1
|
Yadav-Samudrala BJ, Fitting S. Exploring new frontiers in the treatment of HIV-associated neurocognitive disorder. J Pharmacol Exp Ther 2025; 392:100040. [PMID: 40023588 DOI: 10.1016/j.jpet.2024.100040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/27/2024] [Indexed: 03/04/2025] Open
Affiliation(s)
- Barkha J Yadav-Samudrala
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| | - Sylvia Fitting
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
2
|
Jimenez-Torres AC, Hastie JA, Davis SE, Porter KD, Lei B, Moukha-Chafiq O, Zhang S, Nguyen TH, Ananthan S, Augelli-Szafran CE, Zhu J. Identification of pyrimidine structure-based compounds as allosteric ligands of the dopamine transporter as therapeutic agents for NeuroHIV. J Pharmacol Exp Ther 2025; 392:100021. [PMID: 40023582 DOI: 10.1124/jpet.124.002138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/14/2024] [Accepted: 07/23/2024] [Indexed: 01/22/2025] Open
Abstract
The disruption of dopamine (DA) neurotransmission by the HIV-1 transactivator of transcription (Tat) during HIV-1 infection has been linked to the development of neurocognitive disorders, even under combined antiretroviral therapy treatment. We have demonstrated that Southern Research Institute (SRI) 32742, a novel allosteric modulator of DA transporter (DAT), attenuates cocaine- and Tat-binding to DAT, alleviates Tat-induced cognitive deficits and potentiation of cocaine reward in inducible Tat transgenic mice. The current study determined the in vitro pharmacological profile of SRI-32743 and its optimized second-generation analogs and their effects as allosteric modulators. Through structure-activity relationship studies of SRI-32743, 170 compounds were synthesized and evaluated for their ability to modulate DAT function. We identified 21 analogs as atypical competitors of DAT (maximum attributable drug effect, ≤60%). Four compounds, SRI-46564, SRI-47056, SRI-46286, and SRI-47867, displayed IC50 values for [3H]DA uptake inhibition from 9.33 ± 0.50 to 0.96 ± 0.05 μM and from 3.96 ± 1.36 to 1.29 ± 0.19 for DAT binding, respectively. The 4 analogs also displayed high potency at 2 different concentrations (0.5 nM and 0.05 nM) to attenuate Tat-induced inhibition of [3H]DA uptake and cocaine-mediated dissociation of [3H]WIN35,428 binding in Chinese hamster ovary cells expressing human DAT, suggesting that the effects occur through an allosteric mechanism. In further ex vivo studies using fast scan cyclic voltammetry, we demonstrated that the analogs do not disrupt the baseline phasic-like DA release. These findings provide a new insight into the potential for development of novel therapeutic agents to attenuate DAT-Tat interactions to normalize DA neurotransmission in NeuroHIV. SIGNIFICANCE STATEMENT: The allosteric inhibition of the dopamine (DA) transporter by the HIV-1 transactivator of transcription (Tat) disrupts DA homeostasis, leading to HIV-associated neurocognitive disorders. Analogs of Southern Research Institute 32743, a novel allosteric modulator of the Tat-DA transporter (DAT) interaction, were evaluated in the current study and characterized as atypical ligands of DA uptake. Four novel lead compounds demonstrated high potency to attenuate Tat-induced inhibition of human DAT-mediated DA uptake in an allosteric modulatory manner with no effects on the dynamics of DA uptake-release in DAT.
Collapse
Affiliation(s)
- Ana Catya Jimenez-Torres
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina
| | - Jamison A Hastie
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina
| | - Sarah E Davis
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina
| | - Katherine D Porter
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina
| | - Bin Lei
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina
| | - Omar Moukha-Chafiq
- Department of Chemistry, Scientific Platforms Division, Southern Research, Birmingham, Alabama
| | - Sixue Zhang
- Department of Chemistry, Scientific Platforms Division, Southern Research, Birmingham, Alabama
| | - Theresa H Nguyen
- Department of Chemistry, Scientific Platforms Division, Southern Research, Birmingham, Alabama
| | - Subramaniam Ananthan
- Department of Chemistry, Scientific Platforms Division, Southern Research, Birmingham, Alabama
| | | | - Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina.
| |
Collapse
|
3
|
Zhu J, Cirincione AB, Strauss MJ, Davis SE, Eans SO, Tribbitt DK, Alshakhshir N, McLaughlin JP. Impact of HIV-1 tat protein on methamphetamine-induced inhibition of vesicular monoamine transporter2-mediated dopamine transport and methamphetamine conditioned place preference in HIV-1 tat transgenic mice. Eur J Pharmacol 2024; 984:177030. [PMID: 39366503 PMCID: PMC11563864 DOI: 10.1016/j.ejphar.2024.177030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/06/2024]
Abstract
Perturbation of dopamine transmission has been implicated as a contributing factor in HIV-1 associated neurocognitive disorders with concurrent methamphetamine (METH) abuse. We have demonstrated that the HIV-1 protein, transactivator of transcription (Tat), decreases dopamine transport through inhibition of vesicular monoamine transporter2 (VMAT2). This study determined the effects of Tat protein on METH-inhibited VMAT2 function and METH-conditioned place preference (CPP). In vitro exposure of isolated mouse whole brain vesicles to recombinant Tat1-86 or METH displayed a concentration-dependent inhibition of the vesicular [3H]Dopamine uptake, in which a combination of Tat and METH induced a greater reduction of dopamine uptake compared to Tat or METH alone. In vivo, the maximal velocity (Vmax) of vesicular [3H]Dopamine uptake was decreased in inducible Tat transgenic (iTat-tg) mice harvested after treatment with either 21-day doxycycline (Dox) or 14-day METH (3 mg/kg, i.p., daily), whereas these mice treated with both Dox and METH displayed an additive reduction of the Vmax compared to either Tat or METH alone. Moreover, Dox-induced Tat expression increased METH-CPP in an exposure-dependent manner, with iTat-tg mice demonstrating a 2.3-fold potentiation of METH-CPP compared with Tat null control mice upon administration of Dox for 14 days. Furthermore, a 7-day administration of Dox reinstated extinguished METH-CPP. Collectively, these results suggest a synergistic effect of Tat protein and METH on inhibition of VMAT2-mediated DA transport, potentially contributing to potentiation of METH-CPP in iTat-tg mice.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA.
| | - Abagail B Cirincione
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Matthew J Strauss
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Sarah E Davis
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Shainnel O Eans
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Danielle K Tribbitt
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Nadine Alshakhshir
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Jay P McLaughlin
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
4
|
Park ES, Shin CY, Jeon SJ, Ham BJ. Is There such a Thing as Post-Viral Depression?: Implications for Precision Medicine. Biomol Ther (Seoul) 2024; 32:659-684. [PMID: 39428555 PMCID: PMC11535299 DOI: 10.4062/biomolther.2024.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024] Open
Abstract
Viral infections are increasingly recognized as triggers for depressive disorders, particularly following the SARS-CoV-2 pandemic and the rise of long COVID. Viruses such as Herpes Simplex Virus (HSV), Epstein-Barr Virus (EBV), Cytomegalovirus (CMV), and Human Immunodeficiency Virus (HIV) are linked to depression through complex neurobiological mechanisms. These include immune system dysregulation, chronic inflammation, and neurotransmitter imbalances that affect brain function and mood regulation. Viral activation of the immune system leads to the release of pro-inflammatory cytokines, resulting in neuroinflammation and associated depressive symptoms. Furthermore, specific viruses can disrupt neurotransmitter systems, including serotonin, dopamine, and glutamate, all of which are essential for mood stabilization. The unique interactions of different viruses with these systems underscore the need for virus-specific therapeutic approaches. Current broad-spectrum treatments often overlook the precise neurobiological pathways involved in post-viral depression, reducing their efficacy. This review emphasizes the need to understand these virus-specific interactions to create tailored interventions that directly address the neurobiological effects induced by each type of virus. These interventions may include immunomodulatory treatments that target persistent inflammation, antiviral therapies to reduce the viral load, or neuroprotective strategies that restore neurotransmitter balance. Precision medicine offers promising avenues for the effective management of virus-induced depression, providing patient-specific approaches that address the specific biological mechanisms involved. By focusing on the development of these targeted treatments, this review aims to pave the way for a new era in psychiatric care that fully addresses the root causes of depression induced by viral infections.
Collapse
Affiliation(s)
- Eun-Sook Park
- Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Chan Young Shin
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
- Institute of Biomedical Sciences & Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Se Jin Jeon
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea
| |
Collapse
|
5
|
Davis SE, Cirincione AB, Jimenez-Torres AC, Zhu J. The Impact of Neurotransmitters on the Neurobiology of Neurodegenerative Diseases. Int J Mol Sci 2023; 24:15340. [PMID: 37895020 PMCID: PMC10607327 DOI: 10.3390/ijms242015340] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Neurodegenerative diseases affect millions of people worldwide. Neurodegenerative diseases result from progressive damage to nerve cells in the brain or peripheral nervous system connections that are essential for cognition, coordination, strength, sensation, and mobility. Dysfunction of these brain and nerve functions is associated with Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic lateral sclerosis, and motor neuron disease. In addition to these, 50% of people living with HIV develop a spectrum of cognitive, motor, and/or mood problems collectively referred to as HIV-Associated Neurocognitive Disorders (HAND) despite the widespread use of a combination of antiretroviral therapies. Neuroinflammation and neurotransmitter systems have a pathological correlation and play a critical role in developing neurodegenerative diseases. Each of these diseases has a unique pattern of dysregulation of the neurotransmitter system, which has been attributed to different forms of cell-specific neuronal loss. In this review, we will focus on a discussion of the regulation of dopaminergic and cholinergic systems, which are more commonly disturbed in neurodegenerative disorders. Additionally, we will provide evidence for the hypothesis that disturbances in neurotransmission contribute to the neuronal loss observed in neurodegenerative disorders. Further, we will highlight the critical role of dopamine as a mediator of neuronal injury and loss in the context of NeuroHIV. This review will highlight the need to further investigate neurotransmission systems for their role in the etiology of neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | | | - Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA; (S.E.D.); (A.B.C.); (A.C.J.-T.)
| |
Collapse
|
6
|
Pla-Tenorio J, Roig AM, García-Cesaní PA, Santiago LA, Sepulveda-Orengo MT, Noel RJ. Astrocytes: Role in pathogenesis and effect of commonly misused drugs in the HIV infected brain. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100108. [PMID: 38020814 PMCID: PMC10663134 DOI: 10.1016/j.crneur.2023.100108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 06/05/2023] [Accepted: 08/18/2023] [Indexed: 12/01/2023] Open
Abstract
The roles of astrocytes as reservoirs and producers of a subset of viral proteins in the HIV infected brain have been studied extensively as a key to understanding HIV-associated neurocognitive disorders (HAND). However, their comprehensive role in the context of intersecting substance use and neurocircuitry of the reward pathway and HAND has yet to be fully explained. Use of methamphetamines, cocaine, or opioids in the context of HIV infection have been shown to lead to a faster progression of HAND. Glutamatergic, dopaminergic, and GABAergic systems are implicated in the development of HAND-induced cognitive impairments. A thorough review of scientific literature exploring the variety of mechanisms in which these drugs exert their effects on the HIV brain and astrocytes has revealed marked areas of convergence in overexcitation leading to increased drug-seeking behavior, inflammation, apoptosis, and irreversible neurotoxicity. The present review investigates astrocytes, the neural pathways, and mechanisms of drug disruption that ultimately play a larger holistic role in terms of HIV progression and drug use. There are opportunities for future research, therapeutic intervention, and preventive strategies to diminish HAND in the subset population of patients with HIV and substance use disorder.
Collapse
Affiliation(s)
- Jessalyn Pla-Tenorio
- Ponce Health Sciences University, School of Medicine, Department of Basic Sciences, 395 Industrial Reparada, Zona 2, Ponce, PR, 00716, Puerto Rico
| | - Angela M. Roig
- Seattle Children's Hospital, MS OC.7.830, 4800 Sand Point Way NE, Seattle, WA, 98105-0371, United States
| | - Paulina A. García-Cesaní
- Bella Vista Hospital, Family Medicine Residency, Carr. 349 Km 2.7, Cerro Las Mesas, Mayaguez, PR, 00681, Puerto Rico
| | - Luis A. Santiago
- Ponce Health Sciences University, School of Medicine, Department of Basic Sciences, 395 Industrial Reparada, Zona 2, Ponce, PR, 00716, Puerto Rico
| | - Marian T. Sepulveda-Orengo
- Ponce Health Sciences University, School of Medicine, Department of Basic Sciences, 395 Industrial Reparada, Zona 2, Ponce, PR, 00716, Puerto Rico
| | - Richard J. Noel
- Ponce Health Sciences University, School of Medicine, Department of Basic Sciences, 395 Industrial Reparada, Zona 2, Ponce, PR, 00716, Puerto Rico
| |
Collapse
|
7
|
Lark ARS, Silva LK, Nass SR, Marone MG, Ohene-Nyako M, Ihrig TM, Marks WD, Yarotskyy V, Rory McQuiston A, Knapp PE, Hauser KF. Progressive Degeneration and Adaptive Excitability in Dopamine D1 and D2 Receptor-Expressing Striatal Neurons Exposed to HIV-1 Tat and Morphine. Cell Mol Neurobiol 2023; 43:1105-1127. [PMID: 35695980 PMCID: PMC9976699 DOI: 10.1007/s10571-022-01232-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/10/2022] [Indexed: 11/03/2022]
Abstract
The striatum is especially vulnerable to HIV-1 infection, with medium spiny neurons (MSNs) exhibiting marked synaptodendritic damage that can be exacerbated by opioid use disorder. Despite known structural defects in MSNs co-exposed to HIV-1 Tat and opioids, the pathophysiological sequelae of sustained HIV-1 exposure and acute comorbid effects of opioids on dopamine D1 and D2 receptor-expressing (D1 and D2) MSNs are unknown. To address this question, Drd1-tdTomato- or Drd2-eGFP-expressing reporter and conditional HIV-1 Tat transgenic mice were interbred. MSNs in ex vivo slices from male mice were assessed by whole-cell patch-clamp electrophysiology and filled with biocytin to explore the functional and structural effects of progressive Tat and acute morphine exposure. Although the excitability of both D1 and D2 MSNs increased following 48 h of Tat exposure, D1 MSN firing rates decreased below control (Tat-) levels following 2 weeks and 1 month of Tat exposure but returned to control levels after 2 months. D2 neurons continued to display Tat-dependent increases in excitability at 2 weeks, but also returned to control levels following 1 and 2 months of Tat induction. Acute morphine exposure increased D1 MSN excitability irrespective of the duration of Tat exposure, while D2 MSNs were variably affected. That D1 and D2 MSN excitability would return to control levels was unexpected since both subpopulations displayed significant synaptodendritic degeneration and pathologic phospho-tau-Thr205 accumulation following 2 months of Tat induction. Thus, despite frank morphologic damage, D1 and D2 MSNs uniquely adapt to sustained Tat and acute morphine insults.
Collapse
Affiliation(s)
- Arianna R S Lark
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
| | - Lindsay K Silva
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
- PPD®, Part of Thermo Fisher Scientific, Richmond, VA, 23230-3323, USA
| | - Sara R Nass
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
| | - Michael G Marone
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
| | - Michael Ohene-Nyako
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
| | - Therese M Ihrig
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
| | - William D Marks
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
- Department of Psychiatry, Southwestern Medical Center, University of Texas, Dallas, TX, 75235, USA
| | - Viktor Yarotskyy
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
| | - A Rory McQuiston
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, PO Box 980709, Richmond, VA, 23298-0709, USA
| | - Pamela E Knapp
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, PO Box 980709, Richmond, VA, 23298-0709, USA
- Institute for Drug and Alcohol Studies, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Molecular Medicine Research Building, Room 4040, 1220 East Broad Street, PO Box 980613, Richmond, VA, 23298-0613, USA.
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, PO Box 980709, Richmond, VA, 23298-0709, USA.
- Institute for Drug and Alcohol Studies, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
8
|
Davis SE, Ferris MJ, Ananthan S, Augelli-Szafran CE, Zhu J. Novel Allosteric Modulator Southern Research Institute-32743 Reverses HIV-1 Transactivator of Transcription-Induced Increase in Dopamine Release in the Caudate Putamen of Inducible Transactivator of Transcription Transgenic Mice. J Pharmacol Exp Ther 2023; 384:306-314. [PMID: 36456195 PMCID: PMC9875314 DOI: 10.1124/jpet.122.001291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/30/2022] [Accepted: 11/07/2022] [Indexed: 12/04/2022] Open
Abstract
Development of neurocognitive disorder in human immunodeficiency virus (HIV)-infected patients has been linked to dysregulation of dopamine by the HIV-1 transactivator of transcription (Tat) protein, a negative allosteric modulator of dopamine transporter (DAT). Using fast scan cyclic voltammetry, the present study determined the effects of in vivo Tat expression on dopamine release in the caudate putamen of inducible Tat transgenic (iTat-tg) mice and the impact of a novel DAT allosteric modulator, Southern Research Institute (SRI)-32743, on the Tat effect. We found that 7- or 14-day doxycycline (Dox)-induced Tat expression in iTat-tg mice resulted in a 2-fold increase in phasic but not tonic stimulated baseline dopamine release relative to saline control mice. To determine whether the Tat-induced increase in dopamine release is mediated by DAT regulation, we examined the effect of an in vitro applied DAT inhibitor, nomifensine, on the dopamine release. Nomifensine (1 nM-10 µM) concentration-dependently enhanced phasic stimulated dopamine release in both saline- and Dox-treated iTat-tg mice, while the magnitude of the nomifensine-mediated dopamine release was unchanged between saline and Dox treatment groups. A single systemic administration of SRI-32743 prior to animal sacrifice reversed the increased dopamine release in the baseline of phasic dopamine release and nomifensine-augmented dopamine levels in Dox-treated iTat-tg mice, while SRI-32743 alone did not alter baseline of dopamine release. These findings suggest that Tat expression induced an increase in extracellular dopamine levels by not only inhibiting DAT-mediated dopamine transport but also stimulating synaptic dopamine release. Thus, DAT allosteric modulators may serve as a potential therapeutic intervention for HIV infection-dysregulated dopamine system observed in HIV-1 positive individuals. SIGNIFICANCE STATEMENT: HIV infection-induced dysregulation of the dopaminergic system has been implicated in the development of neurocognitive impairments observed in HIV positive patients. Understanding the mechanisms underlying HIV-1 Tat protein-induced alteration of extracellular dopamine levels will provide insights into the development of molecules that can attenuate Tat interaction with targets in the dopaminergic system. Here, we determined whether Tat alters dopamine release and how the novel DAT allosteric modulator, SRI-32743, impacts dopamine neurotransmission to attenuate Tat-induced effects on extracellular dopamine dynamics.
Collapse
Affiliation(s)
- Sarah E Davis
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (S.E.D., J.Z.); Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina (M.M.F.); and Department of Chemistry, Scientific Platforms, Southern Research, Birmingham, Alabama (S.A., C.E.A.)
| | - Mark J Ferris
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (S.E.D., J.Z.); Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina (M.M.F.); and Department of Chemistry, Scientific Platforms, Southern Research, Birmingham, Alabama (S.A., C.E.A.)
| | - Subramaniam Ananthan
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (S.E.D., J.Z.); Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina (M.M.F.); and Department of Chemistry, Scientific Platforms, Southern Research, Birmingham, Alabama (S.A., C.E.A.)
| | - Corinne E Augelli-Szafran
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (S.E.D., J.Z.); Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina (M.M.F.); and Department of Chemistry, Scientific Platforms, Southern Research, Birmingham, Alabama (S.A., C.E.A.)
| | - Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (S.E.D., J.Z.); Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina (M.M.F.); and Department of Chemistry, Scientific Platforms, Southern Research, Birmingham, Alabama (S.A., C.E.A.)
| |
Collapse
|
9
|
Ayoub S, Kenton JA, Milienne-Petiot M, Deben DS, Achim C, Geyer MA, Perry W, Grant IE, Young JW, Minassian A. iTat transgenic mice exhibit hyper-locomotion in the behavioral pattern monitor after chronic exposure to methamphetamine but are unaffected by Tat expression. Pharmacol Biochem Behav 2023; 222:173499. [PMID: 36462584 PMCID: PMC10014034 DOI: 10.1016/j.pbb.2022.173499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022]
Abstract
Although antiretroviral therapy (ART) has increased the quality of life and lifespan in people living with HIV (PWH), millions continue to suffer from the neurobehavioral effects of the virus. Additionally, the abuse of illicit drugs (methamphetamine in particular) is significantly higher in PWH compared to the general population, which may further impact their neurological functions. The HIV regulatory protein, Tat, has been implicated in the neurobehavioral impacts of HIV and is purported to inhibit dopamine transporter (DAT) function in a way similar to methamphetamine. Thus, we hypothesized that a combination of Tat expression and methamphetamine would exert synergistic deleterious effects on behavior and DAT expression. We examined the impact of chronic methamphetamine exposure on exploration in transgenic mice expressing human Tat (iTat) vs. their wildtype littermates using the behavioral pattern monitor (BPM). During baseline, mice exhibited sex-dependent differences in BPM behavior, which persisted through methamphetamine exposure, and Tat activation with doxycycline. We observed a main effect of methamphetamine, wherein exposure, irrespective of genotype, increased locomotor activity and decreased specific exploration. After doxycycline treatment, mice continued to exhibit drug-dependent alterations in locomotion, with no effect of Tat, or methamphetamine interactions. DAT levels were higher in wildtype, saline-exposed males compared to all other groups. These data support stimulant-induced changes of locomotor activity and exploration, and suggest that viral Tat and methamphetamine do not synergistically interact to alter these behaviors in mice. These findings are important for future studies attempting to disentangle the effect of substances that impact DAT on HAND-relevant behaviors using such transgenic animals.
Collapse
Affiliation(s)
- Samantha Ayoub
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America
| | - Johnny A Kenton
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America
| | - Morgane Milienne-Petiot
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America
| | - Debbie S Deben
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Cristian Achim
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America
| | - Mark A Geyer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America; Research Service, VA San Diego Healthcare System, San Diego, CA, United States of America
| | - William Perry
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America
| | - Igor E Grant
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America; Research Service, VA San Diego Healthcare System, San Diego, CA, United States of America.
| | - Arpi Minassian
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America; VA Center of Excellence for Stress and Mental Health, Veterans Administration San Diego HealthCare System, 3350 La Jolla Village Drive, San Diego, CA, United States of America
| |
Collapse
|
10
|
Nepal B, Das S, Reith ME, Kortagere S. Overview of the structure and function of the dopamine transporter and its protein interactions. Front Physiol 2023; 14:1150355. [PMID: 36935752 PMCID: PMC10020207 DOI: 10.3389/fphys.2023.1150355] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
The dopamine transporter (DAT) plays an integral role in dopamine neurotransmission through the clearance of dopamine from the extracellular space. Dysregulation of DAT is central to the pathophysiology of numerous neuropsychiatric disorders and as such is an attractive therapeutic target. DAT belongs to the solute carrier family 6 (SLC6) class of Na+/Cl- dependent transporters that move various cargo into neurons against their concentration gradient. This review focuses on DAT (SCL6A3 protein) while extending the narrative to the closely related transporters for serotonin and norepinephrine where needed for comparison or functional relevance. Cloning and site-directed mutagenesis experiments provided early structural knowledge of DAT but our contemporary understanding was achieved through a combination of crystallization of the related bacterial transporter LeuT, homology modeling, and subsequently the crystallization of drosophila DAT. These seminal findings enabled a better understanding of the conformational states involved in the transport of substrate, subsequently aiding state-specific drug design. Post-translational modifications to DAT such as phosphorylation, palmitoylation, ubiquitination also influence the plasma membrane localization and kinetics. Substrates and drugs can interact with multiple sites within DAT including the primary S1 and S2 sites involved in dopamine binding and novel allosteric sites. Major research has centered around the question what determines the substrate and inhibitor selectivity of DAT in comparison to serotonin and norepinephrine transporters. DAT has been implicated in many neurological disorders and may play a role in the pathology of HIV and Parkinson's disease via direct physical interaction with HIV-1 Tat and α-synuclein proteins respectively.
Collapse
Affiliation(s)
- Binod Nepal
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Sanjay Das
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Maarten E. Reith
- Department of Psychiatry, New York University School of Medicine, New York City, NY, United States
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- *Correspondence: Sandhya Kortagere,
| |
Collapse
|
11
|
Zhu J, Quizon PM, Wang Y, Adeniran CA, Strauss MJ, Jiménez-Torres AC, Patel P, Cirino TJ, Eans SO, Hammond HR, Deliscar LS, O'Hara P, Saini SK, Ofori E, Vekariya RH, Zhang S, Moukha-Chafiq O, Nguyen TH, Ananthan S, Augelli-Szafran CE, Zhan CG, McLaughlin JP. SRI-32743, a novel allosteric modulator, attenuates HIV-1 Tat protein-induced inhibition of the dopamine transporter and alleviates the potentiation of cocaine reward in HIV-1 Tat transgenic mice. Neuropharmacology 2022; 220:109239. [PMID: 36126727 DOI: 10.1016/j.neuropharm.2022.109239] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 08/09/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022]
Abstract
Cocaine abuse increases the incidence of HIV-1-associated neurocognitive disorders. We have demonstrated that HIV-1 transactivator of transcription (Tat) allosterically modulates dopamine (DA) reuptake through the human DA transporter (hDAT), potentially contributing to Tat-induced cognitive impairment and potentiation of cocaine conditioned place preference (CPP). This study determined the effects of a novel allosteric modulator of DAT, SRI-32743, on the interactions of HIV-1 Tat, DA, cocaine, and [3H]WIN35,428 with hDAT in vitro. SRI-32743 (50 nM) attenuated Tat-induced inhibition of [3H]DA uptake and decreased the cocaine-mediated dissociation of [3H]WIN35,428 binding in CHO cells expressing hDAT, suggesting a SRI-32743-mediated allosteric modulation of the Tat-DAT interaction. In further in vivo studies utilizing doxycycline-inducible Tat transgenic (iTat-tg) mice, 14 days of Tat expression significantly reduced the recognition index by 31.7% in the final phase of novel object recognition (NOR) and potentiated cocaine-CPP 2.7-fold compared to responses of vehicle-treated control iTat-tg mice. The Tat-induced NOR deficits and potentiation of cocaine-CPP were not observed in saline-treated iTat-tg or doxycycline-treated G-tg (Tat-null) mice. Systemic administration (i.p.) of SRI-32743 prior to behavioral testing ameliorated Tat-induced impairment of NOR (at a dose of 10 mg/kg) and the Tat-induced potentiation of cocaine-CPP (at doses of 1 or 10 mg/kg). These findings demonstrate that Tat and cocaine interactions with DAT may be regulated by compounds interacting at the DAT allosteric modulatory sites, suggesting a potential therapeutic intervention for HIV-infected patients with concurrent cocaine abuse.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA.
| | - Pamela M Quizon
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Yingying Wang
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Charles A Adeniran
- Molecular Modeling and Biopharmaceutical Center, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Matthew J Strauss
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Ana C Jiménez-Torres
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Palak Patel
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Thomas J Cirino
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32611, USA
| | - Shainnel O Eans
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32611, USA
| | - Haylee R Hammond
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32611, USA
| | - Laure S Deliscar
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32611, USA
| | - Priscilla O'Hara
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32611, USA
| | - Surendra K Saini
- Department of Chemistry, Scientific Platforms, Southern Research, Birmingham, AL 35205, USA
| | - Edward Ofori
- Department of Chemistry, Scientific Platforms, Southern Research, Birmingham, AL 35205, USA
| | - Rakesh H Vekariya
- Department of Chemistry, Scientific Platforms, Southern Research, Birmingham, AL 35205, USA
| | - Sixue Zhang
- Department of Chemistry, Scientific Platforms, Southern Research, Birmingham, AL 35205, USA
| | - Omar Moukha-Chafiq
- Department of Chemistry, Scientific Platforms, Southern Research, Birmingham, AL 35205, USA
| | - Theresa H Nguyen
- Department of Chemistry, Scientific Platforms, Southern Research, Birmingham, AL 35205, USA
| | - Subramaniam Ananthan
- Department of Chemistry, Scientific Platforms, Southern Research, Birmingham, AL 35205, USA
| | | | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Jay P McLaughlin
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
12
|
Strauss MJ, Porter KD, Quizon PM, Davis SE, Lin S, Yuan Y, Martinez-Muniz GA, Sun WL, Zhan CG, Zhu J. Mutations of tyrosine 467 in the human norepinephrine transporter attenuate HIV-1 Tat-induced inhibition of dopamine transport while retaining physiological function. PLoS One 2022; 17:e0275182. [PMID: 36170295 PMCID: PMC9518868 DOI: 10.1371/journal.pone.0275182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Dysregulation of dopaminergic transmission induced by the HIV-1 transactivator of transcription (Tat) has been implicated as a central factor in the development of HIV-1 associated neurocognitive disorders (HAND). We have demonstrated that the tyrosine470 residue of the human dopamine transporter (hDAT) plays a critical role in Tat-hDAT interaction. Based on the computational modeling predictions, the present study sought to examine the mutational effects of the tyrosine467 residue of the human norepinephrine transporter (hNET), a corresponding residue of the hDAT tyrosine470, on Tat-induced inhibition of reuptake of dopamine through the hNET. Mutations of the hNET tyrosine467 to a histidine (Y467H) or a phenylalanine (Y467F) displayed similar kinetic properties of reuptake of [3H]dopamine and [3H]norepinephrine in PC12 cells expressing wild-type hNET and its mutants. Compared to wild-type hNET, neither of Y467H or Y467F altered Bmax and Kd values of [3H]WIN35,428 binding, whereas Y467H but not Y467F decreased the Bmax of [3H]nisoxetine binding without changes in Kd. Y467H also increased the affinity of nisoxetine for inhibiting [3H]dopamine uptake relative to wild-type hNET. Recombinant Tat1-86 (140 nM) induced a significant reduction of [3H]dopamine uptake in wild-type hNET, which was attenuated in both Y467H and Y467F. Compared to wild-type hNET, neither Y467H or Y467F altered [3H]dopamine efflux in CHO cells expressing WT hNET and mutants, whereas Y467F but not Y467H decreased [3H]MPP+ efflux. These results demonstrate tyrosine467 as a functional recognition residue in the hNET for Tat-induced inhibition of dopamine transport and provide a novel insight into the molecular basis for developing selective compounds that target Tat-NET interactions in the context of HAND.
Collapse
Affiliation(s)
- Matthew J. Strauss
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States of America
| | - Katherine D. Porter
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States of America
| | - Pamela M. Quizon
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States of America
| | - Sarah E. Davis
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States of America
| | - Steven Lin
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States of America
| | - Yaxia Yuan
- Molecular Modeling and Biopharmaceutical Center, University of Kentucky, Lexington, KY, United States of America
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States of America
| | - Gustavo A. Martinez-Muniz
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States of America
| | - Wei-Lun Sun
- Department of Psychological Science, University of North Georgia, Dahlonega, GA, United States of America
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center, University of Kentucky, Lexington, KY, United States of America
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States of America
| | - Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States of America
| |
Collapse
|
13
|
Davis S, Zhu J. Substance abuse and neurotransmission. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 93:403-441. [PMID: 35341573 PMCID: PMC9759822 DOI: 10.1016/bs.apha.2021.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The number of people who suffer from a substance abuse disorder has continued to rise over the last decade; particularly, the number of drug-related overdose deaths has sharply increased during the COVID-19 pandemic. Converging lines of clinical observations, supported by imaging and neuropsychological performance testing, have demonstrated that substance abuse-induced dysregulation of neurotransmissions in the brain is critical for development and expression of the addictive properties of abused substances. Recent scientific advances have allowed for better understanding of the neurobiological processes that mediates drugs of abuse and addiction. This chapter presents the past classic concepts and the recent advances in our knowledge about how cocaine, amphetamines, opioids, alcohol, and nicotine alter multiple neurotransmitter systems, which contribute to the behaviors associated with each drug. Additionally, we discuss the interactive effects of HIV-1 or COVID-19 and substance abuse on neurotransmission and neurobiological pathways. Finally, we introduce therapeutic strategies for development of pharmacotherapies for substance abuse disorders.
Collapse
Affiliation(s)
- Sarah Davis
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States
| | - Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States.
| |
Collapse
|
14
|
Wallace DR. HIV-associated neurotoxicity and cognitive decline: Therapeutic implications. Pharmacol Ther 2021; 234:108047. [PMID: 34848202 DOI: 10.1016/j.pharmthera.2021.108047] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 12/19/2022]
Abstract
As our understanding of changes to the neurological system has improved, it has become clear that patients who have contracted human immunodeficiency virus type 1 (HIV-1) can potentially suffer from a cascade of neurological issues, including neuropathy, dementia, and declining cognitive function. The progression from mild to severe symptoms tends to affect motor function, followed by cognitive changes. Central nervous system deficits that are observed as the disease progresses have been reported as most severe in later-stage HIV infection. Examining the full spectrum of neuronal damage, generalized cortical atrophy is a common hallmark, resulting in the death of multiple classes of neurons. With antiretroviral therapy (ART), we can partially control disease progression, slowing the onset of the most severe symptoms such as, reducing viral load in the brain, and developing HIV-associated dementia (HAD). HAD is a severe and debilitating outcome from HIV-related neuropathologies. HIV neurotoxicity can be direct (action directly on the neuron) or indirect (actions off-site that affect normal neuronal function). There are two critical HIV-associated proteins, Tat and gp120, which bear responsibility for many of the neuropathologies associated with HAD and HIV-associated neurocognitive disorder (HAND). A cascade of systems is involved in HIV-related neurotoxicity, and determining a critical point where therapeutic strategies can be employed is of the utmost importance. This review will provide an overview of the existing hypotheses on HIV-neurotoxicity and the potential for the development of therapeutics to aid in the treatment of HIV-related nervous system dysfunction.
Collapse
Affiliation(s)
- David R Wallace
- Oklahoma State University Center for Health Sciences, School of Biomedical Science, 1111 West 17(th) Street, Tulsa, OK 74107-1898, USA.
| |
Collapse
|
15
|
Adeniran C, Yuan Y, Davis SE, Lin C, Xu J, Zhu J, Zhan CG. Binding Mode of Human Norepinephrine Transporter Interacting with HIV-1 Tat. ACS Chem Neurosci 2021; 12:1519-1527. [PMID: 33886267 PMCID: PMC8562539 DOI: 10.1021/acschemneuro.0c00792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The increase of HIV infection in macrophages results in HIV proteins being released, like HIV Tat which impairs the function of monoamine transporters. HIV-infected patients have displayed increased synaptic levels of dopamine (DA) due to reduced binding and function of monoamine transporters such as the norepinephrine transporter (NET) and the dopamine transporter (DAT). Development of a three-dimensional model of the HIV-1 Tat-human NET (hNET) binding complex would help reveal how HIV-1 Tat causes toxicity in the neuron by affecting DA uptake. Here we use computational techniques such as molecular modeling to study microscopic properties and molecular dynamics of the HIV-1 Tat-hNET binding. These modeling techniques allow us to analyze noncovalent interactions and observe residue-residue contacts to verify a model structure. The modeling results studied here show that HIV-1 Tat-hNET binding is highly dynamic and that HIV-1 Tat preferentially binds to hNET in its outward-open state. In particular, HIV-1 Tat forms hydrogen bond interactions with side chains of hNET residues Y84, K88, and T544. The favorable hydrogen bonding interactions of HIV-1 Tat with the hNET side chain residues Y84 and T544 have been validated by our subsequently performed DA uptake activity assays and site-directed mutagenesis, suggesting that the modeled HIV-1 Tat-hNET binding mode is reasonable. These mechanistic and structural insights gained through homology models discussed in this study are expected to encourage the pursuit of pharmacological and biochemical studies on HIV-1 Tat interacting with hNET mechanisms and detailed structures.
Collapse
Affiliation(s)
- Charles Adeniran
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, KY 40506
| | - Yaxia Yuan
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
| | - Sarah E. Davis
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208
| | - Ciai Lin
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208
| | - Jiahui Xu
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208
| | - Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
| |
Collapse
|
16
|
Assis MA, Carranza PG, Ambrosio E. A "Drug-Dependent" Immune System Can Compromise Protection against Infection: The Relationships between Psychostimulants and HIV. Viruses 2021; 13:v13050722. [PMID: 33919273 PMCID: PMC8143316 DOI: 10.3390/v13050722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 01/31/2023] Open
Abstract
Psychostimulant use is a major comorbidity in people living with HIV, which was initially explained by them adopting risky behaviors that facilitate HIV transmission. However, the effects of drug use on the immune system might also influence this phenomenon. Psychostimulants act on peripheral immune cells even before they reach the central nervous system (CNS) and their effects on immunity are likely to influence HIV infection. Beyond their canonical activities, classic neurotransmitters and neuromodulators are expressed by peripheral immune cells (e.g., dopamine and enkephalins), which display immunomodulatory properties and could be influenced by psychostimulants. Immune receptors, like Toll-like receptors (TLRs) on microglia, are modulated by cocaine and amphetamine exposure. Since peripheral immunocytes also express TLRs, they may be similarly affected by psychostimulants. In this review, we will summarize how psychostimulants are currently thought to influence peripheral immunity, mainly focusing on catecholamines, enkephalins and TLR4, and shed light on how these drugs might affect HIV infection. We will try to shift from the classic CNS perspective and adopt a more holistic view, addressing the potential impact of psychostimulants on the peripheral immune system and how their systemic effects could influence HIV infection.
Collapse
Affiliation(s)
- María Amparo Assis
- Facultad de Ciencias Médicas, Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero G4200, Argentina;
- Laboratorio de Biología Molecular, Inmunología y Microbiología, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSE, Santiago del Estero G4206, Argentina
- Departamento de Psicobiología, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain;
- Correspondence:
| | - Pedro Gabriel Carranza
- Facultad de Ciencias Médicas, Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero G4200, Argentina;
- Laboratorio de Biología Molecular, Inmunología y Microbiología, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSE, Santiago del Estero G4206, Argentina
- Facultad de Agronomía y Agroindustrias, Universidad Nacional de Santiago del Estero, Santiago del Estero G4206, Argentina
| | - Emilio Ambrosio
- Departamento de Psicobiología, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain;
| |
Collapse
|
17
|
Cirino TJ, McLaughlin JP. Mini review: Promotion of substance abuse in HIV patients: Biological mediation by HIV-1 Tat protein. Neurosci Lett 2021; 753:135877. [PMID: 33838257 DOI: 10.1016/j.neulet.2021.135877] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 11/29/2022]
Abstract
Despite successful viral suppression by combinatorial anti-retroviral therapy, HIV infection continues to negatively impact the quality of life of patients by promoting neuropathy and HIV-Associated Neurocognitive Disorders (HAND), where substance use disorder (SUD) is highly comorbid and known to worsen health outcomes. While substance abuse exacerbates the progression of HIV, emerging evidence also suggests the virus may potentiate the rewarding effect of abused substances. As HIV does not infect neurons, these effects are theorized to be mediated by viral proteins. Key among these proteins are HIV-1 Tat, which can continue to be produced under viral suppression in patients. This review will recap the behavioral evidence for HIV-1 Tat mediation of a potentiation of cocaine, opioid and alcohol reward, and explore the neurochemical dysfunction associated by Tat as potential mechanisms underlying changes in reward. Targeting rampant oxidative stress, inflammation and excitotoxicity associated with HIV and Tat protein exposure may prove useful in combating persistent substance abuse comorbid with HIV in the clinic.
Collapse
Affiliation(s)
- Thomas J Cirino
- Department of Neurology, School of Medicine, University of California at San Francisco, San Francisco, CA, 94158, USA
| | - Jay P McLaughlin
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
18
|
Mutations of Human DopamineTransporter at Tyrosine88, Aspartic Acid206, and Histidine547 Influence Basal and HIV-1 Tat-inhibited Dopamine Transport. J Neuroimmune Pharmacol 2021; 16:854-869. [PMID: 33537927 PMCID: PMC8329121 DOI: 10.1007/s11481-021-09984-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/13/2021] [Indexed: 12/14/2022]
Abstract
HIV-1 transactivator of transcription (Tat) has a great impact on the development of HIV-1 associated neurocognitive disorders through disrupting dopamine transmission. This study determined the mutational effects of human dopamine transporter (hDAT) on basal and Tat-induced inhibition of dopamine transport. Compared to wild-type hDAT, the maximal velocity (Vmax) of [3H]dopamine uptake was decreased in D381L and Y88F/D206L/H547A, increased in D206L/H547A, and unaltered in D206L. Recombinant TatR1 − 86 inhibited dopamine uptake in wild-type hDAT, which was attenuated in either DAT mutants (D206L, D206L/H547A, and Y88F/D206L/H547A) or mutated TatR1 − 86 (K19A and C22G), demonstrating perturbed Tat-DAT interaction. Mutational effects of hDAT on the transporter conformation were evidenced by attenuation of zinc-induced increased [3H]WIN35,428 binding in D206L/H547A and Y88F/D206A/H547A and enhanced basal MPP+ efflux in D206L/H547A. H547A-induced outward-open transport conformational state was further validated by enhanced accessibility to MTSET ([2-(trimethylammonium)ethyl]-methanethiosulfonate) of an inserted cysteine (I159C) on a hDAT background.. Furthermore, H547A displayed an increase in palmitoylation inhibitor-induced inhibition of dopamine uptake relative to wide-type hDAT, indicating a change in basal palmitoylation in H547A. These results demonstrate that Y88F, D206L, and H547A attenuate Tat inhibition while preserving DA uptake, providing insights into identifying targets for improving DAT-mediated dopaminergic dysregulation.
Collapse
|
19
|
Bagdas D, Paris JJ, Carper M, Wodarski R, Rice AS, Knapp PE, Hauser KF, Damaj MI. Conditional expression of HIV-1 tat in the mouse alters the onset and progression of tonic, inflammatory and neuropathic hypersensitivity in a sex-dependent manner. Eur J Pain 2020; 24:1609-1623. [PMID: 32533878 PMCID: PMC7856573 DOI: 10.1002/ejp.1618] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 05/21/2020] [Accepted: 06/05/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND At least one-third of HIV-1-afflicted individuals experience peripheral neuropathy. Although the underlying mechanisms are not known, they may involve neurotoxic HIV-1 proteins. METHODS We assessed the influence of the neurotoxic HIV-1 regulatory protein, Tat, on inflammatory and neuropathic nociceptive behaviours using transgenic male and female mice that conditionally expressed (or did not express) HIV-1 Tat1-86 in fibrillary acidic protein-expressing glia in the central and peripheral nervous systems. RESULTS Tat induction significantly attenuated the time spent paw-licking following formalin injection (2.5%, i.pl.) in both male and female mice. However, significant sex differences were observed in the onset and magnitude of inflammation and sensory sensitivity following complete Freund's adjuvant (CFA) injection (10%, i.pl.) after Tat activation. Unlike female mice, male mice showed a significant attenuation of paw swelling and an absence of mechanical/thermal hypersensitivity in response to CFA after Tat induction. Male Tat(+) mice also showed accelerated recovery from chronic constrictive nerve injury (CCI)-induced neuropathic mechanical and thermal hypersensitivity compared to female Tat(+) mice. Morphine (3.2 mg/kg) fully reversed CCI-induced mechanical hypersensitivity in female Tat(-) mice, but not in Tat(+) females. CONCLUSIONS The ability of Tat to decrease oedema, paw swelling, and limit allodynia suggests a sequel of events in which Tat-induced functional deficits precede the onset of mechanical hypersensitivity. Moreover, HIV-1 Tat attenuated responses to inflammatory and neuropathic insults in a sex-dependent manner. HIV-1 Tat appears to directly contribute to HIV sensory neuropathy and reveals sex differences in HIV responsiveness and/or the underlying peripheral neuroinflammatory and nociceptive mechanisms.
Collapse
Affiliation(s)
- Deniz Bagdas
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
- The Center for the Study for Tobacco Products, Virginia Commonwealth University, Richmond, VA 23284-2018, USA
| | - Jason J. Paris
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677-1848, USA
- Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677-1848, USA
| | - Moriah Carper
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Rachel Wodarski
- Pain Research Group, Department of Surgery & Cancer, Imperial College, London, SW10 9NH, UK
| | - Andrew S.C. Rice
- Pain Research Group, Department of Surgery & Cancer, Imperial College, London, SW10 9NH, UK
| | - Pamela E. Knapp
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
- Department of Anatomy & Neurobiology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
- Institute for Drug and Alcohol Studies, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - Kurt F. Hauser
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
- Department of Anatomy & Neurobiology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
- Institute for Drug and Alcohol Studies, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| | - M. Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
- The Center for the Study for Tobacco Products, Virginia Commonwealth University, Richmond, VA 23284-2018, USA
- Translational Research Initiative for Pain and Neuropathy at VCU, Virginia Commonwealth University, Richmond, VA 23298-0613, USA
| |
Collapse
|
20
|
Strauss M, O'Donovan B, Ma Y, Xiao Z, Lin S, Bardo MT, Ortinski PI, McLaughlin JP, Zhu J. [ 3H]Dopamine Uptake through the Dopamine and Norepinephrine Transporters is Decreased in the Prefrontal Cortex of Transgenic Mice Expressing HIV-1 Transactivator of Transcription Protein. J Pharmacol Exp Ther 2020; 374:241-251. [PMID: 32461322 PMCID: PMC7366287 DOI: 10.1124/jpet.120.266023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/21/2020] [Indexed: 01/16/2023] Open
Abstract
Dysregulation of dopamine neurotransmission has been linked to the development of human immunodeficiency virus (HIV)-associated neurocognitive disorder (HAND). To investigate the mechanisms underlying this phenomenon, this study used an inducible HIV-1 transactivator of transcription (Tat) transgenic (iTat-tg) mouse model, which demonstrates brain-specific Tat expression induced by administration of doxycycline. We found that induction of Tat expression in the iTat-tg mice for either 7 or 14 days resulted in a decrease (∼30%) in the V max of [3H]dopamine uptake via both the dopamine transporter (DAT) and norepinephrine transporter (NET) in the prefrontal cortex (PFC), which was comparable to the magnitude (∼35%) of the decrease in B max for [3H]WIN 35,428 and [3H]nisoxetine binding to DAT and NET, respectively. The decreased V max was not accompanied by a reduction of total or plasma membrane expression of DAT and NET. Consistent with the decreased V max for DAT and NET in the PFC, the current study also found an increase in the tissue content of DA and dihydroxyphenylacetic acid in the PFC of iTat-tg mice after 7 days' administration of doxycycline. Electrophysiological recordings in layer V pyramidal neurons of the prelimbic cortex from iTat-tg mice found a significant reduction in action potential firing, which was not sensitive to selective inhibitors for DAT and NET, respectively. These findings provide a molecular basis for using the iTat-tg mouse model in the studies of NeuroHIV. Determining the mechanistic basis underlying the interaction between Tat and DAT/NET may reveal novel therapeutic possibilities for preventing the increase in comorbid conditions as well as HAND. SIGNIFICANCE STATEMENT: Human immunodeficiency virus (HIV)-1 infection disrupts dopaminergic neurotransmission, leading to HIV-associated neurocognitive disorders (HANDs). Based on our in vitro and in vivo studies, dopamine uptake via both dopamine and norepinephrine transporters is decreased in the prefrontal cortex of HIV-1 Tat transgenic mice, which is consistent with the increased dopamine and dihydroxyphenylacetic acid contents in this brain region. Thus, these plasma membrane transporters are an important potential target for therapeutic intervention for patients with HAND.
Collapse
Affiliation(s)
- Matthew Strauss
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (M.S., Y.M., Z.X., S.L., J.Z.) and Department of Physiology, Pharmacology and Neuroscience, School of Medicine (B.O.), University of South Carolina, Columbia, South Carolina; Departments of Psychology (M.B.) and Neuroscience (P.O.), University of Kentucky, Lexington, Kentucky; and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (J.M.)
| | - Bernadette O'Donovan
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (M.S., Y.M., Z.X., S.L., J.Z.) and Department of Physiology, Pharmacology and Neuroscience, School of Medicine (B.O.), University of South Carolina, Columbia, South Carolina; Departments of Psychology (M.B.) and Neuroscience (P.O.), University of Kentucky, Lexington, Kentucky; and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (J.M.)
| | - Yizhi Ma
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (M.S., Y.M., Z.X., S.L., J.Z.) and Department of Physiology, Pharmacology and Neuroscience, School of Medicine (B.O.), University of South Carolina, Columbia, South Carolina; Departments of Psychology (M.B.) and Neuroscience (P.O.), University of Kentucky, Lexington, Kentucky; and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (J.M.)
| | - Ziyu Xiao
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (M.S., Y.M., Z.X., S.L., J.Z.) and Department of Physiology, Pharmacology and Neuroscience, School of Medicine (B.O.), University of South Carolina, Columbia, South Carolina; Departments of Psychology (M.B.) and Neuroscience (P.O.), University of Kentucky, Lexington, Kentucky; and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (J.M.)
| | - Steven Lin
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (M.S., Y.M., Z.X., S.L., J.Z.) and Department of Physiology, Pharmacology and Neuroscience, School of Medicine (B.O.), University of South Carolina, Columbia, South Carolina; Departments of Psychology (M.B.) and Neuroscience (P.O.), University of Kentucky, Lexington, Kentucky; and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (J.M.)
| | - Michael T Bardo
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (M.S., Y.M., Z.X., S.L., J.Z.) and Department of Physiology, Pharmacology and Neuroscience, School of Medicine (B.O.), University of South Carolina, Columbia, South Carolina; Departments of Psychology (M.B.) and Neuroscience (P.O.), University of Kentucky, Lexington, Kentucky; and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (J.M.)
| | - Pavel I Ortinski
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (M.S., Y.M., Z.X., S.L., J.Z.) and Department of Physiology, Pharmacology and Neuroscience, School of Medicine (B.O.), University of South Carolina, Columbia, South Carolina; Departments of Psychology (M.B.) and Neuroscience (P.O.), University of Kentucky, Lexington, Kentucky; and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (J.M.)
| | - Jay P McLaughlin
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (M.S., Y.M., Z.X., S.L., J.Z.) and Department of Physiology, Pharmacology and Neuroscience, School of Medicine (B.O.), University of South Carolina, Columbia, South Carolina; Departments of Psychology (M.B.) and Neuroscience (P.O.), University of Kentucky, Lexington, Kentucky; and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (J.M.)
| | - Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (M.S., Y.M., Z.X., S.L., J.Z.) and Department of Physiology, Pharmacology and Neuroscience, School of Medicine (B.O.), University of South Carolina, Columbia, South Carolina; Departments of Psychology (M.B.) and Neuroscience (P.O.), University of Kentucky, Lexington, Kentucky; and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (J.M.)
| |
Collapse
|
21
|
HIV Infection and Neurocognitive Disorders in the Context of Chronic Drug Abuse: Evidence for Divergent Findings Dependent upon Prior Drug History. J Neuroimmune Pharmacol 2020; 15:715-728. [PMID: 32533296 DOI: 10.1007/s11481-020-09928-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 05/26/2020] [Indexed: 12/14/2022]
Abstract
The fronto-striatal circuitry, involving the nucleus accumbens, ventral tegmental area, and prefrontal cortex, mediates goal-directed behavior and is targeted by both drugs of abuse and HIV-1 infection. Acutely, both drugs and HIV-1 provoke increased dopamine activity within the circuit. However, chronic exposure to drugs or HIV-1 leads to dysregulation of the dopamine system as a result of fronto-striatal adaptations to oppose the effects of repeated instances of transiently increased dopamine. Specifically, chronic drug use leads to reduced dopaminergic tone, upregulation of dopamine transporters, and altered circuit connectivity, sending users into an allosteric state in which goal-directed behaviors are dysregulated (i.e., addiction). Similarly, chronic exposure to HIV-1, even with combination antiretroviral therapy (cART), dysregulates dopamine and dopamine transporter function and alters connectivity of the fronto-striatal circuit, contributing to apathy and clinical symptoms of HIV-1 associated neurocognitive disorders (HAND). Thus, in a drug user also exposed to HIV-1, dysregulation of the fronto-striatal dopamine circuit advances at an exacerbated rate and appears to be driven by mechanisms unique from those seen with chronic drug use or HIV-1 exposure alone. We posit that the effects of drug use and HIV-1 infection on microglia interact to drive the progression of motivational dysfunction at an accelerated rate. The current review will therefore explore how the fronto-striatal circuit adapts to drug use (using cocaine as an example), HIV-1 infection, and both together; emphasizing proper methods and providing future directions to develop treatments for pathologies disrupting goal-directed behaviors and improve clinical outcomes for affected patients. Graphical Abstract Drug use and HIV-1 in the fronto-striatal circuit. Drugs of abuse and HIV-1 infection both target the fronto-striatal circuit which mediates goal-directed behavior. Acutely, drugs and HIV-1 increase dopamine activity; in contrast chronic exposure produces circuit adaptions leading to dysregulation, addiction and/or apathy. Comorbid drug use and HIV-1 infection may interact with microglia to exacerbate motivational dysregulation.
Collapse
|
22
|
Systems Biology Analysis of the Antagonizing Effects of HIV-1 Tat Expression in the Brain over Transcriptional Changes Caused by Methamphetamine Sensitization. Viruses 2020; 12:v12040426. [PMID: 32283831 PMCID: PMC7232389 DOI: 10.3390/v12040426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 01/06/2023] Open
Abstract
Methamphetamine (Meth) abuse is common among humans with immunodeficiency virus (HIV). The HIV-1 regulatory protein, trans-activator of transcription (Tat), has been described to induce changes in brain gene transcription that can result in impaired reward circuitry, as well as in inflammatory processes. In transgenic mice with doxycycline-induced Tat protein expression in the brain, i.e., a mouse model of neuroHIV, we tested global gene expression patterns induced by Meth sensitization. Meth-induced locomotor sensitization included repeated daily Meth or saline injections for seven days and Meth challenge after a seven-day abstinence period. Brain samples were collected 30 min after the Meth challenge. We investigated global gene expression changes in the caudate putamen, an area with relevance in behavior and HIV pathogenesis, and performed pathway and transcriptional factor usage predictions using systems biology strategies. We found that Tat expression alone had a very limited impact in gene transcription after the Meth challenge. In contrast, Meth-induced sensitization in the absence of Tat induced a global suppression of gene transcription. Interestingly, the interaction between Tat and Meth broadly prevented the Meth-induced global transcriptional suppression, by maintaining regulation pathways, and resulting in gene expression profiles that were more similar to the controls. Pathways associated with mitochondrial health, initiation of transcription and translation, as well as with epigenetic control, were heavily affected by Meth, and by its interaction with Tat in anti-directional ways. A series of systems strategies have predicted several components impacted by these interactions, including mitochondrial pathways, mTOR/RICTOR, AP-1 transcription factor, and eukaryotic initiation factors involved in transcription and translation. In spite of the antagonizing effects of Tat, a few genes identified in relevant gene networks remained downregulated, such as sirtuin 1, and the amyloid precursor protein (APP). In conclusion, Tat expression in the brain had a low acute transcriptional impact but strongly interacted with Meth sensitization, to modify effects in the global transcriptome.
Collapse
|
23
|
Chilunda V, Calderon TM, Martinez-Aguado P, Berman JW. The impact of substance abuse on HIV-mediated neuropathogenesis in the current ART era. Brain Res 2019; 1724:146426. [PMID: 31473221 PMCID: PMC6889827 DOI: 10.1016/j.brainres.2019.146426] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/16/2019] [Accepted: 08/28/2019] [Indexed: 12/21/2022]
Abstract
Approximately 37 million people worldwide are infected with human immunodeficiency virus (HIV). One highly significant complication of HIV infection is the development of HIV-associated neurocognitive disorders (HAND) in 15-55% of people living with HIV (PLWH), that persists even in the antiretroviral therapy (ART) era. The entry of HIV into the central nervous system (CNS) occurs within 4-8 days after peripheral infection. This establishes viral reservoirs that may persist even in the presence of ART. Once in the CNS, HIV infects resident macrophages, microglia, and at low levels, astrocytes. In response to chronic infection and cell activation within the CNS, viral proteins, inflammatory mediators, and host and viral neurotoxic factors produced over extended periods of time result in neuronal injury and loss, cognitive deficits and HAND. Substance abuse is a common comorbidity in PLWH and has been shown to increase neuroinflammation and cognitive disorders. Additionally, it has been associated with poor ART adherence, and increased viral load in the cerebrospinal fluid (CSF), that may also contribute to increased neuroinflammation and neuronal injury. Studies have examined mechanisms that contribute to neuroinflammation and neuronal damage in PLWH, and how substances of abuse exacerbate these effects. This review will focus on how substances of abuse, with an emphasis on methamphetamine (meth), cocaine, and opioids, impact blood brain barrier (BBB) integrity and transmigration of HIV-infected and uninfected monocytes across the BBB, as well as their effects on monocytes/macrophages, microglia, and astrocytes within the CNS. We will also address how these substances of abuse may contribute to HIV-mediated neuropathogenesis in the context of suppressive ART. Additionally, we will review the effects of extracellular dopamine, a neurotransmitter that is increased in the CNS by substances of abuse, on HIV neuropathogenesis and how this may contribute to neuroinflammation, neuronal insult, and HAND in PLWH with active substance use. Lastly, we will discuss some potential therapies to limit CNS inflammation and damage in HIV-infected substance abusers.
Collapse
Affiliation(s)
- Vanessa Chilunda
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Tina M Calderon
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Pablo Martinez-Aguado
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Joan W Berman
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA.
| |
Collapse
|
24
|
Dopaminergic impact of cART and anti-depressants on HIV neuropathogenesis in older adults. Brain Res 2019; 1723:146398. [PMID: 31442412 DOI: 10.1016/j.brainres.2019.146398] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 01/21/2023]
Abstract
The success of combination antiretroviral therapy (cART) has transformed HIV infection into a chronic condition, resulting in an increase in the number of older, cART-treated adults living with HIV. This has increased the incidence of age-related, non-AIDS comorbidities in this population. One of the most common comorbidities is depression, which is also associated with cognitive impairment and a number of neuropathologies. In older people living with HIV, treating these overlapping disorders is complex, often creating pill burden or adverse drug-drug interactions that can exacerbate these neurologic disorders. Depression, NeuroHIV and many of the neuropsychiatric therapeutics used to treat them impact the dopaminergic system, suggesting that dopaminergic dysfunction may be a common factor in the development of these disorders. Further, changes in dopamine can influence the development of inflammation and the regulation of immune function, which are also implicated in the progression of NeuroHIV and depression. Little is known about the optimal clinical management of drug-drug interactions between cART drugs and antidepressants, particularly in regard to dopamine in older people living with HIV. This review will discuss those interactions, first examining the etiology of NeuroHIV and depression in older adults, then discussing the interrelated effects of dopamine and inflammation on these disorders, and finally reviewing the activity and interactions of cART drugs and antidepressants on each of these factors. Developing better strategies to manage these comorbidities is critical to the health of the aging, HIV-infected population, as the older population may be particularly vulnerable to drug-drug interactions affecting dopamine.
Collapse
|
25
|
Denton AR, Samaranayake SA, Kirchner KN, Roscoe RF, Berger SN, Harrod SB, Mactutus CF, Hashemi P, Booze RM. Selective monoaminergic and histaminergic circuit dysregulation following long-term HIV-1 protein exposure. J Neurovirol 2019; 25:540-550. [PMID: 31102184 PMCID: PMC6750960 DOI: 10.1007/s13365-019-00754-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/06/2019] [Accepted: 04/15/2019] [Indexed: 12/21/2022]
Abstract
Between 30 and 60% of HIV-seropositive individuals develop symptoms of clinical depression and/or apathy. Dopamine and serotonin are associated with motivational alterations; however, histamine is less well studied. In the present study, we used fast-scan cyclic voltammetry in HIV-1 transgenic (Tg) rats to simultaneously analyze the kinetics of nucleus accumbens dopamine (DA), prefrontal cortical serotonin (5-HT), and hypothalamic histamine (HA). For voltammetry, subjects were 15 HIV-1 Tg (7 male, 8 female) and 20 F344/N (11 male, 9 female) adult rats. Both serotonergic and dopaminergic release and reuptake kinetics were decreased in HIV-1 Tg animals relative to controls. In contrast, rates of histamine release and reuptake increased in HIV-1 Tg rats. Additionally, we used immunohistochemical (IHC) methods to identify histaminergic neurons in the tuberomammillary nucleus (TMN) of the hypothalamus. For IHC, subjects were 9 HIV-1 Tg (5 male, 4 female) and 9 F344/N (5 male, 4 female) adult rats. Although the total number of TMN histaminergic cells did not differ between HIV-1 Tg rats and F344/N controls, a significant sex effect was found, with females having an increased number of histaminergic neurons, relative to males. Collectively, these findings illustrate neurochemical alterations that potentially underlie or exacerbate the pathogenesis of clinical depression and/or apathy in HIV-1.
Collapse
Affiliation(s)
- Adam R Denton
- Behavioral Neuroscience Laboratory, Department of Psychology, University of South Carolina, Columbia, SC, USA
| | | | - Kristin N Kirchner
- Behavioral Neuroscience Laboratory, Department of Psychology, University of South Carolina, Columbia, SC, USA
| | - Robert F Roscoe
- Behavioral Neuroscience Laboratory, Department of Psychology, University of South Carolina, Columbia, SC, USA
| | - Shane N Berger
- Department of Chemistry, University of South Carolina, Columbia, SC, USA
| | - Steven B Harrod
- Behavioral Neuroscience Laboratory, Department of Psychology, University of South Carolina, Columbia, SC, USA
| | - Charles F Mactutus
- Behavioral Neuroscience Laboratory, Department of Psychology, University of South Carolina, Columbia, SC, USA
| | - Parastoo Hashemi
- Department of Chemistry, University of South Carolina, Columbia, SC, USA
| | - Rosemarie M Booze
- Behavioral Neuroscience Laboratory, Department of Psychology, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
26
|
Sun WL, Quizon PM, Yuan Y, Strauss MJ, McCain R, Zhan CG, Zhu J. Mutational effects of human dopamine transporter at tyrosine88, lysine92, and histidine547 on basal and HIV-1 Tat-inhibited dopamine transport. Sci Rep 2019; 9:3843. [PMID: 30846720 PMCID: PMC6405875 DOI: 10.1038/s41598-019-39872-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/12/2018] [Indexed: 01/06/2023] Open
Abstract
Dysregulation of dopaminergic system induced by HIV-1 Tat protein-mediated direct inhibition of the dopamine transporter (DAT) has been implicated as a mediating factor of HIV-1 associated neurocognitive disorders. We have reported that single point mutations on human DAT (hDAT) at tyrosine88 (Y88F), lysine92 (K92M), and histidine547 (H547A) differentially regulate basal dopamine uptake but diminish Tat-induced inhibition of dopamine uptake by changing dopamine transport process. This study evaluated the effects of double (Y88F/H547A) and triple (Y88F/K92M/H547A) mutations on basal dopamine uptake, Tat-induced inhibition of DAT function, and dynamic transport process. Compared to wild-type hDAT, the Vmax values of [3H]Dopamine uptake were increased by 96% in Y88F/H547A but decreased by 97% in Y88F/K92M/H547A. [3H]WIN35,428 binding sites were not altered in Y88F/H547A but decreased in Y88F/K92M/H547A. Y88F/H547A mutant attenuated Tat-induced inhibition of dopamine uptake observed in wild-type hDAT. Y88F/H547A displayed an attenuation of zinc-augmented [3H]WIN35,428 binding, increased basal dopamine efflux, and reduced amphetamine-induced dopamine efflux, indicating this mutant alters transporter conformational transitions. These findings further demonstrate that both tyrosine88 and histidine547 on hDAT play a key role in stabilizing basal dopamine transport and Tat-DAT integration. This study provides mechanistic insights into developing small molecules to block multiple sites in DAT for Tat binding.
Collapse
Affiliation(s)
- Wei-Lun Sun
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Pamela M Quizon
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Yaxia Yuan
- Molecular Modeling and Biopharmaceutical Center, University of Kentucky, Lexington, KY, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Matthew J Strauss
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Richard McCain
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center, University of Kentucky, Lexington, KY, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
27
|
Nolan RA, Muir R, Runner K, Haddad EK, Gaskill PJ. Role of Macrophage Dopamine Receptors in Mediating Cytokine Production: Implications for Neuroinflammation in the Context of HIV-Associated Neurocognitive Disorders. J Neuroimmune Pharmacol 2018; 14:134-156. [PMID: 30519866 DOI: 10.1007/s11481-018-9825-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022]
Abstract
Despite the success of combination anti-retroviral therapy (cART), around 50% of HIV-infected individuals still display a variety of neuropathological and neurocognitive sequelae known as NeuroHIV. Current research suggests these effects are mediated by long-term changes in CNS function in response to chronic infection and inflammation, and not solely due to active viral replication. In the post-cART era, drug abuse is a major risk-factor for the development of NeuroHIV, and increases extracellular dopamine in the CNS. Our lab has previously shown that dopamine can increase HIV infection of primary human macrophages and increase the production of inflammatory cytokines, suggesting that elevated dopamine could enhance the development of HIV-associated neuropathology. However, the precise mechanism(s) by which elevated dopamine could exacerbate NeuroHIV, particularly in chronically-infected, virally suppressed individuals remain unclear. To determine the connection between dopaminergic alterations and HIV-associated neuroinflammation, we have examined the impact of dopamine exposure on macrophages from healthy and virally suppressed, chronically infected HIV patients. Our data show that dopamine treatment of human macrophages isolated from healthy and cART-treated donors promotes production of inflammatory mediators including IL-1β, IL-6, IL-18, CCL2, CXCL8, CXCL9, and CXCL10. Furthermore, in healthy individuals, dopamine-mediated modulation of specific cytokines is correlated with macrophage expression of dopamine-receptor transcripts, particularly DRD5, the most highly-expressed dopamine-receptor subtype. Overall, these data will provide more understanding of the role of dopamine in the development of NeuroHIV, and may suggest new molecules or pathways that can be useful as therapeutic targets during HIV infection.
Collapse
Affiliation(s)
- R A Nolan
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - R Muir
- Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - K Runner
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - E K Haddad
- Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - P J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
| |
Collapse
|
28
|
HIV-1 proteins dysregulate motivational processes and dopamine circuitry. Sci Rep 2018; 8:7869. [PMID: 29777165 PMCID: PMC5959859 DOI: 10.1038/s41598-018-25109-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/16/2018] [Indexed: 12/22/2022] Open
Abstract
Motivational alterations, such as apathy, in HIV-1+ individuals are associated with decreased performance on tasks involving frontal-subcortical circuitry. We used the HIV-1 transgenic (Tg) rat to assess effect of long-term HIV-1 protein exposure on motivated behavior using sucrose (1–30%, w/v) and cocaine (0.01–1.0 mg/kg/infusion) maintained responding with fixed-ratio (FR) and progressive-ratio (PR) schedules of reinforcement. For sucrose-reinforced responding, HIV-1 Tg rats displayed no change in EC50 relative to controls, suggesting no change in sucrose reinforcement but had a downward shifted concentration-response curves, suggesting a decrease in response vigor. Cocaine-maintained responding was attenuated in HIV-1 Tg rats (FR1 0.33 mg/kg/infusion and PR 1.0 mg/kg/infusion). Dose-response tests (PR) revealed that HIV-1 Tg animals responded significantly less than F344 control rats and failed to earn significantly more infusions of cocaine as the unit dose increased. When choosing between cocaine and sucrose, control rats initially chose sucrose but with time shifted to a cocaine preference. In contrast, HIV-1 disrupted choice behaviors. DAT function was altered in the striatum of HIV-1 Tg rats; however, prior cocaine self-administration produced a unique effect on dopamine homeostasis in the HIV-1 Tg striatum. These findings of altered goal directed behaviors may determine neurobiological mechanisms of apathy in HIV-1+ patients.
Collapse
|
29
|
Effects of HIV-1 TAT protein and methamphetamine exposure on visual discrimination and executive function in mice. Behav Brain Res 2018; 349:73-79. [PMID: 29709610 DOI: 10.1016/j.bbr.2018.04.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/19/2018] [Accepted: 04/26/2018] [Indexed: 12/14/2022]
Abstract
Mild neurocognitive impairments are common in people with human immunodeficiency virus (HIV) infection. HIV-encoded proteins, such as trans-activator of transcription (TAT), contribute to neuropathology and cognitive function in medicated subjects. The combination of TAT and comorbid methamphetamine use may further impair neurocognitive function in HIV-positive individuals by affecting dopaminergic systems in the brain. The current study examined the effects of TAT protein expression and methamphetamine exposure on cognitive function and dopamine systems in mice. Transgenic mice with inducible brain expression of the TAT protein were exposed to a binge methamphetamine regimen. TAT expression was induced via a doxycycline-containing diet during the final stage of the regimen and maintained throughout cognitive testing. Learning and executive function were assessed using an operant visual discrimination protocol, with a strategy switch and reversal. TAT expression and methamphetamine exposure improved visual discrimination learning. Combined TAT expression and methamphetamine exposure increased perseverative errors during reversal learning. TAT expression altered reversal learning by improving early stage, but impairing late stage, learning. TAT expression was also associated with an increase in dopamine transporter expression in the caudate putamen. These results highlight that TAT expression and methamphetamine exposure likely affect a range of selective cognitive processes, with some potentially improving function under certain conditions.
Collapse
|
30
|
Elrashedy AAE. HIV-Associated Neurocognitive Disorder. BIG DATA ANALYTICS IN HIV/AIDS RESEARCH 2018:171-205. [DOI: 10.4018/978-1-5225-3203-3.ch008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
In the last two decades, several advancement studies have increased the care of HIV-infected individuals. Specifically, the development for preparation of combination antiretroviral therapy has resulted in a dramatic decline in the rate of deaths from AIDS. The term “HIV-associated neurocognitive disorder” (HAND) has been used to distinguish the spectrum of neurocognitive dysfunction associated with HIV infection. HIV can pass to the CNS during the early stages of infection and last in the CNS. CNS inflammation and infection lead to the development of HAND. The brain can serve as a sanctuary for ongoing HIV replication, even when the systemic viral suppression has been achieved. HAND can remain in patients treated with combination antiretroviral therapy, and its effect on survival, quality of life, and everyday functioning make it a significant unresolved problem. This chapter discusses details of the computational modeling studies on mechanisms and structures of human dopamine transporter (hDAT) and its interaction with HIV-1 trans activator of transcription (Tat).
Collapse
|
31
|
Abstract
HIV-associated neurocognitive disorder (HAND) remains highly prevalent in HIV infected individuals and represents a special group of neuropathological disorders, which are associated with HIV-1 viral proteins, such as transactivator of transcription (Tat) protein. Cocaine abuse increases the incidence of HAND and exacerbates its severity by enhancing viral replication. Perturbation of dopaminergic transmission has been implicated as a risk factor of HAND. The presynaptic dopamine (DA) transporter (DAT) is essential for DA homeostasis and dopaminergic modulation of the brain function including cognition. Tat and cocaine synergistically elevate synaptic DA levels by acting directly on human DAT (hDAT), ultimately leading to dysregulation of DA transmission. Through integrated computational modeling and experimental validation, key residues have been identified in hDAT that play a critical role in Tat-induced inhibition of DAT and induce transporter conformational transitions. This review presents current information regarding neurological changes in DAT-mediated dopaminergic system associated with HIV infection, DAT-mediated adaptive responses to Tat as well as allosteric modulatory effects of novel compounds on hDAT. Understanding the molecular mechanisms by which Tat induces DAT-mediated dysregulation of DA system is of great clinical interest for identifying new targets for an early therapeutic intervention for HAND.
Collapse
|
32
|
HIV-1 TAT protein enhances sensitization to methamphetamine by affecting dopaminergic function. Brain Behav Immun 2017; 65:210-221. [PMID: 28495611 PMCID: PMC5537017 DOI: 10.1016/j.bbi.2017.05.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/28/2017] [Accepted: 05/06/2017] [Indexed: 12/14/2022] Open
Abstract
Methamphetamine abuse is common among humans with immunodeficiency virus (HIV). The HIV-1 regulatory protein TAT induces dysfunction of mesolimbic dopaminergic systems which may result in impaired reward processes and contribute to methamphetamine abuse. These studies investigated the impact of TAT expression on methamphetamine-induced locomotor sensitization, underlying changes in dopamine function and adenosine receptors in mesolimbic brain areas and neuroinflammation (microgliosis). Transgenic mice with doxycycline-induced TAT protein expression in the brain were tested for locomotor activity in response to repeated methamphetamine injections and methamphetamine challenge after a 7-day abstinence period. Dopamine function in the nucleus accumbens (Acb) was determined using high performance liquid chromatography. Expression of dopamine and/or adenosine A receptors (ADORA) in the Acb and caudate putamen (CPu) was assessed using RT-PCR and immunohistochemistry analyses. Microarrays with pathway analyses assessed dopamine and adenosine signaling in the CPu. Activity-dependent neurotransmitter switching of a reserve pool of non-dopaminergic neurons to a dopaminergic phenotype in the ventral tegmental area (VTA) was determined by immunohistochemistry and quantified with stereology. TAT expression enhanced methamphetamine-induced sensitization. TAT expression alone decreased striatal dopamine (D1, D2, D4, D5) and ADORA1A receptor expression, while increasing ADORA2A receptors expression. Moreover, TAT expression combined with methamphetamine exposure was associated with increased adenosine A receptors (ADORA1A) expression and increased recruitment of dopamine neurons in the VTA. TAT expression and methamphetamine exposure induced microglia activation with the largest effect after combined exposure. Our findings suggest that dopamine-adenosine receptor interactions and reserve pool neuronal recruitment may represent potential targets to develop new treatments for methamphetamine abuse in individuals with HIV.
Collapse
|
33
|
Gaskill PJ, Miller DR, Gamble-George J, Yano H, Khoshbouei H. HIV, Tat and dopamine transmission. Neurobiol Dis 2017; 105:51-73. [PMID: 28457951 PMCID: PMC5541386 DOI: 10.1016/j.nbd.2017.04.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/04/2017] [Accepted: 04/16/2017] [Indexed: 01/02/2023] Open
Abstract
Human Immunodeficiency Virus (HIV) is a progressive infection that targets the immune system, affecting more than 37 million people around the world. While combinatorial antiretroviral therapy (cART) has lowered mortality rates and improved quality of life in infected individuals, the prevalence of HIV associated neurocognitive disorders is increasing and HIV associated cognitive decline remains prevalent. Recent research has suggested that HIV accessory proteins may be involved in this decline, and several studies have indicated that the HIV protein transactivator of transcription (Tat) can disrupt normal neuronal and glial function. Specifically, data indicate that Tat may directly impact dopaminergic neurotransmission, by modulating the function of the dopamine transporter and specifically damaging dopamine-rich regions of the CNS. HIV infection of the CNS has long been associated with dopaminergic dysfunction, but the mechanisms remain undefined. The specific effect(s) of Tat on dopaminergic neurotransmission may be, at least partially, a mechanism by which HIV infection directly or indirectly induces dopaminergic dysfunction. Therefore, precisely defining the specific effects of Tat on the dopaminergic system will help to elucidate the mechanisms by which HIV infection of the CNS induces neuropsychiatric, neurocognitive and neurological disorders that involve dopaminergic neurotransmission. Further, this will provide a discussion of the experiments needed to further these investigations, and may help to identify or develop new therapeutic approaches for the prevention or treatment of these disorders in HIV-infected individuals.
Collapse
Affiliation(s)
- Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States.
| | - Douglas R Miller
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, United States
| | - Joyonna Gamble-George
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, United States
| | - Hideaki Yano
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, United States
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|
34
|
Abstract
BACKGROUND HIV-1 infection and drug abuse are frequently co-morbid and their association greatly increases the severity of HIV-1-induced neuropathology. While nucleus accumbens (NAcc) function is severely perturbed by drugs of abuse, little is known about how HIV-1 infection affects NAcc. METHODS We used calcium and voltage imaging to investigate the effect of HIV-1 trans-activator of transcription (Tat) on rat NAcc. Based on previous neuronal studies, we hypothesized that Tat modulates intracellular Ca2+ homeostasis of NAcc neurons. RESULTS We provide evidence that Tat triggers a Ca2+ signaling cascade in NAcc medium spiny neurons (MSN) expressing D1-like dopamine receptors leading to neuronal depolarization. Firstly, Tat induced inositol 1,4,5-trisphsophate (IP3) receptor-mediated Ca2+ release from endoplasmic reticulum, followed by Ca2+ and Na+ influx via transient receptor potential canonical channels. The influx of cations depolarizes the membrane promoting additional Ca2+ entry through voltage-gated P/Q-type Ca2+ channels and opening of tetrodotoxin-sensitive Na+ channels. By activating this mechanism, Tat elicits a feed-forward depolarization increasing the excitability of D1-phosphatidylinositol-linked NAcc MSN. We previously found that cocaine targets NAcc neurons directly (independent of the inhibition of dopamine transporter) only when IP3-generating mechanisms are concomitantly initiated. When tested here, cocaine produced a dose-dependent potentiation of the effect of Tat on cytosolic Ca2+. CONCLUSION We describe for the first time a HIV-1 Tat-triggered Ca2+ signaling in MSN of NAcc involving TRPC and depolarization and a potentiation of the effect of Tat by cocaine, which may be relevant for the reward axis in cocaine-abusing HIV-1-positive patients.
Collapse
|
35
|
Sun WL, Quizon PM, Yuan Y, Zhang W, Ananthan S, Zhan CG, Zhu J. Allosteric modulatory effects of SRI-20041 and SRI-30827 on cocaine and HIV-1 Tat protein binding to human dopamine transporter. Sci Rep 2017. [PMID: 28623359 PMCID: PMC5473888 DOI: 10.1038/s41598-017-03771-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Dopamine transporter (DAT) is the target of cocaine and HIV-1 transactivator of transcription (Tat) protein. Identifying allosteric modulatory molecules with potential attenuation of cocaine and Tat binding to DAT are of great scientific and clinical interest. We demonstrated that tyrosine 470 and 88 act as functional recognition residues in human DAT (hDAT) for Tat-induced inhibition of DA transport and transporter conformational transitions. Here we investigated the allosteric modulatory effects of two allosteric ligands, SRI-20041 and SRI-30827 on cocaine binding on wild type (WT) hDAT, Y470 H and Y88 F mutants. Effect of SRI-30827 on Tat-induced inhibition of [3H]WIN35,428 binding was also determined. Compared to a competitive DAT inhibitor indatraline, both SRI-compounds displayed a similar decrease (30%) in IC50 for inhibition of [3H]DA uptake by cocaine in WT hDAT. The addition of SRI-20041 or SRI-30827 following cocaine slowed the dissociation rate of [3H]WIN35,428 binding in WT hDAT relative to cocaine alone. Moreover, Y470H and Y88F hDAT potentiate the inhibitory effect of cocaine on DA uptake and attenuate the effects of SRI-compounds on cocaine-mediated dissociation rate. SRI-30827 attenuated Tat-induced inhibition of [3H]WIN35,428 binding. These observations demonstrate that tyrosine 470 and 88 are critical for allosteric modulatory effects of SRI-compounds on the interaction of cocaine with hDAT.
Collapse
Affiliation(s)
- Wei-Lun Sun
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Pamela M Quizon
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Yaxia Yuan
- Molecular Modeling and Biopharmaceutical Center, University of Kentucky, Lexington, KY, USA.,Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, KY, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Wei Zhang
- Department of Chemistry, Drug Discovery Division, Southern Research Institute, Birmingham, AL, USA
| | - Subramaniam Ananthan
- Department of Chemistry, Drug Discovery Division, Southern Research Institute, Birmingham, AL, USA
| | - Chang-Guo Zhan
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA.,Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, KY, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
36
|
Selective Vulnerability of Striatal D2 versus D1 Dopamine Receptor-Expressing Medium Spiny Neurons in HIV-1 Tat Transgenic Male Mice. J Neurosci 2017; 37:5758-5769. [PMID: 28473642 DOI: 10.1523/jneurosci.0622-17.2017] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 04/20/2017] [Accepted: 04/27/2017] [Indexed: 02/04/2023] Open
Abstract
Despite marked regional differences in HIV susceptibility within the CNS, there has been surprisingly little exploration into the differential vulnerability among neuron types and the circuits they underlie. The dorsal striatum is especially susceptible, harboring high viral loads and displaying marked neuropathology, with motor impairment a frequent manifestation of chronic infection. However, little is known about the response of individual striatal neuron types to HIV or how this disrupts function. Therefore, we investigated the morphological and electrophysiological effects of HIV-1 trans-activator of transcription (Tat) in dopamine subtype 1 (D1) and dopamine subtype 2 (D2) receptor-expressing striatal medium spiny neurons (MSNs) by breeding transgenic Tat-expressing mice to Drd1a-tdTomato- or Drd2-eGFP-reporter mice. An additional goal was to examine neuronal vulnerability early during the degenerative process to gain insight into key events underlying the neuropathogenesis. In D2 MSNs, exposure to HIV-1 Tat reduced dendritic spine density significantly, increased dendritic damage (characterized by swellings/varicosities), and dysregulated neuronal excitability (decreased firing at 200-300 pA and increased firing rates at 450 pA), whereas insignificant morphologic and electrophysiological consequences were observed in Tat-exposed D1 MSNs. These changes were concomitant with an increased anxiety-like behavioral profile (lower latencies to enter a dark chamber in a light-dark transition task, a greater frequency of light-dark transitions, and reduced rearing time in an open field), whereas locomotor behavior was unaffected by 2 weeks of Tat induction. Our findings suggest that D2 MSNs and a specific subset of neural circuits within the dorsal striatum are preferentially vulnerable to HIV-1.SIGNIFICANCE STATEMENT Despite combination antiretroviral therapy (cART), neurocognitive disorders afflict 30-50% of HIV-infected individuals and synaptodendritic injury remains evident in specific brain regions such as the dorsal striatum. A possible explanation for the sustained neuronal injury is that the neurotoxic HIV-1 regulatory protein trans-activator of transcription (Tat) continues to be expressed in virally suppressed patients on cART. Using inducible Tat-expressing transgenic mice, we found that dopamine subtype 2 (D2) receptor-expressing medium spiny neurons (MSNs) are selectively vulnerable to Tat exposure compared with D1 receptor-expressing MSNs. This includes Tat-induced reductions in D2 MSN dendritic spine density, increased dendritic damage, and disruptions in neuronal excitability, which coincide with elevated anxiety-like behavior. These data suggest that D2 MSNs and specific circuits within the basal ganglia are preferentially vulnerable to HIV-1.
Collapse
|
37
|
Chinnapaiyan S, Parira T, Dutta R, Agudelo M, Morris A, Nair M, Unwalla HJ. HIV Infects Bronchial Epithelium and Suppresses Components of the Mucociliary Clearance Apparatus. PLoS One 2017; 12:e0169161. [PMID: 28060951 PMCID: PMC5217953 DOI: 10.1371/journal.pone.0169161] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/05/2016] [Indexed: 12/29/2022] Open
Abstract
Recurrent lung infections and pneumonia are emerging as significant comorbidities in the HIV-infected population in the era of combination antiretroviral therapy (cART). HIV infection has been reported to suppress nasal mucociliary clearance (MCC). Since the primary components driving nasal MCC and bronchial MCC are identical, it is possible that bronchial MCC is affected as well. Effective MCC requires optimal ciliary beating which depends on the maintenance of the airway surface liquid (ASL), a function of cystic fibrosis transmembrane conductance regulator (CFTR) activity and the integrity of the signaling mechanism that regulates ciliary beating and fluid secretion. Impairment of either component of the MCC apparatus can compromise its efficacy and promote microbial colonization. We demonstrate that primary bronchial epithelium expresses HIV receptor CD4 and co-receptors CCR5 and CXCR4 and can be infected by both R5 and X4 tropic strains of HIV. We show that HIV Tat suppresses CFTR biogenesis and function in primary bronchial epithelial cells by a pathway involving TGF-β signaling. HIV infection also interferes with bronchial epithelial cell differentiation and suppresses ciliogenesis. These findings suggest that HIV infection suppresses tracheobronchial mucociliary clearance and this may predispose HIV-infected patients to recurrent lung infections, pneumonia and chronic bronchitis.
Collapse
Affiliation(s)
- S. Chinnapaiyan
- Department of Immunology, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University. Miami, Florida, United States of America
| | - T. Parira
- Department of Immunology, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University. Miami, Florida, United States of America
| | - R. Dutta
- Department of Immunology, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University. Miami, Florida, United States of America
| | - M. Agudelo
- Department of Immunology, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University. Miami, Florida, United States of America
| | - A. Morris
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - M. Nair
- Department of Immunology, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University. Miami, Florida, United States of America
| | - H. J. Unwalla
- Department of Immunology, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University. Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
38
|
Molecular mechanism: the human dopamine transporter histidine 547 regulates basal and HIV-1 Tat protein-inhibited dopamine transport. Sci Rep 2016; 6:39048. [PMID: 27966610 PMCID: PMC5155291 DOI: 10.1038/srep39048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/17/2016] [Indexed: 12/15/2022] Open
Abstract
Abnormal dopaminergic transmission has been implicated as a risk determinant of HIV-1-associated neurocognitive disorders. HIV-1 Tat protein increases synaptic dopamine (DA) levels by directly inhibiting DA transporter (DAT) activity, ultimately leading to dopaminergic neuron damage. Through integrated computational modeling prediction and experimental validation, we identified that histidine547 on human DAT (hDAT) is critical for regulation of basal DA uptake and Tat-induced inhibition of DA transport. Compared to wild type hDAT (WT hDAT), mutation of histidine547 (H547A) displayed a 196% increase in DA uptake. Other substitutions of histidine547 showed that DA uptake was not altered in H547R but decreased by 99% in H547P and 60% in H547D, respectively. These mutants did not alter DAT surface expression or surface DAT binding sites. H547 mutants attenuated Tat-induced inhibition of DA transport observed in WT hDAT. H547A displays a differential sensitivity to PMA- or BIM-induced activation or inhibition of DAT function relative to WT hDAT, indicating a change in basal PKC activity in H547A. These findings demonstrate that histidine547 on hDAT plays a crucial role in stabilizing basal DA transport and Tat-DAT interaction. This study provides mechanistic insights into identifying targets on DAT for Tat binding and improving DAT-mediated dysfunction of DA transmission.
Collapse
|
39
|
Yuan Y, Huang X, Zhu J, Zhan CG. Computational modeling of human dopamine transporter structures, mechanism and its interaction with HIV-1 transactivator of transcription. Future Med Chem 2016; 8:2077-2089. [PMID: 27739323 PMCID: PMC6113701 DOI: 10.4155/fmc-2016-0138] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/20/2016] [Indexed: 11/17/2022] Open
Abstract
This is a brief review of computational modeling studies on the detailed structures and mechanism of human dopamine transporter (hDAT), as well as its interaction with HIV-1 transactivator of transcription (Tat). Extensive molecular modeling, docking and dynamics simulations have resulted in reasonable structural models of hDAT in three typical conformational states, its dopamine uptake mechanism and its interaction with Tat. The obtained hDAT models in different conformational states and their complexes with dopamine and Tat have provided novel structural and mechanistic insights concerning how hDAT uptakes dopamine and how Tat affects the dopamine uptake by hDAT. The computational insights, that are consistent with available experimental data, should be valuable for future rational design of novel therapeutic strategies for treatment of HIV-associated neurocognitive disorders.
Collapse
Affiliation(s)
- Yaxia Yuan
- Molecular Modeling & Biopharmaceutical Center, Center for Pharmaceutical Research & Innovation, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA
| | - Xiaoqin Huang
- Molecular Modeling & Biopharmaceutical Center, Center for Pharmaceutical Research & Innovation, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA
| | - Jun Zhu
- Department of Drug Discovery & Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA
| | - Chang-Guo Zhan
- Molecular Modeling & Biopharmaceutical Center, Center for Pharmaceutical Research & Innovation, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA
| |
Collapse
|
40
|
Hu XT. HIV-1 Tat-Mediated Calcium Dysregulation and Neuronal Dysfunction in Vulnerable Brain Regions. Curr Drug Targets 2016; 17:4-14. [PMID: 26028040 DOI: 10.2174/1389450116666150531162212] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/26/2015] [Indexed: 01/08/2023]
Abstract
Despite the success of combined antiretroviral therapy, more than half of HIV-1-infected patients in the USA show HIV-associated neurological and neuropsychiatric deficits. This is accompanied by anatomical and functional alterations in vulnerable brain regions of the mesocorticolimbic and nigrostriatal systems that regulate cognition, mood and motivation-driven behaviors, and could occur at early stages of infection. Neurons are not infected by HIV, but HIV-1 proteins (including but not limited to the HIV-1 trans-activator of transcription, Tat) induce Ca(2+) dysregulation, indicated by abnormal and excessive Ca(2+) influx and increased intracellular Ca(2+) release that consequentially elevate cytosolic free Ca(2+) levels ([Ca(2+)]in). Such alterations in intracellular Ca(2+) homeostasis significantly disturb normal functioning of neurons, and induce dysregulation, injury, and death of neurons or non-neuronal cells, and associated tissue loss in HIV-vulnerable brain regions. This review discusses certain unique mechanisms, particularly the over-activation and/or upregulation of the ligand-gated ionotropic glutamatergic NMDA receptor (NMDAR), the voltage-gated L-type Ca(2+) channel (L-channel) and the transient receptor potential canonical (TRPC) channel (a non-selective cation channel that is also permeable for Ca(2+)), which may underlie the deleterious effects of Tat on intracellular Ca(2+) homeostasis and neuronal hyper-excitation that could ultimately result in excitotoxicity. This review also seeks to provide summarized information for future studies focusing on comprehensive elucidation of molecular mechanisms underlying the pathophysiological effects of Tat (as well as some other HIV-1 proteins and immunoinflammatory molecules) on neuronal function, particularly in HIV-vulnerable brain regions.
Collapse
Affiliation(s)
- Xiu-Ti Hu
- Department of Pharmacology, Rush University Medical Center, Cohn Research Building, Rm. 414, 1735 W. Harrison Street, Chicago, IL 60612, USA.
| |
Collapse
|
41
|
Kesby JP, Markou A, Semenova S. The effects of HIV-1 regulatory TAT protein expression on brain reward function, response to psychostimulants and delay-dependent memory in mice. Neuropharmacology 2016; 109:205-215. [PMID: 27316905 DOI: 10.1016/j.neuropharm.2016.06.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/08/2016] [Accepted: 06/13/2016] [Indexed: 10/21/2022]
Abstract
Depression and psychostimulant abuse are common comorbidities among humans with immunodeficiency virus (HIV) disease. The HIV regulatory protein TAT is one of multiple HIV-related proteins associated with HIV-induced neurotoxicity. TAT-induced dysfunction of dopamine and serotonin systems in corticolimbic brain areas may result in impaired reward function, thus, contributing to depressive symptoms and psychostimulant abuse. Transgenic mice with doxycycline-induced TAT protein expression in the brain (TAT+, TAT- control) show neuropathology resembling brain abnormalities in HIV+ humans. We evaluated brain reward function in response to TAT expression, nicotine and methamphetamine administration in TAT+ and TAT- mice using the intracranial self-stimulation procedure. We evaluated the brain dopamine and serotonin systems with high-performance liquid chromatography. The effects of TAT expression on delay-dependent working memory in TAT+ and TAT- mice using the operant delayed nonmatch-to-position task were also assessed. During doxycycline administration, reward thresholds were elevated by 20% in TAT+ mice compared with TAT- mice. After the termination of doxycycline treatment, thresholds of TAT+ mice remained significantly higher than those of TAT- mice and this was associated with changes in mesolimbic serotonin and dopamine levels. TAT+ mice showed a greater methamphetamine-induced threshold lowering compared with TAT- mice. TAT expression did not alter delay-dependent working memory. These results indicate that TAT expression in mice leads to reward deficits, a core symptom of depression, and a greater sensitivity to methamphetamine-induced reward enhancement. Our findings suggest that the TAT protein may contribute to increased depressive-like symptoms and continued methamphetamine use in HIV-positive individuals.
Collapse
Affiliation(s)
- James P Kesby
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA; Queensland Brain Institute, The University of Queensland, St. Lucia, Qld, Australia
| | - Athina Markou
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Svetlana Semenova
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
42
|
Role of Histidine 547 of Human Dopamine Transporter in Molecular Interaction with HIV-1 Tat and Dopamine Uptake. Sci Rep 2016; 6:27314. [PMID: 27250920 PMCID: PMC4890318 DOI: 10.1038/srep27314] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 05/13/2016] [Indexed: 12/16/2022] Open
Abstract
HIV-1 Tat plays an important role in HIV-associated neurocognitive disorders (HAND) by disrupting neurotransmission including dopamine uptake by human dopamine transporter (hDAT). Previous studies have demonstrated that HIV-1 Tat directly binds to hDAT and some amino-acid mutations that attenuate the hDAT-Tat binding also significantly decreased dopamine uptake activity of hDAT. This combined computational-experimental study demonstrates that histidine-547 (H547) of hDAT plays a crucial role in the hDAT-Tat binding and dopamine uptake by hDAT, and that the H547A mutation can not only considerably attenuate Tat-induced inhibition of dopamine uptake, but also significantly increase the Vmax of hDAT for dopamine uptake. The finding of such an unusual hDAT mutant capable of both increasing the Vmax of hDAT for dopamine uptake and disrupting the hDAT-Tat binding may provide an exciting knowledge basis for development of novel concepts for therapeutic treatment of the HAND.
Collapse
|
43
|
Sagar V, Atluri VSR, Pilakka-Kanthikeel S, Nair M. Magnetic nanotherapeutics for dysregulated synaptic plasticity during neuroAIDS and drug abuse. Mol Brain 2016; 9:57. [PMID: 27216740 PMCID: PMC4878083 DOI: 10.1186/s13041-016-0236-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 05/06/2016] [Indexed: 01/02/2023] Open
Abstract
The human immunodeficiency virus (HIV) is a neurotropic virus. It induces neurotoxicity and subsequent brain pathologies in different brain cells. Addiction to recreational drugs remarkably affects the initiation of HIV infections and expedites the progression of acquired immunodeficiency syndrome (AIDS) associated neuropathogenesis. Symptoms of HIV-associated neurocognitive disorders (HAND) are noticed in many AIDS patients. At least 50 % of HIV diagnosed cases show one or other kind of neuropathological signs or symptoms during different stages of disease progression. In the same line, mild to severe neurological alterations are seen in at least 80 % autopsies of AIDS patients. Neurological illnesses weaken the connections between neurons causing significant altercations in synaptic plasticity. Synaptic plasticity alterations during HIV infection and recreational drug abuse are mediated by complex cellular phenomena involving changes in gene expression and subsequent loss of dendritic and spine morphology and physiology. New treatment strategies with ability to deliver drugs across blood-brain barrier (BBB) are being intensively investigated. In this context, magnetic nanoparticles (MNPs) based nanoformulations have shown significant potential for target specificity, drug delivery, drug release, and bioavailability of desired amount of drugs in non-invasive brain targeting. MNPs-based potential therapies to promote neuronal plasticity during HIV infection and recreational drug abuse are being developed.
Collapse
Affiliation(s)
- Vidya Sagar
- Department of Immunology, Center for Personalized Nanomedicine/Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Venkata Subba Rao Atluri
- Department of Immunology, Center for Personalized Nanomedicine/Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Sudheesh Pilakka-Kanthikeel
- Department of Immunology, Center for Personalized Nanomedicine/Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Madhavan Nair
- Department of Immunology, Center for Personalized Nanomedicine/Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA.
| |
Collapse
|
44
|
Kesby JP, Markou A, Semenova S. Effects of HIV/TAT protein expression and chronic selegiline treatment on spatial memory, reversal learning and neurotransmitter levels in mice. Behav Brain Res 2016; 311:131-140. [PMID: 27211061 DOI: 10.1016/j.bbr.2016.05.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/28/2016] [Accepted: 05/16/2016] [Indexed: 02/08/2023]
Abstract
Neurotoxic viral protein TAT may contribute to deficits in dopaminergic and cognitive function in individuals infected with human immunodeficiency virus. Transgenic mice with brain-specific doxycycline-induced TAT expression (TAT+, TAT- control) show impaired cognition. However, previously reported TAT-induced deficits in reversal learning may be compromised by initial learning deficits. We investigated the effects of TAT expression on memory retention/recall and reversal learning, and neurotransmitter function. We also investigated if TAT-induced effects can be reversed by improving dopamine function with selegiline, a monoamine oxidase inhibitor. Mice were tested in the Barnes maze and TAT expression was induced after the task acquisition. Selegiline treatment continued throughout behavioral testing. Dopamine, serotonin and glutamate tissue levels in the prefrontal/orbitofrontal cortex, hippocampus and caudate putamen were measured using high performance liquid chromatography. Neither TAT expression nor selegiline altered memory retention. On day 2 of reversal learning testing, TAT+ mice made fewer errors and used more efficient search strategies than TAT- mice. TAT expression decreased dopamine turnover in the caudate putamen, increased serotonin turnover in the hippocampus and tended to increase the conversion of glutamate to glutamine in all regions. Selegiline decreased dopamine and serotonin metabolism in all regions and increased glutamate levels in the caudate putamen. In the absence of impaired learning, TAT expression does not impair spatial memory retention/recall, and actually facilitates reversal learning. Selegiline-induced increases in dopamine metabolism did not affect cognitive function. These findings suggest that TAT-induced alterations in glutamate signaling, but not alterations in monoamine metabolism, may underlie the facilitation of reversal learning.
Collapse
Affiliation(s)
- James P Kesby
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA; Queensland Brain Institute, The University of Queensland, St. Lucia, Qld, Australia
| | - Athina Markou
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Svetlana Semenova
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
| | | |
Collapse
|
45
|
Sardo L, Vakil PR, Elbezanti W, El-Sayed A, Klase Z. The inhibition of microRNAs by HIV-1 Tat suppresses beta catenin activity in astrocytes. Retrovirology 2016; 13:25. [PMID: 27060080 PMCID: PMC4826512 DOI: 10.1186/s12977-016-0256-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 03/23/2016] [Indexed: 12/15/2022] Open
Abstract
Background
Long term infection with HIV-1, even in the context of therapy, leads to chronic health problems including an array of neurocognitive dysfunctions. The viral Tat protein has previously been implicated in neuropathogenesis through its effect on astrocytes. Tat has also been shown to inhibit the biogenesis of miRNAs by inhibiting the activity of the cellular Dicer protein in an RNA dependent fashion. Whether there is a mechanistic connection between the ability of HIV-1 Tat to alter miRNAs and its observed effects on cells of the central nervous system has not been well examined. Results Here, we examined the ability of HIV-1 Tat to bind to and inhibit the production of over 300 cellular miRNAs. We found that the Tat protein only binds to and inhibits a fraction of the total cellular miRNAs. By mapping the downstream targets of these miRNAs we have determined a possible role for Tat alterations of miRNAs in the development of neuropathogenesis. Specifically, this work points to suppression of miRNAs function as the mechanism for Tat suppression of β-catenin activity. Conclusions The discovery that HIV-1 Tat inhibits only a fraction of miRNAs opens new areas of research regarding changes in cellular pathways through suppression of RNA interference. Our initial analysis strongly suggests that these pathways may contribute to HIV-1 disruption of the central nervous system. Electronic supplementary material The online version of this article (doi:10.1186/s12977-016-0256-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luca Sardo
- Department of Biological Sciences, McNeil Science and Technology Center Room 273, University of the Sciences, 600 S 43rd Street, Philadelphia, PA, 19104, USA
| | - Priyal R Vakil
- Department of Biological Sciences, McNeil Science and Technology Center Room 273, University of the Sciences, 600 S 43rd Street, Philadelphia, PA, 19104, USA
| | - Weam Elbezanti
- Department of Biological Sciences, McNeil Science and Technology Center Room 273, University of the Sciences, 600 S 43rd Street, Philadelphia, PA, 19104, USA
| | - Anas El-Sayed
- Department of Biological Sciences, McNeil Science and Technology Center Room 273, University of the Sciences, 600 S 43rd Street, Philadelphia, PA, 19104, USA
| | - Zachary Klase
- Department of Biological Sciences, McNeil Science and Technology Center Room 273, University of the Sciences, 600 S 43rd Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
46
|
Fitting S, Booze RM, Mactutus CF. HIV-1 proteins, Tat and gp120, target the developing dopamine system. Curr HIV Res 2015; 13:21-42. [PMID: 25613135 DOI: 10.2174/1570162x13666150121110731] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 11/17/2014] [Accepted: 12/23/2014] [Indexed: 11/22/2022]
Abstract
In 2014, 3.2 million children (< 15 years of age) were estimated to be living with HIV and AIDS worldwide, with the 240,000 newly infected children in the past year, i.e., another child infected approximately every two minutes [1]. The primary mode of HIV infection is through mother-to-child transmission (MTCT), occurring either in utero, intrapartum, or during breastfeeding. The effects of HIV-1 on the central nervous system (CNS) are putatively accepted to be mediated, in part, via viral proteins, such as Tat and gp120. The current review focuses on the targets of HIV-1 proteins during the development of the dopamine (DA) system, which appears to be specifically susceptible in HIV-1-infected children. Collectively, the data suggest that the DA system is a clinically relevant target in chronic HIV-1 infection, is one of the major targets in pediatric HIV-1 CNS infection, and may be specifically susceptible during development. The present review discusses the development of the DA system, follows the possible targets of the HIV-1 proteins during the development of the DA system, and suggests potential therapeutic approaches. By coupling our growing understanding of the development of the CNS with the pronounced age-related differences in disease progression, new light may be shed on the neurological and neurocognitive deficits that follow HIV-1 infection.
Collapse
Affiliation(s)
| | - Rosemarie M Booze
- Department of Psychology, 1512 Pendleton Street, University of South Carolina, Columbia, SC 29208, USA.
| | | |
Collapse
|
47
|
HIV-1 transgenic rats display an increase in [(3)H]dopamine uptake in the prefrontal cortex and striatum. J Neurovirol 2015; 22:282-92. [PMID: 26501780 DOI: 10.1007/s13365-015-0391-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 09/07/2015] [Accepted: 10/02/2015] [Indexed: 10/22/2022]
Abstract
HIV viral proteins within the central nervous system are associated with the development of neurocognitive impairments in HIV-infected individuals. Dopamine transporter (DAT)-mediated dopamine transport is critical for normal dopamine homeostasis. Abnormal dopaminergic transmission has been implicated as a risk determinant of HIV-induced neurocognitive impairments. Our published work has demonstrated that transactivator of transcription (Tat)-induced inhibition of DAT is mediated by allosteric binding site(s) on DAT, not the interaction with the dopamine uptake site. The present study investigated whether impaired DAT function induced by Tat exposure in vitro can be documented in HIV-1 transgenic (HIV-1Tg) rats. We assessed kinetic analyses of [(3)H]dopamine uptake into prefrontal and striatal synaptosomes of HIV-1Tg and Fisher 344 rats. Compared with Fisher 344 rats, the capacity of dopamine transport in the prefrontal cortex (PFC) and striatum of HIV-1Tg rats was increased by 34 and 32 %, respectively. Assessment of surface biotinylation indicated that DAT expression in the plasma membrane was reduced in PFC and enhanced in striatum, respectively, of HIV-1Tg rats. While the maximal binding sites (B max) of [(3)H]WIN 35,428 was decreased in striatum of HIV-1Tg rats, an increase in DAT turnover proportion was found, relative to Fisher 344 rats. Together, these findings suggest that neuroadaptive changes in DAT function are evidenced in the HIV-1Tg rats, perhaps compensating for viral-protein-induced abnormal dopaminergic transmission. Thus, our study provides novel insights into understanding mechanism underlying neurocognitive impairment evident in neuroAIDS.
Collapse
|
48
|
Mediouni S, Marcondes MCG, Miller C, McLaughlin JP, Valente ST. The cross-talk of HIV-1 Tat and methamphetamine in HIV-associated neurocognitive disorders. Front Microbiol 2015; 6:1164. [PMID: 26557111 PMCID: PMC4615951 DOI: 10.3389/fmicb.2015.01164] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/07/2015] [Indexed: 12/15/2022] Open
Abstract
Antiretroviral therapy has dramatically improved the lives of human immunodeficiency virus 1 (HIV-1) infected individuals. Nonetheless, HIV-associated neurocognitive disorders (HAND), which range from undetectable neurocognitive impairments to severe dementia, still affect approximately 50% of the infected population, hampering their quality of life. The persistence of HAND is promoted by several factors, including longer life expectancies, the residual levels of virus in the central nervous system (CNS) and the continued presence of HIV-1 regulatory proteins such as the transactivator of transcription (Tat) in the brain. Tat is a secreted viral protein that crosses the blood–brain barrier into the CNS, where it has the ability to directly act on neurons and non-neuronal cells alike. These actions result in the release of soluble factors involved in inflammation, oxidative stress and excitotoxicity, ultimately resulting in neuronal damage. The percentage of methamphetamine (MA) abusers is high among the HIV-1-positive population compared to the general population. On the other hand, MA abuse is correlated with increased viral replication, enhanced Tat-mediated neurotoxicity and neurocognitive impairments. Although several strategies have been investigated to reduce HAND and MA use, no clinically approved treatment is currently available. Here, we review the latest findings of the effects of Tat and MA in HAND and discuss a few promising potential therapeutic developments.
Collapse
Affiliation(s)
- Sonia Mediouni
- Department of Infectious Diseases, The Scripps Research Institute , Jupiter, FL, USA
| | | | - Courtney Miller
- Department of Metabolism and Aging, The Scripps Research Institute , Jupiter, FL, USA ; Department of Neuroscience, The Scripps Research Institute , Jupiter, FL, USA
| | - Jay P McLaughlin
- Department of Pharmacodynamics, University of Florida , Gainesville, FL, USA
| | - Susana T Valente
- Department of Infectious Diseases, The Scripps Research Institute , Jupiter, FL, USA
| |
Collapse
|
49
|
Paris JJ, Fenwick J, McLaughlin JP. Estrous cycle and HIV-1 Tat protein influence cocaine-conditioned place preference and induced locomotion of female mice. Curr HIV Res 2015; 12:388-96. [PMID: 25613137 DOI: 10.2174/1570162x13666150121105221] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/31/2014] [Accepted: 01/14/2015] [Indexed: 12/21/2022]
Abstract
The HIV-1 trans-activator of transcription (Tat) protein, interacts with psychostimulants to potentiate cocaine-reward in rodents. Sex steroids may protect against Tat-induced deficits. Female GT-tg transgenic mice conditionally-expressed Tat protein targeted to brain via a doxycycline-dependent, GFAP-linked promoter. Mice were tested for cocaine-conditioned place preference (CPP) and cocaine-induced locomotion when in the proestrous (high-hormone) or diestrous (low-hormone) phases of their estrous cycle. Cocaine-CPP was potentiated by Tat induction via 50, 100, or 125 (but not 25) mg/kg doxycycline daily treatment for 7 days. Diestrous mice exposed to Tat protein demonstrated significantly greater cocaine-CPP than did proestrous mice. Tat induction interacted with estrous cycle to decrease acute cocaine-induced locomotion among Tat-induced diestrous mice, but not their uninduced or proestrous counterparts, and attenuated cocaine-sensitization. In a cocaine-challenge, previously cocaine-sensitized mice demonstrated greater cocaine-locomotion over cocaine-naive counterparts and Tat-induction attenuated locomotion. Altogether, data demonstrate Tat and circulating sex steroid influences over cocaine-reward and psychostimulation.
Collapse
Affiliation(s)
| | | | - Jay P McLaughlin
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port Saint Lucie, FL 34987, USA.
| |
Collapse
|
50
|
Zhu J, Midde NM, Gomez AM, Sun WL, Harrod SB. Intra-ventral tegmental area HIV-1 Tat1-86 attenuates nicotine-mediated locomotor sensitization and alters mesocorticolimbic ERK and CREB signaling in rats. Front Microbiol 2015; 6:540. [PMID: 26150803 PMCID: PMC4473058 DOI: 10.3389/fmicb.2015.00540] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 05/15/2015] [Indexed: 12/24/2022] Open
Abstract
Cigarette smoking prevalence in the HIV-positive individuals is profoundly higher than that in the HIV-negative individuals. We have demonstrated that HIV-1 transgenic rats exhibit attenuated nicotine-mediated locomotor activity, altered cAMP response element binding protein (CREB) and extracellular regulated kinase (ERK1/2) signaling in the mesocorticolimbic regions. This study investigated the role of HIV-1 transactivator of transcription (Tat) protein in the alterations of nicotine-mediated behavior and the signaling pathway observed in the HIV-1 transgenic rats. Rats received bilateral microinjection of recombinant Tat1-86 (25 μg/side) or vehicle directed at ventral tegmental area (VTA) followed by locomotor testing in response to 13 daily intravenous injections of nicotine (0.05 mg/kg, freebase, once/day) or saline. Further, we examined the phosphorylated levels of CREB (pCREB) and ERK1/2 (pERK1/2) in the prefrontal cortex (PFC), nucleus accumbens (NAc) and VTA. Tat diminished baseline activity in saline control rats, and attenuated nicotine-induced behavioral sensitization. Following repeated saline injection, the basal levels of pERK1 in the NAc and VTA and pERK2 in VTA were lower in the vehicle control group, relative to the Tat group. After repeated nicotine injection, pERK1 in NAc and VTA and pERK2 in VTA were increased in the vehicle group, but not in the Tat group. Moreover, repeated nicotine injections decreased pCREB in the PFC and VTA in the Tat group but not in the vehicle group. Thus, these findings indicate that the direct injection of Tat at the VTA may mediate CREB and ERK activity in response to nicotine-induced locomotor activity.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina , Columbia, SC, USA
| | - Narasimha M Midde
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina , Columbia, SC, USA
| | - Adrian M Gomez
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina , Columbia, SC, USA
| | - Wei-Lun Sun
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina , Columbia, SC, USA
| | - Steven B Harrod
- Department of Psychology, University of South Carolina , Columbia, SC, USA
| |
Collapse
|