1
|
Wang N, Zhang R, Wang Y, Zhang L, Sun A, Zhang Z, Shi X. Accumulation and growth toxicity mechanisms of fluxapyroxad revealed by physiological, hepatopancreas transcriptome, and gut microbiome analysis in Pacific white shrimp (Litopenaeus vannamei). JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135206. [PMID: 39029191 DOI: 10.1016/j.jhazmat.2024.135206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/15/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
Fluxapyroxad (FX), a typical succinate dehydrogenase inhibitor fungicide, is causing increased global concerns due to its fungicide effects. However, the accumulation and grow toxicity of FX to Litopenaeus vannamei (L. vannamei) is poorly understand. Therefore, the accumulation pattern of FX in L. vannamei was investigated for the first time in environmental concentrations. FX accumulated rapidly in shrimp muscle. Meanwhile, growth inhibition was observed and the mechanism derived by primarily accelerated glycolipid metabolism and reduced glycolipid content. Moreover, exposure to environmental concentrations of FX induced significant growth inhibition and oxidative stress and inhibited oxidative phosphorylation and TCA cycle in L. vannamei. The endocytosis signaling pathway genes were activated, thereby driving growth toxicity. Oxidative phosphorylation and cytosolic gene expression were further rescued in elimination experiments, demonstrating the mechanism of growth toxicity by FX exposure. The results revealed that FX persistently altered the gut microbiome of L. vannamei using gut microbiome sequencing, particularly with increased Garcinia Purple Pseudoalteromonas luteoviolacea for organic pollutant degradation. This study provided new insights into the potential toxicity of FX to marine organisms, emphasizing the need for further investigation and potential regulatory considerations.
Collapse
Affiliation(s)
- Ningbo Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Rongrong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Yinan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Liuquan Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Aili Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Zeming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Xizhi Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo 315211, PR China.
| |
Collapse
|
2
|
Maaskant A, Scarsi KK, Meijer L, Roubos S, Louwerse AL, Remarque EJ, Langermans JAM, Stammes MA, Bakker J. Long-acting reversible contraception with etonogestrel implants in female macaques ( Macaca mulatta and Macaca fascicularis). Front Vet Sci 2024; 10:1319862. [PMID: 38260208 PMCID: PMC10800480 DOI: 10.3389/fvets.2023.1319862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Contraception is often required for management and population control purposes in group-housed and free-roaming non-human primates. Long-acting reversible contraceptives, including subdermal progestin-releasing implants, are preferred as they eliminate challenges associated with frequent administration. Etonogestrel (ENG)-releasing subdermal implants are reversible and long-acting for a minimum of 3 years, and are commercially available for human use as Implanon® or Nexplanon®. Methods A retrospective analysis was performed detailing the contraceptive effectiveness and reversibility of subdermal placement of one-fourth or one-third of an ENG implant (68 mg/implant) in 129 female rhesus macaques (Macaca mulatta) and 67 cynomolgus macaques (Macaca fascicularis) at the Biomedical Primate Research Centre (Rijswijk, Netherlands). Furthermore, single cross-sectional ENG serum concentrations were measured for 16 rhesus and 10 cynomolgus macaques, and hemoglobin and blood chemistry pre-ENG and at timepoints >0.5, >1.5, and > 2.5 years post-ENG insertion were evaluated for 24 rhesus macaques. Finally, data were obtained using trans-abdominal ultrasound regarding the influence of ENG on uterine volume and endometrial thickness in 14 rhesus and 11 cynomolgus macaques. Results As a contraceptive ENG was in 99.80% (CI 93.50-99.99) and 99.95% (CI 99.95-100) effective in rhesus and cynomolgus macaques, respectively. Prolonged ENG durations of implant use in 14 rhesus macaques (range 3.1-5.0 years) and eight cynomolgus macaques (range 3.2-4.0 years) resulted in no unintended pregnancies. A total of 17 female macaques were allowed to breed after ENG removal, and among them, 14 female macaques (82%) had an uneventful delivery. Serum ENG concentrations with a median ENG duration of 1.2 years (range 0.1-6.0 years) and 1.9 years (range 0.6-4.7 years) resulted in median concentrations of 112 pg./mL (range 0-305 pg./mL) and 310 pg./mL (range 183-382 pg./mL) for rhesus and cynomolgus macaques, respectively. ENG had no clinical effect on hemoglobin and blood chemistry parameters nor on the thickness of the endometrial lining or uterus volume. Conclusion This study indicates that both one-fourth and one-third of the ENG implants are effective, long-acting, reversible, and safe contraceptive to use in macaques.
Collapse
Affiliation(s)
- Annemiek Maaskant
- Biomedical Primate Research Centre, Rijswijk, Netherlands
- Department Population Health Sciences, Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Kimberly K. Scarsi
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Lisette Meijer
- Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Sandra Roubos
- Biomedical Primate Research Centre, Rijswijk, Netherlands
| | | | | | - Jan A. M. Langermans
- Biomedical Primate Research Centre, Rijswijk, Netherlands
- Department Population Health Sciences, Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | | | - Jaco Bakker
- Biomedical Primate Research Centre, Rijswijk, Netherlands
| |
Collapse
|
3
|
Zhang J, Gaowa N, Wang Y, Li H, Cao Z, Yang H, Zhang X, Li S. Complementary hepatic metabolomics and proteomics reveal the adaptive mechanisms of dairy cows to the transition period. J Dairy Sci 2023; 106:2071-2088. [PMID: 36567250 DOI: 10.3168/jds.2022-22224] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 09/06/2022] [Indexed: 12/24/2022]
Abstract
The transition period from late pregnancy to early lactation is a vital time of the lifecycle of dairy cows due to the marked metabolic challenges. Besides, the liver is the pivot point of metabolism in cattle. Nevertheless, the hepatic physiological molecular adaptation during the transition period has not been elucidated, especially from the metabolomics and proteomics view. Therefore, the present study aims to investigate the hepatic metabolic alterations in transition cows by using integrative metabolomics and proteomics methods. Gas chromatography quadrupole-time-of-flight mass spectrometry-based metabolomics and data-independent acquisition-based quantitative proteomics methods were used to analyze liver tissues collected from 8 healthy multiparous Holstein dairy cows 21 d before and after calving. In total, 44 metabolites and 250 proteins were identified as differentially expressed from 233 metabolites and 3,539 proteins detected from the liver biopsies during the transition period. Complementary functional analysis of different metabolites and proteins indicated the upregulated gluconeogenesis, tricarboxylic acid cycles, AA degradation, fatty acid oxidation, AMP-activated protein kinase signaling pathway, peroxisome proliferator-activated receptor signaling pathway, and ribosome proteins in postpartum dairy cows. In terms of the metabolites and proteins, glucose-6-phosphate, fructose-6-phosphate, carnitine palmitoyltransferase 1A, and phosphoenolpyruvate carboxykinase played a significant role in these pathways. The upregulated oxidative status may be accompanied by the pathways mentioned above. In addition, the upregulated glucagon and insulin signaling pathways also indicated the significant requirement for glucose in postpartum dairy cows. These outcomes, from the view of global metabolites and proteins, may present a better comprehension of the biology of the transition period, which can be helpful in further developing nutritional regulation strategies targeting the liver to help cows overcome this metabolically challenging time.
Collapse
Affiliation(s)
- Jun Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100 China; State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193 China
| | - Naren Gaowa
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193 China
| | - Yajing Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193 China
| | - Huanxu Li
- Beijing Oriental Kingherd Biotechnology Company, Beijing 100193, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193 China
| | - Hongjian Yang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193 China
| | - Xiaoming Zhang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193 China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193 China.
| |
Collapse
|
4
|
Yamazaki H, Shimizu M. Species Specificity and Selection of Models for Drug Oxidations Mediated by Polymorphic Human Enzymes. Drug Metab Dispos 2023; 51:123-129. [PMID: 35772770 DOI: 10.1124/dmd.121.000742] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 05/28/2022] [Accepted: 06/01/2022] [Indexed: 01/03/2023] Open
Abstract
Many drug oxygenations are mainly mediated by polymorphic cytochromes P450 (P450s) and also by flavin-containing monooxygenases (FMOs). More than 50 years of research on P450/FMO-mediated drug oxygenations have clarified their catalytic roles. The natural product coumarin causes hepatotoxicity in rats via the reactive coumarin 3,4-epoxide, a reaction catalyzed by P450 1A2; however, coumarin undergoes rapid 7-hydroxylation by polymorphic P450 2A6 in humans. The primary oxidation product of the teratogen thalidomide in rats is deactivated 5'-hydroxythalidomide plus sulfate and glucuronide conjugates; however, similar 5'-hydroxythalidomide and 5-hydroxythalidomide are formed in rabbits in vivo. Thalidomide causes human P450 3A enzyme induction in liver (and placenta) and is also activated in vitro and in vivo by P450 3A through the primary human metabolite 5-hydroxythalidomide (leading to conjugation with glutathione/nonspecific proteins). Species differences exist in terms of drug metabolism in rodents and humans, and such differences can be very important when determining the contributions of individual enzymes. The approaches used for investigating the roles of human P450 and FMO enzymes in understanding drug oxidations and clinical therapy have not yet reached maturity and still require further development. SIGNIFICANCE STATEMENT: Drug oxidations in animals and humans mediated by P450s and FMOs are important for understanding the pharmacological properties of drugs, such as the species-dependent teratogenicity of the reactive metabolites of thalidomide and the metabolism of food-derived odorous trimethylamine to non-odorous (but proatherogenic) trimethylamine N-oxide. Recognized differences exist in terms of drug metabolism between rodents, non-human primates, and humans, and such differences are important when determining individual liver enzyme contributions with substrates in in vitro and in vivo systems.
Collapse
Affiliation(s)
- Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - Makiko Shimizu
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| |
Collapse
|
5
|
Kojima A, Sogabe A, Nadai M, Katoh M. Species differences in oxidative metabolism of regorafenib. Xenobiotica 2022; 51:1400-1407. [PMID: 35020558 DOI: 10.1080/00498254.2022.2028935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite the prevalence of laboratory animals such as monkeys, rats, and mice in clinical drug trials, we know little regarding the oxidation of regorafenib in these test subjects. This study aimed to elucidate species differences in the kinetics of regorafenib oxidation into two metabolites: regorafenib N-oxide (M-2) and hydroxyregorafenib (M-3).M-2 formation best fitted the Hill equation and showed positive cooperativity in liver and small intestinal microsomes from all species. For all species, M-2 formation had a higher maximum velocity in microsomes from the liver than the small intestines. Maximum velocity was also higher in microsomes from humans and monkeys than those from rats and mice. M-3 formation was well-fitted to the Hill equation and showed positive cooperativity in all microsomes, except those from rat small intestines, where it exhibited biphasic kinetics. At half the maximum velocity, substrate concentration for M-2 and M-3 formation was lower in microsomes from humans than from other species. Moreover, M-2 was the major metabolite in microsomes from humans, monkeys, and mice, whereas M-2 and M-3 were the major metabolites in rat microsomes.M-2 and M-3 formation involving CYP3A4 and CYP3A5 fitted to the Hill equation. However, M-3 formation involving CYP2J2 fitted to the substrate inhibition model.Our study confirmed species differences in regorafenib oxidative metabolism.
Collapse
Affiliation(s)
- Ayaka Kojima
- Department of Pharmaceutics, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Ayuka Sogabe
- Department of Pharmaceutics, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Masayuki Nadai
- Department of Pharmaceutics, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Miki Katoh
- Department of Pharmaceutics, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| |
Collapse
|
6
|
Seo JE, Davis K, Malhi P, He X, Bryant M, Talpos J, Burks S, Mei N, Guo X. Genotoxicity evaluation using primary hepatocytes isolated from rhesus macaque (Macaca mulatta). Toxicology 2021; 462:152936. [PMID: 34509578 DOI: 10.1016/j.tox.2021.152936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
Non-human primates (NHPs) have played a vital role in fundamental, pre-clinical, and translational studies because of their high physiological and genetic similarity to humans. Here, we report a method to isolate primary hepatocytes from the livers of rhesus macaques (Macaca mulatta) after in situ whole liver perfusion. Isolated primary macaque hepatocytes (PMHs) were treated with various compounds known to have different pathways of genotoxicity/carcinogenicity and the resulting DNA damage was evaluated using the high-throughput CometChip assay. The comet data were quantified using benchmark dose (BMD) modeling and the BMD50 values for treatments of PMHs were compared with those generated from primary human hepatocytes (PHHs) in our previous study (Seo et al. Arch Toxicol 2020, 2207-2224). The results showed that despite varying CYP450 enzyme activities, PMHs had the same sensitivity and specificity as PHHs in detecting four indirect-acting (i.e., requiring metabolic activation) and seven direct-acting genotoxicants/carcinogens, as well as five non-carcinogens that are negative or equivocal for genotoxicity in vivo. The BMD50 estimates and their confidence intervals revealed species differences for DNA damage potency, especially for direct-acting compounds. The present study provides a practical method for maximizing the use of animal tissues by isolating primary hepatocytes from NHPs. Our data support the use of PMHs as a reliable surrogate of PHHs for evaluating the genotoxic hazards of chemical substances for humans.
Collapse
Affiliation(s)
- Ji-Eun Seo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Kelly Davis
- Toxicologic Pathology Associates, Jefferson, AR 72079, USA
| | - Pritpal Malhi
- Toxicologic Pathology Associates, Jefferson, AR 72079, USA
| | - Xiaobo He
- Office of Scientific Coordination, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Matthew Bryant
- Office of Scientific Coordination, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - John Talpos
- Division of Neurotoxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Susan Burks
- Division of Neurotoxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA.
| |
Collapse
|
7
|
Species Differences in Microsomal Metabolism of Xanthine-Derived A 1 Adenosine Receptor Ligands. Pharmaceuticals (Basel) 2021; 14:ph14030277. [PMID: 33803861 PMCID: PMC8003343 DOI: 10.3390/ph14030277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 11/17/2022] Open
Abstract
Tracer development for positron emission tomography (PET) requires thorough evaluation of pharmacokinetics, metabolism, and dosimetry of candidate radioligands in preclinical animal studies. Since variations in pharmacokinetics and metabolism of a compound occur in different species, careful selection of a suitable model species is mandatory to obtain valid data. This study focuses on species differences in the in vitro metabolism of three xanthine-derived ligands for the A1 adenosine receptor (A1AR), which, in their 18F-labeled form, can be used to image A1AR via PET. In vitro intrinsic clearance and metabolite profiles of 8-cyclopentyl-3-(3-fluoropropyl)-1-propylxanthine (CPFPX), an established A1AR-ligand, and two novel analogs, 8-cyclobutyl-3-(3-fluoropropyl)-1-propylxanthine (CBX) and 3-(3-fluoropropyl)-8-(1-methylcyclobutyl)-1-propylxanthine (MCBX), were determined in liver microsomes from humans and preclinical animal species. Molecular mechanisms leading to significant differences between human and animal metabolite profiles were also examined. The results revealed significant species differences regarding qualitative and quantitative aspects of microsomal metabolism. None of the tested animal species fully matched human microsomal metabolism of the three A1AR ligands. In conclusion, preclinical evaluation of xanthine-derived A1AR ligands should employ at least two animal species, preferably rodent and dog, to predict in vivo behavior in humans. Surprisingly, rhesus macaques appear unsuitable due to large differences in metabolic activity towards the test compounds.
Collapse
|
8
|
Tian QQ, Zhu YT, Diao XX, Zhang XL, Xu YC, Jiang XR, Shen JS, Wang Z, Zhong DF. Species differences in the CYP3A-catalyzed metabolism of TPN729, a novel PDE5 inhibitor. Acta Pharmacol Sin 2021; 42:482-490. [PMID: 32581257 PMCID: PMC8027186 DOI: 10.1038/s41401-020-0447-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 05/17/2020] [Indexed: 12/15/2022] Open
Abstract
TPN729 is a novel phosphodiesterase 5 (PDE5) inhibitor used to treat erectile dysfunction in men. Our previous study shows that the plasma exposure of metabolite M3 (N-dealkylation of TPN729) in humans is much higher than that of TPN729. In this study, we compared its metabolism and pharmacokinetics in different species and explored the contribution of its main metabolite M3 to pharmacological effect. We conducted a combinatory approach of ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry-based metabolite identification, and examined pharmacokinetic profiles in monkeys, dogs, and rats following TPN729 administration. A remarkable species difference was observed in the relative abundance of major metabolite M3: i.e., the plasma exposure of M3 was 7.6-fold higher than that of TPN729 in humans, and 3.5-, 1.2-, 1.1-fold in monkeys, dogs, and rats, respectively. We incubated liver S9 and liver microsomes with TPN729 and CYP3A inhibitors, and demonstrated that CYP3A was responsible for TPN729 metabolism and M3 formation in humans. The inhibitory activity of M3 on PDE5 was 0.78-fold that of TPN729 (The IC50 values of TPN729 and M3 for PDE5A were 6.17 ± 0.48 and 7.94 ± 0.07 nM, respectively.). The plasma protein binding rates of TPN729 and M3 in humans were 92.7% and 98.7%, respectively. It was astonishing that the catalyzing capability of CYP3A4 in M3 formation exhibited seven-fold disparity between different species. M3 was an active metabolite, and its pharmacological contribution was equal to that of TPN729 in humans. These findings provide new insights into the limitation and selection of animal model for predicting the clinical pharmacokinetics of drug candidates metabolized by CYP3A4.
Collapse
Affiliation(s)
- Qian-Qian Tian
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun-Ting Zhu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing-Xing Diao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiang-Lei Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ye-Chun Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiang-Rui Jiang
- CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jing-Shan Shen
- CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhen Wang
- CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Da-Fang Zhong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Uno Y, Uehara S, Inoue T, Kawamura S, Murayama N, Nishikawa M, Ikushiro S, Sasaki E, Yamazaki H. Molecular characterization of functional UDP-glucuronosyltransferases 1A and 2B in common marmosets. Biochem Pharmacol 2019; 172:113748. [PMID: 31830470 DOI: 10.1016/j.bcp.2019.113748] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/05/2019] [Indexed: 11/27/2022]
Abstract
UDP-glucuronosyltransferases (UGTs) are essential drug-conjugation enzymes that metabolize a variety of endobiotic and xenobiotic substrates. The molecular characteristics of UGTs have been extensively investigated in humans, but remain to be investigated in common marmosets, a nonhuman primate species widely used in drug metabolism studies. In this study, 11 UGT cDNAs (UGT1A1, 1A3, 1A4, 1A6, 1A7, and 1A9; and UGT2B49, 2B50, 2B51, 2B52, and 2B53) were isolated and characterized in marmosets. Marmoset UGT1As had high sequence identities (89-93%) with human UGT1As, but the sequence identities of marmoset UGT2Bs were lower (82-86%). Marmoset UGTs were found to be phylogenetically close to human UGTs. Just as human UGT1As do, marmoset UGT1A genes shared exons 2-5 and contained a variable exon 1 unique to each gene; in contrast, marmoset UGT2B genes contained six unique exons. Moreover, marmoset and human UGT1A and UGT2B gene clusters were located in corresponding regions in their respective genomes. Among the five tissue types tested, marmoset UGT mRNAs were most abundantly expressed in liver, jejunum, and/or kidney, i.e., in tissues important for drug metabolism, just as human UGTs are. Among the 11 marmoset UGT mRNAs investigated, marmoset UGT1A9, 1A4, and 1A6 mRNAs were the most abundantly expressed in liver, small intestine, and kidney, respectively. Marmoset liver microsomes and recombinant UGT1A proteins catalyzed the glucuronidation of the same substrates that human UGT1As catalyze, including estradiol, trifluoperazine, 4-methylumbelliferone, serotonin, 4-nitrophenol, and propofol. Trifluoperazine was glucuronidated by marmoset liver microsomes, but not by any of the UGT1A isoforms examined under the present conditions. These results collectively suggest that functional marmoset UGTs have generally similar molecular characteristics to human UGTs.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima 890-8580, Japan; Shin Nippon Biomedical Laboratories, Ltd, Kainan, Wakayama 642 0017, Japan.
| | - Shotaro Uehara
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Takashi Inoue
- Department of Applied Developmental Biology, Central Institute for Experimental Animals, Kawasaki, Kawasaki-ku, Japan
| | - Shu Kawamura
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Miyu Nishikawa
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama 939 0398, Japan
| | - Shinichi Ikushiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama 939 0398, Japan
| | - Erika Sasaki
- Department of Applied Developmental Biology, Central Institute for Experimental Animals, Kawasaki, Kawasaki-ku, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan.
| |
Collapse
|
10
|
Uno Y, Takahira R, Murayama N, Onozeki S, Kawamura S, Uehara S, Ikenaka Y, Ishizuka M, Ikushiro S, Yamazaki H. Functional and molecular characterization of UDP-glucuronosyltransferase 2 family in cynomolgus macaques. Biochem Pharmacol 2019; 163:335-344. [PMID: 30836059 DOI: 10.1016/j.bcp.2019.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/01/2019] [Indexed: 11/17/2022]
Abstract
UDP-glucuronosyltransferases (UGTs) are essential enzymes metabolizing endogenous and exogenous chemicals. However, characteristics of UGTs have not been fully investigated in molecular levels of cynomolgus macaques, one of non-human primates widely used in preclinical drug metabolism studies. In this study, three UGT2A cDNAs (UGT2A1, 2A2, and 2A3) were isolated and characterized along with seven UGT2Bs previously identified in cynomolgus macaques. Several transcript variants were found in cynomolgus UGT2A1 and UGT2A2, like human orthologs. Cynomolgus UGT2A and UGT2B amino acid sequences were highly identical (87-96%) to their human counterparts. By phylogenetic analysis, all these cynomolgus UGT2s were more closely clustered with their human homologs than with dog, rat, or mouse UGT2s. Especially, UGT2As showed orthologous relationships between humans and cynomolgus macaques. All the cynomolgus UGT2 mRNAs were expressed in livers, jejunum, and/or kidneys abundantly, except that UGT2A1 and UGT2A2 mRNAs were predominantly expressed in nasal mucosa, like human UGT2s. UGT2A and UGT2B genes together form a gene cluster in the cynomolgus and human genome. Among the seven cynomolgus UGT2Bs heterologously expressed in yeast, UGT2B9 and UGT2B30 showed activities in estradiol 17-O-glucuronidation and morphine 3-O-glucuronidation but did not show activities in estradiol 3-O-glucuronidation, similar to human UGT2Bs. In liver microsomes, cynomolgus macaques showed higher estradiol 17-O-glucuronidase and morphine 3-O-glucuronidase activities than humans, suggesting functional activities of the responsible UGT2B enzymes in cynomolgus macaques. Therefore, cynomolgus UGT2s had overall molecular similarities to human UGT2s, but also showed some differences in UGT2B enzyme properties.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama 642-0017, Japan.
| | - Rika Takahira
- Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama 939-0398, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Shunsuke Onozeki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Shu Kawamura
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Shotaro Uehara
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Yoshinori Ikenaka
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Mayumi Ishizuka
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Shinichi Ikushiro
- Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama 939-0398, Japan.
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan.
| |
Collapse
|
11
|
Zhang J, Shi H, Li S, Cao Z, Yang H, Wang Y. Integrative hepatic metabolomics and proteomics reveal insights into the mechanism of different feed efficiency with high or low dietary forage levels in Holstein heifers. J Proteomics 2019; 194:1-13. [DOI: 10.1016/j.jprot.2018.12.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/18/2018] [Accepted: 12/23/2018] [Indexed: 01/18/2023]
|
12
|
Uno Y, Shimizu M, Yoda H, Origuchi Y, Yamazaki H. Non-synonymous genetic variants of flavin-containing monooxygenase 3 (FMO3) in cynomolgus macaques. Drug Metab Pharmacokinet 2019; 34:104-107. [DOI: 10.1016/j.dmpk.2018.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 08/23/2018] [Accepted: 09/03/2018] [Indexed: 11/26/2022]
|
13
|
Uno Y, Murayama N, Tamura K, Yamazaki H. Functionally relevant genetic variants of glutathione S-transferase GSTM5 in cynomolgus and rhesus macaques. Xenobiotica 2018; 49:995-1000. [DOI: 10.1080/00498254.2018.1524187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Yasuhiro Uno
- Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd, Kainan, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan
| | - Kazuaki Tamura
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan
| |
Collapse
|
14
|
Uno Y, Uehara S, Murayama N, Yamazaki H. Cytochrome P450 1A1, 2C9, 2C19, and 3A4 Polymorphisms Account for Interindividual Variability of Toxicological Drug Metabolism in Cynomolgus Macaques. Chem Res Toxicol 2018; 31:1373-1381. [PMID: 30412386 DOI: 10.1021/acs.chemrestox.8b00257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cytochromes P450 (P450s) and their genetic variants in humans are important drug-metabolizing enzymes partly accounting for interindividual variations in drug metabolism and toxicity. However, these genetic variants in P450s have not been fully investigated in cynomolgus macaques, a nonhuman primate species widely used in toxicological studies. In this study, genetic variants found in cynomolgus CYP1A1, CYP2C9 (formerly CYP2C43), CYP2C19 (CYP2C75), and CYP3A4 (CYP3A8) were assessed on functional importance. Resequencing of CYP1A1 in cynomolgus macaques found 18 nonsynonymous variants, of which M121I and V382I were located in SRSs, domains potentially important for P450 function. By further analyzing these two variants, V382I was significantly associated with lower drug-metabolizing activities in the liver for the heterozygotes than the wild types. Similarly, the heterozygotes or homozygotes of CYP2C9 variants (A82V and H344R) and CYP2C19 variant (A490V) showed significantly lower drug-metabolizing activities in the liver than the wild types. Moreover, the homozygotes of CYP3A4 variant (S437N) showed significantly higher activities than the wild type in the liver. Kinetic analyses using recombinant proteins revealed that CYP2C9 variants (A82V and H344R) showed substantially lower Ks values than the wild type, although CYP1A1 variant (V382I) showed kinetic parameters similar to the wild type. Likewise, CYP2C19 variant (A490V) showed substantially a lower Vmax/ Km value than the wild type, whereas CYP3A4 variant (S437N) showed a higher Vmax/ Km value than the wild type. These results suggest the toxicologically functional importance of CYP2C9 variants (A82V and H344R), CYP2C19 variant (A490V), and CYP3A4 variant (S437N) for hepatic drug metabolism in cynomolgus macaques.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Shin Nippon Biomedical Laboratories, Ltd., Kainan , Wakayama 642-0017 , Japan
| | - Shotaro Uehara
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo 194-8543 , Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo 194-8543 , Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo 194-8543 , Japan
| |
Collapse
|
15
|
Uno Y, Murayama N, Kato M, Tanaka S, Ohkoshi T, Yamazaki H. Genetic Variants of Glutathione S-Transferase GSTT1 and GSTT2 in Cynomolgus Macaques: Identification of GSTT Substrates and Functionally Relevant Alleles. Chem Res Toxicol 2018; 31:1086-1091. [PMID: 30169019 DOI: 10.1021/acs.chemrestox.8b00198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Glutathione S-transferase (GST) is a family of important drug-metabolizing enzymes, conjugating endogenous and exogenous compounds. Genetic polymorphisms result in the inter-individual variability of GST activity in humans. Especially, human GSTT1 and GSTT2 null alleles are associated with toxicity and various cancers derived from chemicals. Cynomolgus macaque, a nonhuman primate species widely used in drug metabolism studies, has molecular and enzymatic similarities of GSTs to the human orthologs; however, genetic polymorphisms have not been investigated in this species. In this study, resequencing of GSTT1 and GSTT2 in 64 cynomolgus and 32 rhesus macaques found 15 nonsynonymous variants and 1 nonsense variant for GSTT1 and 15 nonsynonymous variants for GSTT2. Some of these GSTT variants were distributed differently in Indochinese and Indonesian cynomolgus macaques and rhesus macaques. For analysis of functional relevance of the GSTT variants, 1-iodohexane and dibromomethane were determined to be suitable substrates for cynomolgus GSTT1 and GSTT2. However, the conjugation activities were roughly correlated with GSTT protein levels immunochemically quantified in cynomolgus liver samples with no statistical significances, implying the contributions of the GST genetic variants. Among the GSTT1 variants identified, the animals carrying R76C and D125G mutations showed lower conjugation activities toward dibromomethane than those of the wild-type in liver cytosolic fractions. Moreover, the recombinant R76C/D125G and D125G GSTT variant proteins showed significantly lower 1-iodohexane or dibromomethane conjugation activities than those of the wild-type protein. Therefore, inter-animal variability of GSTT-dependent drug metabolism is at least partly accounted for by GSTT1 and possibly GSTT2 variants in cynomolgus and rhesus macaques.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Shin Nippon Biomedical Laboratories, Ltd. , 16-1 Minami Akasaka , Kainan 642-0017 , Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , 3-3165 Higashi-tamagawa Gakuen , Machida, Tokyo 194-8543 , Japan
| | - Masami Kato
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , 3-3165 Higashi-tamagawa Gakuen , Machida, Tokyo 194-8543 , Japan
| | - Saki Tanaka
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , 3-3165 Higashi-tamagawa Gakuen , Machida, Tokyo 194-8543 , Japan
| | - Tomoko Ohkoshi
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , 3-3165 Higashi-tamagawa Gakuen , Machida, Tokyo 194-8543 , Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , 3-3165 Higashi-tamagawa Gakuen , Machida, Tokyo 194-8543 , Japan
| |
Collapse
|
16
|
Uno Y, Takahira R, Murayama N, Ishii Y, Ikenaka Y, Ishizuka M, Yamazaki H, Ikushiro S. Molecular and functional characterization of UDP-glucuronosyltransferase 1A in cynomolgus macaques. Biochem Pharmacol 2018; 155:172-181. [DOI: 10.1016/j.bcp.2018.06.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 06/22/2018] [Indexed: 12/19/2022]
|
17
|
Chaney ME, Piontkivska H, Tosi AJ. Retained duplications and deletions of CYP2C genes among primates. Mol Phylogenet Evol 2018; 125:204-212. [PMID: 29631055 DOI: 10.1016/j.ympev.2018.03.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/16/2018] [Accepted: 03/30/2018] [Indexed: 12/12/2022]
Abstract
The human genome encodes about 60 functional enzymes of the cytochrome P450 superfamily, including four functional enzymes of the cytochrome P450 2C (CYP2C) subfamily. These enzymes have been shown to metabolize drugs and xenobiotic toxins, such as those in the diet, and are therefore of great importance for biomedical research and applications. While the pharmacology of P450 enzymes has been studied extensively, our understanding of molecular evolution of this gene family is incomplete, in part because a great variation exists in the number of CYP2C homologs across genomes. In humans, the enzymes encoded by these genes are responsible for the metabolism of more than 20% of clinical drugs, but this is not the naturalistic function of these enzymes, which is the metabolism of xenobiotics such as plant secondary metabolites. In this paper, we sought to correlate evolutionary relationships among primate CYP2C genes with known dietary profiles from these species, testing the hypothesis that these genes have evolved under the pressure of dietary toxins. Aside from a small number of deeply divergent genes, primate CYP2C paralogs form three separate clades: CYP2C18, CYP2C9/CYP2C19, and CYP2C8/CYP2C20. Our results showed that the CYP2C18 gene has been separately lost in Nomascus leucogenys and the Panini genomes, and there is no evidence that this gene has been under any positive selection among primates. While CYP2C20 has been retained in cercopithecoids, orthologous loci were separately lost in platyrrhines and hominoids. Notably, nine codons exhibited signature of positive selection. Finally, the CYP2C19 locus was duplicated in basal catarrhines, resulting in the birth of CYP2C9; but the ancestral locus was only retained in hominoid taxa. Overall, our findings support the hypothesis that primate CYP2C genes have evolved in response to selective pressures provided by dietary toxins, although not all gene clusters have evolved in the same manner. Our results may indicate an evolutionarily deep difference in ecology or physiology among higher-order primate taxa.
Collapse
Affiliation(s)
- Morgan E Chaney
- Dept. of Anthropology, Kent State University, Kent, OH 44242, USA; School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA.
| | - Helen Piontkivska
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA; Dept. of Biological Sciences, Kent State University, Kent, OH 44242, USA.
| | - Anthony J Tosi
- Dept. of Anthropology, Kent State University, Kent, OH 44242, USA; School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA.
| |
Collapse
|
18
|
Uno Y, Uehara S, Yamazaki H. Polymorphisms of cytochrome P450 2B6 (CYP2B6) in cynomolgus and rhesus macaques. J Med Primatol 2018; 47:232-237. [PMID: 29468688 DOI: 10.1111/jmp.12336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND Cytochrome P450 2B6 (CYP2B6) is an important drug-metabolizing enzyme and is expressed in liver. Although human CYP2B6 variants account for variable enzyme properties among individuals and populations, CYP2B6 genetic variants have not been investigated in cynomolgus macaques, widely used in drug metabolism studies. METHODS CYP2B6 was resequenced in 120 cynomolgus macaques and 23 rhesus macaques by direct sequencing. RESULTS Twenty-three non-synonymous variants were found, of which 12 and 3 were unique to cynomolgus macaques and rhesus macaques, respectively. By functional characterization using the 14 variant proteins, 8 variants (V114I, R253C, M435I, V459M, L465P, C475S, R487C, and R487H) showed different rate (>1.5-fold) of testosterone 16β-hydroxylation to wild type. However, the four variants (M435I, L465P, C475S, and R487H) were analyzed in liver microsomes, and the catalytic rates were not substantially different from wild type. CONCLUSIONS Macaque CYP2B6 was polymorphic, and the genotype could partly account for variable enzyme activities of macaque CYP2B6.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Japan
| | - Shotaro Uehara
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan
| |
Collapse
|
19
|
Uehara S, Uno Y, Yamazaki H. Hepatic expression of cytochrome P450 enzymes in non-human primate species. J Med Primatol 2017; 46:347-351. [PMID: 28664555 DOI: 10.1111/jmp.12288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2017] [Indexed: 12/15/2022]
Abstract
Cytochromes P450 (P450) largely remain to be characterized in great apes. Comparative immunochemical detection of drug metabolizing forms of P450s 1A, 2A, 2B, 2C, 2D, 2E, 2J, 3A, 4A, and 4F in liver microsomes from chimpanzees, gorillas, orangutans, gibbons, cynomolgus and rhesus macaques, and common marmosets were carried out.
Collapse
Affiliation(s)
- Shotaro Uehara
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - Yasuhiro Uno
- Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan.,Laboratory of Translational Research, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| |
Collapse
|
20
|
Utoh M, Kusama T, Miura T, Mitsui M, Kawano M, Hirano T, Shimizu M, Uno Y, Yamazaki H. R-warfarin clearances from plasma associated with polymorphic cytochrome P450 2C19 and simulated by individual physiologically based pharmacokinetic models for 11 cynomolgus monkeys. Xenobiotica 2017; 48:206-210. [DOI: 10.1080/00498254.2017.1288945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Masahiro Utoh
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan, and
- Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories Ltd, Kainan, Wakayama, Japan
| | - Takashi Kusama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan, and
| | - Tomonori Miura
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan, and
| | - Marina Mitsui
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan, and
| | - Mirai Kawano
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan, and
| | - Takahiro Hirano
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan, and
- Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories Ltd, Kainan, Wakayama, Japan
| | - Makiko Shimizu
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan, and
| | - Yasuhiro Uno
- Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories Ltd, Kainan, Wakayama, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan, and
| |
Collapse
|
21
|
Koyama S, Fukuda K, Watanabe S, Matsushita A, Tsuchiya H, Fujinami N, Kohara S, Murayama N, Nagano M, Yamazaki H, Fukuzaki K, Uno Y, Hosoi Y. CYP2C76 deficiency is embryonic lethal in cynomolgus macaques: The potential role of CYP2C76 in early embryogenesis. Drug Metab Pharmacokinet 2017; 32:112-115. [PMID: 28153493 DOI: 10.1016/j.dmpk.2016.10.411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/17/2016] [Accepted: 10/17/2016] [Indexed: 10/20/2022]
Abstract
Cynomolgus macaques are an important primate species for drug metabolism studies; however cynomolgus CYP2C76, an important drug-metabolizing enzyme, accounts for drug metabolism differences to humans, so that CYP2C76-null animals might show drug-metabolizing properties more similar to humans. In this study, attempts were made to produce CYP2C76-null animals by assisted reproduction technology. Oocytes and sperm collected from the heterozygotes for the null allele (c.449TG > A) were subjected to intracytoplasmic sperm injection, and the embryos produced were cultured in vitro through the blastocyst stage. Preimplantation genetic diagnosis using a biopsied portion of the blastocyst revealed that none of the 32 blastocysts analyzed were homozygotes. In contrast, 2 of the 20 embryos analyzed were homozygotes at the 8-cell stage, indicating that CYP2C76-null embryos most likely stop developing between the 8-cell and blastocyst stage. By polymerase chain reaction, expression of CYP2C76 mRNA was detected in oocytes and blastocysts, but not in 2-, 4-, 8-, or 16/32-cell stage embryos. Metabolic assays showed that CYP2C76 metabolized progesterone. These results indicated that CYP2C76 null was likely embryonic lethal, suggesting its potential role during early embryogenesis in cynomolgus macaques.
Collapse
Affiliation(s)
- Shuzo Koyama
- Drug Safety Research Center (DSR), Shin Nippon Biomedical Laboratories (SNBL), Ltd., Kagoshima, Japan; SNBL USA, Ltd., Everett, WA, USA
| | - Koji Fukuda
- Drug Safety Research Center (DSR), Shin Nippon Biomedical Laboratories (SNBL), Ltd., Kagoshima, Japan; SNBL USA, Ltd., Everett, WA, USA
| | - Sho Watanabe
- Drug Safety Research Center (DSR), Shin Nippon Biomedical Laboratories (SNBL), Ltd., Kagoshima, Japan; SNBL USA, Ltd., Everett, WA, USA
| | - Akinori Matsushita
- Drug Safety Research Center (DSR), Shin Nippon Biomedical Laboratories (SNBL), Ltd., Kagoshima, Japan; Pharmacokinetics and Bioanalysis Center (PBC), Shin Nippon Biomedical Laboratories (SNBL), Ltd., Kainan, Japan
| | - Hideaki Tsuchiya
- Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Japan
| | - Nahoko Fujinami
- Graduate School of Biology-Oriented Science and Technology, Kinki University, Kinokawa, Japan
| | - Sakae Kohara
- Pharmacokinetics and Bioanalysis Center (PBC), Shin Nippon Biomedical Laboratories (SNBL), Ltd., Kainan, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan
| | - Masashi Nagano
- Laboratory of Theriogenology, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan
| | - Koichiro Fukuzaki
- Drug Safety Research Center (DSR), Shin Nippon Biomedical Laboratories (SNBL), Ltd., Kagoshima, Japan; SNBL USA, Ltd., Everett, WA, USA
| | - Yasuhiro Uno
- Pharmacokinetics and Bioanalysis Center (PBC), Shin Nippon Biomedical Laboratories (SNBL), Ltd., Kainan, Japan.
| | - Yoshihiko Hosoi
- Graduate School of Biology-Oriented Science and Technology, Kinki University, Kinokawa, Japan.
| |
Collapse
|
22
|
Haarhoff ZE, Kramer MA, Zvyaga TA, Zhang J, Bhutani P, Subramanian M, Rodrigues AD. Comprehensive evaluation of liver microsomal cytochrome P450 3A (CYP3A) inhibition: comparison of cynomolgus monkey and human. Xenobiotica 2016; 47:470-478. [DOI: 10.1080/00498254.2016.1203042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
| | | | | | - Jun Zhang
- Bristol-Myers Squibb, Wallingford, CT, USA,
| | - Priyadeep Bhutani
- Biocon Bristol-Myers Squibb Research and Development Center, Syngene International Limited, Bangalore, Karnataka, India
| | - Murali Subramanian
- Biocon Bristol-Myers Squibb Research and Development Center, Syngene International Limited, Bangalore, Karnataka, India
| | | |
Collapse
|
23
|
Hosaka S, Murayama N, Satsukawa M, Uehara S, Shimizu M, Iwasaki K, Iwano S, Uno Y, Yamazaki H. Identification of putative substrates for cynomolgus monkey cytochrome P450 2C8 by substrate depletion assays with 22 human P450 substrates and inhibitors. Biopharm Drug Dispos 2016; 37:310-3. [DOI: 10.1002/bdd.1998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 10/30/2015] [Accepted: 11/06/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Shinya Hosaka
- Showa Pharmaceutical University; Machida Tokyo 194-8543 Japan
- Kaken Pharmaceutical Co.; Ltd; Shizuoka 426-8646 Japan
| | - Norie Murayama
- Showa Pharmaceutical University; Machida Tokyo 194-8543 Japan
| | | | - Shotaro Uehara
- Showa Pharmaceutical University; Machida Tokyo 194-8543 Japan
| | - Makiko Shimizu
- Showa Pharmaceutical University; Machida Tokyo 194-8543 Japan
| | - Kazuhide Iwasaki
- Shin Nippon Biomedical Laboratories; Ltd; Kainan Wakayama 642-0017 Japan
| | - Shunsuke Iwano
- Showa Pharmaceutical University; Machida Tokyo 194-8543 Japan
- Novartis Pharma K.K.; Tokyo 106-8618 Japan
| | - Yasuhiro Uno
- Shin Nippon Biomedical Laboratories; Ltd; Kainan Wakayama 642-0017 Japan
| | | |
Collapse
|
24
|
Uehara S, Uno Y, Yuki Y, Inoue T, Sasaki E, Yamazaki H. A New Marmoset P450 4F12 Enzyme Expressed in Small Intestines and Livers Efficiently Metabolizes Antihistaminic Drug Ebastine. ACTA ACUST UNITED AC 2016; 44:833-41. [PMID: 27044800 DOI: 10.1124/dmd.116.070367] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/01/2016] [Indexed: 01/08/2023]
Abstract
Common marmosets (Callithrix jacchus) are attracting attention as animal models in preclinical studies for drug development. However, cytochrome P450s (P450s), major drug-metabolizing enzymes, have not been fully identified and characterized in marmosets. In this study, based on the four novel P450 4F genes found on the marmoset genome, we successfully isolated P450 4F2, 4F3B, 4F11, and 4F12 cDNAs in marmoset livers. Deduced amino acid sequences of the four marmoset P450 4F forms exhibited high sequence identities (87%-93%) to the human and cynomolgus monkey P450 4F homologs. Marmoset P450 4F3B and 4F11 mRNAs were predominantly expressed in livers, whereas marmoset P450 4F2 and 4F12 mRNAs were highly expressed in small intestines and livers. Four marmoset P450 4F proteins heterologously expressed in Escherichia coli catalyzed the ω-hydroxylation of leukotriene B4 In addition, marmoset P450 4F12 effectively catalyzed the hydroxylation of antiallergy drug ebastine, a human P450 2J/4F probe substrate. Ebastine hydroxylation activities by small intestine and liver microsomes from marmosets and cynomolgus monkeys showed greatly higher values than those of humans. Ebastine hydroxylation activities by marmoset and cynomolgus monkey small intestine microsomes were inhibited (approximately 60%) by anti-P450 4F antibodies, unlike human small intestine microsomes, suggesting that contribution of P450 4F enzymes for ebastine hydroxylation in the small intestine might be different between marmosets/cynomolgus monkeys and humans. These results indicated that marmoset P450 4F2, 4F3B, 4F11, and 4F12 were expressed in livers and/or small intestines and were functional in the metabolism of endogenous and exogenous compounds, similar to those of cynomolgus monkeys and humans.
Collapse
Affiliation(s)
- Shotaro Uehara
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., Y.Y., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan (Y.U.); Department of Applied Developmental Biology (T.I.) and Center of Applied Developmental Biology (E.S.), Central Institute for Experimental Animals, Kawasaki, Japan; and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| | - Yasuhiro Uno
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., Y.Y., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan (Y.U.); Department of Applied Developmental Biology (T.I.) and Center of Applied Developmental Biology (E.S.), Central Institute for Experimental Animals, Kawasaki, Japan; and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| | - Yukako Yuki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., Y.Y., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan (Y.U.); Department of Applied Developmental Biology (T.I.) and Center of Applied Developmental Biology (E.S.), Central Institute for Experimental Animals, Kawasaki, Japan; and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| | - Takashi Inoue
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., Y.Y., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan (Y.U.); Department of Applied Developmental Biology (T.I.) and Center of Applied Developmental Biology (E.S.), Central Institute for Experimental Animals, Kawasaki, Japan; and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| | - Erika Sasaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., Y.Y., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan (Y.U.); Department of Applied Developmental Biology (T.I.) and Center of Applied Developmental Biology (E.S.), Central Institute for Experimental Animals, Kawasaki, Japan; and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., Y.Y., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan (Y.U.); Department of Applied Developmental Biology (T.I.) and Center of Applied Developmental Biology (E.S.), Central Institute for Experimental Animals, Kawasaki, Japan; and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| |
Collapse
|
25
|
Okamatsu G, Komatsu T, Ono Y, Inoue H, Uchide T, Onaga T, Endoh D, Kitazawa T, Hiraga T, Uno Y, Teraoka H. Characterization of feline cytochrome P450 2B6. Xenobiotica 2016; 47:93-102. [DOI: 10.3109/00498254.2016.1145754] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Gaku Okamatsu
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan and
| | - Tetsuya Komatsu
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan and
| | - Yuka Ono
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan and
| | - Hiroki Inoue
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan and
| | - Tsuyoshi Uchide
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan and
| | - Takenori Onaga
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan and
| | - Daiji Endoh
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan and
| | - Takio Kitazawa
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan and
| | - Takeo Hiraga
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan and
| | - Yasuhiro Uno
- Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan
| | - Hiroki Teraoka
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan and
| |
Collapse
|
26
|
Uehara S, Uno Y, Inoue T, Okamoto E, Sasaki E, Yamazaki H. Marmoset cytochrome P450 2J2 mainly expressed in small intestines and livers effectively metabolizes human P450 2J2 probe substrates, astemizole and terfenadine. Xenobiotica 2016; 46:977-85. [PMID: 26899760 DOI: 10.3109/00498254.2016.1146366] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
1. Common marmoset (Callithrix jacchus), a New World Monkey, has potential to be a useful animal model in preclinical studies. However, drug metabolizing properties have not been fully understood due to insufficient information on cytochrome P450 (P450), major drug metabolizing enzymes. 2. Marmoset P450 2J2 cDNA was isolated from marmoset livers. The deduced amino acid sequence showed a high-sequence identity (91%) with cynomolgus monkey and human P450 2J2 enzymes. A phylogenetic tree revealed that marmoset P450 2J2 was evolutionarily closer to cynomolgus monkey and human P450 2J2 enzymes, than P450 2J forms in pigs, rabbits, rats or mice. 3. Marmoset P450 2J2 mRNA was abundantly expressed in the small intestine and liver, and to a lesser extent in the brain, lung and kidney. Immunoblot analysis also showed expression of marmoset P450 2J2 protein in the small intestine and liver. 4. Enzyme assays using marmoset P450 2J2 protein heterologously expressed in Escherichia coli indicated that marmoset P450 2J2 effectively catalyzed astemizole O-demethylation and terfenadine t-butyl hydroxylation, similar to human and cynomolgus monkey P450 2J2 enzymes. 5. These results suggest the functional characteristics of P450 2J2 enzymes are similar among marmosets, cynomolgus monkeys and humans.
Collapse
Affiliation(s)
- Shotaro Uehara
- a Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo , Japan
| | - Yasuhiro Uno
- b Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd , Kainan , Wakayama , Japan
| | - Takashi Inoue
- c Department of Applied Developmental Biology , Central Institute for Experimental Animals , Kawasaki , Japan , and
| | - Eriko Okamoto
- a Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo , Japan
| | - Erika Sasaki
- c Department of Applied Developmental Biology , Central Institute for Experimental Animals , Kawasaki , Japan , and.,d Keio Advanced Research Center, Keio University , Minato-Ku, Tokyo , Japan
| | - Hiroshi Yamazaki
- a Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo , Japan
| |
Collapse
|
27
|
Hosaka S, Murayama N, Satsukawa M, Uehara S, Shimizu M, Iwasaki K, Iwano S, Uno Y, Yamazaki H. Similar substrate specificity of cynomolgus monkey cytochrome P450 2C19 to reported human P450 2C counterpart enzymes by evaluation of 89 drug clearances. Biopharm Drug Dispos 2015; 36:636-43. [DOI: 10.1002/bdd.1991] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 08/22/2015] [Accepted: 08/30/2015] [Indexed: 01/19/2023]
Affiliation(s)
- Shinya Hosaka
- Showa Pharmaceutical University; Machida Tokyo 194-8543 Japan
- Kaken Pharmaceutical Co., LTD.; Shizuoka 426-8646 Japan
| | - Norie Murayama
- Showa Pharmaceutical University; Machida Tokyo 194-8543 Japan
| | | | - Shotaro Uehara
- Showa Pharmaceutical University; Machida Tokyo 194-8543 Japan
| | - Makiko Shimizu
- Showa Pharmaceutical University; Machida Tokyo 194-8543 Japan
| | - Kazuhide Iwasaki
- Shin Nippon Biomedical Laboratories, Ltd; Kainan Wakayama 642-0017 Japan
| | - Shunsuke Iwano
- Showa Pharmaceutical University; Machida Tokyo 194-8543 Japan
- Novartis Pharma K.K.; Tokyo 106-8618 Japan
| | - Yasuhiro Uno
- Shin Nippon Biomedical Laboratories, Ltd; Kainan Wakayama 642-0017 Japan
| | | |
Collapse
|
28
|
Uehara S, Uno Y, Hagihira Y, Murayama N, Shimizu M, Inoue T, Sasaki E, Yamazaki H. Marmoset cytochrome P450 2D8 in livers and small intestines metabolizes typical human P450 2D6 substrates, metoprolol, bufuralol and dextromethorphan. Xenobiotica 2015; 45:766-72. [PMID: 25801057 DOI: 10.3109/00498254.2015.1019595] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
1. Although the New World non-human primate, the common marmoset (Callithrix jacchus), is a potentially useful animal model, comprehensive understanding of drug metabolizing enzymes is insufficient. 2. A cDNA encoding a novel cytochrome P450 (P450) 2D8 was identified in marmosets. The amino acid sequence deduced from P450 2D8 cDNA showed a high sequence identity (83-86%) with other primate P450 2Ds. Phylogenetic analysis showed that marmoset P450 2D8 was closely clustered with human P450 2D6, unlike P450 2Ds of miniature pig, dog, rabbit, guinea pig, mouse or rat. 3. Marmoset P450 2D8 mRNA was predominantly expressed in the liver and small intestine among the tissues types analyzed, whereas marmoset P450 2D6 mRNA was expressed predominantly in the liver where P450 2D protein was detected by immunoblotting. 4. By metabolic assays using marmoset P450 2D8 protein heterologously expressed in Escherichia coli, although P450 2D8 exhibits lower catalytic efficiency compared to marmoset and human P450 2D6 enzymes, P450 2D8 mediated O-demethylations of metoprolol and dextromethorphan and bufuralol 1'-hydroxylation. 5. These results suggest that marmoset P450 2D8 (also expressed in the extrahepatic tissues) has potential roles in drug metabolism in a similar manner to those of human and marmoset P450 2D6.
Collapse
Affiliation(s)
- Shotaro Uehara
- a Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo , Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Hosaka S, Murayama N, Satsukawa M, Uehara S, Shimizu M, Iwasaki K, Iwano S, Uno Y, Yamazaki H. Comprehensive Evaluation for Substrate Selectivity of Cynomolgus Monkey Cytochrome P450 2C9, a New Efavirenz Oxidase. Drug Metab Dispos 2015; 43:1119-22. [DOI: 10.1124/dmd.115.063925] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/06/2015] [Indexed: 11/22/2022] Open
|
30
|
Uehara S, Uno Y, Inoue T, Sasaki E, Yamazaki H. Substrate Selectivities and Catalytic Activities of Marmoset Liver Cytochrome P450 2A6 Differed from Those of Human P450 2A6. Drug Metab Dispos 2015; 43:969-76. [DOI: 10.1124/dmd.115.063909] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/09/2015] [Indexed: 11/22/2022] Open
|
31
|
Uehara S, Uno Y, Inoue T, Murayama N, Shimizu M, Sasaki E, Yamazaki H. Activation and deactivation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine by cytochrome P450 enzymes and flavin-containing monooxygenases in common marmosets (Callithrix jacchus). Drug Metab Dispos 2015; 43:735-42. [PMID: 25735838 DOI: 10.1124/dmd.115.063594] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The potential proneurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induces Parkinson-like syndromes in common marmosets, other primates, and humans. MPTP is metabolically activated to 1-methyl-4-phenyl-2,3-dihydropyridinium and 1-methyl-4-phenylpyridinium ions (MPDP(+) and MPP(+), respectively) by desaturation reactions. MPTP is deactivated to 4-phenyl-1,2,3,6-tetrahydropyridine (PTP) by N-demethylation and is also deactivated to MPTP N-oxide. The roles of cytochrome P450 (P450) enzymes and flavin-containing monooxygenases (FMOs) in the oxidative metabolism of MPTP-treated marmosets are not yet fully clarified. This study aimed to elucidate P450- and FMO-dependent MPTP metabolism in marmoset liver and brain. Rates of MPTP N-oxygenation in liver microsomes were similar to those in brain microsomes from 11 individual marmosets (substrate concentration, 50 μM) and were correlated with rates of benzydamine N-oxygenation (r = 0.75, P < 0.05); the reactions were inhibited by methimazole (10 μM). MPTP N-oxygenation was efficiently mediated by recombinantly expressed marmoset FMO3. Rates of PTP formation by MPTP N-demethylation in marmoset liver microsomes were correlated with bufuralol 1'-hydroxylation rates (r = 0.77, P < 0.01) and were suppressed by quinidine (1 μM), thereby indicating the importance of marmoset CYP2D6 in PTP formation. MPTP transformations to MPDP(+) and MPP(+) were efficiently catalyzed by recombinant marmoset CYP2D6 and human CYP1A2. These results indicated the contributions of multiple drug-metabolizing enzymes to MPTP oxidation, especially marmoset FMO3 in deactivation (N-oxygenation) and marmoset CYP2D6 for both MPTP deactivation and MPTP activation to MPDP(+) and MPP(+). These findings provide a foundation for understanding MPTP metabolism and for the successful production of preclinical marmoset models.
Collapse
Affiliation(s)
- Shotaro Uehara
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., N.M., M.S., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan (Y.U.); Department of Applied Developmental Biology, Central Institute for Experimental Animals, Kawasaki, Kanagawa, Japan (T.I., E.S.); and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| | - Yasuhiro Uno
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., N.M., M.S., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan (Y.U.); Department of Applied Developmental Biology, Central Institute for Experimental Animals, Kawasaki, Kanagawa, Japan (T.I., E.S.); and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| | - Takashi Inoue
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., N.M., M.S., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan (Y.U.); Department of Applied Developmental Biology, Central Institute for Experimental Animals, Kawasaki, Kanagawa, Japan (T.I., E.S.); and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., N.M., M.S., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan (Y.U.); Department of Applied Developmental Biology, Central Institute for Experimental Animals, Kawasaki, Kanagawa, Japan (T.I., E.S.); and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| | - Makiko Shimizu
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., N.M., M.S., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan (Y.U.); Department of Applied Developmental Biology, Central Institute for Experimental Animals, Kawasaki, Kanagawa, Japan (T.I., E.S.); and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| | - Erika Sasaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., N.M., M.S., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan (Y.U.); Department of Applied Developmental Biology, Central Institute for Experimental Animals, Kawasaki, Kanagawa, Japan (T.I., E.S.); and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., N.M., M.S., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan (Y.U.); Department of Applied Developmental Biology, Central Institute for Experimental Animals, Kawasaki, Kanagawa, Japan (T.I., E.S.); and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| |
Collapse
|
32
|
Okamatsu G, Komatsu T, Kubota A, Onaga T, Uchide T, Endo D, Kirisawa R, Yin G, Inoue H, Kitazawa T, Uno Y, Teraoka H. Identification and functional characterization of novel feline cytochrome P450 2A. Xenobiotica 2014; 45:503-10. [PMID: 25547627 DOI: 10.3109/00498254.2014.998322] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
1. Cytochrome P450s are the major metabolizing enzymes for xenobiotics in humans and other mammals. Although the domestic cat Felis catus, an obligate carnivore, is the most common companion animal, the properties of cytochrome P450 subfamilies are largely unknown. 2. We newly identified the feline CYP2A13, which consists of 494 deduced amino acids, showing the highest identity to CYP2As of dogs, followed by those of pigs, cattle and humans. 3. The feline CYP2A13 transcript and protein were expressed almost exclusively in the liver without particular sex-dependent differences. 4. The feline CYP2A13 protein heterogeneously expressed in Escherichia coli showed metabolic activity similar to those of human and canine CYP2As for coumarin, 7-ethoxycoumarin and nicotine. 5. The results indicate the importance of CYP2A13 in systemic metabolism of xenobiotics in cats.
Collapse
Affiliation(s)
- Gaku Okamatsu
- School of Veterinary Medicine, Rakuno Gakuen University , Ebetsu, Hokkaido , Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Koyanagi T, Nakanishi Y, Murayama N, Yamaura Y, Ikeda K, Yano K, Uehara S, Utoh M, Kim S, Uno Y, Yamazaki H. Age-related changes of hepatic clearances of cytochrome P450 probes, midazolam andR-/S-warfarin in combination with caffeine, omeprazole and metoprolol in cynomolgus monkeys usingin vitro–in vivocorrelation. Xenobiotica 2014; 45:312-21. [DOI: 10.3109/00498254.2014.979271] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
34
|
Hosaka S, Murayama N, Satsukawa M, Shimizu M, Uehara S, Fujino H, Iwasaki K, Iwano S, Uno Y, Yamazaki H. Evaluation of 89 Compounds for Identification of Substrates for Cynomolgus Monkey CYP2C76, a New Bupropion/Nifedipine Oxidase. Drug Metab Dispos 2014; 43:27-33. [DOI: 10.1124/dmd.114.061275] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
35
|
Uno Y, Matsushita A, Shukuya M, Matsumoto Y, Murayama N, Yamazaki H. CYP2C19 polymorphisms account for inter-individual variability of drug metabolism in cynomolgus macaques. Biochem Pharmacol 2014; 91:242-8. [DOI: 10.1016/j.bcp.2014.07.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/06/2014] [Accepted: 07/07/2014] [Indexed: 11/29/2022]
|
36
|
Uehara S, Murayama N, Nakanishi Y, Nakamura C, Hashizume T, Zeldin DC, Yamazaki H, Uno Y. Immunochemical quantification of cynomolgus CYP2J2, CYP4A and CYP4F enzymes in liver and small intestine. Xenobiotica 2014; 45:124-30. [PMID: 25138712 DOI: 10.3109/00498254.2014.952800] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
1. An increasing number of studies have indicated the roles of CYP4 proteins in drug metabolism; however, CYP4 expression has not been measured in cynomolgus monkeys, an important animal species for drug metabolism studies. 2. In this study, cynomolgus CYP4A11, CYP4F2/3, CYP4F11 and CYP4F12, along with CYP2J2, were immunoquantified using selective antibodies in 28 livers and 35 small intestines, and their content was compared with CYP1A, CYP2A, CYP2B6, CYP2C9/19, CYP2D, CYP2E1, CYP3A4 and CYP3A5, previously quantified. 3. In livers, CYP2J2, CYP4A11, CYP4F2/3, CYP4F11 and CYP4F12, varied 1.3- to 4.3-fold, represented 11.2, 14.4, 8.0, 2.7 and 0.3% of total immunoquantified CYP1-4 proteins, respectively. 4. In small intestines, CYP2J2, CYP4F2/3, CYP4F11 and CYP4F12, varied 2.4- to 9.7-fold, represented 6.9, 36.4, 2.4 and 9.3% of total immunoquantified CYP1-4 proteins, respectively, making CYP4F the most abundant P450 subfamily in small intestines. CYP4A11 was under the detection limit in all of the samples analyzed. 5. Significant correlations were found in liver for CYP4A11 with lauric acid 11-/12-hydroxylation and for CYP4F2/3 and CYP4F11 with astemizole hydroxylation. 6. This study revealed the relatively abundant contents of cynomolgus CYP2J2, CYP4A11 and CYP4Fs in liver and/or small intestine, suggesting their potential roles for the metabolism of xenobitotics and endogenous substrates.
Collapse
Affiliation(s)
- Shotaro Uehara
- Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd. , Kainan, Wakayama , Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Uno Y, Uehara S, Kohara S, Murayama N, Yamazaki H. Polymorphisms of CYP2D17 in Cynomolgus and Rhesus Macaques: an Evidence of the Genetic Basis for the Variability of CYP2D-Dependent Drug Metabolism. Drug Metab Dispos 2014; 42:1407-10. [DOI: 10.1124/dmd.114.059220] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
38
|
Qualitative de novo analysis of full length cDNA and quantitative analysis of gene expression for common marmoset (Callithrix jacchus) transcriptomes using parallel long-read technology and short-read sequencing. PLoS One 2014; 9:e100936. [PMID: 24977701 PMCID: PMC4076266 DOI: 10.1371/journal.pone.0100936] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/28/2014] [Indexed: 12/24/2022] Open
Abstract
The common marmoset (Callithrix jacchus) is a non-human primate that could prove useful as human pharmacokinetic and biomedical research models. The cytochromes P450 (P450s) are a superfamily of enzymes that have critical roles in drug metabolism and disposition via monooxygenation of a broad range of xenobiotics; however, information on some marmoset P450s is currently limited. Therefore, identification and quantitative analysis of tissue-specific mRNA transcripts, including those of P450s and flavin-containing monooxygenases (FMO, another monooxygenase family), need to be carried out in detail before the marmoset can be used as an animal model in drug development. De novo assembly and expression analysis of marmoset transcripts were conducted with pooled liver, intestine, kidney, and brain samples from three male and three female marmosets. After unique sequences were automatically aligned by assembling software, the mean contig length was 718 bp (with a standard deviation of 457 bp) among a total of 47,883 transcripts. Approximately 30% of the total transcripts were matched to known marmoset sequences. Gene expression in 18 marmoset P450- and 4 FMO-like genes displayed some tissue-specific patterns. Of these, the three most highly expressed in marmoset liver were P450 2D-, 2E-, and 3A-like genes. In extrahepatic tissues, including brain, gene expressions of these monooxygenases were lower than those in liver, although P450 3A4 (previously P450 3A21) in intestine and P450 4A11- and FMO1-like genes in kidney were relatively highly expressed. By means of massive parallel long-read sequencing and short-read technology applied to marmoset liver, intestine, kidney, and brain, the combined next-generation sequencing analyses reported here were able to identify novel marmoset drug-metabolizing P450 transcripts that have until now been little reported. These results provide a foundation for mechanistic studies and pave the way for the use of marmosets as model animals for drug development in the future.
Collapse
|
39
|
Uehara S, Murayama N, Nakanishi Y, Nakamura C, Hashizume T, Zeldin DC, Yamazaki H, Uno Y. Immunochemical detection of cytochrome P450 enzymes in small intestine microsomes of male and female untreated juvenile cynomolgus monkeys. Xenobiotica 2014; 44:769-74. [PMID: 24593267 DOI: 10.3109/00498254.2014.895882] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The expression of small intestinal cytochromes P450 (P450s) has not been systematically measured in cynomolgus monkeys, which are widely used in preclinical drug studies to predict pharmacokinetics and toxicity in humans: therefore, P450 content of small intestine was quantified in 35 cynomolgus monkeys by immunoblotting using 11 selective antibodies. CYP2D, CYP2J2, CYP3A4 and CYP3A5 were detected in all 35 animals, while CYP1A and CYP2C9/19 were detected in 31 and 17 animals, respectively. CYP2C9 and CYP2C19 were detected with the same antibody. CYP1D, CYP2A, CYP2B6, CYP2C76 and CYP2E1 were not detected in any of the 35 animals examined. On analysis of pooled microsomes (35 animals), CYP3A (3A4+3A5) was most abundant (79% of total immunoquantified CYP1-3 proteins), followed by CYP2J2 (13%), CYP2C9/19 (4%), CYP1A (3%) and CYP2D (0.4%). On the analysis of individual microsome samples, each P450 content varied 2-to-6-fold between animals, and no sex differences were observed in any P450 content. These findings should help to increase the understanding of drug metabolism, especially the first-pass effect, in cynomolgus monkey small intestines.
Collapse
Affiliation(s)
- Shotaro Uehara
- Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd. , Kainan, Wakayama , Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Selvakumar S, Bhutani P, Ghosh K, Krishnamurthy P, Kallipatti S, Selvam S, Ramarao M, Mandlekar S, Sinz MW, Rodrigues AD, Subramanian M. Expression and Characterization of Cynomolgus Monkey Cytochrome CYP3A4 in a Novel Human Embryonic Kidney Cell–Based Mammalian System. Drug Metab Dispos 2013; 42:369-76. [DOI: 10.1124/dmd.113.055491] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
41
|
Molecular and functional characterization of flavin-containing monooxygenases in cynomolgus macaque. Biochem Pharmacol 2013; 85:1837-47. [DOI: 10.1016/j.bcp.2013.04.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 04/16/2013] [Accepted: 04/16/2013] [Indexed: 11/23/2022]
|
42
|
Utoh M, Murayama N, Uno Y, Onose Y, Hosaka S, Fujino H, Shimizu M, Iwasaki K, Yamazaki H. Monkey liver cytochrome P450 2C9 is involved in caffeine 7-N-demethylation to form theophylline. Xenobiotica 2013; 43:1037-42. [PMID: 23679834 DOI: 10.3109/00498254.2013.793874] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Caffeine (1,3,7-trimethylxanthine) is a phenotyping substrate for human cytochrome P450 1A2. 3-N-Demethylation of caffeine is the main human metabolic pathway, whereas monkeys extensively mediate the 7-N-demethylation of caffeine to form pharmacological active theophylline. Roles of monkey P450 enzymes in theophylline formation from caffeine were investigated using individual monkey liver microsomes and 14 recombinantly expressed monkey P450 enzymes, and the results were compared with those for human P450 enzymes. Caffeine 7-N-demethylation activity in microsomes from 20 monkey livers was not strongly inhibited by α-naphthoflavone, quinidine or ketoconazole, and was roughly correlated with diclofenac 4'-hydroxylation activities. Monkey P450 2C9 had the highest activity for caffeine 7-N-demethylation. Kinetic analysis revealed that monkey P450 2C9 had a high Vmax/Km value for caffeine 7-N-demethylation, comparable to low Km value for monkey liver microsomes. Caffeine could dock favorably with monkey P450 2C9 modeled for 7-N-demethylation and with human P450 1A2 for 3-N-demethylation. The primary metabolite theophylline was oxidized to 8-hydroxytheophylline in similar ways by liver microsomes and by recombinant P450s in both humans and monkeys. These results collectively suggest a high activity for monkey liver P450 2C9 toward caffeine 7-N-demethylation, whereas, in humans, P450 1A2-mediated caffeine 3-N-demethylation is dominant.
Collapse
Affiliation(s)
- Masahiro Utoh
- Shin Nippon Biomedical Laboratories, Ltd., Pharmacokinetics and Bioanalysis Center , Kainan , Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Nakanishi Y, Yamashita H, Yoshikawa T, Tominaga T, Nojiri K, Sunaga Y, Muneoka A, Iwasaki K, Utoh M, Nakamura C, Yamazaki H, Uno Y. Cytochrome P450 metabolic activities in the small intestine of cynomolgus macaques bred in Cambodia, China, and Indonesia. Drug Metab Pharmacokinet 2013; 28:510-3. [PMID: 23648676 DOI: 10.2133/dmpk.dmpk-13-nt-031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cynomolgus macaques, used in drug metabolism studies due to their evolutionary closeness to humans, are mainly bred in Asian countries, including Cambodia, China, and Indonesia. Cytochromes P450 (P450s) are important drug-metabolizing enzymes, present in the liver and small intestine, major drug metabolizing organs. Previously, our investigation did not find statistically significant differences in hepatic P450 metabolic activities measured in cynomolgus macaques bred in Cambodia (MacfaCAM) and China (MacfaCHN). In the present study, P450 metabolic activity was investigated in the small intestine of MacfaCAM and MacfaCHN, and cynomolgus macaques bred in Indonesia (MacfaIDN) using P450 substrates, including 7-ethoxyresorufin, coumarin, bupropion, paclitaxel, diclofenac, S-mephenytoin, bufuralol, chlorzoxazone, and testosterone. The results indicated that P450 metabolic activity of the small intestine was not statistically significantly different (<2.0-fold) in MacfaCAM, MacfaCHN, and MacfaIDN. In addition, statistically significant sex differences were not observed (<2.0-fold) in any P450 metabolic activity in MacfaCAM as supported by mRNA expression results. These results suggest that P450 metabolic activity of the small intestine does not significantly differ statistically among MacfaCAM, MacfaCHN, and MacfaIDN.
Collapse
Affiliation(s)
- Yasuharu Nakanishi
- Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Maruyama J, Matsunaga T, Yamaori S, Sakamoto S, Kamada N, Nakamura K, Kikuchi S, Ohmori S. Differentiation of Monkey Embryonic Stem Cells to Hepatocytes by Feeder-Free Dispersion Culture and Expression Analyses of Cytochrome P450 Enzymes Responsible for Drug Metabolism. Biol Pharm Bull 2013; 36:292-8. [DOI: 10.1248/bpb.b12-00866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Junya Maruyama
- Department of Pharmacy, Shinshu University Hospital, 3–1–1 Asahi, Matsumoto 390–8621, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Ogawa K, Kato M, Houjo T, Ishigai M. A new approach to predicting human hepatic clearance of CYP3A4 substrates using monkey pharmacokinetic data. Xenobiotica 2012; 43:468-78. [DOI: 10.3109/00498254.2012.733831] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
46
|
Hosoi Y, Uno Y, Murayama N, Fujino H, Shukuya M, Iwasaki K, Shimizu M, Utoh M, Yamazaki H. Monkey liver cytochrome P450 2C19 is involved in R- and S-warfarin 7-hydroxylation. Biochem Pharmacol 2012; 84:1691-5. [PMID: 23041648 DOI: 10.1016/j.bcp.2012.09.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 09/25/2012] [Accepted: 09/25/2012] [Indexed: 02/06/2023]
Abstract
Cynomolgus monkeys are widely used as primate models in preclinical studies. However, some differences are occasionally seen between monkeys and humans in the activities of cytochrome P450 enzymes. R- and S-warfarin are model substrates for stereoselective oxidation in humans. In this current research, the activities of monkey liver microsomes and 14 recombinantly expressed monkey cytochrome P450 enzymes were analyzed with respect to R- and S-warfarin 6- and 7-hydroxylation. Monkey liver microsomes efficiently mediated both R- and S-warfarin 7-hydroxylation, in contrast to human liver microsomes, which preferentially catalyzed S-warfarin 7-hydroxylation. R-Warfarin 7-hydroxylation activities in monkey liver microsomes were not inhibited by α-naphthoflavone or ketoconazole, and were roughly correlated with P450 2C19 levels and flurbiprofen 4-hydroxylation activities in microsomes from 20 monkey livers. In contrast, S-warfarin 7-hydroxylation activities were not correlated with the four marker drug oxidation activities used. Among the 14 recombinantly expressed monkey P450 enzymes tested, P450 2C19 had the highest activities for R- and S-warfarin 7-hydroxylations. Monkey P450 3A4 and 3A5 slowly mediated R- and S-warfarin 6-hydroxylations. Kinetic analysis revealed that monkey P450 2C19 had high V(max) and low K(m) values for R-warfarin 7-hydroxylation, comparable to those for monkey liver microsomes. Monkey P450 2C19 also mediated S-warfarin 7-hydroxylation with V(max) and V(max)/K(m) values comparable to those for recombinant human P450 2C9. R-warfarin could dock favorably into monkey P450 2C19 modeled. These results collectively suggest high activities for monkey liver P450 2C19 toward R- and S-warfarin 6- and 7-hydroxylation in contrast to the saturation kinetics of human P450 2C9-mediated S-warfarin 7-hydroxylation.
Collapse
Affiliation(s)
- Yoshio Hosoi
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Yoda N, Emoto C, Date S, Kondo S, Miyake M, Nakazato S, Umehara K, Kashiyama E. Characterization of intestinal and hepatic P450 enzymes in cynomolgus monkeys with typical substrates and inhibitors for human P450 enzymes. Xenobiotica 2012; 42:719-30. [DOI: 10.3109/00498254.2012.656732] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
48
|
Ise R, Nakanishi Y, Kohara S, Yamashita H, Yoshikawa T, Iwasaki K, Nagata R, Fukuzaki K, Utoh M, Nakamura C, Yamazaki H, Uno Y. Expression profile of hepatic genes in cynomolgus macaques bred in Cambodia, China, and Indonesia: implications for cytochrome P450 genes. Drug Metab Pharmacokinet 2011; 27:307-16. [PMID: 22166892 DOI: 10.2133/dmpk.dmpk-11-rg-133] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cynomolgus macaques, frequently used in drug metabolism studies, are bred mainly in the countries of Asia; however, comparative studies of drug metabolism between cynomolgus macaques bred in these countries have not been conducted. In this study, hepatic gene expression profiles of cynomolgus macaques bred in Cambodia (mfCAM), China (mfCHN), and Indonesia (mfIDN) were analyzed. Microarray analysis revealed that expression of most hepatic genes, including drug-metabolizing enzyme genes, was not substantially different between mfCAM, mfCHN, and mfIDN; only 1.1% and 3.0% of all the gene probes detected differential expression (>2.5-fold) in mfCAM compared with mfCHN and mfIDN, respectively. Quantitative polymerase chain reaction showed that the expression levels of 14 cytochromes P450 (P450s) important for drug metabolism did not differ (>2.5-fold) in mfCAM, mfCHN, and mfIDN, validating the microarray data. In contrast, expression of CYP2B6 and CYP3A4 differed (>2.5-fold, p < 0.05) between cynomolgus (mfCAM, mfCHN, or mfIDN) and rhesus macaques, indicating greater differences in expression of P450 genes between the two lineages. Moreover, metabolic activities measured using 14 P450 substrates did not differ substantially (<1.5-fold) between mfCAM and mfCHN. These results suggest that gene expression profiles, including drug-metabolizing enzyme genes such as P450 genes, are similar in mfCAM, mfCHN, and mfIDN.
Collapse
Affiliation(s)
- Ryota Ise
- Drug Safety Research Center, Shin Nippon Biomedical Laboratories, Ltd., Kagoshima, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|