1
|
Joshi R, Paracha TU, Mostafa MM, Thorne AJ, Jayasinghe V, Yan D, Hamed O, Newton R, Giembycz MA. Comparison of the Genomic Activity of an EP 4-Receptor and β 2-Adrenoceptor Agonist in BEAS-2B Human Bronchial Epithelial Cells: In Search of Compartmentalized, cAMP-Dependent Gene Expression. J Pharmacol Exp Ther 2024; 391:64-81. [PMID: 39060164 DOI: 10.1124/jpet.124.002226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
It has been proposed that inhaled E-prostanoid 4 (EP4)-receptor agonists could represent a new class of bronchodilators for the treatment of asthma that are as effective as β 2-adrenoceptor agonists. However, the genomic impact of such drugs is unknown despite being potentially deleterious to respiratory health. Herein, we used mRNA-seq to compare the transcriptomic responses produced by 2-[3-[(1R,2S,3R)-3-hydroxy-2-[(E,3S)-3-hydroxy-5-[2-(methoxymethyl)phenyl]pent-1-enyl]-5-oxo-cyclopentyl]sulphanylpropylsulphanyl] acetic acid (ONO-AE1-329; an EP4-receptor agonist) and vilanterol (a β 2-adrenoceptor agonist) in BEAS-2B human airway epithelial cells. We also determined if an increase in cAMP mediated by different G protein-coupled receptors (GPCRs) promoted distinct transcriptional signatures by expanding this inquiry to include the adenosine A2B- and I-prostanoid receptor agonists, 2-[[6-amino-3,5-dicyano-4-[4-(cyclopropylmethoxy)phenyl]-2-pyridinyl]thio]-acetamide (Bay60-6583) and taprostene, respectively. Maximally-effective concentrations of ONO-AE1-329 and vilanterol significantly regulated (q ≤ 0.05; ≥1.5-/≤0.67-fold) 232 and 320 genes, respectively of which 217 were shared. Spearman analysis showed these gene expression changes to be highly rank order correlated, indicating that the functional overlap between the two interventions should be considerable. Unexpectedly, the genomic effects of ONO-AE1-329, vilanterol, Bay 60-6583, and taprostene were also highly rank order correlated. This finding suggests that cAMP generated by any GPCR would initiate the same transcriptional program. Nevertheless, relative to vilanterol, ONO-AE1-329 typically behaved as a partial agonist that varied across transcripts. These data indicate that each ONO-AE1-329-regulated gene differs in sensitivity to cAMP and is defined by a unique receptor occupancy-response relationship. Moreover, if this relatively modest genomic response in BEAS-2B cells is retained in vivo, then inhaled EP4-receptor agonists could represent an alternative, and possibly safer, class of bronchodilators. SIGNIFICANCE STATEMENT: The genomic consequences of β 2-adrenoceptor agonists in asthma are often overlooked despite being potentially harmful to lung health. We determined that ONO-AE1-329, an EP4-receptor agonist and effective bronchodilator, produced gene expression changes in BEAS-2B cells that were typically modest relative to the β 2-adrenoceptor agonist vilanterol. Furthermore, ONO-AE1-329 behaved as a partial agonist that varied across transcripts. If this genomic activity is reproduced in vivo, then EP4-receptor agonists could represent an alternative, and possibly safer, class of bronchodilators.
Collapse
Affiliation(s)
- Radhika Joshi
- Lung Health Research Group, Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tamkeen U Paracha
- Lung Health Research Group, Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mahmoud M Mostafa
- Lung Health Research Group, Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andrew J Thorne
- Lung Health Research Group, Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Varuna Jayasinghe
- Lung Health Research Group, Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Dong Yan
- Lung Health Research Group, Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Omar Hamed
- Lung Health Research Group, Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Robert Newton
- Lung Health Research Group, Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mark A Giembycz
- Lung Health Research Group, Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
2
|
Gao ZG, Haddad M, Jacobson KA. A 2B adenosine receptor signaling and regulation. Purinergic Signal 2024:10.1007/s11302-024-10025-y. [PMID: 38833181 DOI: 10.1007/s11302-024-10025-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/20/2024] [Indexed: 06/06/2024] Open
Abstract
The A2B adenosine receptor (A2BR) is one of the four adenosine-activated G protein-coupled receptors. In addition to adenosine, protein kinase C (PKC) was recently found to activate the A2BR. The A2BR is coupled to both Gs and Gi, as well as Gq proteins in some cell types. Many primary cells and cell lines, such as bladder and breast cancer, bronchial smooth muscle, skeletal muscle, and fat cells, express the A2BR endogenously at high levels, suggesting its potentially important role in asthma, cancer, diabetes, and other conditions. The A2BR has been characterized as both pro- and anti-inflammatory, inducing cell type-dependent secretion of IL-6, IL-8, and IL-10. Theophylline and enprofylline have long been used for asthma treatment, although it is still not entirely clear if their A2BR antagonism contributes to their therapeutic effects or side effects. The A2BR is required in ischemic cardiac preconditioning by adenosine. Both A2BR and protein kinase C (PKC) contribute to cardioprotection, and both modes of A2BR signaling can be blocked by A2BR antagonists. Inhibitors of PKC and A2BR are in clinical cancer trials. Sulforaphane and other isothiocyanates from cruciferous vegetables such as broccoli and cauliflower have been reported to inhibit A2BR signaling via reaction with an intracellular A2BR cysteine residue (C210). A full, A2BR-selective agonist, critical to elucidate many controversial roles of the A2BR, is still not available, although agonist-bound A2BR structures have recently been reported.
Collapse
Affiliation(s)
- Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| | - Mansour Haddad
- Faculty of Pharmacy, Yarmouk University, Irbid, 21163, Jordan
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
3
|
Hamed O, Jayasinghe V, Giembycz MA. The β-Blocker Carvedilol and Related Aryloxypropanolamines Promote ERK1/2 Phosphorylation in HEK293 Cells with K A Values Distinct From Their Equilibrium Dissociation Constants as β 2-Adrenoceptor Antagonists: Evidence for Functional Affinity. J Pharmacol Exp Ther 2024; 388:688-700. [PMID: 38129128 DOI: 10.1124/jpet.123.001920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
The determination of affinity by using functional assays is important in drug discovery because it provides a more relevant estimate of the strength of interaction of a ligand to its cognate receptor than radioligand binding. However, empirical evidence for so-called, "functional affinity" is limited. Herein, we determined whether the affinity of carvedilol, a β-adrenoceptor antagonist used to treat heart failure that also promotes extracellular signal-regulated kinases 1 and 2 (ERK1/2) phosphorylation, differed between these two pharmacological activities. Four structurally related β-adrenoceptor antagonists (alprenolol, carazolol, pindolol, propranolol) that also activated ERK1/2 were included as comparators to enhance our understanding of how these drugs work in the clinical setting. In HEK293 cells stably expressing the human β 2-adrenoceptor carvedilol and related aryloxypropanolamines were partial agonists of ERK1/2 phosphorylation with potencies ([A]50s) that were lower than their equilibrium dissociation constants (K Bs) as β 2-adrenoceptor antagonists. As the [A]50 of a partial agonist is a good approximation of its K B, then these data indicated that the affinities of carvedilol and related ligands for these two activities were distinct. Moreover, there was a significant negative rank order correlation between the [A]50 of each ligand to activate ERK1/2 and their intrinsic activities (i.e., as intrinsic activity for ERK1/2 phosphorylation increased, so did affinity). Genome editing revealed that the transducer that coupled the β 2-adrenoceptor to ERK1/2 phosphorylation in response to carvedilol and other β 2-adrenoceptor antagonists was Gαs. Collectively, these data support the concept of "functional affinity" and indicate that the ability of the β 2-adrenoceptor to recruit Gαs may influence the affinity of the activating ligand. SIGNIFICANCE STATEMENT: In HEK293 cells overexpressing the human β2-adrenoceptor carvedilol and four related aryloxypropanolamines behaved as β2-adrenoceptor antagonists and partial agonists of ERK1/2 phosphorylation with rank orders of affinity that were distinct. These data imply that carvedilol and other β-blockers can stabilize the β2-adrenoceptor in different affinity conformations that are revealed when functionally distinct responses are measured. This is the basis for the pharmacological concept of "functional affinity."
Collapse
Affiliation(s)
- Omar Hamed
- Lung Health Research Group, Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Varuna Jayasinghe
- Lung Health Research Group, Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mark A Giembycz
- Lung Health Research Group, Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
4
|
Fang Y, Xiao C, Wang L, Wang Y, Zeng J, Liang Y, Huang R, Shi Y, Wu S, Du X, Sun S, Li M, Zheng Y, Wu H, Guo Q, Yang W. Synergistic Enhancement of Isoforskolin and Dexamethasone Against Sepsis and Acute Lung Injury Mouse Models. J Inflamm Res 2023; 16:5989-6001. [PMID: 38088941 PMCID: PMC10712681 DOI: 10.2147/jir.s421232] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 10/09/2023] [Indexed: 11/01/2024] Open
Abstract
BACKGROUND Sepsis is initiated by the dysfunctional response of the host immune system to infection. Septic shock and acute lung injury (ALI) are the main etiology of death caused by sepsis. Glucocorticoids, which are commonly used in clinic to antagonize the inflammatory response of sepsis, may cause serious side effects. Isoforskolin (ISOF) from the plant Coleus forskohlii stimulates adenylyl cyclase, increases the cAMP level and inhibits inflammatory response. The aim of this study was to investigate the synergistic effect of ISOF with dexamethasone (DEX) to prevent and ameliorate septic inflammation. METHODS Lipopolysaccharide (LPS) of 30 and 5 mg/kg (iv.) was used to induce sepsis and ALI mice model respectively in vivo. BEAS-2B cells stimulated by LPS were applied as cell model in vitro. The cumulative survival of mice with LPS-induced sepsis and the histopathological changes of lungs in mice with acute lung injury were observed, and the secretion of pro-inflammatory cytokines was analyzed by ELISA. The expression of RGS2 in BEAS-2B cells was detected by immunoblotting assay and PCR. RESULTS In the sepsis mice model, ISOF (10 mg/kg) combined with DEX (10 mg/kg.) (ip.) pretreatment significantly increased mice survival rate from 33.3% to 58.3%, which was significantly higher than that of ISOF or DEX treated alone. In the ALI mice model, ISOF, DEX pretreatment alone and combined application attenuated pulmonary pathological changes in ALI mice. Furthermore, ISOF, DEX alone or combined administration decreased MPO, MDA, IL-6, and IL-8 levels, while significantly synergistic effects were observed in the combined treatment group compared with ISOF or DEX alone. In BEAS-2B cells, combined pretreatment with ISOF and DEX significantly decreased the expression of IL-8 and increased the expression of RGS2. CONCLUSION The results indicated that ISOF in combination with DEX synergistically improves survival rate and attenuates ALI in mice model through anti-inflammatory and antioxidant effects.
Collapse
Affiliation(s)
- Yan Fang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, People’s Republic of China
- The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Chuang Xiao
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, People’s Republic of China
| | - Lueli Wang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, People’s Republic of China
| | - Youlan Wang
- Kunming Institute of Medical Sciences, Kunming, People’s Republic of China
| | - Jun Zeng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, People’s Republic of China
| | - Yaping Liang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, People’s Republic of China
| | - Rong Huang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, People’s Republic of China
| | - Yunke Shi
- The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Sha Wu
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, People’s Republic of China
| | - Xiaohua Du
- The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Shibo Sun
- The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Min Li
- The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Yuanyuan Zheng
- The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Hongxiang Wu
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, People’s Republic of China
| | - Qiuzhe Guo
- Fuwai Yunnan Cardiovascular Hospital, Kunming, People’s Republic of China
| | - Weimin Yang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, People’s Republic of China
| |
Collapse
|
5
|
Hamed O, Joshi R, Mostafa MM, Giembycz MA. α and β Catalytic Subunits of cAMP-dependent Protein Kinase Regulate Formoterol-induced Inflammatory Gene Expression Changes in Human Bronchial Epithelial Cells. Br J Pharmacol 2022; 179:4593-4614. [PMID: 35735057 DOI: 10.1111/bph.15901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/27/2022] [Accepted: 06/18/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND & PURPOSE It has been proposed that genomic mechanisms contribute to the adverse-effects that are often experienced by asthmatic subjects who take regular, inhaled β2 -adrenoceptor agonists as a monotherapy. Moreover, data from preclinical models of asthma suggest that these gene expression changes are mediated by β-arrestin-2 rather than PKA. Herein, we tested this hypothesis by comparing the genomic effects of formoterol, a β2 -adrenoceptor agonist, with forskolin in human primary bronchial epithelial cells (HBEC). EXPERIMENTAL APPROACH Gene expression changes were determined by RNA-sequencing. Gene silencing and genome editing were employed to explore the roles of β-arrestin-2 and PKA. KEY RESULTS The formoterol-regulated transcriptome in HBEC treated concurrently with TNFα, was defined by 1480 unique gene expression changes. TNFα-induced transcripts modulated by formoterol were annotated with enriched gene ontology terms related to inflammation and proliferation, notably "GO:0070374~positive regulation of ERK1 and ERK2 cascade", which is an established β-arrestin-2 target. However, expression of the formoterol- and forskolin-regulated transcriptomes were highly rank-order correlated and the effects of formoterol on TNFα-induced inflammatory genes were abolished by an inhibitor of PKA. Furthermore, formoterol-induced gene expression changes in BEAS-2B bronchial epithelial cell clones deficient in β-arrestin-2 were comparable to those expressed by their parental counterparts. Contrariwise, gene expression was partially inhibited in clones lacking the α-catalytic subunit (Cα) of PKA and abolished following the additional knockdown of the β-catalytic subunit (Cβ) paralogue. CONCLUSIONS The effects of formoterol on inflammatory gene expression in airway epithelia are mediated by PKA and involve the cooperation of PKA-Cα and PKA-Cβ.
Collapse
Affiliation(s)
- Omar Hamed
- Airways Inflammation Research Group, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Radhika Joshi
- Airways Inflammation Research Group, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mahmoud M Mostafa
- Airways Inflammation Research Group, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mark A Giembycz
- Airways Inflammation Research Group, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
6
|
Hamed O, Joshi R, Michi AN, Kooi C, Giembycz MA. β 2-Adrenoceptor Agonists Promote ERK1/2 Dephosphorylation in Human Airway Epithelial Cells by Canonical, cAMP-driven Signaling Independently of β-Arrestin 2. Mol Pharmacol 2021; 100:388-405. [PMID: 34341099 DOI: 10.1124/molpharm.121.000294] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/07/2021] [Indexed: 11/22/2022] Open
Abstract
Chronic use of β2-adrenoceptor agonists as a monotherapy in asthma is associated with a loss of disease control and an increased risk of mortality. Herein, we tested the hypothesis that β2-adrenoceptor agonists, including formoterol, promote biased, β-arrestin 2 (βArr2)-dependent activation of the mitogen-activated protein (MAP) kinases, ERK1/2, in human airway epithelial cells and, thereby, effect changes in gene expression that could contribute to their adverse clinical outcomes. Three airway epithelial cell models were used: the BEAS-2B cell line, human primary bronchial epithelial cells (HBEC) grown in submersion culture and HBEC that were highly differentiated at an air-liquid interface. Unexpectedly, treatment of all epithelial cell models with formoterol decreased basal ERK1/2 phosphorylation. This was mediated by cAMP-dependent protein kinase and involved the inactivation of C-rapidly-activated fibrosarcoma, which attenuated down-stream ERK1/2 activity, and the induction of dual-specificity phosphatase-1. Formoterol also inhibited the basal expression of early growth response-1, an ERK1/2-regulated gene that controls cell growth and repair in the airways. Neither carvedilol, a β2-adrenoceptor agonist biased towards βArr2, nor formoterol promoted ERK1/2 phosphorylation in BEAS-2B cells although β2-adrenoceptor desensitization was compromised in ARRB2-deficient cells. Collectively, these results contest the hypothesis that formoterol activates ERK1/2 in airway epithelia by nucleating a βArr2 signaling complex; instead, they indicate that β2-adrenoceptor agonists inhibit constitutive ERK1/2 activity in a cAMP-dependent manner. These findings are the antithesis of results obtained using acutely challenged native and engineered HEK293 cells, which have been used extensively to study mechanisms of ERK1/2 activation, and highlight the cell-type-dependence of β2-adrenoceptor-mediated signaling. Significance Statement It has been proposed that the adverse-effects of β2-adrenoceptor agonist monotherapy in asthma are mediated by genomic mechanisms that occur principally in airway epithelial cells and are the result of β-arrestin 2-dependent activation of ERK1/2. This study shows that β2-adrenoceptor agonists, paradoxically, reduced ERK1/2 phosphorylation in airway epithelia by disrupting upstream Ras-C-Raf complex formation and inducing DUSP1. Moreover, these effects were PKA-dependent suggesting that β2-adrenoceptor agonists were not biased toward β-arrestin 2 and acted via canonical, cAMP-dependent signaling.
Collapse
Affiliation(s)
- Omar Hamed
- Physiology & Pharmacology, University of Calgary, Canada
| | - Radhika Joshi
- Physiology & Pharmacology, University of Calgary, Canada
| | - Aubrey N Michi
- Physiology & Pharmacology, University of Calgary, Canada
| | - Cora Kooi
- Physiology & Pharmacology, University of Calgary, Canada
| | | |
Collapse
|
7
|
Thompson RJ, Sayers I, Kuokkanen K, Hall IP. Purinergic Receptors in the Airways: Potential Therapeutic Targets for Asthma? FRONTIERS IN ALLERGY 2021; 2:677677. [PMID: 35386996 PMCID: PMC8974712 DOI: 10.3389/falgy.2021.677677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/30/2021] [Indexed: 12/30/2022] Open
Abstract
Extracellular ATP functions as a signaling messenger through its actions on purinergic receptors, and is known to be involved in numerous physiological and pathophysiological processes throughout the body, including in the lungs and airways. Consequently, purinergic receptors are considered to be promising therapeutic targets for many respiratory diseases, including asthma. This review explores how online bioinformatics resources combined with recently generated datasets can be utilized to investigate purinergic receptor gene expression in tissues and cell types of interest in respiratory disease to identify potential therapeutic targets, which can then be investigated further. These approaches show that different purinergic receptors are expressed at different levels in lung tissue, and that purinergic receptors tend to be expressed at higher levels in immune cells and at more moderate levels in airway structural cells. Notably, P2RX1, P2RX4, P2RX7, P2RY1, P2RY11, and P2RY14 were revealed as the most highly expressed purinergic receptors in lung tissue, therefore suggesting that these receptors have good potential as therapeutic targets for asthma and other respiratory diseases.
Collapse
Affiliation(s)
- Rebecca J. Thompson
- Division of Respiratory Medicine, Nottingham Biomedical Research Centre, National Institute for Health Research, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Ian Sayers
- Division of Respiratory Medicine, Nottingham Biomedical Research Centre, National Institute for Health Research, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Katja Kuokkanen
- Orion Corporation, Orion Pharma, Research and Development, Turku, Finland
| | - Ian P. Hall
- Division of Respiratory Medicine, Nottingham Biomedical Research Centre, National Institute for Health Research, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
- *Correspondence: Ian P. Hall
| |
Collapse
|
8
|
Garcia-Garcia L, Olle L, Martin M, Roca-Ferrer J, Muñoz-Cano R. Adenosine Signaling in Mast Cells and Allergic Diseases. Int J Mol Sci 2021; 22:ijms22105203. [PMID: 34068999 PMCID: PMC8156042 DOI: 10.3390/ijms22105203] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023] Open
Abstract
Adenosine is a nucleoside involved in the pathogenesis of allergic diseases. Its effects are mediated through its binding to G protein-coupled receptors: A1, A2a, A2b and A3. The receptors differ in the type of G protein they recruit, in the effect on adenylyl cyclase (AC) activity and the downstream signaling pathway triggered. Adenosine can produce both an enhancement and an inhibition of mast cell degranulation, indicating that adenosine effects on these receptors is controversial and remains to be clarified. Depending on the study model, A1, A2b, and A3 receptors have shown anti- or pro-inflammatory activity. However, most studies reported an anti-inflammatory activity of A2a receptor. The precise knowledge of the adenosine mechanism of action may allow to develop more efficient therapies for allergic diseases by using selective agonist and antagonist against specific receptor subtypes.
Collapse
Affiliation(s)
- Lucia Garcia-Garcia
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (L.G.-G.); (L.O.); (M.M.); (J.R.-F.)
| | - Laia Olle
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (L.G.-G.); (L.O.); (M.M.); (J.R.-F.)
| | - Margarita Martin
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (L.G.-G.); (L.O.); (M.M.); (J.R.-F.)
- Biochemistry and Molecular Biology Unit, Biomedicine Department, Faculty of Medicine, University of Barcelona, 08036 Barcelona, Spain
- ARADyAL, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Jordi Roca-Ferrer
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (L.G.-G.); (L.O.); (M.M.); (J.R.-F.)
| | - Rosa Muñoz-Cano
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (L.G.-G.); (L.O.); (M.M.); (J.R.-F.)
- ARADyAL, Instituto de Salud Carlos III, 28220 Madrid, Spain
- Allergy Section, Hospital Clinic, Universitat de Barcelona, 08036 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-2275540
| |
Collapse
|
9
|
Rogliani P, Ritondo BL, Cavalli F, Giorgino F, Girolami A, Pane G, Pezzuto G, Zerillo B, Puxeddu E, Ora J. Synergy across the drugs approved for the treatment of asthma. Minerva Med 2021; 113:17-30. [PMID: 33496162 DOI: 10.23736/s0026-4806.21.07266-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Inhaled corticosteroids are the cornerstone for the treatment of stable asthma, however, when disease severity increases, escalating therapy to combinations of drugs acting on distinct signalling pathways is required. It is advantageous to providing evidence of a synergistic interaction across drug combinations, as it allows optimizing bronchodilation while lowering the dose of single agents. In the respiratory pharmacology field, two statistical models are accepted as gold standard to characterize drug interactions, namely the Bliss Independence criterion and the Unified Theory. In this review, pharmacological interactions across drugs approved for the treatment of asthma have been systematically assessed. EVIDENCE ACQUISITION A comprehensive literature search was performed in MEDLINE for studies that used a validated pharmacological method for assessing drug interaction. The results were extracted and reported via qualitative synthesis. EVIDENCE SYNTHESIS Overall, 45 studies were identified from literature search and 5 met the inclusion criteria. Current evidence coming from ex vivo models of asthma indicates that drug combinations modulating bronchial contractility induce a synergistic bronchorelaxant effect. In murine models of lung inflammation, the combination between inhaled corticosteroids and β2- adrenoceptor agonists synergistically improve lung function and the inflammatory profile. CONCLUSIONS There is still limited knowledge regarding the mechanistic basis underlying pharmacological interactions across drugs approved for asthma. The synergism elicited by combined agents is an effect of class. Specifically designed clinical trials are needed to confirm the results coming from preclinical evidence, but also to establish the minimal dose for combined agents to induce a synergistic interaction and maximize bronchodilation.
Collapse
Affiliation(s)
- Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy - .,Division of Respiratory Medicine, University Hospital Policlinico Tor Vergata, Rome, Italy -
| | - Beatrice L Ritondo
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Francesco Cavalli
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Federica Giorgino
- Division of Respiratory Medicine, University Hospital Policlinico Tor Vergata, Rome, Italy
| | - Andrea Girolami
- Division of Respiratory Medicine, University Hospital Policlinico Tor Vergata, Rome, Italy
| | - Gloria Pane
- Division of Respiratory Medicine, University Hospital Policlinico Tor Vergata, Rome, Italy
| | - Gabriella Pezzuto
- Division of Respiratory Medicine, University Hospital Policlinico Tor Vergata, Rome, Italy
| | - Bartolomeo Zerillo
- Division of Respiratory Medicine, University Hospital Policlinico Tor Vergata, Rome, Italy
| | - Ermanno Puxeddu
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy.,Division of Respiratory Medicine, University Hospital Policlinico Tor Vergata, Rome, Italy
| | - Josuel Ora
- Division of Respiratory Medicine, University Hospital Policlinico Tor Vergata, Rome, Italy
| |
Collapse
|
10
|
Joshi R, Hamed O, Yan D, Michi AN, Mostafa MM, Wiehler S, Newton R, Giembycz MA. Prostanoid Receptors of the EP 4-Subtype Mediate Gene Expression Changes in Human Airway Epithelial Cells with Potential Anti-Inflammatory Activity. J Pharmacol Exp Ther 2020; 376:161-180. [PMID: 33158942 DOI: 10.1124/jpet.120.000196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 11/03/2020] [Indexed: 11/22/2022] Open
Abstract
There is a clear, unmet clinical need to identify new drugs to treat individuals with asthma, chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF) in whom current medications are either inactive or suboptimal. In preclinical models, EP4-receptor agonists display efficacy, but their mechanism of action is unclear. In this study, using human bronchial epithelial cells as a therapeutically relevant drug target, we hypothesized that changes in gene expression may play an important role. Several prostanoid receptor mRNAs were detected in BEAS-2B cells, human primary bronchial epithelial cells (HBECs) grown in submersion culture and HBECs grown at an air-liquid interface with PTGER4 predominating. By using the activation of a cAMP response element reporter in BEAS-2B cells as a surrogate of gene expression, Schild analysis determined that PTGER4 mRNAs encoded functional EP4-receptors. Moreover, inhibitors of phosphodiesterase 4 (roflumilast N-oxide [RNO]) and cAMP-dependent protein kinase augmented and attenuated, respectively, reporter activation induced by 2-[3-[(1R,2S,3R)-3-hydroxy-2-[(E,3S)-3-hydroxy-5-[2-(methoxymethyl)phenyl]pent-1-enyl]-5-oxo-cyclopentyl]sulphanylpropylsulphanyl] acetic acid (ONO-AE1-329), a selective EP4-receptor agonist. ONO-AE1-329 also enhanced dexamethasone-induced activation of a glucocorticoid response element reporter in BEAS-2B cells, which was similarly potentiated by RNO. In each airway epithelial cell variant, numerous genes that may impart therapeutic benefit in asthma, COPD, and/or IPF were differentially expressed by ONO-AE1-329, and those changes were often augmented by RNO and/or dexamethasone. We submit that an EP4-receptor agonist, either alone or as a combination therapy, may be beneficial in individuals with chronic lung diseases in whom current treatment options are inadequate. SIGNIFICANCE STATEMENT: Using human bronchial epithelial cells as a therapeutically relevant drug target, we report that EP4-receptor activation promoted gene expression changes that could provide therapeutic benefit in individuals with asthma, COPD, and IPF in whom current treatment options are ineffective or suboptimal.
Collapse
Affiliation(s)
- Radhika Joshi
- Department of Physiology and Pharmacology, Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Omar Hamed
- Department of Physiology and Pharmacology, Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Dong Yan
- Department of Physiology and Pharmacology, Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Aubrey N Michi
- Department of Physiology and Pharmacology, Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mahmoud M Mostafa
- Department of Physiology and Pharmacology, Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Shahina Wiehler
- Department of Physiology and Pharmacology, Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Robert Newton
- Department of Physiology and Pharmacology, Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mark A Giembycz
- Department of Physiology and Pharmacology, Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
11
|
Effendi WI, Nagano T, Kobayashi K, Nishimura Y. Focusing on Adenosine Receptors as a Potential Targeted Therapy in Human Diseases. Cells 2020; 9:E785. [PMID: 32213945 PMCID: PMC7140859 DOI: 10.3390/cells9030785] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023] Open
Abstract
Adenosine is involved in a range of physiological and pathological effects through membrane-bound receptors linked to G proteins. There are four subtypes of adenosine receptors, described as A1AR, A2AAR, A2BAR, and A3AR, which are the center of cAMP signal pathway-based drug development. Several types of agonists, partial agonists or antagonists, and allosteric substances have been synthesized from these receptors as new therapeutic drug candidates. Research efforts surrounding A1AR and A2AAR are perhaps the most enticing because of their concentration and affinity; however, as a consequence of distressing conditions, both A2BAR and A3AR levels might accumulate. This review focuses on the biological features of each adenosine receptor as the basis of ligand production and describes clinical studies of adenosine receptor-associated pharmaceuticals in human diseases.
Collapse
Affiliation(s)
- Wiwin Is Effendi
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan; (W.I.E.); (K.K.); (Y.N.)
- Department of Pulmonology and Respiratory Medicine, Medical Faculty of Airlangga University, Surabaya 60131, Indonesia
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan; (W.I.E.); (K.K.); (Y.N.)
| | - Kazuyuki Kobayashi
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan; (W.I.E.); (K.K.); (Y.N.)
| | - Yoshihiro Nishimura
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan; (W.I.E.); (K.K.); (Y.N.)
| |
Collapse
|
12
|
Joshi R, Yan D, Hamed O, Mostafa MM, Joshi T, Newton R, Giembycz MA. Impact of Phosphodiesterase 4 Inhibition on the Operational Efficacy, Response Maxima, and Kinetics of Indacaterol-Induced Gene Expression Changes in BEAS-2B Airway Epithelial Cells: A Global Transcriptomic Analysis. Mol Pharmacol 2019; 96:56-72. [DOI: 10.1124/mol.118.115311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/25/2019] [Indexed: 12/26/2022] Open
|
13
|
Vijayamahantesh, Vijayalaxmi. Tinkering with targeting nucleotide signaling for control of intracellular Leishmania parasites. Cytokine 2019; 119:129-143. [PMID: 30909149 DOI: 10.1016/j.cyto.2019.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/23/2022]
Abstract
Nucleotides are one of the most primitive extracellular signalling molecules across all phyla and regulate a multitude of responses. The biological effects of extracellular nucleotides/sides are mediated via the specific purinergic receptors present on the cell surface. In mammalian system, adenine nucleotides are the predominant nucleotides found in the extracellular milieu and mediate a constellation of physiological functions. In the context of host-pathogen interaction, extracellular ATP is recognized as a danger signal and potentiates the release of pro-inflammatory mediators from activated immune cells, on the other hand, its breakdown product adenosine exerts potential anti-inflammatory and immunosuppressive actions. Therefore, it is increasingly apparent that the interplay between extracellular ATP/adenosine ratios has a significant role in coordinating the regulation of the immune system in health and diseases. Several pathogens express ectonucleotidases on their surface and exploit the purinergic signalling as one of the mechanisms to modulate the host immune response. Leishmania pathogens are one of the most successful intracellular pathogens which survive within host macrophages and manipulate protective Th1 response into disease promoting Th2 response. In this review, we discuss the regulation of extracellular ATP and adenosine levels, the role of ATP/adenosine counter signalling in regulating the inflammation and immune responses during infection and how Leishmania parasites exploit the purinergic signalling to manipulate host response. We also discuss the challenges and opportunities in targeting purinergic signalling and the future prospects.
Collapse
Affiliation(s)
- Vijayamahantesh
- Department of Biochemistry, Indian Institute of Science (IISc), Bengaluru, Karnataka, India.
| | - Vijayalaxmi
- Department of Zoology, Karnatak University, Dharwad, Karnataka, India
| |
Collapse
|
14
|
Yan D, Hamed O, Joshi T, Mostafa MM, Jamieson KC, Joshi R, Newton R, Giembycz MA. Analysis of the Indacaterol-Regulated Transcriptome in Human Airway Epithelial Cells Implicates Gene Expression Changes in the Adverse and Therapeutic Effects of β2-Adrenoceptor Agonists. J Pharmacol Exp Ther 2018; 366:220-236. [PMID: 29653961 DOI: 10.1124/jpet.118.249292] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 04/11/2018] [Indexed: 12/13/2022] Open
Abstract
The contribution of gene expression changes to the adverse and therapeutic effects of β2-adrenoceptor agonists in asthma was investigated using human airway epithelial cells as a therapeutically relevant target. Operational model-fitting established that the long-acting β2-adrenoceptor agonists (LABA) indacaterol, salmeterol, formoterol, and picumeterol were full agonists on BEAS-2B cells transfected with a cAMP-response element reporter but differed in efficacy (indacaterol ≥ formoterol > salmeterol ≥ picumeterol). The transcriptomic signature of indacaterol in BEAS-2B cells identified 180, 368, 252, and 10 genes that were differentially expressed (>1.5- to <0.67-fold) after 1-, 2-, 6-, and 18-hour of exposure, respectively. Many upregulated genes (e.g., AREG, BDNF, CCL20, CXCL2, EDN1, IL6, IL15, IL20) encode proteins with proinflammatory activity and are annotated by several, enriched gene ontology (GO) terms, including cellular response to interleukin-1, cytokine activity, and positive regulation of neutrophil chemotaxis The general enriched GO term extracellular space was also associated with indacaterol-induced genes, and many of those, including CRISPLD2, DMBT1, GAS1, and SOCS3, have putative anti-inflammatory, antibacterial, and/or antiviral activity. Numerous indacaterol-regulated genes were also induced or repressed in BEAS-2B cells and human primary bronchial epithelial cells by the low efficacy LABA salmeterol, indicating that this genomic effect was neither unique to indacaterol nor restricted to the BEAS-2B airway epithelial cell line. Collectively, these data suggest that the consequences of inhaling a β2-adrenoceptor agonist may be complex and involve widespread changes in gene expression. We propose that this genomic effect represents a generally unappreciated mechanism that may contribute to the adverse and therapeutic actions of β2-adrenoceptor agonists in asthma.
Collapse
Affiliation(s)
- Dong Yan
- Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Omar Hamed
- Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Taruna Joshi
- Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mahmoud M Mostafa
- Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Kyla C Jamieson
- Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Radhika Joshi
- Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Robert Newton
- Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mark A Giembycz
- Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
15
|
Calzetta L, Matera MG, Facciolo F, Cazzola M, Rogliani P. Beclomethasone dipropionate and formoterol fumarate synergistically interact in hyperresponsive medium bronchi and small airways. Respir Res 2018; 19:65. [PMID: 29650006 PMCID: PMC5897944 DOI: 10.1186/s12931-018-0770-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/02/2018] [Indexed: 12/15/2022] Open
Abstract
Background Corticosteroids increase the expression of β2-adrenoceptors (β2-ARs) and protect them against down-regulation. Conversely, β2-AR agonists improve the anti-inflammatory action of corticosteroids. Nevertheless, it is still uncertain whether adding a long-acting β2-AR agonist (LABA) to an inhaled corticosteroid (ICS) results in an additive effect, or there is true synergy. Therefore, the aim of this study was to pharmacologically characterize the interaction between the ICS beclomethasone diproprionate (BDP) and the LABA formoterol fumarate (FF) in a validated human ex vivo model of bronchial asthma. Methods Human medium and small airways were stimulated by histamine and treated with different concentrations of BDP and FF, administered alone and in combination at concentration-ratio reproducing ex vivo that of the currently available fixed-dose combination (FDC; BDP/FF 100:6 combination-ratio). Experiments were performed in non-sensitized (NS) and passively sensitized (PS) airways. The pharmacological interaction was assessed by using Bliss Independence and Unified Theory equations. Results BDP/FF synergistically increased the overall bronchorelaxation in NS and PS airways (+ 15.15% ± 4.02%; P < 0.05 vs. additive effect). At low-to-medium concentrations the synergistic interaction was greater in PS than in NS bronchioles (+ 16.68% ± 3.02% and + 7.27% ± 3.05%, respectively). In PS small airways a very strong synergistic interaction (Combination Index: 0.08; + 20.04% ± 2.18% vs. additive effect) was detected for the total concentrations of BDP/FF combination corresponding to 10.6 ng/ml. Conclusion BDP/FF combination synergistically relaxed human bronchi; the extent of such an interaction was very strong at low-to-medium concentrations in PS small airways. Trial registration Not applicable. Electronic supplementary material The online version of this article (10.1186/s12931-018-0770-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luigino Calzetta
- Unit of Respiratory Medicine, Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Francesco Facciolo
- Thoracic Surgery Unit, "Regina Elena" National Cancer Institute, Rome, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy.
| |
Collapse
|
16
|
Zhang H, Kho AT, Wu Q, Halayko AJ, Limbert Rempel K, Chase RP, Sweezey NB, Weiss ST, Kaplan F. CRISPLD2 (LGL1) inhibits proinflammatory mediators in human fetal, adult, and COPD lung fibroblasts and epithelial cells. Physiol Rep 2017; 4:4/17/e12942. [PMID: 27597766 PMCID: PMC5027350 DOI: 10.14814/phy2.12942] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/07/2016] [Indexed: 11/24/2022] Open
Abstract
Chronic lung disease of prematurity/bronchopulmonary dysplasia (BPD) is the leading cause of perinatal morbidity in developed countries. Inflammation is a prominent finding. Currently available interventions have associated toxicities and limited efficacy. While BPD often resolves in childhood, survivors of preterm birth are at risk for acquired respiratory disease in early life and are more likely to develop chronic obstructive pulmonary disease (COPD) in adulthood. We previously cloned Crispld2 (Lgl1), a glucocorticoid‐regulated mesenchymal secretory protein that modulates lung branching and alveogenesis through mesenchymal–epithelial interactions. Absence of Crispld2 is embryonic lethal. Heterozygous Crispld2+/− mice display features of BPD, including distal airspace enlargement, disruption of elastin, and neonatal lung inflammation. CRISPLD2 also plays a role in human fetal lung fibroblast cell expansion, migration, and mesenchymal–epithelial signaling. This study assessed the effects of endogenous and exogenous CRISPLD2 on expression of proinflammatory mediators in human fetal and adult (normal and COPD) lung fibroblasts and epithelial cells. CRISPLD2 expression was upregulated in a lipopolysaccharide (LPS)‐induced human fetal lung fibroblast line (MRC5). LPS‐induced upregulation of the proinflammatory cytokines IL‐8 and CCL2 was exacerbated in MRC5‐CRISPLD2knockdown cells. siRNA suppression of endogenous CRISPLD2 in adult lung fibroblasts (HLFs) led to augmented expression of IL‐8, IL‐6, CCL2. LPS‐stimulated expression of proinflammatory mediators by human lung epithelial HAEo‐ cells was attenuated by purified secretory CRISPLD2. RNA sequencing results from HLF‐CRISPLD2knockdown suggest roles for CRISPLD2 in extracellular matrix and in inflammation. Our data suggest that suppression of CRISPLD2 increases the risk of lung inflammation in early life and adulthood.
Collapse
Affiliation(s)
- Hui Zhang
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Alvin T Kho
- Children's Hospital Informatics Program Boston Children's Hospital, Boston, Massachusetts
| | - Qing Wu
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Andrew J Halayko
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| | - Karen Limbert Rempel
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| | - Robert P Chase
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Boston, Massachusetts
| | - Neil B Sweezey
- The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada Departments of Paediatrics and Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Boston, Massachusetts
| | - Feige Kaplan
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada Departments of Human Genetics and Pediatrics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
17
|
Burnstock G. Purinergic Signalling: Therapeutic Developments. Front Pharmacol 2017; 8:661. [PMID: 28993732 PMCID: PMC5622197 DOI: 10.3389/fphar.2017.00661] [Citation(s) in RCA: 282] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/05/2017] [Indexed: 12/15/2022] Open
Abstract
Purinergic signalling, i.e., the role of nucleotides as extracellular signalling molecules, was proposed in 1972. However, this concept was not well accepted until the early 1990's when receptor subtypes for purines and pyrimidines were cloned and characterised, which includes four subtypes of the P1 (adenosine) receptor, seven subtypes of P2X ion channel receptors and 8 subtypes of the P2Y G protein-coupled receptor. Early studies were largely concerned with the physiology, pharmacology and biochemistry of purinergic signalling. More recently, the focus has been on the pathophysiology and therapeutic potential. There was early recognition of the use of P1 receptor agonists for the treatment of supraventricular tachycardia and A2A receptor antagonists are promising for the treatment of Parkinson's disease. Clopidogrel, a P2Y12 antagonist, is widely used for the treatment of thrombosis and stroke, blocking P2Y12 receptor-mediated platelet aggregation. Diquafosol, a long acting P2Y2 receptor agonist, is being used for the treatment of dry eye. P2X3 receptor antagonists have been developed that are orally bioavailable and stable in vivo and are currently in clinical trials for the treatment of chronic cough, bladder incontinence, visceral pain and hypertension. Antagonists to P2X7 receptors are being investigated for the treatment of inflammatory disorders, including neurodegenerative diseases. Other investigations are in progress for the use of purinergic agents for the treatment of osteoporosis, myocardial infarction, irritable bowel syndrome, epilepsy, atherosclerosis, depression, autism, diabetes, and cancer.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical SchoolLondon, United Kingdom
- Department of Pharmacology and Therapeutics, The University of Melbourne, MelbourneVIC, Australia
| |
Collapse
|
18
|
Bahreyni A, Samani SS, Khazaei M, Ryzhikov M, Avan A, Hassanian SM. Therapeutic potentials of adenosine receptors agonists and antagonists in colitis; Current status and perspectives. J Cell Physiol 2017; 233:2733-2740. [DOI: 10.1002/jcp.26073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/28/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Amirhossein Bahreyni
- Faculty of Medicine; Department of Clinical Biochemistry and Immunogenetic Research Center; Mazandaran University of Medical Sciences; Sari Mazandaran Iran
| | - Seyed S. Samani
- Department of Biology; Mashhad Branch; Islamic Azad University; Mashhad Iran
| | - Majid Khazaei
- Faculty of Medicine; Department of Medical Physiology; Mashhad University of Medical Sciences; Mashhad Iran
| | - Mikhail Ryzhikov
- Department of Molecular Microbiology and Immunology; St. Louis University; School of Medicine; Saint Louis Missouri
| | - Amir Avan
- Metabolic Syndrome Research Center; Mashhad University of Medical Sciences; Mashhad Iran
- Department of Modern Sciences and Technologies; School of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
| | - Seyed M. Hassanian
- Metabolic Syndrome Research Center; Mashhad University of Medical Sciences; Mashhad Iran
- Faculty of Medicine; Department of Medical Biochemistry; Mashhad University of Medical Sciences; Mashhad Iran
- Microanatomy Research Center; Mashhad University of Medical Sciences; Mashhad Iran
| |
Collapse
|
19
|
Altonsy MO, Mostafa MM, Gerber AN, Newton R. Long-acting β 2-agonists promote glucocorticoid-mediated repression of NF-κB by enhancing expression of the feedback regulator TNFAIP3. Am J Physiol Lung Cell Mol Physiol 2016; 312:L358-L370. [PMID: 28039105 DOI: 10.1152/ajplung.00426.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 12/27/2022] Open
Abstract
Glucocorticoids, or corticosteroids, are effective treatments for many chronic inflammatory diseases, and in mild/moderate asthma, long-acting β2-adrenoceptor agonists (LABAs) enhance the efficacy of inhaled corticosteroids (ICSs) more than increasing the ICS dose. In human bronchial epithelial, BEAS-2B, cells, expression of TNFα-induced protein-3 (TNFAIP3), or A20, a dual-ubiquitin ligase that provides feedback inhibition of NF-κB, was induced by budesonide, an ICS, and formoterol, a LABA, and was further enhanced by budesonide-formoterol combination. The proinflammatory cytokine TNF induced TNFAIP3 and TNF expression. Whereas subsequent budesonide treatment enhanced TNF-induced TNFAIP3 and reduced TNF expression, formoterol amplified these differential effects. In primary human airway smooth muscle cells, TNFAIP3 expression was induced by TNF. This was largely unaffected by budesonide but was acutely enhanced by budesonide-formoterol combination. In BEAS-2B cells, TNF recruited RELA, the main NF-κB transactivating subunit, to a 3' region of the TNF gene. RELA binding was reduced by budesonide, was further reduced by formoterol cotreatment, and was associated with reduced RNA polymerase II recruitment to the TNF gene. This is consistent with reduced TNF expression. TNFAIP3 knockdown enhanced TNF expression in the presence of TNF, TNF plus budesonide, and TNF plus budesonide-formoterol combination and confirms feedback inhibition. A luciferase reporter containing the TNF 3' RELA binding region recapitulated TNF inducibility and was inhibited by an IκB kinase inhibitor and TNFAIP3 overexpression. Repression of reporter activity by budesonide was increased by formoterol and involved TNFAIP3. Thus LABAs may improve the anti-inflammatory properties of ICSs by augmenting TNFAIP3 expression to negatively regulate NF-κB.
Collapse
Affiliation(s)
- Mohammed O Altonsy
- Department of Cell Biology and Anatomy, Airway Inflammation Research Group, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Zoology, Sohag University, Sohag, Egypt
| | - Mahmoud M Mostafa
- Department of Cell Biology and Anatomy, Airway Inflammation Research Group, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Anthony N Gerber
- Department of Medicine, National Jewish Health, Denver, Colorado; and.,Department of Medicine, University of Colorado, Denver, Colorado
| | - Robert Newton
- Department of Cell Biology and Anatomy, Airway Inflammation Research Group, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada;
| |
Collapse
|
20
|
Joshi T, Yan D, Hamed O, Tannheimer SL, Phillips GB, Wright CD, Kim M, Salmon M, Newton R, Giembycz MA. GS-5759, a Bifunctional β2-Adrenoceptor Agonist and Phosphodiesterase 4 Inhibitor for Chronic Obstructive Pulmonary Disease with a Unique Mode of Action: Effects on Gene Expression in Human Airway Epithelial Cells. J Pharmacol Exp Ther 2016; 360:324-340. [DOI: 10.1124/jpet.116.237743] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/05/2016] [Indexed: 12/31/2022] Open
|
21
|
Sakthivel P, Breithaupt A, Gereke M, Copland DA, Schulz C, Gruber AD, Dick AD, Schreiber J, Bruder D. Soluble CD200 Correlates With Interleukin-6 Levels in Sera of COPD Patients: Potential Implication of the CD200/CD200R Axis in the Disease Course. Lung 2016; 195:59-68. [PMID: 27864635 DOI: 10.1007/s00408-016-9962-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 11/09/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND COPD represents a multifactorial lung disorder with high morbidity and mortality. Despite intensive research concerning the underlying disease mechanisms, the involvement of the CD200/CD200R axis in supporting or preventing the onset of COPD has not yet been addressed. Since the CD200/CD200R axis is crucially implicated in the maintenance of pulmonary immune homeostasis, we hypothesized that it might be involved in controlling the onset of COPD. METHODS To address this, we analyzed the serum samples from COPD patients and normal controls for soluble (s) CD200 and correlated the data to COPD-relevant clinical parameters. In addition, basic studies were conducted in CD200-deficient and wild-type mice in which COPD-like inflammation was induced with elastase/LPS followed by lung and serum component analysis. RESULTS We observed a positive correlation between serum sCD200 and IL-6 levels as well as a trend toward a negative correlation of sCD200 with vitamin D3 in COPD patients. Further investigations in mice revealed that despite elevated serum concentration of MMP-9 in CD200KO mice, the early onset of COPD-like lung inflammation was similar in CD200-deficient and wild-type animals in terms of immune cell infiltration, emphysematous changes, and mucus overproduction. CONCLUSIONS While our murine studies suggest that the co-inhibitory molecule CD200 does not appear to play a prominent role in the early onset of COPD-like features, correlation of sCD200 serum levels with COPD-related parameters in humans with established disease revealed that the CD200/CD200R axis may be mechanistically linked to the disease course in COPD patients.
Collapse
MESH Headings
- Aged
- Animals
- Antigens, CD/blood
- Antigens, CD/genetics
- Antigens, Surface/metabolism
- Case-Control Studies
- Cholecalciferol/blood
- Disease Models, Animal
- Female
- Humans
- Interleukin-6/blood
- Lipopolysaccharides
- Lymphocytes/pathology
- Macrophages, Alveolar/pathology
- Male
- Matrix Metalloproteinase 9/blood
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Middle Aged
- Neutrophils/pathology
- Orexin Receptors
- Pancreatic Elastase
- Pulmonary Disease, Chronic Obstructive/blood
- Pulmonary Disease, Chronic Obstructive/chemically induced
- Pulmonary Disease, Chronic Obstructive/pathology
- Receptors, Cell Surface/metabolism
Collapse
Affiliation(s)
- Priya Sakthivel
- Immune Regulation Group, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany.
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
| | - Angele Breithaupt
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Marcus Gereke
- Immune Regulation Group, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - David A Copland
- School of Clinical Sciences, University of Bristol, Bristol, BS8 1TD, UK
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
- National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, EC1V 2PD, UK
| | - Christian Schulz
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke-University Magdeburg, University Hospital, Magdeburg, Germany
| | - Achim D Gruber
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Andrew D Dick
- School of Clinical Sciences, University of Bristol, Bristol, BS8 1TD, UK
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
- National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, EC1V 2PD, UK
| | - Jens Schreiber
- Department of Pulmonology, Otto-von-Guericke-University Magdeburg, University Hospital, Magdeburg, Germany
| | - Dunja Bruder
- Immune Regulation Group, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
22
|
Newton R, Giembycz MA. Understanding how long-acting β 2 -adrenoceptor agonists enhance the clinical efficacy of inhaled corticosteroids in asthma - an update. Br J Pharmacol 2016; 173:3405-3430. [PMID: 27646470 DOI: 10.1111/bph.13628] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/19/2016] [Accepted: 08/21/2016] [Indexed: 12/18/2022] Open
Abstract
In moderate-to-severe asthma, adding an inhaled long-acting β2 -adenoceptor agonist (LABA) to an inhaled corticosteroid (ICS) provides better disease control than simply increasing the dose of ICS. Acting on the glucocorticoid receptor (GR, gene NR3C1), ICSs promote anti-inflammatory/anti-asthma gene expression. In vitro, LABAs synergistically enhance the maximal expression of many glucocorticoid-induced genes. Other genes, including dual-specificity phosphatase 1(DUSP1) in human airways smooth muscle (ASM) and epithelial cells, are up-regulated additively by both drug classes. Synergy may also occur for LABA-induced genes, as illustrated by the bronchoprotective gene, regulator of G-protein signalling 2 (RGS2) in ASM. Such effects cannot be produced by either drug alone and may explain the therapeutic efficacy of ICS/LABA combination therapies. While the molecular basis of synergy remains unclear, mechanistic interpretations must accommodate gene-specific regulation. We explore the concept that each glucocorticoid-induced gene is an independent signal transducer optimally activated by a specific, ligand-directed, GR conformation. In addition to explaining partial agonism, this realization provides opportunities to identify novel GR ligands that exhibit gene expression bias. Translating this into improved therapeutic ratios requires consideration of GR density in target tissues and further understanding of gene function. Similarly, the ability of a LABA to interact with a glucocorticoid may be suboptimal due to low β2 -adrenoceptor density or biased β2 -adrenoceptor signalling. Strategies to overcome these limitations include adding-on a phosphodiesterase inhibitor and using agonists of other Gs-coupled receptors. In all cases, the rational design of ICS/LABA, and derivative, combination therapies requires functional knowledge of induced (and repressed) genes for therapeutic benefit to be maximized.
Collapse
Affiliation(s)
- Robert Newton
- Department of Cell Biology and Anatomy, Airways Inflammation Research Group, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mark A Giembycz
- Department of Physiology and Pharmacology, Airways Inflammation Research Group, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
23
|
Gerber AN. Glucocorticoids and the Lung. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015. [PMID: 26215999 DOI: 10.1007/978-1-4939-2895-8_12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The lung is a major clinical target of glucocorticoid-based therapeutics, and GR signaling has broad effects on respiratory physiology and inflammation. During lung development, expression of GR in the mesenchyme is required for normal terminal alveolar epithelial differentiation. Prenatal administration of exogenous glucocorticoids (GCs) to prevent neonatal respiratory distress syndrome, however, promotes alveolar maturation and accelerates surfactant expression in a manner consistent with direct effects on the developing alveolar epithelium. Likewise, cell autonomous effects of GCs in regulating gene expression and phenotype of the airway epithelium and airway smooth muscle have been demonstrated to control important therapeutic effects of GCs in treating asthma and chronic obstructive pulmonary disease. Here, mechanisms and consequences of GR signaling in the developing lung and in treating obstructive lung disease are reviewed, with a focus on direct effects of GR signaling on alveolar differentiation, surfactant expression, and airway epithelial and smooth muscle pathophysiology.
Collapse
Affiliation(s)
- Anthony N Gerber
- Department of Medicine, National Jewish Health, University of Colorado, Denver, 1400 Jackson Street, Room K621b, Denver, CO, 80206, USA,
| |
Collapse
|
24
|
Elgendy R, Giantin M, Montesissa C, Dacasto M. Transcriptomic analysis of skeletal muscle from beef cattle exposed to illicit schedules containing dexamethasone: identification of new candidate biomarkers and their validation using samples from a field monitoring trial. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2015; 32:1448-63. [DOI: 10.1080/19440049.2015.1070307] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Giembycz MA, Newton R. Potential mechanisms to explain how LABAs and PDE4 inhibitors enhance the clinical efficacy of glucocorticoids in inflammatory lung diseases. F1000PRIME REPORTS 2015; 7:16. [PMID: 25750734 PMCID: PMC4335793 DOI: 10.12703/p7-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inhaled glucocorticoids acting via the glucocorticoid receptor are a mainstay treatment option for individuals with asthma. There is a consensus that the remedial actions of inhaled glucocorticoids are due to their ability to suppress inflammation by modulating gene expression. While inhaled glucocorticoids are generally effective in asthma, there are subjects with moderate-to-severe disease in whom inhaled glucocorticoids fail to provide adequate control. For these individuals, asthma guidelines recommend that a long-acting β2-adrenoceptor agonist (LABA) be administered concurrently with an inhaled glucocorticoid. This so-called “combination therapy” is often effective and clinically superior to the inhaled glucocorticoid alone, irrespective of dose. LABAs, and another class of drug known as phosphodiesterase 4 (PDE4) inhibitors, may also enhance the efficacy of inhaled glucocorticoids in chronic obstructive pulmonary disease (COPD). In both conditions, these drugs are believed to work by elevating the concentration of cyclic adenosine-3',5'-monophosphate (cAMP) in target cells and tissues. Despite the success of inhaled glucocorticoid/LABA combination therapy, it remains unclear how an increase in cAMP enhances the clinical efficacy of an inhaled glucocorticoid. In this report, we provide a state-of-the-art appraisal, including unresolved and controversial issues, of how cAMP-elevating drugs and inhaled glucocorticoids interact at a molecular level to deliver enhanced anti-inflammatory benefit over inhaled glucocorticoid monotherapy. We also speculate on ways to further exploit this desirable interaction. Critical discussion of how these two drug classes regulate gene transcription, often in a synergistic manner, is a particular focus. Indeed, because interplay between glucocorticoid receptor and cAMP signaling pathways may contribute to the superiority of inhaled glucocorticoid/LABA combination therapy, understanding this interaction may provide a logical framework to rationally design these multicomponent therapeutics that was not previously possible.
Collapse
Affiliation(s)
- Mark A. Giembycz
- Department of Physiology & Pharmacology, Snyder Institute of Chronic Diseases, Cumming School of Medicine, University of Calgary3820 Hospital Drive NW, Calgary, AlbertaCanada T2N 1N4
| | - Robert Newton
- Department of Cell Biology & Anatomy, Snyder Institute of Chronic Diseases, Cumming School of Medicine, University of Calgary3820 Hospital Drive NW, Calgary, AlbertaCanada T2N 1N4
| |
Collapse
|
26
|
Zhang H, Sweezey NB, Kaplan F. LGL1 modulates proliferation, apoptosis, and migration of human fetal lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 2014; 308:L391-402. [PMID: 25480331 DOI: 10.1152/ajplung.00119.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Rapid growth and formation of new gas exchange units (alveogenesis) are hallmarks of the perinatal lung. Bronchopulmonary dysplasia (BPD), common in very premature infants, is characterized by premature arrest of alveogenesis. Mesenchymal cells (fibroblasts) regulate both lung branching and alveogenesis through mesenchymal-epithelial interactions. Temporal or spatial deficiency of late-gestation lung 1/cysteine-rich secretory protein LD2 (LGL1/CRISPLD2), expressed in and secreted by lung fibroblasts, can impair both lung branching and alveogenesis (LGL1 denotes late gestation lung 1 protein; LGL1 denotes the human gene; Lgl1 denotes the mouse/rat gene). Absence of Lgl1 is embryonic lethal. Lgl1 levels are dramatically reduced in oxygen toxicity rat models of BPD, and heterozygous Lgl1(+/-) mice exhibit features resembling human BPD. To explore the role of LGL1 in mesenchymal-epithelial interactions in developing lung, we developed a doxycycline (DOX)-inducible RNA-mediated LGL1 knockdown cellular model in human fetal lung fibroblasts (MRC5(LGL1KD)). We assessed the impact of LGL1 on cell proliferation, cell migration, apoptosis, and wound healing. DOX-induced MRC5(LGL1KD) suppressed cell growth and increased apoptosis of annexin V(+) staining cells and caspase 3/7 activity. LGL1-conditioned medium increased migration of fetal rat primary lung epithelial cells and human airway epithelial cells. Impaired healing by MRC5(LGL1KD) cells of a wound model was attenuated by addition of LGL1-conditioned medium. Suppression of LGL1 was associated with dysregulation of extracellular matrix genes (downregulated MMP1, ColXVα1, and ELASTIN) and proapoptosis genes (upregulated BAD, BAK, CASP2, and TNFRSF1B) and inhibition of 44/42MAPK phosphorylation. Our findings define a role for LGL1 in fibroblast expansion and migration, epithelial cell migration, and mesenchymal-epithelial signaling, key processes in fetal lung development.
Collapse
Affiliation(s)
- Hui Zhang
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Neil B Sweezey
- Hospital for Sick Children Research Institute, Toronto, Ontario, Canada; Departments of Pediatrics and Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Feige Kaplan
- Departments of Human Genetics and Pediatrics, McGill University, Montreal, Quebec, Canada; Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada;
| |
Collapse
|
27
|
Antonioli L, Csóka B, Fornai M, Colucci R, Kókai E, Blandizzi C, Haskó G. Adenosine and inflammation: what's new on the horizon? Drug Discov Today 2014; 19:1051-68. [DOI: 10.1016/j.drudis.2014.02.010] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 02/06/2014] [Accepted: 02/25/2014] [Indexed: 12/18/2022]
|
28
|
Abstract
This literature review updates the reader on the new studies regarding steroid therapy over the last year in stable COPD and in exacerbations. In stable COPD, we critique the 2011 update and 2013 revision of the GOLD guidelines, discuss why combining inhaled corticosteroids (ICS) with long-acting beta-agonists (LABA) (ICS/LABA) is preferable over LABA alone and review the literature for intraclass differences, finding that the evidence does not clearly support superiority of any particular ICS/LABA. We also address other comparisons against ICS/LABA, including triple therapy. We briefly review which type of inhaler should be chosen. For exacerbations, we report the REDUCE trial findings favouring a 5-day course of systemic steroids, and other trials addressing which steroid and route to use, including in an intensive care setting. Lastly, the future lies in new anti-inflammatories and re-phenotyping the heterogeneous amalgamation of COPD. A Spanish guideline recommends distinguishing steroid-responsive eosinophilic exacerbators from other phenotypes.
Collapse
Affiliation(s)
- Daan A De Coster
- Department of Primary Care and Population Health, University College London, Upper 3rd Floor, UCL Medical School (Royal Free Campus), Rowland Hill Street, London, UK NW3 2PF
| | - Melvyn Jones
- Department of Primary Care and Population Health, University College London, Upper 3rd Floor, UCL Medical School (Royal Free Campus), Rowland Hill Street, London, UK NW3 2PF
| |
Collapse
|
29
|
Yoo JY, Shin H, Kim TH, Choi WS, Ferguson SD, Fazleabas AT, Young SL, Lessey BA, Ha UH, Jeong JW. CRISPLD2 is a target of progesterone receptor and its expression is decreased in women with endometriosis. PLoS One 2014; 9:e100481. [PMID: 24955763 PMCID: PMC4067330 DOI: 10.1371/journal.pone.0100481] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/24/2014] [Indexed: 01/08/2023] Open
Abstract
Endometriosis, defined as the presence of endometrial cells outside of the uterine cavity, is a major cause of infertility and pelvic pain, afflicting more than 10% of reproductive age women. Endometriosis is a chronic inflammatory disease and lipopolysaccharide promotes the proliferation and invasion of endometriotic stromal cells. Cysteine-rich secretory protein LCCL domain-containing 2 (CRISPLD2) has high affinity for lipopolysaccharide and plays a critical role in defense against endotoxin shock. However, the function of CRISPLD2 has not been studied in endometriosis and uterine biology. Herein, we examined the expression of CRISPLD2 in endometrium from patients with and without endometriosis using immunohistochemistry. The expression of CRISPLD2 was higher in the secretory phase in human menstrual cycle compared to proliferative phase. The expression of CRISPLD2 was significantly decreased in the endometrium of women with endometriosis in the early secretory phase compared to women without endometriosis. The increase of CRISPLD2 expression at the early secretory and dysregulation of its expression in endometriosis suggest progesterone (P4) regulation of CRISPLD2. To investigate whether CRISPLD2 is regulated by P4, we examined the expression of the CRISPLD2 in the uteri of wild-type and progesterone receptor knock out (PRKO) mice. The expression of CRISPLD2 was significantly increased after P4 treatment in the wild-type mice. However, CRISPLD2 expression was significantly decreased in the (PRKO) mice treated with P4. During early pregnancy, the expression of CRISPLD2 was increased in decidua of implantation and post-implantation stages. CRISPLD2 levels were also increased in cultured human endometrial stromal cells during in vitro decidualization. These results suggest that the CRISPLD2 is a target of the progesterone receptor and may play an important role in pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Jung-Yoon Yoo
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, Michigan, United States of America
| | - Heesung Shin
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, Michigan, United States of America
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, South Korea
| | - Tae Hoon Kim
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, Michigan, United States of America
| | - Won-Seok Choi
- Department of Food Science and Technology, Korea National University of Transportation, Chungbuk, South Korea
| | - Susan D. Ferguson
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, Michigan, United States of America
| | - Asgerally T. Fazleabas
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, Michigan, United States of America
| | - Steven L. Young
- Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Bruce A. Lessey
- Department of Obstetrics and Gynecology, University Medical Group, Greenville Hospital System, Greenville, South Carolina, United States of America
| | - Un-Hwan Ha
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, South Korea
- * E-mail: (JWJ); (UHH)
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, Michigan, United States of America
- * E-mail: (JWJ); (UHH)
| |
Collapse
|
30
|
Giembycz MA, Maurice DH. Cyclic nucleotide-based therapeutics for chronic obstructive pulmonary disease. Curr Opin Pharmacol 2014; 16:89-107. [PMID: 24810285 DOI: 10.1016/j.coph.2014.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 12/18/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) defines a group of chronic inflammatory disorders of the airways that are characterised by a progressive and largely irreversible decline in expiratory airflow. Drugs used to treat COPD through actions mediated by cyclic AMP (cAMP) are restricted to long-acting and short-acting β2-adrenoceptor agonists and, in a subset of patients with chronic bronchitis, a phosphodiesterase 4 inhibitor, roflumilast. These agents relax airway smooth muscle and suppress inflammation. At the molecular level, these effects in the airways are mediated by two cAMP effectors, cAMP-dependent protein kinase and exchange proteins activated by cAMP. The pharmacology of newer agents, acting through these systems, is discussed here with an emphasis on their potential to interact and increase therapeutic effectiveness.
Collapse
Affiliation(s)
- Mark A Giembycz
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Donald H Maurice
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
31
|
Giembycz MA, Newton R. How Phosphodiesterase 4 Inhibitors Work in Patients with Chronic Obstructive Pulmonary Disease of the Severe, Bronchitic, Frequent Exacerbator Phenotype. Clin Chest Med 2014; 35:203-17. [DOI: 10.1016/j.ccm.2013.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Holden NS, George T, Rider CF, Chandrasekhar A, Shah S, Kaur M, Johnson M, Siderovski DP, Leigh R, Giembycz MA, Newton R. Induction of regulator of G-protein signaling 2 expression by long-acting β2-adrenoceptor agonists and glucocorticoids in human airway epithelial cells. J Pharmacol Exp Ther 2013; 348:12-24. [PMID: 24163441 DOI: 10.1124/jpet.113.204586] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In asthma and chronic obstructive pulmonary disease (COPD) multiple mediators act on Gαq-linked G-protein-coupled receptors (GPCRs) to cause bronchoconstriction. However, acting on the airway epithelium, such mediators may also elicit inflammatory responses. In human bronchial epithelial BEAS-2B cells (bronchial epithelium + adenovirus 12-SV40 hybrid), regulator of G-protein signaling (RGS) 2 mRNA and protein were synergistically induced in response to combinations of long-acting β2-adrenoceptor agonist (LABA) (salmeterol, formoterol) plus glucocorticoid (dexamethasone, fluticasone propionate, budesonide). Equivalent responses occurred in primary human bronchial epithelial cells. Concentrations of glucocorticoid plus LABA required to induce RGS2 expression in BEAS-2B cells were consistent with the levels achieved therapeutically in the lungs. As RGS2 is a GTPase-activating protein that switches off Gαq, intracellular free calcium ([Ca(2+)]i) flux was used as a surrogate of responses induced by histamine, methacholine, and the thromboxane receptor agonist U46619 [(Z)-7-[(1S,4R,5R,6S)-5-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxabicyclo[2.2.1]heptan-6-yl]hept-5-enoic acid]. This was significantly attenuated by salmeterol plus dexamethasone pretreatment, or RGS2 overexpression, and the protective effect of salmeterol plus dexamethasone was abolished by RGS2 RNA silencing. Although methacholine and U46619 induced interleukin-8 (IL-8) release and this was inhibited by RGS2 overexpression, the repression of U46619-induced IL-8 release by salmeterol plus dexamethasone was unaffected by RGS2 knockdown. Given a role for Gαq-mediated pathways in inducing IL-8 release, we propose that RGS2 acts redundantly with other effector processes to repress IL-8 expression. Thus, RGS2 expression is a novel effector mechanism in the airway epithelium that is induced by glucocorticoid/LABA combinations. This could contribute to the efficacy of glucocorticoid/LABA combinations in asthma and COPD.
Collapse
Affiliation(s)
- Neil S Holden
- Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada (N.S.H., T.G., C.F.R., A.C., S.S., M.K., R.L., M.A.G., R.N.); GlaxoSmithKline Research and Development, Uxbridge, Middlesex, United Kingdom (M.J.); and Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, West Virginia (D.P.S.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Both LCCL-domains of human CRISPLD2 have high affinity for lipid A. Biochimie 2013; 97:66-71. [PMID: 24090571 DOI: 10.1016/j.biochi.2013.09.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 09/20/2013] [Indexed: 11/22/2022]
Abstract
The LCCL-domain is a recently defined protein module present in diverse extracellular multidomain proteins. Practically nothing is known about the molecular function of these domains; based on functional features of proteins harboring LCCL-domains it has been suggested that these domains might function as lipopolysaccharide-binding domains. Here we show that the two LCCL-domains of human CRISPLD2 protein, a lipopolysaccharide-binding serum protein involved in defense against endotoxin shock, have higher affinity for the lipid A, the toxic moiety of lipopolysaccharides than for ipopolysaccharide. Our observation that the LCCL-domains of CRISPLD2 are specific for the toxic lipid A moiety of the endotoxin suggests that it may block the interaction between endotoxins and the host endotoxin receptors without interfering with the development of antibacterial immunity against the polysaccharide moiety of LPS. We suggest that the anti-inflammatory function of CRISPLD2 protein may account for its role in various pathological and developmental processes.
Collapse
|