1
|
Radin DP, Cerne R, Witkin JM, Lippa A. Safety, Tolerability, and Pharmacokinetic Profile of the Low-Impact Ampakine CX1739 in Young Healthy Volunteers. Clin Pharmacol Drug Dev 2025; 14:50-58. [PMID: 39302241 DOI: 10.1002/cpdd.1475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
AMPA-type glutamate receptors (AMPARs) mediate the majority of fast excitatory synaptic transmission in the mammalian brain. Ampakines, positive allosteric modulators of AMPAR, hold significant potential for the treatment of a wide range of neurological/neuropsychiatric disorders in which excitatory synaptic transmission is compromised. Low-impact ampakines are a distinct subset of ampakines that accelerate channel opening yet minimally affect receptor desensitization, which may explain their lack of seizurogenic effects at therapeutic doses in preclinical models. CX1739 is a low-impact ampakine that has shown efficacy in preclinical studies. The current clinical study examined the tolerability and pharmacokinetics of CX1739 in healthy male volunteers in a 2-part study. Part A was a single dose escalation study (100-1200 mg, 48 patients) and Part B was a multiple dose ascending study (300-600 mg BID for 7-10 days, 32 patients). CX1739 was well tolerated up to 900 mg once daily (QD) and 450 mg twice a day, with the prominent side effects being headache and nausea. Importantly, the half-life of CX1739 was 6-9 hours, and Tmax was 1-5 hours. CX1739 Cmax and AUC were dose-proportional. These findings thus set the stage for further explorations of this drug candidate in phase 2 clinical studies.
Collapse
Affiliation(s)
| | - Rok Cerne
- RespireRx Pharmaceuticals Inc., Glen Rock, NJ, USA
| | | | - Arnold Lippa
- RespireRx Pharmaceuticals Inc., Glen Rock, NJ, USA
| |
Collapse
|
2
|
Radin DP, Zhong S, Cerne R, Shoaib M, Witkin JM, Lippa A. Preclinical characterization of a water-soluble low-impact ampakine prodrug, CX1942 and its active moiety, CX1763. Future Med Chem 2024; 16:2325-2336. [PMID: 39301929 PMCID: PMC11622767 DOI: 10.1080/17568919.2024.2401312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024] Open
Abstract
Aim: AMPA-glutamate receptor (AMPAR) dysfunction mediates multiple neurological/neuropsychiatric disorders. Ampakines bind AMPARs and allosterically enhance glutamate-elicited currents. This report describes the activity of the water-soluble ampakine CX1942 prodrug and the active moiety CX1763.Results: CX1763 and CX1942 enhance synaptic transmission in hippocampi of rats. CX1763 increases attention in the 5CSRTT in rats and reduces amphetamine-induced hyperactivity in mice. CX1942 potently reverses opioid-induced respiratory depression in rats. CX1942/CX1763 was effective at 2.5-10 mg/kg. CX1763 lacked epileptogenicity up to 1500 mg/kg in rats.Conclusion: These data document that CX1942 and CX1763 are active and without prominent side effects in multiple pre-clinical assays. CX1942 could serve as a prodrug for CX1763 with the advantage of high water solubility as in an intravenous formulation.
Collapse
Affiliation(s)
- Daniel P Radin
- RespireRx Pharmaceuticals Inc., 126 Valley Road, Glen Rock, NJ07452, USA
| | - Sheng Zhong
- Psychogenics, 215 College Road, Paramus, NJ07652, USA
| | - Rok Cerne
- RespireRx Pharmaceuticals Inc., 126 Valley Road, Glen Rock, NJ07452, USA
| | - Mohammed Shoaib
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Jeffrey M Witkin
- RespireRx Pharmaceuticals Inc., 126 Valley Road, Glen Rock, NJ07452, USA
| | - Arnold Lippa
- RespireRx Pharmaceuticals Inc., 126 Valley Road, Glen Rock, NJ07452, USA
| |
Collapse
|
3
|
Radin DP, Zhong S, Cerne R, Witkin JM, Lippa A. High Impact AMPAkines Induce a Gq-Protein Coupled Endoplasmic Calcium Release in Cortical Neurons: A Possible Mechanism for Explaining the Toxicity of High Impact AMPAkines. Synapse 2024; 78:e22310. [PMID: 39304968 DOI: 10.1002/syn.22310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) positive allosteric modulators (AMPAkines) have a multitude of promising therapeutic properties. The pharmaceutical development of high impact AMPAkines has, however, been limited by the appearance of calcium-dependent neuronal toxicity and convulsions in vivo. Such toxicity is not observed at exceptionally high concentrations of low impact AMPAkines. Because most AMPAR are somewhat impermeable to calcium, the current study sought to examine the extent to which different mechanisms contribute to the rise in intracellular calcium in the presence of high impact ampakines. In the presence of AMPA alone, cytosolic calcium elevation is shown to be sodium-dependent. In the presence of high impact AMPAkines such as cyclothiazide (CTZ) or CX614, however, AMPAR potentiation also activates an additional mechanism that induces calcium release from endoplasmic reticular (ER) stores. The pathway that connects AMPAR to the ER system involves a Gq-protein, phospholipase Cβ-mediated inositol triphosphate (InsP3) formation, and ultimately stimulation of InsP3-receptors located on the ER. The same linkage was not observed using high concentrations of the low impact AMPAkines, CX516 (Ampalex), and CX717. We also demonstrate that CX614 produces neuronal hyper-excitability at therapeutic doses, whereas the newer generation low impact AMPAkine CX1739 is safe at exceedingly high doses. Although earlier studies have demonstrated a functional linkage between AMPAR and G-proteins, this report demonstrates that in the presence of high impact AMPAkines, AMPAR also couple to a Gq-protein, which triggers a secondary calcium release from the ER and provides insight into the disparate actions of high and low impact AMPAkines.
Collapse
Affiliation(s)
- Daniel P Radin
- RespireRx Pharmaceuticals, Inc., Glen Rock, New Jersey, USA
| | - Sheng Zhong
- RespireRx Pharmaceuticals, Inc., Glen Rock, New Jersey, USA
| | - Rok Cerne
- RespireRx Pharmaceuticals, Inc., Glen Rock, New Jersey, USA
| | | | - Arnold Lippa
- RespireRx Pharmaceuticals, Inc., Glen Rock, New Jersey, USA
| |
Collapse
|
4
|
Rana S, Alom F, Martinez RC, Fuller DD, Mickle AD. Acute ampakines increase voiding function and coordination in a rat model of SCI. eLife 2024; 12:RP89767. [PMID: 38451184 PMCID: PMC10962400 DOI: 10.7554/elife.89767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
Neurogenic bladder dysfunction causes urological complications and reduces the quality of life in persons with spinal cord injury (SCI). Glutamatergic signaling via AMPA receptors is fundamentally important to the neural circuits controlling bladder voiding. Ampakines are positive allosteric modulators of AMPA receptors that can enhance the function of glutamatergic neural circuits after SCI. We hypothesized that ampakines can acutely stimulate bladder voiding that has been impaired due to thoracic contusion SCI. Adult female Sprague-Dawley rats received a unilateral contusion of the T9 spinal cord (n = 10). Bladder function (cystometry) and coordination with the external urethral sphincter (EUS) were assessed 5 d post-SCI under urethane anesthesia. Data were compared to responses in spinal-intact rats (n = 8). The 'low-impact' ampakine CX1739 (5, 10, or 15 mg/kg) or vehicle (2-hydroxypropyl-beta-cyclodextrin [HPCD]) was administered intravenously. The HPCD vehicle had no discernible impact on voiding. In contrast, following CX1739, the pressure threshold for inducing bladder contraction, voided volume, and the interval between bladder contractions were significantly reduced. These responses occurred in a dose-dependent manner. We conclude that modulating AMPA receptor function using ampakines can rapidly improve bladder-voiding capability at subacute time points following contusion SCI. These results may provide a new and translatable method for therapeutic targeting of bladder dysfunction acutely after SCI.
Collapse
Affiliation(s)
- Sabhya Rana
- Department of Physical Therapy, University of FloridaGainesvilleUnited States
- McKnight Brain Institute, University of FloridaGainesvilleUnited States
- Breathing Research and Therapeutics CenterGainesvilleUnited States
| | - Firoj Alom
- Department of Physiological Sciences, College of Veterinary Medicine, University of FloridaGainesvilleUnited States
- Department of Veterinary and Animal Sciences, University of RajshahiRajshahiBangladesh
| | - Robert C Martinez
- Department of Physical Therapy, University of FloridaGainesvilleUnited States
- McKnight Brain Institute, University of FloridaGainesvilleUnited States
- Breathing Research and Therapeutics CenterGainesvilleUnited States
| | - David D Fuller
- Department of Physical Therapy, University of FloridaGainesvilleUnited States
- McKnight Brain Institute, University of FloridaGainesvilleUnited States
- Breathing Research and Therapeutics CenterGainesvilleUnited States
| | - Aaron D Mickle
- McKnight Brain Institute, University of FloridaGainesvilleUnited States
- Department of Physiological Sciences, College of Veterinary Medicine, University of FloridaGainesvilleUnited States
- Department of Veterinary and Animal Sciences, University of RajshahiRajshahiBangladesh
- J. Crayton Pruitt Family Department of Biomedical Engineering, College of Engineering, University of FloridaGainesvilleUnited States
| |
Collapse
|
5
|
Francotte P, Bay Y, Goffin E, Colson T, Lesenfants C, Dorosz J, Laulumaa S, Fraikin P, de Tullio P, Beaufour C, Botez I, Pickering DS, Frydenvang K, Danober L, Kristensen AS, Kastrup JS, Pirotte B. Exploring thienothiadiazine dioxides as isosteric analogues of benzo- and pyridothiadiazine dioxides in the search of new AMPA and kainate receptor positive allosteric modulators. Eur J Med Chem 2024; 264:116036. [PMID: 38101041 DOI: 10.1016/j.ejmech.2023.116036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
The synthesis and biological evaluation on AMPA and kainate receptors of new examples of 3,4-dihydro-2H-1,2,4-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxides is described. The introduction of a cyclopropyl chain instead of an ethyl chain at the 4-position of the thiadiazine ring was found to dramatically improve the potentiator activity on AMPA receptors, with compound 32 (BPAM395) expressing in vitro activity on AMPARs (EC2x = 0.24 μM) close to that of the reference 4-cyclopropyl-substituted benzothiadiazine dioxide 10 (BPAM344). Interestingly, the 4-allyl-substituted thienothiadiazine dioxide 27 (BPAM307) emerged as the most promising compound on kainate receptors being a more effective potentiator than the 4-cyclopropyl-substituted thienothiadiazine dioxide 32 and supporting the view that the 4-allyl substitution of the thiadiazine ring could be more favorable than the 4-cyclopropyl substitution to induce marked activity on kainate receptors versus AMPA receptors. The thieno-analogue 36 (BPAM279) of the clinically tested S18986 (11) was selected for in vivo evaluation in mice as a cognitive enhancer due to a safer profile than 32 after massive per os drug administration. Compound 36 was found to increase the cognition performance in mice at low doses (1 mg/kg) per os suggesting that the compound was well absorbed after oral administration and able to reach the central nervous system. Finally, compound 32 was selected for co-crystallization with the GluA2-LBD (L504Y,N775S) and glutamate to examine the binding mode of thienothiadiazine dioxides within the allosteric binding site of the AMPA receptor. At the allosteric site, this compound established similar interactions as the previously reported BTD-type AMPA receptor modulators.
Collapse
Affiliation(s)
- Pierre Francotte
- Center for Interdisciplinary Research on Medicines (CIRM) - Laboratory of Medicinal Chemistry, University of Liège, Avenue Hippocrate 15 (B36), B-4000, Liège, Belgium
| | - Yasmin Bay
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100, Copenhagen, Denmark
| | - Eric Goffin
- Center for Interdisciplinary Research on Medicines (CIRM) - Laboratory of Medicinal Chemistry, University of Liège, Avenue Hippocrate 15 (B36), B-4000, Liège, Belgium
| | - Thomas Colson
- Center for Interdisciplinary Research on Medicines (CIRM) - Laboratory of Medicinal Chemistry, University of Liège, Avenue Hippocrate 15 (B36), B-4000, Liège, Belgium
| | - Cindy Lesenfants
- Center for Interdisciplinary Research on Medicines (CIRM) - Laboratory of Medicinal Chemistry, University of Liège, Avenue Hippocrate 15 (B36), B-4000, Liège, Belgium
| | - Jerzy Dorosz
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100, Copenhagen, Denmark
| | - Saara Laulumaa
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100, Copenhagen, Denmark
| | - Pierre Fraikin
- Center for Interdisciplinary Research on Medicines (CIRM) - Laboratory of Medicinal Chemistry, University of Liège, Avenue Hippocrate 15 (B36), B-4000, Liège, Belgium
| | - Pascal de Tullio
- Center for Interdisciplinary Research on Medicines (CIRM) - Laboratory of Medicinal Chemistry, University of Liège, Avenue Hippocrate 15 (B36), B-4000, Liège, Belgium
| | - Caroline Beaufour
- Institut de Recherches et Développement Servier Paris-Saclay, 22 route 128, 91190, Gif-sur-Yvette, France
| | - Iuliana Botez
- Institut de Recherches et Développement Servier Paris-Saclay, 22 route 128, 91190, Gif-sur-Yvette, France
| | - Darryl S Pickering
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100, Copenhagen, Denmark
| | - Karla Frydenvang
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100, Copenhagen, Denmark
| | - Laurence Danober
- Institut de Recherches et Développement Servier Paris-Saclay, 22 route 128, 91190, Gif-sur-Yvette, France
| | - Anders Skov Kristensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100, Copenhagen, Denmark.
| | - Jette Sandholm Kastrup
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100, Copenhagen, Denmark.
| | - Bernard Pirotte
- Center for Interdisciplinary Research on Medicines (CIRM) - Laboratory of Medicinal Chemistry, University of Liège, Avenue Hippocrate 15 (B36), B-4000, Liège, Belgium.
| |
Collapse
|
6
|
Hanson JE, Yuan H, Perszyk RE, Banke TG, Xing H, Tsai MC, Menniti FS, Traynelis SF. Therapeutic potential of N-methyl-D-aspartate receptor modulators in psychiatry. Neuropsychopharmacology 2024; 49:51-66. [PMID: 37369776 PMCID: PMC10700609 DOI: 10.1038/s41386-023-01614-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/24/2023] [Accepted: 05/15/2023] [Indexed: 06/29/2023]
Abstract
N-methyl-D-aspartate (NMDA) receptors mediate a slow component of excitatory synaptic transmission, are widely distributed throughout the central nervous system, and regulate synaptic plasticity. NMDA receptor modulators have long been considered as potential treatments for psychiatric disorders including depression and schizophrenia, neurodevelopmental disorders such as Rett Syndrome, and neurodegenerative conditions such as Alzheimer's disease. New interest in NMDA receptors as therapeutic targets has been spurred by the findings that certain inhibitors of NMDA receptors produce surprisingly rapid and robust antidepressant activity by a novel mechanism, the induction of changes in the brain that well outlast the presence of drug in the body. These findings are driving research into an entirely new paradigm for using NMDA receptor antagonists in a host of related conditions. At the same time positive allosteric modulators of NMDA receptors are being pursued for enhancing synaptic function in diseases that feature NMDA receptor hypofunction. While there is great promise, developing the therapeutic potential of NMDA receptor modulators must also navigate the potential significant risks posed by the use of such agents. We review here the emerging pharmacology of agents that target different NMDA receptor subtypes, offering new avenues for capturing the therapeutic potential of targeting this important receptor class.
Collapse
Affiliation(s)
- Jesse E Hanson
- Department of Neuroscience, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Riley E Perszyk
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Tue G Banke
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Hao Xing
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Ming-Chi Tsai
- Department of Neuroscience, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Frank S Menniti
- MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, 02881, USA.
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
7
|
Dejanovic B, Sheng M, Hanson JE. Targeting synapse function and loss for treatment of neurodegenerative diseases. Nat Rev Drug Discov 2024; 23:23-42. [PMID: 38012296 DOI: 10.1038/s41573-023-00823-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2023] [Indexed: 11/29/2023]
Abstract
Synapse dysfunction and loss are hallmarks of neurodegenerative diseases that correlate with cognitive decline. However, the mechanisms and therapeutic strategies to prevent or reverse synaptic damage remain elusive. In this Review, we discuss recent advances in understanding the molecular and cellular pathways that impair synapses in neurodegenerative diseases, including the effects of protein aggregation and neuroinflammation. We also highlight emerging therapeutic approaches that aim to restore synaptic function and integrity, such as enhancing synaptic plasticity, preventing synaptotoxicity, modulating neuronal network activity and targeting immune signalling. We discuss the preclinical and clinical evidence for each strategy, as well as the challenges and opportunities for developing effective synapse-targeting therapeutics for neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Morgan Sheng
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jesse E Hanson
- Department of Neuroscience, Genentech, South San Francisco, CA, USA.
| |
Collapse
|
8
|
Rana S, Alom F, Martinez RC, Fuller DD, Mickle AD. Acute ampakines increase voiding function and coordination in a rat model of SCI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542339. [PMID: 37293023 PMCID: PMC10245998 DOI: 10.1101/2023.05.26.542339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Neurogenic bladder dysfunction causes urological complications and reduces the quality of life in persons with spinal cord injury (SCI). Glutamatergic signaling via AMPA receptors is fundamentally important to the neural circuits controlling bladder voiding. Ampakines are positive allosteric modulators of AMPA receptors that can enhance the function of glutamatergic neural circuits after SCI. We hypothesized that ampakines can acutely stimulate bladder voiding that has been impaired due to thoracic contusion SCI. Adult female Sprague Dawley rats received a unilateral contusion of the T9 spinal cord (n=10). Bladder function (cystometry) and coordination with the external urethral sphincter (EUS) were assessed five days post-SCI under urethane anesthesia. Data were compared to responses in spinal intact rats (n=8). The "low impact" ampakine CX1739 (5, 10, or 15 mg/kg) or vehicle (HPCD) was administered intravenously. The HPCD vehicle had no discernable impact on voiding. In contrast, following CX1739, the pressure threshold for inducing bladder contraction, voided volume, and the interval between bladder contractions were significantly reduced. These responses occurred in a dose-dependent manner. We conclude that modulating AMPA receptor function using ampakines can rapidly improve bladder voiding capability at sub-acute time points following contusion SCI. These results may provide a new and translatable method for therapeutic targeting of bladder dysfunction acutely after SCI.
Collapse
Affiliation(s)
- Sabhya Rana
- Department of Physical Therapy, University of Florida, Gainesville, FL, 32610
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610
- Breathing Research and Therapeutics Center, Gainesville, FL, 32610
| | - Firoj Alom
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida
- Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi
| | - Robert C Martinez
- Department of Physical Therapy, University of Florida, Gainesville, FL, 32610
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610
- Breathing Research and Therapeutics Center, Gainesville, FL, 32610
| | - David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL, 32610
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610
- Breathing Research and Therapeutics Center, Gainesville, FL, 32610
| | - Aaron D Mickle
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida
- Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi
- J. Crayton Pruitt Family Department of Biomedical Engineering, College of Engineering, University of Florida
| |
Collapse
|
9
|
Goffin E, Fraikin P, Abboud D, de Tullio P, Beaufour C, Botez I, Hanson J, Danober L, Francotte P, Pirotte B. New insights in the development of positive allosteric modulators of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors belonging to 3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxides: Introduction of (mono/difluoro)methyl groups at the 2-position of the thiadiazine ring. Eur J Med Chem 2023; 250:115221. [PMID: 36863228 DOI: 10.1016/j.ejmech.2023.115221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 02/26/2023]
Abstract
Positive allosteric modulators of the AMPA receptors (AMPAR PAMs) have been proposed as new drugs for the management of various neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, attention deficit hyperactivity disorder, depression, and schizophrenia. The present study explored new AMPAR PAMs belonging to 3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxides (BTDs) characterized by the presence of a short alkyl substituent at the 2-position of the heterocycle and by the presence or absence of a methyl group at the 3-position. The introduction of a monofluoromethyl or a difluoromethyl side chain at the 2-position instead of the methyl group was examined. 7-Chloro-4-cyclopropyl-2-fluoromethyl-3,4-dihydro-4H-1,2,4-benzothiadiazine 1,1-dioxide (15e) emerged as the most promising compound associating high in vitro potency on AMPA receptors, a favorable safety profile in vivo and a marked efficacy as a cognitive enhancer after oral administration in mice. Stability studies in aqueous medium suggested that 15e could be considered, at least in part, as a precursor of the corresponding 2-hydroxymethyl-substituted analogue and the known AMPAR modulator 7-chloro-4-cyclopropyl-3,4-dihydro-4H-1,2,4-benzothiadiazine 1,1-dioxide (3) devoid of an alkyl group at the 2-position.
Collapse
Affiliation(s)
- Eric Goffin
- Center for Interdisciplinary Research on Medicines (CIRM) - Laboratory of Medicinal Chemistry, University of Liège, Avenue Hippocrate 15 (B36), B-4000, Liège, Belgium
| | - Pierre Fraikin
- Center for Interdisciplinary Research on Medicines (CIRM) - Laboratory of Medicinal Chemistry, University of Liège, Avenue Hippocrate 15 (B36), B-4000, Liège, Belgium
| | - Dayana Abboud
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Avenue Hippocrate 1/11 (B34), B-4000, Liège, Belgium
| | - Pascal de Tullio
- Center for Interdisciplinary Research on Medicines (CIRM) - Laboratory of Medicinal Chemistry, University of Liège, Avenue Hippocrate 15 (B36), B-4000, Liège, Belgium
| | - Caroline Beaufour
- Institut de Recherches Servier, 125 Chemin de Ronde, F-78290, Croissy-sur-Seine, France
| | - Iuliana Botez
- Institut de Recherches Servier, 125 Chemin de Ronde, F-78290, Croissy-sur-Seine, France
| | - Julien Hanson
- Center for Interdisciplinary Research on Medicines (CIRM) - Laboratory of Medicinal Chemistry, University of Liège, Avenue Hippocrate 15 (B36), B-4000, Liège, Belgium; Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Avenue Hippocrate 1/11 (B34), B-4000, Liège, Belgium
| | - Laurence Danober
- Institut de Recherches Servier, 125 Chemin de Ronde, F-78290, Croissy-sur-Seine, France
| | - Pierre Francotte
- Center for Interdisciplinary Research on Medicines (CIRM) - Laboratory of Medicinal Chemistry, University of Liège, Avenue Hippocrate 15 (B36), B-4000, Liège, Belgium
| | - Bernard Pirotte
- Center for Interdisciplinary Research on Medicines (CIRM) - Laboratory of Medicinal Chemistry, University of Liège, Avenue Hippocrate 15 (B36), B-4000, Liège, Belgium.
| |
Collapse
|
10
|
Suzuki A, Hara H, Kimura H. Role of the AMPA receptor in antidepressant effects of ketamine and potential of AMPA receptor potentiators as a novel antidepressant. Neuropharmacology 2023; 222:109308. [PMID: 36341809 DOI: 10.1016/j.neuropharm.2022.109308] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Ketamine exerts rapid and long-lasting antidepressant effects in patients with treatment-resistant depression. However, its clinical use is limited by its undesirable psychotomimetic side effects. Accumulating evidence from preclinical studies has shown that the antidepressant effects of ketamine are dependent on α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA-R) activation, which triggers activation of the mechanistic target of rapamycin pathway and brain-derived neurotrophic factor release. Thus, AMPA-R has emerged as a promising new target for novel antidepressants with a rapid onset of action. However, almost all known AMPA-R potentiators carry the risk of a narrow bell-shaped dose-response curve and a poor safety margin against seizures. Our data suggest that agonistic activity is not only related to the risks of bell-shaped dose-response curves and seizures but also to the reduced synaptic transmission and procognitive effects of AMPA-R potentiators. In this review, we describe our original screening approach that led to the discovery of an investigational AMPA-R potentiator with low agonistic activity, TAK-653. We further review the in vitro and in vivo profiles of TAK-653, including its procognitive and antidepressant-like effects, as well as its safety profile, in comparison with known AMPA-R potentiators with agonistic activity and AMPA, an AMPA-R agonist. The low agnostic activity of TAK-653 may overcome limitations of known AMPA-R potentiators. This article is part of the Special Issue on 'Ketamine and its Metabolites'.
Collapse
Affiliation(s)
- Atsushi Suzuki
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Hiroe Hara
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Haruhide Kimura
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan.
| |
Collapse
|
11
|
Gironell A, Pascual‐Sedano B, Marín‐Lahoz J, Pérez J, Pagonabarraga J. Non-Persistence of Tremorolytic Effect of Perampanel in Essential Tremor: Real-World Experience with 50 Patients. Mov Disord Clin Pract 2023; 10:74-78. [PMID: 36704076 PMCID: PMC9847312 DOI: 10.1002/mdc3.13576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/26/2022] [Accepted: 08/28/2022] [Indexed: 01/29/2023] Open
Abstract
Background We describe our experience of using perampanel to treat essential tremor (ET) over 12 months. Methods We enrolled 50 ET patients in an open-label trial. Perampanel was titrated to 4 mg/day as adjuvant therapy. The main outcome measures were baseline, +1, +3, +6, and + 12 month scores of the Tremor Clinical Rating Scale (TCRS) and the Glass scale (GS). Results Twenty patients withdrew because of adverse effects. At +1 month, 27 of 30 patients improved: 68% reduction in both TCRS 1 + 2 (P < 0.001) and TCRS 3 (P < 0.001); TCRS 4 + 1.8 and GS 1.1 point reduction. By +12 months non-persistence of therapeutic effect occurred in 70% of patients: the mean reduction in TCRS 1 + 2 was 33% (P = 0.03), TCRS 3 (0.04), TCRS 4 + 0.8, GS 0.2 points reduction. Conclusions We report important peramapanel acute tremorolytic effects, but poor tolerance to adverse effects and a non-sustained therapeutic effect in most patients.
Collapse
Affiliation(s)
- Alexandre Gironell
- Movement Disorders Unit, Department of Neurology, Hospital de la Santa Creu i Sant PauAutonomous University of BarcelonaBarcelonaCataloniaSpain
- Centro de Investigación en Red‐Enfermedades Neurodegenerativas (CIBERNED)Spain
| | - Berta Pascual‐Sedano
- Movement Disorders Unit, Department of Neurology, Hospital de la Santa Creu i Sant PauAutonomous University of BarcelonaBarcelonaCataloniaSpain
- Centro de Investigación en Red‐Enfermedades Neurodegenerativas (CIBERNED)Spain
| | - Juan Marín‐Lahoz
- Movement Disorders Unit, Department of Neurology, Hospital de la Santa Creu i Sant PauAutonomous University of BarcelonaBarcelonaCataloniaSpain
- Centro de Investigación en Red‐Enfermedades Neurodegenerativas (CIBERNED)Spain
| | - Jesús Pérez
- Movement Disorders Unit, Department of Neurology, Hospital de la Santa Creu i Sant PauAutonomous University of BarcelonaBarcelonaCataloniaSpain
- Centro de Investigación en Red‐Enfermedades Neurodegenerativas (CIBERNED)Spain
| | - Javier Pagonabarraga
- Movement Disorders Unit, Department of Neurology, Hospital de la Santa Creu i Sant PauAutonomous University of BarcelonaBarcelonaCataloniaSpain
- Centro de Investigación en Red‐Enfermedades Neurodegenerativas (CIBERNED)Spain
| |
Collapse
|
12
|
Ma X, Li L, Li Z, Huang Z, Yang Y, Liu P, Guo D, Li Y, Wu T, Luo R, Xu J, Ye W, Jiang B, Shi L. eEF2 in the prefrontal cortex promotes excitatory synaptic transmission and social novelty behavior. EMBO Rep 2022; 23:e54543. [PMID: 35993189 PMCID: PMC9535807 DOI: 10.15252/embr.202154543] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 07/22/2022] [Accepted: 08/03/2022] [Indexed: 08/24/2023] Open
Abstract
Regulation of mRNA translation is essential for brain development and function. Translation elongation factor eEF2 acts as a molecular hub orchestrating various synaptic signals to protein synthesis control and participates in hippocampus-dependent cognitive functions. However, whether eEF2 regulates other behaviors in different brain regions has been unknown. Here, we construct a line of Eef2 heterozygous (HET) mice, which show a reduction in eEF2 and protein synthesis mainly in excitatory neurons of the prefrontal cortex. The mice also show lower spine density, reduced excitability, and AMPAR-mediated synaptic transmission in pyramidal neurons of the medial prefrontal cortex (mPFC). While HET mice exhibit normal learning and memory, they show defective social behavior and elevated anxiety. Knockdown of Eef2 in excitatory neurons of the mPFC specifically is sufficient to impair social novelty preference. Either chemogenetic activation of excitatory neurons in the mPFC or mPFC local infusion of the AMPAR potentiator PF-4778574 corrects the social novelty deficit of HET mice. Collectively, we identify a novel role for eEF2 in promoting prefrontal AMPAR-mediated synaptic transmission underlying social novelty behavior.
Collapse
Affiliation(s)
- Xuanyue Ma
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
| | - Liuren Li
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
| | - Ziming Li
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Zhengyi Huang
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
| | - Yaorong Yang
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
| | - Peng Liu
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
| | - Daji Guo
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
- Clinical Neuroscience InstituteThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Yueyao Li
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
| | - Tianying Wu
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
| | - Ruixiang Luo
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
| | - Junyu Xu
- Department of Neurobiology and Department of Rehabilitation of the Children's HospitalZhejiang University School of MedicineHangzhouChina
| | - Wen‐Cai Ye
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of PharmacyJinan UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of PharmacyJinan UniversityGuangzhouChina
| | - Bin Jiang
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Lei Shi
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of PharmacyJinan UniversityGuangzhouChina
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of PharmacyJinan UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of PharmacyJinan UniversityGuangzhouChina
| |
Collapse
|
13
|
Lang EJ, Handforth A. Is the inferior olive central to essential tremor? Yes. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 163:133-165. [PMID: 35750361 DOI: 10.1016/bs.irn.2022.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We consider the question whether the inferior olive (IO) is required for essential tremor (ET). Much evidence shows that the olivocerebellar system is the main system capable of generating the widespread synchronous oscillatory Purkinje cell (PC) complex spike (CS) activity across the cerebellar cortex that would be capable of generating the type of bursting cerebellar output from the deep cerebellar nuclei (DCN) that could underlie tremor. Normally, synchronous CS activity primarily reflects the effective electrical coupling of IO neurons by gap junctions, and traditionally, ET research has focused on the hypothesis of increased coupling of IO neurons as the cause of hypersynchronous CS activity underlying tremor. However, recent pathology studies of brains from humans with ET and evidence from mutant mice, particularly the hotfoot17 mouse, that largely replicate the pathology of ET, suggest that the abnormal innervation of multiple Purkinje cells (PCs) by climbing fibers (Cfs) is related to tremor. In addition, ET brains show partial PC loss and axon terminal sprouting by surviving PCs. This may provide another mechanism for tremor. It is proposed that in ET, these three mechanisms may promote tremor. They all involve hypersynchronous DCN activity and an intact IO, but the level at which excessive synchronization occurs may be at the IO level (from abnormal afferent activity to this nucleus), the PC level (via aberrant Cfs), or the DCN level (via terminal PC collateral innervation).
Collapse
|
14
|
Hansen KB, Wollmuth LP, Bowie D, Furukawa H, Menniti FS, Sobolevsky AI, Swanson GT, Swanger SA, Greger IH, Nakagawa T, McBain CJ, Jayaraman V, Low CM, Dell'Acqua ML, Diamond JS, Camp CR, Perszyk RE, Yuan H, Traynelis SF. Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacol Rev 2021; 73:298-487. [PMID: 34753794 PMCID: PMC8626789 DOI: 10.1124/pharmrev.120.000131] [Citation(s) in RCA: 284] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many physiologic effects of l-glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, are mediated via signaling by ionotropic glutamate receptors (iGluRs). These ligand-gated ion channels are critical to brain function and are centrally implicated in numerous psychiatric and neurologic disorders. There are different classes of iGluRs with a variety of receptor subtypes in each class that play distinct roles in neuronal functions. The diversity in iGluR subtypes, with their unique functional properties and physiologic roles, has motivated a large number of studies. Our understanding of receptor subtypes has advanced considerably since the first iGluR subunit gene was cloned in 1989, and the research focus has expanded to encompass facets of biology that have been recently discovered and to exploit experimental paradigms made possible by technological advances. Here, we review insights from more than 3 decades of iGluR studies with an emphasis on the progress that has occurred in the past decade. We cover structure, function, pharmacology, roles in neurophysiology, and therapeutic implications for all classes of receptors assembled from the subunits encoded by the 18 ionotropic glutamate receptor genes. SIGNIFICANCE STATEMENT: Glutamate receptors play important roles in virtually all aspects of brain function and are either involved in mediating some clinical features of neurological disease or represent a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of this class of receptors will advance our understanding of many aspects of brain function at molecular, cellular, and system levels and provide new opportunities to treat patients.
Collapse
Affiliation(s)
- Kasper B Hansen
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Lonnie P Wollmuth
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Derek Bowie
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hiro Furukawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Frank S Menniti
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Alexander I Sobolevsky
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Geoffrey T Swanson
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Sharon A Swanger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Ingo H Greger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Terunaga Nakagawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chris J McBain
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Vasanthi Jayaraman
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chian-Ming Low
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Mark L Dell'Acqua
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Jeffrey S Diamond
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chad R Camp
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Riley E Perszyk
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hongjie Yuan
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Stephen F Traynelis
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| |
Collapse
|
15
|
Jabarin R, Levy N, Abergel Y, Berman JH, Zag A, Netser S, Levy AP, Wagner S. Pharmacological modulation of AMPA receptors rescues specific impairments in social behavior associated with the A350V Iqsec2 mutation. Transl Psychiatry 2021; 11:234. [PMID: 33888678 PMCID: PMC8062516 DOI: 10.1038/s41398-021-01347-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/19/2021] [Accepted: 03/30/2021] [Indexed: 12/18/2022] Open
Abstract
In this study we tested the hypothesis that pharmacological modulation of glutamatergic neurotransmission could rescue behavioral deficits exhibited by mice carrying a specific mutation in the Iqsec2 gene. The IQSEC2 protein plays a key role in glutamatergic synapses and mutations in the IQSEC2 gene are a frequent cause of neurodevelopmental disorders. We have recently reported on the molecular pathophysiology of one such mutation A350V and demonstrated that this mutation downregulates AMPA type glutamatergic receptors (AMPAR) in A350V mice. Here we sought to identify behavioral deficits in A350V mice and hypothesized that we could rescue these deficits by PF-4778574, a positive AMPAR modulator. Using a battery of social behavioral tasks, we found that A350V Iqsec2 mice exhibit specific deficits in sex preference and emotional state preference behaviors as well as in vocalizations when encountering a female mouse. The social discrimination deficits, but not the impaired vocalization, were rescued with a single dose of PF-4778574. We conclude that social behavior deficits associated with the A350V Iqsec2 mutation may be rescued by enhancing AMPAR mediated synaptic transmission.
Collapse
Affiliation(s)
- Renad Jabarin
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Nina Levy
- Technion Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yasmin Abergel
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Joshua H Berman
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Amir Zag
- Technion Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Shai Netser
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Andrew P Levy
- Technion Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| | - Shlomo Wagner
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
16
|
Hanson JE, Ma K, Elstrott J, Weber M, Saillet S, Khan AS, Simms J, Liu B, Kim TA, Yu GQ, Chen Y, Wang TM, Jiang Z, Liederer BM, Deshmukh G, Solanoy H, Chan C, Sellers BD, Volgraf M, Schwarz JB, Hackos DH, Weimer RM, Sheng M, Gill TM, Scearce-Levie K, Palop JJ. GluN2A NMDA Receptor Enhancement Improves Brain Oscillations, Synchrony, and Cognitive Functions in Dravet Syndrome and Alzheimer's Disease Models. Cell Rep 2021; 30:381-396.e4. [PMID: 31940483 PMCID: PMC7017907 DOI: 10.1016/j.celrep.2019.12.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/11/2019] [Accepted: 12/06/2019] [Indexed: 01/28/2023] Open
Abstract
NMDA receptors (NMDARs) play subunit-specific roles in synaptic function and are implicated in neuropsychiatric and neurodegenerative disorders. However, the in vivo consequences and therapeutic potential of pharmacologically enhancing NMDAR function via allosteric modulation are largely un-known. We examine the in vivo effects of GNE-0723, a positive allosteric modulator of GluN2A-subunit-containing NMDARs, on brain network and cognitive functions in mouse models of Dravet syndrome (DS) and Alzheimer’s disease (AD). GNE-0723 use dependently potentiates synaptic NMDA receptor currents and reduces brain oscillation power with a predominant effect on low-frequency (12–20 Hz) oscillations. Interestingly, DS and AD mouse models display aberrant low-frequency oscillatory power that is tightly correlated with network hypersynchrony. GNE-0723 treatment reduces aberrant low-frequency oscillations and epileptiform discharges and improves cognitive functions in DS and AD mouse models. GluN2A-subunit-containing NMDAR enhancers may have therapeutic benefits in brain disorders with network hypersynchrony and cognitive impairments. Hanson et al. examine the therapeutic effects of enhancing GluN2A-subunit-containing NMDAR function in Dravet syndrome and Alzheimer’s disease mice. GNE-0723 treatment reduces aberrant low-frequency oscillations and epileptiform discharges and improves cognitive functions in both disease models. GluN2A NMDAR enhancers may benefit brain disorders with network hypersynchrony and cognitive impairments.
Collapse
Affiliation(s)
- Jesse E Hanson
- Department of Neuroscience, Genentech Inc., South San Francisco, CA 94080, USA.
| | - Keran Ma
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Justin Elstrott
- Department of Biomedical Imaging, Genentech Inc., South San Francisco, CA 94080, USA
| | - Martin Weber
- Department of Neuroscience, Genentech Inc., South San Francisco, CA 94080, USA
| | - Sandrine Saillet
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Abdullah S Khan
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Jeffrey Simms
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Benjamin Liu
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Thomas A Kim
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Gui-Qiu Yu
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Yelin Chen
- Department of Neuroscience, Genentech Inc., South San Francisco, CA 94080, USA
| | - Tzu-Ming Wang
- Department of Neuroscience, Genentech Inc., South San Francisco, CA 94080, USA
| | - Zhiyu Jiang
- Department of Neuroscience, Genentech Inc., South San Francisco, CA 94080, USA
| | - Bianca M Liederer
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, CA 94080, USA
| | - Gauri Deshmukh
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, CA 94080, USA
| | - Hilda Solanoy
- Department of Neuroscience, Genentech Inc., South San Francisco, CA 94080, USA
| | - Connie Chan
- Department of Pharmaceuticals, Genentech Inc., South San Francisco, CA 94080, USA
| | - Benjamin D Sellers
- Department of Discovery Chemistry, Genentech Inc., South San Francisco, CA 94080, USA
| | - Matthew Volgraf
- Department of Discovery Chemistry, Genentech Inc., South San Francisco, CA 94080, USA
| | - Jacob B Schwarz
- Department of Discovery Chemistry, Genentech Inc., South San Francisco, CA 94080, USA
| | - David H Hackos
- Department of Neuroscience, Genentech Inc., South San Francisco, CA 94080, USA
| | - Robby M Weimer
- Department of Neuroscience, Genentech Inc., South San Francisco, CA 94080, USA; Department of Biomedical Imaging, Genentech Inc., South San Francisco, CA 94080, USA
| | - Morgan Sheng
- Department of Neuroscience, Genentech Inc., South San Francisco, CA 94080, USA
| | - T Michael Gill
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | | | - Jorge J Palop
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
17
|
Handforth A, Lang EJ. Increased Purkinje Cell Complex Spike and Deep Cerebellar Nucleus Synchrony as a Potential Basis for Syndromic Essential Tremor. A Review and Synthesis of the Literature. THE CEREBELLUM 2020; 20:266-281. [PMID: 33048308 DOI: 10.1007/s12311-020-01197-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 12/19/2022]
Abstract
We review advances in understanding Purkinje cell (PC) complex spike (CS) physiology that suggest increased CS synchrony underlies syndromic essential tremor (ET). We searched PubMed for papers describing factors that affect CS synchrony or cerebellar circuits potentially related to tremor. Inferior olivary (IO) neurons are electrically coupled, with the degree of coupling controlled by excitatory and GABAergic inputs. Clusters of coupled IO neurons synchronize CSs within parasagittal bands via climbing fibers (Cfs). When motor cortex is stimulated in rats at varying frequencies, whisker movement occurs at ~10 Hz, correlated with synchronous CSs, indicating that the IO/CS oscillatory rhythm gates movement frequency. Intra-IO injection of the GABAA receptor antagonist picrotoxin increases CS synchrony, increases whisker movement amplitude, and induces tremor. Harmaline and 5-HT2a receptor activation also increase IO coupling and CS synchrony and induce tremor. The hotfoot17 mouse displays features found in ET brains, including cerebellar GluRδ2 deficiency and abnormal PC Cf innervation, with IO- and PC-dependent cerebellar oscillations and tremor likely due to enhanced CS synchrony. Heightened coupling within the IO oscillator leads, through its dynamic control of CS synchrony, to increased movement amplitude and, when sufficiently intense, action tremor. Increased CS synchrony secondary to aberrant Cf innervation of multiple PCs likely also underlies hotfoot17 tremor. Deep cerebellar nucleus (DCN) hypersynchrony may occur secondary to increased CS synchrony but might also occur from PC axonal terminal sprouting during partial PC loss. Through these combined mechanisms, increased CS/DCN synchrony may plausibly underlie syndromic ET.
Collapse
Affiliation(s)
- Adrian Handforth
- Neurology Service, Veterans Affairs Greater Los Angeles Healthcare System, 11301 Wilshire Blvd., Los Angeles, CA, 90073, USA.
| | - Eric J Lang
- Department of Neuroscience and Physiology, New York University, School of Medicine, New York, NY, USA
| |
Collapse
|
18
|
Shen M, Lv D, Li S, Zhang Y, Wang Z, Zhao C, Chen X, Wang C. Positive Allosteric Modulation of AMPAR by PF-4778574 Produced Rapid Onset Antidepressant Actions in Mice. Cereb Cortex 2020; 29:4438-4451. [PMID: 30566581 DOI: 10.1093/cercor/bhy324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/20/2018] [Accepted: 11/26/2018] [Indexed: 01/30/2023] Open
Abstract
It has been reported that fast-acting antidepressants enhance glutamatergic neurotransmission in the prefrontal cortex (PFC) regions via alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) activation. However, the precise mechanisms underlying the fast-acting antidepressants lead to an activation of AMPAR pathways remain largely unclear. To address this issue, a novel AMPAR positive allosteric agonist, PF-4778574, was used to test the rapid effects and the role of VGF (nonacronymic)/brain-derived neurotrophic factor (BDNF)/tropomyosin receptor kinase B (TrkB)/AKT signaling in these actions in mice. We found that PF-4778574 rapidly alleviated chronic unpredictable stress-induced depression-like behaviors in a concentration-dependent manner. In addition, knock down of vesicular glutamate transporter 1 (VGLUT1) in the PFC of mice induced depression-like behaviors, whereas treatment with PF-4778574 was sufficient to alleviate it, indicating a presynaptic VGLUT1 independent effect. Furthermore, we demonstrate that pharmacological inhibitors of AMPAR or of L-type voltage-dependent Ca2+ channel (L-VDCC) blocked the antidepressants' effect on behaviors and the upregulation on the AMPAR-mediated VGF/BDNF/TrkB/AKT signaling of PF-4778574. Together, our findings indicate that postsynaptic AMPAR activation followed by activation of L-VDCC and subsequent VGF/BDNF/TrkB/AKT signaling are required for the rapid antidepressant effects of PF-4778574. Our data support a promising therapeutic profile for PF-4778574 as a new fast-acting antidepressant.
Collapse
Affiliation(s)
- Mengxin Shen
- Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, China.,Department of Physiology and Pharmacology, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, China
| | - Dan Lv
- Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, China.,Department of Physiology and Pharmacology, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, China
| | - Shuting Li
- Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, China.,Department of Physiology and Pharmacology, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, China
| | - Yanhua Zhang
- Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, China.,Department of Physiology and Pharmacology, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, China
| | - Zhen Wang
- CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Chiyu Zhao
- Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, China.,Department of Physiology and Pharmacology, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, China
| | - Xuejie Chen
- Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, China.,Department of Physiology and Pharmacology, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, China
| | - Chuang Wang
- Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, China.,Department of Physiology and Pharmacology, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, China
| |
Collapse
|
19
|
Callahan PM, Terry AV, Nelson FR, Volkmann RA, Vinod AB, Zainuddin M, Menniti FS. Modulating inhibitory response control through potentiation of GluN2D subunit-containing NMDA receptors. Neuropharmacology 2020; 173:107994. [PMID: 32057801 DOI: 10.1016/j.neuropharm.2020.107994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 01/16/2020] [Accepted: 02/05/2020] [Indexed: 01/15/2023]
Abstract
NMDA receptors containing GluN2D subunits are expressed in the subthalamic nucleus and external globus pallidus, key nuclei of the indirect and hyperdirect pathways of the basal ganglia. This circuitry integrates cortical input with dopaminergic signaling to select advantageous behaviors among available choices. In the experiments described here, we characterized the effects of PTC-174, a novel positive allosteric modulator (PAM) of GluN2D subunit-containing NMDA receptors, on response control regulated by this circuitry. The indirect pathway suppresses less advantageous behavioral choices, a manifestation of which is suppression of locomotor activity in rats. Systemic administration of PTC-174 produced a dose-dependent reduction in activity in rats placed in a novel open field or administered the stimulants MK-801 or amphetamine. The hyperdirect pathway controls release of decisions from the basal ganglia to the cortex to optimize choice processing. Such response control was modeled in rats as premature responding in the 5-choice serial reaction time (5-CSRT) task. PTC-174 produced a dose-dependent reduction in premature responding in this task. These data suggest that potentiation of GluN2D receptor activity by PTC-174 facilitates the complex basal ganglia information processing that underlies response control. The behavioral effects occurred at estimated free PTC-174 brain concentrations predicted to induce 10-50% increases in GluN2D activity. The present findings suggest the potential of GluN2D PAMs to modulate basal ganglia function and to treat neurological disorders related to dysfunctional response control.
Collapse
Affiliation(s)
- Patrick M Callahan
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA; Small Animal Behavior Core, Augusta University, Augusta, GA, 30912, USA
| | - Alvin V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA; Small Animal Behavior Core, Augusta University, Augusta, GA, 30912, USA
| | | | | | - A B Vinod
- Jubilant Biosys Ltd, Yeshwantpur, Bangalore, 560022, Karnataka, India
| | - Mohd Zainuddin
- Jubilant Biosys Ltd, Yeshwantpur, Bangalore, 560022, Karnataka, India
| | - Frank S Menniti
- The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, 02881, USA.
| |
Collapse
|
20
|
Handforth A, Tse W, Elble RJ. A Pilot Double-Blind Randomized Trial of Perampanel for Essential Tremor. Mov Disord Clin Pract 2020; 7:399-404. [PMID: 32373656 DOI: 10.1002/mdc3.12927] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/25/2020] [Accepted: 02/10/2020] [Indexed: 11/10/2022] Open
Abstract
Background Perampanel is a noncompetitive antagonist of alpha-amino-3-hydroxy-5-methylisoxazole propionic acid glutamate receptors suggested to modulate tremor. Objectives To assess the efficacy and tolerability of perampanel for essential tremor. Methods This was a double-blind, placebo-controlled, randomized, cross-over trial involving 26 patients titrated to 8 mg/day or a lower maximally tolerated dose as monotherapy or adjunct to antitremor medication. Tremor was assessed at the beginning and end of each 14-week treatment arm. The primary endpoint was change in the videotaped performance subscale of The Essential Tremor Rating Assessment Scale, scored by a blinded rater. Secondary endpoints included change in The Essential Tremor Rating Assessment Scale Activity of Daily Living and Quality of Life in Essential Tremor and Subject Global Impression of Change subscales. Results Data are available for 15 and 11 participants who completed placebo and perampanel arms, respectively. Perampanel was superior to placebo on the primary endpoint (P = 0.028), Activity of Daily Living (P = 0.009), and Subject Global Impression of Change (P = 0.016), but not Quality of Life (p = 0.48). Video scores were rated >50% improved in 3/11 on perampanel and 0/15 on placebo. Adverse events were more likely on perampanel (especially at >4 mg/day) than on placebo, leading to withdrawal (36% vs. 10%) and dose reduction (41% vs. 15%). Adverse events more common with perampanel included imbalance/falls (50% vs. 10%), dizziness (36% vs. 10%), and irritability (27% vs. 5%). Conclusions These findings suggest that perampanel exerts efficacy for some persons with essential tremor, but this population appears prone to adverse events.
Collapse
Affiliation(s)
- Adrian Handforth
- Neurology Service, Veterans Affairs Greater Los Angeles Healthcare System Los Angeles California USA
| | - Winona Tse
- Department of Neurology, Movement Disorders Division Icahn School of Medicine at Mount Sinai New York New York USA
| | - Rodger J Elble
- Department of Neurology Southern Illinois University School of Medicine Springfield Illinois USA
| |
Collapse
|
21
|
Ishii T, Stolz JR, Swanson GT. Auxiliary Proteins are the Predominant Determinants of Differential Efficacy of Clinical Candidates Acting as AMPA Receptor Positive Allosteric Modulators. Mol Pharmacol 2020; 97:336-350. [DOI: 10.1124/mol.119.118554] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/07/2020] [Indexed: 01/08/2023] Open
|
22
|
Kuo SH, Louis ED, Faust PL, Handforth A, Chang SY, Avlar B, Lang EJ, Pan MK, Miterko LN, Brown AM, Sillitoe RV, Anderson CJ, Pulst SM, Gallagher MJ, Lyman KA, Chetkovich DM, Clark LN, Tio M, Tan EK, Elble RJ. Current Opinions and Consensus for Studying Tremor in Animal Models. CEREBELLUM (LONDON, ENGLAND) 2019; 18:1036-1063. [PMID: 31124049 PMCID: PMC6872927 DOI: 10.1007/s12311-019-01037-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tremor is the most common movement disorder; however, we are just beginning to understand the brain circuitry that generates tremor. Various neuroimaging, neuropathological, and physiological studies in human tremor disorders have been performed to further our knowledge of tremor. But, the causal relationship between these observations and tremor is usually difficult to establish and detailed mechanisms are not sufficiently studied. To overcome these obstacles, animal models can provide an important means to look into human tremor disorders. In this manuscript, we will discuss the use of different species of animals (mice, rats, fruit flies, pigs, and monkeys) to model human tremor disorders. Several ways to manipulate the brain circuitry and physiology in these animal models (pharmacology, genetics, and lesioning) will also be discussed. Finally, we will discuss how these animal models can help us to gain knowledge of the pathophysiology of human tremor disorders, which could serve as a platform towards developing novel therapies for tremor.
Collapse
Affiliation(s)
- Sheng-Han Kuo
- Department of Neurology, Columbia University, 650 West 168th Street, Room 305, New York, NY, 10032, USA.
| | - Elan D Louis
- Department of Neurology, Yale School of Medicine, Yale University, 800 Howard Avenue, Ste Lower Level, New Haven, CT, 06519, USA.
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, USA.
- Center for Neuroepidemiology and Clinical Neurological Research, Yale School of Medicine, Yale University, New Haven, CT, USA.
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA
| | - Adrian Handforth
- Neurology Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Su-Youne Chang
- Department of Neurologic Surgery and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Billur Avlar
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Eric J Lang
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Ming-Kai Pan
- Department of Medical Research and Neurology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Lauren N Miterko
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
| | - Amanda M Brown
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Collin J Anderson
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | | | - Kyle A Lyman
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Lorraine N Clark
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Murni Tio
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Rodger J Elble
- Department of Neurology, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
23
|
Suzuki A, Tajima Y, Kunugi A, Kimura H. Electrophysiological characterization of a novel AMPA receptor potentiator, TAK-137, in rat hippocampal neurons. Neurosci Lett 2019; 712:134488. [PMID: 31518676 DOI: 10.1016/j.neulet.2019.134488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/30/2019] [Accepted: 09/09/2019] [Indexed: 01/01/2023]
Abstract
We have recently discovered an alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA-R) potentiator TAK-137, 9-(4-phenoxyphenyl)-3,4-dihydropyrido[2,1-c][1,2,4] thiadiazine 2,2-dioxide with little agonistic effect. Under preclinical evaluation, TAK-137 demonstrated potent pro-cognitive effects with lower risks of seizure and bell-shaped dose response than LY451646, a potent AMPA-R potentiator, in rodents and monkeys. In this study, using rat primary cultured hippocampal neurons we explored the electrophysiological characterization of TAK-137 on native AMPA-Rs. TAK-137 dose-dependently enhanced AMPA-induced inward currents; its potency in the presence of AMPA was comparable to that of LY451646. The inward currents enhanced by TAK-137 were almost completely inhibited by GYKI53655, a selective AMPA-R blocker. Moreover, TAK-137 did not affect N-methyl-D-aspartate (NMDA)-activated inward currents, which suggests the AMPA-R-selective activation by TAK-137. In the absence of AMPA-R agonist, LY451646 at 30 μM induced slowly developing large inward currents, whereas TAK-137 at 30 μM exhibited a slight impact on baseline holding currents, further supporting the lower agonistic properties of TAK-137 than LY451646. Similar to LY451646, TAK-137 also increased the potency and binding affinity of AMPA for AMPA-Rs. These results indicate that TAK-137 is a highly potent and selective potentiator with little agonistic effect against native AMPA-Rs. Much greater agonistic effects of LY451646 than of TAK-137 may contribute to the increased risks of seizure and bell-shaped dose response in vivo.
Collapse
Affiliation(s)
- Atsushi Suzuki
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan.
| | - Yasukazu Tajima
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan.
| | - Akiyoshi Kunugi
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan.
| | - Haruhide Kimura
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan.
| |
Collapse
|
24
|
Shaffer CL, Dutra JK, Tseng WC, Weber ML, Bogart LJ, Hales K, Pang J, Volfson D, Am Ende CW, Green ME, Buhl DL. Pharmacological evaluation of clinically relevant concentrations of (2R,6R)-hydroxynorketamine. Neuropharmacology 2019; 153:73-81. [PMID: 31015046 DOI: 10.1016/j.neuropharm.2019.04.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 04/01/2019] [Accepted: 04/17/2019] [Indexed: 10/27/2022]
Abstract
Ketamine is a rapid-onset antidepressant whose efficacy long outlasts its pharmacokinetics. Multiple studies suggest ketamine's antidepressant effects require increased α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-dependent currents, which have recently been exclusively attributed to its N-methyl-d-aspartate receptor-inactive metabolite (2R,6R)-hydroxynorketamine ((2R,6R)-HNK). To investigate this AMPAR-activation claim further, we estimated and evaluated preclinically and clinically relevant unbound brain HNK concentrations (Cb,u). (2S,6S)-HNK and (2R,6R)-HNK were novelly synthesized, and their neuropharmacokinetic profiles were determined to project relevant Cb,u. Using concentrations (0.01-10 μM) bracketing the pertinent cross-species Cb,u, both compounds' AMPAR modulation was assessed in vitro by electrophysiological recordings and GluA1 surface expression. Neither (2S,6S)-HNK nor (2R,6R)-HNK bound orthosterically to or directly functionally activated AMPARs. (2R,6R)-HNK failed to evoke AMPAR-centric changes in any electrophysiological endpoint from adult rodent hippocampal slices. Conversely, time- and concentration-dependent increases in GluA1 expression occurred only with (2R,6R)-HNK (≥0.1 μM at ≥90 min). The (2R,6R)-HNK concentrations that increased GluA1 expression are consistent with its maximal Cb,u (0.92-4.84 μM) at reportedly efficacious doses of ketamine or (2R,6R)-HNK in mouse depression models, but ≥3-fold above its projected maximal human Cb,u (≤37.8 ± 14.3 nM) following ketamine's clinically antidepressant infusion. These findings provide insight into the observed AMPAR-affecting (2R,6R)-HNK concentrations versus its exposures attained clinically at an antidepressant ketamine dose. To optimize any clinical study with (2R,6R)-HNK to fully assess its translational pharmacology, future preclinical work should test (2R,6R)-HNK concentrations and/or Cb,u of 0.01-0.1 μM to parallel its projected human Cb,u at a clinically antidepressant ketamine dose.
Collapse
Affiliation(s)
- Christopher L Shaffer
- Pfizer Worldwide Research & Development, 1 Portland Street, Cambridge, MA, 02139, United States.
| | - Jason K Dutra
- Pfizer Worldwide Research & Development, Eastern Point Road, Groton, CT, 06340, United States
| | - Wei Chou Tseng
- Pfizer Worldwide Research & Development, 1 Portland Street, Cambridge, MA, 02139, United States
| | - Mark L Weber
- Pfizer Worldwide Research & Development, 1 Portland Street, Cambridge, MA, 02139, United States
| | - Luke J Bogart
- Pfizer Worldwide Research & Development, 1 Portland Street, Cambridge, MA, 02139, United States
| | - Katherine Hales
- Pfizer Worldwide Research & Development, 1 Portland Street, Cambridge, MA, 02139, United States
| | - Jincheng Pang
- Pfizer Worldwide Research & Development, 1 Portland Street, Cambridge, MA, 02139, United States
| | - Dmitri Volfson
- Pfizer Worldwide Research & Development, 1 Portland Street, Cambridge, MA, 02139, United States
| | - Christopher W Am Ende
- Pfizer Worldwide Research & Development, Eastern Point Road, Groton, CT, 06340, United States
| | - Michael E Green
- Pfizer Worldwide Research & Development, 1 Portland Street, Cambridge, MA, 02139, United States
| | - Derek L Buhl
- Pfizer Worldwide Research & Development, 1 Portland Street, Cambridge, MA, 02139, United States.
| |
Collapse
|
25
|
TAK-137, an AMPA-R potentiator with little agonistic effect, has a wide therapeutic window. Neuropsychopharmacology 2019; 44:961-970. [PMID: 30209408 PMCID: PMC6461786 DOI: 10.1038/s41386-018-0213-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 08/27/2018] [Accepted: 09/03/2018] [Indexed: 01/08/2023]
Abstract
Activation of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor (AMPA-R) is a promising strategy to treat psychiatric and neurological diseases if issues of bell-shaped response and narrow safety margin against seizure can be overcome. Here, we show that structural interference at Ser743 in AMPA-R is a key to lower the agonistic effect of AMPA-R potentiators containing dihydropyridothiadiazine 2,2-dioxides skeleton. With this structural insight, TAK-137, 9-(4-phenoxyphenyl)-3,4-dihydropyrido[2,1-c][1,2,4]thiadiazine 2,2-dioxide, was discovered as a novel AMPA-R potentiator with a lower agonistic effect than an AMPA-R potentiator LY451646 ((R)-N-(2-(4'-cyanobiphenyl-4-yl)propyl)propane-2-sulfonamide) in rat primary neurons. TAK-137 induced brain-derived neurotrophic factor in neurons in rodents and potently improved cognition in both rats and monkeys. Compared to LY451646, TAK-137 had a wider safety margin against seizure in rats. TAK-137 enhanced neural progenitor proliferation over a broader range of doses in rodents. Thus, TAK-137 is a promising AMPA-R potentiator with potent procognitive effects and lower risks of bell-shaped response and seizure. These data may open the door for the development of AMPA-R potentiators as therapeutic drugs for psychiatric and neurological diseases.
Collapse
|
26
|
Brogi S, Campiani G, Brindisi M, Butini S. Allosteric Modulation of Ionotropic Glutamate Receptors: An Outlook on New Therapeutic Approaches To Treat Central Nervous System Disorders. ACS Med Chem Lett 2019; 10:228-236. [PMID: 30891118 DOI: 10.1021/acsmedchemlett.8b00450] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/23/2019] [Indexed: 01/12/2023] Open
Abstract
The allosteric targeting of ionotropic glutamate receptors (iGluRs) is a valuable approach for treating various central nervous system (CNS) disorders. In this frame, this Innovations provides a summary of the state-of-the art in the development of allosteric modulators for iGluRs and offers an outlook regarding innovative strategies for treating neurological diseases.
Collapse
Affiliation(s)
- Simone Brogi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, DoE Department of Excellence 2018−2022, via Aldo Moro 2, I-53100 Siena, Italy
- Department of Pharmacy, University of Napoli Federico II, DoE Department of Excellence 2018−2022, Via D. Montesano 49, 80131 Napoli, Italy
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, DoE Department of Excellence 2018−2022, via Aldo Moro 2, I-53100 Siena, Italy
| | - Margherita Brindisi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, DoE Department of Excellence 2018−2022, via Aldo Moro 2, I-53100 Siena, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, DoE Department of Excellence 2018−2022, via Aldo Moro 2, I-53100 Siena, Italy
| |
Collapse
|
27
|
Blokhina S, Ol’khovich M, Sharapova A. Effect on AMPA receptors and lipophilicity of substituted pyridoindoles as potential neuroprotectors. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-018-0595-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Pharmacological modulation of AMPA receptor rescues social impairments in animal models of autism. Neuropsychopharmacology 2019; 44:314-323. [PMID: 29899405 PMCID: PMC6300529 DOI: 10.1038/s41386-018-0098-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 05/09/2018] [Accepted: 05/14/2018] [Indexed: 02/07/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder, featuring social communication deficit and repetitive/restricted behaviors as common symptoms. Its prevalence has continuously increased, but, till now, there are no therapeutic approaches to relieve the core symptoms, particularly social deficit. In previous studies, abnormal function of the glutamatergic neural system has been proposed as a critical mediator and therapeutic target of ASD-associated symptoms. Here, we investigated the possible roles of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) in autism symptoms using two well-known autistic animal models, Cntnap2 knockout (KO) mice and in utero valproic acid-exposed ICR (VPA) mice. We found that Cntnap2 KO mice displayed decreased glutamate receptor expression and transmission. Contrarily, VPA mice exhibited increased glutamate receptor expression and transmission. Next, we investigated whether AMPAR modulators (positive-allosteric-modulator for Cntnap2 KO mice and antagonist for VPA mice) can improve autistic symptoms by normalizing the aberrant excitatory transmission in the respective animal models. Interestingly, the AMPAR modulation specifically ameliorated social deficits in both animal models. These results indicated that AMPAR-derived excitatory neural transmission changes can affect normal social behavior. To validate this, we injected an AMPAR agonist or antagonist in control ICR mice and, interestingly, these treatments impaired only the social behavior, without affecting the repetitive and hyperactive behaviors. Collectively, these results provide insight into the role of AMPARs in the underlying pathophysiological mechanisms of ASD, and demonstrate that modulation of AMPAR can be a potential target for the treatment of social behavior deficits associated with ASD.
Collapse
|
29
|
Radin DP, Li YX, Rogers G, Purcell R, Lippa A. Tarps differentially affect the pharmacology of ampakines. Biochem Pharmacol 2018; 154:446-451. [PMID: 29906466 DOI: 10.1016/j.bcp.2018.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/11/2018] [Indexed: 12/29/2022]
Abstract
Transmembrane AMPA receptor regulatory proteins (TARPs) govern AMPA receptor cell surface expression and distinct physiological properties including agonist affinity, desensitization and deactivation kinetics. The prototypical TARP, STG or γ2 and TARPs γ3, γ4, γ7 and γ8 are all expressed to varying degrees in the mammalian brain and differentially regulate AMPAR gating parameters. Positive allosteric AMPA receptor modulators or ampakines alter receptor rates of agonist binding/unbinding, channel opening and can offset receptor desensitization and deactivation. The effects of the two ampakines, CX614 and cyclothiazide (CTZ) were evaluated on homomeric GluR1-flip receptors and GluR2-flop receptors expressed on HEK293 cells by transient transfection with or without different TARPs γ2, γ3, γ4 or γ8 genes. γ4 was the most robust TARP in increasing the affinities of CX614 and CTZ on GluR1-flip receptors, but had no such effect on GluR2-flop receptors. However, γ8 gave the most significant increases in affinities of CX614 and CTZ on GluR2-flop. These data show that TARPs differentially affect the surface expression and kinetics of the AMPA receptor, as well as the pharmacology of ampakines for the AMPA receptor. The modulatory effects of TARPs on ampakine pharmacology are complex, being dependent on both the TARP subtype and the AMPA receptor subtypes/isoforms.
Collapse
Affiliation(s)
- Daniel P Radin
- RespireRx Pharmaceuticals Inc., 126 Valley Road, Glen Rock, NJ 07452,United States.
| | - Yong-Xin Li
- RespireRx Pharmaceuticals Inc., 126 Valley Road, Glen Rock, NJ 07452,United States
| | - Gary Rogers
- RespireRx Pharmaceuticals Inc., 126 Valley Road, Glen Rock, NJ 07452,United States
| | - Richard Purcell
- RespireRx Pharmaceuticals Inc., 126 Valley Road, Glen Rock, NJ 07452,United States
| | - Arnold Lippa
- RespireRx Pharmaceuticals Inc., 126 Valley Road, Glen Rock, NJ 07452,United States
| |
Collapse
|
30
|
Kunugi A, Tajima Y, Kuno H, Sogabe S, Kimura H. HBT1, a Novel AMPA Receptor Potentiator with Lower Agonistic Effect, Avoided Bell-Shaped Response in In Vitro BDNF Production. J Pharmacol Exp Ther 2018; 364:377-389. [PMID: 29298820 DOI: 10.1124/jpet.117.245050] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/28/2017] [Indexed: 11/22/2022] Open
Abstract
α-Amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor (AMPA-R) potentiators with brain-derived neurotrophic factor (BDNF)-induction potential could be promising as therapeutic drugs for neuropsychiatric and neurologic disorders. However, AMPA-R potentiators such as LY451646 have risks of narrow bell-shaped responses in pharmacological effects, including in vivo BDNF induction. Interestingly, LY451646 and LY451395, other AMPA-R potentiators, showed agonistic effects and exhibited bell-shaped responses in the BDNF production in primary neurons. We hypothesized that the agonistic property is related to the bell-shaped response and endeavored to discover novel AMPA-R potentiators with lower agonistic effects. LY451395 showed an agonistic effect in primary neurons, but not in a cell line expressing AMPA-Rs, in Ca2+ influx assays; thus, we used a Ca2+ influx assay in primary neurons and, from a chemical library, discovered two AMPA-R potentiators with lower agonistic effects: 2-(((5-methyl-3-(trifluoromethyl)-1H-pyrazol-1-yl)acetyl)amino)-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxamide (HBT1) and (3S)-1-(4-tert-butylphenyl)-N-((1R)-2-(dimethylamino)-1-phenylethyl)-3-isobutyl-2-oxopyrrolidine-3-carboxamide (OXP1). In a patch-clamp study using primary neurons, HBT1 showed little agonistic effect, whereas both LY451395 and OXP1 showed remarkable agonistic effects. HBT1, but not OXP1, did not show remarkable bell-shaped response in BDNF production in primary neurons. HBT1 bound to the ligand-binding domain (LBD) of AMPA-R in a glutamate-dependent manner. The mode of HBT1 and LY451395 binding to a pocket in the LBD of AMPA-R differed: HBT1, but not LY451395, formed hydrogen bonds with S518 in the LBD. OXP1 may bind to a cryptic binding pocket on AMPA-R. Lower agonistic profile of HBT1 may associate with its lower risks of bell-shaped responses in BDNF production in primary neurons.
Collapse
Affiliation(s)
- Akiyoshi Kunugi
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Yasukazu Tajima
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Haruhiko Kuno
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Satoshi Sogabe
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Haruhide Kimura
- Research, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| |
Collapse
|
31
|
Attenuation of ketamine-induced impairment in verbal learning and memory in healthy volunteers by the AMPA receptor potentiator PF-04958242. Mol Psychiatry 2017; 22:1633-1640. [PMID: 28242871 DOI: 10.1038/mp.2017.6] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/22/2016] [Accepted: 12/19/2016] [Indexed: 01/03/2023]
Abstract
There is a need to develop treatments for cognitive impairment associated with schizophrenia (CIAS). The significant role played by N-methyl-d-aspartate receptors (NMDARs) in both the pathophysiology of schizophrenia and in neuronal plasticity suggests that facilitation of NMDAR function might ameliorate CIAS. One strategy to correct NMDAR hypofunction is to stimulate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) as AMPAR and NMDAR functioning are coupled and interdependent. In rats and nonhuman primates (NHP), AMPAR potentiators reduce spatial working memory deficits caused by the nonselective NMDAR antagonist ketamine. The current study assessed whether the AMPAR potentiator PF-04958242 would attenuate ketamine-induced deficits in verbal learning and memory in humans. Healthy male subjects (n=29) participated in two randomized treatment periods of daily placebo or PF-04958242 for 5 days separated by a washout period. On day 5 of each treatment period, subjects underwent a ketamine infusion for 75 min during which the effects of PF-04958242/placebo were assessed on ketamine-induced: (1) impairments in verbal learning and recall measured by the Hopkins Verbal Learning Test; (2) impairments in working memory on a CogState battery; and (3) psychotomimetic effects measured by the Positive and Negative Syndrome Scale and Clinician-Administered Dissociative Symptoms Scale. PF-04958242 significantly reduced ketamine-induced impairments in immediate recall and the 2-Back and spatial working memory tasks (CogState Battery), without significantly attenuating ketamine-induced psychotomimetic effects. There were no pharmacokinetic interactions between PF-04958242 and ketamine. Furthermore, PF-04958242 was well tolerated. 'High-impact' AMPAR potentiators like PF-04958242 may have a role in the treatment of the cognitive symptoms, but not the positive or negative symptoms, associated with schizophrenia. The excellent concordance between the preclinical (rat, NHP) and human studies with PF-04958242, and in silico modeling of AMPAR-NMDAR interactions in the hippocampus, highlights the translational value of this study.
Collapse
|
32
|
Volgraf M, Sellers BD, Jiang Y, Wu G, Ly CQ, Villemure E, Pastor RM, Yuen PW, Lu A, Luo X, Liu M, Zhang S, Sun L, Fu Y, Lupardus PJ, Wallweber HJA, Liederer BM, Deshmukh G, Plise E, Tay S, Reynen P, Herrington J, Gustafson A, Liu Y, Dirksen A, Dietz MGA, Liu Y, Wang TM, Hanson JE, Hackos D, Scearce-Levie K, Schwarz JB. Discovery of GluN2A-Selective NMDA Receptor Positive Allosteric Modulators (PAMs): Tuning Deactivation Kinetics via Structure-Based Design. J Med Chem 2016; 59:2760-79. [PMID: 26919761 DOI: 10.1021/acs.jmedchem.5b02010] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The N-methyl-D-aspartate receptor (NMDAR) is a Na(+) and Ca(2+) permeable ionotropic glutamate receptor that is activated by the coagonists glycine and glutamate. NMDARs are critical to synaptic signaling and plasticity, and their dysfunction has been implicated in a number of neurological disorders, including schizophrenia, depression, and Alzheimer's disease. Herein we describe the discovery of potent GluN2A-selective NMDAR positive allosteric modulators (PAMs) starting from a high-throughput screening hit. Using structure-based design, we sought to increase potency at the GluN2A subtype, while improving selectivity against related α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). The structure-activity relationship of channel deactivation kinetics was studied using a combination of electrophysiology and protein crystallography. Effective incorporation of these strategies resulted in the discovery of GNE-0723 (46), a highly potent and brain penetrant GluN2A-selective NMDAR PAM suitable for in vivo characterization.
Collapse
Affiliation(s)
| | | | - Yu Jiang
- Pharmaron-Beijing Co. Ltd. , 6 Taihe Road, BDA, Beijing 100176, PR China
| | - Guosheng Wu
- Pharmaron-Beijing Co. Ltd. , 6 Taihe Road, BDA, Beijing 100176, PR China
| | | | | | | | - Po-wai Yuen
- Pharmaron-Beijing Co. Ltd. , 6 Taihe Road, BDA, Beijing 100176, PR China
| | - Aijun Lu
- Pharmaron-Beijing Co. Ltd. , 6 Taihe Road, BDA, Beijing 100176, PR China
| | - Xifeng Luo
- Pharmaron-Beijing Co. Ltd. , 6 Taihe Road, BDA, Beijing 100176, PR China
| | - Mingcui Liu
- Pharmaron-Beijing Co. Ltd. , 6 Taihe Road, BDA, Beijing 100176, PR China
| | - Shun Zhang
- Pharmaron-Beijing Co. Ltd. , 6 Taihe Road, BDA, Beijing 100176, PR China
| | - Liang Sun
- Pharmaron-Beijing Co. Ltd. , 6 Taihe Road, BDA, Beijing 100176, PR China
| | - Yuhong Fu
- Pharmaron-Beijing Co. Ltd. , 6 Taihe Road, BDA, Beijing 100176, PR China
| | | | | | | | | | | | | | | | | | | | | | - Akim Dirksen
- Ion Channels Group, Evotec AG ; Manfred Eigen Campus, Essener Bogen 7, 22419 Hamburg, Germany
| | - Matthias G A Dietz
- Ion Channels Group, Evotec AG ; Manfred Eigen Campus, Essener Bogen 7, 22419 Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
AMPA receptor-positive allosteric modulators for the treatment of schizophrenia: an overview of recent patent applications. Future Med Chem 2016; 7:473-91. [PMID: 25875874 DOI: 10.4155/fmc.15.4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The role of glutamate and its receptors in central nervous system biology and disease has long been of interest to scientists involved in both fundamental research and drug discovery, however the complex pharmacology and lack of highly selective compounds has severely hampered drug discovery efforts in this area. Recent advances in the identification and profiling of positive allosteric modulators of the AMPA receptor offer a potential way forward and the hope of a new treatment for schizophrenia. This article will review recent patent applications published in this area.
Collapse
|
34
|
Handforth A. Linking Essential Tremor to the Cerebellum—Animal Model Evidence. THE CEREBELLUM 2015; 15:285-98. [DOI: 10.1007/s12311-015-0750-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
35
|
Bredt DS, Furey ML, Chen G, Lovenberg T, Drevets WC, Manji HK. Translating depression biomarkers for improved targeted therapies. Neurosci Biobehav Rev 2015; 59:1-15. [DOI: 10.1016/j.neubiorev.2015.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 09/18/2015] [Accepted: 09/24/2015] [Indexed: 12/28/2022]
|
36
|
Hunsberger JG, Efthymiou AG, Malik N, Behl M, Mead IL, Zeng X, Simeonov A, Rao M. Induced Pluripotent Stem Cell Models to Enable In Vitro Models for Screening in the Central Nervous System. Stem Cells Dev 2015; 24:1852-64. [PMID: 25794298 PMCID: PMC4533087 DOI: 10.1089/scd.2014.0531] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/20/2015] [Indexed: 12/23/2022] Open
Abstract
There is great need to develop more predictive drug discovery tools to identify new therapies to treat diseases of the central nervous system (CNS). Current nonpluripotent stem cell-based models often utilize non-CNS immortalized cell lines and do not enable the development of personalized models of disease. In this review, we discuss why in vitro models are necessary for translational research and outline the unique advantages of induced pluripotent stem cell (iPSC)-based models over those of current systems. We suggest that iPSC-based models can be patient specific and isogenic lines can be differentiated into many neural cell types for detailed comparisons. iPSC-derived cells can be combined to form small organoids, or large panels of lines can be developed that enable new forms of analysis. iPSC and embryonic stem cell-derived cells can be readily engineered to develop reporters for lineage studies or mechanism of action experiments further extending the utility of iPSC-based systems. We conclude by describing novel technologies that include strategies for the development of diversity panels, novel genomic engineering tools, new three-dimensional organoid systems, and modified high-content screens that may bring toxicology into the 21st century. The strategic integration of these technologies with the advantages of iPSC-derived cell technology, we believe, will be a paradigm shift for toxicology and drug discovery efforts.
Collapse
Affiliation(s)
| | | | - Nasir Malik
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland
| | - Mamta Behl
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Ivy L. Mead
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina
| | - Xianmin Zeng
- Buck Institute for Age Research, Novato, California
| | - Anton Simeonov
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, Maryland
| | - Mahendra Rao
- New York Stem Cell Foundation, New York, New York
| |
Collapse
|
37
|
Shaffer CL, Patel NC, Schwarz J, Scialis RJ, Wei Y, Hou XJ, Xie L, Karki K, Bryce DK, Osgood SM, Hoffmann WE, Lazzaro JT, Chang C, McGinnis DF, Lotarski SM, Liu J, Obach RS, Weber ML, Chen L, Zasadny KR, Seymour PA, Schmidt CJ, Hajós M, Hurst RS, Pandit J, O'Donnell CJ. The discovery and characterization of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor potentiator N-{(3S,4S)-4-[4-(5-cyano-2-thienyl)phenoxy]tetrahydrofuran-3-yl}propane-2-sulfonamide (PF-04958242). J Med Chem 2015; 58:4291-308. [PMID: 25905800 DOI: 10.1021/acs.jmedchem.5b00300] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A unique tetrahydrofuran ether class of highly potent α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor potentiators has been identified using rational and structure-based drug design. An acyclic lead compound, containing an ether-linked isopropylsulfonamide and biphenyl group, was pharmacologically augmented by converting it to a conformationally constrained tetrahydrofuran to improve key interactions with the human GluA2 ligand-binding domain. Subsequent replacement of the distal phenyl motif with 2-cyanothiophene to enhance its potency, selectivity, and metabolic stability afforded N-{(3S,4S)-4-[4-(5-cyano-2-thienyl)phenoxy]tetrahydrofuran-3-yl}propane-2-sulfonamide (PF-04958242, 3), whose preclinical characterization suggests an adequate therapeutic index, aided by low projected human oral pharmacokinetic variability, for clinical studies exploring its ability to attenuate cognitive deficits in patients with schizophrenia.
Collapse
|
38
|
Watterson LR, Olive MF. Are AMPA receptor positive allosteric modulators potential pharmacotherapeutics for addiction? Pharmaceuticals (Basel) 2013; 7:29-45. [PMID: 24380895 PMCID: PMC3915193 DOI: 10.3390/ph7010029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/13/2013] [Accepted: 12/24/2013] [Indexed: 01/01/2023] Open
Abstract
Positive allosteric modulators (PAMs) of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are a diverse class of compounds that increase fast excitatory transmission in the brain. AMPA PAMs have been shown to facilitate long-term potentiation, strengthen communication between various cortical and subcortical regions, and some of these compounds increase the production and release of brain-derived neurotrophic factor (BDNF) in an activity-dependent manner. Through these mechanisms, AMPA PAMs have shown promise as broad spectrum pharmacotherapeutics in preclinical and clinical studies for various neurodegenerative and psychiatric disorders. In recent years, a small collection of preclinical animal studies has also shown that AMPA PAMs may have potential as pharmacotherapeutic adjuncts to extinction-based or cue-exposure therapies for the treatment of drug addiction. The present paper will review this preclinical literature, discuss novel data collected in our laboratory, and recommend future research directions for the possible development of AMPA PAMs as anti-addiction medications.
Collapse
Affiliation(s)
- Lucas R Watterson
- Department of Psychology, Behavioral Neuroscience Area, Arizona State University, Tempe, AZ 85287, USA.
| | - M Foster Olive
- Department of Psychology, Behavioral Neuroscience Area, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
39
|
Patel NC, Schwarz J, Hou XJ, Hoover DJ, Xie L, Fliri AJ, Gallaschun RJ, Lazzaro JT, Bryce DK, Hoffmann WE, Hanks AN, McGinnis D, Marr ES, Gazard JL, Hajós M, Scialis RJ, Hurst RS, Shaffer CL, Pandit J, O’Donnell CJ. Discovery and Characterization of a Novel Dihydroisoxazole Class of α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) Receptor Potentiators. J Med Chem 2013; 56:9180-91. [DOI: 10.1021/jm401274b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Nandini C. Patel
- Pfizer Worldwide Research and Development, Groton Laboratories, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jacob Schwarz
- Pfizer Worldwide Research and Development, Groton Laboratories, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Xinjun J. Hou
- Pfizer Worldwide Research and Development, Groton Laboratories, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Dennis J. Hoover
- Pfizer Worldwide Research and Development, Groton Laboratories, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Longfei Xie
- Pfizer Worldwide Research and Development, Groton Laboratories, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Anton J. Fliri
- Pfizer Worldwide Research and Development, Groton Laboratories, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Randall J. Gallaschun
- Pfizer Worldwide Research and Development, Groton Laboratories, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - John T. Lazzaro
- Pfizer Worldwide Research and Development, Groton Laboratories, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Dianne K. Bryce
- Pfizer Worldwide Research and Development, Groton Laboratories, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - William E. Hoffmann
- Pfizer Worldwide Research and Development, Groton Laboratories, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Ashley N. Hanks
- Pfizer Worldwide Research and Development, Groton Laboratories, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Dina McGinnis
- Pfizer Worldwide Research and Development, Groton Laboratories, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Eric S. Marr
- Pfizer Worldwide Research and Development, Groton Laboratories, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Justin L. Gazard
- Pfizer Worldwide Research and Development, Groton Laboratories, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Mihály Hajós
- Pfizer Worldwide Research and Development, Groton Laboratories, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Renato J. Scialis
- Pfizer Worldwide Research and Development, Groton Laboratories, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Raymond S. Hurst
- Pfizer Worldwide Research and Development, Groton Laboratories, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Christopher L. Shaffer
- Pfizer Worldwide Research and Development, Groton Laboratories, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jayvardhan Pandit
- Pfizer Worldwide Research and Development, Groton Laboratories, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Christopher J. O’Donnell
- Pfizer Worldwide Research and Development, Groton Laboratories, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|