of anti-estrogen therapies on risk of Alzheimer's and neural function, we conducted medical informatic and molecular pharmacology analyses to determine the impact of EMTs on risk of Alzheimer's followed by determination of EMT estrogenic mechanisms of action in neurons. Collectively, these data provide both clinical and mechanistic data indicating that select EMTs exert estrogenic agonist action in neural tissue that are associated with reduced risk of Alzheimer's disease while simultaneously acting as effective estrogen receptor antagonists in breast.
Collapse
Affiliation(s)
- Gregory L. Branigan
- Center for Innovation in Brain Science, University of Arizona; Tucson AZ, USA
- Department of Pharmacology, University of Arizona College of Medicine; Tucson AZ, USA
- Medical Scientist Training Program, University of Arizona College of Medicine; Tucson AZ, USA
| | - Georgina Torrandell-Haro
- Center for Innovation in Brain Science, University of Arizona; Tucson AZ, USA
- Department of Pharmacology, University of Arizona College of Medicine; Tucson AZ, USA
| | - Shuhua Chen
- Center for Innovation in Brain Science, University of Arizona; Tucson AZ, USA
| | - Yuan Shang
- Center for Innovation in Brain Science, University of Arizona; Tucson AZ, USA
| | | | - Zisu Mao
- Center for Innovation in Brain Science, University of Arizona; Tucson AZ, USA
| | | | | | - Francesca Vitali
- Center for Innovation in Brain Science, University of Arizona; Tucson AZ, USA
- Center of Bioinformatics and Biostatistics, University of Arizona College of Medicine; Tucson AZ, USA
| | - Roberta Diaz Brinton
- Center for Innovation in Brain Science, University of Arizona; Tucson AZ, USA
- Department of Pharmacology, University of Arizona College of Medicine; Tucson AZ, USA
- Department of Neurology, University of Arizona College of Medicine; Tucson AZ, USA
| |
Collapse
|
3
|
Lee D, Kim YM, Chin YW, Kang KS. Schisandrol A Exhibits Estrogenic Activity via Estrogen Receptor α-Dependent Signaling Pathway in Estrogen Receptor-Positive Breast Cancer Cells. Pharmaceutics 2021; 13:pharmaceutics13071082. [PMID: 34371773 PMCID: PMC8308983 DOI: 10.3390/pharmaceutics13071082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 01/29/2023] Open
Abstract
The aim of this study was to examine the estrogen-like effects of gentiopicroside, macelignan, γ-mangostin, and three lignans (schisandrol A, schisandrol B, and schisandrin C), and their possible mechanism of action. Their effects on the proliferation of the estrogen receptor (ER)-positive breast cancer cell line (MCF-7) were evaluated using Ez-Cytox reagents. The expression of extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3K), AKT, and estrogen receptor α (ERα) was measured by performing Western blot analysis. 17β-estradiol (E2), also known as estradiol, is an estrogen steroid and was used as a positive control. ICI 182,780 (ICI), an ER antagonist, was used to block the ER function. Our results showed that, except for gentiopicroside, all the compounds promoted proliferation of MCF-7 cells, with schisandrol A being the most effective; this effect was better than that of E2 and was mitigated by ICI. Consistently, the expression of ERK, PI3K, AKT, and ERα increased following treatment with schisandrol A; this effect was slightly better than that of E2 and was mitigated by ICI. Taken together, the ERα induction via the PI3K/AKT and ERK signaling pathways may be a potential mechanism underlying the estrogen-like effects of schisandrol A. This study provides an experimental basis for the application of schisandrol A as a phytoestrogen for the prevention of menopausal symptoms.
Collapse
Affiliation(s)
- Dahae Lee
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea;
| | - Young-Mi Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Korea;
| | - Young-Won Chin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Korea;
- Correspondence: (Y.-W.C.); (K.S.K.); Tel.: +82-2-880-7859 (Y.-W.C.); +82-31-750-5402 (K.S.K.)
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea;
- Correspondence: (Y.-W.C.); (K.S.K.); Tel.: +82-2-880-7859 (Y.-W.C.); +82-31-750-5402 (K.S.K.)
| |
Collapse
|
4
|
Abotalebi H, Ebrahimi B, Shahriyari R, Shafieian R. Sex steroids-induced neurogenesis in adult brain: a better look at mechanisms and mediators. Horm Mol Biol Clin Investig 2021; 42:209-221. [PMID: 34058796 DOI: 10.1515/hmbci-2020-0036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 01/14/2021] [Indexed: 11/15/2022]
Abstract
Adult neurogenesis is the production of new nerve cells in the adult brain. Neurogenesis is a clear example of the neuroplasticity phenomenon which can be observed in most of mammalian species, including human beings. This phenomenon occurs, at least, in two regions of the brain: the subgranular zone of the dentate gyrus in hippocampus and the ventricular zone of lateral ventricles. Numerous studies have investigated the relationship between sex steroid hormones and neurogenesis of adult brain; of which, mostly concentrated on the role of estradiol. It has been shown that estrogen plays a significant role in this process through both classic and non-classic mechanisms, including a variety of different growth factors. Therefore, the objective of this review is to investigate the role of female sex steroids with an emphasis on estradiol and also its potential implications for regulating the neurogenesis in the adult brain.
Collapse
Affiliation(s)
- Hamideh Abotalebi
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Babak Ebrahimi
- Department of Anatomy and Cell Biology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Raziyeh Shahriyari
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reyhaneh Shafieian
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Branigan GL, Soto M, Neumayer L, Rodgers K, Brinton RD. Association Between Hormone-Modulating Breast Cancer Therapies and Incidence of Neurodegenerative Outcomes for Women With Breast Cancer. JAMA Netw Open 2020; 3:e201541. [PMID: 32207833 PMCID: PMC7093781 DOI: 10.1001/jamanetworkopen.2020.1541] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/26/2020] [Indexed: 12/17/2022] Open
Abstract
Importance The association between exposure to hormone-modulating therapy (HMT) as breast cancer treatment and neurodegenerative disease (NDD) is unclear. Objective To determine whether HMT exposure is associated with the risk of NDD in women with breast cancer. Design, Setting, and Participants This retrospective cohort study used the Humana claims data set from January 1, 2007, to March 31, 2017. The Humana data set contains claims from private-payer and Medicare insurance data sets from across the United States with a population primarily residing in the Southeast. Patient claims records were surveyed for a diagnosis of NDD starting 1 year after breast cancer diagnosis for the duration of enrollment in the claims database. Participants were 57 843 women aged 45 years or older with a diagnosis of breast cancer. Patients were required to be actively enrolled in Humana claims records for 6 months prior to and at least 3 years after the diagnosis of breast cancer. The analyses were conducted between January 1 and 15, 2020. Exposure Hormone-modulating therapy (selective estrogen receptor modulators, estrogen receptor antagonists, and aromatase inhibitors). Main Outcomes and Measures Patients receiving HMT for breast cancer treatment were identified. Survival analysis was used to determine the association between HMT exposure and diagnosis of NDD. A propensity score approach was used to minimize measured and unmeasured selection bias. Results Of the 326 485 women with breast cancer in the Humana data set between 2007 and 2017, 57 843 met the study criteria. Of these, 18 126 (31.3%; mean [SD] age, 76.2 [7.0] years) received HMT, whereas 39 717 (68.7%; mean [SD] age, 76.8 [7.0] years) did not receive HMT. Mean (SD) follow-up was 5.5 (1.8) years. In the propensity score-matched population, exposure to HMT was associated with a decrease in the number of women who received a diagnosis of NDD (2229 of 17 878 [12.5%] vs 2559 of 17 878 [14.3%]; relative risk, 0.89; 95% CI, 0.84-0.93; P < .001), Alzheimer disease (877 of 17 878 [4.9%] vs 1068 of 17 878 [6.0%]; relative risk, 0.82; 95% CI, 0.75-0.90; P < .001), and dementia (1862 of 17 878 [10.4%] vs 2116 of 17 878 [11.8%]; relative risk, 0.88; 95% CI, 0.83-0.93; P < .001). The number needed to treat was 62.51 for all NDDs, 93.61 for Alzheimer disease, and 69.56 for dementia. Conclusions and Relevance Among patients with breast cancer, tamoxifen and steroidal aromatase inhibitors were associated with a decrease in the number who received a diagnosis of NDD, specifically Alzheimer disease and dementia.
Collapse
Affiliation(s)
- Gregory L. Branigan
- Center for Innovation in Brain Science, University of Arizona, Tucson
- Department of Pharmacology, University of Arizona College of Medicine, Tucson
- MD-PhD Training Program, University of Arizona College of Medicine, Tucson
| | - Maira Soto
- Center for Innovation in Brain Science, University of Arizona, Tucson
- Department of Pharmacology, University of Arizona College of Medicine, Tucson
| | - Leigh Neumayer
- Department of Surgery, University of Arizona College of Medicine, Tucson
- Department of Obstetrics and Gynecology, University of Arizona College of Medicine, Tucson
| | - Kathleen Rodgers
- Center for Innovation in Brain Science, University of Arizona, Tucson
- Department of Pharmacology, University of Arizona College of Medicine, Tucson
| | - Roberta Diaz Brinton
- Center for Innovation in Brain Science, University of Arizona, Tucson
- Department of Pharmacology, University of Arizona College of Medicine, Tucson
- Department of Neurology, University of Arizona College of Medicine, Tucson
| |
Collapse
|
6
|
Finney CA, Shvetcov A, Westbrook RF, Jones NM, Morris MJ. The role of hippocampal estradiol in synaptic plasticity and memory: A systematic review. Front Neuroendocrinol 2020; 56:100818. [PMID: 31843506 DOI: 10.1016/j.yfrne.2019.100818] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/29/2019] [Accepted: 12/11/2019] [Indexed: 12/31/2022]
Abstract
The consolidation of long-term memory is influenced by various neuromodulators. One of these is estradiol, a steroid hormone that is synthesized both in peripheral endocrine tissue and in the brain, including the hippocampus. Here, we examine the evidence regarding the role of estradiol in the hippocampus, specifically, in memory formation and its effects on the molecular mechanisms underlying synaptic plasticity. We conclude that estradiol improves memory consolidation and, thereby, long-term memory. Previous studies have shown that it does this in three, interconnected ways: (1) via functional changes in excitatory activity, (2) signaling changes in calcium dynamics, protein phosphorylation and protein expression, and (3) structural changes to synaptic morphology. Through a functional network analysis of proteins affected by estradiol, we identify potential protein-protein interactions that further support a role for estradiol in modulating synaptic plasticity as well as highlight signaling pathways that may be involved in these changes within the hippocampus.
Collapse
Affiliation(s)
- C A Finney
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - A Shvetcov
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - R F Westbrook
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - N M Jones
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - M J Morris
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
7
|
Martin-Jiménez C, Gaitán-Vaca DM, Areiza N, Echeverria V, Ashraf GM, González J, Sahebkar A, Garcia-Segura LM, Barreto GE. Astrocytes Mediate Protective Actions of Estrogenic Compounds after Traumatic Brain Injury. Neuroendocrinology 2019; 108:142-160. [PMID: 30391959 DOI: 10.1159/000495078] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/02/2018] [Indexed: 11/19/2022]
Abstract
Traumatic brain injury (TBI) is a serious public health problem. It may result in severe neurological disabilities and in a variety of cellular metabolic alterations for which available therapeutic strategies are limited. In the last decade, the use of estrogenic compounds, which activate protective mechanisms in astrocytes, has been explored as a potential experimental therapeutic approach. Previous works have suggested estradiol (E2) as a neuroprotective hormone that acts in the brain by binding to estrogen receptors (ERs). Several steroidal and nonsteroidal estrogenic compounds can imitate the effects of estradiol on ERs. These include hormonal estrogens, phytoestrogens and synthetic estrogens, such as selective ER modulators or tibolone. Current evidence of the role of astrocytes in mediating protective actions of estrogenic compounds after TBI is reviewed in this paper. We conclude that the use of estrogenic compounds to modulate astrocytic properties is a promising therapeutic approach for the treatment of TBI.
Collapse
Affiliation(s)
- Cynthia Martin-Jiménez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Diana Milena Gaitán-Vaca
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Natalia Areiza
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Valentina Echeverria
- Universidad San Sebastián, Fac. Cs de la Salud, Concepción, Chile
- Research and Development Service, Bay Pines VA Healthcare System, Bay Pines, Florida, USA
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Janneth González
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias Pontificia Universidad Javeriana, Bogotá, Colombia,
| |
Collapse
|
8
|
Rabaglino MB, Keller‐Wood M, Wood CE. A transcriptomics model of estrogen action in the ovine fetal hypothalamus: evidence for estrogenic effects of ICI 182,780. Physiol Rep 2018; 6:e13871. [PMID: 30221477 PMCID: PMC6139289 DOI: 10.14814/phy2.13871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 08/28/2018] [Indexed: 01/13/2023] Open
Abstract
Estradiol plays a critical role in stimulating the fetal hypothalamus-pituitary-adrenal axis at the end of gestation. Estradiol action is mediated through nuclear and membrane receptors that can be modulated by ICI 182,780, a pure antiestrogen compound. The objective of this study was to evaluate the transcriptomic profile of estradiol and ICI 182,780, testing the hypothesis that ICI 182,780 antagonizes the action of estradiol in the fetal hypothalamus. Chronically catheterized ovine fetuses were infused for 48 h with: vehicle (Control, n = 6), 17β-estradiol 500 μg/kg/day (Estradiol, n = 4), ICI 182,780 5 μg/kg/day (ICI 5 μg, n = 4) and ICI 182,780 5 mg/kg/day (ICI 5 mg, n = 5). Fetal hypothalami were collected afterward, and gene expression was measured through microarray. Statistical analysis of transcriptomic data was performed with Bioconductor-R and Cytoscape software. Unexpectedly, 35% and 15.5% of the upregulated differentially expressed genes (DEG) by Estradiol significantly overlapped (P < 0.05) with upregulated DEG by ICI 5 mg and ICI 5 μg, respectively. For the downregulated DEG, these percentages were 29.9% and 15.5%, respectively. There was almost no overlap for DEG following opposite directions between Estradiol and ICI ICI 5 mg or ICI 5 μg. Furthermore, most of the genes in the estrogen signaling pathway - after activation of the epidermal growth factor receptor - followed the same direction in Estradiol, ICI 5 μg or ICI 5 mg compared to Control. In conclusion, estradiol and ICI 182,780 have estrogenic genomic effects in the developing brain, suggesting the possibility that the major action of estradiol on the fetal hypothalamus involves another receptor system rather than estrogen receptors.
Collapse
Affiliation(s)
- Maria Belen Rabaglino
- Department of Physiology and Functional GenomicsCollege of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Maureen Keller‐Wood
- PharmacodynamicsCollege of PharmacyUniversity of FloridaGainesvilleFloridaUSA
| | - Charles E. Wood
- Department of Physiology and Functional GenomicsCollege of MedicineUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
9
|
Guerriero G, Di Giaimo R, Hentati O, Abdel-Gawad FK, Trocchia S, Rabbito D, Ciarcia G. Reproductive expression dynamics and comparative toxicological perspective of beta estrogen receptor gene in the male wall lizard, Podarcis sicula Rafinesque, 1810 (Chordata: Reptilia). EUROPEAN ZOOLOGICAL JOURNAL 2018. [DOI: 10.1080/24750263.2018.1498927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- G. Guerriero
- Department of Biology, University of Naples Federico II, Naples, Italy
- Interdepartmental Research Center for Environment (I.R.C.Env.), University of Naples Federico II, Naples, Italy
| | - R. Di Giaimo
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - O. Hentati
- Department of Biotechnology and Health, Institut Supérieur de Biotechnologie de Sfax, Sfax, Tunisia
| | - F. Kh. Abdel-Gawad
- Department of Biology, University of Naples Federico II, Naples, Italy
- Centre of Excellence for Advanced Sciences (CEAS), National Research Centre, Giza, Egypt
| | - S. Trocchia
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - D. Rabbito
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - G. Ciarcia
- Department of Biology, University of Naples Federico II, Naples, Italy
- Interdepartmental Research Center for Environment (I.R.C.Env.), University of Naples Federico II, Naples, Italy
| |
Collapse
|
10
|
Sritana N, Suriyo T, Kanitwithayanun J, Songvasin BH, Thiantanawat A, Satayavivad J. Glyphosate induces growth of estrogen receptor alpha positive cholangiocarcinoma cells via non-genomic estrogen receptor/ERK1/2 signaling pathway. Food Chem Toxicol 2018; 118:595-607. [PMID: 29890199 DOI: 10.1016/j.fct.2018.06.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 05/22/2018] [Accepted: 06/07/2018] [Indexed: 12/13/2022]
Abstract
Previous studies showed that glyphosate stimulates breast cancer cell growth via estrogen receptors. The present study investigated the effect of glyphosate on the estrogen signaling pathway involved in the induction of cholangiocarcinoma (CCA) cell growth. HuCCA-1, RMCCA-1 and MMNK-1 were chosen for comparison. The effects of glyphosate on cell growth, cell cycle and molecular signaling pathways were measured. The results showed that HuCCA-1 cells expressed estrogen receptor alpha (ERα), while ERα was not detected in RMCCA-1 and MMNK-1 cells. ERα was mostly expressed in cytoplasmic compartment of HuCCA-1 cells. Estradiol (E2) (10-11-10-5 M) induced cell proliferation in HuCCA-1 but not in RMCCA-1 and MMNK-1 cells. Glyphosate at the same concentration range also induced HuCCA-1 cell proliferation. The S phase of the cell cycle, and protein levels of the cyclin family were significantly increased after treatment of glyphosate or E2. Both compounds also induced the expression of proliferative signaling-related proteins including ERα, VEGFR2, pERK, PI3K(p85), and PCNA. These effects of glyphosate and E2 were abolished by the ER antagonist, 4-hydroxytamoxifen and U0126, a MEK inhibitor. The data from this study indicate that glyphosate can induce cell growth in ERα positive CCA cells through non-genomic estrogen receptor/ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Narongrit Sritana
- Environmental Toxicology Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy of Science, Bangkok, 10210, Thailand
| | - Tawit Suriyo
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, 10210, Thailand; Center of Excellence on Environmental Health and Toxicology, Office of Higher Education Commission, Ministry of Education, Bangkok, 10400, Thailand
| | - Jantamas Kanitwithayanun
- Environmental Toxicology Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy of Science, Bangkok, 10210, Thailand; Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, 10210, Thailand; Center of Excellence on Environmental Health and Toxicology, Office of Higher Education Commission, Ministry of Education, Bangkok, 10400, Thailand
| | | | - Apinya Thiantanawat
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, 10210, Thailand; Center of Excellence on Environmental Health and Toxicology, Office of Higher Education Commission, Ministry of Education, Bangkok, 10400, Thailand; Applied Biological Sciences Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy of Science, Bangkok, 10210, Thailand
| | - Jutamaad Satayavivad
- Environmental Toxicology Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy of Science, Bangkok, 10210, Thailand; Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, 10210, Thailand; Center of Excellence on Environmental Health and Toxicology, Office of Higher Education Commission, Ministry of Education, Bangkok, 10400, Thailand.
| |
Collapse
|
11
|
Hadjimarkou MM, Vasudevan N. GPER1/GPR30 in the brain: Crosstalk with classical estrogen receptors and implications for behavior. J Steroid Biochem Mol Biol 2018; 176:57-64. [PMID: 28465157 DOI: 10.1016/j.jsbmb.2017.04.012] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 04/16/2017] [Accepted: 04/23/2017] [Indexed: 12/31/2022]
Abstract
The GPER1/GPR30 is a membrane estrogen receptor (mER) that binds 17β-estradiol (17β-E) with high affinity and is thought to play a role in cancer progression and cardiovascular health. Though widespread in the central nervous system, less is known about this receptor's function in the brain. GPER1 has been shown to activate kinase cascades and calcium flux within cells rapidly, thus fitting in with the idea of being a mER that mediates non-genomic signaling by estrogens. Signaling from GPER1 has been shown to improve spatial memory, possibly via release of neurotransmitters and generation of new spines on neurons in the hippocampus. In addition, GPER1 activation contributes to behaviors that denote anxiety and to social behaviors such as social memory and lordosis behavior in mice. In the male hippocampus, GPER1 activation has also been shown to phosphorylate the classical intracellular estrogen receptor (ER)α, suggesting that crosstalk with ERα is important in the display of these behaviors, many of which are absent in ERα-null mice. In this review, we present a number of categories of such crosstalk, using examples from literature. The function of GPER1 as an ERα collaborator or as a mER in different tissues is relevant to understanding both normal physiology and abnormal pathology, mediated by estrogen signaling.
Collapse
Affiliation(s)
- Maria M Hadjimarkou
- School of Humanities and Social Sciences, University of Nicosia, 1700 Nicosia, Cyprus.
| | - Nandini Vasudevan
- School of Biological Sciences, University of Reading, Reading, United Kingdom RG6 6AS, United Kingdom.
| |
Collapse
|
12
|
Lynch JF, Winiecki P, Vanderhoof T, Riccio DC, Jasnow AM. Hippocampal cytosolic estrogen receptors regulate fear generalization in females. Neurobiol Learn Mem 2016; 130:83-92. [PMID: 26851128 DOI: 10.1016/j.nlm.2016.01.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 12/27/2015] [Accepted: 01/25/2016] [Indexed: 01/04/2023]
Abstract
Generalization of fear responses is a symptom of many anxiety disorders and we have previously demonstrated that female rats generalize fear to a neutral context at a faster rate compared to males. This effect is due in part, to activation of ER and modulation of memory retrieval mechanisms resulting in fear generalization. Given that the effects of estradiol on fear generalization required approximately 24h, our data suggested possible genomic actions on fear generalization. To determine whether these actions were due to cytosolic versus membrane bound receptors, female rats were given infusions of ICI 182,780, a cytosolic estrogen receptor antagonist, into the lateral ventricle or dorsal hippocampus simultaneously with estradiol treatment or with an ER agonist (DPN). Infusions of ICI into the lateral ventricle or the dorsal hippocampus blocked fear generalization induced by peripheral or central treatment with estradiol or DPN, suggesting that estradiol acts through cytosolic ERβ receptors. In further support of these findings, intracerebroventricular or intra-hippocampal infusions of bovine serum conjugated estradiol (E2-BSA), activating membrane-bound estrogen receptors only, did not induce fear generalization. Moreover, rats receiving intra-hippocampal infusions of the ERK/MAPK inhibitor, U0126, continued to display estradiol-induced generalization, again suggesting that membrane-bound estrogen receptors do not contribute to fear generalization. Overall, these data suggest that estradiol-induced enhancements in fear generalization are mediated through activation of cytosolic/nuclear ER within the dorsal hippocampus. This region seems to be an important locus for the effects of estradiol on fear generalization although additional neuroanatomical regions have yet to be identified.
Collapse
Affiliation(s)
- Joseph F Lynch
- Department of Psychological Sciences, Kent State University, Kent, OH 44242, United States
| | - Patrick Winiecki
- Department of Psychological Sciences, Kent State University, Kent, OH 44242, United States
| | - Tyler Vanderhoof
- Department of Psychological Sciences, Kent State University, Kent, OH 44242, United States
| | - David C Riccio
- Department of Psychological Sciences, Kent State University, Kent, OH 44242, United States
| | - Aaron M Jasnow
- Department of Psychological Sciences, Kent State University, Kent, OH 44242, United States.
| |
Collapse
|
13
|
Wang ZY, Yin L. Estrogen receptor alpha-36 (ER-α36): A new player in human breast cancer. Mol Cell Endocrinol 2015; 418 Pt 3:193-206. [PMID: 25917453 DOI: 10.1016/j.mce.2015.04.017] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 04/20/2015] [Accepted: 04/20/2015] [Indexed: 01/16/2023]
Abstract
Prevailing wisdom is that estrogen receptor (ER)-α mediated genomic estrogen signaling is responsible for estrogen-stimulated cell proliferation and development of ER-positive breast cancer. However, accumulating evidence indicates that another estrogen signaling pathway, non-genomic or rapid estrogen signaling, also plays an important role in mitogenic estrogen signaling. Previously, our laboratory cloned a 36 kDa variant of ER-α, ER-α36, and found that ER-α36 is mainly expressed in the cytoplasm and at the plasma membrane. ER-α36 mediates rapid estrogen signaling and inhibits genomic estrogen signaling. In this review, we review and update the biological function of ER-α36 in ER-positive and -negative breast cancer, breast cancer stem/progenitor cells and tamoxifen resistance, potential interaction and cross-talk of ER-α36 with other ERs and growth factor receptors, and intracellular pathways of ER-α36-mediated rapid estrogen signaling. The potential function and underlying mechanism of ER-α in development of ER-positive breast cancer will also be discussed.
Collapse
Affiliation(s)
- Zhao-Yi Wang
- Department of Medical Microbiology & Immunology, Creighton University Medical School, 2500 California Plaza, Omaha, NE 68178, USA.
| | - Li Yin
- Department of Medical Microbiology & Immunology, Creighton University Medical School, 2500 California Plaza, Omaha, NE 68178, USA
| |
Collapse
|
14
|
Madureira TV, Malhão F, Pinheiro I, Lopes C, Ferreira N, Urbatzka R, Castro LFC, Rocha E. Estrogenic and anti-estrogenic influences in cultured brown trout hepatocytes: Focus on the expression of some estrogen and peroxisomal related genes and linked phenotypic anchors. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 169:133-142. [PMID: 26539803 DOI: 10.1016/j.aquatox.2015.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/29/2015] [Accepted: 10/16/2015] [Indexed: 06/05/2023]
Abstract
Estrogens, estrogenic mimics and anti-estrogenic compounds are known to target estrogen receptors (ER) that can modulate other nuclear receptor signaling pathways, such as those controlled by the peroxisome proliferator-activated receptor (PPAR), and alter organelle (inc. peroxisome) morphodynamics. By using primary isolated brown trout (Salmo trutta f. fario) hepatocytes after 72 and 96h of exposure we evaluated some effects in selected molecular targets and in peroxisomal morphological features caused by: (1) an ER agonist (ethinylestradiol-EE2) at 1, 10 and 50μM; (2) an ER antagonist (ICI 182,780) at 10 and 50μM; and (3) mixtures of both (Mix I-10μM EE2 and 50μM ICI; Mix II-1μM EE2 and 10μM ICI and Mix III-1μM EE2 and 50μM ICI). The mRNA levels of the estrogenic targets (ERα, ERβ-1 and vitellogenin A-VtgA) and the peroxisome structure/function related genes (catalase, urate oxidase-Uox, 17β-hydroxysteroid dehydrogenase 4-17β-HSD4, peroxin 11α-Pex11α and PPARα) were analyzed by real-time polymerase chain reaction (RT-PCR). Stereology combined with catalase immunofluorescence revealed a significant reduction in peroxisome volume densities at 50μM of EE2 exposure. Concomitantly, at the same concentration, electron microscopy showed smaller peroxisome profiles, exacerbated proliferation of rough endoplasmic reticulum, and a generalized cytoplasmic vacuolization of hepatocytes. Catalase and Uox mRNA levels decreased in all estrogenic stimuli conditions. VtgA and ERα mRNA increased after all EE2 treatments, while ERβ-1 had an inverse pattern. The EE2 action was reversed by ICI 182,780 in a concentration-dependent manner, for VtgA, ERα and Uox. Overall, our data show the great value of primary brown trout hepatocytes to study the effects of estrogenic/anti-estrogenic inputs in peroxisome kinetics and in ER and PPARα signaling, backing the still open hypothesis of crosstalk interactions between these pathways and calling for more mechanistic experiments.
Collapse
Affiliation(s)
- Tânia Vieira Madureira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), U.Porto-University of Porto, Rua dos Bragas 289, P 4050-123 Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, U.Porto (ICBAS)-University of Porto, Laboratory of Histology and Embryology, Department of Microscopy, Rua Jorge Viterbo Ferreira 228, P 4050-313 Porto, Portugal.
| | - Fernanda Malhão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), U.Porto-University of Porto, Rua dos Bragas 289, P 4050-123 Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, U.Porto (ICBAS)-University of Porto, Laboratory of Histology and Embryology, Department of Microscopy, Rua Jorge Viterbo Ferreira 228, P 4050-313 Porto, Portugal
| | - Ivone Pinheiro
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), U.Porto-University of Porto, Rua dos Bragas 289, P 4050-123 Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, U.Porto (ICBAS)-University of Porto, Laboratory of Histology and Embryology, Department of Microscopy, Rua Jorge Viterbo Ferreira 228, P 4050-313 Porto, Portugal
| | - Célia Lopes
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), U.Porto-University of Porto, Rua dos Bragas 289, P 4050-123 Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, U.Porto (ICBAS)-University of Porto, Laboratory of Histology and Embryology, Department of Microscopy, Rua Jorge Viterbo Ferreira 228, P 4050-313 Porto, Portugal
| | - Nádia Ferreira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), U.Porto-University of Porto, Rua dos Bragas 289, P 4050-123 Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, U.Porto (ICBAS)-University of Porto, Laboratory of Histology and Embryology, Department of Microscopy, Rua Jorge Viterbo Ferreira 228, P 4050-313 Porto, Portugal
| | - Ralph Urbatzka
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), U.Porto-University of Porto, Rua dos Bragas 289, P 4050-123 Porto, Portugal
| | - L Filipe C Castro
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), U.Porto-University of Porto, Rua dos Bragas 289, P 4050-123 Porto, Portugal; Faculty of Sciences (FCUP), U.Porto-University of Porto, Department of Biology, Rua do Campo Alegre, P 4169-007 Porto, Portugal
| | - Eduardo Rocha
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), U.Porto-University of Porto, Rua dos Bragas 289, P 4050-123 Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, U.Porto (ICBAS)-University of Porto, Laboratory of Histology and Embryology, Department of Microscopy, Rua Jorge Viterbo Ferreira 228, P 4050-313 Porto, Portugal
| |
Collapse
|
15
|
Zhao L, Woody SK, Chhibber A. Estrogen receptor β in Alzheimer's disease: From mechanisms to therapeutics. Ageing Res Rev 2015; 24:178-90. [PMID: 26307455 DOI: 10.1016/j.arr.2015.08.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 08/04/2015] [Accepted: 08/17/2015] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) disproportionally affects women and men. The female susceptibility for AD has been largely associated with the loss of ovarian sex hormones during menopause. This review examines the current understanding of the role of estrogen receptor β (ERβ) in the regulation of neurological health and its implication in the development and intervention of AD. Since its discovery in 1996, research conducted over the last 15-20 years has documented a great deal of evidence indicating that ERβ plays a pivotal role in a broad spectrum of brain activities from development to aging. ERβ genetic polymorphisms have been associated with cognitive impairment and increased risk for AD predominantly in women. The role of ERβ in the intervention of AD has been demonstrated by the alteration of AD pathology in response to treatment with ERβ-selective modulators in transgenic models that display pronounced plaque and tangle histopathological presentations as well as learning and memory deficits. Future studies that explore the potential interactions between ERβ signaling and the genetic isoforms of human apolipoprotein E (APOE) in brain aging and development of AD-risk phenotype are critically needed. The current trend of lost-in-translation in AD drug development that has primarily been based on early-onset familial AD (FAD) models underscores the urgent need for novel models that recapitulate the etiology of late-onset sporadic AD (SAD), the most common form of AD representing more than 95% of the current human AD population. Combining the use of FAD-related models that generally have excellent face validity with SAD-related models that hold more reliable construct validity would together increase the predictive validity of preclinical findings for successful translation into humans.
Collapse
Affiliation(s)
- Liqin Zhao
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA; Neuroscience Graduate Program, University of Kansas, Lawrence, KS 66045, USA.
| | - Sarah K Woody
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Anindit Chhibber
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
16
|
Prossnitz ER, Arterburn JB. International Union of Basic and Clinical Pharmacology. XCVII. G Protein-Coupled Estrogen Receptor and Its Pharmacologic Modulators. Pharmacol Rev 2015; 67:505-40. [PMID: 26023144 PMCID: PMC4485017 DOI: 10.1124/pr.114.009712] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Estrogens are critical mediators of multiple and diverse physiologic effects throughout the body in both sexes, including the reproductive, cardiovascular, endocrine, nervous, and immune systems. As such, alterations in estrogen function play important roles in many diseases and pathophysiological conditions (including cancer), exemplified by the lower prevalence of many diseases in premenopausal women. Estrogens mediate their effects through multiple cellular receptors, including the nuclear receptor family (ERα and ERβ) and the G protein-coupled receptor (GPCR) family (GPR30/G protein-coupled estrogen receptor [GPER]). Although both receptor families can initiate rapid cell signaling and transcriptional regulation, the nuclear receptors are traditionally associated with regulating gene expression, whereas GPCRs are recognized as mediating rapid cellular signaling. Estrogen-activated pathways are not only the target of multiple therapeutic agents (e.g., tamoxifen, fulvestrant, raloxifene, and aromatase inhibitors) but are also affected by a plethora of phyto- and xeno-estrogens (e.g., genistein, coumestrol, bisphenol A, dichlorodiphenyltrichloroethane). Because of the existence of multiple estrogen receptors with overlapping ligand specificities, expression patterns, and signaling pathways, the roles of the individual receptors with respect to the diverse array of endogenous and exogenous ligands have been challenging to ascertain. The identification of GPER-selective ligands however has led to a much greater understanding of the roles of this receptor in normal physiology and disease as well as its interactions with the classic estrogen receptors ERα and ERβ and their signaling pathways. In this review, we describe the history and characterization of GPER over the past 15 years focusing on the pharmacology of steroidal and nonsteroidal compounds that have been employed to unravel the biology of this most recently recognized estrogen receptor.
Collapse
Affiliation(s)
- Eric R Prossnitz
- Department of Internal Medicine (E.R.P.) and University of New Mexico Cancer Center (E.R.P., J.B.A.), The University of New Mexico Health Sciences Center, Albuquerque, New Mexico; and Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico (J.B.A.)
| | - Jeffrey B Arterburn
- Department of Internal Medicine (E.R.P.) and University of New Mexico Cancer Center (E.R.P., J.B.A.), The University of New Mexico Health Sciences Center, Albuquerque, New Mexico; and Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico (J.B.A.)
| |
Collapse
|
17
|
Chakrabarti M, Haque A, Banik NL, Nagarkatti P, Nagarkatti M, Ray SK. Estrogen receptor agonists for attenuation of neuroinflammation and neurodegeneration. Brain Res Bull 2014; 109:22-31. [PMID: 25245209 DOI: 10.1016/j.brainresbull.2014.09.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 09/09/2014] [Accepted: 09/10/2014] [Indexed: 01/05/2023]
Abstract
Recent results from laboratory investigations and clinical trials indicate important roles for estrogen receptor (ER) agonists in protecting the central nervous system (CNS) from noxious consequences of neuroinflammation and neurodegeneration. Neurodegenerative processes in several CNS disorders including spinal cord injury (SCI), multiple sclerosis (MS), Parkinson's disease (PD), and Alzheimer's disease (AD) are associated with activation of microglia and astrocytes, which drive the resident neuroinflammatory response. During neurodegenerative processes, activated microglia and astrocytes cause deleterious effects on surrounding neurons. The inhibitory activity of ER agonists on microglia activation might be a beneficial therapeutic option for delaying the onset or progression of neurodegenerative injuries and diseases. Recent studies suggest that ER agonists can provide neuroprotection by modulation of cell survival mechanisms, synaptic reorganization, regenerative responses to axonal injury, and neurogenesis process. The anti-inflammatory and neuroprotective actions of ER agonists are mediated mainly via two ERs known as ERα and ERβ. Although some studies have suggested that ER agonists may be deleterious to some neuronal populations, the potential clinical benefits of ER agonists for augmenting cognitive function may triumph over the associated side effects. Also, understanding the modulatory activities of ER agonists on inflammatory pathways will possibly lead to the development of selective anti-inflammatory molecules with neuroprotective roles in different CNS disorders such as SCI, MS, PD, and AD in humans. Future studies should be concentrated on finding the most plausible molecular pathways for enhancing protective functions of ER agonists in treating neuroinflammatory and neurodegenerative injuries and diseases in the CNS.
Collapse
Affiliation(s)
- Mrinmay Chakrabarti
- University of South Carolina School of Medicine, Department of Pathology, Microbiology, and Immunology, Columbia, SC 29209, USA
| | - Azizul Haque
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Naren L Banik
- Department of Neurosurgery and Neurology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Prakash Nagarkatti
- University of South Carolina School of Medicine, Department of Pathology, Microbiology, and Immunology, Columbia, SC 29209, USA
| | - Mitzi Nagarkatti
- University of South Carolina School of Medicine, Department of Pathology, Microbiology, and Immunology, Columbia, SC 29209, USA
| | - Swapan K Ray
- University of South Carolina School of Medicine, Department of Pathology, Microbiology, and Immunology, Columbia, SC 29209, USA.
| |
Collapse
|
18
|
Arias A, Rigalli JP, Villanueva SSM, Ruiz ML, Luquita MG, Perdomo VG, Vore M, Catania VA, Mottino AD. Regulation of expression and activity of multidrug resistance proteins MRP2 and MDR1 by estrogenic compounds in Caco-2 cells. Role in prevention of xenobiotic-induced cytotoxicity. Toxicology 2014; 320:46-55. [PMID: 24685904 DOI: 10.1016/j.tox.2014.03.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 03/10/2014] [Accepted: 03/20/2014] [Indexed: 11/28/2022]
Abstract
ABC transporters including MRP2, MDR1 and BCRP play a major role in tissue defense. Epidemiological and experimental studies suggest a cytoprotective role of estrogens in intestine, though the mechanism remains poorly understood. We evaluated whether pharmacologic concentrations of ethynylestradiol (EE, 0.05pM to 5nM), or concentrations of genistein (GNT) associated with soy ingestion (0.1-10μM), affect the expression and activity of multidrug resistance proteins MRP2, MDR1 and BCRP using Caco-2 cells, an in vitro model of intestinal epithelium. We found that incubation with 5pM EE and 1μM GNT for 48h increased expression and activity of both MRP2 and MDR1. Estrogens did not affect expression of BCRP protein at any concentration studied. Irrespective of the estrogen tested, up-regulation of MDR1 and MRP2 protein was accompanied by increased levels of MDR1 mRNA, whereas MRP2 mRNA remained unchanged. Cytotoxicity assays demonstrated association of MRP2 and MDR1 up-regulation with increased resistance to cell death induced by 1-chloro-2,4-dinitrobenzene, an MRP2 substrate precursor, and by paraquat, an MDR1 substrate. Experiments using an estrogen receptor (ER) antagonist implicate ER participation in MRP2 and MDR1 regulation. GNT but not EE increased the expression of ERβ, the most abundant form in human intestine and in Caco-2 cells, which could lead in turn to increased sensitivity to estrogens. We conclude that specific concentrations of estrogens can confer resistance against cytotoxicity in Caco-2 cells, due in part to positive modulation of ABC transporters involved in extrusion of their toxic substrates. Although extrapolation of these results to the in vivo situation must be cautiously done, the data could explain tentatively the cytoprotective role of estrogens against chemical injury in intestine.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/drug effects
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP-Binding Cassette Transporters/drug effects
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Caco-2 Cells
- Dinitrochlorobenzene/toxicity
- Dose-Response Relationship, Drug
- Estrogen Antagonists/pharmacology
- Estrogen Receptor beta/genetics
- Ethinyl Estradiol/administration & dosage
- Ethinyl Estradiol/pharmacology
- Gene Expression Regulation/drug effects
- Genistein/administration & dosage
- Genistein/pharmacology
- Humans
- Intestinal Mucosa/drug effects
- Intestinal Mucosa/metabolism
- Multidrug Resistance-Associated Protein 2
- Multidrug Resistance-Associated Proteins/drug effects
- Multidrug Resistance-Associated Proteins/genetics
- Multidrug Resistance-Associated Proteins/metabolism
- Neoplasm Proteins/drug effects
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Paraquat/toxicity
- RNA, Messenger/metabolism
- Glycine max/chemistry
- Up-Regulation/drug effects
- Xenobiotics/toxicity
Collapse
Affiliation(s)
- Agostina Arias
- Instituto de Fisiología Experimental (IFISE-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Rosario, Santa Fe, Argentina
| | - Juan Pablo Rigalli
- Instituto de Fisiología Experimental (IFISE-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Rosario, Santa Fe, Argentina
| | - Silvina S M Villanueva
- Instituto de Fisiología Experimental (IFISE-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Rosario, Santa Fe, Argentina
| | - María L Ruiz
- Instituto de Fisiología Experimental (IFISE-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Rosario, Santa Fe, Argentina
| | - Marcelo G Luquita
- Instituto de Fisiología Experimental (IFISE-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Rosario, Santa Fe, Argentina
| | - Virginia G Perdomo
- Instituto de Fisiología Experimental (IFISE-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Rosario, Santa Fe, Argentina
| | - Mary Vore
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY, USA
| | - Viviana A Catania
- Instituto de Fisiología Experimental (IFISE-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Rosario, Santa Fe, Argentina
| | - Aldo D Mottino
- Instituto de Fisiología Experimental (IFISE-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Rosario, Santa Fe, Argentina.
| |
Collapse
|
19
|
Abstract
Plant-derived estrogens (phytoestrogens, PEs), like endogenous estrogens, affect a diverse array of tissues, including the bone, uterus, mammary gland, and components of the neural and cardiovascular systems. We hypothesized that PEs act directly at pituitary loci to attenuate basal FSH secretion and increase gonadotrope sensitivity to GnRH. To examine the effect of PEs on basal secretion and total production of FSH, ovine pituitary cells were incubated with PEs for 48 h. Conditioned media and cell extract were collected and assayed for FSH. Estradiol (E₂) and some PEs significantly decreased basal secretion of FSH. The most potent PEs in this regard were coumestrol (CM), zearalenone (ZR), and genistein (GN). The specificity of PE-induced suppression of basal FSH was indicated by the absence of suppression in cells coincubated with PEs and an estrogen receptor (ER) blocker (ICI 182 780; ICI). Secretion of LH during stimulation by a GnRH agonist (GnRH-A) was used as a measure of gonadotrope responsiveness. Incubation of cells for 12 h with E₂, CM, ZR, GN, or daidzein (DZ) enhanced the magnitude and sensitivity of LH secretion during subsequent exposure to graded levels of a GnRH-A. The E₂- and PE-dependent augmentation of gonadotrope responsiveness was nearly fully blocked during coincubation with ICI. Collectively, these data demonstrate that selected PEs (CM, ZR, and GN), like E₂, decrease basal secretion of FSH, reduce total FSH production, and enhance GnRH-A-induced LH secretion in a manner that is dependent on the ER.
Collapse
Affiliation(s)
- Sergio A Arispe
- Department of Animal Science, University of California, Davis, One Shields Avenue, Davis, California 95616, USA
| | | | | |
Collapse
|
20
|
Micevych P, Sinchak K. Temporal and concentration-dependent effects of oestradiol on neural pathways mediating sexual receptivity. J Neuroendocrinol 2013; 25:1012-23. [PMID: 24028299 PMCID: PMC3943611 DOI: 10.1111/jne.12103] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 08/13/2013] [Accepted: 09/05/2013] [Indexed: 11/27/2022]
Abstract
The acceptance of oestradiol signalling through receptors found in the cell membrane, as well as, the nucleus, has provided for a re-examination of the timing and location of the actions of oestradiol on neural circuits mediating sexual receptivity (lordosis). Oestradiol membrane signalling involves the transactivation of metabotrophic glutamate receptors (mGluRs) that transduce steroid information through protein kinase C signalling cascades producing rapid activation of lordosis-regulating circuits. It has been known for some time that oestradiol initially produces an inhibition of the medial preoptic nucleus. We have demonstrated that underlying this inhibition is oestradiol acting in the arcuate nucleus to induce β-endorphin release, which inhibits the medial preoptic nucleus through a μ-opioid receptor mechanism. This transient inhibition is relieved by either subsequent progesterone treatment or longer exposure to higher doses of oestradiol to facilitate lordosis behaviour. We review recent findings about oestradiol membrane signalling inducing dendritic spine formation in the arcuate nucleus that is critical for oestradiol induction of sexual receptivity. Moreover, we discuss the evidence that, in addition to oestrogen receptor α, several other putative membrane oestrogen receptors facilitate lordosis behaviour through regulation of the arcuate nucleus. These include the GRP30 and the STX activated Gq-mER. Finally, we report on the importance of GABA acting at GABAB receptors for oestradiol membrane signalling that regulates lordosis circuit activation and sexual receptivity.
Collapse
Affiliation(s)
- Paul Micevych
- Department of Neurobiology, David Geffen School of Medicine at UCLA, the Laboratory of Neuroendocrinology, Brain Research Institute, University of California, Los Angeles, CA 90095
| | - Kevin Sinchak
- Department of Biological Sciences, California State University, Long Beach, CA 90840
| |
Collapse
|
21
|
Dominguez R, Dewing P, Kuo J, Micevych P. Membrane-initiated estradiol signaling in immortalized hypothalamic N-38 neurons. Steroids 2013; 78:607-13. [PMID: 23296142 PMCID: PMC3636190 DOI: 10.1016/j.steroids.2012.12.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/28/2012] [Accepted: 12/03/2012] [Indexed: 11/18/2022]
Abstract
Regulation of sexual reproduction by estradiol involves the activation of estrogen receptors (ERs) in the hypothalamus. Of the two classical ERs involved in reproduction, ERα appears to be the critical isoform. The role of ERα in reproduction has been found to involve a nuclear ERα that induces a genomic mechanism of action. More recently, a plasma membrane ERα has been shown to trigger signaling pathways involved in reproduction. Mechanisms underlying membrane-initiated estradiol signaling are emerging, including evidence that activation of plasma membrane ERα involves receptor trafficking. The present study examined the insertion of ERα into the plasma membrane of N-38 neurons, an immortalized murine hypothalamic cell line. We identified, using western blotting and PCR that N-38 neurons express full-length 66kDa ERα and a 52kDa ERα spliced variant missing the fourth exon - ERαΔ4. Using surface biotinylation, we observed that treatment of N-38 neurons with estradiol or with a membrane impermeant estradiol elevated plasma membrane ERα protein levels, indicating that membrane signaling increased receptor insertion into the cell membrane. Insertion of ERα was blocked by the ER antagonist ICI 182,780 or with the protein kinase C (PKC) pathway inhibitor bisindolylmaleimide (BIS). Downstream membrane-initiated signaling was confirmed by estradiol activation of PKC-theta (PKCθ) and the release of intracellular calcium. These results indicate that membrane ERα levels in N-38 neurons are dynamically autoregulated by estradiol.
Collapse
Affiliation(s)
- Reymundo Dominguez
- Laboratory of Neuroendocrinology of the Brain Research Institute, Departments of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1763, United States.
| | | | | | | |
Collapse
|
22
|
Korzick DH, Lancaster TS. Age-related differences in cardiac ischemia-reperfusion injury: effects of estrogen deficiency. Pflugers Arch 2013; 465:669-85. [PMID: 23525672 DOI: 10.1007/s00424-013-1255-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 02/23/2013] [Accepted: 02/25/2013] [Indexed: 01/17/2023]
Abstract
Despite conflicting evidence for the efficacy of hormone replacement therapy in cardioprotection of postmenopausal women, numerous studies have demonstrated reductions in ischemia/reperfusion (I/R) injury following chronic or acute exogenous estradiol (E2) administration in adult male and female, gonad-intact and gonadectomized animals. It has become clear that ovariectomized adult animals may not accurately represent the combined effects of age and E2 deficiency on reductions in ischemic tolerance seen in the postmenopausal female. E2 is known to regulate the transcription of several cardioprotective genes. Acute, non-genomic E2 signaling can also activate many of the same signaling pathways recruited in cardioprotection. Alterations in cardioprotective gene expression or cardioprotective signal transduction are therefore likely to result within the context of aging and E2 deficiency and may help explain the reduced ischemic tolerance and loss of cardioprotection in the senescent female heart. Quantification of the mitochondrial proteome as it adapts to advancing age and E2 deficiency may also represent a key experimental approach to uncover proteins associated with disruptions in cardiac signaling contributing to age-associated declines in ischemic tolerance. These alterations have important ramifications for understanding the increased morbidity and mortality due to ischemic cardiovascular disease seen in postmenopausal females. Functional perturbations that occur in mitochondrial respiration and Ca(2+) sensitivity with age-associated E2 deficiency may also allow for the identification of alternative therapeutic targets for reducing I/R injury and treatment of the leading cause of death in postmenopausal women.
Collapse
Affiliation(s)
- Donna H Korzick
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA.
| | | |
Collapse
|
23
|
Simpkins JW, Richardson TE, Yi KD, Perez E, Covey DF. Neuroprotection with non-feminizing estrogen analogues: an overlooked possible therapeutic strategy. Horm Behav 2013; 63:278-83. [PMID: 22498694 PMCID: PMC4446729 DOI: 10.1016/j.yhbeh.2012.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 03/23/2012] [Accepted: 03/27/2012] [Indexed: 11/26/2022]
Abstract
Although many of the effects of estrogens on the brain are mediated through estrogen receptors (ERs), there is evidence that neuroprotective activity of estrogens can be mediated by non-ER mechanisms. Herein, we review the substantial evidence that estrogens neuroprotection is in large part non-ER mediated and describe in vitro and in vivo studies that support this conclusion. Also, we described our drug discovery strategy for capitalizing on enhancement in neuroprotection while at the same time, reducing ER binding of a group of synthetic non-feminizing estrogens. Finally, we offer evidence that part of the neuroprotection of these non-feminizing estrogens is due to enhancement in redox potential of the synthesized compounds.
Collapse
Affiliation(s)
- James W Simpkins
- Institute for Aging and Alzheimer's Disease Research, Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| | | | | | | | | |
Collapse
|
24
|
Wen S, Cao G, Bao T, Cheng L, Li H, Du C, Tu Y, Li Q, Jian R, Zhao P, Wuriliga. Modulation of ovine SBD-1 expression by 17beta-estradiol in ovine oviduct epithelial cells. BMC Vet Res 2012; 8:143. [PMID: 22920556 PMCID: PMC3487956 DOI: 10.1186/1746-6148-8-143] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 08/10/2012] [Indexed: 12/02/2022] Open
Abstract
Background Mucosal epithelia, including those of the oviduct, secrete antimicrobial innate immune molecules (AIIMS). These have bactericidal/bacteriostatic functions against a variety of pathogens. Among the AIIMs, sheep β-defensin-1 (SBD-1) is one of the most potent. Even though the SBD-1 is an important AIIM and it is regulated closely by estrogenic hormone, the regulation mechanism of 17β-estradiol has not been clearly established. We investigated the effects of E2 and agonist or inhibitor on ovine oviduct epithelial cells in regard to SBD-1 expression using reverse transcription quantitative PCR (RT-qPCR). In addition, three different pathways were inhibited separately or simultaneously to confirm the effect of different inhibitors in the regulation mechanism. Results 17beta-estradiol (E2) induced release of SBD-1 in ovine oviduct epithelial cells. SBD-1 expression was mediated through G-protein-coupled receptor 30 (GPR30) and Estrogen Receptors (ERs) activation in ovine oviduct epithelial cell. Inhibition of gene expression of protein kinase A (PKA), protein kinase C (PKC), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) led to a decreased SBD-1 expression. Conclusions Taken together, E2-induced up-regulation of SBD-1 expressions were GPR30-dependent during prophase and ERs-dependent during later-stage in ovine oviduct epithelial cells, and we assume that the effect was completed by the PKA, PKC, and NF-κB pathways simultaneous.
Collapse
Affiliation(s)
- Shiyong Wen
- College of Veterinary, Inner Mongolia Agricultural University, Huhhot, 010018, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lee E, Sidoryk-Wegrzynowicz M, Yin Z, Webb A, Son DS, Aschner M. Transforming growth factor-α mediates estrogen-induced upregulation of glutamate transporter GLT-1 in rat primary astrocytes. Glia 2012; 60:1024-36. [PMID: 22488924 PMCID: PMC3353324 DOI: 10.1002/glia.22329] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 02/28/2012] [Indexed: 01/02/2023]
Abstract
Glutamate transporter-1 (GLT-1) plays a central role in preventing excitotoxicity by removing excess glutamate from the synaptic clefts. 17β-Estradiol (E2) and tamoxifen (TX), a selective estrogen receptor (ER) modulator, afford neuroprotection in a range of experimental models. However, the mechanisms that mediate E2 and TX neuroprotection have yet to be elucidated. We tested the hypothesis that E2 and TX enhance GLT-1 function by increasing transforming growth factor (TGF)-α expression and, thus, attenuate manganese (Mn)-induced impairment in astrocytic GLT-1 expression and glutamate uptake in rat neonatal primary astrocytes. The results showed that E2 (10 nM) and TX (1 μM) increased GLT-1 expression and reversed the Mn-induced reduction in GLT-1, both at the mRNA and protein levels. E2/TX also concomitantly reversed the Mn-induced inhibition of astrocytic glutamate uptake. E2/TX activated the GLT-1 promoter and attenuated the Mn-induced repression of the GLT-1 promoter in astrocytes. TGF-α knockdown (siRNA) abolished the E2/TX effect on GLT-1 expression, and inhibition of epidermal growth factor receptor (TGF-α receptor) suppressed the effect of E2/TX on GLT-1 expression and GLT-1 promoter activity. E2/TX also increased TGF-α mRNA and protein levels with a concomitant increase in astrocytic glutamate uptake. All ERs (ER-α, ER-β, and G protein-coupled receptor 30) were involved in mediating E2 effects on the regulation of TGF-α, GLT-1, and glutamate uptake. These results indicate that E2/TX increases GLT-1 expression in astrocytes via TGF-α signaling, thus offering an important putative target for the development of novel therapeutics for neurological disorders.
Collapse
Affiliation(s)
- Eunsook Lee
- Department of Physiology, Meharry Medical College, Nashville, TN 37208, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Manaye KF, Allard JS, Kalifa S, Drew AC, Xu G, Ingram DK, de Cabo R, Mouton PR. 17α-estradiol attenuates neuron loss in ovariectomized Dtg AβPP/PS1 mice. J Alzheimers Dis 2012; 23:629-39. [PMID: 21157032 DOI: 10.3233/jad-2010-100993] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Quantitative microanalysis of brains from patients with Alzheimer's disease (AD) find neuronal loss and neuroinflammation in structures that control cognitive function. Though historically difficult to recapitulate in experimental models, several groups have recently reported that by middle-age, transgenic mice that co-express high levels of two AD-associated mutations, amyloid-β protein precursor (AβPP(swe)) and presenilin 1 (PS1(ΔE9)), undergo significant AD-type neuron loss in sub-cortical nuclei with heavy catecholaminergic projections to the hippocampal formation. Here we report that by 13 months of age these dtg AβPP(swe)/PS1(ΔE9) mice also show significant loss of pyramidal neuron in a critical region for learning and memory, the CA1 subregion of hippocampus, as a direct function of amyloid-β (Aβ) aggregation. We used these mice to test whether 17α-estradiol (17αE2), a less feminizing and non-carcinogenic enantiomer of 17β-estradiol, protects against this CA1 neuron loss. Female dtg AβPP(swe)/PS1(ΔE9) mice were ovariectomized at 8-9 months of age and treated for 60 days with either 17αE2 or placebo via subcutaneous pellets. Computerized stereology revealed that 17αE2 ameliorated the loss of neurons in CA1 and reduced microglial activation in the hippocampus. These findings support the view that 17αE2, which may act through non-genomic mechanisms independent of traditional estrogen receptors, could prevent or delay the progression of AD in older men and women.
Collapse
Affiliation(s)
- Kebreten F Manaye
- Department of Physiology & Biophysics, College of Medicine, Howard University, Washington, DC 20059, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Gambino YP, Pérez Pérez A, Dueñas JL, Calvo JC, Sánchez-Margalet V, Varone CL. Regulation of leptin expression by 17beta-estradiol in human placental cells involves membrane associated estrogen receptor alpha. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:900-10. [PMID: 22310000 DOI: 10.1016/j.bbamcr.2012.01.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 12/26/2011] [Accepted: 01/23/2012] [Indexed: 11/28/2022]
Abstract
The placenta produces a wide number of molecules that play essential roles in the establishment and maintenance of pregnancy. In this context, leptin has emerged as an important player in reproduction. The synthesis of leptin in normal trophoblastic cells is regulated by different endogenous biochemical agents, but the regulation of placental leptin expression is still poorly understood. We have previously reported that 17β-estradiol (E(2)) up-regulates placental leptin expression. To improve the understanding of estrogen receptor mechanisms in regulating leptin gene expression, in the current study we examined the effect of membrane-constrained E(2) conjugate, E-BSA, on leptin expression in human placental cells. We have found that leptin expression was induced by E-BSA both in BeWo cells and human placental explants, suggesting that E(2) also exerts its effects through membrane receptors. Moreover E-BSA rapidly activated different MAPKs and AKT pathways, and these pathways were involved in E(2) induced placental leptin expression. On the other hand we demonstrated the presence of ERα associated to the plasma membrane of BeWo cells. We showed that E(2) genomic and nongenomic actions could be mediated by ERα. Supporting this idea, the downregulation of ERα level through a specific siRNA, decreased E-BSA effects on leptin expression. Taken together, these results provide new evidence of the mechanisms whereby E(2) regulates leptin expression in placenta and support the importance of leptin in placental physiology.
Collapse
Affiliation(s)
- Yésica P Gambino
- Departamento de Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
28
|
Estrogen receptor-alpha 36 mediates mitogenic antiestrogen signaling in ER-negative breast cancer cells. PLoS One 2012; 7:e30174. [PMID: 22276155 PMCID: PMC3261853 DOI: 10.1371/journal.pone.0030174] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 12/14/2011] [Indexed: 11/23/2022] Open
Abstract
It is prevailingly thought that the antiestrogens tamoxifen and ICI 182, 780 are competitive antagonists of the estrogen-binding site of the estrogen receptor-alpha (ER-α). However, a plethora of evidence demonstrated both antiestrogens exhibit agonist activities in different systems such as activation of the membrane-initiated signaling pathways. The mechanisms by which antiestrogens mediate estrogen-like activities have not been fully established. Previously, a variant of ER-α, EP–α36, has been cloned and showed to mediate membrane-initiated estrogen and antiestrogen signaling in cells only expressing ER-α36. Here, we investigated the molecular mechanisms underlying the antiestrogen signaling in ER-negative breast cancer MDA-MB-231 and MDA-MB-436 cells that express high levels of endogenous ER-α36. We found that the effects of both 4-hydoxytamoxifen (4-OHT) and ICI 182, 780 (ICI) exhibited a non-monotonic, or biphasic dose response curve; antiestrogens at low concentrations, elicited a mitogenic signaling pathway to stimulate cell proliferation while at high concentrations, antiestrogens inhibited cell growth. Antiestrogens at l nM induced the phosphorylation of the Src-Y416 residue, an event to activate Src, while at 5 µM induced Src-Y527 phosphorylation that inactivates Src. Antiestrogens at 1 nM also induced phosphorylation of the MAPK/ERK and activated the Cyclin D1 promoter activity through the Src/EGFR/STAT5 pathways but not at 5 µM. Knock-down of ER-α36 abrogated the biphasic antiestrogen signaling in these cells. Our results thus indicated that ER-α36 mediates biphasic antiestrogen signaling in the ER-negative breast cancer cells and Src functions as a switch of antiestrogen signaling dependent on concentrations of antiestrogens through the EGFR/STAT5 pathway.
Collapse
|
29
|
Simpkins JW, Perez E, Wang X, Yang S, Wen Y, Singh M. The potential for estrogens in preventing Alzheimer's disease and vascular dementia. Ther Adv Neurol Disord 2011; 2:31-49. [PMID: 19890493 DOI: 10.1177/1756285608100427] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Estrogens are the best-studied class of drugs for potential use in the prevention of Alzheimer's disease (AD). These steroids have been shown to be potent neuroprotectants both in vitro and in vivo, and to exert effects that are consistent with their potential use in prevention of AD. These include the prevention of the processing of amyloid precursor protein (APP) into beta-amyloid (Aß), the reduction in tau hyperphosphorylation, and the elimination of catastrophic attempts at neuronal mitosis. Further, epidemiological data support the efficacy of early postmenopausal use of estrogens for the delay or prevention of AD. Collectively, this evidence supports the further development of estrogen-like compounds for prevention of AD. Several approaches to enhance brain specificity of estrogen action are now underway in an attempt to reduce the side effects of chronic estrogen therapy in AD.
Collapse
Affiliation(s)
- James W Simpkins
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research, Center FOR HER (Focused On Resources for her Health, Education and Research), University of North Texas Health Science Center, Fort Worth, TX, USA
| | | | | | | | | | | |
Collapse
|
30
|
Selective estrogen receptor modulators regulate dendritic spine plasticity in the hippocampus of male rats. Neural Plast 2011; 2012:309494. [PMID: 22164341 PMCID: PMC3216374 DOI: 10.1155/2012/309494] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 08/12/2011] [Indexed: 01/09/2023] Open
Abstract
Some selective estrogen receptor modulators, such as raloxifene and tamoxifen, are neuroprotective and reduce brain inflammation in several experimental models of neurodegeneration. In addition, raloxifene and tamoxifen counteract cognitive deficits caused by gonadal hormone deprivation in male rats. In this study, we have explored whether raloxifene and tamoxifen may regulate the number and geometry of dendritic spines in CA1 pyramidal neurons of the rat hippocampus. Young adult male rats were injected with raloxifene (1 mg/kg), tamoxifen (1 mg/kg), or vehicle and killed 24 h after the injection. Animals treated with raloxifene or tamoxifen showed an increased numerical density of dendritic spines in CA1 pyramidal neurons compared to animals treated with vehicle. Raloxifene and tamoxifen had also specific effects in the morphology of spines. These findings suggest that raloxifene and tamoxifen may influence the processing of information by hippocampal pyramidal neurons by affecting the number and shape of dendritic spines.
Collapse
|
31
|
Mendrek A, Stip E. Sexual dimorphism in schizophrenia: is there a need for gender-based protocols? Expert Rev Neurother 2011; 11:951-9. [PMID: 21721913 DOI: 10.1586/ern.11.78] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Gender differences have been reported in various aspects of schizophrenia, including its epidemiology, clinical course and the response to antipsychotic medications. Over the past few years the authors have been investigating sex differences in brain function in individuals with schizophrenia and have found an intriguing disturbance of normal sexual dimorphism during emotional and cognitive processing. These results can be partly accounted for by altered levels of sex steroid hormones (i.e., estrogen and testosterone) in patients. A handful of clinical research groups have tried low doses of estrogen, testosterone or their precursors as adjunct therapies to the currently available antipsychotic medications in women and men with schizophrenia. The results have been promising, but further investigation is warranted. In the future, new more specific steroidal compounds will be developed and we will see more studies examining sex differences in the brain, behavior and mental health problems. This research will help to identify individuals who may benefit greatest from adjunct hormonal therapies and will further our understanding of the etiology of schizophrenia and other psychiatric disorders.
Collapse
Affiliation(s)
- Adrianna Mendrek
- Department of Psychiatry, Université de Montréal, Centre de recherche Fernand-Seguin, 7331 Hochelaga, Montreal (QC), H1N 3V2, Canada.
| | | |
Collapse
|
32
|
Ruiz-Palmero I, Simon-Areces J, Garcia-Segura LM, Arevalo MA. Notch/neurogenin 3 signalling is involved in the neuritogenic actions of oestradiol in developing hippocampal neurones. J Neuroendocrinol 2011; 23:355-64. [PMID: 21251092 DOI: 10.1111/j.1365-2826.2011.02110.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ovarian hormone oestradiol promotes neuritic outgrowth in different neuronal types, by mechanisms that remain elusive. Recent studies have shown that the Notch-regulated transcription factor neurogenin 3 controls neuritogenesis. In the present study, we assessed whether oestradiol regulates neurogenin 3 in primary hippocampal neurones. As expected, neuritogenesis was increased in the cultures treated with oestradiol. However, the neuritogenic action of oestradiol was not prevented by ICI 182,780, an antagonist of classical oestrogen receptors (ERs). Oestradiol decreased the expression of Hairy and Enhancer of Split-1, a Notch-regulated gene that negatively controls the expression on neurogenin 3. Furthermore, oestradiol increased the expression of neurogenin 3 and regulated its distribution between the neuronal cell nucleus and the cytoplasm. The effect of oestradiol on neurogenin 3 expression was not blocked by antagonists of classical nuclear ER-mediated transcription and was not imitated by selective agonists of nuclear ERs. By contrast, G1, a ligand of G protein receptor 30/G protein-coupled ER, fully reproduced the effect of oestradiol on neuritogenesis, neurogenin 3 expression and neurogenin 3 subcellular localisation. Moreover, knockdown of neurogenin 3 in neurones by transfection with small interference RNA for neurogenin 3 completely abrogated the neuritogenic actions of oestradiol and G1. These results suggest that oestradiol regulates neurogenin 3 in primary hippocampal neurones by a nonclassical steroid signalling mechanism, which involves the down-regulation of Notch activity and the activation of G protein receptor 30/G protein-coupled ER or of other unknown G1 targets. In addition, our findings indicate that neurogenin 3 participates in the neuritogenic mechanisms of oestradiol in hippocampal neurones.
Collapse
|
33
|
Estradiol acutely potentiates hippocampal excitatory synaptic transmission through a presynaptic mechanism. J Neurosci 2011; 30:16137-48. [PMID: 21123560 DOI: 10.1523/jneurosci.4161-10.2010] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although recent evidence suggests that the hippocampus is a source of 17β-estradiol (E2), the physiological role of this neurosteroid E2, as distinct from ovarian E2, is unknown. One likely function of neurosteroid E2 is to acutely potentiate excitatory synaptic transmission, but the mechanism of this effect is not well understood. Using whole-cell voltage-clamp recording of synaptically evoked EPSCs in adult rat hippocampal slices, we show that, in contrast to the conclusions of previous studies, E2 potentiates excitatory transmission through a presynaptic mechanism. We find that E2 acutely potentiates EPSCs by increasing the probability of glutamate release specifically at inputs with low initial release probability. This effect is mediated by estrogen receptor β (ERβ) acting as a monomer, whereas ERα is not required. We further show that the E2-induced increase in glutamate release is attributable primarily to increased individual vesicle release probability and is associated with higher average cleft glutamate concentration. These two findings together argue strongly that E2 promotes multivesicular release, which has not been shown before in the adult hippocampus. The rapid time course of acute EPSC potentiation and its concentration dependence suggest that locally synthesized neurosteroid E2 may activate this effect in vivo.
Collapse
|
34
|
Estrogen stimulates proliferation and differentiation of neural stem/progenitor cells through different signal transduction pathways. Int J Mol Sci 2010; 11:4114-23. [PMID: 21152324 PMCID: PMC2996786 DOI: 10.3390/ijms11104114] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 10/17/2010] [Accepted: 10/18/2010] [Indexed: 01/24/2023] Open
Abstract
Our previous study indicated that both 17β-estradiol (E2), known to be an endogenous estrogen, and bisphenol A (BPA), known to be a xenoestrogen, could positively influence the proliferation or differentiation of neural stem/progenitor cells (NS/PCs). The aim of the present study was to identify the signal transduction pathways for estrogenic activities promoting proliferation and differentiation of NS/PCs via well known nuclear estrogen receptors (ERs) or putative membrane-associated ERs. NS/PCs were cultured from the telencephalon of 15-day-old rat embryos. In order to confirm the involvement of nuclear ERs for estrogenic activities, their specific antagonist, ICI-182,780, was used. The presence of putative membrane-associated ER was functionally examined as to whether E2 can activate rapid intracellular signaling mechanism. In order to confirm the involvement of membrane-associated ERs for estrogenic activities, a cell-impermeable E2, bovine serum albumin-conjugated E2 (E2-BSA) was used. We showed that E2 could rapidly activate extracellular signal-regulated kinases 1/2 (ERK 1/2), which was not inhibited by ICI-182,780. ICI-182,780 abrogated the stimulatory effect of these estrogens (E2 and BPA) on the proliferation of NS/PCs, but not their effect on the differentiation of the NS/PCs into oligodendroglia. Furthermore, E2-BSA mimicked the activity of differentiation from NS/PCs into oligodendroglia, but not the activity of proliferation. Our study suggests that (1) the estrogen induced proliferation of NS/PCs is mediated via nuclear ERs; (2) the oligodendroglial generation from NS/PCs is likely to be stimulated via putative membrane-associated ERs.
Collapse
|
35
|
Ronda AC, Buitrago C, Boland R. Role of estrogen receptors, PKC and Src in ERK2 and p38 MAPK signaling triggered by 17β-estradiol in skeletal muscle cells. J Steroid Biochem Mol Biol 2010; 122:287-94. [PMID: 20478382 DOI: 10.1016/j.jsbmb.2010.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 04/20/2010] [Accepted: 05/06/2010] [Indexed: 12/30/2022]
Abstract
We have previously reported in C2C12 murine skeletal muscle cells that 10(-8)M 17β-estradiol promotes MAPKs stimulation which in turn mediates the activation of CREB and Elk-1 transcription factors. In this work, we demonstrated that the hormone induces ERK2 phosphorylation (without affecting ERK1 activation) and also stimulates p38 MAPK, both in a dose-dependent manner. Moreover, estrogen receptors involvement in MAPKs activation by the estrogen was studied. The use of ICI182780 (1 μM), an antagonist of ERs, and specific siRNAs to block ERα and ERβ expression, demonstrated that ERα mediates ERK2 activation but not p38 MAPK phosphorylation by 17β-estradiol, and that ERβ isoform is not implicated in MAPKs activation by the hormone. Furthermore, Src and PKC contribution in estrogen stimulation of the MAPKs was investigated. Compounds PP2 and Ro318220, Src and PKC family inhibitors, respectively abrogated ERK2 and p38 MAPK phosphorylation by 17β-estradiol. Of interest, the hormone was able to induce Src and PKCδ activation. In addition, Ro318220 decreased estrogen-dependent Src modulation implicating PKC in hormone upregulation of Src. Accordingly, PP2 and Ro318220 suppressed CREB and Elk-1 phosphorylation as well as c-Fos and c-Jun oncoprotein levels induced by 17β-estradiol. Altogether, these data indicate that 17β-estradiol activates ERK2 through ERα and p38 MAPK in an ERα/β-independent manner and that PKC and Src proteins are key upstream components on MAPKs activation in C2C12 skeletal muscle cells.
Collapse
Affiliation(s)
- Ana C Ronda
- Departamento de Biología, Bioquímica & Farmacia, Universidad Nacional del Sur, San Juan 670, 8000 Bahía Blanca, Argentina
| | | | | |
Collapse
|
36
|
Estrogen receptor beta-selective agonists stimulate calcium oscillations in human and mouse embryonic stem cell-derived neurons. PLoS One 2010; 5:e11791. [PMID: 20668547 PMCID: PMC2910705 DOI: 10.1371/journal.pone.0011791] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Accepted: 06/18/2010] [Indexed: 12/30/2022] Open
Abstract
Estrogens are used extensively to treat hot flashes in menopausal women. Some of the beneficial effects of estrogens in hormone therapy on the brain might be due to nongenomic effects in neurons such as the rapid stimulation of calcium oscillations. Most studies have examined the nongenomic effects of estrogen receptors (ER) in primary neurons or brain slices from the rodent brain. However, these cells can not be maintained continuously in culture because neurons are post-mitotic. Neurons derived from embryonic stem cells could be a potential continuous, cell-based model to study nongenomic actions of estrogens in neurons if they are responsive to estrogens after differentiation. In this study ER-subtype specific estrogens were used to examine the role of ERα and ERβ on calcium oscillations in neurons derived from human (hES) and mouse embryonic stem cells. Unlike the undifferentiated hES cells the differentiated cells expressed neuronal markers, ERβ, but not ERα. The non-selective ER agonist 17β-estradiol (E2) rapidly increased [Ca2+]i oscillations and synchronizations within a few minutes. No change in calcium oscillations was observed with the selective ERα agonist 4,4′,4″-(4-Propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT). In contrast, the selective ERβ agonists, 2,3-bis(4-Hydroxyphenyl)-propionitrile (DPN), MF101, and 2-(3-fluoro-4-hydroxyphenyl)-7-vinyl-1,3 benzoxazol-5-ol (ERB-041; WAY-202041) stimulated calcium oscillations similar to E2. The ERβ agonists also increased calcium oscillations and phosphorylated PKC, AKT and ERK1/2 in neurons derived from mouse ES cells, which was inhibited by nifedipine demonstrating that ERβ activates L-type voltage gated calcium channels to regulate neuronal activity. Our results demonstrate that ERβ signaling regulates nongenomic pathways in neurons derived from ES cells, and suggest that these cells might be useful to study the nongenomic mechanisms of estrogenic compounds.
Collapse
|
37
|
Jenei-Lanzl Z, Straub RH, Dienstknecht T, Huber M, Hager M, Grässel S, Kujat R, Angele MK, Nerlich M, Angele P. Estradiol inhibits chondrogenic differentiation of mesenchymal stem cells via nonclassic signaling. ACTA ACUST UNITED AC 2010; 62:1088-96. [PMID: 20131256 DOI: 10.1002/art.27328] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE We undertook this study to examine the effects of estradiol on chondrogenesis of human bone marrow-derived mesenchymal stem cells (MSCs), with consideration of sex-dependent differences in cartilage repair. METHODS Bone marrow was obtained from the iliac crest of young men. Density-gradient centrifugation-separated human MSCs proliferated as a monolayer in serum-containing medium. After confluence was achieved, aggregates were created and cultured in a serum-free differentiation medium. We added different concentrations of 17beta-estradiol (E2) with or without the specific estrogen receptor inhibitor ICI 182.780, membrane-impermeable E2-bovine serum albumin (E2-BSA), ICI 182.780 alone, G-1 (an agonist of G protein-coupled receptor 30 [GPR-30]), and G15 (a GPR-30 antagonist). After 21 days, the aggregates were analyzed histologically and immunohistochemically; we quantified synthesized type II collagen, DNA content, sulfated glycosaminoglycan (sGAG) concentrations, and type X collagen and matrix metalloproteinase 13 (MMP-13) expression. RESULTS The existence of intracellular and membrane-associated E2 receptors was shown at various stages of chondrogenesis. Smaller aggregates and significantly lower type II collagen and sGAG content were detected after treatment with E2 and E2-BSA in a dose-dependent manner. Furthermore, E2 enhanced type X collagen and MMP-13 expression. Compared with estradiol alone, the coincubation of ICI 182.780 with estradiol enhanced suppression of chondrogenesis. Treatment with specific GPR-30 agonists alone (G-1 and ICI 182.780) resulted in a considerable inhibition of chondrogenesis. In addition, we found an enhancement of hypertrophy by G-1. Furthermore, the specific GPR-30 antagonist G15 reversed the GPR-30-mediated inhibition of chondrogenesis and up-regulation of hypertrophic gene expression. CONCLUSION The experiments revealed a suppression of chondrogenesis by estradiol via membrane receptors (GPR-30). The study opens new perspectives for influencing chondrogenesis on the basis of classic and nonclassic estradiol signaling.
Collapse
|
38
|
Ma XM, Huang JP, Kim EJ, Zhu Q, Kuchel GA, Mains RE, Eipper BA. Kalirin-7, an important component of excitatory synapses, is regulated by estradiol in hippocampal neurons. Hippocampus 2010; 21:661-77. [PMID: 20333733 DOI: 10.1002/hipo.20780] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2010] [Indexed: 12/13/2022]
Abstract
Estradiol enhances the formation of dendritic spines and excitatory synapses in hippocampal neurons in vitro and in vivo, but the underlying mechanisms are not fully understood. Kalirin-7 (Kal7), the major isoform of Kalirin in the adult hippocampus, is a Rho GDP/GTP exchange factor localized to postsynaptic densities. In the hippocampus, both Kal7 and estrogen receptor α (ERα) are highly expressed in a subset of interneurons. Over-expression of Kal7 caused an increase in spine density and size in hippocampal neurons. To determine whether Kalirin might play a role in the effects of estradiol on spine formation, Kal7 expression was examined in the hippocampus of ovariectomized rats. Estradiol replacement increased Kal7 staining in both CA1 pyramidal neurons and interneurons in ovariectomized rats. Estradiol treatment of cultured hippocampal neurons increased Kal7 levels at the postsynaptic side of excitatory synapses and increased the number of excitatory synapses along the dendrites of pyramidal neurons. These increases were mediated via ERα because a selective ERα agonist, but not a selective ERβ agonist, caused a similar increase in both Kal7 levels and excitatory synapse number in cultured hippocampal neurons. When Kal7 expression was reduced using a Kal7-specific shRNA, the density of excitatory synapses was reduced and estradiol was no longer able to increase synapse formation. Expression of exogenous Kal7 in hippocampal interneurons resulted in decreased levels of GAD65 staining. Inhibition of GABAergic transmission with bicuculline produced a robust increase in Kal7 expression. These studies suggest Kal7 plays a key role in the mechanisms of estradiol-mediated synaptic plasticity.
Collapse
Affiliation(s)
- Xin-Ming Ma
- Department of Neuroscience, University of Connecticut Health Center, Farmington, 06030, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Cinar O, Seval Y, Uz YH, Cakmak H, Ulukus M, Kayisli UA, Arici A. Differential regulation of Akt phosphorylation in endometriosis. Reprod Biomed Online 2010; 19:864-71. [PMID: 20031030 DOI: 10.1016/j.rbmo.2009.10.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Protein kinase B (PKB/Akt), a serine/threonine kinase, regulates the function of many cellular proteins involved in apoptosis and proliferation. It was postulated that there is a higher Akt activity in endometriosis compared with normal endometrium, and that oestrogen may be one of the factors responsible for the high Akt activation in endometriotic cells. Phospho-Akt (pAkt) concentrations in normal, eutopic and ectopic endometrial tissues were compared by immunohistochemistry, and a higher pAkt immunoreactivity was revealed in eutopic and ectopic endometrium compared with normal endometrium, in vivo. Higher Akt phosphorylation in stromal cells from eutopic endometrium was observed, when compared with normal, in vitro (P < 0.05). Akt phosphorylation was rapidly (2-10 min) stimulated when endometrial stromal cells from normal and endometriosis patients were treated with 17 beta-oestradiol. In endometrial stromal cells from the endometriosis group, ICI 182,780 (ICI, a specific oestrogen receptor antagonist) failed to antagonize the effect of oestradiol when combined with oestradiol, and revealed a stimulatory effect on Akt phosphorylation when given alone (P < 0.05). In conclusion, since Akt affects cell survival, it is suggested that increased Akt phosphorylation may be related to the altered apoptosis/proliferation harmony in endometriosis, and therefore Akt may play a critical role in the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Ozgur Cinar
- Centre for Assisted Reproductive Medicine and IVF, Etlik Zubeyde Hanim Women's Health Teaching and Research Hospital, Ankara 06010, Turkey
| | | | | | | | | | | | | |
Collapse
|
40
|
Thuillier R, Mazer M, Manku G, Boisvert A, Wang Y, Culty M. Interdependence of platelet-derived growth factor and estrogen-signaling pathways in inducing neonatal rat testicular gonocytes proliferation. Biol Reprod 2010; 82:825-36. [PMID: 20089883 DOI: 10.1095/biolreprod.109.081729] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We previously found that platelet-derived growth factor (PDGF) and 17beta-estradiol stimulate gonocyte proliferation in a dose-dependent, nonadditive manner. In the present study, we report that gonocytes express RAF1, MAP2K1, and MAPK1/3. Inhibition of RAF1 and MAP2K1/2, but not phosphoinositide-3-kinase, blocked PDGF-induced proliferation. AG-370, an inhibitor of PDGF receptor kinase activity, suppressed not only PDGF-induced proliferation but also that induced by 17beta-estradiol. In addition, RAF1 and MAP2K1/2 inhibitors blocked 17beta-estradiol-activated proliferation. The estrogen receptor antagonist ICI 182780 inhibited both the effects of 17beta-estradiol and PDGF. PDGF lost its stimulatory effect when steroid-depleted serum or no serum was used. Similarly, 17beta-estradiol did not induce gonocyte proliferation in the absence of PDGF. The xenoestrogens genistein, bisphenol A, and DES, but not coumestrol, stimulated gonocyte proliferation in a dose-dependent and PDGF-dependent manner similarly to 17beta-estradiol. Their effects were blocked by ICI 182780, suggesting that they act via the estrogen receptor. AG-370 blocked genistein and bisphenol A effects, demonstrating their requirement of PDGF receptor activation in a manner similar to 17beta-estradiol. These results demonstrate the interdependence of PDGF and estrogen pathways in stimulating in vitro gonocyte proliferation, suggesting that this critical step in gonocyte development might be regulated in vivo by the coordinated action of PDGF and estrogen. Thus, the inappropriate exposure of gonocytes to xenoestrogens might disrupt the crosstalk between the two pathways and potentially interfere with gonocyte development.
Collapse
Affiliation(s)
- Raphael Thuillier
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | | | | | | | | | | |
Collapse
|
41
|
DonCarlos LL, Azcoitia I, Garcia-Segura LM. Neuroprotective actions of selective estrogen receptor modulators. Psychoneuroendocrinology 2009; 34 Suppl 1:S113-22. [PMID: 19447561 PMCID: PMC2794899 DOI: 10.1016/j.psyneuen.2009.04.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 04/20/2009] [Accepted: 04/20/2009] [Indexed: 12/13/2022]
Abstract
Decreasing levels of sex hormones with aging may have a negative impact on brain function, since this decrease is associated with the progression of neurodegenerative disorders, increased depressive symptoms and other psychological disturbances. Extensive evidence from animal studies indicates that sex steroids, in particular estradiol, are neuroprotective. However, the potential benefits of estradiol therapy for the brain are counterbalanced by negative, life-threatening risks in the periphery. A potential therapeutic alternative to promote neuroprotection is the use of selective estrogen receptor modulators (SERMs), which may be designed to act with tissue selectivity as estrogen receptor agonists in the brain and not in other organs. Currently available SERMs act not only with tissue selectivity, but also with cellular selectivity within the brain and differentially modulate the activation of microglia, astroglia and neurons. Finally, SERMs may promote the interaction of estrogen receptors with the neuroprotective signaling of growth factors, such as the phosphatidylinositol 3-kinase/glycogen synthase kinase 3 pathway.
Collapse
Affiliation(s)
- Lydia L. DonCarlos
- Department of Cell Biology, Neurobiology and Anatomy, Stritch School of Medicine, Loyola University Chicago, 2160 South First Avenue, Maywood, Illinois 60153, USA. Tel: +1-7082164975; Fax: +1-7082163913; e-mail:
| | - Iñigo Azcoitia
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense, E-28040 Madrid, Spain. Tel: +34-913944861, Fax: +34-913944981 e-mail:
| | - Luis M. Garcia-Segura
- Instituto Cajal, CSIC, E-28002 Madrid, Spain. Tel:+34-915854729; Fax: +34-915854754; e-mail:
| |
Collapse
|
42
|
Zusev M, Benayahu D. The regulation of MS-KIF18A expression and cross talk with estrogen receptor. PLoS One 2009; 4:e6407. [PMID: 19636373 PMCID: PMC2712070 DOI: 10.1371/journal.pone.0006407] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Accepted: 06/17/2009] [Indexed: 01/23/2023] Open
Abstract
This study provides a novel view on the interactions between the MS-KIF18A, a kinesin protein, and estrogen receptor alpha (ERα) which were studied in vivo and in vitro. Additionally, the regulation of MS-KIF18A expression by estrogen was investigated at the gene and protein levels. An association between recombinant proteins; ERα and MS-KIF18A was demonstrated in vitro in a pull down assay. Such interactions were proven also for endogenous proteins in MBA-15 cells were detected prominently in the cytoplasm and are up-regulated by estrogen. Additionally, an association between these proteins and the transcription factor NF-κB was identified. MS-KIF18A mRNA expression was measured in vivo in relation to age and estrogen level in mice and rats models. A decrease in MS-KIF18A mRNA level was measured in old and in OVX-estrogen depleted rats as compared to young animals. The low MS-KIF18A mRNA expression in OVX rats was restored by estrogen treatment. We studied the regulation of MS-KIF18A transcription by estrogen using the luciferase reporter gene and chromatin immuno-percipitation (ChIP) assays. The luciferase reporter gene assay demonstrated an increase in MS-KIF18A promoter activity in response to 10−8 M estrogen and 10−7M ICI-182,780. Complimentary, the ChIP assay quantified the binding of ERα and pcJun to the MS-KIF18A promoter that was enhanced in cells treated by estrogen and ICI-182,780. In addition, cells treated by estrogen expressed higher levels of MS-KIF18A mRNA and protein and the protein turnover in MBA-15 cells was accelerated. Presented data demonstrated that ERα is a defined cargo of MS-KIF18A and added novel insight on the role of estrogen in regulation of MS-KIF18A expression both in vivo and in vitro.
Collapse
Affiliation(s)
- Margalit Zusev
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Dafna Benayahu
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- * E-mail:
| |
Collapse
|
43
|
Xia Y, Xing JZ, Krukoff TL. Neuroprotective effects of R,R-tetrahydrochrysene against glutamate-induced cell death through anti-excitotoxic and antioxidant actions involving estrogen receptor-dependent and -independent pathways. Neuroscience 2009; 162:292-306. [PMID: 19410635 DOI: 10.1016/j.neuroscience.2009.04.068] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 04/21/2009] [Accepted: 04/28/2009] [Indexed: 01/21/2023]
Abstract
Glutamate-induced neural cell death is mediated by excitotoxicity and oxidative stress. Treatment of glutamate toxicity with estrogen and its related compounds for neuroprotection remains controversial. In this study, we examined the effects of selective estrogen receptor (ER) ligands on glutamate toxicity and found that R,R-tetrahydrochrysene (R,R-THC), an antagonist of ERbeta and agonist of ERalpha, has neuroprotective effects against glutamate-induced death in primary rat cortical cells and mouse N29/4 hypothalamic cells. The protective effect of R,R-THC was dose-dependent and was maintained even when added several hours after the initial glutamate exposure. R,R-THC blocked glutamate-induced depletion of intracellular glutathione, increased superoxide dismutase activity, and protected cells from hydrogen peroxide-induced death. R,R-THC also prevented glutamate-induced nuclear translocation of apoptotic inducing factor and release of mitochondrial cytochrome c. The protective effect of R,R-THC was blocked by methyl-piperidino-pyrazole (MPP; an ERalpha antagonist) in glutamate-treated cortical cells, and pretreatment with MK-801 (an NMDA receptor antagonist) but not CNQX (an AMPA/kainate receptor antagonist) increased cell survival. On the other hand, MPP did not block the protective effect of R,R-THC in glutamate-treated N29/4 cells, and neither MK-801 nor CNQX conferred protection. Activation of ERalpha and/or ERbeta with 17beta-estradiol (E2), propyl-pyrazole-triol or diarylpropionitrile did not provide effective neuroprotection, and pretreatment with ICI 182,780 did not inhibit the protective effect of R,R-THC in either type of cell. These results suggest that the use of ER agonists (including E2) has limited beneficial effects when both excitotoxicity and oxidative stress occur. In contrast to agonists of ERs, R,R-THC, which possesses anti-excitotoxic and antioxidant actions via ER-dependent and -independent pathways, provides significant neuroprotection.
Collapse
Affiliation(s)
- Y Xia
- Department of Cell Biology and Center for Neuroscience, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada T6G 2H7.
| | | | | |
Collapse
|
44
|
Enhanced expression of ERα in astrocytes modifies the response of cortical neurons to β-amyloid toxicity. Neurobiol Dis 2009; 33:415-21. [DOI: 10.1016/j.nbd.2008.11.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 11/21/2008] [Accepted: 11/21/2008] [Indexed: 11/18/2022] Open
|
45
|
Zhao L, Mao Z, Brinton RD. A select combination of clinically relevant phytoestrogens enhances estrogen receptor beta-binding selectivity and neuroprotective activities in vitro and in vivo. Endocrinology 2009; 150:770-83. [PMID: 18818291 DOI: 10.1210/en.2008-0715] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We have previously shown that a number of naturally occurring phytoestrogens and derivatives were effective to induce some measures of neuroprotective responses but at a much lower magnitude than those induced by the female gonadal estrogen 17beta-estradiol. In the present study, we sought to investigate whether a combination of select phytoestrogens could enhance neural responses without affecting the reproductive system. We performed a range of comparative analyses of the estrogen receptor (ER) alpha/beta binding profile, and in vitro to in vivo estrogenic activities in neural and uterine tissues induced by clinically relevant phytoestrogens: genistein, daidzein, equol, and IBSO03569, when used alone or in combination. Our analyses revealed that both the ERalpha/beta binding profile and neural activities associated with individual phytoestrogens are modifiable when used in combination. Specifically, the combination of genistein plus daidzein plus equol resulted in the greatest binding selectivity for ERbeta and an overall improved efficacy/safety profile when compared with single or other combined formulations, including: 1) an approximate 30% increase in ERbeta-binding selectivity (83-fold over ERalpha); 2) a greater effect on neuronal survival against toxic insults in primary neurons; 3) an enhanced activity in promoting neural proactive defense mechanisms against neurodegeneration, including mitochondrial function and beta-amyloid degradation; and 4) no effect on uterine growth. These observations suggest that select phytoestrogens in combination have the therapeutic potential of an alternative approach to conventional estrogen therapy for long-term safe use to reduce the increased risk of cognitive decline and neurodegenerative disease associated with menopause in women.
Collapse
Affiliation(s)
- Liqin Zhao
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA.
| | | | | |
Collapse
|
46
|
Brown CM, Choi E, Xu Q, Vitek MP, Colton CA. The APOE4 genotype alters the response of microglia and macrophages to 17beta-estradiol. Neurobiol Aging 2008; 29:1783-94. [PMID: 17553597 PMCID: PMC2597534 DOI: 10.1016/j.neurobiolaging.2007.04.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Revised: 04/09/2007] [Accepted: 04/25/2007] [Indexed: 10/23/2022]
Abstract
The apolipoprotein E4 (APOE4) gene is a well-known risk factor for Alzheimer's disease (AD) and other neurological disorders. Post-menopausal women with AD who express at least one APOE4 gene have more severe neuropathology and worsened cognitive scores than their non-expressing counterparts. Since 17beta-estradiol down-regulates inflammation as part of its neuroprotective role, we examined the effect of 17beta-estradiol on the response of microglia to immune activation as a function of APOE genotype. Our data show that the anti-inflammatory activity of 17beta-estradiol is significantly reduced in APOE4 targeted replacement mice compared to APOE3 mice. A significant interaction between APOE genotype and the response to 17beta-estradiol was observed for NO and cytokine production by immune activated microglia. The genotype specific effect was not restricted to brain macrophages since peritoneal macrophages from APOE4 ovariectomized mice also demonstrated a significant difference in 17beta-estradiol responsiveness. ERbeta protein levels in APOE4 microglia were higher than APOE3 microglia, suggesting a difference in post-translational protein regulation in the presence of the APOE4 gene. Overall, our data indicate that the APOE genotype may be a critical component in assessing the effectiveness of 17beta-estradiol's action and may impact the neuroprotective role of 17beta-estradiol and of hormone replacement therapy on brain function when the APOE4 gene is expressed.
Collapse
Affiliation(s)
- Candice M Brown
- Division of Neurology, Duke University Medical Center, Durham, NC 27710, United States.
| | | | | | | | | |
Collapse
|
47
|
Valeri A, Ceccarelli I, Fiorenzani P, Aloisi AM, Sgaragli G, Pessina F. Effects of 17ββ-estradiol on rat urinary bladder: Gender differences in anoxia-glucopenia and reperfusion damage. Neurourol Urodyn 2008; 28:535-41. [DOI: 10.1002/nau.20673] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
48
|
Alfinito PD, Chen X, Atherton J, Cosmi S, Deecher DC. ICI 182,780 penetrates brain and hypothalamic tissue and has functional effects in the brain after systemic dosing. Endocrinology 2008; 149:5219-26. [PMID: 18599545 DOI: 10.1210/en.2008-0532] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previous reports suggest the antiestrogen ICI 182,780 (ICI) does not cross the blood-brain barrier (BBB). However, this hypothesis has never been directly tested. In the present study, we tested whether ICI crosses the BBB, penetrates into brain and hypothalamic tissues, and affects known neuroendocrine functions in ovariectomized rats. Using HPLC with mass spectrometry, ICI (1.0 mg/kg.d, 3 d) was detected in plasma and brain and hypothalamic tissues for up to 24 h with maximum concentrations of 43.1 ng/ml, and 31.6 and 38.8 ng/g, respectively. To evaluate antiestrogenic effects of ICI in the brain after systemic dosing, we tested its ability to block the effect of 17 alpha-ethinyl estradiol (EE) (0.3 mg/kg, 8 d) on tail-skin temperature abatement in the morphine-dependent model of hot flush and on body weight change. In the morphine-dependent model, EE abated 64% of the naloxone-induced tail-skin temperature increase. ICI pretreatment (1.0, 3.0 mg/kg.d) dose dependently inhibited this effect. ICI (3.0 mg/kg.d) alone showed estrogenic-like actions, abating 30% the naloxone-induced flush. In body weight studies, EE-treated rats weighed 58.5 g less than vehicle-treated rats after 8 d dosing. This effect was partially blocked by ICI (3.0 mg/kg.d) pretreatment. Similar to EE treatment, rats receiving 1.0 or 3.0 mg/kg.d ICI alone showed little weight gain compared with vehicle-treated controls. Thus, ICI crosses the BBB, penetrates into brain and hypothalamic tissues, and has both antiestrogenic and estrogenic-like actions on neuroendocrine-related functions.
Collapse
Affiliation(s)
- Peter D Alfinito
- Women's Health and Musculoskeletal Biology, Wyeth Research, RN 3164, 500 Arcola Road, Collegeville, Pennsylvania 19426, USA
| | | | | | | | | |
Collapse
|
49
|
Davis AM, Mao J, Naz B, Kohl JA, Rosenfeld CS. Comparative effects of estradiol, methyl-piperidino-pyrazole, raloxifene, and ICI 182 780 on gene expression in the murine uterus. J Mol Endocrinol 2008; 41:205-17. [PMID: 18632874 PMCID: PMC6697483 DOI: 10.1677/jme-08-0029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Selective estrogen receptor modulators (SERMs) are potentially useful in treating various endometrial disorders, including endometrial cancer, as they block some of the detrimental effects of estrogen. It remains unclear whether each SERM regulates a unique subset of genes and, if so, whether the combination of a SERM and 17beta-estradiol has an additive or synergistic effect on gene expression. We performed microarray analysis with Affymetrix Mouse Genome 430 2.0 short oligomer arrays to determine gene expression changes in uteri of ovariectomized mice treated with estradiol (low and high dose), methyl-piperidino-pyrazole (MPP), ICI 182 780, raloxifene, and combinations of high dose of estradiol with one of the SERM and dimethyl sulfoxide (DMSO) vehicle control. The nine treatments clustered into two groups, with MPP, raloxifene, and high dose of estradiol in one, and low dose of estradiol, ICI + estradiol, ICI, MPP + estradiol, and raloxifene + estradiol in the second group. Surprisingly, combining a high dose of estradiol with a SERM markedly increased (P<0.02) the number of regulated genes compared with each individual treatment. Analysis of expression for selected genes in uteri of estradiol and SERM-treated mice by quantitative (Q)RT-PCR generally supported the microarray results. For some cancer-associated genes, including Klk1, Ihh, Cdc45l, and Cdca8, administration of MPP or raloxifene with estradiol resulted in greater expression than estradiol alone (P<0.05). By contrast, ICI 182 780 suppressed more genes governing DNA replication compared with MPP and raloxifene treatments. Therefore, ICI 182 780 might be superior to MPP and raloxifene to treat estrogen-induced endometrial cancer in women.
Collapse
Affiliation(s)
- Angela M Davis
- Department of Biomedical Sciences, 440F Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | |
Collapse
|
50
|
Blockade of androgen receptors is sufficient to alter the sexual differentiation of the substantia nigra pars reticulata seizure-controlling network. Epileptic Disord 2008; 10:8-12. [PMID: 18367425 DOI: 10.1684/epd.2008.0160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Accepted: 12/16/2007] [Indexed: 11/17/2022]
Abstract
The substantia nigra pars reticulata (SNR) controls seizures in a sex-specific manner. At postnatal day 15 (P15), SNR infusion of GABA(A) receptor agonist muscimol have proconvulsant effects in males but not in females. In males, administration of an androgen receptor antagonist flutamide between P0-P2 led to the disappearance of the proconvulsant muscimol effects at P15. Thus, activation of androgen receptors is important for the presence of proconvulsant SNR muscimol responses.
Collapse
|