1
|
Liu M, Wang H, Fu Y, Li X, Wu P, Liu G, Wang R, Zhang Y, Chen H, Hou H, Hu Q. The Role of Nicotine Metabolic Rate on Nicotine Dependence and Rewarding: Nicotine Metabolism in Chinese Male Smokers and Male Mice. Mol Neurobiol 2024; 61:7692-7706. [PMID: 38427211 DOI: 10.1007/s12035-024-04040-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 02/07/2024] [Indexed: 03/02/2024]
Abstract
The exact relationship between nicotine metabolism and dependence is not fully understood but is known to be influenced at a molecular level by genetic factors. A sample comprising 274 Chinese adult male smokers was categorized into groups based on their metabolic rates, namely fast, intermediate, and slow metabolizers. We then measured their smoking topography, evaluated their nicotine dependence, and assessed the rewarding effects. Based on these findings, we proposed the hypothesis that the rate of nicotine metabolism could influence the level of dopamine release which in turn had repercussions on the pleasurable and rewarding effects. To test this hypothesis, male mice were selected with different nicotine metabolic rates that closely resembled in the smoker group. We evaluated their nicotine dependence and rewarding effects through conditioned place preference and withdrawal symptom tests, supplemented with dopamine release measurements. In both animal and human, the slow metabolism group (SMG) required less nicotine to maintain a comparable level of dependence than the fast metabolism group (FMG). The SMG could achieve similar rewarding effects to FMG despite consuming less nicotine. Comparable dopamine levels released were therefore critical in setting the nicotine acquisition behavior in this animal model and also for the smokers tested. Our findings suggested that even within the same ethnicity of established smokers (Chinese Han), differences in nicotine metabolism were an important parameter to modulate the degree of nicotine dependence.
Collapse
Affiliation(s)
- Mingda Liu
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450000, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450000, China
- Beijing Life Science Academy, Beijing, 100000, China
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, 100000, China
| | - Hongjuan Wang
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450000, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450000, China
- Beijing Life Science Academy, Beijing, 100000, China
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, 100000, China
| | - Yaning Fu
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450000, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450000, China
- Beijing Life Science Academy, Beijing, 100000, China
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, 100000, China
| | - Xiangyu Li
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450000, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450000, China
- Beijing Life Science Academy, Beijing, 100000, China
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, 100000, China
| | - Ping Wu
- National Institute On Drug Dependence and Beijing Key Laboratory of Drug Dependence, Beijing, China
| | - Guanglin Liu
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450000, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450000, China
- Beijing Life Science Academy, Beijing, 100000, China
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, 100000, China
| | - Ruiyan Wang
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450000, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450000, China
- Beijing Life Science Academy, Beijing, 100000, China
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, 100000, China
| | - Yuan Zhang
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450000, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450000, China
- Beijing Life Science Academy, Beijing, 100000, China
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, 100000, China
| | - Huan Chen
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450000, China.
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450000, China.
- Beijing Life Science Academy, Beijing, 100000, China.
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, 100000, China.
| | - Hongwei Hou
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450000, China.
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450000, China.
- Beijing Life Science Academy, Beijing, 100000, China.
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, 100000, China.
| | - Qingyuan Hu
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450000, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450000, China
- Beijing Life Science Academy, Beijing, 100000, China
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, 100000, China
| |
Collapse
|
2
|
Ding ZM, Neslund EM, Sun D, Tan X. Methoxsalen Inhibits the Acquisition of Nicotine Self-Administration: Attenuation by Cotinine Replacement in Male Rats. Nicotine Tob Res 2024; 26:1234-1243. [PMID: 38513068 PMCID: PMC11339168 DOI: 10.1093/ntr/ntae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 02/14/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
INTRODUCTION Cigarette smoking remains the leading preventable cause of disease and death. Nicotine is the primary reinforcing ingredient in cigarettes sustaining addiction. Cotinine is the major metabolite of nicotine that produces a myriad of neurobehavioral effects. Previous studies showed that cotinine-supported self-administration in rats and rats with a history of cotinine self-administration exhibited relapse-like drug-seeking behavior, suggesting that cotinine may also be reinforcing. To date, whether cotinine may contribute to nicotine reinforcement remains unknown. Nicotine metabolism is mainly catalyzed by hepatic CYP2B1/2 enzymes in rats and methoxsalen is a potent CYP2B1/2 inhibitor. AIMS AND METHODS The study examined nicotine metabolism, self-administration, and locomotor activity. The hypothesis is that methoxsalen inhibits nicotine self-administration and cotinine replacement attenuates the inhibitory effects of methoxsalen in male rats. RESULTS Methoxsalen decreased plasma cotinine levels following a subcutaneous nicotine injection. Repeated daily methoxsalen treatments reduced the acquisition of nicotine self-administration, leading to fewer nicotine infusions, lower nicotine intake, and lower plasma cotinine levels. However, methoxsalen did not alter the maintenance of nicotine self-administration despite a significant reduction of plasma cotinine levels. Cotinine replacement by mixing cotinine with nicotine for self-administration dose-dependently increased plasma cotinine levels and enhanced the acquisition of self-administration. Neither basal nor nicotine-induced locomotor activity was altered by methoxsalen. CONCLUSIONS These results indicate that methoxsalen inhibition of cotinine formation impaired the acquisition of nicotine self-administration, and cotinine replacement attenuated the inhibitory effects of methoxsalen on the acquisition of self-administration, suggesting that cotinine may contribute to the initial development of nicotine reinforcement. IMPLICATIONS Smoking cessation medications targeting nicotine's effects are only moderately effective, making it imperative to better understand the mechanisms of nicotine misuse. Methoxsalen inhibited nicotine metabolism to cotinine and impaired the acquisition of nicotine self-administration. Cotinine replacement restored plasma cotinine and attenuated the methoxsalen inhibition of nicotine self-administration in rats. These results suggest that (1) the inhibition of nicotine metabolism may be a viable strategy in reducing the development of nicotine reinforcement, (2) methoxsalen may be translationally valuable, and (3) cotinine may be a potential pharmacological target for therapeutic development given its important role in the initial development of nicotine reinforcement.
Collapse
Affiliation(s)
- Zheng-Ming Ding
- Department of Anesthesiology and Perioperative Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Elizabeth M Neslund
- Department of Anesthesiology and Perioperative Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Dongxiao Sun
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, USA
- Penn State Mass Spectrometry Core Facility, Penn State University College of Medicine, Hershey, PA, USA
| | - Xiaoying Tan
- Department of Anesthesiology and Perioperative Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
3
|
Ding ZM, Neslund EM, Sun D, Tan X. Methoxsalen inhibited the acquisition of nicotine self-administration: attenuation by cotinine replacement in rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.04.543614. [PMID: 37333320 PMCID: PMC10274622 DOI: 10.1101/2023.06.04.543614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Cigarette smoking remains the leading preventable cause of disease and death. Nicotine is the primary reinforcing ingredient in cigarettes sustaining addiction. Cotinine is the major metabolite of nicotine that produces a myriad of neurobehavioral effects. Cotinine supported self-administration and rats with a history of intravenous self-administration of cotinine exhibited relapse-like drug-seeking behavior, suggesting cotinine may also be reinforcing. To date, a potential contribution of cotinine to nicotine reinforcement remains unknown. Nicotine metabolism is mainly catalyzed by hepatic CYP2B1 enzyme in the rat and methoxsalen is a potent CYP2B1 inhibitor. The study tested the hypothesis that methoxsalen inbibits nicotine metabolism and self-administration, and that cotinine replacement attenuates the inhibitory effects of methoxsalen. Acute methoxsalen decreased plasma cotinine levels and increased nicotine levels following subcutaneous nicotine injection. Repeated methoxsalen reduced the acquisition of nicotine self-administration, leading to fewer nicotine infusions, disruption of lever differentiation, smaller total nicotine intake, and lower plasma cotinine levels. On the other hand, methoxsalen did not alter nicotine self-administration during the maintenance phase despite great reduction of plasma cotinine levels. Cotinine replacement by mixing cotinine with nicotine for self-administration dose-dependently increased plasma cotinine levels, counteracted effects of methoxsalen, and enhanced the acquisition of self-administration. Neither basal nor nicotine-induced locomotor activity was altered by methoxsalen. These results indicate that methoxsalen depressed cotinine formation from nicotine and the acquisition of nicotine self-administration, and that replacement of plasma cotinine attenuated the inhibitory effects of methoxsalen, suggesting that cotinine may contribute to the development of nicotine reinforcement.
Collapse
Affiliation(s)
- Zheng-Ming Ding
- Department of Anesthesiology & Perioperative Medicine, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
- Department of Pharmacology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Elizabeth M. Neslund
- Department of Anesthesiology & Perioperative Medicine, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Dongxiao Sun
- Department of Pharmacology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
- Penn State Mass Spectrometry Core Facility, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Xiaoying Tan
- Department of Anesthesiology & Perioperative Medicine, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| |
Collapse
|
4
|
Ruan S, Xie J, Wang L, Guo L, Li Y, Fan W, Ji R, Gong Z, Xu Y, Mao J, Xie J. Nicotine alleviates MPTP-induced nigrostriatal damage through modulation of JNK and ERK signaling pathways in the mice model of Parkinson's disease. Front Pharmacol 2023; 14:1088957. [PMID: 36817162 PMCID: PMC9932206 DOI: 10.3389/fphar.2023.1088957] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction: Nicotine (Nic) has previously been proven to reduce neurodegeneration in the models of Parkinson's disease (PD). The present study is intended to investigate the detailed mechanisms related to the potential neuroprotective effects of Nic in vivo. Methods: We established a PD model using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced C57BL6 mice (25 mg/kg/d, 5 d, i.p.) to investigate the neuropharmacological modulation of Nic pretreatment (2.5 mg/kg/d, 5 d, i.p., 30 min before MPTP injection) from the perspectives of neurobehavioral assessment, the pathological alterations, microglial cell inflammation and MAPK signaling pathways in specific brain regions. Results: The open field test, elevated plus maze, rotarod and traction test suggested that Nic pretreatment could significantly improve MPTP-induced motor impairment and had an anxiolytic effect. Nic was found to improve neuroapoptosis, enhance tyrosine hydroxylase activity, and reduce the accumulation of the phosphorylated α-synuclein in the substantia nigra and striatal regions of PD mice by TUNEL and immunohistochemical assays. Immuno-fluorescent method for labeling Iba1 and CD68 indicated that Nic remarkably alleviates the activation of microglia which represents the M1 polarization state in the mice brain under MPTP stimulation. No significant difference in the expression of p38/MAPK pathway was found in the nigrostriatal regions, while Nic could significantly inhibit the elevated p-JNK/JNK ratio and increase the declined p-ERK/ERK ratio in the substantia nigra of MPTP-exposed brains, which was further confirmed by the pretreatment of CYP2A5 inhibitor to decline the metabolic activity of Nic. Discussion: The molecular signaling mechanism by which Nic exerts its neuroprotective effects against PD may be achieved by regulating the JNK and ERK signaling pathways in the nigra-striatum related brain regions.
Collapse
Affiliation(s)
- Sisi Ruan
- Flavour Science Research Center, College of Chemistry, Zhengzhou University, Zhengzhou, China,Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Jiqing Xie
- Technology and Research Center, China Tobacco Jiangsu Industrial Co., Ltd.,, Nanjing, China
| | - Linhai Wang
- Flavour Science Research Center, College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Lulu Guo
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Yan Li
- Flavour Science Research Center, College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Wu Fan
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Rongzhan Ji
- Technology and Research Center, China Tobacco Jiangsu Industrial Co., Ltd.,, Nanjing, China
| | - Zhenlin Gong
- Technology and Research Center, China Tobacco Jiangsu Industrial Co., Ltd.,, Nanjing, China
| | - Yan Xu
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China,*Correspondence: Yan Xu, ; Jian Mao,
| | - Jian Mao
- Flavour Science Research Center, College of Chemistry, Zhengzhou University, Zhengzhou, China,Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China,*Correspondence: Yan Xu, ; Jian Mao,
| | - Jianping Xie
- Flavour Science Research Center, College of Chemistry, Zhengzhou University, Zhengzhou, China,Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| |
Collapse
|
5
|
Liu G, Wang R, Chen H, Wu P, Fu Y, Li K, Liu M, Shi Z, Zhang Y, Su Y, Song L, Hou H, Hu Q. Non-nicotine constituents in cigarette smoke extract enhance nicotine addiction through monoamine oxidase A inhibition. Front Neurosci 2022; 16:1058254. [PMID: 36507317 PMCID: PMC9729261 DOI: 10.3389/fnins.2022.1058254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/07/2022] [Indexed: 11/26/2022] Open
Abstract
Tobacco addiction has been largely attributed to nicotine, a component in tobacco leaves and smoke. However, extensive evidence suggests that some non-nicotine components of smoke should not be overlooked when considering tobacco dependence. Yet, their individual effect and synergistic effect on nicotine reinforcement remain poorly understood. The study herein focused on the role of non-nicotine constituents in promoting the effects of nicotine and their independent reinforcing effects. Denicotinized cigarettes were prepared by chemical extracting of cut tobacco, and the cigarette smoke extracts (CSE, used as a proxy for non-nicotine ingredients) were obtained by machine-smoking the cigarettes and DMSO extraction. The compositions of harmful components, nicotine, and other minor alkaloids in both cut tobacco and the CSE of experimental denicotinized cigarettes were examined by GC-MS, and compared with 3R4F reference cigarettes. individually and in synergy with nicotine were determined by conditioned place preference (CPP), dopamine (DA) level detection, the open field test (OFT), and the elevated plus maze (EPM). Finally, the potential enhancement mechanism of non-nicotinic constituents was investigated by nicotine metabolism and monoamine oxidase A (MAOA) activity inhibition in the striatum of mice and human recombinant MAOA. Thenicotine content in smoke from the experimental denicotinized cigarettes (under ISO machine-smoking conditions) was reduced by 95.1% and retained most minor alkaloids, relative to the 3R4F reference cigarettes. It was found that non-nicotine constituents increased acute locomotor activities. This was especially pronounced for DA levels in NAc and CPP scores, decreased the time in center zone. There were no differences in these metrics with DNC group when compared to the NS group. Non-nicotine constituents alone did not show reinforcing effects in CPP or striatum DA levels in mice. However, in the presence of nicotine, non-nicotine constituents further increased the reinforcing effects. Furthermore, non-nicotine constituents may enhance nicotine's reinforcing effects by inhibiting striatum MAOA activity rather than affecting nicotine metabolism or total striatum DA content in mice. These findings expand our knowledge of the effect on smoking reinforcement of non-nicotine constituents found in tobacco products.
Collapse
Affiliation(s)
- Guanglin Liu
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, China,Key Laboratory of Tobacco Biological Effects, Zhengzhou, China,Joint Laboratory of Translational Neurobiology, Zhengzhou, China
| | - Ruiyan Wang
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, China,Key Laboratory of Tobacco Biological Effects, Zhengzhou, China,Joint Laboratory of Translational Neurobiology, Zhengzhou, China
| | - Huan Chen
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, China,Key Laboratory of Tobacco Biological Effects, Zhengzhou, China,Joint Laboratory of Translational Neurobiology, Zhengzhou, China
| | - Ping Wu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Beijing, China
| | - Yaning Fu
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, China,Key Laboratory of Tobacco Biological Effects, Zhengzhou, China,Joint Laboratory of Translational Neurobiology, Zhengzhou, China
| | - Kaixin Li
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, China,Key Laboratory of Tobacco Biological Effects, Zhengzhou, China,Joint Laboratory of Translational Neurobiology, Zhengzhou, China
| | - Mingda Liu
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, China,Key Laboratory of Tobacco Biological Effects, Zhengzhou, China,Joint Laboratory of Translational Neurobiology, Zhengzhou, China
| | - Zhihao Shi
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, China,Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
| | - Yuan Zhang
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, China,Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
| | - Yue Su
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, China,Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
| | - Lingxiao Song
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, China,Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
| | - Hongwei Hou
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, China,Key Laboratory of Tobacco Biological Effects, Zhengzhou, China,Joint Laboratory of Translational Neurobiology, Zhengzhou, China,*Correspondence: Hongwei Hou,
| | - Qingyuan Hu
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, China,Key Laboratory of Tobacco Biological Effects, Zhengzhou, China,Joint Laboratory of Translational Neurobiology, Zhengzhou, China,Qingyuan Hu,
| |
Collapse
|
6
|
Smith LC, George O. Advances in smoking cessation pharmacotherapy: Non-nicotinic approaches in animal models. Neuropharmacology 2020; 178:108225. [PMID: 32758566 DOI: 10.1016/j.neuropharm.2020.108225] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/22/2022]
Abstract
The landscape of worldwide tobacco use is changing, with a decrease in traditional smoking and an exponential rise in electronic cigarette use. No new nicotine cessation pharmacotherapies have come to market in the last 10 years. The current therapies that have been approved by the United States Food and Drug Administration for nicotine cessation include nicotine replacement therapy, varenicline, a nicotinic acetylcholine receptor partial agonist, and the atypical antidepressant bupropion. Nicotine replacement therapy and varenicline both act on nicotinic acetylcholine receptors. Bupropion inhibits the dopamine transporter, the norepinephrine transporter, and the nicotinic acetylcholine receptors to inhibit smoking behavior. Notwithstanding these treatments, rates of successful nicotine cessation in clinical trials remain low. Recent pharmacological approaches to improve nicotine cessation rates in animal models have turned their focus away from activating nicotinic acetylcholine receptors. The present review focuses on such pharmacological approaches, including nicotine vaccines, anti-nicotine antibodies, nicotine-degrading enzymes, cannabinoids, and metformin. Both immunopharmacological and enzymatic approaches rely on restricting and degrading nicotine within the periphery, thus preventing psychoactive effects of nicotine on the central nervous system. In contrast, pharmacologic inhibition of the enzymes which degrade nicotine could affect smoking behavior. Cannabinoid receptor agonists and antagonists interact with the dopamine reward pathway and show efficacy in reducing nicotine addiction-like behaviors in preclinical studies. Metformin is currently approved by the Food and Drug Administration for the treatment of diabetes. It activates specific intracellular kinases that may protect against the lower metabolism, higher oxidation, and inflammation that are associated with nicotine withdrawal. Further studies are needed to investigate non-nicotinic targets to improve the treatment of tobacco use disorder. This article is part of the special issue on 'Contemporary Advances in Nicotine Neuropharmacology'.
Collapse
Affiliation(s)
- Lauren C Smith
- Department of Neuroscience, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA; Department of Psychiatry, University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA
| | - Olivier George
- Department of Neuroscience, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA; Department of Psychiatry, University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA.
| |
Collapse
|
7
|
Liu Y, Zhang D, Du J, Qin Y, Zhao Z, Shi Y, Mei S, Liu Y. Simultaneous determination of plasma nicotine and cotinine by UHPLC–MS/MS in C57BL/6 mice and its application in a pharmacokinetic study. Biomed Chromatogr 2019; 33:e4634. [PMID: 31257625 DOI: 10.1002/bmc.4634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/20/2019] [Accepted: 06/26/2019] [Indexed: 01/27/2023]
Affiliation(s)
- Yang Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function ReconstructionSchool of Stomatology, Capital Medical University 4 Tiantanxili Beijing P. R. China
| | - Dongjie Zhang
- Department of Pharmacy, Beijing Tiantan HospitalCapital Medical University 119 Nansihuan West Road, Fengtai District Beijing P. R. China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function ReconstructionSchool of Stomatology, Capital Medical University 4 Tiantanxili Beijing P. R. China
| | - Ying Qin
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function ReconstructionSchool of Stomatology, Capital Medical University 4 Tiantanxili Beijing P. R. China
| | - Zhigang Zhao
- Department of Pharmacy, Beijing Tiantan HospitalCapital Medical University 119 Nansihuan West Road, Fengtai District Beijing P. R. China
- Department of Clinical Pharmacology, College of Pharmaceutical SciencesCapital Medical University Beijing P. R. China
| | - Yanjun Shi
- Department of Clinical Pharmacology, College of Pharmaceutical SciencesCapital Medical University Beijing P. R. China
- Department of Pharmacy, Beijing Tongren HospitalCapital Medical University Beijing P. R. China
| | - Shenghui Mei
- Department of Pharmacy, Beijing Tiantan HospitalCapital Medical University 119 Nansihuan West Road, Fengtai District Beijing P. R. China
- Department of Clinical Pharmacology, College of Pharmaceutical SciencesCapital Medical University Beijing P. R. China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function ReconstructionSchool of Stomatology, Capital Medical University 4 Tiantanxili Beijing P. R. China
| |
Collapse
|
8
|
A mouse model for chronic intermittent electronic cigarette exposure exhibits nicotine pharmacokinetics resembling human vapers. J Neurosci Methods 2019; 326:108376. [PMID: 31361999 DOI: 10.1016/j.jneumeth.2019.108376] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 02/04/2023]
Abstract
Electronic cigarettes (E-cig) use is increasing rapidly, particularly among youths. Animal models for E-cig exposure with pharmacokinetics resembling human E-cig users are lacking. We developed an E-cig aerosol exposure system for rodents and a chronic intermittent delivery method that simulates E-cig users who vape episodically during wakefulness and abstain during sleep. Mice were exposed to E-cig in a programmed schedule at very low, low, medium, or high doses defined by duration of each puff, number of puffs per delivery episode and frequency of episodes in the dark phase of a 12/12-h circadian cycle for 9 consecutive days. The plasma nicotine/cotinine levels and their time courses were determined using LC/MS-MS. We assessed the body weight, food intake and locomotor activity of Apolipoprotein E null (ApoE-/-) mice exposed to chronic intermittent E-cig aerosol. Plasma nicotine and cotinine levels were positively correlated with exposure doses. Nicotine and cotinine levels showed a circadian variation as they increased with time up to the maximum nicotine level of 21.8 ± 7.1 ng/mL during the daily intermittent E-cig exposure in the 12-h dark phase and then declined during the light phase when there was no E-cig delivery. Chronic E-cig exposure to ApoE-/- mice decreased body weight, food intake and increased locomotion. Our rodent E-cig exposure system and chronic intermittent exposure method yield clinically relevant nicotine pharmacokinetics associated with behavioral and metabolic changes. The methodologies are essential tools for in vivo studies of the health impacts of E-cig exposure on CNS, cardiovascular, pulmonary, hepatic systems, metabolism and carcinogenesis.
Collapse
|
9
|
Kyte SL, Toma W, Bagdas D, Meade JA, Schurman LD, Lichtman AH, Chen ZJ, Del Fabbro E, Fang X, Bigbee JW, Damaj MI, Gewirtz DA. Nicotine Prevents and Reverses Paclitaxel-Induced Mechanical Allodynia in a Mouse Model of CIPN. J Pharmacol Exp Ther 2018; 364:110-119. [PMID: 29042416 PMCID: PMC5738719 DOI: 10.1124/jpet.117.243972] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/16/2017] [Indexed: 01/03/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN), a consequence of peripheral nerve fiber dysfunction or degeneration, continues to be a dose-limiting and debilitating side effect during and/or after cancer chemotherapy. Paclitaxel, a taxane commonly used to treat breast, lung, and ovarian cancers, causes CIPN in 59-78% of cancer patients. Novel interventions are needed due to the current lack of effective CIPN treatments. Our studies were designed to investigate whether nicotine can prevent and/or reverse paclitaxel-induced peripheral neuropathy in a mouse model of CIPN, while ensuring that nicotine will not stimulate lung tumor cell proliferation or interfere with the antitumor properties of paclitaxel. Male C57BL/6J mice received paclitaxel every other day for a total of four injections (8 mg/kg, i.p.). Acute (0.3-0.9 mg/kg, i.p.) and chronic (24 mg/kg per day, s.c.) administration of nicotine respectively reversed and prevented paclitaxel-induced mechanical allodynia. Blockade of the antinociceptive effect of nicotine with mecamylamine and methyllycaconitine suggests that the reversal of paclitaxel-induced mechanical allodynia is primarily mediated by the α7 nicotinic acetylcholine receptor subtype. Chronic nicotine treatment also prevented paclitaxel-induced intraepidermal nerve fiber loss. Notably, nicotine neither promoted proliferation of A549 and H460 non-small cell lung cancer cells nor interfered with paclitaxel-induced antitumor effects, including apoptosis. Most importantly, chronic nicotine administration did not enhance Lewis lung carcinoma tumor growth in C57BL/6J mice. These data suggest that the nicotinic acetylcholine receptor-mediated pathways may be promising drug targets for the prevention and treatment of CIPN.
Collapse
Affiliation(s)
- S Lauren Kyte
- Departments of Pharmacology and Toxicology (S.L.K., W.T., D.B., J.A.M., L.D.S., A.H.L., M.I.D., D.A.G.), Neurology (Z.-J.C.), Internal Medicine (E.D.F.), Biochemistry and Molecular Biology (X.F.), and Anatomy and Neurobiology (J.W.B.), and Massey Cancer Center (D.A.G.), Virginia Commonwealth University, Richmond, Virginia; and Experimental Animals Breeding and Research Center, Uludag University, Bursa, Turkey (D.B.)
| | - Wisam Toma
- Departments of Pharmacology and Toxicology (S.L.K., W.T., D.B., J.A.M., L.D.S., A.H.L., M.I.D., D.A.G.), Neurology (Z.-J.C.), Internal Medicine (E.D.F.), Biochemistry and Molecular Biology (X.F.), and Anatomy and Neurobiology (J.W.B.), and Massey Cancer Center (D.A.G.), Virginia Commonwealth University, Richmond, Virginia; and Experimental Animals Breeding and Research Center, Uludag University, Bursa, Turkey (D.B.)
| | - Deniz Bagdas
- Departments of Pharmacology and Toxicology (S.L.K., W.T., D.B., J.A.M., L.D.S., A.H.L., M.I.D., D.A.G.), Neurology (Z.-J.C.), Internal Medicine (E.D.F.), Biochemistry and Molecular Biology (X.F.), and Anatomy and Neurobiology (J.W.B.), and Massey Cancer Center (D.A.G.), Virginia Commonwealth University, Richmond, Virginia; and Experimental Animals Breeding and Research Center, Uludag University, Bursa, Turkey (D.B.)
| | - Julie A Meade
- Departments of Pharmacology and Toxicology (S.L.K., W.T., D.B., J.A.M., L.D.S., A.H.L., M.I.D., D.A.G.), Neurology (Z.-J.C.), Internal Medicine (E.D.F.), Biochemistry and Molecular Biology (X.F.), and Anatomy and Neurobiology (J.W.B.), and Massey Cancer Center (D.A.G.), Virginia Commonwealth University, Richmond, Virginia; and Experimental Animals Breeding and Research Center, Uludag University, Bursa, Turkey (D.B.)
| | - Lesley D Schurman
- Departments of Pharmacology and Toxicology (S.L.K., W.T., D.B., J.A.M., L.D.S., A.H.L., M.I.D., D.A.G.), Neurology (Z.-J.C.), Internal Medicine (E.D.F.), Biochemistry and Molecular Biology (X.F.), and Anatomy and Neurobiology (J.W.B.), and Massey Cancer Center (D.A.G.), Virginia Commonwealth University, Richmond, Virginia; and Experimental Animals Breeding and Research Center, Uludag University, Bursa, Turkey (D.B.)
| | - Aron H Lichtman
- Departments of Pharmacology and Toxicology (S.L.K., W.T., D.B., J.A.M., L.D.S., A.H.L., M.I.D., D.A.G.), Neurology (Z.-J.C.), Internal Medicine (E.D.F.), Biochemistry and Molecular Biology (X.F.), and Anatomy and Neurobiology (J.W.B.), and Massey Cancer Center (D.A.G.), Virginia Commonwealth University, Richmond, Virginia; and Experimental Animals Breeding and Research Center, Uludag University, Bursa, Turkey (D.B.)
| | - Zhi-Jian Chen
- Departments of Pharmacology and Toxicology (S.L.K., W.T., D.B., J.A.M., L.D.S., A.H.L., M.I.D., D.A.G.), Neurology (Z.-J.C.), Internal Medicine (E.D.F.), Biochemistry and Molecular Biology (X.F.), and Anatomy and Neurobiology (J.W.B.), and Massey Cancer Center (D.A.G.), Virginia Commonwealth University, Richmond, Virginia; and Experimental Animals Breeding and Research Center, Uludag University, Bursa, Turkey (D.B.)
| | - Egidio Del Fabbro
- Departments of Pharmacology and Toxicology (S.L.K., W.T., D.B., J.A.M., L.D.S., A.H.L., M.I.D., D.A.G.), Neurology (Z.-J.C.), Internal Medicine (E.D.F.), Biochemistry and Molecular Biology (X.F.), and Anatomy and Neurobiology (J.W.B.), and Massey Cancer Center (D.A.G.), Virginia Commonwealth University, Richmond, Virginia; and Experimental Animals Breeding and Research Center, Uludag University, Bursa, Turkey (D.B.)
| | - Xianjun Fang
- Departments of Pharmacology and Toxicology (S.L.K., W.T., D.B., J.A.M., L.D.S., A.H.L., M.I.D., D.A.G.), Neurology (Z.-J.C.), Internal Medicine (E.D.F.), Biochemistry and Molecular Biology (X.F.), and Anatomy and Neurobiology (J.W.B.), and Massey Cancer Center (D.A.G.), Virginia Commonwealth University, Richmond, Virginia; and Experimental Animals Breeding and Research Center, Uludag University, Bursa, Turkey (D.B.)
| | - John W Bigbee
- Departments of Pharmacology and Toxicology (S.L.K., W.T., D.B., J.A.M., L.D.S., A.H.L., M.I.D., D.A.G.), Neurology (Z.-J.C.), Internal Medicine (E.D.F.), Biochemistry and Molecular Biology (X.F.), and Anatomy and Neurobiology (J.W.B.), and Massey Cancer Center (D.A.G.), Virginia Commonwealth University, Richmond, Virginia; and Experimental Animals Breeding and Research Center, Uludag University, Bursa, Turkey (D.B.)
| | - M Imad Damaj
- Departments of Pharmacology and Toxicology (S.L.K., W.T., D.B., J.A.M., L.D.S., A.H.L., M.I.D., D.A.G.), Neurology (Z.-J.C.), Internal Medicine (E.D.F.), Biochemistry and Molecular Biology (X.F.), and Anatomy and Neurobiology (J.W.B.), and Massey Cancer Center (D.A.G.), Virginia Commonwealth University, Richmond, Virginia; and Experimental Animals Breeding and Research Center, Uludag University, Bursa, Turkey (D.B.)
| | - David A Gewirtz
- Departments of Pharmacology and Toxicology (S.L.K., W.T., D.B., J.A.M., L.D.S., A.H.L., M.I.D., D.A.G.), Neurology (Z.-J.C.), Internal Medicine (E.D.F.), Biochemistry and Molecular Biology (X.F.), and Anatomy and Neurobiology (J.W.B.), and Massey Cancer Center (D.A.G.), Virginia Commonwealth University, Richmond, Virginia; and Experimental Animals Breeding and Research Center, Uludag University, Bursa, Turkey (D.B.)
| |
Collapse
|
10
|
Schassburger RL, Pitzer EM, Smith TT, Rupprecht LE, Thiels E, Donny EC, Sved AF. Adolescent Rats Self-Administer Less Nicotine Than Adults at Low Doses. Nicotine Tob Res 2016; 18:1861-1868. [PMID: 26764255 DOI: 10.1093/ntr/ntw006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/04/2016] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Although nearly 90% of current smokers initiated tobacco use during adolescence, little is known about reinforcement by nicotine in adolescents. Researchers are currently investigating whether a potential public health policy setting a tobacco product standard with very low nicotine levels would improve public health, and it is essential to understand whether data generated in adults translates to adolescents, particularly as it relates to the threshold dose of nicotine required to support smoking. The present study compared self-administration of low doses of nicotine between adolescent and adult rats. METHODS Adolescent (postnatal day [P] 30) and adult (P90) male and female rats were allowed to nosepoke to receive intravenous infusions of nicotine (3-100 μg/kg/infusion) during 16 daily 1-hour sessions. RESULTS At 10 μg/kg/infusion nicotine, adolescent rats earned significantly fewer infusions than adults. When responding for 30 μg/kg/infusion nicotine, rats of both ages earned a similar number of infusions; however, there were subtle differences in the distribution of infusions across the 1-hour session. No sex differences were apparent in either age group at any dose. CONCLUSIONS These results demonstrate that adolescent rats are less sensitive than adults to the primary reinforcing effects of nicotine. However, at nicotine doses that support self-administration in both age groups, adolescent and adult rats do not differ in acquisition or number of infusions earned. These results suggest that reducing nicotine levels in cigarettes to a level that does not support smoking in adults may be sufficient to reduce the acquisition of smoking in adolescents. IMPLICATIONS The results of the present studies demonstrate that adolescent rats are less sensitive than adults to the primary reinforcing effects of nicotine. These results suggest that reducing nicotine levels in cigarettes to a level that does not support smoking in adults will be sufficient to reduce the acquisition of smoking in adolescents.
Collapse
Affiliation(s)
| | - Emily M Pitzer
- Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh , Pittsburgh, PA
| | - Tracy T Smith
- Department of Psychology, Dietrich School of Arts and Sciences, University of Pittsburgh , Pittsburgh, PA
| | | | - Edda Thiels
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA.,Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Eric C Donny
- Department of Psychology, Dietrich School of Arts and Sciences, University of Pittsburgh , Pittsburgh, PA
| | - Alan F Sved
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA.,Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA.,Department of Psychology, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
11
|
Budzynska B, Skalicka-Wozniak K, Kruk-Slomka M, Wydrzynska-Kuzma M, Biala G. In vivo modulation of the behavioral effects of nicotine by the coumarins xanthotoxin, bergapten, and umbelliferone. Psychopharmacology (Berl) 2016; 233:2289-300. [PMID: 27080866 PMCID: PMC4873531 DOI: 10.1007/s00213-016-4279-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/14/2016] [Indexed: 12/14/2022]
Abstract
RATIONALE Nicotine, a dominant alkaloid found in tobacco, is responsible for physical dependence, as well as addiction to cigarette smoking; consequently, smoking cessation is a very difficult process. Hepatic cytochrome P-450 2A6 (CYP2A6) is involved in the 70-80 % of the initial metabolism of nicotine and its co-metabolites. As this metabolism is slowed by inhibitors of CYP2A6, this kind of enzymatic inhibition has been proposed as a novel target for smoking cessation. OBJECTIVES Nicotine administered alone improved memory acquisition and consolidation as well as exerted antidepressive activity in animal models. These effects persist for 24 h. However, they are completely extinguished 48 h after administration. METHODS To investigate if the coumarins prolong the behavioral effects of nicotine, the forced swimming test (FST)-animal models of depression, and passive avoidance (PA) test-memory and learning paradigm were used. RESULTS This study revealed that three CYP2A6 inhibitors: two furanocoumarins, xanthotoxin (15 mg/kg) and bergapten (25 mg/kg), and the simple coumarin umbelliferone (25 mg/kg), prolonged the antidepressive and procognitive effects of nicotine. CONCLUSIONS These natural products may offer a new approach to the treatment of nicotinism as antidepressant and memory improvement actions are one of the main factors of nicotine dependence.
Collapse
Affiliation(s)
- Barbara Budzynska
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Lublin, Poland.
| | - Krystyna Skalicka-Wozniak
- />Department of Pharmacognosy with Medicinal Plants Unit, Medical University of Lublin, Lublin, Poland
| | - Marta Kruk-Slomka
- />Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Lublin, Poland
| | | | - Grazyna Biala
- />Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
12
|
Varani AP, Moutinho Machado L, Balerio GN. Baclofen prevented the changes in c-Fos and brain-derived neutrophic factor expressions during mecamylamine-precipitated nicotine withdrawal in mice. Synapse 2014; 68:508-17. [DOI: 10.1002/syn.21763] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/12/2014] [Accepted: 06/30/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Andrés P. Varani
- Instituto de Investigaciones Farmacológicas (UBA-CONICET); Junín 956, 5° piso, (C1113AAD) Buenos Aires Argentina
| | - Lirane Moutinho Machado
- Instituto de Investigaciones Farmacológicas (UBA-CONICET); Junín 956, 5° piso, (C1113AAD) Buenos Aires Argentina
| | - Graciela N. Balerio
- Instituto de Investigaciones Farmacológicas (UBA-CONICET); Junín 956, 5° piso, (C1113AAD) Buenos Aires Argentina
- Cátedra de Farmacología; Facultad de Farmacia y Bioquímica; Universidad de Buenos Aires; Junín 956 5° Piso, (C1113AAD) Buenos Aires Argentina
| |
Collapse
|
13
|
Bagdas D, Muldoon PP, Zhu AZX, Tyndale RF, Damaj MI. Effects of methoxsalen, a CYP2A5/6 inhibitor, on nicotine dependence behaviors in mice. Neuropharmacology 2014; 85:67-72. [PMID: 24859605 DOI: 10.1016/j.neuropharm.2014.05.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/22/2014] [Accepted: 05/02/2014] [Indexed: 11/15/2022]
Abstract
Metabolism of nicotine to inactive cotinine by hepatic enzyme CYP2A6 is the principal pathway by which active nicotine is removed from circulation. We therefore hypothesized that inhibition of mouse CYP2A5, the ortolog of human CYP2A6, by methoxsalen (8-methoxypsoralen) alter dependence-related behaviors of nicotine in the mouse. Conditioned place preference (CPP) test was used to assess the appetitive reward-like properties and precipitated nicotine withdrawal to assess physical (somatic and hyperalgesia) and affective (anxiety-related behaviors) measures. The nicotine plasma levels were also measured with or without methoxsalen pretreatment. Methoxsalen (15 and 30 mg/kg, intraperitoneally) pretreatment enhanced nicotine-induced preference in mice (p<0.05). However, there was a lack of enhancement of nicotine in the CPP test after the highest dose of the CYP-2A5 inhibitor. Similarly to the CPP results, repeated administration of methoxsalen increased the intensity of mecamylamine-precipitated withdrawal signs. The potentiation of nicotine preference and withdrawal intensity by methoxsalen was accompanied by significant increase in nicotine plasma levels in mice (p<0.05). Finally, methoxsalen enhanced the ability of a very low dose of nicotine (0.05 mg/kg) to reverse withdrawal signs in mice undergoing spontaneous withdrawal after chronic nicotine infusion (p<0.05). In conclusion, inhibition of nicotine metabolism by methoxsalen alters the behavioral effects of nicotine in the mouse. Combining CYP2A6 inhibitors with low dose nicotine replacement therapies may have a beneficial role in smoking cessation because it will decrease the drug elimination rate and maintain plasma and brain nicotine levels.
Collapse
Affiliation(s)
- Deniz Bagdas
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298-0613, USA; Experimental Animals Breeding and Research Center, Faculty of Medicine, Uludag University, Bursa 16059, Turkey.
| | - Pretal P Muldoon
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Andy Z X Zhu
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Department of Pharmacology and Toxicology, and Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Rachel F Tyndale
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Department of Pharmacology and Toxicology, and Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| |
Collapse
|
14
|
Ignatowska-Jankowska BM, Muldoon PP, Lichtman AH, Damaj MI. The cannabinoid CB2 receptor is necessary for nicotine-conditioned place preference, but not other behavioral effects of nicotine in mice. Psychopharmacology (Berl) 2013; 229:591-601. [PMID: 23652588 PMCID: PMC4042856 DOI: 10.1007/s00213-013-3117-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 04/10/2013] [Indexed: 11/30/2022]
Abstract
RATIONALE Whereas cannabinoid CB1 receptors have long been known to contribute to the rewarding effects and dependence liability of many drugs of abuse, recent studies have implicated the involvement of cannabinoid CB2 receptors. OBJECTIVE Here, we evaluated the role of CB2 receptors in the rewarding properties of nicotine, as assessed in the conditioned place preference (CPP) paradigm and mecamylamine-precipitated withdrawal in nicotine dependent mice. METHODS Using complementary pharmacological and genetic approaches, we investigated the involvement of CB2 receptors in nicotine- and cocaine-induced CPP in mice and mecamylamine-precipitated withdrawal in nicotine-dependent mice. We also determined whether deletion of CB2 receptors affects nicotine-induced hypothermia and hypoalgesia. RESULTS Nicotine-induced (0.5 mg/kg) CPP was completely blocked by selective CB2 antagonist, SR144528 (3 mg/kg) in wild-type mice, and was absent in CB2 (-/-) mice. Conversely, the CB2 receptor agonist, O-1966 (1, 3, 5, 10, 20 mg/kg) given in combination with a subthreshold dose of nicotine (0.1 mg/kg) elicited a place preference. In contrast, O-1966 (20 mg/kg) blocked cocaine (10 mg/kg)-induced CPP in wild type mice, while CB2 (-/-) mice showed unaltered cocaine CPP. CB2 (+/+) and (-/-) nicotine-dependent mice showed almost identical precipitated withdrawal responses and deletion of CB2 receptor did not alter acute somatic effects of nicotine. CONCLUSIONS Collectively, these results indicate that CB2 receptors are required for nicotine-induced CPP in the mouse, while it is not involved in nicotine withdrawal or acute effects of nicotine. Moreover, these results suggest that CB2 receptors play opposing roles in nicotine- and cocaine-induced CPP.
Collapse
Affiliation(s)
- Bogna M Ignatowska-Jankowska
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA,
| | | | | | | |
Collapse
|
15
|
Li L, Jia K, Zhou X, McCallum SE, Hough LB, Ding X. Impact of nicotine metabolism on nicotine's pharmacological effects and behavioral responses: insights from a Cyp2a(4/5)bgs-null mouse. J Pharmacol Exp Ther 2013; 347:746-54. [PMID: 24045421 DOI: 10.1124/jpet.113.208256] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nicotine metabolism is believed to affect not only nicotine's pharmacological effects but also nicotine addiction. As a key step toward testing this hypothesis, we have studied nicotine metabolism and nicotine's pharmacological and behavioral effects in a novel knockout mouse model [named Cyp2a(4/5)bgs-null] lacking a number of cytochrome P450 genes known to be or possibly involved in nicotine metabolism, including two Cyp2a and all Cyp2b genes. We found that, compared with wild-type mice, the Cyp2a(4/5)bgs-null mice showed >90% decreases in hepatic microsomal nicotine oxidase activity in vitro, and in rates of systemic nicotine clearance in vivo. Further comparisons of nicotine metabolism between Cyp2a(4/5)bgs-null and Cyp2a5-null mice revealed significant roles of both CYP2A5 and CYP2B enzymes in nicotine clearance. Compared with the behavioral responses in wild-type mice, the decreases in nicotine metabolism in the Cyp2a(4/5)bgs-null mice led to prolonged nicotine-induced acute pharmacological effects, in that null mice showed enhanced nicotine hypothermia and antinociception. Furthermore, we found that the Cyp2a(4/5)bgs-null mice developed a preference for nicotine in a conditioned place preference test, a commonly used test of nicotine's rewarding effects, at a nicotine dose that was 4-fold lower than what was required by wild-type mice. Thus, CYP2A/2B-catalyzed nicotine clearance affects nicotine's behavioral response as well as its acute pharmacological effects in mice. This result provides direct experimental support of the findings of pharmacogenetic studies that suggest linkage between rates of nicotine metabolism and smoking behavior in humans.
Collapse
Affiliation(s)
- Lei Li
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany (L.L., K.J., X.Z., X.D.) and Center for Neuropharmacology and Neuroscience, Albany Medical College (S.E.M., L.B.H.), Albany, New York
| | | | | | | | | | | |
Collapse
|
16
|
Alsharari SD, Siu ECK, Tyndale RF, Damaj MI. Pharmacokinetic and pharmacodynamics studies of nicotine after oral administration in mice: effects of methoxsalen, a CYP2A5/6 inhibitor. Nicotine Tob Res 2013; 16:18-25. [PMID: 23884323 DOI: 10.1093/ntr/ntt105] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
INTRODUCTION The use of novel oral nicotine delivery devices and compositions for human consumption and for animal research studies has been increasing in the last several years. METHODS Studies were undertaken to examine whether the systemic administration of methoxsalen, an inhibitor of human CYP2A6 and mouse CYP2A5, would modulate nicotine pharmacokinetics and pharmacological effects (antinociception in the tail-flick, and hot-plate tests, and hypothermia) in male ICR mouse after acute oral nicotine administration. RESULTS Administration of intra peritoneal (ip) methoxsalen significantly increased nicotine's Cmax, prolonged the plasma half-life (fourfold decrease) of nicotine, and increased its area under the curve (AUC) compared with ip vehicle treatment. Methoxsalen pretreatment prolonged the duration of nicotine-induced antinociception and hypothermia (15mg/kg, po) for periods up to 6- and 24-hr postnicotine administration, respectively. Additionally, methoxsalen potentiated nicotine-induced antinociception and hypothermia as evidenced by leftward shifts in nicotine's dose-response curve. Furthermore, this prolongation of nicotine's effects after methoxsalen was associated with a parallel prolongation of nicotine plasma levels in mice. These data strongly suggest that variation in the rates of nicotine metabolic inactivation substantially alter pharmacological effects of nicotine given orally. CONCLUSION We have shown that the pharmacological effects of inhibiting nicotine's metabolism after oral administration in mice are profound. Our results suggest that inhibiting nicotine metabolism can be used to dramatically enhance nicotine's bioavailability and its resulting pharmacology, which further supports this inhibitory approach for clinical development of an oral nicotine replacement therapy.
Collapse
Affiliation(s)
- Shakir D Alsharari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Kingdom of Saudi Arabia
| | | | | | | |
Collapse
|
17
|
Varani AP, Antonelli MC, Balerio GN. Mecamylamine-precipitated nicotine withdrawal syndrome and its prevention with baclofen: an autoradiographic study of α4β2 nicotinic acetylcholine receptors in mice. Prog Neuropsychopharmacol Biol Psychiatry 2013; 44:217-25. [PMID: 23500668 DOI: 10.1016/j.pnpbp.2013.02.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 02/13/2013] [Accepted: 02/27/2013] [Indexed: 11/26/2022]
Abstract
A previous study from our laboratory showed that baclofen (BAC, GABAB receptor agonist) was able to prevent the behavioral expression of nicotine (NIC) withdrawal syndrome. To further investigate the mechanisms underlying this effect, we conducted this study, with the aims of analyzing α4β2 nicotinic receptor density during NIC withdrawal and, in case we found any changes, of determining whether they could be prevented by pretreatment with BAC. Swiss Webster albino mice received NIC (2.5 mg/kg, s.c.) 4 times daily, for 7 days. On the 8th day, NIC-treated mice received the nicotinic antagonist mecamylamine (MEC; 2 mg/kg, i.p.) 1 h after the last dose of NIC. A second group of NIC-treated mice received BAC (2 mg/kg, i.p.) prior to MEC administration. Thirty minutes after MEC, mice were sacrificed and brain autoradiography with [(3)H]epibatidine was carried out at five different anatomical levels. Autoradiographic mapping showed a significant increase of α4β2 nicotinic receptor labeling during NIC withdrawal in the nucleus accumbens shell (AcbSh), medial habenular nucleus (HbM), thalamic nuclei, dorsal lateral geniculate (DLG) nucleus, fasciculus retroflexus (fr), ventral tegmental area, interpeduncular nucleus and superior colliculus. BAC pretreatment prevented the increased α4β2 nicotinic receptor binding sites in the AcbSh, MHb, thalamic nuclei, DLG nucleus and fr. The present results suggest a relationship between BAC's preventive effect of the expression of NIC withdrawal signs, and its ability to restore the changes in α4β2 nicotinic receptor labeling, evidenced in specific brain areas in NIC withdrawn animals.
Collapse
Affiliation(s)
- Andrés P Varani
- Instituto de Investigaciones Farmacológicas (UBA-CONICET), Junín 956, 5° Piso, C1113AAD, Buenos Aires, Argentina
| | | | | |
Collapse
|
18
|
Ueng YF, Chen CC, Chung YT, Liu TY, Chang YP, Lo WS, Murayama N, Yamazaki H, Souček P, Chau GY, Chi CW, Chen RM, Li DT. Mechanism-based inhibition of cytochrome P450 (CYP)2A6 by chalepensin in recombinant systems, in human liver microsomes and in mice in vivo. Br J Pharmacol 2011; 163:1250-62. [PMID: 21418183 DOI: 10.1111/j.1476-5381.2011.01341.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Chalepensin is a pharmacologically active furanocoumarin compound found in rue, a medicinal herb. Here we have investigated the inhibitory effects of chalepensin on cytochrome P450 (CYP) 2A6 in vitro and in vivo. EXPERIMENTAL APPROACH Mechanism-based inhibition was studied in vitro using human liver microsomes and bacterial membranes expressing genetic variants of human CYP2A6. Effects in vivo were studied in C57BL/6J mice. CYP2A6 activity was assayed as coumarin 7-hydroxylation (CH) using HPLC and fluorescence measurements. Metabolism of chalepensin was assessed with liquid chromatography/mass spectrometry (LC/MS). KEY RESULTS CYP2A6.1, without pre-incubation with NADPH, was competitively inhibited by chalepensin. After pre-incubation with NADPH, inhibition by chalepensin was increased (IC(50) value decreased by 98%). This time-dependent inactivation (k(inact) 0.044 min(-1) ; K(I) 2.64 µM) caused the loss of spectrally detectable P450 content and was diminished by known inhibitors of CYP2A6, pilocarpine or tranylcypromine, and by glutathione conjugation. LC/MS analysis of chalepensin metabolites suggested an unstable epoxide intermediate was formed, identified as the corresponding dihydrodiol, which was then conjugated with glutathione. Compared with the wild-type CYP2A6.1, the isoforms CYP2A6.7 and CYP2A6.10 were less inhibited. In mouse liver microsomes, pre-incubation enhanced inhibition of CH activity. Oral administration of chalepensin to mice reduced hepatic CH activity ex vivo. CONCLUSIONS AND IMPLICATIONS Chalepensin was a substrate and a mechanism-based inhibitor of human CYP2A6. Formation of an epoxide could be a key step in this inactivation. 'Poor metabolizers' carrying CYP2A6*7 or *10 may be less susceptible to inhibition by chalepensin. Given in vivo, chalepensin decreased CYP2A activity in mice.
Collapse
Affiliation(s)
- Yune-Fang Ueng
- National Research Institute of Chinese Medicine, Taipei, Taiwan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Nersesyan A, Muradyan R, Kundi M, Knasmueller S. Impact of smoking on the frequencies of micronuclei and other nuclear abnormalities in exfoliated oral cells: a comparative study with different cigarette types. Mutagenesis 2010; 26:295-301. [DOI: 10.1093/mutage/geq092] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
20
|
Enhanced nicotine reward in adulthood after exposure to nicotine during early adolescence in mice. Biochem Pharmacol 2009; 78:873-9. [PMID: 19576867 DOI: 10.1016/j.bcp.2009.06.099] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 06/19/2009] [Accepted: 06/24/2009] [Indexed: 11/23/2022]
Abstract
Approximately one million adolescents begin smoking cigarettes every year. Studies show that adolescents may be particularly vulnerable to various aspects of nicotine dependence. Work on rodents demonstrates parallel findings showing that adolescence is a time of changed sensitivity to both rewarding and aversive effects of nicotine. However, it is unclear if these effects are long-lasting and whether they contribute to a lifetime of nicotine addiction. In this study we have characterized the effects of adolescent nicotine exposure on the rewarding properties of nicotine in adulthood using the CPP model. Specifically, we have addressed whether the phase of adolescence (early, middle, or late adolescence) plays a role in the susceptibility to the enhanced rewarding effects of nicotine. Furthermore, we have investigated the long-term effects of adolescent nicotine exposure on nicotine reward in adulthood and have correlated these behavioral adaptations with possible molecular mechanisms. We observed that early adolescence in the mouse is a unique phase for elevated sensitivity to nicotine reward using a CPP model. In addition, exposure to nicotine during this phase, but not during late adolescence or adulthood, resulted in a lasting enhancement of reward in adulthood. Finally, we have shown that early adolescent nicotine exposure significantly elevates nAChR function in adulthood. Overall, we demonstrate that early adolescence represents a period of development, distinct from middle and late adolescence, during which nicotine exposure can cause persistent changes in behavior and molecular adaptations.
Collapse
|
21
|
Abstract
The molecular genetics of nicotine metabolism involves multiple polymorphic catalytic enzymes. Variation in metabolic pathways results in nicotine disposition kinetics that differ between individuals and ethnic groups. Twin studies indicate that a large part of this variance is genetic in origin, although environmental influences also contribute. The primary aim of this chapter is to review the current knowledge regarding the genetic variability in the enzymes that metabolize nicotine in humans. The focus is on describing the genetic polymorphisms that exist in cytochromes P450 (CYPs), aldehyde oxidase 1 (AOX1), UDP-glucuronosyltransferases (UGTs), and flavin-containing monooxygenase 3 (FMO3). Genetic studies have demonstrated that polymorphisms in CYP2A6, the primary enzyme responsible for nicotine breakdown, make a sizable contribution to the wide range of nicotine metabolic capacity observed in humans. Thus, special attention will be given to CYP2A6, because slower nicotine metabolism requires less frequent self-administration, and accordingly influences smoking behaviors. In addition, the molecular genetics of nicotine metabolism in nonhuman primates, mice, and rats will be reviewed briefly.
Collapse
Affiliation(s)
- Jill C Mwenifumbo
- Centre for Addiction & Mental Health and Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
22
|
Ray R, Tyndale RF, Lerman C. Nicotine dependence pharmacogenetics: role of genetic variation in nicotine-metabolizing enzymes. J Neurogenet 2009; 23:252-61. [PMID: 19169923 PMCID: PMC3772540 DOI: 10.1080/01677060802572887] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Nicotine-dependence pharmacogenetics research is an emerging field, and a number of studies have begun to characterize the clinical relevance and predictive power of genetic variation in drug-metabolizing enzymes and drug target genes for response to medication. The present paper focuses on evidence for the role of nicotine-metabolizing enzymes in smoking behavior and response to treatment. Nicotine metabolism is mediated primarily by cytochrome P450 2A6 (CYP2A6). Genetic variation in the CYP2A6 gene has been linked with several smoking behavior phenotypes. Individuals who carry null or reduced activity alleles for CYP2A6 smoke fewer cigarettes per day, are less dependent on nicotine, and may have an easier time quitting smoking. A phenotypic measure of CYP2A6 enzyme activity, defined as the ratio of the nicotine metabolites 3'hydroxycotinine/cotinine, also predicts successful quitting with the transdermal nicotine patch, and counseling alone. Faster metabolizers of nicotine respond more poorly to these treatments; however, they may be excellent candidates for non-nicotine therapies, such as bupropion. Inherited variation in the CYP2B6 enzyme is also associated with response to bupropion treatment and counseling alone for smoking cessation. Inhibition of the CYP2A6 enzyme to slow nicotine metabolism is a promising approach to increase nicotine availability and potentially reduce harm from tobacco smoking.
Collapse
Affiliation(s)
- Riju Ray
- Abramson Cancer Center and Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rachel F. Tyndale
- Centre for Addiction and Mental Health and Department of Pharmacology, Toronto, Ontario, Canada
| | - Caryn Lerman
- Abramson Cancer Center and Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
23
|
Nicotine decreases DNA methyltransferase 1 expression and glutamic acid decarboxylase 67 promoter methylation in GABAergic interneurons. Proc Natl Acad Sci U S A 2008; 105:16356-61. [PMID: 18852456 DOI: 10.1073/pnas.0808699105] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tobacco smoking is frequently abused by schizophrenia patients (SZP). The major synaptically active component inhaled from cigarettes is nicotine, hence the smoking habit of SZP may represent an attempt to use nicotine self-medication to correct (i) a central nervous system nicotinic acetylcholine receptor (nAChR) dysfunction, (ii) DNA-methyltransferase 1 (DMT1) overexpression in GABAergic neurons, and (iii) the down-regulation of reelin and GAD(67) expression caused by the increase of DNMT1-mediated hypermethylation of promoters in GABAergic interneurons of the telencephalon. Nicotine (4.5-22 micromol/kg s.c., 4 injections during the 12-h light cycle for 4 days) decreases DNMT1 mRNA and protein and increases GAD(67) expression in the mouse frontal cortex (FC). This nicotine-induced decrease of DNMT1 mRNA expression is greater (80%) in laser microdissected FC layer I GABAergic neurons than in the whole FC (40%), suggesting selectivity differences for the specific nicotinic receptor populations expressed in GABAergic neurons of different cortical layers. The down-regulation of DNMT1 expression induced by nicotine in the FC is also observed in the hippocampus but not in striatal GABAergic neurons. Furthermore, these data show that in the FC, the same doses of nicotine that decrease DNMT1 expression also (i) diminished the level of cytosine-5-methylation in the GAD(67) promoter and (ii) prevented the methionine-induced hypermethylation of the same promoter. Pretreatment with mecamylamine (6 micromol/kg s.c.), an nAChR blocker that penetrates the blood-brain barrier, prevents the nicotine-induced decrease of FC DNMT1 expression. Taken together, these results suggest that nicotine, by activating nAChRs located on cortical or hippocampal GABAergic interneurons, can up-regulate GAD(67) expression via an epigenetic mechanism. Nicotine is not effective in striatal medium spiny GABAergic neurons that primarily express muscarinic receptors.
Collapse
|
24
|
Merritt LL, Martin BR, Walters C, Lichtman AH, Damaj MI. The endogenous cannabinoid system modulates nicotine reward and dependence. J Pharmacol Exp Ther 2008; 326:483-92. [PMID: 18451315 DOI: 10.1124/jpet.108.138321] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A growing body of evidence suggests that the endogenous cannabinoid system modulates the addictive properties of nicotine, the main component of tobacco that produces rewarding effects. In our study, complementary transgenic and pharmacological approaches were used to test the hypothesis that the endocannabinoid system modulates nicotine reward and dependence. An acute injection of nicotine elicited normal analgesic and hypothermic effects in cannabinoid receptor (CB)(1) knockout (KO) mice and mice treated with the CB(1) antagonist rimonabant. However, disruption of CB(1) receptor signaling blocked nicotine reward, as assessed in the conditioned place preference (CPP) paradigm. In contrast, genetic deletion, or pharmacological inhibition of fatty acid amide hydrolase (FAAH), the enzyme responsible for catabolism of the endocannabinoid anandamide, enhanced the expression of nicotine CPP. Although the expression of spontaneous nicotine withdrawal (14 days, 24 mg/kg/day nicotine) was unaffected in CB(1) KO mice, acute administration of rimonabant (3 mg/kg) ameliorated somatic withdrawal signs in wild-type mice. Increasing endogenous levels of anandamide through genetic or pharmacological approaches exacerbated the physical somatic signs of spontaneous nicotine withdrawal in a milder withdrawal model (7 days, 24 mg/kg/day nicotine). Moreover, FAAH-compromised mice displayed increased conditioned place aversion in a mecamylamine-precipitated model of nicotine withdrawal. These findings indicate that endocannabinoids play a role in the rewarding properties of nicotine as well as nicotine dependence liability. Specifically, increasing endogenous cannabinoid levels magnifies, although disrupting CB(1) receptor signaling, attenuates nicotine reward and withdrawal. Taken together, these results support the hypothesis that cannabinoid receptor antagonists may offer therapeutic advantages to treat tobacco dependence.
Collapse
Affiliation(s)
- Lisa L Merritt
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | |
Collapse
|
25
|
Raunio H, Pokela N, Puhakainen K, Rahnasto M, Mauriala T, Auriola S, Juvonen RO. Nicotine metabolism and urinary elimination in mouse: in vitro and in vivo. Xenobiotica 2008; 38:34-47. [PMID: 18098062 DOI: 10.1080/00498250701708539] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
This study aimed at elucidating the in vivo metabolism of nicotine both with and without inhibitors of nicotine metabolism. Second, the role of mouse CYP2A5 in nicotine oxidation in vitro was studied as such information is needed to assess whether the mouse is a suitable model for studying chemical inhibitors of the human CYP2A6. The oxidation of nicotine to cotinine was measured and the ability of various inhibitors to modify this reaction was determined. Nicotine and various inhibitors were co-administered to CD2F1 mice, and nicotine and urinary levels of nicotine and four metabolites were determined. In mouse liver microsomes anti-CYP2A5 antibody and known chemical inhibitors of the CYP2A5 enzyme blocked cotinine formation by 85-100%, depending on the pre-treatment of the mice. The amount of trans-3-hydroxycotine was five times higher than cotinine N-oxide, and ten times higher than nicotine N-1-oxide and cotinine. Methoxsalen, an irreversible inhibitor of CYP2A5, significantly reduced the metabolic elimination of nicotine in vivo, but the reversible inhibitors had no effect. It is concluded that the metabolism of nicotine in mouse is very similar to that in man and, therefore, that the mouse is a suitable model for testing novel chemical inhibitors of human CYP2A6.
Collapse
Affiliation(s)
- H Raunio
- Department of Pharmacology and Toxicology, University of Kuopio, Kuopio, Finland
| | | | | | | | | | | | | |
Collapse
|
26
|
Visoni S, Meireles N, Monteiro L, Rossini A, Pinto LFR. Different modes of inhibition of mouse Cyp2a5 and rat CYP2A3 by the food-derived 8-methoxypsoralen. Food Chem Toxicol 2007; 46:1190-5. [PMID: 18215451 DOI: 10.1016/j.fct.2007.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 11/14/2007] [Accepted: 12/01/2007] [Indexed: 10/22/2022]
Abstract
CYP2A enzymes are responsible for nicotine metabolism and for activating tobacco-related carcinogens. Inhibition of CYP2A is a promising approach in chemoprevention, which could lead to a decrease in cigarette consumption and to a reduction in tobacco-related cancer risk. 8-Methoxypsoralen (8-MOP) is a mechanism-based inhibitor of human CYP2A6 and CYP2A13. 8-MOP is also an inhibitor of Cyp2a5, but the mode of this inhibition is unknown. There is no published data on the inhibition of CYP2A3 by 8-MOP. The objective of this work was to investigate the characteristics of 8-MOP inhibition on mouse hepatic Cyp2a5 and rat nasal CYP2A3, in order to determine the best experimental model for chemoprevention studies using 8-MOP. The results show that 8-MOP inhibits CYP2a5 through three different mechanisms: competitive, non-competitive (K(iu)=1.7 microM), and mechanism-based (K(inactivation) of 0.17 min(-1)). By contrast, 8-MOP was able to inhibit CYP2A3-mediated coumarin 7-hydroxylase only in a non-competitive way (K(iu)=0.22 microM). In conclusion, we showed that 8-MOP inhibits Cyp2a5 and CYP2A3 through different mechanisms.
Collapse
Affiliation(s)
- S Visoni
- Laboratório de Toxicologia e Biologia Molecular, Departamento de Bioquímica, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | | |
Collapse
|
27
|
Siu ECK, Tyndale RF. Selegiline is a mechanism-based inactivator of CYP2A6 inhibiting nicotine metabolism in humans and mice. J Pharmacol Exp Ther 2007; 324:992-9. [PMID: 18065502 DOI: 10.1124/jpet.107.133900] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Selegiline (l-deprenyl) is in clinical treatment trials as a potential smoking cessation drug. We investigated the affect of selegiline and its metabolites on nicotine metabolism. In mice, selegiline was a potent inhibitor of nicotine metabolism in hepatic microsomes and cDNA-expressed CYP2A5; the selegiline metabolites desmethylselegiline, l-methamphetamine, and l-amphetamine, also inhibited nicotine metabolism. Pretreatment with selegiline and desmethylselegiline increased inhibition (IC(50)) in microsomes by 3.3- and 6.1-fold, respectively. In mice in vivo, selegiline increased AUC (90.7 +/- 5.8 versus 57.4 +/- 5.3 ng/h/ml, p < 0.05), decreased clearance (4.6 +/- 0.4 versus 7.3 +/- 0.3 ml/min, p < 0.05), and increased elimination half-life (12.5 +/- 6.3 versus 6.6 +/- 1.4 min, p < 0.05) of nicotine. In vitro, selegiline was a potent inhibitor of human nicotine metabolism in hepatic microsomes and cDNA-expressed CYP2A6; desmethylselegiline and l-amphetamine also inhibited nicotine metabolism. Selegiline preincubation increased inhibition in microsomes (3.7-fold) and CYP2A6 (14.8-fold); the K(i) for CYP2A6 was 4.2 muM. Selegiline dose- and time-dependently inhibited nicotine metabolism by CYP2A6 (K(i) = 15.6 +/- 2.7 muM; k(inact) = 0.34 +/- 0.04 min(-1)), and the inhibition was irreversible in the presence of NADPH, indicating that it is a mechanism-based inhibitor of CYP2A6. Thus, inhibition of mouse nicotine metabolism by selegiline was competitive in vitro and significantly increased plasma nicotine in vivo. In humans, where selegiline is both a competitive and mechanism-based inhibitor, it is likely to have even greater effects on in vivo nicotine metabolism. Our findings suggest that an additional potential mechanism of selegiline in smoking cessation is through inhibition of nicotine metabolism.
Collapse
Affiliation(s)
- Eric C K Siu
- Department of Pharmacology, University of Toronto, 1 King's College Circle, Room 4326, Toronto, Ontario, Canada
| | | |
Collapse
|
28
|
Siu ECK, Tyndale RF. Characterization and comparison of nicotine and cotinine metabolism in vitro and in vivo in DBA/2 and C57BL/6 mice. Mol Pharmacol 2006; 71:826-34. [PMID: 17158199 DOI: 10.1124/mol.106.032086] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
DBA/2 and C57BL/6 are two commonly used mouse strains that differ in response to nicotine. Previous studies have shown that the nicotine-metabolizing enzyme CYP2A5 differs in coumarin metabolism between these two strains, suggesting differences in nicotine metabolism. Nicotine was metabolized to cotinine in vitro by two enzymatic sites. The high-affinity sites exhibited similar parameters (Km, 10.7 +/- 4.8 versus 11.4 +/- 3.6 microM; Vmax, 0.58 +/- 0.18 versus 0.50 +/- 0.07 nmol/min/mg for DBA/2 and C57BL/6, respectively). In vivo, the elimination half-lives of nicotine (1 mg/kg, s.c.) were also similar between DBA/2 and C57BL/6 mice (8.6 +/- 0.4 versus 9.2 +/- 1.6 min, respectively); however, cotinine levels were much higher in DBA/2 mice. The production and identity of the putative cotinine metabolite 3'-hydroxycotinine in mice was confirmed by liquid chromatography/mass spectrometry/mass spectrometry. The in vivo half-life of cotinine (1 mg/kg, s.c.) was significantly longer in the DBA/2 mice compared with the C57BL/6 mice (50.2 +/- 4.7 versus 37.5 +/- 9.6 min, respectively, p < 0.05). The in vitro metabolism of cotinine to 3'-hydroxycotinine was also less efficient in DBA/2 than C57BL/6 mice (Km, 51.0 +/- 15.6 versus 9.5 +/- 2.1 microM, p < 0.05; Vmax, 0.10 +/- 0.01 versus 0.04 +/- 0.01 nmol/min/mg, p < 0.05, respectively). Inhibitory antibody studies demonstrated that the metabolism of both nicotine and cotinine was mediated by CYP2A5. Genetic differences in Cyp2a5 potentially contributed to similar nicotine but different cotinine metabolism, which may confound the interpretation of nicotine pharmacological studies and studies using cotinine as a biomarker.
Collapse
Affiliation(s)
- Eric C K Siu
- The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
| | | |
Collapse
|