1
|
El-Ghiaty MA, Alqahtani MA, El-Mahrouk SR, Isse FA, Alammari AH, El-Kadi AOS. Alteration of Hepatic Cytochrome P450 Expression and Arachidonic Acid Metabolism by Arsenic Trioxide (ATO) in C57BL/6 Mice. Biol Trace Elem Res 2025; 203:1000-1015. [PMID: 38758479 DOI: 10.1007/s12011-024-04225-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/05/2024] [Indexed: 05/18/2024]
Abstract
The success of arsenic trioxide (ATO) in acute promyelocytic leukemia has driven a plethora studies to investigate its efficacy in other malignancies. However, the inherent toxicity of ATO limits the expansion of its clinical applications. Such toxicity may be linked to ATO-induced metabolic derangements of endogenous substrates. Therefore, the primary objective of this study was to investigate the effect of ATO on the hepatic formation of arachidonic acid (AA) metabolites, hydroxyeicosatetraenoic acids (HETEs), as well as their most notable producing machinery, cytochrome P450 (CYP) enzymes. For this purpose, C57BL/6 mice were intraperitoneally injected with 8 mg/kg ATO for 6 and 24 h. Total RNA was extracted from harvested liver tissues for qPCR analysis of target genes. Hepatic microsomal proteins underwent incubation with AA, followed by identification/quantification of the produced HETEs. ATO downregulated Cyp2e1, while induced Cyp2j9 and most of Cyp4a and Cyp4f, and this has resulted in a significant increase in 17(S)-HETE and 18(R)-HETE, while significantly decreased 18(S)-HETE. Additionally, ATO induced Cyp4a10, Cyp4a14, Cyp4f13, Cyp4f16, and Cyp4f18, resulting in a significant elevation in 20-HETE formation. In conclusion, ATO altered hepatic AA metabolites formation through modulating the underlying network of CYP enzymes. Modifying the homeostatic production of bioactive AA metabolites, such as HETEs, may entail toxic events that can, at least partly, explain ATO-induced hepatotoxicity. Such modification can also compromise the overall body tolerability to ATO treatment in cancer patients.
Collapse
Affiliation(s)
- Mahmoud A El-Ghiaty
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB, Canada
| | - Mohammed A Alqahtani
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB, Canada
| | - Sara R El-Mahrouk
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB, Canada
| | - Fadumo A Isse
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB, Canada
| | - Ahmad H Alammari
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
2
|
Hardwick JP, Song BJ, Rote P, Leahy C, Lee YK, Wolf AR, Diegisser D, Garcia V. The CYP4/20-HETE/GPR75 axis in the progression metabolic dysfunction-associated steatosis liver disease (MASLD) to chronic liver disease. Front Physiol 2025; 15:1497297. [PMID: 39959811 PMCID: PMC11826315 DOI: 10.3389/fphys.2024.1497297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/24/2024] [Indexed: 02/18/2025] Open
Abstract
Introduction Metabolic-dysfunction-associated steatosis liver disease (MASLD) is a progressive liver disease from simple steatosis, steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Chronic liver diseases (CLDs) can lead to portal hypertension, which is a major cause of complications of cirrhosis. CLDs cause structural alterations across the liver through increased contents of extracellular matrix (ECM), driving dysfunction of liver sinusoidal endothelial cells (LSECs) alongside hepatic stellate cells (HSCs) and activated resident or infiltrating immune cells. Bioactive arachidonic metabolites have diverse roles in the progression of MASLD. Both secreted levels of 20-hydroxyeicosatetraenoic acid (20-HETE) and epoxyeicosatrienoic acid (EET) are elevated in patients with liver cirrhosis. Methods CLD samples were evaluated for changes in free fatty acids (FFA), cholesterol, bilirubin, bile acid, reactive oxygen species (ROD), lipid peroxidation, myeloperoxidase activity and hydroxyproline levels to evaluate the degrees of liver damage and fibrosis. To address the role of the CYP4/20-HETE/GPR75 axis, we measured the amount and the synthesis of 20-HETE in patients with CLD, specifically during the progression of MASLD. Additionally, we evaluated gene expression and protein levels of GPR75, a high-affinity receptor for 20-HETE across CLD patient samples. Results We observed an increase in 20-HETE levels and synthesis during the progression of MASLD. Increased synthesis of 20-HETE correlated with the expression of CYP4A11 genes but not CYP4F2. These results were confirmed by increased P4504A11 protein levels and decreased P4504F2 protein levels during the development and progression of MASLD. The gene expression and protein levels of GPR75, the major receptor for 20-HETE, increased in the progression of MASLD. Interestingly, the CYP4A11 and GPR75 mRNA levels increased in steatohepatitis but dramatically dropped in cirrhosis and then increased in patients with HCC. Also, protein levels of P4504A11 and GPR75 mirrored their mRNA levels. Discussion These results indicate that the CYP4A11 and subsequent GPR75 genes are coordinately regulated in the progression of MASLD and may have multiple roles, including 20-HETE activation of peroxisome proliferator-activated receptor α (PPARα) in steatosis and GPR75 in CLD through either increased cell proliferation or vasoconstriction in portal hypertension during cirrhosis. The abrupt reduction in CYP4A11 and GPR75 in patients with cirrhosis may also be due to increased 20-HETE, serving as a feedback mechanism via GPR75, leading to reduced CYP4A11 and GPR75 gene expression. This work illustrates key correlations associated with the CYP4/20-HETE/GPR75 axis and the progression of liver disease in humans.
Collapse
Affiliation(s)
- James P. Hardwick
- Department of Integrative Medical Sciences Liver Focus Group, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Paul Rote
- Department of Integrative Medical Sciences Liver Focus Group, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Charles Leahy
- Department of Integrative Medical Sciences Liver Focus Group, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Yoon Kwang Lee
- Department of Integrative Medical Sciences Liver Focus Group, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Alexandra Rudi Wolf
- Department of Pharmacology, New York Medical College, Valhalla, NY, United States
| | - Danielle Diegisser
- Department of Pharmacology, New York Medical College, Valhalla, NY, United States
| | - Victor Garcia
- Department of Pharmacology, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
3
|
Han J, Li J, Liu L, Li K, Zhang C, Han Y. 20-HETE mediates Ang II-induced cardiac hypertrophy via ROS and Ca 2+ signaling in H9c2 cells. Sci Rep 2025; 15:2342. [PMID: 39825084 PMCID: PMC11742049 DOI: 10.1038/s41598-025-85992-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 01/07/2025] [Indexed: 01/20/2025] Open
Abstract
In the vascular system, angiotensin II (Ang II) mediated vasoconstriction by inducing the production of 20-hydroxyeicosatetraenoic acid (20-HETE). However, the role of 20-HETE in Ang II-induced cardiac dysfunction had yet to be fully elucidated. This study investigated the effects of Ang II on CYP4A expression and 20-HETE production in H9c2 cells using RT-qPCR, Western blot, and ELISA. The role of 20-HETE in Ang II-induced cardiac hypertrophy was examined using DHE, MitoSOX, and JC-1 staining to evaluate reactive oxygen species (ROS) generation and mitochondrial membrane potential changes. The ERK/Akt and CaN/NFAT3 signaling pathways were analyzed through Western blot. Ang II was found to promote CYP4A expression and 20-HETE production in H9c2 cells via an AT1 receptor-dependent mechanism. Additionally, the upregulation of AT1 receptor expression by 20-HETE further confirms its facilitatory effect on the Ang II signaling pathway. Inhibition of 20-HETE synthesis or blockade of its receptor, G-protein-coupled receptor 75 (GPR75), significantly reversed Ang II-induced cardiac hypertrophy. This reversal was closely associated with 20-HETE-induced ROS production, oxidative stress, and activation of the Ca2+/CaN/NFAT3 signaling pathway. This study demonstrated that 20-HETE mediated Ang II-induced cardiac hypertrophy and, for the first time, highlighted the significant role of the GPR75 receptor in this process. These findings suggested that targeting 20-HETE reduction or blocking its receptor action could offer a novel therapeutic approach for cardiovascular diseases associated with Ang II.
Collapse
Affiliation(s)
- Jingyi Han
- Department of Physiology, Zunyi Medical University, Campus No.1 Road, Xinpu New District, Zunyi, 563006, Guizhou, China
| | - Jiaojiao Li
- Department of Physiology, Zunyi Medical University, Campus No.1 Road, Xinpu New District, Zunyi, 563006, Guizhou, China
| | - Lianlian Liu
- Department of Physiology, Zunyi Medical University, Campus No.1 Road, Xinpu New District, Zunyi, 563006, Guizhou, China
| | - Kaiyuan Li
- Department of Physiology, Zunyi Medical University, Campus No.1 Road, Xinpu New District, Zunyi, 563006, Guizhou, China
| | - Chun Zhang
- Department of Physiology, Zunyi Medical University, Campus No.1 Road, Xinpu New District, Zunyi, 563006, Guizhou, China
| | - Yong Han
- Department of Physiology, Zunyi Medical University, Campus No.1 Road, Xinpu New District, Zunyi, 563006, Guizhou, China.
| |
Collapse
|
4
|
Fragner ML, Parikh MA, Jackson KA, Schwartzman ML, Frishman WH, Peterson SJ. GPR75: A Newly Identified Receptor for Targeted Intervention in the Treatment of Obesity and Metabolic Syndrome. Cardiol Rev 2024:00045415-990000000-00259. [PMID: 38695569 PMCID: PMC11808825 DOI: 10.1097/crd.0000000000000711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Metabolic syndrome increases the risk of stroke, cardiovascular disease, and diabetes. The morbidity and mortality associated with this constellation of risk factors are equally alarming when considering the economic and global significance that this epidemic has on an institutional and patient level. Despite several current treatments available, there needs to be a continuous effort to explore more specific and effective druggable entities for preventative and therapeutic interventions. Within this context, the G-protein coupled receptor, GPR75, is an attractive pharmacological target. GPR75 and its association with its ligand, 20-hydroxyeicosatetraenoic acid, have been shown to promote hypertension, inflammation, obesity, and insulin resistance. This review will help shed light on this novel signaling pathway and offer a perspective on a promising new direction of targeting different aspects of the metabolic syndrome involving GPR75. Gene targeting of GPR75 is more effective than current pharmacologic therapies without the known side effects.
Collapse
Affiliation(s)
- Michael L. Fragner
- Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY
| | - Manish A. Parikh
- Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY
- Weill Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Kaedrea A. Jackson
- Department of Emergency Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY
| | | | | | - Stephen J. Peterson
- Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY
- Weill Department of Medicine, Weill Cornell Medicine, New York, NY
| |
Collapse
|
5
|
Lv L, Zhou LX, Jiang FF. Study on the mechanism of 20-hydroxyeicosatetraenoic acid in retinal ischemia-reperfusion injury. Indian J Ophthalmol 2024; 72:S441-S447. [PMID: 38389249 PMCID: PMC467026 DOI: 10.4103/ijo.ijo_1466_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 02/24/2024] Open
Abstract
PURPOSE To explore the effect of 20-hydroxyeicosatetraenoic acid (20-HETE) on retinal ischemia-reperfusion injury (RIRI) and the protective effect of N-hydroxy-N'-(4-n-butyl-2-methylphenyl)formamidine (HET0016) on RIRI. METHODS Male Sprague-Dawley rats were randomly divided into the normal control group, experimental model group (RIRI group), experimental solvent group (RIRI + solvent group), and experimental treatment group (RIRI + HET0016 group). RESULTS The levels of 20-HETE, tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) in the retina of rats at 24 h after reperfusion were measured by enzyme-linked immunosorbent assay. Hematoxylin-eosin staining was used to observe the retinal morphological and thickness changes at 24 h, 48 h, and 7 days after reperfusion. The number and localized expression of matrix metalloproteinase-9-positive cells in the retina of the rats at 24 h after reperfusion and the activation and localized expression of retinal microglia at 48 h after reperfusion were measured using an immunohistochemical method. The nuclear metastasis of nuclear factor kappa-B (NF-κB, p65) cells at 24 h after reperfusion was observed using an immunofluorescence method. CONCLUSION Overall, 20-HETE might activate microglia to aggravate RIRI by the NF-κB pathway, but HET0016 has significant protective effects for the retina.
Collapse
Affiliation(s)
- Liang Lv
- Department of Ophthalmology, The Fifth Clinical College of Zhengzhou University, Zhengzhou, China
| | - Li-Xiao Zhou
- Department of Ophthalmology, The Fifth Clinical College of Zhengzhou University, Zhengzhou, China
| | - Fei-Fei Jiang
- Department of Ophthalmology, The Fifth Clinical College of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Huang K, Ma T, Li Q, Zhong Z, Zhou Y, Zhang W, Qin T, Tang S, Zhong J, Lu S. Novel polymorphisms in CYP4A22 associated with susceptibility to coronary heart disease. BMC Med Genomics 2024; 17:66. [PMID: 38438909 PMCID: PMC10913669 DOI: 10.1186/s12920-024-01833-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/12/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Coronary heart disease (CHD) has become a worldwide public health problem. Genetic factors are considered important risk factors for CHD. The aim of this study was to explore the correlation between CYP4A22 gene polymorphism and CHD susceptibility in the Chinese Han population. METHODS We used SNPStats online software to complete the association analysis among 962 volunteers. False-positive report probability analysis was used to confirm whether a positive result is noteworthy. Haploview software and SNPStats were used for haplotype analysis and linkage disequilibrium. Multi-factor dimensionality reduction was applied to evaluate the interaction between candidate SNPs. RESULTS In overall and some stratified analyses (male, age ≤ 60 years or CHD patients complicated with hypertension), CYP4A22-rs12564525 (overall, OR = 0.83, p-value is 0.042) and CYP4A22-rs2056900 (overall, OR = 1.22, p-value is 0.032) were associated with the risk of CHD. CYP4A22-4926581 was associated with increased CHD risk only in some stratified analyses. FPRP indicated that all positive results in our study are noteworthy findings. In addition, MDR showed that the single-locus model composed of rs2056900 is the best model for predicting susceptibility to CHD. CONCLUSION There are significant associations between susceptibility to CHD and CYP4A22 rs12564525, and rs2056900.
Collapse
Affiliation(s)
- Kang Huang
- Department of cardiovascular medicine, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, No. 43, Renmin Avenue, Haidian Island, 570100, Haikou, Hainan, China
| | - Tianyi Ma
- Department of cardiovascular medicine, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, No. 43, Renmin Avenue, Haidian Island, 570100, Haikou, Hainan, China
| | - Qiang Li
- Department of cardiovascular medicine, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, No. 43, Renmin Avenue, Haidian Island, 570100, Haikou, Hainan, China
| | - Zanrui Zhong
- Department of cardiovascular medicine, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, No. 43, Renmin Avenue, Haidian Island, 570100, Haikou, Hainan, China
| | - Yilei Zhou
- Medical College, Jingchu University of Technology, Jingmen, Hubei, China
| | - Wei Zhang
- Department of cardiovascular medicine, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, No. 43, Renmin Avenue, Haidian Island, 570100, Haikou, Hainan, China
| | - Ting Qin
- Department of cardiovascular medicine, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, No. 43, Renmin Avenue, Haidian Island, 570100, Haikou, Hainan, China
| | - Shilin Tang
- Department of cardiovascular medicine, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, No. 43, Renmin Avenue, Haidian Island, 570100, Haikou, Hainan, China
| | - Jianghua Zhong
- Department of cardiovascular medicine, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, No. 43, Renmin Avenue, Haidian Island, 570100, Haikou, Hainan, China.
| | - Shijuan Lu
- Department of cardiovascular medicine, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, No. 43, Renmin Avenue, Haidian Island, 570100, Haikou, Hainan, China.
| |
Collapse
|
7
|
Abstract
Hypertension is a major healthcare issue that afflicts one in every three adults worldwide and contributes to cardiovascular diseases, morbidity and mortality. Bioactive lipids contribute importantly to blood pressure regulation via actions on the vasculature, kidney, and inflammation. Vascular actions of bioactive lipids include blood pressure lowering vasodilation and blood pressure elevating vasoconstriction. Increased renin release by bioactive lipids in the kidney is pro-hypertensive whereas anti-hypertensive bioactive lipid actions result in increased sodium excretion. Bioactive lipids have pro-inflammatory and anti-inflammatory actions that increase or decrease reactive oxygen species and impact vascular and kidney function in hypertension. Human studies provide evidence that fatty acid metabolism and bioactive lipids contribute to sodium and blood pressure regulation in hypertension. Genetic changes identified in humans that impact arachidonic acid metabolism have been associated with hypertension. Arachidonic acid cyclooxygenase, lipoxygenase and cytochrome P450 metabolites have pro-hypertensive and anti-hypertensive actions. Omega-3 fish oil fatty acids eicosapentaenoic acid and docosahexaenoic acid are known to be anti-hypertensive and cardiovascular protective. Lastly, emerging fatty acid research areas include blood pressure regulation by isolevuglandins, nitrated fatty acids, and short chain fatty acids. Taken together, bioactive lipids are key contributors to blood pressure regulation and hypertension and their manipulation could decrease cardiovascular disease and associated morbidity and mortality.
Collapse
Affiliation(s)
- John D Imig
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| |
Collapse
|
8
|
Dashti MR, Ghorbanzadeh F, Jafari-Gharabaghlou D, Farhoudi-Sefidan-Jadid M, Zarghami N. G Protein-Coupled Receptor 75 (GPR75) As a Novel Molecule for Targeted Therapy of Cancer and Metabolic Syndrome. Asian Pac J Cancer Prev 2023; 24:1817-1825. [PMID: 37247305 PMCID: PMC10495892 DOI: 10.31557/apjcp.2023.24.5.1817] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023] Open
Abstract
In recent years, molecular targeted therapy has attracted more attention from researchers due to its high efficiency and fewer side effects. Researchers are attempting to find more specific ways to treat diseases. It has been found that there are different targets for the treatment of diseases such as cancer, obesity, and metabolic syndrome. It is important to find a potential target in order to lessen the side effects of current treatments. G Protein-coupled receptors (GPCRs) are a large family of transmembrane proteins that are expressed in many organs, leading to the activation of internal signal transduction cascades through the binding of different ligands, including neurotransmitters, peptides, and lipids. Due to the critical role of GPCRs in cells, it could be a potential target. G protein-coupled receptor 75 (GPR75) is a novel member of the GPCR family that has an important role in many diseases, such as obesity, cancer, and metabolic syndrome. Until now, three ligands have been detected for GPR75, including 20-HETE, CCL5, and RANTES. Recent studies suggest that 20-HETE, through GPR75, triggers signaling pathways including PI3K/Akt and RAS/MAPK, leading to a more aggressive phenotype in prostate cancer cells. Additionally, the PI3K/Akt and RAS/MAPK signaling pathways activate NF-κB, which is significant in various pathways of cancer development such as proliferation, migration, and apoptosis. The findings indicate that inhibiting GPR75 in humans leads to an increase in insulin sensitivity and glucose tolerance, as well as a reduction in body fat storage. According to these discoveries, GPR75 could be a potential target for drug treatment of diseases such as obesity, metabolic syndrome, and cancer. In this review, we aimed to discuss the therapeutic impact of GPR75 in cancer, metabolic syndrome, and obesity and underscore the possible pathways.
Collapse
Affiliation(s)
- Mohammad-Reza Dashti
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Fatemeh Ghorbanzadeh
- Department of Genetics, Faculty of Advanced science and Technology, Tehran Medical science, Islamic Azad University, Tehran, Iran.
| | - Davoud Jafari-Gharabaghlou
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mahdi Farhoudi-Sefidan-Jadid
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Nosratollah Zarghami
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey.
| |
Collapse
|
9
|
Chen C, Yang Y, Guo Y, He J, Chen Z, Qiu S, Zhang Y, Ding H, Pan J, Pan Y. CYP1B1 inhibits ferroptosis and induces anti-PD-1 resistance by degrading ACSL4 in colorectal cancer. Cell Death Dis 2023; 14:271. [PMID: 37059712 PMCID: PMC10104818 DOI: 10.1038/s41419-023-05803-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Immune checkpoint blockade (ICB) is a promising treatment strategy for colorectal cancer (CRC) patients. However, most CRC patients do not response well to ICB therapy. Increasing evidence indicates that ferroptosis plays a critical role in immunotherapy. ICB efficacy may be enhanced by inducing tumor ferroptosis. Cytochrome P450 1B1 (CYP1B1) is a metabolic enzyme that participates in arachidonic acid metabolism. However, the role of CYP1B1 in ferroptosis remains unclear. In this study, we demonstrated that CYP1B1 derived 20-HETE activated the protein kinase C pathway to increase FBXO10 expression, which in turn promoted the ubiquitination and degradation of acyl-CoA synthetase long-chain family member 4 (ACSL4), ultimately inducing tumor cells resistance to ferroptosis. Furthermore, inhibiting CYP1B1 sensitized tumor cells to anti-PD-1 antibody in a mouce model. In addition, CYP1B1 expression was negatively correlated with ACSL4 expression, and high expression indicates poor prognosis in CRC. Taken together, our work identified CYP1B1 as a potential biomarker for enhancing anti-PD-1 therapy in CRC.
Collapse
Affiliation(s)
- Congcong Chen
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yabing Yang
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yanguan Guo
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jiashuai He
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zuyang Chen
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shenghui Qiu
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yiran Zhang
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hui Ding
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Jinghua Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Yunlong Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China.
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes. Institute of Life and Health Engineering, Jinan University, Guangzhou, China.
| |
Collapse
|
10
|
Zhou M, Li J, Xu J, Zheng L, Xu S. Exploring human CYP4 enzymes: physiological roles, function in diseases and focus on inhibitors. Drug Discov Today 2023; 28:103560. [PMID: 36958639 DOI: 10.1016/j.drudis.2023.103560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/06/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
The cytochrome P450 (CYP)4 family of enzymes are monooxygenases responsible for the ω-oxidation of endogenous fatty acids and eicosanoids and play a crucial part in regulating numerous eicosanoid signaling pathways. Recently, CYP4 gained attention as a potential therapeutic target for several human diseases, including cancer, cardiovascular diseases and inflammation. Small-molecule inhibitors of CYP4 could provide promising treatments for these diseases. The aim of the present review is to highlight the advances in the field of CYP4, discussing the physiology and pathology of the CYP4 family and compiling CYP4 inhibitors into groups based on their chemical classes to provide clues for the future discovery of drug candidates targeting CYP4. Teaser: This review provides an updated view of the physiology and pathology of CYP4 enzymes. CYP4 inhibitors are compiled based on their skeletons to provide clues for the future discovery of drug candidates targeting CYP4.
Collapse
Affiliation(s)
- Manzhen Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Junda Li
- Department of Medicinal Chemistry, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Jinyi Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Lufeng Zheng
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Shengtao Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; Department of Hepatobiliary Surgery, The First People's Hospital of Kunshan, Suzhou, 215300, China.
| |
Collapse
|
11
|
Association of CYP2C19 Polymorphic Markers with Cardiovascular Disease Risk Factors in Gas Industry Workers Undergoing Periodic Medical Examinations. High Blood Press Cardiovasc Prev 2023; 30:151-165. [PMID: 36840850 DOI: 10.1007/s40292-023-00567-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/08/2023] [Indexed: 02/26/2023] Open
Abstract
INTRODUCTION Human cytochrome P450 (CYP) enzymes have a wide range of endogenous substrates and play a crucial role in cardiovascular physiology as well as in metabolic processes, so the issue of cytochrome P450 genes investigation has received considerable critical attention in the prevention of cardiovascular diseases (CVDs). AIM Comprehensive assessment of relationship between CYP2C19*2, CYP2C19*3 polymorphisms and CVD risk factors in gas industry workers undergoing periodic medical examination (PME). MATERIALS AND METHODS The study included 193 gas industry workers aged 30-55 years without acute diseases as well as exacerbations of chronic diseases, diabetes mellitus, and CVD history. CYP2C19 (rs4244285 and rs4986893) genotyping and analysis of the relationship between CYP2C19*2 and CYP2C19*3 and CVD risk factors were performed. RESULTS The CYP2C19*2 (A) and CYP2C19*3 (A) loss-of-function alleles frequencies were 20% and 2%, respectively. The frequency of high-normal blood pressure (BP) (130-139 and/or 85-89 mm Hg) detection was higher in the CYP2C19*2 (A) subgroup compared with wild-type GG allele carriers (26.7% vs. 5.2%, p = 0.03) in individuals without arterial hypertension (AH) and BP ≥ 140 and/or 90 mm Hg on PME. The median systolic BP levels were 5 mm Hg higher in CYP2C19*2 (A) group than in CYP2C19*2 (GG) group (125 vs. 120 mm Hg, p = 0.01). There was a similar trend for diastolic BP (85 vs. 80 mmHg, p = 0.08). CYP2C19*2 (A) was associated with higher mean levels of both systolic and diastolic BP (p = 0.015 and p = 0.044, respectively) in patients with AH. CYP2C19*2 was not associated with the other CVD risk factors analyzed. CONCLUSION The association of CYP2C19*2 with BP level suggests a possible role of this factor in AH development, which requires further research.
Collapse
|
12
|
Pascale JV, Wolf A, Kadish Y, Diegisser D, Kulaprathazhe MM, Yemane D, Ali S, Kim N, Baruch DE, Yahaya MAF, Dirice E, Adebesin AM, Falck JR, Schwartzman ML, Garcia V. 20-Hydroxyeicosatetraenoic acid (20-HETE): Bioactions, receptors, vascular function, cardiometabolic disease and beyond. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 97:229-255. [PMID: 37236760 PMCID: PMC10683332 DOI: 10.1016/bs.apha.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Vascular function is dynamically regulated and dependent on a bevy of cell types and factors that work in concert across the vasculature. The vasoactive eicosanoid, 20-Hydroxyeicosatetraenoic acid (20-HETE) is a key player in this system influencing the sensitivity of the vasculature to constrictor stimuli, regulating endothelial function, and influencing the renin angiotensin system (RAS), as well as being a driver of vascular remodeling independent of blood pressure elevations. Several of these bioactions are accomplished through the ligand-receptor pairing between 20-HETE and its high-affinity receptor, GPR75. This 20-HETE axis is at the root of various vascular pathologies and processes including ischemia induced angiogenesis, arteriogenesis, septic shock, hypertension, atherosclerosis, myocardial infarction and cardiometabolic diseases including diabetes and insulin resistance. Pharmacologically, several preclinical tools have been developed to disrupt the 20-HETE axis including 20-HETE synthesis inhibitors (DDMS and HET0016), synthetic 20-HETE agonist analogues (20-5,14-HEDE and 20-5,14-HEDGE) and 20-HETE receptor blockers (AAA and 20-SOLA). Systemic or cell-specific therapeutic targeting of the 20-HETE-GPR75 axis continues to be an invaluable approach as studies examine the molecular underpinnings activated by 20-HETE under various physiological settings. In particular, the development and characterization of 20-HETE receptor blockers look to be a promising new class of compounds that can provide a considerable benefit to patients suffering from these cardiovascular pathologies.
Collapse
Affiliation(s)
- Jonathan V Pascale
- Department of Pharmacology, New York Medical College, Valhalla, NY, United States
| | - Alexandra Wolf
- Department of Pharmacology, New York Medical College, Valhalla, NY, United States
| | - Yonaton Kadish
- School of Medicine, New York Medical College, Valhalla, NY, United States
| | - Danielle Diegisser
- Department of Pharmacology, New York Medical College, Valhalla, NY, United States
| | | | - Danait Yemane
- Department of Pharmacology, New York Medical College, Valhalla, NY, United States
| | - Samir Ali
- School of Medicine, New York Medical College, Valhalla, NY, United States
| | - Namhee Kim
- School of Medicine, New York Medical College, Valhalla, NY, United States
| | - David E Baruch
- School of Medicine, New York Medical College, Valhalla, NY, United States
| | - Muhamad Afiq Faisal Yahaya
- Department of Basic Sciences, MAHSA University, Selangor Darul Ehsan, Malaysia; Department of Human Anatomy, Universiti Putra Malaysia (UPM), Selangor Darul Ehsan, Malaysia
| | - Ercument Dirice
- Department of Pharmacology, New York Medical College, Valhalla, NY, United States
| | - Adeniyi M Adebesin
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - John R Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Michal L Schwartzman
- Department of Pharmacology, New York Medical College, Valhalla, NY, United States
| | - Victor Garcia
- Department of Pharmacology, New York Medical College, Valhalla, NY, United States.
| |
Collapse
|
13
|
Identification of bronchoalveolar and blood immune-inflammatory biomarker signature associated with poor 28-day outcome in critically ill COVID-19 patients. Sci Rep 2022; 12:9502. [PMID: 35681070 PMCID: PMC9178326 DOI: 10.1038/s41598-022-13179-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/20/2022] [Indexed: 11/09/2022] Open
Abstract
The local immune-inflammatory response elicited by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is still poorly described, as well as the extent to which its characteristics may be associated with the outcome of critical Coronavirus disease 2019 (COVID-19). In this prospective monocenter study, all consecutive COVID-19 critically ill patients admitted from February to December 2020 and explored by fiberoptic bronchoscopy with bronchoalveolar lavage (BAL) were included. Biological assays, including digital ELISA cytokine profiling and targeted eicosanoid metabolomic analysis, were performed on paired blood and BAL fluid (BALF). Clinical outcome was assessed through the World Health Organization 10-point Clinical Progression Scale (WHO-CPS) at the 28th day (D28) following the admission to intensive care unit. A D28-WHO-CPS value higher than 5 defined a poor outcome. Seventy-six patients were included, 45 (59%) had a poor day-28 outcome. As compared to their counterparts, patients with D28-WHO-CPS > 5 exhibited a neutrophil-predominant bronchoalveolar phenotype, with a higher BALF neutrophil/lymphocyte ratio, a blunted local type I interferon response, a decompartimentalized immune-inflammatory response illustrated by lower BALF/blood ratio of concentrations of IL-6 (1.68 [0.30-4.41] vs. 9.53 [2.56-19.1]; p = 0.001), IL-10, IL-5, IL-22 and IFN-γ, and a biological profile of vascular endothelial injury illustrated by a higher blood concentration of VEGF and higher blood and/or BALF concentrations of several vasoactive eicosanoids. In critically ill COVID-19 patients, we identified bronchoalveolar and blood immune-inflammatory biomarker signature associated with poor 28-day outcome.
Collapse
|
14
|
Agostinucci K, Hutcheson R, Hossain S, Pascale JV, Villegas E, Zhang F, Adebesin AM, Falck JR, Gupte S, Garcia V, Schwartzman ML. Blockade of 20-hydroxyeicosatetraenoic acid receptor lowers blood pressure and alters vascular function in mice with smooth muscle-specific overexpression of CYP4A12-20-HETE synthase. J Hypertens 2022; 40:498-511. [PMID: 35081581 PMCID: PMC8820380 DOI: 10.1097/hjh.0000000000003038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE 20-Hydroxyeicosatetraenoic acid (20-HETE) is a vasoactive eicosanoid exhibiting effects on vascular smooth muscle cell (VSMC) via G-protein coupled receptor 75 (GPR75) and include stimulation of contractility, migration, and growth. We examined whether VSMC-targeted overexpression of CYP4A12, the primary 20-HETE-producing enzyme in mice, is sufficient to promote hypertension. METHODS Mice with VSM-specific Cyp4a12 overexpression (Myh11-4a12) and their littermate controls (WT) were generated by crossbreeding Cyp4a12-floxed with Myh11-Cre mice. The 20-HETE receptor blocker, N-disodium succinate-20-hydroxyeicosa-6(Z),15(Z)-diencarboxamide (AAA), was administered in the drinking water. Experiments were carried out for 12 days. SBP was measured by tail cuff. Renal interlobar and mesenteric arteries were harvested for assessment of gene expression, 20-HETE levels, vascular contractility, vasodilation, and remodeling. RESULTS Vascular and circulatory levels of 20-HETE were several folds higher in Myh11-4a12 mice compared with WT. The Myh11-4a12 mice compared with WT were hypertensive (145 ± 2 vs. 127 ± 2 mmHg; P < 0.05) and their vasculature displayed a contractile phenotype exemplified by increased contractility, reduced vasodilatory capacity, and increased media to lumen ratio. All these features were reversed by the administration of AAA. The mechanism of increased contractility includes, at least in part, Rho-kinase activation followed by increased myosin light chain phosphorylation and activation of the contractile apparatus. CONCLUSION VSM-specific Cyp4a12 overexpression is sufficient to alter VSM cell phenotype through changes in contractile markers and enhancement in contractility that promote hypertension and vascular dysfunction in a 20-HETE-dependent manner. The 20-HETE receptor GPR75 may represent a novel target for the treatment of hypertension and associated vascular conditions.
Collapse
Affiliation(s)
- Kevin Agostinucci
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, NY 10595
| | - Rebecca Hutcheson
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, NY 10595
| | - Sakib Hossain
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, NY 10595
| | - Jonathan V. Pascale
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, NY 10595
| | - Elizabeth Villegas
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, NY 10595
| | - Frank Zhang
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, NY 10595
| | | | - John R. Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Sachin Gupte
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, NY 10595
| | - Victor Garcia
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, NY 10595
| | | |
Collapse
|
15
|
Voggel J, Mohr J, Nüsken KD, Dötsch J, Nüsken E, Alejandre Alcazar MA. Translational insights into mechanisms and preventive strategies after renal injury in neonates. Semin Fetal Neonatal Med 2022; 27:101245. [PMID: 33994314 DOI: 10.1016/j.siny.2021.101245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Adverse perinatal circumstances can cause acute kidney injury (AKI) and contribute to chronic kidney disease (CKD). Accumulating evidence indicate that a wide spectrum of perinatal conditions interferes with normal kidney development and ultimately leads to aberrant kidney structure and function later in life. The present review addresses the lack of mechanistic knowledge with regard to perinatal origins of CKD and provides a comprehensive overview of pre- and peri-natal insults, including genetic predisposition, suboptimal nutritional supply, obesity and maternal metabolic disorders as well as placental insufficiency leading to intrauterine growth restriction (IUGR), prematurity, infections, inflammatory processes, and the need for life-saving treatments (e.g. oxygen supplementation, mechanical ventilation, medications) in neonates. Finally, we discuss future preventive, therapeutic, and regenerative directions. In summary, this review highlights the perinatal vulnerability of the kidney and the early origins of increased susceptibility toward AKI and CKD during postnatal life. Promotion of kidney health and prevention of disease require the understanding of perinatal injury in order to optimize perinatal micro- and macro-environments and enable normal kidney development.
Collapse
Affiliation(s)
- Jenny Voggel
- University of Cologne, Faculty of Medicine, University Hospital Cologne, Department of Pediatric and Adolescent Medicine, Germany; University of Cologne, Faculty of Medicine, University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC), Germany
| | - Jasmine Mohr
- University of Cologne, Faculty of Medicine, University Hospital Cologne, Translational Experimental Pediatrics - Experimental Pulmonology, Department of Pediatric and Adolescent Medicine, Germany; University of Cologne, Faculty of Medicine, University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC), Germany
| | - Kai-Dietrich Nüsken
- University of Cologne, Faculty of Medicine, University Hospital Cologne, Department of Pediatric and Adolescent Medicine, Germany
| | - Jörg Dötsch
- University of Cologne, Faculty of Medicine, University Hospital Cologne, Department of Pediatric and Adolescent Medicine, Germany
| | - Eva Nüsken
- University of Cologne, Faculty of Medicine, University Hospital Cologne, Department of Pediatric and Adolescent Medicine, Germany
| | - Miguel A Alejandre Alcazar
- University of Cologne, Faculty of Medicine, University Hospital Cologne, Translational Experimental Pediatrics - Experimental Pulmonology, Department of Pediatric and Adolescent Medicine, Germany; University of Cologne, Faculty of Medicine, University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC), Germany; Excellence Cluster on Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Faculty of Medicine, University Hospital Cologne Cologne, Germany; Institute for Lung Health, University of Giessen and Marburg Lung Centre (UGMLC), Member of the German Centre for Lung Research (DZL), Gießen, Germany.
| |
Collapse
|
16
|
Froogh G, Garcia V, Laniado Schwartzman M. The CYP/20-HETE/GPR75 axis in hypertension. ADVANCES IN PHARMACOLOGY 2022; 94:1-25. [PMID: 35659370 PMCID: PMC10123763 DOI: 10.1016/bs.apha.2022.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
20-Hydroxyeicosatetraenoic acid (20-HETE) is a bioactive lipid generated from the ω-hydroxylation of arachidonic acid (AA) by enzymes of the cytochrome P450 (CYP) family, primarily the CYP4A and CYP4F subfamilies. 20-HETE is most notably identified as a modulator of vascular tone, regulator of renal function, and a contributor to the onset and development of hypertension and cardiovascular disease. 20-HETE-mediated signaling promotes hypertension by sensitizing the vasculature to constrictor stimuli, inducing endothelial dysfunction, and potentiating vascular inflammation. These bioactions are driven by the activation of the G-protein coupled receptor 75 (GPR75), a 20-HETE receptor (20HR). Given the capacity of 20-HETE signaling to drive pro-hypertensive mechanisms, the CYP/20-HETE/GPR75 axis has the potential to be a significant therapeutic target for the treatment of hypertension and cardiovascular diseases associated with increases in blood pressure. In this chapter, we review 20-HETE-mediated cellular mechanisms that promote hypertension, highlight important data in humans such as genetic variants in the CYP genes that potentiate 20-HETE production and describe recent findings in humans with 20HR/GPR75 mutations. Special emphasis is given to the 20HR and respective receptor blockers that have the potential to pave a path to translational and clinical studies for the treatment of 20-HETE-driven hypertension, and obesity/metabolic syndrome.
Collapse
|
17
|
Wright DN, Katundu KGH, Viscarra JA, Crocker DE, Newman JW, La Frano MR, Ortiz RM. Oxylipin Responses to Fasting and Insulin Infusion in a Large Mammalian Model of Fasting-Induced Insulin Resistance, the Northern Elephant Seal. Am J Physiol Regul Integr Comp Physiol 2021; 321:R537-R546. [PMID: 34346724 DOI: 10.1152/ajpregu.00016.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The prolonged, post-weaning fast of northern elephant seal (Mirounga angustirostris) pups is characterized by a reliance on lipid metabolism and reversible, fasting-induced insulin resistance providing a unique model to examine the effects of insulin on lipid metabolism. We have previously shown that acute insulin infusion induced a shift in fatty acid metabolism dependent on fasting duration. This study complements the previous study by examining the effects of fasting duration and insulin infusion on circulating levels of oxylipins, bioactive metabolites derived from the oxygenation of polyunsaturated fatty acids. Northern elephant seal pups were studied at two post-weaning periods (n = 5/period): early fasting (1-2 weeks post-weaning; 127 ± 1 kg) and late fasting (6-7 weeks post-weaning; 93 ± 4 kg). Different cohorts of pups were weighed, sedated, and infused with 65 mU/kg of insulin. Plasma was collected prior to infusion (T0), and at 10, 30, 60, and 120 min post-infusion. A profile of ~80 oxylipins were analyzed by UPLC-ESI-MS/MS. Nine oxylipins changed between early and late fasting and eight were altered in response to insulin infusion. Fasting decreased PGF2a and increased 14,15-DiHETrE, 20-HETE, and 4-HDoHE (p<0.03) in T0 samples, while insulin infusion resulted in an inverse change in area under the curve (AUC) levels in these same metabolites (p<0.05). In addition, 12-HpETE and 12-HETE decreased with fasting and insulin infusion, respectively (p<0.04). The oxylipins altered during fasting and in response to insulin infusion may contribute to the manifestation of insulin resistance and participate in the metabolic regulation of associated cellular processes.
Collapse
Affiliation(s)
- Dana N Wright
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, CA, United States
| | - Kondwani G H Katundu
- Division of Physiology, Biomedical Sciences Department, College of Medicine, University of Malawi, Blantyre, Southern Region, Malawi
| | - Jose A Viscarra
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, United States
| | - Daniel E Crocker
- Department of Biology, Sonoma State University, Rohnert Park, CA, United States
| | - John W Newman
- Obesity and Metabolism Research Unit, USDA-Agricultural Research Service Western Human Nutrition Research Center, University of California, Davis, Davis, CA, United States.,NIH West Coast Metabolomics Center, University of California, Davis, Davis, CA, United States.,Department of Nutrition, University of California, Davis, CA, United States
| | - Michael R La Frano
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, CA, United States.,Center for Health Research, California Polytechnic State University, San Luis Obispo, CA, United States.,Cal Poly Metabolomics Service Center, California Polytechnic State University, San Luis Obispo, CA, United States
| | - Rudy M Ortiz
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, United States
| |
Collapse
|
18
|
Shraim BA, Moursi MO, Benter IF, Habib AM, Akhtar S. The Role of Epidermal Growth Factor Receptor Family of Receptor Tyrosine Kinases in Mediating Diabetes-Induced Cardiovascular Complications. Front Pharmacol 2021; 12:701390. [PMID: 34408653 PMCID: PMC8365470 DOI: 10.3389/fphar.2021.701390] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus is a major debilitating disease whose global incidence is progressively increasing with currently over 463 million adult sufferers and this figure will likely reach over 700 million by the year 2045. It is the complications of diabetes such as cardiovascular, renal, neuronal and ocular dysfunction that lead to increased patient morbidity and mortality. Of these, cardiovascular complications that can result in stroke and cardiomyopathies are 2- to 5-fold more likely in diabetes but the underlying mechanisms involved in their development are not fully understood. Emerging research suggests that members of the Epidermal Growth Factor Receptor (EGFR/ErbB/HER) family of tyrosine kinases can have a dual role in that they are beneficially required for normal development and physiological functioning of the cardiovascular system (CVS) as well as in salvage pathways following acute cardiac ischemia/reperfusion injury but their chronic dysregulation may also be intricately involved in mediating diabetes-induced cardiovascular pathologies. Here we review the evidence for EGFR/ErbB/HER receptors in mediating these dual roles in the CVS and also discuss their potential interplay with the Renin-Angiotensin-Aldosterone System heptapeptide, Angiotensin-(1-7), as well the arachidonic acid metabolite, 20-HETE (20-hydroxy-5, 8, 11, 14-eicosatetraenoic acid). A greater understanding of the multi-faceted roles of EGFR/ErbB/HER family of tyrosine kinases and their interplay with other key modulators of cardiovascular function could facilitate the development of novel therapeutic strategies for treating diabetes-induced cardiovascular complications.
Collapse
Affiliation(s)
- Bara A Shraim
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Moaz O Moursi
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Ibrahim F Benter
- Faculty of Medicine, Eastern Mediterranean University, Famagusta, North Cyprus
| | - Abdella M Habib
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Saghir Akhtar
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
19
|
Pascale JV, Park EJ, Adebesin AM, Falck JR, Schwartzman ML, Garcia V. Uncovering the signalling, structure and function of the 20-HETE-GPR75 pairing: Identifying the chemokine CCL5 as a negative regulator of GPR75. Br J Pharmacol 2021; 178:3813-3828. [PMID: 33974269 PMCID: PMC10119890 DOI: 10.1111/bph.15525] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/12/2021] [Accepted: 04/19/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND PURPOSE The G-protein-coupled receptor GPR75 (Gq) and its ligand, the cytochrome P450-derived vasoactive eicosanoid 20-hydroxyeicosatetraenoic acid (20-HETE), are involved in the activation of pro-inflammatory and hypertensive signalling cascades contributing to diabetes, obesity, vascular dysfunction/remodelling, hypertension and cardiovascular disease. Little is known as to how, where and with what affinity 20-HETE interacts with GPR75. EXPERIMENTAL APPROACH To better understand the pairing of 20-HETE and its receptor (GPR75), we used surface plasmon resonance (SPR) to determine binding affinity/kinetics. The PRESTO-Tango receptor-ome methodology for GPR75 overexpression was coupled with FLIPR Calcium 6 assays, homogeneous time-resolved fluorescence (HTRF) IP-1 and β-arrestin recruitment assays to determine receptor activation and downstream signalling events. KEY RESULTS SPR confirmed 20-HETE binding to GPR75 with an estimated KD of 1.56 × 10-10 M. In GPR75-transfected HTLA cells, 20-HETE stimulated intracellular Ca2+ levels, IP-1 accumulation and β-arrestin recruitment, all of which were negated by known 20-HETE functional antagonists. Computational modelling of the putative ligand-binding pocket and mutation of Thr212 within the putative 20-HETE binding site abolished 20-HETE's ability to stimulate GPR75 activation. Knockdown of GPR75 in human endothelial cells nullified 20-HETE-stimulated intracellular Ca2+ . The chemokine CCL5, a suggested GPR75 ligand, binds to GPR75 (KD of 5.85 × 10-10 M) yet fails to activate GPR75; however, it inhibited 20-HETE's ability to activate GPR75 signalling. CONCLUSIONS AND IMPLICATIONS We have identified 20-HETE as a high-affinity ligand for GPR75 and CCL5 as a low-affinity negative regulator of GPR75, providing additional evidence for the deorphanization of GPR75 as a 20-HETE receptor.
Collapse
Affiliation(s)
- Jonathan V Pascale
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, New York, USA
| | - Eon Joo Park
- Vascular Biology and Therapeutics Program, Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - John R Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Victor Garcia
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, New York, USA
| |
Collapse
|
20
|
Pascale JV, Lucchesi PA, Garcia V. Unraveling the Role of 12- and 20- HETE in Cardiac Pathophysiology: G-Protein-Coupled Receptors, Pharmacological Inhibitors, and Transgenic Approaches. J Cardiovasc Pharmacol 2021; 77:707-717. [PMID: 34016841 PMCID: PMC8523029 DOI: 10.1097/fjc.0000000000001013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/03/2021] [Indexed: 12/17/2022]
Abstract
ABSTRACT Arachidonic acid-derived lipid mediators play crucial roles in the development and progression of cardiovascular diseases. Eicosanoid metabolites generated by lipoxygenases and cytochrome P450 enzymes produce several classes of molecules, including the epoxyeicosatrienoic acid (EET) and hydroxyeicosatetraenoic acids (HETE) family of bioactive lipids. In general, the cardioprotective effects of EETs have been documented across a number of cardiac diseases. In contrast, members of the HETE family have been shown to contribute to the pathogenesis of ischemic cardiac disease, maladaptive cardiac hypertrophy, and heart failure. The net effect of 12(S)- and 20-HETE depends upon the relative amounts generated, ratio of HETEs:EETs produced, timing of synthesis, as well as cellular and subcellular mechanisms activated by each respective metabolite. HETEs are synthesized by and affect multiple cell types within the myocardium. Moreover, cytochrome P450-derived and lipoxygenase- derived metabolites have been shown to directly influence cardiac myocyte growth and the regulation of cardiac fibroblasts. The mechanistic data uncovered thus far have employed the use of enzyme inhibitors, HETE antagonists, and the genetic manipulation of lipid-producing enzymes and their respective receptors, all of which influence a complex network of outcomes that complicate data interpretation. This review will summarize and integrate recent findings on the role of 12(S)-/20-HETE in cardiac diseases.
Collapse
Affiliation(s)
| | | | - Victor Garcia
- Department of Pharmacology, New York Medical College, Valhalla, NY
| |
Collapse
|
21
|
Luo B, Yan D, Yan H, Yuan J. Cytochrome P450: Implications for human breast cancer. Oncol Lett 2021; 22:548. [PMID: 34093769 PMCID: PMC8170261 DOI: 10.3892/ol.2021.12809] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/21/2021] [Indexed: 12/13/2022] Open
Abstract
The treatment options for breast cancer include endocrine therapy, targeted therapy and chemotherapy. However, some patients with triple-negative breast cancer cannot benefit from these methods. Therefore, novel therapeutic targets should be developed. The cytochrome P450 enzyme (CYP) is a crucial metabolic oxidase, which is involved in the metabolism of endogenous and exogenous substances in the human body. Some products undergoing the metabolic pathway of the CYP enzyme, such as hydroxylated polychlorinated biphenyls and 4-chlorobiphenyl, are toxic to humans and are considered to be potential carcinogens. As a class of multi-gene superfamily enzymes, the subtypes of CYPs are selectively expressed in breast cancer tissues, especially in the basal-like type. In addition, CYPs are essential for the activation or inactivation of anticancer drugs. The association between CYP expression and cancer risk, tumorigenesis, progression, metastasis and prognosis has been widely reported in basic and clinical studies. The present review describes the current findings regarding the importance of exploring metabolic pathways of CYPs and gene polymorphisms for the development of vital therapeutic targets for breast cancer.
Collapse
Affiliation(s)
- Bin Luo
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Dandan Yan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Honglin Yan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
22
|
Xu JY, Chang W, Sun Q, Peng F, Yang Y. Pulmonary midkine inhibition ameliorates sepsis induced lung injury. J Transl Med 2021; 19:91. [PMID: 33639987 PMCID: PMC7913048 DOI: 10.1186/s12967-021-02755-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/16/2021] [Indexed: 02/08/2023] Open
Abstract
Background Midkine is a multi-functional molecule participating in a various key pathological process. We aimed to evaluate the change of midkine in sepsis and its association with angiotensin-converting enzyme (ACE) system, as well as the mechanism by which midkine induced in sepsis and lung injury. Methods The peripheral blood sample of septic patients on admission was obtained and measured for midkine, ACE and angiotensin II. Cecal ligation and puncture (CLP) mouse model was used, and adeno-associated virus (AAV) was stilled trans-trachea for regional targeting midkine expression, comparing the severity of lung injury. Furthermore, we studied the in vitro mechanism of midkine activates ACE system by using inhibitors targeting candidate receptors of midkine, and its effects on the vascular endothelial cells. Results Plasma midkine was significantly elevated in sepsis, and was closely associated with ACE system. Both circulating and lung midkine was increased in CLP mouse, and was related to severe lung injury. Regional interfering midkine expression in lung tissue by AAV could alleviate acute lung injury in CLP model. In vitro study elucidated that Notch 2 participated in the activation of ACE system and angiotensin II release, induced by midkine and triggered vascular endothelial injury by angiotensin II induced reactive oxygen species production. Conclusions Midkine inhibition ameliorates sepsis induced lung injury, which might via ACE/Ang II pathway and the participation of Notch 2 in the stimulation of ACE. Trial registration Clinicaltrials.gov NCT02605681. Registered 12 November 2015
Collapse
Affiliation(s)
- Jing-Yuan Xu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao Rd., Nanjing, 210009, People's Republic of China
| | - Wei Chang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao Rd., Nanjing, 210009, People's Republic of China
| | - Qin Sun
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao Rd., Nanjing, 210009, People's Republic of China
| | - Fei Peng
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao Rd., Nanjing, 210009, People's Republic of China
| | - Yi Yang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao Rd., Nanjing, 210009, People's Republic of China.
| |
Collapse
|
23
|
Wang B, Wu L, Chen J, Dong L, Chen C, Wen Z, Hu J, Fleming I, Wang DW. Metabolism pathways of arachidonic acids: mechanisms and potential therapeutic targets. Signal Transduct Target Ther 2021; 6:94. [PMID: 33637672 PMCID: PMC7910446 DOI: 10.1038/s41392-020-00443-w] [Citation(s) in RCA: 511] [Impact Index Per Article: 127.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/04/2020] [Accepted: 10/15/2020] [Indexed: 01/31/2023] Open
Abstract
The arachidonic acid (AA) pathway plays a key role in cardiovascular biology, carcinogenesis, and many inflammatory diseases, such as asthma, arthritis, etc. Esterified AA on the inner surface of the cell membrane is hydrolyzed to its free form by phospholipase A2 (PLA2), which is in turn further metabolized by cyclooxygenases (COXs) and lipoxygenases (LOXs) and cytochrome P450 (CYP) enzymes to a spectrum of bioactive mediators that includes prostanoids, leukotrienes (LTs), epoxyeicosatrienoic acids (EETs), dihydroxyeicosatetraenoic acid (diHETEs), eicosatetraenoic acids (ETEs), and lipoxins (LXs). Many of the latter mediators are considered to be novel preventive and therapeutic targets for cardiovascular diseases (CVD), cancers, and inflammatory diseases. This review sets out to summarize the physiological and pathophysiological importance of the AA metabolizing pathways and outline the molecular mechanisms underlying the actions of AA related to its three main metabolic pathways in CVD and cancer progression will provide valuable insight for developing new therapeutic drugs for CVD and anti-cancer agents such as inhibitors of EETs or 2J2. Thus, we herein present a synopsis of AA metabolism in human health, cardiovascular and cancer biology, and the signaling pathways involved in these processes. To explore the role of the AA metabolism and potential therapies, we also introduce the current newly clinical studies targeting AA metabolisms in the different disease conditions.
Collapse
Affiliation(s)
- Bei Wang
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan, China
| | - Lujin Wu
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
| | - Jing Chen
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
| | - Zheng Wen
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China
| | - Jiong Hu
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Hubei Province, Wuhan, China.
| |
Collapse
|
24
|
Dube T, Ghosh A, Mishra J, Kompella UB, Panda JJ. Repurposed Drugs, Molecular Vaccines, Immune-Modulators, and Nanotherapeutics to Treat and Prevent COVID-19 Associated with SARS-CoV-2, a Deadly Nanovector. ADVANCED THERAPEUTICS 2021; 4:2000172. [PMID: 33173808 PMCID: PMC7645867 DOI: 10.1002/adtp.202000172] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/24/2020] [Indexed: 02/07/2023]
Abstract
The deadly pandemic, coronavirus disease 2019 (COVID-19), caused due to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has paralyzed the world. Although significant methodological advances have been made in the field of viral detection/diagnosis with 251 in vitro diagnostic tests receiving emergency use approval by the US-FDA, little progress has been made in identifying curative or preventive therapies. This review discusses the current trends and potential future approaches for developing COVID-19 therapeutics, including repurposed drugs, vaccine candidates, immune-modulators, convalescent plasma therapy, and antiviral nanoparticles/nanovaccines/combinatorial nanotherapeutics to surmount the pandemic viral strain. Many potent therapeutic candidates emerging via drug-repurposing could significantly reduce the cost and duration of anti-COVID-19 drug development. Gene/protein-based vaccine candidates that could elicit both humoral and cell-based immunity would be on the frontlines to prevent the disease. Many emerging nanotechnology-based interventions will be critical in the fight against the deadly virus by facilitating early detection and enabling target oriented multidrug therapeutics. The therapeutic candidates discussed in this article include remdesivir, dexamethasone, hydroxychloroquine, favilavir, lopinavir/ritonavir, antibody therapeutics like gimsilumab and TJM2, anti-viral nanoparticles, and nanoparticle-based DNA and mRNA vaccines.
Collapse
Affiliation(s)
- Taru Dube
- Institute of Nano Science and TechnologyMohaliPunjab160062India
| | - Amrito Ghosh
- Institute of Nano Science and TechnologyMohaliPunjab160062India
| | - Jibanananda Mishra
- School of Bioengineering and BiosciencesLovely Professional UniversityPhagwaraPunjab144411India
| | - Uday B. Kompella
- Nanomedicine and Drug Delivery LaboratoryDepartment of Pharmaceutical SciencesUniversity of Colorado Anschutz Medical CampusAuroraCO80045USA
| | - Jiban Jyoti Panda
- Institute of Nano Science and TechnologyMohaliPunjab160062India
- Nanomedicine and Drug Delivery LaboratoryDepartment of Pharmaceutical SciencesUniversity of Colorado Anschutz Medical CampusAuroraCO80045USA
| |
Collapse
|
25
|
Xu L, Schüler R, Xu C, Seebeck N, Markova M, Murahovschi V, Pfeiffer AFH. Arachidonic acid inhibits the production of angiotensin-converting enzyme in human primary adipocytes via a NF-κB-dependent pathway. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1652. [PMID: 33490164 PMCID: PMC7812212 DOI: 10.21037/atm-20-7514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background The modulating mechanism of fatty acids on angiotensin-converting enzyme production (ACE) in human adipocytes is still elusive. Diet-induced regulation of the renin angiotensin system is thought to be involved in obesity and hypertension, and several previous studies have used mouse cell lines such as 3T3-L1 to investigate this. This study was carried out in human subcutaneous adipocytes for better understanding of the mechanism. Methods Human adipose stem cells were isolated from subcutaneous adipose tissue biopsies collected from four patients during bariatric surgery and differentiated into mature adipocytes. The mRNA expression and the activity of ACE were measured under different stimuli in cell cultures. Results Arachidonic acid (AA) decreased ACE mRNA expression and ACE activity in a dose-dependent manner while palmitic acid had no effect. The decrease of ACE by 100 µM AA was reversed by the addition of 5 µM nuclear factor-κB (NF-κB) inhibitor. Furthermore, when the production of 20-hydroxyeicosatetraenoic acid, a metabolite of AA, was stopped by the specific inhibitor HET0016 (10 µM) in the culture media, the effect of AA was blocked. Conclusions This study indicated that AA can decrease the expression and activity of ACE in cultured human adipocytes, via an inflammatory NF-κB-dependent pathway. Blocking 20-hydroxyeicosatetraenoic acid attenuated the ACE-decreasing effects of AA.
Collapse
Affiliation(s)
- Li Xu
- Department of Endocrinology, Diabetes and Nutrition, Charité University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany.,Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
| | - Rita Schüler
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
| | - Chenchen Xu
- Department of Endocrinology, Diabetes and Nutrition, Charité University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany.,Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
| | - Nicole Seebeck
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
| | - Mariya Markova
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
| | - Veronica Murahovschi
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
| | - Andreas F H Pfeiffer
- Department of Endocrinology, Diabetes and Nutrition, Charité University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany.,Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| |
Collapse
|
26
|
Garvin MR, Alvarez C, Miller JI, Prates ET, Walker AM, Amos BK, Mast AE, Justice A, Aronow B, Jacobson D. A mechanistic model and therapeutic interventions for COVID-19 involving a RAS-mediated bradykinin storm. eLife 2020; 9:e59177. [PMID: 32633718 PMCID: PMC7410499 DOI: 10.7554/elife.59177] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022] Open
Abstract
Neither the disease mechanism nor treatments for COVID-19 are currently known. Here, we present a novel molecular mechanism for COVID-19 that provides therapeutic intervention points that can be addressed with existing FDA-approved pharmaceuticals. The entry point for the virus is ACE2, which is a component of the counteracting hypotensive axis of RAS. Bradykinin is a potent part of the vasopressor system that induces hypotension and vasodilation and is degraded by ACE and enhanced by the angiotensin1-9 produced by ACE2. Here, we perform a new analysis on gene expression data from cells in bronchoalveolar lavage fluid (BALF) from COVID-19 patients that were used to sequence the virus. Comparison with BALF from controls identifies a critical imbalance in RAS represented by decreased expression of ACE in combination with increases in ACE2, renin, angiotensin, key RAS receptors, kinogen and many kallikrein enzymes that activate it, and both bradykinin receptors. This very atypical pattern of the RAS is predicted to elevate bradykinin levels in multiple tissues and systems that will likely cause increases in vascular dilation, vascular permeability and hypotension. These bradykinin-driven outcomes explain many of the symptoms being observed in COVID-19.
Collapse
Affiliation(s)
- Michael R Garvin
- Oak Ridge National Laboratory, Biosciences DivisionOak RidgeUnited States
| | - Christiane Alvarez
- Oak Ridge National Laboratory, Biosciences DivisionOak RidgeUnited States
| | - J Izaak Miller
- Oak Ridge National Laboratory, Biosciences DivisionOak RidgeUnited States
| | - Erica T Prates
- Oak Ridge National Laboratory, Biosciences DivisionOak RidgeUnited States
| | - Angelica M Walker
- Oak Ridge National Laboratory, Biosciences DivisionOak RidgeUnited States
- University of Tennessee Knoxville, The Bredesen Center for Interdisciplinary Research and Graduate EducationKnoxvilleUnited States
| | - B Kirtley Amos
- University of Kentucky, Department of HorticultureLexingtonUnited States
| | - Alan E Mast
- Versiti Blood Research Institute, Medical College of WisconsinMilwaukeeUnited States
| | - Amy Justice
- VA Connecticut Healthcare/General Internal Medicine, Yale University School of MedicineWest HavenUnited States
| | - Bruce Aronow
- University of CincinnatiCincinnatiUnited States
- Biomedical Informatics, Cincinnati Children’s Hospital Research FoundationCincinnatiUnited States
| | - Daniel Jacobson
- Oak Ridge National Laboratory, Biosciences DivisionOak RidgeUnited States
- University of Tennessee Knoxville, The Bredesen Center for Interdisciplinary Research and Graduate EducationKnoxvilleUnited States
- University of Tennessee Knoxville, Department of Psychology, Austin Peay BuildingKnoxvilleUnited States
| |
Collapse
|
27
|
Peterson SJ, Dave N, Kothari J. The Effects of Heme Oxygenase Upregulation on Obesity and the Metabolic Syndrome. Antioxid Redox Signal 2020; 32:1061-1070. [PMID: 31880952 DOI: 10.1089/ars.2019.7954] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: Obesity is a chronic condition that is characterized by inflammation and oxidative stress with consequent cardiovascular complications of hypertension, dyslipidemia, and vascular dysfunction. Obesity-induced metabolic syndrome remains an epidemic of global proportions. Recent Advances: Gene targeting of the endothelium with a retrovirus using an endothelium-specific promoter vascular endothelium cadherin (VECAD)-HO-1 offers a potential long-term solution to adiposity by targeting the endothelium. This has resulted in improvements of both vascular function and adiposity attenuation. Critical Issues: Heme oxygenase plays an ever-increasing role in the understanding of human biology in the complex conditions of obesity and the metabolic syndrome. The heme oxygenase 1 (HO-1) system creates biliverdin/bilirubin, which functions as an antioxidant, and carbon monoxide, which has antiapoptotic properties. Future Directions: Upregulation of HO-1 has been shown to improve adiposity as well as vascular function in both animal and human studies.
Collapse
Affiliation(s)
- Stephen J Peterson
- Department of Medicine, Weill Cornell Medicine, New York, New York.,New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, New York
| | - Niel Dave
- New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, New York
| | - Janish Kothari
- New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, New York
| |
Collapse
|
28
|
Sun YN, Huang JQ, Chen ZZ, Du M, Ren FZ, Luo J, Fang B. Amyotrophy Induced by a High-Fat Diet Is Closely Related to Inflammation and Protein Degradation Determined by Quantitative Phosphoproteomic Analysis in Skeletal Muscle of C57BL/6 J Mice. J Nutr 2020; 150:294-302. [PMID: 31618431 DOI: 10.1093/jn/nxz236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/29/2019] [Accepted: 09/05/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Ectopic fat accumulation in skeletal muscle results in dysfunction and atrophy, but the underlying molecular mechanisms remain unclear. OBJECTIVE The aim of this study was to investigate the effects of a high-fat diet (HFD) in modulating the structure and energy metabolism of skeletal muscle and the underlying mechanisms in mice. METHODS Four-week-old male C57BL/6 J mice (n = 30) were allowed 1 wk for acclimatization. After 6 mice with low body weight were removed from the study, the remaining 24 mice were fed with a normal-fat diet (NFD; 10% energy from fat, n = 12) or an HFD (60% energy from fat, n = 12) for 24 wk. At the end of the experiment, serum glucose and lipid concentrations were measured, and skeletal muscle was collected for atrophy analysis, inflammation measurements, and phosphoproteomic analysis. RESULTS Compared with the NFD, the HFD increased (P < 0.05) body weight (35.8%), serum glucose (64.5%), and lipid (27.3%) concentrations, along with elevated (P < 0.05) expressions of the atrophy-related proteins muscle ring finger 1 (MURF1; 27.6%) and muscle atrophy F-box (MAFBX; 44.5%) in skeletal muscle. Phosphoproteomic analysis illustrated 64 proteins with differential degrees of phosphorylation between the HFD and NFD groups. These proteins were mainly involved in modulating cytoskeleton [adenylyl cyclase-associated protein 2 (CAP2) and actin-α skeletal muscle (ACTA1)], inflammation [NF-κB-activating protein (NKAP) and serine/threonine-protein kinase RIO3 (RIOK3)], glucose metabolism [Cdc42-interacting protein 4 (TRIP10); protein kinase C, and casein kinase II substrate protein 3 (PACSIN3)], and protein degradation [heat shock protein 90 kDa (HSP90AA1)]. The HFD-induced inhibitions of the insulin signaling pathway and activations of inflammation in skeletal muscle were verified by Western blot analysis. CONCLUSIONS Quantitative phosphoproteomic analysis in C57BL/6 J mice fed an NFD or HFD for 24 wk revealed that the phosphorylation of inflammatory proteins and proteins associated with glucose metabolism at specific serine residues may play critical roles in the regulation of skeletal muscle atrophy induced by an HFD. This work provides information regarding underlying molecular mechanisms for inflammation-induced dysfunction and atrophy in skeletal muscle.
Collapse
Affiliation(s)
- Ya-Nan Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jia-Qiang Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhong-Zhou Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Fa-Zheng Ren
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China.,Beijing Laboratory of Food Quality and Safety, Beijing University of Agriculture, Beijing, China
| | - Jie Luo
- Beijing Laboratory of Food Quality and Safety, Beijing University of Agriculture, Beijing, China.,College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Bing Fang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
29
|
Cárdenas S, Colombero C, Panelo L, Dakarapu R, Falck JR, Costas MA, Nowicki S. GPR75 receptor mediates 20-HETE-signaling and metastatic features of androgen-insensitive prostate cancer cells. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158573. [PMID: 31760076 DOI: 10.1016/j.bbalip.2019.158573] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/22/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Recent studies have shown that 20-hydroxyeicosatetraenoic acid (20-HETE) is a key molecule in sustaining androgen-mediated prostate cancer cell survival. Thus, the aim of this study was to determine whether 20-HETE can affect the metastatic potential of androgen-insensitive prostate cancer cells, and the implication of the newly described 20-HETE receptor, GPR75, in mediating these effects. METHODS The expression of GPR75, protein phosphorylation, actin polymerization and protein distribution were assessed by western blot and/or fluorescence microscopy. Additionally, in vitro assays including epithelial-mesenchymal transition (EMT), metalloproteinase-2 (MMP-2) activity, scratch wound healing, transwell invasion and soft agar colony formation were used to evaluate the effects of 20-HETE agonists/antagonists or GPR75 gene silencing on the aggressive features of PC-3 cells. RESULTS 20-HETE (0.1 nM) promoted the acquisition of a mesenchymal phenotype by increasing EMT, the release of MMP-2, cell migration and invasion, actin stress fiber formation and anchorage-independent growth. Also, 20-HETE augmented the expression of HIC-5, the phosphorylation of EGFR, NF-κB, AKT and p-38 and the intracellular redistribution of p-AKT and PKCα. These effects were impaired by GPR75 antagonism and/or silencing. Accordingly, the inhibition of 20-HETE formation with N-hydroxy-N'-(4-n-butyl-2-methylphenyl) formamidine (HET0016) elicited the opposite effects. CONCLUSIONS The present results show for the first time the involvement of the 20-HETE-GPR75 receptor in the activation of intracellular signaling known to be stimulated in cell malignant transformations leading to the differentiation of PC-3 cells towards a more aggressive phenotype. Targeting the 20-HETE/GPR75 pathway is a promising and novel approach to interfere with prostate tumor cell malignant progression.
Collapse
Affiliation(s)
- Sofia Cárdenas
- Centro de Investigaciones Endocrinológicas "Dr. Cesar Bergada" (CEDIE) CONICET-FEI-División de Endocrinología, Hospital de Niños "Ricardo Gutierrez", Gallo 1330, C1425EFD Buenos Aires, Argentina
| | - Cecilia Colombero
- Centro de Investigaciones Endocrinológicas "Dr. Cesar Bergada" (CEDIE) CONICET-FEI-División de Endocrinología, Hospital de Niños "Ricardo Gutierrez", Gallo 1330, C1425EFD Buenos Aires, Argentina
| | - Laura Panelo
- Laboratorio de Biología Molecular y Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Combatientes de Malvinas 3150, C1427ARN Buenos Aires, Argentina
| | - Rambabu Dakarapu
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, United States of America
| | - John R Falck
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, United States of America
| | - Monica A Costas
- Laboratorio de Biología Molecular y Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Combatientes de Malvinas 3150, C1427ARN Buenos Aires, Argentina
| | - Susana Nowicki
- Centro de Investigaciones Endocrinológicas "Dr. Cesar Bergada" (CEDIE) CONICET-FEI-División de Endocrinología, Hospital de Niños "Ricardo Gutierrez", Gallo 1330, C1425EFD Buenos Aires, Argentina.
| |
Collapse
|
30
|
Molecular Functionality of Cytochrome P450 4 (CYP4) Genetic Polymorphisms and Their Clinical Implications. Int J Mol Sci 2019; 20:ijms20174274. [PMID: 31480463 PMCID: PMC6747359 DOI: 10.3390/ijms20174274] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 01/03/2023] Open
Abstract
Enzymes in the cytochrome P450 4 (CYP4) family are involved in the metabolism of fatty acids, xenobiotics, therapeutic drugs, and signaling molecules, including eicosanoids, leukotrienes, and prostanoids. As CYP4 enzymes play a role in the maintenance of fatty acids and fatty-acid-derived bioactive molecules within a normal range, they have been implicated in various biological functions, including inflammation, skin barrier, eye function, cardiovascular health, and cancer. Numerous studies have indicated that genetic variants of CYP4 genes cause inter-individual variations in metabolism and disease susceptibility. Genetic variants of CYP4A11, 4F2 genes are associated with cardiovascular diseases. Mutations of CYP4B1, CYP4Z1, and other CYP4 genes that generate 20-HETE are a potential risk for cancer. CYP4V2 gene variants are associated with ocular disease, while those of CYP4F22 are linked to skin disease and CYP4F3B is associated with the inflammatory response. The present study comprehensively collected research to provide an updated view of the molecular functionality of CYP4 genes and their associations with human diseases. Functional analysis of CYP4 genes with clinical implications is necessary to understand inter-individual variations in disease susceptibility and for the development of alternative treatment strategies.
Collapse
|
31
|
Effects and mechanism of total phenols of Magnolia officinalis combined with Maijunan Tablets on blood pressure of spontaneous hypertensive rats. CHINESE HERBAL MEDICINES 2019. [DOI: 10.1016/j.chmed.2018.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
32
|
Satou R, Penrose H, Navar LG. Inflammation as a Regulator of the Renin-Angiotensin System and Blood Pressure. Curr Hypertens Rep 2018; 20:100. [PMID: 30291560 DOI: 10.1007/s11906-018-0900-0] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE OF REVIEW Mechanisms facilitating progression of hypertension via cross stimulation of the renin-angiotensin system (RAS) and inflammation have been proposed. Accordingly, we review and update evidence for regulation of RAS components by pro-inflammatory factors. RECENT FINDINGS Angiotensin II (Ang II), which is produced by RAS, induces vasoconstriction and consequent blood pressure elevation. In addition to this direct action, chronically elevated Ang II stimulates several pathophysiological mechanisms including generation of oxidative stress, stimulation of the nervous system, alterations in renal hemodynamics, and activation of the immune system. In particular, an activated immune system has been shown to contribute to the development of hypertension. Recent studies have demonstrated that immune cell-derived pro-inflammatory cytokines regulate RAS components, further accelerating systemic and local Ang II formation. Specifically, regulation of angiotensinogen (AGT) production by pro-inflammatory cytokines in the liver and kidney is proposed as a key mechanism underlying the progression of Ang II-dependent hypertension.
Collapse
Affiliation(s)
- Ryousuke Satou
- Department of Physiology and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, 1430 Tulane Avenue, SL39, New Orleans, LA, 70112-2699, USA.
| | - Harrison Penrose
- Department of Physiology and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, 1430 Tulane Avenue, SL39, New Orleans, LA, 70112-2699, USA
| | - L Gabriel Navar
- Department of Physiology and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, 1430 Tulane Avenue, SL39, New Orleans, LA, 70112-2699, USA
| |
Collapse
|
33
|
20-Hydroxyeicosatetraenoic acid antagonist attenuates the development of malignant hypertension and reverses it once established: a study in Cyp1a1-Ren-2 transgenic rats. Biosci Rep 2018; 38:BSR20171496. [PMID: 30054426 PMCID: PMC6131326 DOI: 10.1042/bsr20171496] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 07/09/2018] [Accepted: 07/19/2018] [Indexed: 01/13/2023] Open
Abstract
We hypothesized that vascular actions of 20-hydroxyeicosatetraenoic acid (20-HETE), the product of cytochrome P450 (CYP450)-dependent ω-hydroxylase, potentiate prohypertensive actions of angiotensin II (ANG II) in Cyp1a1-Ren-2 transgenic rats, a model of ANG II-dependent malignant hypertension. Therefore, we evaluated the antihypertensive effectiveness of 20-HETE receptor antagonist (AAA) in this model. Malignant hypertension was induced in Cyp1a1-Ren-2 transgenic rats by activation of the renin gene using indole-3-carbinol (I3C), a natural xenobiotic. Treatment with AAA was started either simultaneously with induction of hypertension or 10 days later, during established hypertension. Systolic blood pressure (SBP) was monitored by radiotelemetry, indices of renal and cardiac injury, and kidney ANG II levels were determined. In I3C-induced hypertensive rats, early AAA treatment reduced SBP elevation (to 161 ± 3 compared with 199 ± 3 mmHg in untreated I3C-induced rats), reduced albuminuria, glomerulosclerosis index, and cardiac hypertrophy (P<0.05 in all cases). Untreated I3C-induced rats showed augmented kidney ANG II (405 ± 14 compared with 52 ± 3 fmol/g in non-induced rats, P<0.05) which was markedly lowered by AAA treatment (72 ± 6 fmol/g). Remarkably, in TGR with established hypertension, AAA also decreased SBP (from 187 ± 4 to 158 ± 4 mmHg, P<0.05) and exhibited organoprotective effects in addition to marked suppression of kidney ANG II levels. In conclusion, 20-HETE antagonist attenuated the development and largely reversed the established ANG II-dependent malignant hypertension, likely via suppression of intrarenal ANG II levels. This suggests that intrarenal ANG II activation by 20-HETE is important in the pathophysiology of this hypertension form.
Collapse
|
34
|
Zhang C, Booz GW, Yu Q, He X, Wang S, Fan F. Conflicting roles of 20-HETE in hypertension and renal end organ damage. Eur J Pharmacol 2018; 833:190-200. [PMID: 29886242 PMCID: PMC6057804 DOI: 10.1016/j.ejphar.2018.06.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 12/12/2022]
Abstract
20-HETE is a cytochrome P450-derived metabolite of arachidonic acid that has both pro- and anti-hypertensive actions that result from modulation of vascular and kidney function. In the vasculature, 20-HETE sensitizes vascular smooth muscle cells to constrictor stimuli and increases myogenic tone. By promoting smooth muscle cell migration and proliferation, as well as by acting on the vascular endothelium to cause endothelial dysfunction, angiotensin converting enzyme (ACE) expression, and inflammation, 20-HETE contributes to adverse vascular remodeling and increased blood pressure. A G protein-coupled receptor was recently identified as the effector for the vascular actions of 20-HETE. In addition, evidence suggests that 20-HETE contributes to hypertension via positive regulation of the renin-angiotensin-aldosterone system, as well as by causing renal fibrosis. On the other hand, 20-HETE exerts anti-hypertensive actions by inhibiting sodium reabsorption by the kidney in both the proximal tubule and thick ascending limb of Henle. This review discusses the pro- and anti-hypertensive roles of 20-HETE in the pathogenesis of hypertension-associated renal disease, the association of gene polymorphisms of cytochrome P450 enzymes with the development of hypertension and renal end organ damage in humans, and 20-HETE related pharmaceutical agents.
Collapse
MESH Headings
- Animals
- Antihypertensive Agents/metabolism
- Antihypertensive Agents/pharmacology
- Arachidonic Acid/metabolism
- Cytochrome P-450 Enzyme System/genetics
- Cytochrome P-450 Enzyme System/metabolism
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Fibrosis
- Humans
- Hydroxyeicosatetraenoic Acids/pharmacology
- Hydroxyeicosatetraenoic Acids/physiology
- Hypertension/complications
- Hypertension/drug therapy
- Hypertension/metabolism
- Hypertension/physiopathology
- Kidney/metabolism
- Kidney/pathology
- Kidney/physiopathology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Peptidyl-Dipeptidase A/metabolism
- Polymorphism, Genetic
- Receptors, G-Protein-Coupled/metabolism
- Renal Elimination/physiology
- Renal Insufficiency/drug therapy
- Renal Insufficiency/etiology
- Renal Insufficiency/metabolism
- Renal Insufficiency/physiopathology
- Renin-Angiotensin System/physiology
- Sodium/metabolism
- Vascular Remodeling/physiology
Collapse
Affiliation(s)
- Chao Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS 39216, USA; Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - George W Booz
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS 39216, USA
| | - Qing Yu
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaochen He
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS 39216, USA
| | - Shaoxun Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS 39216, USA
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS 39216, USA.
| |
Collapse
|
35
|
Abstract
20-HETE, the ω-hydroxylation product of arachidonic acid catalyzed by enzymes of the cytochrome P450 (CYP) 4A and 4F gene families, is a bioactive lipid mediator with potent effects on the vasculature including stimulation of smooth muscle cell contractility, migration and proliferation as well as activation of endothelial cell dysfunction and inflammation. Clinical studies have shown elevated levels of plasma and urinary 20-HETE in human diseases and conditions such as hypertension, obesity and metabolic syndrome, myocardial infarction, stroke, and chronic kidney diseases. Studies of polymorphic associations also suggest an important role for 20-HETE in hypertension, stroke and myocardial infarction. Animal models of increased 20-HETE production are hypertensive and are more susceptible to cardiovascular injury. The current review summarizes recent findings that focus on the role of 20-HETE in the regulation of vascular and cardiac function and its contribution to the pathology of vascular and cardiac diseases.
Collapse
Affiliation(s)
- Petra Rocic
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, NY, United States
| | | |
Collapse
|
36
|
Arachidonic Acid Metabolite as a Novel Therapeutic Target in Breast Cancer Metastasis. Int J Mol Sci 2017; 18:ijms18122661. [PMID: 29292756 PMCID: PMC5751263 DOI: 10.3390/ijms18122661] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/02/2017] [Accepted: 12/06/2017] [Indexed: 12/14/2022] Open
Abstract
Metastatic breast cancer (BC) (also referred to as stage IV) spreads beyond the breast to the bones, lungs, liver, or brain and is a major contributor to the deaths of cancer patients. Interestingly, metastasis is a result of stroma-coordinated hallmarks such as invasion and migration of the tumor cells from the primary niche, regrowth of the invading tumor cells in the distant organs, proliferation, vascularization, and immune suppression. Targeted therapies, when used as monotherapies or combination therapies, have shown limited success in decreasing the established metastatic growth and improving survival. Thus, novel therapeutic targets are warranted to improve the metastasis outcomes. We have been actively investigating the cytochrome P450 4 (CYP4) family of enzymes that can biosynthesize 20-hydroxyeicosatetraenoic acid (20-HETE), an important signaling eicosanoid involved in the regulation of vascular tone and angiogenesis. We have shown that 20-HETE can activate several intracellular protein kinases, pro-inflammatory mediators, and chemokines in cancer. This review article is focused on understanding the role of the arachidonic acid metabolic pathway in BC metastasis with an emphasis on 20-HETE as a novel therapeutic target to decrease BC metastasis. We have discussed all the significant investigational mechanisms and put forward studies showing how 20-HETE can promote angiogenesis and metastasis, and how its inhibition could affect the metastatic niches. Potential adjuvant therapies targeting the tumor microenvironment showing anti-tumor properties against BC and its lung metastasis are discussed at the end. This review will highlight the importance of exploring tumor-inherent and stromal-inherent metabolic pathways in the development of novel therapeutics for treating BC metastasis.
Collapse
|
37
|
Pandey V, Garcia V, Gilani A, Mishra P, Zhang FF, Paudyal MP, Falck JR, Nasjletti A, Wang WH, Schwartzman ML. The Blood Pressure-Lowering Effect of 20-HETE Blockade in Cyp4a14(-/-) Mice Is Associated with Natriuresis. J Pharmacol Exp Ther 2017; 363:412-418. [PMID: 28912346 PMCID: PMC5698946 DOI: 10.1124/jpet.117.243618] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/13/2017] [Indexed: 01/22/2023] Open
Abstract
20-Hydroxy-5,8,11,14-eicosatetraenoic acid (20-HETE) has been linked to pro-hypertensive and anti-hypertensive actions through its ability to promote vasoconstriction and inhibit Na transport in the ascending limb of the loop of Henle, respectively. In this study, we assessed the effects of 20-HETE blockade on blood pressure, renal hemodynamics, and urinary sodium excretion in Cyp4a14(-/-) male mice, which display androgen-driven 20-HETE-dependent hypertension. Administration of 2,5,8,11,14,17-hexaoxanonadecan-19-yl 20-hydroxyicosa-6(Z),15(Z)-dienoate (20-SOLA), a water-soluble 20-HETE antagonist, in the drinking water normalized the blood pressure of male Cyp4a14(-/-) hypertensive mice (±124 vs. ±153 mmHg) while having no effect on age-matched normotensive wild-type (WT) male mice. Hypertension in Cyp4a14(-/-) male mice was accompanied by decreased renal perfusion and reduced glomerular filtration rates, which were corrected by treatment with 20-SOLA. Interestingly, Cyp4a14(-/-) male mice treated with 20-SOLA displayed increased urinary sodium excretion that was paralleled by the reduction of blood pressure suggestive of an antinatriuretic activity of endogenous 20-HETE in the hypertensive mice. This interpretation is in line with the observation that the natriuretic response to acute isotonic saline loading in hypertensive Cyp4a14(-/-) male mice was significantly impaired relative to that in WT mice; this impairment was corrected by 20-SOLA treatment. Hence, endogenous 20-HETE appears to promote sodium conservation in hypertensive Cyp4a14(-/-) male mice, presumably, as a result of associated changes in renal hemodynamics and/or direct stimulatory action on tubular sodium reabsorption.
Collapse
Affiliation(s)
- Varunkumar Pandey
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, New York (V.P., V.G., A.G., P.M., F.F.Z., A.N., W.-H.W., M.L.S.); and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas (M.P.P., J.R.F.)
| | - Victor Garcia
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, New York (V.P., V.G., A.G., P.M., F.F.Z., A.N., W.-H.W., M.L.S.); and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas (M.P.P., J.R.F.)
| | - Ankit Gilani
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, New York (V.P., V.G., A.G., P.M., F.F.Z., A.N., W.-H.W., M.L.S.); and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas (M.P.P., J.R.F.)
| | - Priyanka Mishra
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, New York (V.P., V.G., A.G., P.M., F.F.Z., A.N., W.-H.W., M.L.S.); and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas (M.P.P., J.R.F.)
| | - Frank Fan Zhang
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, New York (V.P., V.G., A.G., P.M., F.F.Z., A.N., W.-H.W., M.L.S.); and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas (M.P.P., J.R.F.)
| | - Mahesh P Paudyal
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, New York (V.P., V.G., A.G., P.M., F.F.Z., A.N., W.-H.W., M.L.S.); and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas (M.P.P., J.R.F.)
| | - John R Falck
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, New York (V.P., V.G., A.G., P.M., F.F.Z., A.N., W.-H.W., M.L.S.); and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas (M.P.P., J.R.F.)
| | - Alberto Nasjletti
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, New York (V.P., V.G., A.G., P.M., F.F.Z., A.N., W.-H.W., M.L.S.); and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas (M.P.P., J.R.F.)
| | - Wen-Hui Wang
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, New York (V.P., V.G., A.G., P.M., F.F.Z., A.N., W.-H.W., M.L.S.); and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas (M.P.P., J.R.F.)
| | - Michal Laniado Schwartzman
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, New York (V.P., V.G., A.G., P.M., F.F.Z., A.N., W.-H.W., M.L.S.); and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas (M.P.P., J.R.F.)
| |
Collapse
|
38
|
Ou Z, Tao MX, Gao Q, Zhang XL, Yang Y, Zhou JS, Zhang YD. Up-regulation of angiotensin-converting enzyme in response to acute ischemic stroke via ERK/NF-κB pathway in spontaneously hypertensive rats. Oncotarget 2017; 8:97041-97051. [PMID: 29228591 PMCID: PMC5722543 DOI: 10.18632/oncotarget.21156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/08/2017] [Indexed: 12/02/2022] Open
Abstract
Cerebral ischemic stroke is usually caused by a temporary or permanent decrease in blood supply to the brain. Despite general progress in diagnosis and treatment, the prognosis of stroke is still unsatisfactory, and more detailed potential mechanisms are needed to investigate underlying the pathological process. Here, we showed that serum angiotensin-converting enzyme (ACE) concentration was positively correlated with infarct volume after acute ischemic stroke (AIS). Moreover, using a permanent middle cerebral artery occlusion rat model, we indicated for the first time that increased ACE expression in response to AIS was regulated by the ERK/NF-κB pathway in peri-infarct regions. More importantly, we disclosed that angiotensin II type 1 receptors were implicated in up-regulation of ACE expression in peri-infarct regions. These findings offer insight into ACE expression and activity in response to stroke, and further our understanding of ACE mechanisms.
Collapse
Affiliation(s)
- Zhou Ou
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Meng-Xing Tao
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Qing Gao
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Xue-Ling Zhang
- Department of Neurology, Suqian City People's Hospital, Suqian, People's Republic of China
| | - Yang Yang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jun-Shan Zhou
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Ying-Dong Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
39
|
Jamieson KL, Endo T, Darwesh AM, Samokhvalov V, Seubert JM. Cytochrome P450-derived eicosanoids and heart function. Pharmacol Ther 2017; 179:47-83. [PMID: 28551025 DOI: 10.1016/j.pharmthera.2017.05.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
40
|
Garcia V, Gilani A, Shkolnik B, Pandey V, Zhang FF, Dakarapu R, Gandham SK, Reddy NR, Graves JP, Gruzdev A, Zeldin DC, Capdevila JH, Falck JR, Schwartzman ML. 20-HETE Signals Through G-Protein-Coupled Receptor GPR75 (G q) to Affect Vascular Function and Trigger Hypertension. Circ Res 2017; 120:1776-1788. [PMID: 28325781 DOI: 10.1161/circresaha.116.310525] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/03/2017] [Accepted: 03/20/2017] [Indexed: 12/31/2022]
Abstract
RATIONALE 20-Hydroxyeicosatetraenoic acid (20-HETE), one of the principle cytochrome P450 eicosanoids, is a potent vasoactive lipid whose vascular effects include stimulation of smooth muscle contractility, migration, and proliferation, as well as endothelial cell dysfunction and inflammation. Increased levels of 20-HETE in experimental animals and in humans are associated with hypertension, stroke, myocardial infarction, and vascular diseases. OBJECTIVE To date, a receptor/binding site for 20-HETE has been implicated based on the use of specific agonists and antagonists. The present study was undertaken to identify a receptor to which 20-HETE binds and through which it activates a signaling cascade that culminates in many of the functional outcomes attributed to 20-HETE in vitro and in vivo. METHODS AND RESULTS Using crosslinking analogs, click chemistry, binding assays, and functional assays, we identified G-protein receptor 75 (GPR75), currently an orphan G-protein-coupled receptor (GPCR), as a specific target of 20-HETE. In cultured human endothelial cells, 20-HETE binding to GPR75 stimulated Gαq/11 protein dissociation and increased inositol phosphate accumulation and GPCR-kinase interacting protein-1-GPR75 binding, which further facilitated the c-Src-mediated transactivation of epidermal growth factor receptor. This results in downstream signaling pathways that induce angiotensin-converting enzyme expression and endothelial dysfunction. Knockdown of GPR75 or GPCR-kinase interacting protein-1 prevented 20-HETE-mediated endothelial growth factor receptor phosphorylation and angiotensin-converting enzyme induction. In vascular smooth muscle cells, GPR75-20-HETE pairing is associated with Gαq/11- and GPCR-kinase interacting protein-1-mediated protein kinase C-stimulated phosphorylation of MaxiKβ, linking GPR75 activation to 20-HETE-mediated vasoconstriction. GPR75 knockdown in a mouse model of 20-HETE-dependent hypertension prevented blood pressure elevation and 20-HETE-mediated increases in angiotensin-converting enzyme expression, endothelial dysfunction, smooth muscle contractility, and vascular remodeling. CONCLUSIONS This is the first report to identify a GPCR target for an eicosanoid of this class. The discovery of 20-HETE-GPR75 pairing presented here provides the molecular basis for the signaling and pathophysiological functions mediated by 20-HETE in hypertension and cardiovascular diseases.
Collapse
Affiliation(s)
- Victor Garcia
- From the Department of Pharmacology, New York Medical College School of Medicine, Valhalla (V.G., A.G., B.S., V.P., F.F.Z., M.L.S.); Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (R.D., S.K.G., N.R.R., J.R.F.); Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC (J.P.G., A.G., D.C.Z.); and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (J.H.C.)
| | - Ankit Gilani
- From the Department of Pharmacology, New York Medical College School of Medicine, Valhalla (V.G., A.G., B.S., V.P., F.F.Z., M.L.S.); Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (R.D., S.K.G., N.R.R., J.R.F.); Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC (J.P.G., A.G., D.C.Z.); and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (J.H.C.)
| | - Brian Shkolnik
- From the Department of Pharmacology, New York Medical College School of Medicine, Valhalla (V.G., A.G., B.S., V.P., F.F.Z., M.L.S.); Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (R.D., S.K.G., N.R.R., J.R.F.); Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC (J.P.G., A.G., D.C.Z.); and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (J.H.C.)
| | - Varunkumar Pandey
- From the Department of Pharmacology, New York Medical College School of Medicine, Valhalla (V.G., A.G., B.S., V.P., F.F.Z., M.L.S.); Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (R.D., S.K.G., N.R.R., J.R.F.); Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC (J.P.G., A.G., D.C.Z.); and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (J.H.C.)
| | - Frank Fan Zhang
- From the Department of Pharmacology, New York Medical College School of Medicine, Valhalla (V.G., A.G., B.S., V.P., F.F.Z., M.L.S.); Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (R.D., S.K.G., N.R.R., J.R.F.); Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC (J.P.G., A.G., D.C.Z.); and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (J.H.C.)
| | - Rambabu Dakarapu
- From the Department of Pharmacology, New York Medical College School of Medicine, Valhalla (V.G., A.G., B.S., V.P., F.F.Z., M.L.S.); Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (R.D., S.K.G., N.R.R., J.R.F.); Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC (J.P.G., A.G., D.C.Z.); and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (J.H.C.)
| | - Shyam K Gandham
- From the Department of Pharmacology, New York Medical College School of Medicine, Valhalla (V.G., A.G., B.S., V.P., F.F.Z., M.L.S.); Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (R.D., S.K.G., N.R.R., J.R.F.); Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC (J.P.G., A.G., D.C.Z.); and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (J.H.C.)
| | - N Rami Reddy
- From the Department of Pharmacology, New York Medical College School of Medicine, Valhalla (V.G., A.G., B.S., V.P., F.F.Z., M.L.S.); Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (R.D., S.K.G., N.R.R., J.R.F.); Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC (J.P.G., A.G., D.C.Z.); and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (J.H.C.)
| | - Joan P Graves
- From the Department of Pharmacology, New York Medical College School of Medicine, Valhalla (V.G., A.G., B.S., V.P., F.F.Z., M.L.S.); Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (R.D., S.K.G., N.R.R., J.R.F.); Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC (J.P.G., A.G., D.C.Z.); and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (J.H.C.)
| | - Artiom Gruzdev
- From the Department of Pharmacology, New York Medical College School of Medicine, Valhalla (V.G., A.G., B.S., V.P., F.F.Z., M.L.S.); Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (R.D., S.K.G., N.R.R., J.R.F.); Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC (J.P.G., A.G., D.C.Z.); and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (J.H.C.)
| | - Darryl C Zeldin
- From the Department of Pharmacology, New York Medical College School of Medicine, Valhalla (V.G., A.G., B.S., V.P., F.F.Z., M.L.S.); Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (R.D., S.K.G., N.R.R., J.R.F.); Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC (J.P.G., A.G., D.C.Z.); and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (J.H.C.)
| | - Jorge H Capdevila
- From the Department of Pharmacology, New York Medical College School of Medicine, Valhalla (V.G., A.G., B.S., V.P., F.F.Z., M.L.S.); Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (R.D., S.K.G., N.R.R., J.R.F.); Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC (J.P.G., A.G., D.C.Z.); and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (J.H.C.)
| | - John R Falck
- From the Department of Pharmacology, New York Medical College School of Medicine, Valhalla (V.G., A.G., B.S., V.P., F.F.Z., M.L.S.); Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (R.D., S.K.G., N.R.R., J.R.F.); Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC (J.P.G., A.G., D.C.Z.); and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (J.H.C.)
| | - Michal Laniado Schwartzman
- From the Department of Pharmacology, New York Medical College School of Medicine, Valhalla (V.G., A.G., B.S., V.P., F.F.Z., M.L.S.); Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas (R.D., S.K.G., N.R.R., J.R.F.); Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC (J.P.G., A.G., D.C.Z.); and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (J.H.C.).
| |
Collapse
|
41
|
Huerta-Yépez S, Tirado-Rodriguez AB, Hankinson O. Role of diets rich in omega-3 and omega-6 in the development of cancer. BOLETIN MEDICO DEL HOSPITAL INFANTIL DE MEXICO 2016; 73:446-456. [PMID: 29421289 DOI: 10.1016/j.bmhimx.2016.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 10/10/2016] [Indexed: 12/14/2022] Open
Abstract
Over the past decade, some studies have addressed the therapeutic effects of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) and the opposite effects of omega-6 (ω-6) PUFAs on several diseases, including cardiovascular disorders, diabetes, neurodegenerative diseases, and cancer. Research demonstrates the safety of these naturally occurring ingredients. Of particular interest, several studies have shown that ω-3 PUFAs possess a therapeutic role against certain types of cancer. It is also known that ω-3 PUFAs can improve the efficacy and tolerability of chemotherapy. Previous reports have indicated that suppression of nuclear factor-κB, activation of AMPK/SIRT1, modulation of cyclooxygenase (COX) activity, and up-regulation of novel anti-inflammatory lipid mediators such as protectins, maresins, and resolvins, are the main mechanisms of the antineoplastic effect of ω-3 PUFAs. In contrast, several studies have demonstrated that ω-6 PUFAs induce progression in certain types of cancer. In this review, we discuss epidemiological and experimental studies addressing the relationship between the development of some types of cancer, including colon and colorectal carcinoma, breast cancer, prostate cancer, lung cancer and neuroblastoma, and the ingestion to ω-3 and ω-6 (PUFAs). We also discuss the clinical data, addressing the therapeutic role of omega-3 PUFA against different types of cancer.
Collapse
Affiliation(s)
- Sara Huerta-Yépez
- Department of Pathology & Laboratory Medicine, UCLA Medical Center, Center for the Health Sciences, Los Angeles, United States; Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Ana B Tirado-Rodriguez
- Department of Pathology & Laboratory Medicine, UCLA Medical Center, Center for the Health Sciences, Los Angeles, United States
| | - Oliver Hankinson
- Department of Pathology & Laboratory Medicine, UCLA Medical Center, Center for the Health Sciences, Los Angeles, United States.
| |
Collapse
|
42
|
Huerta-Yépez S, Tirado-Rodriguez AB, Hankinson O. Role of diets rich in omega-3 and omega-6 in the development of cancer. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.bmhime.2017.11.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
43
|
Dai SH, Li JF, Feng JB, Li RJ, Li CB, Li Z, Zhang Y, Li DQ. Association of serum levels of AngII, KLK1, and ACE/KLK1 polymorphisms with acute myocardial infarction induced by coronary artery stenosis. J Renin Angiotensin Aldosterone Syst 2016; 17:1470320316655037. [PMID: 27329205 PMCID: PMC5843928 DOI: 10.1177/1470320316655037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 05/15/2016] [Indexed: 01/11/2023] Open
Abstract
Introduction: The study aims to confirm the association of acute myocardial infarction (AMI) with serum angiotensin II (AngII), kallikrein1 (KLK1), and ACE/KLK1 polymorphisms. Materials and methods: Serum AngII/KLK1 levels and ACE and KLK1 genotypes were determined in 208 patients with AMI and 216 normal controls. Binary logistic regression was used for data analysis. Results: The differences in serum AngII levels were statistically significant between the groups. After adjusting for potential confounding factors, high serum levels of AngII and KLK1 significantly increased the risk of AMI. The individuals with ACE DD and KLK1 GG genotypes significantly increased the risk of AMI compared with those harboring the ACE II and KLK1 AA genotypes (OR = 8.77, 95% CI = 1.74–44.16). Conclusions: (1) Increasing the serum levels of AngII increased the risk of AMI. (2) The risk of AMI increased significantly when the serum levels of AngII and KLK1 simultaneously increased. (3) Individuals with the combined genotypes of ACE DD and KLK1 GG showed significantly increased risk of AMI compared with those with the combined genotypes of ACE II and KLK1 AA.
Collapse
Affiliation(s)
- Shu-hong Dai
- The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, China Department of cardiology, Qilu Hospital, Shandong University, China
| | - Ji-fu Li
- The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, China Department of cardiology, Qilu Hospital, Shandong University, China
| | - Jin-bo Feng
- Department of obstetrics and gynecology, Qilu Hospital, Shandong University, China
| | - Rui-jian Li
- Department of emergency, Qilu Hospital, Shandong University, China
| | - Chuan-bao Li
- Department of emergency, Qilu Hospital, Shandong University, China
| | - Zhuo Li
- The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, China Department of cardiology, Qilu Hospital, Shandong University, China
| | - Yun Zhang
- The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, China Department of cardiology, Qilu Hospital, Shandong University, China
| | - Da-qing Li
- The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, China Department of cardiology, Qilu Hospital, Shandong University, China
| |
Collapse
|
44
|
Savas Ü, Wei S, Hsu MH, Falck JR, Guengerich FP, Capdevila JH, Johnson EF. 20-Hydroxyeicosatetraenoic Acid (HETE)-dependent Hypertension in Human Cytochrome P450 (CYP) 4A11 Transgenic Mice: NORMALIZATION OF BLOOD PRESSURE BY SODIUM RESTRICTION, HYDROCHLOROTHIAZIDE, OR BLOCKADE OF THE TYPE 1 ANGIOTENSIN II RECEPTOR. J Biol Chem 2016; 291:16904-19. [PMID: 27298316 DOI: 10.1074/jbc.m116.732297] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Indexed: 11/06/2022] Open
Abstract
Male and female homozygous 129/Sv mice carrying four copies of the human cytochrome P450 4A11 gene (CYP4A11) under control of its native promoter (B-129/Sv-4A11(+/+)) develop hypertension (142 ± 8 versus 113 ± 7 mm Hg systolic blood pressure (BP)), and exhibit increased 20-hydroxyeicosatetraenoic acid (20-HETE) in kidney and urine. The hypertension is reversible by a low-sodium diet and by the CYP4A inhibitor HET0016. B-129/Sv-4A11(+/+) mice display an 18% increase of plasma potassium (p < 0.02), but plasma aldosterone, angiotensin II (ANGII), and renin activities are unchanged. This phenotype resembles human genetic disorders with elevated activity of the sodium chloride co-transporter (NCC) and, accordingly, NCC abundance is increased by 50% in transgenic mice, and NCC levels are normalized by HET0016. ANGII is known to increase NCC abundance, and renal mRNA levels of its precursor angiotensinogen are increased 2-fold in B-129/Sv-4A11(+/+), and blockade of the ANGII receptor type 1 with losartan normalizes BP. A pro-hypertensive role for 20-HETE was implicated by normalization of BP and reversal of renal angiotensin mRNA increases by administration of the 20-HETE antagonists 2-((6Z,15Z)-20-hydroxyicosa-6,15-dienamido)acetate or (S)-2-((6Z,15Z)-20-hydroxyicosa-6,15-dienamido)succinate. SGK1 expression is also increased in B-129/Sv-4A11(+/+) mice and paralleled increases seen for NCC. Losartan, HET0016, and 20-HETE antagonists each normalized SGK1 mRNA expression. These results point to a potential 20-HETE dependence of intrarenal angiotensinogen production and ANGII receptor type 1 activation that are associated with increases in NCC and SGK1 and identify elevated P450 4A11 activity and 20-HETE as potential risk factors for salt-sensitive human hypertension by perturbation of the renal renin-angiotensin axis.
Collapse
Affiliation(s)
- Üzen Savas
- From the Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037
| | | | - Mei-Hui Hsu
- From the Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037
| | - John R Falck
- the Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - F Peter Guengerich
- Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, and
| | | | - Eric F Johnson
- From the Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037,
| |
Collapse
|
45
|
The role of 20-HETE in cardiovascular diseases and its risk factors. Prostaglandins Other Lipid Mediat 2016; 125:108-17. [PMID: 27287720 DOI: 10.1016/j.prostaglandins.2016.05.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/20/2016] [Accepted: 05/31/2016] [Indexed: 01/03/2023]
Abstract
Arachidonic acid (AA) is metabolized in mammals by enzymes of the CYP4A and 4F families to 20-hydroxyeicosatetraeonic acid (20-HETE) which plays an important role in the regulation of renal function, vascular tone and arterial pressure. In the vasculature, 20-HETE is a potent vasoconstrictor, the up-regulation of which contributes to inflammation, oxidative stress, endothelial dysfunction and an increase in peripheral vascular resistance in models of obesity, diabetes, ischemia/reperfusion, and vascular oxidative stress. Recent studies have established a role for 20-HETE in normal and pathological angiogenic conditions. We discuss in this review the synthesis of 20-HETE and how it and various autacoids, especially the renin-angiotensin system, interact to promote hypertension, vasoconstriction, and vascular dysfunction. In addition, we examine the molecular mechanisms through which 20-HETE induces these actions and the clinical implication of inhibiting 20-HETE production and activity.
Collapse
|