1
|
Bogen IL, Boix F, Andersen JM, Steinsland S, Nerem E, Mørland J. Heroin metabolism in human blood and its impact for the design of an immunotherapeutic approach against heroin effects. Basic Clin Pharmacol Toxicol 2023; 133:418-427. [PMID: 37452619 DOI: 10.1111/bcpt.13926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Immunotherapeutic interventions that block drug effects by binding drug molecules to specific antibodies in the bloodstream have shown promising effects in animal studies. For heroin, which effects are mainly mediated by the metabolites 6-acetylmorphine (6-AM; also known as 6-monoacetylmorphine or 6-MAM) and morphine, the optimal antibody specificity has been discussed. In rodents, 6-AM specific antibodies have been recommended based on the rapid metabolism of heroin to 6-AM in the bloodstream. Since the metabolic rate of heroin in blood is unsettled in humans, we examined heroin metabolism with state-of-the-art analytical methodology (UHPLC-MS/MS) in freshly drawn human whole blood incubated with a wide range of heroin concentrations (1-500 μM). The half-life of heroin was highly concentration dependent, ranging from 1.2-1.7 min for concentrations at or above 25 μM, and gradually increasing to approximately 20 min for 1 μM heroin. At concentrations that can be attained in the bloodstream shortly after an i.v. injection, approximately 70% was transformed into 6-AM within 3 min, similar to previous observations in vivo. Our results indicate that blood enzymes play a more important role for the rapid metabolism of heroin in humans than previously assumed. This points to 6-AM as an important target for an efficient immunotherapeutic approach to block heroin effects in humans.
Collapse
Affiliation(s)
- Inger Lise Bogen
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Fernando Boix
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway
| | - Jannike Mørch Andersen
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Synne Steinsland
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway
| | - Elisabeth Nerem
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway
| | - Jørg Mørland
- Division of Health Data and Digitalisation, Norwegian Institute of Public Health, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Milella MS, D'Ottavio G, De Pirro S, Barra M, Caprioli D, Badiani A. Heroin and its metabolites: relevance to heroin use disorder. Transl Psychiatry 2023; 13:120. [PMID: 37031205 PMCID: PMC10082801 DOI: 10.1038/s41398-023-02406-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/10/2023] Open
Abstract
Heroin is an opioid agonist commonly abused for its rewarding effects. Since its synthesis at the end of the nineteenth century, its popularity as a recreational drug has ebbed and flowed. In the last three decades, heroin use has increased again, and yet the pharmacology of heroin is still poorly understood. After entering the body, heroin is rapidly deacetylated to 6-monoacetylmorphine (6-MAM), which is then deacetylated to morphine. Thus, drug addiction literature has long settled on the notion that heroin is little more than a pro-drug. In contrast to these former views, we will argue for a more complex interplay among heroin and its active metabolites: 6-MAM, morphine, and morphine-6-glucuronide (M6G). In particular, we propose that the complex temporal pattern of heroin effects results from the sequential, only partially overlapping, actions not only of 6-MAM, morphine, and M6G, but also of heroin per se, which, therefore, should not be seen as a mere brain-delivery system for its active metabolites. We will first review the literature concerning the pharmacokinetics and pharmacodynamics of heroin and its metabolites, then examine their neural and behavioral effects, and finally discuss the possible implications of these data for a better understanding of opioid reward and heroin addiction. By so doing we hope to highlight research topics to be investigated by future clinical and pre-clinical studies.
Collapse
Affiliation(s)
- Michele Stanislaw Milella
- Toxicology Unit, Policlinico Umberto I University Hospital, Rome, Italy.
- Laboratory affiliated to the Institute Pasteur Italia-Fondazione Cenci Bolognetti-Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.
| | - Ginevra D'Ottavio
- Laboratory affiliated to the Institute Pasteur Italia-Fondazione Cenci Bolognetti-Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Silvana De Pirro
- Laboratory affiliated to the Institute Pasteur Italia-Fondazione Cenci Bolognetti-Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- Norwegian Centre for Addiction Research (SERAF), Faculty of Medicine, University of Oslo, Oslo, Norway
- Sussex Addiction and Intervention Centre (SARIC), School of Psychology, University of Sussex, Brighton, UK
| | | | - Daniele Caprioli
- Laboratory affiliated to the Institute Pasteur Italia-Fondazione Cenci Bolognetti-Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.
| | - Aldo Badiani
- Laboratory affiliated to the Institute Pasteur Italia-Fondazione Cenci Bolognetti-Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.
- Sussex Addiction and Intervention Centre (SARIC), School of Psychology, University of Sussex, Brighton, UK.
- Fondazione Villa Maraini, Rome, Italy.
| |
Collapse
|
3
|
Luba R, Martinez S, Jones J, Pravetoni M, Comer SD. Immunotherapeutic strategies for treating opioid use disorder and overdose. Expert Opin Investig Drugs 2023; 32:77-87. [PMID: 36696567 PMCID: PMC10035039 DOI: 10.1080/13543784.2023.2173062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Development and implementation of effective treatments for opioid use disorder (OUD) and prevention of overdose are urgent public health needs. Though existing medications for OUD (MOUD) are effective, barriers to initiation and retention in treatment persist. Therefore, development of novel treatments, especially those may complement existing treatments, is needed. AREAS COVERED This review provides an overview of vaccines for substance use disorders (SUD) and mechanisms underlying their function and efficacy. Next, we focus on existing preclinical and clinical trials of SUD vaccines. We focus briefly on related strategies before providing an expert opinion on prior, current, and future work on vaccines for OUD. We included published findings from preclinical and clinical trials found on PubMed and ScienceDirect as well as ongoing or initiated trials listed on ClinicalTrials.gov. EXPERT OPINION The present opioid overdose and OUD crises necessitate urgent development and implementation of effective treatments, especially those that offer protection from overdose and can serve as adjuvants to existing medications. Promising preclinical trial results paired with careful efforts to develop vaccines that account for prior SUD vaccine shortcomings offer hope for current and future clinical trials of opioid vaccines. Clinical advantages of opioid vaccines appear to outnumber disadvantages, which may result in improved treatment options.
Collapse
Affiliation(s)
- Rachel Luba
- New York State Psychiatric Institute/Columbia University Irving Medical Center Division on Substance Use Disorders
| | - Suky Martinez
- New York State Psychiatric Institute/Columbia University Irving Medical Center Division on Substance Use Disorders
| | - Jermaine Jones
- New York State Psychiatric Institute/Columbia University Irving Medical Center Division on Substance Use Disorders
| | - Marco Pravetoni
- University of Washington, School of Medicine, Department of Psychiatry and Behavioral Sciences, Department of Pharmacology, Center for Medication Development for Substance Use Disorders and Overdose, Seattle, WA
| | - Sandra D Comer
- New York State Psychiatric Institute/Columbia University Irving Medical Center Division on Substance Use Disorders
| |
Collapse
|
4
|
Lee J, Eubanks LM, Zhou B, Janda KD. Development of an Effective Monoclonal Antibody against Heroin and Its Metabolites Reveals Therapies Have Mistargeted 6-Monoacetylmorphine and Morphine over Heroin. ACS CENTRAL SCIENCE 2022; 8:1464-1470. [PMID: 36313156 PMCID: PMC9615117 DOI: 10.1021/acscentsci.2c00977] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Indexed: 05/29/2023]
Abstract
The opioid epidemic is a global public health crisis that has failed to abate with current pharmaceutical treatments. Moreover, these FDA-approved drugs possess numerous problems such as adverse side effects, short half-lives, abuse potential, and recidivism after discontinued use. An alternative treatment model for opioid use disorders is immunopharmacotherapy, where antibodies are produced to inhibit illicit substances by sequestering the drug in the periphery. Immunopharmacotherapeutics against heroin have engaged both active and passive vaccines targeting heroin's metabolites, 6-monoacetylmorphine (6-AM) and morphine, since decades of research have stated that heroin's psychoactive and lethal effects are mainly attributed to these compounds. However, concerted efforts to develop effective immunopharmacotherapies against heroin abuse have faced little clinical advancement, suggesting a need for reassessing drug target selection. To address this issue, four unique monoclonal antibodies were procured with distinct affinity to either heroin, 6-AM, or morphine. Examination of these antibodies through in vitro and in vivo tests revealed monoclonal antibody 11D12 as the optimal therapeutic and provided crucial insights into the key chemical species to target for blunting heroin's psychoactive and lethal effects. These findings offer clarification into the problematic attempts of therapeutics targeting heroin's metabolites and provide a path forward for future heroin immunopharmacotherapy development.
Collapse
|
5
|
Abucayon E, Whalen C, Torres OB, Duval AJ, Sulima A, Antoline JFG, Oertel T, Barrientos RC, Jacobson AE, Rice KC, Matyas GR. A Rapid Method for Direct Quantification of Antibody Binding-Site Concentration in Serum. ACS OMEGA 2022; 7:26812-26823. [PMID: 35936462 PMCID: PMC9352236 DOI: 10.1021/acsomega.2c03237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The quantitation of the available antibody binding-site concentration of polyclonal antibodies in serum is critical in defining the efficacy of vaccines against substances of abuse. We have conceptualized an equilibrium dialysis (ED)-based approach coupled with fluorimetry (ED-fluorimetry) to measure the antibody binding-site concentration to the ligand in an aqueous environment. The measured binding-site concentrations in monoclonal antibody (mAb) and sera samples from TT-6-AmHap-immunized rats by ED-fluorimetry are in agreement with those determined by a more established equilibrium dialysis coupled with ultraperformance liquid chromatography tandem mass spectrometry (ED-UPLC-MS/MS). Importantly, we have shown that the measured antibody binding-site concentrations to the ligand by ED-fluorimetry were not influenced by the sample serum matrix; thus, this method is valid for determining the binding-site concentration of polyclonal antibodies in sera samples. Further, we have demonstrated that under appropriate analytical conditions, this method resolved the total binding-site concentrations on a nanomolar scale with good accuracy and repeatability within the microliter sample volumes. This simple, rapid, and sample preparation-free approach has the potential to reliably perform quantitative antibody binding-site screening in serum and other more complex biological fluids.
Collapse
Affiliation(s)
- Erwin
G. Abucayon
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program,
Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
- Henry
M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, Maryland 20817, United States
| | - Connor Whalen
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program,
Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
- Oak
Ridge Institute for Science and Education, Oak Ridge, Tennessee 37831, United States
| | - Oscar B. Torres
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program,
Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
- Henry
M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, Maryland 20817, United States
| | - Alexander J. Duval
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program,
Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
- Henry
M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, Maryland 20817, United States
| | - Agnieszka Sulima
- Department
of Health and Human Services, Drug Design
and Synthesis Section, Molecular Targets and Medications Discovery
Branch, Intramural Research Program, National Institute on Drug Abuse
and the National Institute on Alcohol Abuse and Alcoholism, National
Institutes of Health, 9800 Medical Center Drive, Bethesda, Maryland 20892-3373, United States
| | - Joshua F. G. Antoline
- Department
of Health and Human Services, Drug Design
and Synthesis Section, Molecular Targets and Medications Discovery
Branch, Intramural Research Program, National Institute on Drug Abuse
and the National Institute on Alcohol Abuse and Alcoholism, National
Institutes of Health, 9800 Medical Center Drive, Bethesda, Maryland 20892-3373, United States
| | - Therese Oertel
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program,
Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
- Oak
Ridge Institute for Science and Education, Oak Ridge, Tennessee 37831, United States
| | - Rodell C. Barrientos
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program,
Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
- Henry
M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, Maryland 20817, United States
| | - Arthur E. Jacobson
- Department
of Health and Human Services, Drug Design
and Synthesis Section, Molecular Targets and Medications Discovery
Branch, Intramural Research Program, National Institute on Drug Abuse
and the National Institute on Alcohol Abuse and Alcoholism, National
Institutes of Health, 9800 Medical Center Drive, Bethesda, Maryland 20892-3373, United States
| | - Kenner C. Rice
- Department
of Health and Human Services, Drug Design
and Synthesis Section, Molecular Targets and Medications Discovery
Branch, Intramural Research Program, National Institute on Drug Abuse
and the National Institute on Alcohol Abuse and Alcoholism, National
Institutes of Health, 9800 Medical Center Drive, Bethesda, Maryland 20892-3373, United States
| | - Gary R. Matyas
- Laboratory
of Adjuvant and Antigen Research, U.S. Military HIV Research Program,
Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| |
Collapse
|
6
|
Andersen JM, Bogen IL, Karinen R, Brochmann GW, Mørland J, Vindenes V, Boix F. Does the preparation for intravenous administration affect the composition of heroin injections? A controlled laboratory study. Addiction 2021; 116:3104-3112. [PMID: 33739552 DOI: 10.1111/add.15492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/27/2020] [Accepted: 03/10/2021] [Indexed: 11/28/2022]
Abstract
AIMS To study whether the preparation procedure, and its acidic and heating conditions, used by heroin users to prepare heroin for intravenous administration affects the final composition of the fluid to be injected. METHODS Samples from different seizures of illegal heroin provided by the Norwegian police were prepared by adding water and ascorbic acid before heating under controlled conditions in the laboratory. Further, three seizures were prepared with different amounts of ascorbic or citric acid relative to their diacetylmorphine content. Pure diacetylmorphine base or salt was also submitted to the procedure applying two different heating intensities. The seizures and the final product after preparation were analysed for diacetylmorphine, 6-acetylmorphine and morphine using liquid chromatography with tandem mass spectrometry (LC-MS-MS). RESULTS After preparation, a decrease of 19.8% (25th and 75th percentiles = -29.2 and -15.3) in the initial diacetylmorphine content was observed. Both the 6-acetylmorphine and morphine content increased but, due to their low content in the initial product, diacetylmorphine still represented 83.9% (25th and 75th percentiles = 77.3 and 88.0) of the sum of these three opioids in the final solution. The loss of water during preparation caused an increase in the concentration of diacetylmorphine, 6-acetylmorphine and morphine, depending on the heating intensity applied. The content of these opioids was affected by the quantity and type of acid added in relation to the heroin purity and the level of diacetylmorphine dissolved being proportional to the amount of ascorbic acid, but not citric acid, in the sample with high heroin purity. CONCLUSIONS Preparation of heroin for intravenous injection appears to change the amount or concentration of diacetylmorphine and its active metabolites, 6-acetylmorphine and morphine in the final product, depending on heroin purity, amount and type of acid used or heating conditions. These circumstances can contribute to unintentional variations in the potency of the final injected solution, and therefore affect the outcome after injection.
Collapse
Affiliation(s)
- Jannike M Andersen
- Section for Drug Abuse Research, Dept. of Forensic Sciences, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway.,Department of Pharmaceutical Biosciences, School of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway
| | - Inger Lise Bogen
- Section for Drug Abuse Research, Dept. of Forensic Sciences, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway
| | - Ritva Karinen
- Section for Drug Abuse Research, Dept. of Forensic Sciences, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway
| | - Gerd Wenche Brochmann
- Section for Drug Abuse Research, Dept. of Forensic Sciences, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway
| | - Jørg Mørland
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway.,Division of Health Data and Digitalization, Norwegian Institute of Public Health, Oslo, Norway
| | - Vigdis Vindenes
- Section for Drug Abuse Research, Dept. of Forensic Sciences, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Fernando Boix
- Section for Drug Abuse Research, Dept. of Forensic Sciences, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
7
|
Ban B, Barrientos RC, Oertel T, Komla E, Whalen C, Sopko M, You Y, Banerjee P, Sulima A, Jacobson AE, Rice KC, Matyas GR, Yusibov V. Novel chimeric monoclonal antibodies that block fentanyl effects and alter fentanyl biodistribution in mice. MAbs 2021; 13:1991552. [PMID: 34693882 PMCID: PMC8547829 DOI: 10.1080/19420862.2021.1991552] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The prevalence and societal impact of opioid use disorder (OUD) is an acknowledged public health crisis that is further aggravated by the current pandemic. One of the devastating consequences of OUD is opioid overdose deaths. While multiple medications are now available to treat OUD, given the prevalence and societal burden, additional well-tolerated and effective therapies are still needed. To this point, we have developed chimeric monoclonal antibodies (mAb) that will specifically complex with fentanyl and its analogs in the periphery, thereby preventing them from reaching the central nervous system. Additionally, mAb-based passive immunotherapy offers a high degree of specificity to drugs of abuse and does not interfere with an individual’s ability to use any of the medications used to treat OUD. We hypothesized that sequestering fentanyl and its analogs in the periphery will mitigate their negative effects on the brain and peripheral organs. This study is the first report of chimeric mAb against fentanyl and its analogs. We have discovered, engineered the chimeric versions, and identified the selectivity of these antibodies, through in vitro characterization and in vivo animal challenge studies. Two mAb candidates with very high (0.1–1.3 nM) binding affinities to fentanyl and its analogs were found to be effective in engaging fentanyl in the periphery and blocking its effects in challenged animals. Results presented in this work constitute a major contribution in the field of novel therapeutics targeting OUD.
Collapse
Affiliation(s)
- Bhupal Ban
- Pharmaceutical Center, Indiana Biosciences Research Institute, Indianapolis, Indiana, United States
| | - Rodell C Barrientos
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States.,U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States
| | - Therese Oertel
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States
| | - Essie Komla
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States.,U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States
| | - Connor Whalen
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States
| | - Megan Sopko
- Pharmaceutical Center, Indiana Biosciences Research Institute, Indianapolis, Indiana, United States
| | - Yingjian You
- Pharmaceutical Center, Indiana Biosciences Research Institute, Indianapolis, Indiana, United States
| | - Partha Banerjee
- Pharmaceutical Center, Indiana Biosciences Research Institute, Indianapolis, Indiana, United States
| | - Agnieszka Sulima
- Department of Health and Human Services, Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States
| | - Arthur E Jacobson
- Department of Health and Human Services, Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States
| | - Kenner C Rice
- Department of Health and Human Services, Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States
| | - Gary R Matyas
- Laboratory of Adjuvant and Antigen Research, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States
| | - Vidadi Yusibov
- Pharmaceutical Center, Indiana Biosciences Research Institute, Indianapolis, Indiana, United States
| |
Collapse
|
8
|
Raleigh MD, Beltraminelli N, Fallot S, LeSage MG, Saykao A, Pentel PR, Fuller S, Thisted T, Biesova Z, Horrigan S, Sampey D, Zhou B, Kalnik MW. Attenuating nicotine's effects with high affinity human anti-nicotine monoclonal antibodies. PLoS One 2021; 16:e0254247. [PMID: 34329335 PMCID: PMC8323890 DOI: 10.1371/journal.pone.0254247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/23/2021] [Indexed: 11/27/2022] Open
Abstract
Use of nicotine-specific monoclonal antibodies (mAbs) to sequester and reduce nicotine distribution to brain has been proposed as a therapeutic approach to treat nicotine addiction (the basis of tobacco use disorder). A series of monoclonal antibodies with high affinity for nicotine (nic•mAbs) was isolated from B-cells of vaccinated smokers. Genes encoding 32 unique nicotine binding antibodies were cloned, and the mAbs expressed and tested by surface plasmon resonance to determine their affinity for S-(–)-nicotine. The highest affinity nic•mAbs had binding affinity constants (KD) between 5 and 67 nM. The 4 highest affinity nic•mAbs were selected to undergo additional secondary screening for antigen-specificity, protein properties (including aggregation and stability), and functional in vivo studies to evaluate their capacity for reducing nicotine distribution to brain in rats. The 2 most potent nic•mAbs in single-dose nicotine pharmacokinetic experiments were further tested in a dose-response in vivo study. The most potent lead, ATI-1013, was selected as the lead candidate based on the results of these studies. Pretreatment with 40 and 80 mg/kg ATI-1013 reduced brain nicotine levels by 56 and 95%, respectively, in a repeated nicotine dosing experiment simulating very heavy smoking. Nicotine self-administration was also significantly reduced in rats treated with ATI-1013. A pilot rat 30-day repeat-dose toxicology study (4x200mg/kg ATI-1013) in the presence of nicotine indicated no drug-related safety concerns. These data provide evidence that ATI-1013 could be a potential therapy for the treatment of nicotine addiction.
Collapse
Affiliation(s)
- Michael D. Raleigh
- Hennepin Healthcare Research Institute, Minneapolis, Minnesota, United States of America
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | | | | | - Mark G. LeSage
- Hennepin Healthcare Research Institute, Minneapolis, Minnesota, United States of America
- Nic•mAb Strategic Alliance, San Diego, California, United States of America
| | - Amy Saykao
- Hennepin Healthcare Research Institute, Minneapolis, Minnesota, United States of America
| | - Paul R. Pentel
- Hennepin Healthcare Research Institute, Minneapolis, Minnesota, United States of America
- Nic•mAb Strategic Alliance, San Diego, California, United States of America
| | - Steve Fuller
- Nic•mAb Strategic Alliance, San Diego, California, United States of America
- Antidote Therapeutics, Inc., Woodbine, Maryland, United States of America
| | - Thomas Thisted
- Nic•mAb Strategic Alliance, San Diego, California, United States of America
- Antidote Therapeutics, Inc., Woodbine, Maryland, United States of America
| | - Zuzanna Biesova
- Antidote Therapeutics, Inc., Woodbine, Maryland, United States of America
| | - Stephen Horrigan
- Noble Life Sciences, Woodbine, Maryland, United States of America
| | - Darryl Sampey
- Nic•mAb Strategic Alliance, San Diego, California, United States of America
- Biofactura, Inc., Frederick, Maryland, United States of America
| | - Bin Zhou
- Nic•mAb Strategic Alliance, San Diego, California, United States of America
- The Scripps Research Institute, La Jolla, California, United States of America
| | - Matthew W. Kalnik
- Nic•mAb Strategic Alliance, San Diego, California, United States of America
- Antidote Therapeutics, Inc., Woodbine, Maryland, United States of America
- * E-mail:
| |
Collapse
|
9
|
Zhang CH, Kim K, Jin Z, Zheng F, Zhan CG. Systematic Structure-Based Virtual Screening Approach to Antibody Selection and Design of a Humanized Antibody against Multiple Addictive Opioids without Affecting Treatment Agents Naloxone and Naltrexone. ACS Chem Neurosci 2021; 12:184-194. [PMID: 33356138 DOI: 10.1021/acschemneuro.0c00670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Opioid drug use, especially heroin, is known as a growing national crisis in America. Heroin itself is a prodrug and is converted to the most active metabolite 6-monoacetylmorphine (6-MAM) responsible for the acute toxicity of heroin and then to a relatively less-active metabolite morphine responsible for the long-term toxicity of heroin. Monoclonal antibodies (mAbs) are recognized as a potentially promising therapeutic approach in the treatment of opioid use disorders (OUDs). Due to the intrinsic challenges of discovering an mAb against multiple ligands, here we describe a general, systematic structure-based virtual screening and design approach which has been used to identify a known anti-morphine antibody 9B1 and a humanized antibody h9B1 capable of binding to multiple addictive opioids (including 6-MAM, morphine, heroin, and hydrocodone) without significant binding with currently available OUD treatment agents naloxone, naltrexone, and buprenorphine. The humanized antibody may serve as a promising candidate for the treatment of OUDs. The experimental binding affinities reasonably correlate with the computationally predicted binding free energies. The experimental activity data strongly support the computational predictions, suggesting that the systematic structure-based virtual screening and humanization design protocol is reliable. The general, systematic structure-based virtual screening and design approach will be useful for many other antibody selection and design efforts in the future.
Collapse
Affiliation(s)
- Chun-Hui Zhang
- Molecular Modeling and Biopharmaceutical Center and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
| | - Kyungbo Kim
- Molecular Modeling and Biopharmaceutical Center and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
| | - Zhenyu Jin
- Molecular Modeling and Biopharmaceutical Center and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
| | - Fang Zheng
- Molecular Modeling and Biopharmaceutical Center and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
| |
Collapse
|
10
|
Kvello AMS, Andersen JM, Boix F, Mørland J, Bogen IL. The role of 6-acetylmorphine in heroin-induced reward and locomotor sensitization in mice. Addict Biol 2020; 25:e12727. [PMID: 30788879 DOI: 10.1111/adb.12727] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 01/11/2023]
Abstract
We have previously demonstrated that heroin's first metabolite, 6-acetylmorphine (6-AM), is an important mediator of heroin's acute effects. However, the significance of 6-AM to the rewarding properties of heroin still remains unknown. The present study therefore aimed to examine the contribution of 6-AM to heroin-induced reward and locomotor sensitization. Mice were tested for conditioned place preference (CPP) induced by equimolar doses of heroin or 6-AM (1.25-5 μmol/kg). Psychomotor activity was recorded during the CPP conditioning sessions for assessment of drug-induced locomotor sensitization. The contribution of 6-AM to heroin reward and locomotor sensitization was further examined by pretreating mice with a 6-AM specific antibody (anti-6-AM mAb) 24 hours prior to the CPP procedure. Both heroin and 6-AM induced CPP in mice, but heroin generated twice as high CPP scores compared with 6-AM. Locomotor sensitization was expressed after repeated exposure to 2.5 and 5 μmol/kg heroin or 6-AM, but not after 1.25 μmol/kg, and we found no correlation between the expression of CPP and the magnitude of locomotor sensitization for either opioid. Pretreatment with anti-6-AM mAb suppressed both heroin-induced and 6-AM-induced CPP and locomotor sensitization. These findings provide evidence that 6-AM is essential for the rewarding and sensitizing properties of heroin; however, heroin caused stronger reward compared with 6-AM. This may be explained by the higher lipophilicity of heroin, providing more efficient drug transfer to the brain, ensuring rapid increase in the brain 6-AM concentration.
Collapse
Affiliation(s)
- Anne Marte Sjursen Kvello
- Section for Drug Abuse Research, Department of Forensic SciencesOslo University Hospital Oslo Norway
- School of Pharmacy, Faculty of Mathematics and Natural SciencesUniversity of Oslo Oslo Norway
| | - Jannike Mørch Andersen
- Section for Drug Abuse Research, Department of Forensic SciencesOslo University Hospital Oslo Norway
- School of Pharmacy, Faculty of Mathematics and Natural SciencesUniversity of Oslo Oslo Norway
| | - Fernando Boix
- Section for Drug Abuse Research, Department of Forensic SciencesOslo University Hospital Oslo Norway
| | - Jørg Mørland
- Division of Health Data and DigitalisationNorwegian Institute of Public Health Oslo Norway
| | - Inger Lise Bogen
- Section for Drug Abuse Research, Department of Forensic SciencesOslo University Hospital Oslo Norway
- Institute of Basic Medical Sciences, Faculty of MedicineUniversity of Oslo Oslo Norway
| |
Collapse
|
11
|
Smith LC, Bremer PT, Hwang CS, Zhou B, Ellis B, Hixon MS, Janda KD. Monoclonal Antibodies for Combating Synthetic Opioid Intoxication. J Am Chem Soc 2019; 141:10489-10503. [PMID: 31187995 DOI: 10.1021/jacs.9b04872] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Opioid abuse in the United States has been declared a national crisis and is exacerbated by an inexpensive, readily available, and illicit supply of synthetic opioids. Specifically, fentanyl and related analogues such as carfentanil pose a significant danger to opioid users due to their high potency and rapid acting depression of respiration. In recent years these synthetic opioids have become the number one cause of drug-related deaths. In our research efforts to combat the public health threat posed by synthetic opioids, we have developed monoclonal antibodies (mAbs) against the fentanyl class of drugs. The mAbs were generated in hybridomas derived from mice vaccinated with a fentanyl conjugate vaccine. Guided by a surface plasmon resonance (SPR) binding assay, we selected six hybridomas that produced mAbs with 10-11 M binding affinity for fentanyl, yet broad cross-reactivity with related fentanyl analogues. In mouse antinociception models, our lead mAb (6A4) could blunt the effects of both fentanyl and carfentanil in a dose-responsive manner. Additionally, mice pretreated with 6A4 displayed enhanced survival when subjected to fentanyl above LD50 doses. Pharmacokinetic analysis revealed that the antibody sequesters large amounts of these drugs in the blood, thus reducing drug biodistribution to the brain and other tissue. Lastly, the 6A4 mAb could effectively reverse fentanyl/carfentanil-induced antinociception comparable to the opioid antagonist naloxone, the standard of care drug for treating opioid overdose. While naloxone is known for its short half-life, we found the half-life of 6A4 to be approximately 6 days in mice, thus monoclonal antibodies could theoretically be useful in preventing renarcotization events in which opioid intoxication recurs following quick metabolism of naloxone. Our results as a whole demonstrate that monoclonal antibodies could be a desirable treatment modality for synthetic opioid overdose and possibly opioid use disorder.
Collapse
Affiliation(s)
- Lauren C Smith
- Departments of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 N Torrey Pines Road , La Jolla , California 92037 , United States
| | - Paul T Bremer
- Departments of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 N Torrey Pines Road , La Jolla , California 92037 , United States.,Cessation Therapeutics LLC , 3031 Tisch Way Ste 505 , San Jose , California 95128 , United States
| | - Candy S Hwang
- Departments of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 N Torrey Pines Road , La Jolla , California 92037 , United States.,Department of Chemistry , Southern Connecticut State University , New Haven , Connecticut 06515 , United States
| | - Bin Zhou
- Departments of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 N Torrey Pines Road , La Jolla , California 92037 , United States
| | - Beverly Ellis
- Departments of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 N Torrey Pines Road , La Jolla , California 92037 , United States
| | - Mark S Hixon
- Departments of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 N Torrey Pines Road , La Jolla , California 92037 , United States.,Mark S. Hixon Consulting LLC , 11273 Spitfire Road , San Diego , California 92126 , United States
| | - Kim D Janda
- Departments of Chemistry, Immunology and Microbial Science, Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 N Torrey Pines Road , La Jolla , California 92037 , United States
| |
Collapse
|
12
|
Olson ME, Eubanks LM, Janda KD. Chemical Interventions for the Opioid Crisis: Key Advances and Remaining Challenges. J Am Chem Soc 2019; 141:1798-1806. [PMID: 30532973 PMCID: PMC10681095 DOI: 10.1021/jacs.8b09756] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The present United States opioid crisis requires urgent and innovative scientific intervention. This perspective highlights a role for the chemical sciences by expounding upon three key research areas identified as priorities by the National Institute on Drug Abuse (NIDA). Specifically, important advances in chemical interventions for overdose reversal, strategies for opioid use disorder (OUD) treatment, including immunopharmacotherapies, and next-generation alternatives for pain management will be discussed. Ultimately, progress made will be presented in light of remaining challenges for the field.
Collapse
Affiliation(s)
- Margaret E. Olson
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, and WIRM Institute for Research and Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Lisa M. Eubanks
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, and WIRM Institute for Research and Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Kim D. Janda
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, and WIRM Institute for Research and Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
13
|
The active heroin metabolite 6-acetylmorphine has robust reinforcing effects as assessed by self-administration in the rat. Neuropharmacology 2018; 150:192-199. [PMID: 30578794 DOI: 10.1016/j.neuropharm.2018.12.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/14/2022]
Abstract
Previous studies have suggested that at least some of the behavioral effects of heroin might be mediated by its active metabolite 6-acetylmorphine (6-AM). The aim of the present study was to investigate the reinforcing effects of 6-AM and its role in mediating those of heroin. We used an intravenous self-administration procedure in male Sprague-Dawley rats including four phases: acquisition, extinction, reinstatement of drug-seeking, and re-acquisition. Independent groups of rats readily learned to self-administer equimolar doses (0.135 μmol/kg) of either 6-AM (44.3 μg/kg) or heroin (50 μg/kg). Under a fixed ratio 1 (FR1) schedule of reinforcement, the rate of responding was the same for 6-AM and heroin, but it was significantly higher for 6-AM than for heroin under a FR2 schedule. A non-contingent infusion ('priming') of 0.068 μmol/kg of either 6-AM or heroin reinstated non-reinforced drug-seeking (relapse). The rats readily re-acquired self-administration behaviour when given access to one of two doses (0.068 and 0.135 μmol/kg) of 6-AM or heroin. Pretreatment with a specific monoclonal antibody (mAb) against 6-AM blocked the priming effect of 6-AM, and modified the rate of lever-pressing on re-acquisition of 6-AM self-administration in a manner compatible with a shift to the right of the dose-effect curve. The mAb did not affect heroin responding. The present results show that 6-AM possesses reinforcing effects similar to those of heroin. The lack of effect of 6-AM mAb on heroin priming and heroin self-administration calls for further studies to clarify the role of heroin and its metabolites in heroin reward. This article is part of the Special Issue entitled 'Opioid Neuropharmacology: Advances in treating pain and opioid addiction'.
Collapse
|
14
|
Myagkova MA, Morozova VS. Vaccines for substance abuse treatment: new approaches in the immunotherapy of addictions. Russ Chem Bull 2018. [DOI: 10.1007/s11172-018-2290-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Kvello AMS, Andersen JM, Øiestad EL, Steinsland S, Aase A, Mørland J, Bogen IL. A Monoclonal Antibody against 6-Acetylmorphine Protects Female Mice Offspring from Adverse Behavioral Effects Induced by Prenatal Heroin Exposure. J Pharmacol Exp Ther 2018; 368:106-115. [PMID: 30361238 DOI: 10.1124/jpet.118.251504] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/22/2018] [Indexed: 01/04/2023] Open
Abstract
Escalating opioid use among fertile women has increased the number of children being exposed to opioids during fetal life. Furthermore, accumulating evidence links prenatal opioid exposure, including opioid maintenance treatment, to long-term negative effects on cognition and behavior, and presses the need to explore novel treatment strategies for pregnant opioid users. The present study examined the potential of a monoclonal antibody (mAb) targeting heroin's first metabolite, 6-acetylmorphine (6-AM), in providing fetal protection against harmful effects of prenatal heroin exposure in mice. First, we examined anti-6-AM mAb's ability to block materno-fetal transfer of active metabolites after maternal heroin administration. Next, we studied whether maternal mAb pretreatment could prevent adverse effects in neonatal and adolescent offspring exposed to intrauterine heroin (3 × 1.05 mg/kg). Anti-6-AM mAb pretreatment of pregnant dams profoundly reduced the distribution of active heroin metabolites to the fetal brain. Furthermore, maternal mAb administration prevented hyperactivity and drug sensitization in adolescent female offspring prenatally exposed to heroin. Our findings demonstrate that passive immunization with a 6-AM-specific antibody during pregnancy provides fetal neuroprotection against heroin metabolites, and thereby prevents persistent adverse behavioral effects in the offspring. An immunotherapeutic approach to protect the fetus against long-term effects of prenatal drug exposure has not been reported previously, and should be further explored as prophylactic treatment of pregnant heroin users susceptible to relapse.
Collapse
Affiliation(s)
- Anne Marte Sjursen Kvello
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway (A.M.S.K., J.M.A., E.L.Ø., S.S., I.L.B.); School of Pharmacy, Faculty of Mathematics and Natural Sciences (A.M.S.K., J.M.A., E.L.Ø.), Institute of Basic Medical Sciences (I.L.B.) and Institute of Clinical Medicine (J.M.), Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Infectious Disease Immunology (A.A.) and Department of Health Data and Digitalization (J.M.), Norwegian Institute of Public Health, Oslo, Norway
| | - Jannike Mørch Andersen
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway (A.M.S.K., J.M.A., E.L.Ø., S.S., I.L.B.); School of Pharmacy, Faculty of Mathematics and Natural Sciences (A.M.S.K., J.M.A., E.L.Ø.), Institute of Basic Medical Sciences (I.L.B.) and Institute of Clinical Medicine (J.M.), Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Infectious Disease Immunology (A.A.) and Department of Health Data and Digitalization (J.M.), Norwegian Institute of Public Health, Oslo, Norway
| | - Elisabeth Leere Øiestad
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway (A.M.S.K., J.M.A., E.L.Ø., S.S., I.L.B.); School of Pharmacy, Faculty of Mathematics and Natural Sciences (A.M.S.K., J.M.A., E.L.Ø.), Institute of Basic Medical Sciences (I.L.B.) and Institute of Clinical Medicine (J.M.), Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Infectious Disease Immunology (A.A.) and Department of Health Data and Digitalization (J.M.), Norwegian Institute of Public Health, Oslo, Norway
| | - Synne Steinsland
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway (A.M.S.K., J.M.A., E.L.Ø., S.S., I.L.B.); School of Pharmacy, Faculty of Mathematics and Natural Sciences (A.M.S.K., J.M.A., E.L.Ø.), Institute of Basic Medical Sciences (I.L.B.) and Institute of Clinical Medicine (J.M.), Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Infectious Disease Immunology (A.A.) and Department of Health Data and Digitalization (J.M.), Norwegian Institute of Public Health, Oslo, Norway
| | - Audun Aase
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway (A.M.S.K., J.M.A., E.L.Ø., S.S., I.L.B.); School of Pharmacy, Faculty of Mathematics and Natural Sciences (A.M.S.K., J.M.A., E.L.Ø.), Institute of Basic Medical Sciences (I.L.B.) and Institute of Clinical Medicine (J.M.), Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Infectious Disease Immunology (A.A.) and Department of Health Data and Digitalization (J.M.), Norwegian Institute of Public Health, Oslo, Norway
| | - Jørg Mørland
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway (A.M.S.K., J.M.A., E.L.Ø., S.S., I.L.B.); School of Pharmacy, Faculty of Mathematics and Natural Sciences (A.M.S.K., J.M.A., E.L.Ø.), Institute of Basic Medical Sciences (I.L.B.) and Institute of Clinical Medicine (J.M.), Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Infectious Disease Immunology (A.A.) and Department of Health Data and Digitalization (J.M.), Norwegian Institute of Public Health, Oslo, Norway
| | - Inger Lise Bogen
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway (A.M.S.K., J.M.A., E.L.Ø., S.S., I.L.B.); School of Pharmacy, Faculty of Mathematics and Natural Sciences (A.M.S.K., J.M.A., E.L.Ø.), Institute of Basic Medical Sciences (I.L.B.) and Institute of Clinical Medicine (J.M.), Faculty of Medicine, University of Oslo, Oslo, Norway; and Department of Infectious Disease Immunology (A.A.) and Department of Health Data and Digitalization (J.M.), Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
16
|
Kim K, Yao J, Jin Z, Zheng F, Zhan CG. Kinetic characterization of cholinesterases and a therapeutically valuable cocaine hydrolase for their catalytic activities against heroin and its metabolite 6-monoacetylmorphine. Chem Biol Interact 2018; 293:107-114. [PMID: 30080993 DOI: 10.1016/j.cbi.2018.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/24/2018] [Accepted: 08/03/2018] [Indexed: 01/18/2023]
Abstract
As the most popularly abused one of opioids, heroin is actually a prodrug. In the body, heroin is hydrolyzed/activated to 6-monoacetylmorphine (6-MAM) first and then to morphine to produce its toxic and physiological effects. It has been known that heroin hydrolysis to 6-MAM and morphine is accelerated by cholinesterases, including acetylcholinesterase (AChE) and/or butyrylcholinesterase (BChE). However, there has been controversy over the specific catalytic activities and functional significance of the cholinesterases, which requires for the more careful kinetic characterization under the same experimental conditions. Here we report the kinetic characterization of AChE, BChE, and a therapeutically promising cocaine hydrolase (CocH1) for heroin and 6-MAM hydrolyses under the same experimental conditions. It has been demonstrated that AChE and BChE have similar kcat values (2100 and 1840 min-1, respectively) against heroin, but with a large difference in KM (2170 and 120 μM, respectively). Both AChE and BChE can catalyze 6-MAM hydrolysis to morphine, with relatively lower catalytic efficiency compared to the heroin hydrolysis. CocH1 can also catalyze hydrolysis of heroin (kcat = 2150 min-1 and KM = 245 μM) and 6-MAM (kcat = 0.223 min-1 and KM = 292 μM), with relatively larger KM values and lower catalytic efficiency compared to BChE. Notably, the KM values of CocH1 against both heroin and 6-MAM are all much larger than previously reported maximum serum heroin and 6-MAM concentrations observed in heroin users, implying that the heroin use along with cocaine will not drastically affect the catalytic activity of CocH1 against cocaine in the CocH1-based enzyme therapy for cocaine abuse.
Collapse
Affiliation(s)
- Kyungbo Kim
- Molecular Modeling and Biopharmaceutical Center, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | | | - Zhenyu Jin
- Molecular Modeling and Biopharmaceutical Center, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Fang Zheng
- Molecular Modeling and Biopharmaceutical Center, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA.
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA.
| |
Collapse
|
17
|
de Zafra CLZ, Markgraf CG, Compton DR, Hudzik TJ. Abuse liability assessment for biologic drugs - All molecules are not created equal. Regul Toxicol Pharmacol 2017; 92:165-172. [PMID: 29199066 DOI: 10.1016/j.yrtph.2017.11.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 12/21/2022]
Abstract
The development of novel drug candidates involves the thorough evaluation of potential efficacy and safety. To facilitate the safety assessment in light of global increases in prescription drug misuse/abuse, health authorities have developed guidance documents which provide a framework for evaluating the abuse liability of candidate therapeutics. The guidances do not distinguish between small molecules and biologics/biotherapeutics; however, there are key differences between these classes of therapeutics which are important drivers of concern for abuse. An analysis of these properties, including ability to distribute to the central nervous system, pharmacokinetic properties (e.g., half-life and metabolism), potential for off-target binding, and the physiochemical characteristics of biologic drug products suggests that the potential for abuse of a biologic is limited. Many marketed antibodies and recombinant proteins have been associated with adverse effects such as headache and dizziness. However, biologics have not historically engendered the rapid-onset psychoactive effects typically present for drugs of abuse, thus further underscoring their low risk for abuse potential. The factors to be taken into consideration before conducting nonclinical abuse liability studies with biologics are described herein; importantly, the aggregate assessment of these factors leads to the conclusion that abuse liability studies are unlikely to be necessary for this class of therapeutics.
Collapse
Affiliation(s)
| | - Carrie G Markgraf
- Preclinical Safety, Discovery Sciences Support, Merck & Co., Ltd., Kenilworth, NJ, USA
| | | | | |
Collapse
|
18
|
Heekin RD, Shorter D, Kosten TR. Current status and future prospects for the development of substance abuse vaccines. Expert Rev Vaccines 2017; 16:1067-1077. [PMID: 28918668 DOI: 10.1080/14760584.2017.1378577] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Substance use disorders (SUD) are a significant threat to both individual and public health. To date, SUD pharmacotherapy has focused primarily on agonist medications (i.e. nicotine replacement therapy for tobacco use disorder; methadone and buprenorphine for opioid use disorder), antagonist medications (i.e. naltrexone for opioid use disorder), and aversive therapy (i.e. disulfiram for alcohol use disorder). Pharmacotherapeutic approaches utilizing an immunological framework for medication development represent an important focus of study for treatment of these illnesses. Areas covered: This review discusses vaccines for treatment of substance use disorders. Using PubMed ( https://www.ncbi.nlm.nih.gov/pubmed/ ), we searched both preclinical and human clinical trials of vaccines for treatment of nicotine, cocaine, methamphetamine, and opioid use disorders. In addition, we searched for recently developed strategies for enhancement of the immunologic response through alteration of conjugate molecules and adjuvants. Expert commentary: Despite challenges in human clinical trials of SUD vaccines, a number of strategies have been introduced which may ultimately improve efficacy. These challenges, as well as their implications for vaccine development, are discussed. Additionally, the optimal conditions for research study and treatment are considered.
Collapse
Affiliation(s)
- R David Heekin
- a Menninger Department of Psychiatry and Behavioral Sciences , Baylor College of Medicine , Houston , TX , USA
| | - Daryl Shorter
- a Menninger Department of Psychiatry and Behavioral Sciences , Baylor College of Medicine , Houston , TX , USA.,b Research Service Line, Michael E. DeBakey VA Medical Center , Houston , TX , USA
| | - Thomas R Kosten
- a Menninger Department of Psychiatry and Behavioral Sciences , Baylor College of Medicine , Houston , TX , USA.,b Research Service Line, Michael E. DeBakey VA Medical Center , Houston , TX , USA
| |
Collapse
|
19
|
Abstract
This paper is the thirty-eighth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2015 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
20
|
Pravetoni M. Biologics to treat substance use disorders: Current status and new directions. Hum Vaccin Immunother 2016; 12:3005-3019. [PMID: 27441896 DOI: 10.1080/21645515.2016.1212785] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Biologics (vaccines, monoclonal antibodies (mAb), and genetically modified enzymes) offer a promising class of therapeutics to treat substance use disorders (SUD) involving abuse of opioids and stimulants such as nicotine, cocaine, and methamphetamine. In contrast to small molecule medications targeting brain receptors, biologics for SUD are larger molecules that do not cross the blood-brain barrier (BBB), but target the drug itself, preventing its distribution to the brain and blunting its effects on the central nervous system (CNS). Active and passive immunization approaches rely on antibodies (Ab) that bind drugs of abuse in serum and block their distribution to the brain, preventing the rewarding effects of drugs and addiction-related behaviors. Alternatives to vaccines and anti-drug mAb are genetically engineered human or bacterial enzymes that metabolize drugs of abuse, lowering the concentration of free active drug. Pre-clinical and clinical data support development of effective biologics for SUD.
Collapse
Affiliation(s)
- Marco Pravetoni
- a Minneapolis Medical Research Foundation, and University of Minnesota Medical School, Departments of Medicine and Pharmacology , Center for Immunology , Minneapolis , MN , USA
| |
Collapse
|
21
|
Eriksen GS, Andersen JM, Boix F, Bergh MSS, Vindenes V, Rice KC, Huestis MA, Mørland J. Comparison of (+)- and (-)-Naloxone on the Acute Psychomotor-Stimulating Effects of Heroin, 6-Acetylmorphine, and Morphine in Mice. J Pharmacol Exp Ther 2016; 358:209-15. [PMID: 27278234 DOI: 10.1124/jpet.116.233544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/07/2016] [Indexed: 11/22/2022] Open
Abstract
Toll-like receptor 4 (TLR4) signaling is implied in opioid reinforcement, reward, and withdrawal. Here, we explored whether TLR4 signaling is involved in the acute psychomotor-stimulating effects of heroin, 6-acetylmorphine (6-AM), and morphine as well as whether there are differences between the three opioids regarding TLR4 signaling. To address this, we examined how pretreatment with (+)-naloxone, a TLR4 active but opioid receptor (OR) inactive antagonist, affected the acute increase in locomotor activity induced by heroin, 6-AM, or morphine in mice. We also assessed the effect of pretreatment with (-)-naloxone, a TLR4 and OR active antagonist, as well as the pharmacokinetic profiles of (+) and (-)-naloxone in the blood and brain. We found that (-)-naloxone reduced acute opioid-induced locomotor activity in a dose-dependent manner. By contrast, (+)-naloxone, administered in doses assumed to antagonize TLR4 but not ORs, did not affect acute locomotor activity induced by heroin, 6-AM, or morphine. Both naloxone isomers exhibited similar concentration versus time profiles in the blood and brain, but the brain concentrations of (-)-naloxone reached higher levels than those of (+)-naloxone. However, the discrepancies in their pharmacokinetic properties did not explain the marked difference between the two isomers' ability to affect opioid-induced locomotor activity. Our results underpin the importance of OR activation and do not indicate an apparent role of TLR4 signaling in acute opioid-induced psychomotor stimulation in mice. Furthermore, there were no marked differences between heroin, 6-AM, and morphine regarding involvement of OR or TLR4 signaling.
Collapse
Affiliation(s)
- Guro Søe Eriksen
- Department of Drug Abuse Research, Division for Forensic Sciences, Norwegian Institute of Public Health, Oslo, Norway (G.S.E., J.M.A., F.B., M.S.-S.B., V.V., J.M.); Institute of Clinical Medicine, University of Oslo, Oslo, Norway (V.V., J.M.); University of Maryland School of Medicine, Baltimore, Maryland (M.A.H.); and Section on Drug Design and Synthesis, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland (K.C.R)
| | - Jannike Mørch Andersen
- Department of Drug Abuse Research, Division for Forensic Sciences, Norwegian Institute of Public Health, Oslo, Norway (G.S.E., J.M.A., F.B., M.S.-S.B., V.V., J.M.); Institute of Clinical Medicine, University of Oslo, Oslo, Norway (V.V., J.M.); University of Maryland School of Medicine, Baltimore, Maryland (M.A.H.); and Section on Drug Design and Synthesis, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland (K.C.R)
| | - Fernando Boix
- Department of Drug Abuse Research, Division for Forensic Sciences, Norwegian Institute of Public Health, Oslo, Norway (G.S.E., J.M.A., F.B., M.S.-S.B., V.V., J.M.); Institute of Clinical Medicine, University of Oslo, Oslo, Norway (V.V., J.M.); University of Maryland School of Medicine, Baltimore, Maryland (M.A.H.); and Section on Drug Design and Synthesis, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland (K.C.R)
| | - Marianne Skov-Skov Bergh
- Department of Drug Abuse Research, Division for Forensic Sciences, Norwegian Institute of Public Health, Oslo, Norway (G.S.E., J.M.A., F.B., M.S.-S.B., V.V., J.M.); Institute of Clinical Medicine, University of Oslo, Oslo, Norway (V.V., J.M.); University of Maryland School of Medicine, Baltimore, Maryland (M.A.H.); and Section on Drug Design and Synthesis, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland (K.C.R)
| | - Vigdis Vindenes
- Department of Drug Abuse Research, Division for Forensic Sciences, Norwegian Institute of Public Health, Oslo, Norway (G.S.E., J.M.A., F.B., M.S.-S.B., V.V., J.M.); Institute of Clinical Medicine, University of Oslo, Oslo, Norway (V.V., J.M.); University of Maryland School of Medicine, Baltimore, Maryland (M.A.H.); and Section on Drug Design and Synthesis, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland (K.C.R)
| | - Kenner C Rice
- Department of Drug Abuse Research, Division for Forensic Sciences, Norwegian Institute of Public Health, Oslo, Norway (G.S.E., J.M.A., F.B., M.S.-S.B., V.V., J.M.); Institute of Clinical Medicine, University of Oslo, Oslo, Norway (V.V., J.M.); University of Maryland School of Medicine, Baltimore, Maryland (M.A.H.); and Section on Drug Design and Synthesis, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland (K.C.R)
| | - Marilyn A Huestis
- Department of Drug Abuse Research, Division for Forensic Sciences, Norwegian Institute of Public Health, Oslo, Norway (G.S.E., J.M.A., F.B., M.S.-S.B., V.V., J.M.); Institute of Clinical Medicine, University of Oslo, Oslo, Norway (V.V., J.M.); University of Maryland School of Medicine, Baltimore, Maryland (M.A.H.); and Section on Drug Design and Synthesis, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland (K.C.R)
| | - Jørg Mørland
- Department of Drug Abuse Research, Division for Forensic Sciences, Norwegian Institute of Public Health, Oslo, Norway (G.S.E., J.M.A., F.B., M.S.-S.B., V.V., J.M.); Institute of Clinical Medicine, University of Oslo, Oslo, Norway (V.V., J.M.); University of Maryland School of Medicine, Baltimore, Maryland (M.A.H.); and Section on Drug Design and Synthesis, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland (K.C.R)
| |
Collapse
|
22
|
Kvello AMS, Andersen JM, Øiestad EL, Mørland J, Bogen IL. Pharmacological Effects of a Monoclonal Antibody against 6-Monoacetylmorphine upon Heroin-Induced Locomotor Activity and Pharmacokinetics in Mice. J Pharmacol Exp Ther 2016; 358:181-9. [PMID: 27217591 DOI: 10.1124/jpet.116.233510] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/19/2016] [Indexed: 12/21/2022] Open
Abstract
Immunotherapy can provide a supplemental treatment strategy against heroin use on the principle of sequestering the active drug in the bloodstream, thereby reducing its distribution to the brain. Previous studies have shown that heroin's first metabolite, 6-monoacetylmorphine (6-MAM), is the main mediator of acute heroin effects. The objective of the present study was to characterize the pharmacological potential of a monoclonal antibody against 6-MAM (anti-6-MAM mAb) to counteract the heroin response. The individual contributions from heroin and 6-MAM to heroin effects were also examined by pretreating mice with anti-6-MAM mAb (10-100 mg/kg) prior to either heroin or 6-MAM injection (1.25-2.5 μmol/kg). The opioid-induced behavioral response was assessed in a locomotor activity test, followed by opioid and antibody quantification in blood and brain tissue. Pretreatment with mAb caused a profound reduction of heroin- and 6-MAM-induced behavior, accompanied by correspondingly decreased levels of 6-MAM in brain tissue. mAb pretreatment was more efficient against 6-MAM injection than against heroin, leading to an almost complete blockade of 6-MAM-induced effects. mAb pretreatment was unable to block the immediate (5-minute) transport of active metabolites across the blood-brain barrier after heroin injection, indicating that heroin itself appears to enhance the immediate delivery of 6-MAM to the brain. The current study provides additional evidence that 6-MAM sequestration is crucial for counteracting the acute heroin response, and demonstrates the pharmacological potential of immunotherapy against heroin use.
Collapse
Affiliation(s)
- Anne Marte Sjursen Kvello
- Department of Drug Abuse Research, Domain for Forensic Sciences, Norwegian Institute of Public Health (A.M.S.K., J.M.A., E.L.Ø., J.M. and I.L.B.) and School of Pharmacy, University of Oslo (E.L.Ø.) Oslo, Norway
| | - Jannike Mørch Andersen
- Department of Drug Abuse Research, Domain for Forensic Sciences, Norwegian Institute of Public Health (A.M.S.K., J.M.A., E.L.Ø., J.M. and I.L.B.) and School of Pharmacy, University of Oslo (E.L.Ø.) Oslo, Norway
| | - Elisabeth Leere Øiestad
- Department of Drug Abuse Research, Domain for Forensic Sciences, Norwegian Institute of Public Health (A.M.S.K., J.M.A., E.L.Ø., J.M. and I.L.B.) and School of Pharmacy, University of Oslo (E.L.Ø.) Oslo, Norway
| | - Jørg Mørland
- Department of Drug Abuse Research, Domain for Forensic Sciences, Norwegian Institute of Public Health (A.M.S.K., J.M.A., E.L.Ø., J.M. and I.L.B.) and School of Pharmacy, University of Oslo (E.L.Ø.) Oslo, Norway
| | - Inger Lise Bogen
- Department of Drug Abuse Research, Domain for Forensic Sciences, Norwegian Institute of Public Health (A.M.S.K., J.M.A., E.L.Ø., J.M. and I.L.B.) and School of Pharmacy, University of Oslo (E.L.Ø.) Oslo, Norway
| |
Collapse
|
23
|
A simple nonradioactive method for the determination of the binding affinities of antibodies induced by hapten bioconjugates for drugs of abuse. Anal Bioanal Chem 2015; 408:1191-204. [PMID: 26677020 PMCID: PMC4718952 DOI: 10.1007/s00216-015-9223-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/15/2015] [Accepted: 11/25/2015] [Indexed: 01/17/2023]
Abstract
The accurate analytical measurement of binding affinities of polyclonal antibody in sera to heroin, 6-acetylmorphine (6-AM), and morphine has been a challenging task. A simple nonradioactive method that uses deuterium-labeled drug tracers and equilibrium dialysis (ED) combined with ultra performance liquid chromatography/tandem mass spectrometry (UPLC/MS/MS) to measure the apparent dissociation constant (K d) of antibodies to 6-AM and morphine is described. The method can readily detect antibodies with K d in the low nanomolar range. Since heroin is rapidly degraded in sera, esterase inhibitors were included in the assay, greatly reducing heroin hydrolysis. MS/MS detection directly measured the heroin in the assay after overnight ED, thereby allowing the quantitation of % bound heroin in lieu of K d as an alternative measurement to assess heroin binding to polyclonal antibody sera. This is the first report that utilizes a solution-based assay to quantify heroin-antibody binding without being confounded by the presence of 6-AM and morphine and to measure K d of polyclonal antibody to 6-AM. Hapten surrogates 6-AcMorHap, 6-PrOxyHap, MorHap, DiAmHap, and DiPrOxyHap coupled to tetanus toxoid (TT) were used to generate high affinity antibodies to heroin, 6-AM, and morphine. In comparison to competition ED-UPLC/MS/MS which gave K d values in the nanomolar range, the commonly used competition enzyme-linked immunosorbent assay (ELISA) measured the 50% inhibition concentration (IC50) values in the micromolar range. Despite the differences in K d and IC50 values, similar trends in affinities of hapten antibodies to heroin, 6-AM, and morphine were observed by both methods. Competition ED-UPLC/MS/MS revealed that among the five TT-hapten bioconjugates, TT-6-AcMorHap and TT-6-PrOxyHap induced antibodies that bound heroin, 6-AM, and morphine. In contrast, TT-MorHap induced antibodies that poorly bound heroin, while TT-DiAmHap and TT-DiPrOxyHap induced antibodies either did not bind or poorly bound to heroin, 6-AM, and morphine. This simple and nonradioactive method can be extended to other platforms, such as oxycodone, cocaine, nicotine, and methamphetamine for the selection of the lead hapten design during substance abuse vaccine development.
Collapse
|
24
|
Jalah R, Torres OB, Mayorov AV, Li F, Antoline JFG, Jacobson AE, Rice KC, Deschamps JR, Beck Z, Alving CR, Matyas GR. Efficacy, but not antibody titer or affinity, of a heroin hapten conjugate vaccine correlates with increasing hapten densities on tetanus toxoid, but not on CRM197 carriers. Bioconjug Chem 2015; 26:1041-53. [PMID: 25970207 DOI: 10.1021/acs.bioconjchem.5b00085] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Vaccines against drugs of abuse have induced antibodies in animals that blocked the biological effects of the drug by sequestering the drug in the blood and preventing it from crossing the blood-brain barrier. Drugs of abuse are too small to induce antibodies and, therefore, require conjugation of drug hapten analogs to a carrier protein. The efficacy of these conjugate vaccines depends on several factors including hapten design, coupling strategy, hapten density, carrier protein selection, and vaccine adjuvant. Previously, we have shown that 1 (MorHap), a heroin/morphine hapten, conjugated to tetanus toxoid (TT) and mixed with liposomes containing monophosphoryl lipid A [L(MPLA)] as adjuvant, partially blocked the antinociceptive effects of heroin in mice. Herein, we extended those findings, demonstrating greatly improved vaccine induced antinociceptive effects up to 3% mean maximal potential effect (%MPE). This was obtained by evaluating the effects of vaccine efficacy of hapten 1 vaccine conjugates with varying hapten densities using two different commonly used carrier proteins, TT and cross-reactive material 197 (CRM197). Immunization of mice with these conjugates mixed with L(MPLA) induced very high anti-1 IgG peak levels of 400-1500 μg/mL that bound to both heroin and its metabolites, 6-acetylmorphine and morphine. Except for the lowest hapten density for each carrier, the antibody titers and affinity were independent of hapten density. The TT carrier based vaccines induced long-lived inhibition of heroin-induced antinociception that correlated with increasing hapten density. The best formulation contained TT with the highest hapten density of ≥30 haptens/TT molecule and induced %MPE of approximately 3% after heroin challenge. In contrast, the best formulation using CRM197 was with intermediate 1 densities (10-15 haptens/CRM197 molecule), but the %MPE was approximately 13%. In addition, the chemical synthesis of 1, the optimization of the conjugation method, and the methods for the accurate quantification of hapten density are described.
Collapse
Affiliation(s)
- Rashmi Jalah
- †Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States.,‡U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, Maryland 20817, United States
| | - Oscar B Torres
- †Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States.,‡U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, Maryland 20817, United States
| | - Alexander V Mayorov
- †Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States.,‡U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, Maryland 20817, United States
| | - Fuying Li
- §Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, 9800 Medical Drive, Bethesda, Maryland 20892, United States.,¶National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 9800 Medical Drive, Bethesda, Maryland 20892, United States
| | - Joshua F G Antoline
- §Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, 9800 Medical Drive, Bethesda, Maryland 20892, United States.,¶National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 9800 Medical Drive, Bethesda, Maryland 20892, United States
| | - Arthur E Jacobson
- §Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, 9800 Medical Drive, Bethesda, Maryland 20892, United States.,¶National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 9800 Medical Drive, Bethesda, Maryland 20892, United States
| | - Kenner C Rice
- §Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, 9800 Medical Drive, Bethesda, Maryland 20892, United States.,¶National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 9800 Medical Drive, Bethesda, Maryland 20892, United States
| | - Jeffrey R Deschamps
- Center for Biomolecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375, United States
| | - Zoltan Beck
- †Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States.,‡U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, Maryland 20817, United States
| | - Carl R Alving
- †Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| | - Gary R Matyas
- †Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| |
Collapse
|
25
|
Raleigh MD, Pentel PR, LeSage MG. Pharmacokinetic correlates of the effects of a heroin vaccine on heroin self-administration in rats. PLoS One 2014; 9:e115696. [PMID: 25536404 PMCID: PMC4275252 DOI: 10.1371/journal.pone.0115696] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/26/2014] [Indexed: 12/02/2022] Open
Abstract
The purpose of this study was to evaluate the effects of a morphine-conjugate vaccine (M-KLH) on the acquisition, maintenance, and reinstatement of heroin self-administration (HSA) in rats, and on heroin and metabolite distribution during heroin administration that approximated the self-administered dosing rate. Vaccination with M-KLH blocked heroin-primed reinstatement of heroin responding. Vaccination also decreased HSA at low heroin unit doses but produced a compensatory increase in heroin self-administration at high unit doses. Vaccination shifted the heroin dose-response curve to the right, indicating reduced heroin potency, and behavioral economic demand curve analysis further confirmed this effect. In a separate experiment heroin was administered at rates simulating heroin exposure during HSA. Heroin and its active metabolites, 6-acetylmorphine (6-AM) and morphine, were retained in plasma and metabolite concentrations were reduced in brain in vaccinated rats compared to controls. Reductions in 6-AM concentrations in brain after vaccination were consistent with the changes in HSA rates accompanying vaccination. These data provide evidence that 6-AM is the principal mediator of heroin reinforcement, and the principal target of the M-KLH vaccine, in this model. While heroin vaccines may have potential as therapies for heroin addiction, high antibody to drug ratios appear to be important for obtaining maximal efficacy.
Collapse
Affiliation(s)
- Michael D. Raleigh
- Minneapolis Medical Research Foundation, Minneapolis, Minnesota, United States of America
- Hennepin Healthcare System, Minneapolis, Minnesota, United States of America
- * E-mail:
| | - Paul R. Pentel
- Minneapolis Medical Research Foundation, Minneapolis, Minnesota, United States of America
- Hennepin Healthcare System, Minneapolis, Minnesota, United States of America
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Mark G. LeSage
- Minneapolis Medical Research Foundation, Minneapolis, Minnesota, United States of America
- Hennepin Healthcare System, Minneapolis, Minnesota, United States of America
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|