1
|
Li C, Xu Y, Su W, He X, Li J, Li X, Xu HE, Yin W. Structural insights into ligand recognition, selectivity, and activation of bombesin receptor subtype-3. Cell Rep 2024; 43:114511. [PMID: 39024101 DOI: 10.1016/j.celrep.2024.114511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/16/2024] [Accepted: 06/28/2024] [Indexed: 07/20/2024] Open
Abstract
Bombesin receptor subtype-3 (BRS3) is an important orphan G protein-coupled receptor that regulates energy homeostasis and insulin secretion. As a member of the bombesin receptor (BnR) family, the lack of known endogenous ligands and high-resolution structure has hindered the understanding of BRS3 signaling and function. We present two cryogenic electron microscopy (cryo-EM) structures of BRS3 in complex with the heterotrimeric Gq protein in its active states: one bound to the pan-BnR agonist BA1 and the other bound to the synthetic BRS3-specific agonist MK-5046. These structures reveal the architecture of the orthosteric ligand pocket underpinning molecular recognition and provide insights into the structural basis for BRS3's selectivity and low affinity for bombesin peptides. Examination of conserved micro-switches suggests a shared activation mechanism among BnRs. Our findings shed light on BRS3's ligand selectivity and signaling mechanisms, paving the way for exploring its therapeutic potential for diabetes, obesity, and related metabolic disorders.
Collapse
Affiliation(s)
- Changyao Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Lingang Laboratory, Shanghai 200031, China
| | - Youwei Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wenxin Su
- Guangzhou University of Chinese Medicine, Zhongshan Institute for Drug Discovery, Guangdong 510000, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong 528400, China
| | - Xinheng He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingru Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xinzhu Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - H Eric Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Lingang Laboratory, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Wanchao Yin
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong 528400, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Guangzhou University of Chinese Medicine, Zhongshan Institute for Drug Discovery, Guangdong 510000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Guo M, Zhang Y, Wu L, Sheng Y, Zhao J, Wang Z, Wang H, Zhang L, Xiao H. Dynamic Phosphoproteomics of BRS3 Activation Reveals the Hippo Signaling Pathway for Cell Migration. J Proteome Res 2023. [PMID: 37368948 DOI: 10.1021/acs.jproteome.3c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Bombesin receptor subtype-3 (BRS3) is an orphan G-protein coupled receptor (GPCR) that is involved in a variety of pathological and physiological processes, while its biological functions and underlying regulatory mechanisms remain largely unknown. In this study, a quantitative phosphoproteomics approach was employed to comprehensively decipher the signal transductions that occurred upon intracellular BRS3 activation. The lung cancer cell line H1299-BRS3 was treated with MK-5046, an agonist of BRS3, for different durations. Harvested cellular proteins were digested and phosphopeptides were enriched by immobilized titanium (IV) ion affinity chromatography (Ti4+-IMAC) for label-free quantification (LFQ) analysis. A total of 11,938 phosphopeptides were identified, corresponding to 3,430 phosphoproteins and 10,820 phosphosites. Data analysis revealed that 27 phosphopeptides corresponding to six proteins were involved in the Hippo signaling pathway, which was significantly regulated by BRS3 activation. Verification experiments demonstrated that downregulation of the Hippo signaling pathway caused by BRS3 activation could induce the dephosphorylation and nucleus localization of the Yes-associated protein (YAP), and its association with cell migration was further confirmed by kinase inhibition. Our data collectively demonstrate that BRS3 activation contributes to cell migration through downregulation of the Hippo signaling pathway.
Collapse
Affiliation(s)
- Miao Guo
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lehao Wu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ye Sheng
- Zhiyuan College, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiaqi Zhao
- Zhiyuan College, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zeyuan Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huiyu Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lu Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hua Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Ramos-Alvarez I, Iordanskaia T, Mantey SA, Jensen RT. The Nonpeptide Agonist MK-5046 Functions As an Allosteric Agonist for the Bombesin Receptor Subtype-3. J Pharmacol Exp Ther 2022; 382:66-78. [PMID: 35644465 PMCID: PMC9341266 DOI: 10.1124/jpet.121.001033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 05/05/2022] [Indexed: 08/29/2023] Open
Abstract
Allosteric ligands of various G-protein-coupled receptors are being increasingly described and are providing important advances in the development of ligands with novel selectivity and efficacy. These unusual properties allow expanded opportunities for pharmacologic studies and treatment. Unfortunately, no allosteric ligands are yet described for the bombesin receptor family (BnRs), which are proposed to be involved in numerous physiologic/pathophysiological processes in both the central nervous system and peripheral tissues. In this study, we investigate the possibility that the bombesin receptor subtype-3 (BRS-3) specific nonpeptide receptor agonist MK-5046 [(2S)-1,1,1-trifluoro-2-[4-(1H-pyrazol-1-yl)phenyl]-3-(4-[[1-(trifluoromethyl)cyclopropyl]methyl]-1H-imidazol-2-yl)propan-2-ol] functions as a BRS-3 allosteric receptor ligand. We find that in BRS-3 cells, MK-5046 only partially inhibits iodine-125 radionuclide (125I)-Bantag-1 [Boc-Phe-His-4-amino-5-cyclohexyl-2,4,5-trideoxypentonyl-Leu-(3-dimethylamino) benzylamide N-methylammonium trifluoroacetate] binding and that both peptide-1 (a universal BnR-agonist) and MK-5046 activate phospholipase C; however, the specific BRS-3 peptide antagonist Bantag-1 inhibits the action of peptide-1 competitively, whereas for MK-5046 the inhibition is noncompetitive and yields a curvilinear Schild plot. Furthermore, MK-5046 shows other allosteric behaviors, including slowing dissociation of the BRS-3 receptor ligand 125I-Bantag-1, dose-inhibition curves being markedly affected by increasing ligand concentration, and MK-5046 leftward shifting the peptide-1 agonist dose-response curve. Lastly, receptor chimeric studies and site-directed mutagenesis provide evidence that MK-5046 and Bantag-1 have different binding sites determining their receptor high affinity/selectivity. These results provide evidence that MK-5046 is functioning as an allosteric agonist at the BRS-3 receptor, which is the first allosteric ligand described for this family of receptors. SIGNIFICANCE STATEMENT: G-protein-coupled receptor allosteric ligands providing higher selectivity, selective efficacy, and safety that cannot be obtained using usual orthosteric receptor-based strategies are being increasingly described, resulting in enhanced usefulness in exploring receptor function and in treatment. No allosteric ligands exist for any of the mammalian bombesin receptor (BnR) family. Here we provide evidence for the first such example of a BnR allosteric ligand by showing that MK-5046, a nonpeptide agonist for bombesin receptor subtype-3, is functioning as an allosteric agonist.
Collapse
Affiliation(s)
- Irene Ramos-Alvarez
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Tatiana Iordanskaia
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Samuel A Mantey
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Robert T Jensen
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
4
|
Zhu Y, Wu L, Zhao Y, Wang Z, Lu J, Yu Y, Xiao H, Zhang Y. Discovery of oridonin as a novel agonist for BRS-3. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154085. [PMID: 35405616 DOI: 10.1016/j.phymed.2022.154085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/16/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Bombesin Receptor Subtype-3 (BRS-3, Bombesin-like receptor, BB3) is an orphan G-protein coupled receptor (GPCR). Recent studies have shown that BRS-3 played a vital role in glucose regulation, insulin secretion, and energy homeostasis. Therefore, discovering more novel exogenous ligands with diverse structures for BRS-3 will be of great importance for target validation and drug development. PURPOSE In this study, we aim to discover new agonists of BRS-3 from our natural compound libraries, providing a new probe to study the function of BRS-3. STUDY DESIGN Multiple cell-based assays and in vivo experiments were performed to identify the new ligand. METHODS BRS-3 overexpression cells were coupled with FLIPR assay, homogeneous time-resolved fluorescence (HTRF) IP-ONE assay, dynamic mass redistribution (DMR) assay, β-arrestin2 recruitment assay, and western blot to determine receptor activation and downstream signaling events. To further validate the target of BRS-3, a series of in vitro and in vivo experiences were conducted, including glucose uptake, glucose transporter type 4 (GLUT4) transportation in C2C12, and oral glucose tolerance test (OGTT) in mice. RESULTS We discovered and identified oridonin as a novel small molecule agonist of BRS-3, with a moderate affinity (EC50 of 2.236 × 10-7 M in calcium mobilization assay), specificity, and subtype selectivity. Further in vitro and in vivo tests demonstrated that oridonin exerted beneficial effects in glucose homeostasis through activating BRS-3. CONCLUSIONS Oridonin, as the discovered new ligand of BRS-3, provides a valuable tool compound to investigate BRS-3's function, especially for target validation in type 2 diabetes and obesity. Oridonin is promising as a lead compound in the treatment of metabolic disorders. Compared to the known agonists of BRS-3, we can take advantage of the multiple reported pharmacological activities of ODN as a natural product and assess whether these pharmacological activities are regulated by BRS-3. This may facilitate the discovery of novel functions of BRS-3.
Collapse
Affiliation(s)
- Yanan Zhu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lehao Wu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yaxue Zhao
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zeyuan Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jihong Lu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yang Yu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hua Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
5
|
Crișan G, Moldovean-Cioroianu NS, Timaru DG, Andrieș G, Căinap C, Chiș V. Radiopharmaceuticals for PET and SPECT Imaging: A Literature Review over the Last Decade. Int J Mol Sci 2022; 23:5023. [PMID: 35563414 PMCID: PMC9103893 DOI: 10.3390/ijms23095023] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Positron emission tomography (PET) uses radioactive tracers and enables the functional imaging of several metabolic processes, blood flow measurements, regional chemical composition, and/or chemical absorption. Depending on the targeted processes within the living organism, different tracers are used for various medical conditions, such as cancer, particular brain pathologies, cardiac events, and bone lesions, where the most commonly used tracers are radiolabeled with 18F (e.g., [18F]-FDG and NA [18F]). Oxygen-15 isotope is mostly involved in blood flow measurements, whereas a wide array of 11C-based compounds have also been developed for neuronal disorders according to the affected neuroreceptors, prostate cancer, and lung carcinomas. In contrast, the single-photon emission computed tomography (SPECT) technique uses gamma-emitting radioisotopes and can be used to diagnose strokes, seizures, bone illnesses, and infections by gauging the blood flow and radio distribution within tissues and organs. The radioisotopes typically used in SPECT imaging are iodine-123, technetium-99m, xenon-133, thallium-201, and indium-111. This systematic review article aims to clarify and disseminate the available scientific literature focused on PET/SPECT radiotracers and to provide an overview of the conducted research within the past decade, with an additional focus on the novel radiopharmaceuticals developed for medical imaging.
Collapse
Affiliation(s)
- George Crișan
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
- Department of Nuclear Medicine, County Clinical Hospital, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | | | - Diana-Gabriela Timaru
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
| | - Gabriel Andrieș
- Department of Nuclear Medicine, County Clinical Hospital, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | - Călin Căinap
- The Oncology Institute “Prof. Dr. Ion Chiricuţă”, Republicii 34-36, 400015 Cluj-Napoca, Romania;
| | - Vasile Chiș
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
- Institute for Research, Development and Innovation in Applied Natural Sciences, Babeș-Bolyai University, Str. Fântânele 30, 400327 Cluj-Napoca, Romania
| |
Collapse
|
6
|
Wang Z, Wu L, Wang H, Zhang Y, Xiao H. Agonist-induced extracellular vesicles contribute to the transfer of functional bombesin receptor-subtype 3 to recipient cells. Cell Mol Life Sci 2022; 79:72. [PMID: 35032194 PMCID: PMC11072852 DOI: 10.1007/s00018-021-04114-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/03/2022]
Abstract
Extracellular vesicles (EVs) are important carriers for biomolecules in the microenvironment that greatly promote intercellular and extracellular communications. However, it is unclear whether bombesin receptor-subtype 3 (BRS-3), an orphan G-protein coupled receptor, can be packed into EVs and functionally transferred to recipient cells. In this study, we applied the synthetic agonist and antagonist to activate and inhibit the BRS-3 in HEK293-BRS-3 cells, whose EVs release was BRS-3 activation dependent. The presence of BRS-3 in harvested EVs was further confirmed by an enhanced green fluorescent protein tag. After recipient cells were co-cultured with these EVs, the presence of BRS-3 in the recipient cells was discovered, whose function was experimentally validated. Quantitative proteomics approach was utilized to decipher the proteome of the EVs derived from HEK293-BRS-3 cells after different stimulations. More than 900 proteins were identified, including 51 systematically dysregulated EVs proteins. The Ingenuity Pathway Analysis (IPA) revealed that RhoA signaling pathway was as an essential player for the secretion of EVs. Selective inhibition of RhoA signaling pathway after BRS-3 activation dramatically reversed the increased secretion of EVs. Our data, collectively, demonstrated that EVs contributed to the transfer of functional BRS-3 to the recipient cells, whose secretion was partially regulated by RhoA signaling pathway.
Collapse
Affiliation(s)
- Zeyuan Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lehao Wu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huiyu Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yan Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Hua Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
7
|
Moody TW, Lee L, Ramos-Alvarez I, Iordanskaia T, Mantey SA, Jensen RT. Bombesin Receptor Family Activation and CNS/Neural Tumors: Review of Evidence Supporting Possible Role for Novel Targeted Therapy. Front Endocrinol (Lausanne) 2021; 12:728088. [PMID: 34539578 PMCID: PMC8441013 DOI: 10.3389/fendo.2021.728088] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are increasingly being considered as possible therapeutic targets in cancers. Activation of GPCR on tumors can have prominent growth effects, and GPCRs are frequently over-/ectopically expressed on tumors and thus can be used for targeted therapy. CNS/neural tumors are receiving increasing attention using this approach. Gliomas are the most frequent primary malignant brain/CNS tumor with glioblastoma having a 10-year survival <1%; neuroblastomas are the most common extracranial solid tumor in children with long-term survival<40%, and medulloblastomas are less common, but one subgroup has a 5-year survival <60%. Thus, there is an increased need for more effective treatments of these tumors. The Bombesin-receptor family (BnRs) is one of the GPCRs that are most frequently over/ectopically expressed by common tumors and is receiving particular attention as a possible therapeutic target in several tumors, particularly in prostate, breast, and lung cancer. We review in this paper evidence suggesting why a similar approach in some CNS/neural tumors (gliomas, neuroblastomas, medulloblastomas) should also be considered.
Collapse
Affiliation(s)
- Terry W. Moody
- Department of Health and Human Services, National Cancer Institute, Center for Cancer Training, Office of the Director, Bethesda, MD, United States
| | - Lingaku Lee
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
- Department of Gastroenterology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Irene Ramos-Alvarez
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Tatiana Iordanskaia
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Samuel A. Mantey
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Robert T. Jensen
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Robert T. Jensen,
| |
Collapse
|
8
|
Rasaeifar B, Gomez-Gutierrez P, Perez JJ. New Insights into the Stereochemical Requirements of the Bombesin BB1 Receptor Antagonists Binding. Pharmaceuticals (Basel) 2020; 13:ph13080197. [PMID: 32824403 PMCID: PMC7463749 DOI: 10.3390/ph13080197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 12/24/2022] Open
Abstract
Members of the family of bombesinlike peptides exert a wide range of biological activities both at the central nervous system and in peripheral tissues through at least three G-Protein Coupled Receptors: BB1, BB2 and BB3. Despite the number of peptide ligands already described, only a few small molecule binders have been disclosed so far, hampering a deeper understanding of their pharmacology. In order to have a deeper understanding of the stereochemical features characterizing binding to the BB1 receptor, we performed the molecular modeling study consisting of the construction of a 3D model of the receptor by homology modeling followed by a docking study of the peptoids PD168368 and PD176252 onto it. Analysis of the complexes permitted us to propose prospective bound conformations of the compounds, consistent with the experimental information available. Subsequently, we defined a pharmacophore describing minimal stereochemical requirements for binding to the BB1 receptor that was used in silico screening. This exercise yielded a set of small molecules that were purchased and tested, showing affinity to the BB1 but not to the BB2 receptor. These molecules exhibit scaffolds of diverse chemical families that can be used as a starting point for the development of novel BB1 antagonists.
Collapse
|
9
|
Neumann S, Malik SS, Marcus-Samuels B, Eliseeva E, Jang D, Klubo-Gwiezdzinska J, Krieger CC, Gershengorn MC. Thyrotropin Causes Dose-dependent Biphasic Regulation of cAMP Production Mediated by G s and G i/o Proteins. Mol Pharmacol 2020; 97:2-8. [PMID: 31704717 PMCID: PMC6864415 DOI: 10.1124/mol.119.117382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/18/2019] [Indexed: 12/14/2022] Open
Abstract
The thyrotropin (TSH) receptor (TSHR) signals via G proteins of all four classes and β-arrestin 1. Stimulation of TSHR leads to increasing cAMP production that has been reported as a monotonic dose-response curve that plateaus at high TSH doses. In HEK 293 cells overexpressing TSHRs (HEK-TSHR cells), we found that TSHR activation exhibits an "inverted U-shaped dose-response curve" with increasing cAMP production at low doses of TSH and decreased cAMP production at high doses (>1 mU/ml). Since protein kinase A inhibition by H-89 and knockdown of β-arrestin 1 or β-arrestin 2 did not affect the decreased cAMP production at high TSH doses, we studied the roles of TSHR downregulation and of Gi/Go proteins. A high TSH dose (100 mU/ml) caused a 33% decrease in cell-surface TSHR. However, because inhibiting TSHR downregulation with combined expression of a dominant negative dynamin 1 and β-arrestin 2 knockdown had no effect, we concluded that downregulation is not involved in the biphasic cAMP response. Pertussis toxin, which inhibits activation of Gi/Go, abolished the biphasic response with no statistically significant difference in cAMP levels at 1 and 100 mU/ml TSH. Concordantly, co-knockdown of Gi/Go proteins increased cAMP levels stimulated by 100 mU/ml TSH from 55% to 73% of the peak level. These data show that biphasic regulation of cAMP production is mediated by Gs and Gi/Go at low and high TSH doses, respectively, which may represent a mechanism to prevent overstimulation in TSHR-expressing cells. SIGNIFICANCE STATEMENT: We demonstrate biphasic regulation of TSH-mediated cAMP production involving coupling of the TSH receptor (TSHR) to Gs at low TSH doses and to Gi/o at high TSH doses. We suggest that this biphasic cAMP response allows the TSHR to mediate responses at lower levels of TSH and that decreased cAMP production at high doses may represent a mechanism to prevent overstimulation of TSHR-expressing cells. This mechanism could prevent chronic stimulation of thyroid gland function.
Collapse
Affiliation(s)
- Susanne Neumann
- Laboratory of Endocrinology and Receptor Biology (S.N., S.S.M., B.M.-S., E.E., D.J., C.C.K., M.C.G.) and Metabolic Disease Branch (J.K.-G.), National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Sarah S Malik
- Laboratory of Endocrinology and Receptor Biology (S.N., S.S.M., B.M.-S., E.E., D.J., C.C.K., M.C.G.) and Metabolic Disease Branch (J.K.-G.), National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Bernice Marcus-Samuels
- Laboratory of Endocrinology and Receptor Biology (S.N., S.S.M., B.M.-S., E.E., D.J., C.C.K., M.C.G.) and Metabolic Disease Branch (J.K.-G.), National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Elena Eliseeva
- Laboratory of Endocrinology and Receptor Biology (S.N., S.S.M., B.M.-S., E.E., D.J., C.C.K., M.C.G.) and Metabolic Disease Branch (J.K.-G.), National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Daesong Jang
- Laboratory of Endocrinology and Receptor Biology (S.N., S.S.M., B.M.-S., E.E., D.J., C.C.K., M.C.G.) and Metabolic Disease Branch (J.K.-G.), National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Joanna Klubo-Gwiezdzinska
- Laboratory of Endocrinology and Receptor Biology (S.N., S.S.M., B.M.-S., E.E., D.J., C.C.K., M.C.G.) and Metabolic Disease Branch (J.K.-G.), National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Christine C Krieger
- Laboratory of Endocrinology and Receptor Biology (S.N., S.S.M., B.M.-S., E.E., D.J., C.C.K., M.C.G.) and Metabolic Disease Branch (J.K.-G.), National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Marvin C Gershengorn
- Laboratory of Endocrinology and Receptor Biology (S.N., S.S.M., B.M.-S., E.E., D.J., C.C.K., M.C.G.) and Metabolic Disease Branch (J.K.-G.), National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
10
|
Pooja D, Gunukula A, Gupta N, Adams DJ, Kulhari H. Bombesin receptors as potential targets for anticancer drug delivery and imaging. Int J Biochem Cell Biol 2019; 114:105567. [DOI: 10.1016/j.biocel.2019.105567] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/02/2019] [Accepted: 07/05/2019] [Indexed: 12/24/2022]
|
11
|
Ramos-Alvarez I, Lee L, Mantey SA, Jensen RT. Development and Characterization of a Novel, High-Affinity, Specific, Radiolabeled Ligand for BRS-3 Receptors. J Pharmacol Exp Ther 2019; 369:454-465. [PMID: 30971479 DOI: 10.1124/jpet.118.255141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/05/2019] [Indexed: 02/06/2023] Open
Abstract
Bombesin (Bn) receptor subtype 3(BRS-3) is an orphan G-protein-coupled receptor of the Bn family, which does not bind any natural Bn peptide with high affinity. Receptor knockout studies show that the animals develop diabetes, obesity, altered temperature control, and other central nervous system (CNS)/endocrine/gastrointestinal changes. It is present in CNS, peripheral tissues, and tumors; however, its role in normal physiology/pathophysiology, as well as its receptor localization/pharmacology is largely unknown, in part due to the lack of a convenient, specific, direct radiolabeled ligand. This study was designed to address this problem and to develop and characterize a specific radiolabeled ligand for BRS-3. The peptide antagonist Bantag-1 had >10,000-fold selectivity for human BRS-3 (hBRS-3) over other mammalian Bn receptors (BnRs) [i.e., gastrin-releasing peptide receptor (GRPR) and neuromedin B receptor (NMBR)]. Using iodogen and basic conditions, it was radiolabeled to high specific activity (2200 Ci/mmol) and found to bind with high affinity/specificity to hBRS-3. Binding was saturable, rapid, and reversible. The ligand only interacted with known BRS-3 ligands, and not with other specific GRPR/NMBR ligands or ligands for unrelated receptors. The magnitude of 125I-Bantag-1 binding correlated with BRS-3 mRNA expression and the magnitude of activation of phospholipase C in lung cancer cells, as well as readily identifying BRS-3 in lung cancer cells and normal tissues, allowing the direct assessment of BRS-3 receptor pharmacology/numbers on cells containing BRS-3 with other BnRs, which is usually the case. This circumvents the need for subtraction assays, which are now frequently used to assess BRS-3 indirectly using radiolabeled pan-ligands, which interact with all BnRs.
Collapse
Affiliation(s)
- Irene Ramos-Alvarez
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Lingaku Lee
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Samuel A Mantey
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Robert T Jensen
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
12
|
Tang H, Shu C, Chen H, Zhang X, Zang Z, Deng C. Constitutively active BRS3 is a genuinely orphan GPCR in placental mammals. PLoS Biol 2019; 17:e3000175. [PMID: 30840614 PMCID: PMC6422423 DOI: 10.1371/journal.pbio.3000175] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 03/18/2019] [Accepted: 02/19/2019] [Indexed: 11/19/2022] Open
Abstract
G protein-coupled receptors (GPCRs) play an important role in physiology and disease and represent the most productive drug targets. Orphan GPCRs, with their endogenous ligands unknown, were considered a source of drug targets and consequently attract great interest to identify their endogenous cognate ligands for deorphanization. However, a contrary view to the ubiquitous existence of endogenous ligands for every GPCR is that there might be a significant overlooked fraction of orphan GPCRs that function constitutively in a ligand-independent manner only. Here, we investigated the evolution of the bombesin receptor-ligand family in vertebrates in which one member-bombesin receptor subtype-3 (BRS3)-is a potential orphan GPCR. With analysis of 17 vertebrate BRS3 structures and 10 vertebrate BRS3 functional data, our results demonstrated that nonplacental vertebrate BRS3 still connects to the original ligands-neuromedin B (NMB) and gastrin-releasing peptide (GRP)-because of adaptive evolution, with significantly changed protein structure, especially in three altered key residues (Q127R, P205S, and R294H) originally involved in ligand binding/activation, whereas the placental mammalian BRS3 lost the binding affinity to NMB/GRP and constitutively activates Gs/Gq/G12 signaling in a ligand-independent manner. Moreover, the N terminus of placental mammalian BRS3 underwent positive selection, exhibiting significant structural differences compared to nonplacental vertebrate BRS3, and this domain plays an important role in constitutive activity of placental mammalian BRS3. In conclusion, constitutively active BRS3 is a genuinely orphan GPCR in placental mammals, including human. To our knowledge, this study identified the first example that might represent a new group of genuinely orphan GPCRs that will never be deorphanized by the discovery of a natural ligand and provided new perspectives in addition to the current ligand-driven GPCR deorphanization.
Collapse
Affiliation(s)
- Huihao Tang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Chuanjun Shu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- Department of Bioinformatics, College of Biomedical Engineering and Information, Nanjing Medical University, Nanjing, China
| | - Haidi Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaojing Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhuqing Zang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Cheng Deng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- * E-mail:
| |
Collapse
|
13
|
Moreno-Villegas Z, Martín-Duce A, Aparicio C, Portal-Núñez S, Sanz R, Mantey SA, Jensen RT, Lorenzo O, Egido J, González N. Activation of bombesin receptor Subtype-3 by [D-Tyr 6,β-Ala 11,Phe 13,Nle 14]bombesin 6-14 increased glucose uptake and lipogenesis in human and rat adipocytes. Mol Cell Endocrinol 2018; 474:10-19. [PMID: 29402494 DOI: 10.1016/j.mce.2018.01.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 12/20/2017] [Accepted: 01/29/2018] [Indexed: 11/19/2022]
Abstract
BRS-3 has an important role in glucose homeostasis. Its expression was reduced in skeletal muscle from obese and/or diabetic patients, and BRS-3 KO-mice developed obesity. In this work, focused on rat/human adipose tissue, BRS-3 gene-expression was lower than normal-levels in hyperlipidemic, type-2-diabetic (T2D), and type-1-diabetic rats and also in obese (OB) and T2D patients. Moreover, BRS-3 protein levels were decreased in diabetic rat and in obese and diabetic human fat pieces; but neither mutation nor even polymorphism in the BRS-3-gene was found in OB or T2D patients. Interestingly, in rat and human adipocytes, without metabolic alterations, [D-Tyr6,β-Ala11,Phe13,Nle14]bombesin6-14 -BRS-3-agonist-, as insulin, enhanced BRS-3 gene/protein expression, increased, PKB, p70s6K, MAPKs and p90RSK1 phosphorylation-levels, and induced a concentration-related stimulation of glucose transport, GLUT-4 membrane translocation and lipogenesis, exclusively mediated by BRS-3, and abolished by wortmannin, PD98059 or rapamacyn. These results confirm that BRS-3 and/or its agonist are a potential therapeutic tool for obesity/diabetes.
Collapse
Affiliation(s)
- Zaida Moreno-Villegas
- Renal, Vascular and Diabetes Research Laboratory, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio Martín-Duce
- Department of Nursery, Unit of Surgery, Universidad de Alcalá, Madrid, Spain
| | - César Aparicio
- Department of Vascular Surgery, Hospital Fundación Jiménez Díaz, Madrid, Spain
| | - Sergio Portal-Núñez
- Bone and Joint Research Unit, IIS-FJD, Madrid, Spain; Applied Molecular Medicine Institute, School of Medicine, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
| | | | - Samuel A Mantey
- National Institutes of Health, Cell Biology Section, NIDDK, Digestive Disease Branch, Bethesda, MD, USA
| | - Robert T Jensen
- National Institutes of Health, Cell Biology Section, NIDDK, Digestive Disease Branch, Bethesda, MD, USA
| | - Oscar Lorenzo
- Renal, Vascular and Diabetes Research Laboratory, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, Madrid, Spain; Spanish Biomedical Research Network in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, Madrid, Spain; Spanish Biomedical Research Network in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Nieves González
- Renal, Vascular and Diabetes Research Laboratory, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, Madrid, Spain; Spanish Biomedical Research Network in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain.
| |
Collapse
|
14
|
Moreno P, Mantey SA, Lee SH, Ramos-Álvarez I, Moody TW, Jensen RT. A possible new target in lung-cancer cells: The orphan receptor, bombesin receptor subtype-3. Peptides 2018; 101:213-226. [PMID: 29410320 PMCID: PMC6159918 DOI: 10.1016/j.peptides.2018.01.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/27/2018] [Accepted: 01/31/2018] [Indexed: 12/11/2022]
Abstract
Human bombesin receptors, GRPR and NMBR, are two of the most frequently overexpressed G-protein-coupled-receptors by lung-cancers. Recently, GRPR/NMBR are receiving considerable attention because they act as growth factor receptors often in an autocrine manner in different lung-cancers, affect tumor angiogenesis, their inhibition increases the cytotoxic potency of tyrosine-kinase inhibitors reducing lung-cancer cellular resistance/survival and their overexpression can be used for sensitive tumor localization as well as to target cytotoxic agents to the cancer. The orphan BRS-3-receptor, because of homology is classified as a bombesin receptor but has received little attention, despite the fact that it is also reported in a number of studies in lung-cancer cells and has growth effects in these cells. To address its potential importance, in this study, we examined the frequency/relative quantitative expression of human BRS-3 compared to GRPR/NMBR and the effects of its activation on cell-signaling/growth in 13 different human lung-cancer cell-lines. Our results showed that BRS-3 receptor is expressed in 92% of the cell-lines and that it is functional in these cells, because its activation stimulates phospholipase-C with breakdown of phosphoinositides and changes in cytosolic calcium, stimulates ERK/MAPK and stimulates cell growth by EGFR transactivation in some, but not all, the lung-cancer cell-lines. These results suggest that human BRS-3, similar to GRPR/NMBR, is frequently ectopically-expressed by lung-cancer cells in which, it is functional, affecting cell signaling/growth. These results suggest that similar to GRPR/NMBR, BRS-3 should receive increased attention as possible approach for the development of novel treatments and/or diagnosis in lung-cancer.
Collapse
Affiliation(s)
- Paola Moreno
- Department of Health and Human Services, Digestive Diseases Branch, NIDDK, United States
| | - Samuel A Mantey
- Department of Health and Human Services, Digestive Diseases Branch, NIDDK, United States
| | - Suk H Lee
- Department of Health and Human Services, Digestive Diseases Branch, NIDDK, United States
| | - Irene Ramos-Álvarez
- Department of Health and Human Services, Digestive Diseases Branch, NIDDK, United States
| | - Terry W Moody
- Center for Cancer Research, Office of the Director, NCI, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Robert T Jensen
- Department of Health and Human Services, Digestive Diseases Branch, NIDDK, United States.
| |
Collapse
|
15
|
Khan M, Huang T, Lin CY, Wu J, Fan BM, Bian ZX. Exploiting cancer's phenotypic guise against itself: targeting ectopically expressed peptide G-protein coupled receptors for lung cancer therapy. Oncotarget 2017; 8:104615-104637. [PMID: 29262666 PMCID: PMC5732832 DOI: 10.18632/oncotarget.18403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/23/2017] [Indexed: 02/07/2023] Open
Abstract
Lung cancer, claiming millions of lives annually, has the highest mortality rate worldwide. This advocates the development of novel cancer therapies that are highly toxic for cancer cells but negligibly toxic for healthy cells. One of the effective treatments is targeting overexpressed surface receptors of cancer cells with receptor-specific drugs. The receptors-in-focus in the current review are the G-protein coupled receptors (GPCRs), which are often overexpressed in various types of tumors. The peptide subfamily of GPCRs is the pivot of the current article owing to the high affinity and specificity to and of their cognate peptide ligands, and the proven efficacy of peptide-based therapeutics. The article summarizes various ectopically expressed peptide GPCRs in lung cancer, namely, Cholecystokinin-B/Gastrin receptor, the Bombesin receptor family, Bradykinin B1 and B2 receptors, Arginine vasopressin receptors 1a, 1b and 2, and the Somatostatin receptor type 2. The autocrine growth and pro-proliferative pathways they mediate, and the distinct tumor-inhibitory effects of somatostatin receptors are then discussed. The next section covers how these pathways may be influenced or 'corrected' through therapeutics (involving agonists and antagonists) targeting the overexpressed peptide GPCRs. The review proceeds on to Nano-scaled delivery platforms, which enclose chemotherapeutic agents and are decorated with peptide ligands on their external surface, as an effective means of targeting cancer cells. We conclude that targeting these overexpressed peptide GPCRs is potentially evolving as a highly promising form of lung cancer therapy.
Collapse
Affiliation(s)
- Mahjabin Khan
- Laboratory of Brain-Gut Research, School of Chinese Medicine, Hong Kong Baptist University, HKSAR, Kowloon Tong, P.R. China
| | - Tao Huang
- Laboratory of Brain-Gut Research, School of Chinese Medicine, Hong Kong Baptist University, HKSAR, Kowloon Tong, P.R. China
| | - Cheng-Yuan Lin
- Laboratory of Brain-Gut Research, School of Chinese Medicine, Hong Kong Baptist University, HKSAR, Kowloon Tong, P.R. China
- YMU-HKBU Joint Laboratory of Traditional Natural Medicine, Yunnan Minzu University, Kunming, P.R. China
| | - Jiang Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, P. R. China
| | - Bao-Min Fan
- YMU-HKBU Joint Laboratory of Traditional Natural Medicine, Yunnan Minzu University, Kunming, P.R. China
| | - Zhao-Xiang Bian
- Laboratory of Brain-Gut Research, School of Chinese Medicine, Hong Kong Baptist University, HKSAR, Kowloon Tong, P.R. China
| |
Collapse
|
16
|
Nakamura T, Ramos-Álvarez I, Iordanskaia T, Moreno P, Mantey SA, Jensen RT. Molecular basis for high affinity and selectivity of peptide antagonist, Bantag-1, for the orphan BB3 receptor. Biochem Pharmacol 2016; 115:64-76. [PMID: 27346274 DOI: 10.1016/j.bcp.2016.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/21/2016] [Indexed: 12/15/2022]
Abstract
Bombesin-receptor-subtype-3 (BB3 receptor) is a G-protein-coupled-orphan-receptor classified in the mammalian Bombesin-family because of high homology to gastrin-releasing peptide (BB2 receptor)/neuromedin-B receptors (BB1 receptor). There is increased interest in BB3 receptor because studies primarily from knockout-mice suggest it plays roles in energy/glucose metabolism, insulin-secretion, as well as motility and tumor-growth. Investigations into its roles in physiological/pathophysiological processes are limited because of lack of selective ligands. Recently, a selective, peptide-antagonist, Bantag-1, was described. However, because BB3 receptor has low-affinity for all natural, Bn-related peptides, little is known of the molecular basis of its high-affinity/selectivity. This was systematically investigated in this study for Bantag-1 using a chimeric-approach making both Bantag-1 loss-/gain-of-affinity-chimeras, by exchanging extracellular (EC) domains of BB3/BB2 receptor, and using site-directed-mutagenesis. Receptors were transiently expressed and affinities determined by binding studies. Bantag-1 had >5000-fold selectivity for BB3 receptor over BB2/BB1 receptors and substitution of the first EC-domain (EC1) in loss-/gain-of affinity-chimeras greatly affected affinity. Mutagenesis of each amino acid difference in EC1 between BB3 receptor/BB2 receptor showed replacement of His(107) in BB3 receptor by Lys(107) (H107K-BB3 receptor-mutant) from BB2 receptor, decreased affinity 60-fold, and three replacements [H107K, E11D, G112R] decreased affinity 500-fold. Mutagenesis in EC1's surrounding transmembrane-regions (TMs) demonstrated TM2 differences were not important, but R127Q in TM3 alone decreased affinity 400-fold. Additional mutants in EC1/TM3 explored the molecular basis for these changes demonstrated in EC1, particularly important is the presence of aromatic-interactions by His(107), rather than hydrogen-bonding or charge-charge interactions, for determining Bantag-1 high affinity/selectivity. In regard to Arg(127) in TM3, both hydrogen-bonding and charge-charge interactions contribute to the high-affinity/selectivity for Bantag-1.
Collapse
Affiliation(s)
- Taichi Nakamura
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1804, USA
| | - Irene Ramos-Álvarez
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1804, USA
| | - Tatiana Iordanskaia
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1804, USA
| | - Paola Moreno
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1804, USA
| | - Samuel A Mantey
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1804, USA
| | - R T Jensen
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1804, USA.
| |
Collapse
|
17
|
Moreno P, Ramos-Álvarez I, Moody TW, Jensen RT. Bombesin related peptides/receptors and their promising therapeutic roles in cancer imaging, targeting and treatment. Expert Opin Ther Targets 2016; 20:1055-73. [PMID: 26981612 DOI: 10.1517/14728222.2016.1164694] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Despite remarkable advances in tumor treatment, many patients still die from common tumors (breast, prostate, lung, CNS, colon, and pancreas), and thus, new approaches are needed. Many of these tumors synthesize bombesin (Bn)-related peptides and over-express their receptors (BnRs), hence functioning as autocrine-growth-factors. Recent studies support the conclusion that Bn-peptides/BnRs are well-positioned for numerous novel antitumor treatments, including interrupting autocrine-growth and the use of over-expressed receptors for imaging and targeting cytotoxic-compounds, either by direct-coupling or combined with nanoparticle-technology. AREAS COVERED The unique ability of common neoplasms to synthesize, secrete, and show a growth/proliferative/differentiating response due to BnR over-expression, is reviewed, both in general and with regard to the most frequently investigated neoplasms (breast, prostate, lung, and CNS). Particular attention is paid to advances in the recent years. Also considered are the possible therapeutic approaches to the growth/differentiation effect of Bn-peptides, as well as the therapeutic implication of the frequent BnR over-expression for tumor-imaging and/or targeted-delivery. EXPERT OPINION Given that Bn-related-peptides/BnRs are so frequently ectopically-expressed by common tumors, which are often malignant and become refractory to conventional treatments, therapeutic interventions using novel approaches to Bn-peptides and receptors are being explored. Of particular interest is the potential of reproducing with BnRs in common tumors the recent success of utilizing overexpression of somatostatin-receptors by neuroendocrine-tumors to provide the most sensitive imaging methods and targeted delivery of cytotoxic-compounds.
Collapse
Affiliation(s)
- Paola Moreno
- a Digestive Diseases Branch, Cell Biology Section, NIDDK , National Institutes of Health , Bethesda , MD , USA
| | - Irene Ramos-Álvarez
- a Digestive Diseases Branch, Cell Biology Section, NIDDK , National Institutes of Health , Bethesda , MD , USA
| | - Terry W Moody
- b Center for Cancer Research, Office of the Director , NCI, National Institutes of Health , Bethesda , MD , USA
| | - Robert T Jensen
- a Digestive Diseases Branch, Cell Biology Section, NIDDK , National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
18
|
Lateef DM, Xiao C, Brychta RJ, Diedrich A, Schnermann J, Reitman ML. Bombesin-like receptor 3 regulates blood pressure and heart rate via a central sympathetic mechanism. Am J Physiol Heart Circ Physiol 2016; 310:H891-8. [PMID: 26801314 DOI: 10.1152/ajpheart.00963.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/22/2016] [Indexed: 02/07/2023]
Abstract
Bombesin-like receptor 3 (BRS-3) is an orphan G protein-coupled receptor that regulates energy expenditure, food intake, and body weight. We examined the effects of BRS-3 deletion and activation on blood pressure and heart rate. In free-living, telemetered Brs3 null mice the resting heart rate was 10% lower than wild-type controls, while the resting mean arterial pressure was unchanged. During physical activity, the heart rate and blood pressure increased more in Brs3 null mice, reaching a similar heart rate and higher mean arterial pressure than control mice. When sympathetic input was blocked with propranolol, the heart rate of Brs3 null mice was unchanged, while the heart rate in control mice was reduced to the level of the null mice. The intrinsic heart rate, measured after both sympathetic and parasympathetic blockade, was similar in Brs3 null and control mice. Intravenous infusion of the BRS-3 agonist MK-5046 increased mean arterial pressure and heart rate in wild-type but not in Brs3 null mice, and this increase was blocked by pretreatment with clonidine, a sympatholytic, centrally acting α2-adrenergic agonist. In anesthetized mice, hypothalamic infusion of MK-5046 also increased both mean arterial pressure and heart rate. Taken together, these data demonstrate that BRS-3 contributes to resting cardiac sympathetic tone, but is not required for activity-induced increases in heart rate and blood pressure. The data suggest that BRS-3 activation increases heart rate and blood pressure via a central sympathetic mechanism.
Collapse
Affiliation(s)
- Dalya M Lateef
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Cuiying Xiao
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Robert J Brychta
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - André Diedrich
- Autonomic Dysfunction Center, Vanderbilt University School of Medicine, Nashville, Tennessee; and
| | - Jurgen Schnermann
- Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Marc L Reitman
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland;
| |
Collapse
|
19
|
Ramos-Álvarez I, Nakamura T, Mantey SA, Moreno P, Nuche-Berenguer B, Jensen RT. Novel chiral-diazepines function as specific, selective receptor agonists with variable coupling and species variability in human, mouse and rat BRS-3 receptor cells. Peptides 2016; 75:8-17. [PMID: 26524625 PMCID: PMC5461819 DOI: 10.1016/j.peptides.2015.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 10/11/2015] [Accepted: 10/26/2015] [Indexed: 02/06/2023]
Abstract
Bombesin receptor subtype-3 (BRS-3) is an orphan G-protein coupled receptor which is classified in the bombesin receptor (BnR) family with which it shares high homology. It is present widely in the central nervous system and peripheral tissues and primarily receptor-knockout studies suggest it is involved in metabolic-glucose-insulin homeostasis, feeding and other CNS behaviors, gastrointestinal motility and cancer growth. However, the role of BRS-3 physiologically or in pathologic disorders has been not well defined because the natural ligand is unknown. Until recently, no selective agonists/antagonists were available; however, recently synthetic high-affinity agonists, chiral-diazepines nonpeptide-analogs (3F, 9D, 9F, 9G) with low CNS penetrance, were described, but are not well-categorized pharmacologically or in different labarotory species. The present study characterizes the affinities, potencies, selectivities of the chiral-diazepine BRS-3 agonists in human and rodents (mice,rat). In human BRS-3 receptors, the relative affinities of the chiral-diazepines was 9G>9D>9F>3F; each was selective for BRS-3. For stimulating PLC activity, in h-BRS-3 each of the four chiral diazepine analogs was fully efficacious and their relative potencies were: 9G (EC50: 9 nM)>9D (EC50: 9.4 nM)>9F (EC50: 39 nM)>3F (EC50: 48 nM). None of the four chiral diazepine analogs activated r,m,h-GRPR/NMBR. The nonpeptide agonists showed marked differences from each other and a peptide agonist in receptor-coupling-stiochiometry and in affinities/potencies in different species. These results demonstrate that chiral diazepine analogs (9G, 9D, 9F, 3F) have high/affinity/potency for the BRS-3 receptor in human and rodent cells, but different coupling-relationships and species differences from a peptide agonist.
Collapse
Affiliation(s)
- Irene Ramos-Álvarez
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Taichi Nakamura
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Samuel A Mantey
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Paola Moreno
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Bernardo Nuche-Berenguer
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Robert T Jensen
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States.
| |
Collapse
|
20
|
Mechanism of bombesin-induced tonic contraction of the porcine lower esophageal sphincter. Sci Rep 2015; 5:15879. [PMID: 26522854 PMCID: PMC4629149 DOI: 10.1038/srep15879] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/06/2015] [Indexed: 01/23/2023] Open
Abstract
Gastroesophageal reflux disease (GERD) is a disorder that is related to an incompetent lower esophageal sphincter (LES). Previous studies showed that bombesin could increase LES pressure in humans and opossums. The aim of the present study was to characterize the effects of bombesin on porcine LES contraction. We used the selective agonists, neuromedin B (NMB), gastrin-releasing peptide (GRP), and [D-Tyr6,Apa-4Cl11,Phe13,Nle14]bombesin-(6-14) (DTACPN-BN), as well as receptor antagonists of bombesin receptor subtype 2 (BB2), and 3 (BB3) for ex vivo contraction studies. Atropine, nifedipine, tetrodotoxin, and ω-conotoxin GVIA were used to explore the agonist-induced LES contraction mechanism. Reverse transcription polymerase chain reaction and immunohistochemistry were applied to detect bombesin receptor expression. Our results indicate that GRP and DTACPN-BN, but not NMB, induced tonic contractions of the porcine LES in a dose-dependent manner, and the contractions were inhibited with selective BB2 and BB3 antagonists. The GRP-induced contraction is mainly caused by L-type Ca2+ channel-mediated Ca2+ influx. However, DTACPN-BN-induced contractions are associated with neuronal conduction. RT-PCR and immunohistochemistry revealed that BB2 and BB3 were expressed in the porcine LES. Bombesin-induced tonic contraction of the LES is mediated through BB2 and BB3. Bombesin, BB2, and BB3 agonists might have the potential to treat GERD.
Collapse
|
21
|
Ramos-Álvarez I, Moreno P, Mantey SA, Nakamura T, Nuche-Berenguer B, Moody TW, Coy DH, Jensen RT. Insights into bombesin receptors and ligands: Highlighting recent advances. Peptides 2015; 72:128-44. [PMID: 25976083 PMCID: PMC4641779 DOI: 10.1016/j.peptides.2015.04.026] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 12/22/2022]
Abstract
This following article is written for Prof. Abba Kastin's Festschrift, to add to the tribute to his important role in the advancement of the role of peptides in physiological, as well as pathophysiological processes. There have been many advances during the 35 years of his prominent role in the Peptide field, not only as editor of the journal Peptides, but also as a scientific investigator and editor of two volumes of the Handbook of Biological Active Peptides [146,147]. Similar to the advances with many different peptides, during this 35 year period, there have been much progress made in the understanding of the pharmacology, cell biology and the role of (bombesin) Bn receptors and their ligands in various disease states, since the original isolation of bombesin from skin of the European frog Bombina bombina in 1970 [76]. This paper will briefly review some of these advances over the time period of Prof. Kastin 35 years in the peptide field concentrating on the advances since 2007 when many of the results from earlier studies were summarized [128,129]. It is appropriate to do this because there have been 280 articles published in Peptides during this time on bombesin-related peptides and it accounts for almost 5% of all publications. Furthermore, 22 Bn publications we have been involved in have been published in either Peptides [14,39,55,58,81,92,93,119,152,216,225,226,231,280,302,309,355,361,362] or in Prof. Kastin's Handbook of Biological Active Peptides [137,138,331].
Collapse
Affiliation(s)
- Irene Ramos-Álvarez
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Paola Moreno
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Samuel A Mantey
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Taichi Nakamura
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Bernardo Nuche-Berenguer
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Terry W Moody
- Center for Cancer Research, Office of the Director, NCI, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - David H Coy
- Peptide Research Laboratory, Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112-2699, United States
| | - Robert T Jensen
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States.
| |
Collapse
|
22
|
González N, Moreno P, Jensen RT. Bombesin receptor subtype 3 as a potential target for obesity and diabetes. Expert Opin Ther Targets 2015; 19:1153-70. [PMID: 26066663 DOI: 10.1517/14728222.2015.1056154] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Diabetes mellitus and obesity are important health issues; increasing in prevalence, both in the USA and globally. There are only limited pharmacological treatments, and although bariatric surgery is effective, new effective pharmacologic treatments would be of great value. This review covers one area of increasing interest that could yield new novel treatments of obesity/diabetes mellitus. It involves recognition of the central role the G-protein-coupled receptor, bombesin receptor subtype 3 (BRS-3) plays in energy/glucose metabolism. AREAS COVERED Since the initial observation that BRS-3 knockout mice develop obesity, hypertension, impaired glucose metabolism and hyperphagia, there have been numerous studies of the mechanisms involved and the development of selective BRS-3 agonists/antagonists, which have marked effects on body weight, feeding and glucose/insulin homeostasis. In this review, each of these areas is briefly reviewed. EXPERT OPINION BRS-3 plays an important role in glucose/energy homeostasis. The development of potent, selective BRS-3 agonists demonstrates promise as a novel approach to treat obesity/diabetic states. One important question that needs to be addressed is whether BRS-3 agonists need to be centrally acting. This is particularly important in light of recent animal and human studies that report transient cardiovascular side effects with centrally acting oral BRS agonists.
Collapse
Affiliation(s)
- Nieves González
- The Autonomous University of Madrid, IIS-Jiménez Díaz Foundation, Renal, Vascular and Diabetes Research Laboratory, Spanish Biomedical Research Network in Diabetes and, Associated Metabolic Disorders (CIBERDEM) , Madrid , Spain
| | | | | |
Collapse
|
23
|
González N, Martín-Duce A, Martínez-Arrieta F, Moreno-Villegas Z, Portal-Núñez S, Sanz R, Egido J. Effect of bombesin receptor subtype-3 and its synthetic agonist on signaling, glucose transport and metabolism in myocytes from patients with obesity and type 2 diabetes. Int J Mol Med 2015; 35:925-31. [PMID: 25653074 PMCID: PMC4356436 DOI: 10.3892/ijmm.2015.2090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 01/15/2015] [Indexed: 11/17/2022] Open
Abstract
Bombesin receptor subtype-3 (BRS-3) is an orphan G-protein-coupled receptor (GPCR) member of the bombesin receptor family. Several studies have suggested an association between obesity, alterations in glucose metabolism, diabetes and the BRS-3 receptor. In this study, we focused on patients simultaneously diagnosed with obesity and type 2 diabetes (OB/T2D). The analysis of BRS-3 expression in the skeletal muscle of these patients revealed a marked decrease in the expression of BRS-3 at the mRNA (23.6±1.3-fold downregulation, p<0.0001) and protein level (49±7% decrease, p<0.05) compared to the normal patients (no obesity and diabetes). Moreover, in cultured primary myocytes from patients with OB/T2D, the synthetic BRS-3 agonist, [D-Try6,β-Ala11,Phe13,Nle14]bombesin6–14, significantly increased the phosphorylation levels of mitogen-activated protein kinase (MAPK), p90RSK1, protein kinase B (PKB) and p70s6K. Specifically, the ligand at 10−11 M induced the maximal phosphorylation of MAPKs (p42, 159±15% of the control; p44, 166±11% of the control; p<0.0001) and p90RSK1 (148±2% of the control, p<0.0001). The basal phosphorylation levels of all kinases were reduced (p<0.05) in the patients with OB/T2D compared to the normal patients. Furthermore, the BRS-3 agonist stimulated glucose transport, which was already detected at 10−12 M (133±9% of the control), reached maximal levels at 10−11 M (160±9%, p<0.0001) and was maintained at up to 10−8 M (overall mean, 153±7%; p<0.007). This effect was less promiment than that attained with 10−8 M insulin (202±9%, p=0.009). The effect of the agonist on glycogen synthase a activity achieved the maximum effect at 10−11 M (165±16% of the control; p<0.0001), which did not differ from that observed with higher concentrations of the agonist. These results suggest that muscle cells isolated from patients with OB/T2D have extremely high sensitivity to the synthetic ligand, and the effects are particularly observed on MAPK and p90RSK1 phosphorylation, as well as glucose uptake. Moreover, our data indicate that BRS-3 may prove to be useful as a potential therapeutic target for the treatment of patients with OB/T2D.
Collapse
Affiliation(s)
- Nieves González
- Renal, Vascular and Diabetes Research Laboratory, IIS-Jiménez Díaz Foundation, The Autonomous University of Madrid, Spanish Biomedical Research Network in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | | | - Félix Martínez-Arrieta
- Department of General Surgery, Puerta de Hierro-Majadahonda University Hospital, The Autonomous University of Madrid, Madrid, Spain
| | - Zaida Moreno-Villegas
- Renal, Vascular and Diabetes Research Laboratory, IIS-Jiménez Díaz Foundation, The Autonomous University of Madrid, Madrid, Spain
| | - Sergio Portal-Núñez
- Department of Bone and Mineral Metabolism, IIS-Jiménez Díaz Foundation, Cooperative Research Thematic Network on Aging and Frailty (RETICEF), Madrid, Spain
| | - Raúl Sanz
- Department of Neurology, IIS-Jiménez Díaz Foundation, Madrid, Spain
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, IIS-Jiménez Díaz Foundation, The Autonomous University of Madrid, Spanish Biomedical Research Network in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| |
Collapse
|
24
|
Moody TW, Mantey SA, Moreno P, Nakamura T, Lacivita E, Leopoldo M, Jensen RT. ML-18 is a non-peptide bombesin receptor subtype-3 antagonist which inhibits lung cancer growth. Peptides 2015; 64:55-61. [PMID: 25554218 PMCID: PMC4397132 DOI: 10.1016/j.peptides.2014.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/17/2014] [Accepted: 12/17/2014] [Indexed: 12/28/2022]
Abstract
Bombesin receptor subtype (BRS)-3 is a G protein coupled receptor (GPCR) for the bombesin (BB)-family of peptides. BRS-3 is an orphan GPCR and little is known of its physiological role due to the lack of specific agonists and antagonists. PD168368 is a nonpeptide antagonist for the neuromedin B (NMB) receptor (R) whereas PD176252 is a nonpeptide antagonist for the gastrin releasing peptide (GRP) R and NMBR but not BRS-3. Here nonpeptide analogs of PD176252 e.g. the S-enantiomer ML-18, and the R-enantiomer, EMY-98, were investigated as BRS-3 antagonists using lung cancer cells. ML-18 and EMY-98 inhibited specific (125)I-BA1 (DTyr-Gln-Trp-Ala-Val-βAla-His-Phe-Nle-NH2)BB(6-14) binding to NCI-H1299 lung cancer cells stably transfected with BRS-3 with IC50 values of 4.8 and >100μM, respectively. In contrast, ML-18 bound with lower affinity to the GRPR and NMBR with IC50 values of 16 and >100μM, respectively. ML-18 (16μM), but not its enantiomer EMY-98, inhibited the ability of 10nM BA1 to elevate cytosolic Ca(2+) in a reversible manner using lung cancer cells loaded with FURA2-AM. ML-18 (16μM), but not EMY-98, inhibited the ability of 100nM BA1 to cause tyrosine phosphorylation of the EGFR and ERK in lung cancer cells. ML-18 but not EMY-98 inhibited the proliferation of lung cancer cells. The results indicate that ML-18 is a nonpeptide BRS-3 antagonist that should serve as a template to improve potency and selectivity.
Collapse
Affiliation(s)
- Terry W Moody
- Department of Health and Human Services, National Cancer Institute, Center for Cancer Research, Office of the Director, Bethesda, MD 20892, USA.
| | - Samuel A Mantey
- National Institute of Diabetes, Digestive and Kidney Disease, Digestive Diseases Branch, Bethesda, MD 20892, USA
| | - Paola Moreno
- National Institute of Diabetes, Digestive and Kidney Disease, Digestive Diseases Branch, Bethesda, MD 20892, USA
| | - Taichi Nakamura
- National Institute of Diabetes, Digestive and Kidney Disease, Digestive Diseases Branch, Bethesda, MD 20892, USA
| | - Enza Lacivita
- Dipartimento di Farmacia, Scienze del Farmaco, Universita degli Studi di Bari "A. Moro", Bari, Italy
| | - Marcello Leopoldo
- Dipartimento di Farmacia, Scienze del Farmaco, Universita degli Studi di Bari "A. Moro", Bari, Italy
| | - Robert T Jensen
- National Institute of Diabetes, Digestive and Kidney Disease, Digestive Diseases Branch, Bethesda, MD 20892, USA
| |
Collapse
|
25
|
Ramos-Álvarez I, Moreno-Villegas Z, Martín-Duce A, Sanz R, Aparicio C, Portal-Núñez S, Mantey SA, Jensen RT, González N. Human BRS-3 receptor: functions/role in cell signaling pathways and glucose metabolism in obese or diabetic myocytes. Peptides 2014; 51:91-9. [PMID: 24220502 DOI: 10.1016/j.peptides.2013.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/04/2013] [Accepted: 11/04/2013] [Indexed: 10/26/2022]
Abstract
Several studies showed that the orphan Bombesin Receptor Subtype-3 (BRS-3) - member of the bombesin receptor family - has an important role in glucose homeostasis (v.g.: BRS-3-KO mice developed mild obesity, and decreased levels of BRS-3 mRNA/protein have been described in muscle from obese (OB) and type 2 diabetic (T2D) patients). In this work, to gain insight into BRS-3 receptor cell signaling pathways, and its implication on glucose metabolism, primary cultured myocytes from normal subjects, OB or T2D patients were tested using high affinity ligand - [d-Tyr(6),β-Ala(11),Phe(13),Nle(14)]bombesin6-14. In muscle cells from all metabolic conditions, the compound significantly increased not only MAPKs, p90RSK1, PKB and p70s6K phosphorylation levels, but also PI3K activity; moreover, it produced a dose-response stimulation of glycogen synthase a activity and glycogen synthesis. Myocytes from OB and T2D patients were more sensitive to the ligand than normal, and T2D cells even more than obese myocytes. These results widen the knowledge of human BRS-3 cell signaling pathways induced by a BRS-3 agonist, described its insulin-mimetic effects on glucose metabolism, showed the role of BRS-3 receptor in glucose homeostasis, and also propose the employing of BRS-3/ligand system, as participant in the obese and diabetic therapies.
Collapse
MESH Headings
- Adult
- Aged
- Bombesin/pharmacology
- Cells, Cultured
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Female
- Glucose/metabolism
- Glycogen/biosynthesis
- Glycogen Synthase/metabolism
- Homeostasis
- Humans
- Male
- Middle Aged
- Mitogen-Activated Protein Kinases/metabolism
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Obesity/metabolism
- Obesity/pathology
- Peptide Fragments/pharmacology
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphorylation
- Protein Processing, Post-Translational
- Proto-Oncogene Proteins c-akt/metabolism
- Receptors, Bombesin/agonists
- Receptors, Bombesin/physiology
- Ribosomal Protein S6 Kinases, 70-kDa/metabolism
- Ribosomal Protein S6 Kinases, 90-kDa/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- I Ramos-Álvarez
- Department of Metabolism, Nutrition and Hormones, IIS-Fundación Jiménez Díaz, CIBERDEM, Madrid, Spain
| | - Z Moreno-Villegas
- Department of Metabolism, Nutrition and Hormones, IIS-Fundación Jiménez Díaz, CIBERDEM, Madrid, Spain
| | - A Martín-Duce
- Department of Nursery, Unit of Surgery, Universidad de Alcalá de Henares, Madrid, Spain
| | - R Sanz
- Department of Neurology, IIS-Fundación Jiménez Díaz, Madrid, Spain
| | - C Aparicio
- Department of Vascular Surgery, Fundación Jiménez Díaz, Madrid, Spain
| | - S Portal-Núñez
- Department of Bone Mineral Metabolism, IIS-Fundación Jiménez Díaz, Madrid, Spain
| | - S A Mantey
- Digestive Diseases Branch, NIDDK, NIH, Bethesda, USA
| | - R T Jensen
- Digestive Diseases Branch, NIDDK, NIH, Bethesda, USA
| | - N González
- Department of Metabolism, Nutrition and Hormones, IIS-Fundación Jiménez Díaz, CIBERDEM, Madrid, Spain.
| |
Collapse
|