1
|
Davis AG, Pluth MD. Experimental Insights into the Formation, Reactivity, and Crosstalk of Thionitrite (SNO -) and Perthionitrite (SSNO -). Angew Chem Int Ed Engl 2025; 64:e202413092. [PMID: 39352837 DOI: 10.1002/anie.202413092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/18/2024] [Accepted: 10/01/2024] [Indexed: 10/04/2024]
Abstract
Hydrogen sulfide (H2S) and nitric oxide (NO) are important gaseous biological signaling molecules that are involved in complex cellular pathways. A number of physiological processes require both H2S and NO, which has led to the proposal that different H2S/NO⋅ crosstalk species, including thionitrite (SNO-) and perthionitrite (SSNO-), are responsible for this observed codependence. Despite the importance of these S/N hybrid species, the reported properties and characterization, as well as the fundamental pathways of formation and subsequent reactivity, remain poorly understood. Herein we report new experimental insights into the fundamental reaction chemistry of pathways to form SNO- and SSNO-, including mechanisms for proton-mediated interconversion. In addition, we demonstrate new modes of reactivity with other sulfur-containing potential crosstalk species, including carbonyl sulfide (COS).
Collapse
Affiliation(s)
- Amanda G Davis
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, 1253 University of Oregon, Eugene, Oregon, 97403, United States
| | - Michael D Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, 1253 University of Oregon, Eugene, Oregon, 97403, United States
| |
Collapse
|
2
|
Novakovic J, Muric M, Bradic J, Ramenskaya G, Jakovljevic V, Jeremic N. Diallyl Trisulfide and Cardiovascular Health: Evidence and Potential Molecular Mechanisms. Int J Mol Sci 2024; 25:9831. [PMID: 39337318 PMCID: PMC11431890 DOI: 10.3390/ijms25189831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Traditionally, garlic has a valuable role in preventing and reducing the incidence of many diseases and pathophysiological disorders. Consequently, some researchers have focused on the beneficial cardiovascular properties of diallyl trisulfide (DATS), the most potent polysulfide isolated from garlic. Therefore, in this review, we collected the available data on DATS, its biochemical synthesis, metabolism and pharmacokinetics, and gathered the current knowledge and the role of DATS in cardiovascular diseases. Overall, this review summarizes the cardioprotective effects of DATS and brings together all previous findings on its protective molecular mechanisms, which are mainly based on the potent anti-apoptotic, anti-inflammatory, and antioxidant potential of this polysulfide. Our review is an important cornerstone for further basic and clinical research on DATS as a new therapeutic agent for the treatment of numerous heart diseases.
Collapse
Affiliation(s)
- Jovana Novakovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Maja Muric
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Jovana Bradic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Galina Ramenskaya
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Vladimir Jakovljevic
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Nevena Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
3
|
Corvino A, Scognamiglio A, Fiorino F, Perissutti E, Santagada V, Caliendo G, Severino B. Pills of Multi-Target H 2S Donating Molecules for Complex Diseases. Int J Mol Sci 2024; 25:7014. [PMID: 39000122 PMCID: PMC11240940 DOI: 10.3390/ijms25137014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Among the various drug discovery methods, a very promising modern approach consists in designing multi-target-directed ligands (MTDLs) able to modulate multiple targets of interest, including the pathways where hydrogen sulfide (H2S) is involved. By incorporating an H2S donor moiety into a native drug, researchers have been able to simultaneously target multiple therapeutic pathways, resulting in improved treatment outcomes. This review gives the reader some pills of successful multi-target H2S-donating molecules as worthwhile tools to combat the multifactorial nature of complex disorders, such as inflammatory-based diseases and cancer, as well as cardiovascular, metabolic, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Angela Corvino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy; (A.S.); (F.F.); (E.P.); (V.S.); (G.C.); (B.S.)
| | | | | | | | | | | | | |
Collapse
|
4
|
Ravani S, Chatzianastasiou A, Papapetropoulos A. Using mechanism-based combinations of H 2S-donors to maximize the cardioprotective action of H 2S. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1853-1864. [PMID: 37773523 PMCID: PMC10858931 DOI: 10.1007/s00210-023-02729-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
H2S-donors are cardioprotective in ischemia/reperfusion (I/R) injury. Some H2S-donors exert their beneficial effects in a nitric oxide (NO)-dependent manner, while others act using NO-independent pathways. The aims of the present study were to (i) evaluate whether H2S-donors with distinct pharmacodynamic properties act synergistically in I/R injury and (ii) determine if H2S-donors remain cardioprotective in obese mice. C57BL/6 mice were subjected to 30 min of ischemia followed by 120 min of reperfusion. Donors were administered intravenously at the end of ischemia (Na2S: 1 μmol/kg, GYY4137: 25 μmol/kg, AP39: 0,25 μmol/kg), while the 3-mercaptopyruvate sulfurtransferase (10 mg/kg) inhibitor was given intraperitonially 1 h prior to ischemia. Infarct size was estimated by 2,3,5-triphenyltetrazolium staining, while the area at risk was calculated using Evans blue. All three donors reduced infarct size when administered as a sole treatment. Co-administration of Na2S/GYY4137, as well as Na2S/AP39 reduced further the I/R injury, beyond what was observed with each individual donor. Since inhibition of the H2S-producing enzyme 3-mercaptopyruvate sulfurtransferase is known to reduce infarct size, we co-administered C3 with Na2S to determine possible additive effects between the two agents. In this case, combination of C3 with Na2S did not yield superior results compared to the individual treatments. Similarly, to what was observed in healthy mice, administration of a H2S-donor (Na2S or AP39) reduced I/R injury in mice rendered obese by consumption of a high fat diet. We conclude that combining a NO-dependent with a NO-independent H2S-donor leads to enhanced cardioprotection and that H2S-donors remain effective in obese animals.
Collapse
Affiliation(s)
- Stella Ravani
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasia Chatzianastasiou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Papapetropoulos
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
5
|
Łoboda A, Dulak J. Cardioprotective Effects of Hydrogen Sulfide and Its Potential Therapeutic Implications in the Amelioration of Duchenne Muscular Dystrophy Cardiomyopathy. Cells 2024; 13:158. [PMID: 38247849 PMCID: PMC10814317 DOI: 10.3390/cells13020158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Hydrogen sulfide (H2S) belongs to the family of gasotransmitters and can modulate a myriad of biological signaling pathways. Among others, its cardioprotective effects, through antioxidant, anti-inflammatory, anti-fibrotic, and proangiogenic activities, are well-documented in experimental studies. Cardiorespiratory failure, predominantly cardiomyopathy, is a life-threatening complication that is the number one cause of death in patients with Duchenne muscular dystrophy (DMD). Although recent data suggest the role of H2S in ameliorating muscle wasting in murine and Caenorhabditis elegans models of DMD, possible cardioprotective effects have not yet been addressed. In this review, we summarize the current understanding of the role of H2S in animal models of cardiac dysfunctions and cardiac cells. We highlight that DMD may be amenable to H2S supplementation, and we suggest H2S as a possible factor regulating DMD-associated cardiomyopathy.
Collapse
Affiliation(s)
- Agnieszka Łoboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7 Street, 30-387 Kraków, Poland;
| | | |
Collapse
|
6
|
Hunter CE, Mesfin FM, Manohar K, Liu J, Shelley WC, Brokaw JP, Pecoraro AR, Hosfield BD, Markel TA. Hydrogen Sulfide Improves Outcomes in a Murine Model of Necrotizing Enterocolitis via the Cys440 Residue on Endothelial Nitric Oxide Synthase. J Pediatr Surg 2023; 58:2391-2398. [PMID: 37684170 PMCID: PMC10841167 DOI: 10.1016/j.jpedsurg.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/31/2023] [Accepted: 08/13/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND Hydrogen sulfide (H2S) has been shown to improve outcomes in a murine model of necrotizing enterocolitis (NEC). There is evidence in humans that H2S relies on endothelial nitric oxide synthase (eNOS) to exert its protective effects, potentially through the persulfidation of eNOS at the Cysteine 443 residue. We obtained a novel mouse strain with a mutation at this residue (eNOSC440G) and hypothesized that this locus would be critical for GYY4137 (an H2S donor) to exert its protective effects. METHODS Necrotizing enterocolitis was induced in 5-day old wild type (WT) and eNOSC440G mice using intermittent exposure to hypoxia and hypothermia in addition to gavage formula feeds. On postnatal day 9, mice were humanely euthanized. Data collected included daily weights, clinical sickness scores, histologic lung injury, intestinal injury (macroscopically and histologically), and intestinal perfusion. During the NEC model, pups received daily intraperitoneal injections of either GYY4137 (50 mg/kg) or PBS (vehicle). Data were tested for normality and compared using t-test or Mann-Whitney, and a p-value <0.05 was considered significant. RESULTS In WT mice, the administration of GYY4137 significantly improved clinical sickness scores, attenuated intestinal and lung injury, and improved mesenteric perfusion compared to vehicle (p < 0.05). In eNOSC440G mice, the treatment and vehicle groups had similar clinical sickness scores, intestinal and lung injury scores, and intestinal perfusion. CONCLUSIONS GYY4137 administration improves clinical outcomes, attenuates intestinal and lung injury, and improves perfusion in a murine model of necrotizing enterocolitis. The beneficial effects of GYY4137 are dependent on the Cys440 residue of eNOS.
Collapse
Affiliation(s)
- Chelsea E Hunter
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fikir M Mesfin
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Krishna Manohar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jianyun Liu
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - John P Brokaw
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anthony R Pecoraro
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Brian D Hosfield
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Troy A Markel
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA; Riley Hospital for Children at Indiana University Health, Indianapolis, IN, USA.
| |
Collapse
|
7
|
Nikolaou PE, Lambrinidis G, Georgiou M, Karagiannis D, Efentakis P, Bessis-Lazarou P, Founta K, Kampoukos S, Konstantin V, Palmeira CM, Davidson SM, Lougiakis N, Marakos P, Pouli N, Mikros E, Andreadou I. Hydrolytic Activity of Mitochondrial F 1F O-ATP Synthase as a Target for Myocardial Ischemia-Reperfusion Injury: Discovery and In Vitro and In Vivo Evaluation of Novel Inhibitors. J Med Chem 2023; 66:15115-15140. [PMID: 37943012 DOI: 10.1021/acs.jmedchem.3c01048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
F1FO-ATP synthase is the mitochondrial complex responsible for ATP production. During myocardial ischemia, it reverses its activity, hydrolyzing ATP and leading to energetic deficit and cardiac injury. We aimed to discover novel inhibitors of ATP hydrolysis, accessing the druggability of the target within ischemia(I)/reperfusion(R) injury. New molecular scaffolds were revealed using ligand-based virtual screening methods. Fifty-five compounds were tested on isolated murine heart mitochondria and H9c2 cells for their inhibitory activity. A pyrazolo[3,4-c]pyridine hit structure was identified and optimized in a hit-to-lead process synthesizing nine novel derivatives. Three derivatives significantly inhibited ATP hydrolysis in vitro, while in vivo, they reduced myocardial infarct size (IS). The novel compound 31 was the most effective in reducing IS, validating that inhibition of F1FO-ATP hydrolytic activity can serve as a target for cardioprotection during ischemia. Further examination of signaling pathways revealed that the cardioprotection mechanism is related to the increased ATP content in the ischemic myocardium and increased phosphorylation of PKA and phospholamban, leading to the reduction of apoptosis.
Collapse
Affiliation(s)
- Panagiota-Efstathia Nikolaou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - George Lambrinidis
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Maria Georgiou
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Dimitrios Karagiannis
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Panagiotis Efentakis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Pavlos Bessis-Lazarou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Konstantina Founta
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Stavros Kampoukos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Vasilis Konstantin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Carlos M Palmeira
- Department of Life Sciences, University of Coimbra and Center for Neurosciences and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, WC1E 6HX London, United Kingdom
| | - Nikolaos Lougiakis
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Panagiotis Marakos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Nicole Pouli
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Emmanuel Mikros
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
- Athena Research and Innovation Center in Information Communication & Knowledge Technologies, 15125 Marousi, Greece
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| |
Collapse
|
8
|
Heusch G, Andreadou I, Bell R, Bertero E, Botker HE, Davidson SM, Downey J, Eaton P, Ferdinandy P, Gersh BJ, Giacca M, Hausenloy DJ, Ibanez B, Krieg T, Maack C, Schulz R, Sellke F, Shah AM, Thiele H, Yellon DM, Di Lisa F. Health position paper and redox perspectives on reactive oxygen species as signals and targets of cardioprotection. Redox Biol 2023; 67:102894. [PMID: 37839355 PMCID: PMC10590874 DOI: 10.1016/j.redox.2023.102894] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/04/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
The present review summarizes the beneficial and detrimental roles of reactive oxygen species in myocardial ischemia/reperfusion injury and cardioprotection. In the first part, the continued need for cardioprotection beyond that by rapid reperfusion of acute myocardial infarction is emphasized. Then, pathomechanisms of myocardial ischemia/reperfusion to the myocardium and the coronary circulation and the different modes of cell death in myocardial infarction are characterized. Different mechanical and pharmacological interventions to protect the ischemic/reperfused myocardium in elective percutaneous coronary interventions and coronary artery bypass grafting, in acute myocardial infarction and in cardiotoxicity from cancer therapy are detailed. The second part keeps the focus on ROS providing a comprehensive overview of molecular and cellular mechanisms involved in ischemia/reperfusion injury. Starting from mitochondria as the main sources and targets of ROS in ischemic/reperfused myocardium, a complex network of cellular and extracellular processes is discussed, including relationships with Ca2+ homeostasis, thiol group redox balance, hydrogen sulfide modulation, cross-talk with NAPDH oxidases, exosomes, cytokines and growth factors. While mechanistic insights are needed to improve our current therapeutic approaches, advancements in knowledge of ROS-mediated processes indicate that detrimental facets of oxidative stress are opposed by ROS requirement for physiological and protective reactions. This inevitable contrast is likely to underlie unsuccessful clinical trials and limits the development of novel cardioprotective interventions simply based upon ROS removal.
Collapse
Affiliation(s)
- Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany.
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Robert Bell
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom
| | - Edoardo Bertero
- Chair of Cardiovascular Disease, Department of Internal Medicine and Specialties, University of Genova, Genova, Italy
| | - Hans-Erik Botker
- Department of Cardiology, Institute for Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom
| | - James Downey
- Department of Physiology, University of South Alabama, Mobile, AL, USA
| | - Philip Eaton
- William Harvey Research Institute, Queen Mary University of London, Heart Centre, Charterhouse Square, London, United Kingdom
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Bernard J Gersh
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Mauro Giacca
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College, London, United Kingdom
| | - Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom; Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, National Heart Research Institute Singapore, National Heart Centre, Yong Loo Lin School of Medicine, National University Singapore, Singapore
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital, and CIBERCV, Madrid, Spain
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic Würzburg, Würzburg, Germany
| | - Rainer Schulz
- Institute for Physiology, Justus-Liebig -Universität, Giessen, Germany
| | - Frank Sellke
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Ajay M Shah
- King's College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | - Holger Thiele
- Heart Center Leipzig at University of Leipzig and Leipzig Heart Science, Leipzig, Germany
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom
| | - Fabio Di Lisa
- Dipartimento di Scienze Biomediche, Università degli studi di Padova, Padova, Italy.
| |
Collapse
|
9
|
Siatra P, Vatsellas G, Chatzianastasiou A, Balafas E, Manolakou T, Papapetropoulos A, Agapaki A, Mouchtouri ET, Ruchaya PJ, Korovesi AG, Mavroidis M, Thanos D, Beis D, Kokkinopoulos I. Return of the Tbx5; lineage-tracing reveals ventricular cardiomyocyte-like precursors in the injured adult mammalian heart. NPJ Regen Med 2023; 8:13. [PMID: 36869039 PMCID: PMC9984483 DOI: 10.1038/s41536-023-00280-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 01/25/2023] [Indexed: 03/05/2023] Open
Abstract
The single curative measure for heart failure patients is a heart transplantation, which is limited due to a shortage of donors, the need for immunosuppression and economic costs. Therefore, there is an urgent unmet need for identifying cell populations capable of cardiac regeneration that we will be able to trace and monitor. Injury to the adult mammalian cardiac muscle, often leads to a heart attack through the irreversible loss of a large number of cardiomyocytes, due to an idle regenerative capability. Recent reports in zebrafish indicate that Tbx5a is a vital transcription factor for cardiomyocyte regeneration. Preclinical data underscore the cardioprotective role of Tbx5 upon heart failure. Data from our earlier murine developmental studies have identified a prominent unipotent Tbx5-expressing embryonic cardiac precursor cell population able to form cardiomyocytes, in vivo, in vitro and ex vivo. Using a developmental approach to an adult heart injury model and by employing a lineage-tracing mouse model as well as the use of single-cell RNA-seq technology, we identify a Tbx5-expressing ventricular cardiomyocyte-like precursor population, in the injured adult mammalian heart. The transcriptional profile of that precursor cell population is closer to that of neonatal than embryonic cardiomyocyte precursors. Tbx5, a cardinal cardiac development transcription factor, lies in the center of a ventricular adult precursor cell population, which seems to be affected by neurohormonal spatiotemporal cues. The identification of a Tbx5-specific cardiomyocyte precursor-like cell population, which is capable of dedifferentiating and potentially deploying a cardiomyocyte regenerative program, provides a clear target cell population for translationally-relevant heart interventional studies.
Collapse
Affiliation(s)
- Panagiota Siatra
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Giannis Vatsellas
- Center for Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
- Greek Genome Center, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Athanasia Chatzianastasiou
- Department of Pharmacy, Laboratory of Pharmacology, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Balafas
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Theodora Manolakou
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Andreas Papapetropoulos
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
- Department of Pharmacy, Laboratory of Pharmacology, National and Kapodistrian University of Athens, Athens, Greece
| | - Anna Agapaki
- Histochemistry Facility, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | | | - Prashant J Ruchaya
- School of Health, Sport and Biosciences, University of East London, London, UK
| | - Artemis G Korovesi
- Center for Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
- Greek Genome Center, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Manolis Mavroidis
- Center for Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Dimitrios Thanos
- Center for Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
- Greek Genome Center, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Dimitris Beis
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Ioannis Kokkinopoulos
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece.
| |
Collapse
|
10
|
Pedriali G, Ramaccini D, Bouhamida E, Wieckowski MR, Giorgi C, Tremoli E, Pinton P. Perspectives on mitochondrial relevance in cardiac ischemia/reperfusion injury. Front Cell Dev Biol 2022; 10:1082095. [PMID: 36561366 PMCID: PMC9763599 DOI: 10.3389/fcell.2022.1082095] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease is the most common cause of death worldwide and in particular, ischemic heart disease holds the most considerable position. Even if it has been deeply studied, myocardial ischemia-reperfusion injury (IRI) is still a side-effect of the clinical treatment for several heart diseases: ischemia process itself leads to temporary damage to heart tissue and obviously the recovery of blood flow is promptly required even if it worsens the ischemic injury. There is no doubt that mitochondria play a key role in pathogenesis of IRI: dysfunctions of these important organelles alter cell homeostasis and survival. It has been demonstrated that during IRI the system of mitochondrial quality control undergoes alterations with the disruption of the complex balance between the processes of mitochondrial fusion, fission, biogenesis and mitophagy. The fundamental role of mitochondria is carried out thanks to the finely regulated connection to other organelles such as plasma membrane, endoplasmic reticulum and nucleus, therefore impairments of these inter-organelle communications exacerbate IRI. This review pointed to enhance the importance of the mitochondrial network in the pathogenesis of IRI with the aim to focus on potential mitochondria-targeting therapies as new approach to control heart tissue damage after ischemia and reperfusion process.
Collapse
Affiliation(s)
- Gaia Pedriali
- Maria Cecilia Hospital, GVM Care and Research, Cotignola, Italy
| | | | - Esmaa Bouhamida
- Maria Cecilia Hospital, GVM Care and Research, Cotignola, Italy
| | - Mariusz R. Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Carlotta Giorgi
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Science, Section of Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Elena Tremoli
- Maria Cecilia Hospital, GVM Care and Research, Cotignola, Italy,*Correspondence: Paolo Pinton, ; Elena Tremoli,
| | - Paolo Pinton
- Maria Cecilia Hospital, GVM Care and Research, Cotignola, Italy,Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Science, Section of Experimental Medicine, University of Ferrara, Ferrara, Italy,*Correspondence: Paolo Pinton, ; Elena Tremoli,
| |
Collapse
|
11
|
Yang Z, Wang X, Feng J, Zhu S. Biological Functions of Hydrogen Sulfide in Plants. Int J Mol Sci 2022; 23:ijms232315107. [PMID: 36499443 PMCID: PMC9736554 DOI: 10.3390/ijms232315107] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/27/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
Hydrogen sulfide (H2S), which is a gasotransmitter, can be biosynthesized and participates in various physiological and biochemical processes in plants. H2S also positively affects plants' adaptation to abiotic stresses. Here, we summarize the specific ways in which H2S is endogenously synthesized and metabolized in plants, along with the agents and methods used for H2S research, and outline the progress of research on the regulation of H2S on plant metabolism and morphogenesis, abiotic stress tolerance, and the series of different post-translational modifications (PTMs) in which H2S is involved, to provide a reference for future research on the mechanism of H2S action.
Collapse
Affiliation(s)
- Zhifeng Yang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai’an 271018, China
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832000, China
| | - Xiaoyu Wang
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832000, China
| | - Jianrong Feng
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832000, China
| | - Shuhua Zhu
- College of Chemistry and Material Science, Shandong Agricultural University, Tai’an 271018, China
- Correspondence:
| |
Collapse
|
12
|
Balamurugan K, Chandra K, Sai Latha S, Swathi M, Joshi MB, Misra P, Parsa KVL. PHLPPs: Emerging players in metabolic disorders. Drug Discov Today 2022; 27:103317. [PMID: 35835313 DOI: 10.1016/j.drudis.2022.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/21/2022] [Accepted: 07/07/2022] [Indexed: 12/15/2022]
Abstract
That reversible protein phosphorylation by kinases and phosphatases occurs in metabolic disorders is well known. Various studies have revealed that a multi-faceted and tightly regulated phosphatase, pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP)-1/2 displays robust effects in cardioprotection, ischaemia/reperfusion (I/R), and vascular remodelling. PHLPP1 promotes foamy macrophage development through ChREBP/AMPK-dependent pathways. Adipocyte-specific loss of PHLPP2 reduces adiposity, improves glucose tolerance,and attenuates fatty liver via the PHLPP2-HSL-PPARα axis. Discoveries of PHLPP1-mediated insulin resistance and pancreatic β cell death via the PHLPP1/2-Mst1-mTORC1 triangular loop have shed light on its significance in diabetology. PHLPP1 downregulation attenuates diabetic cardiomyopathy (DCM) by restoring PI3K-Akt-mTOR signalling. In this review, we summarise the functional role of, and cellular signalling mediated by, PHLPPs in metabolic tissues and discuss their potential as therapeutic targets.
Collapse
Affiliation(s)
- Keerthana Balamurugan
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences (DRILS), University of Hyderabad Campus, Hyderabad 500046, Telangana, India; Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Kanika Chandra
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences (DRILS), University of Hyderabad Campus, Hyderabad 500046, Telangana, India; Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - S Sai Latha
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences (DRILS), University of Hyderabad Campus, Hyderabad 500046, Telangana, India
| | - M Swathi
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences (DRILS), University of Hyderabad Campus, Hyderabad 500046, Telangana, India
| | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Parimal Misra
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences (DRILS), University of Hyderabad Campus, Hyderabad 500046, Telangana, India
| | - Kishore V L Parsa
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences (DRILS), University of Hyderabad Campus, Hyderabad 500046, Telangana, India.
| |
Collapse
|
13
|
Leivaditis V, Koletsis E, Tsopanoglou N, Charokopos N, D’Alessandro C, Grapatsas K, Apostolakis E, Choleva E, Plota M, Emmanuil A, Dahm M, Dougenis D. The Coadministration of Levosimendan and Exenatide Offers a Significant Cardioprotective Effect to Isolated Rat Hearts against Ischemia/Reperfusion Injury. J Cardiovasc Dev Dis 2022; 9:jcdd9080263. [PMID: 36005427 PMCID: PMC9409795 DOI: 10.3390/jcdd9080263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/04/2022] [Accepted: 08/11/2022] [Indexed: 11/25/2022] Open
Abstract
(1) Background: The present study aims to investigate the effect of administration of Levosimendan and Exenatide in various concentrations, as well as of the coadministration of those agents in an ischemia–reperfusion injury isolated heart model. (2) Methods: After 30 min of perfusion, the hearts underwent a 30 min period of regional ischemia followed by a 120 min period of reperfusion. All animals were randomly divided into 12 experimental groups of nine animals in each group: (1) Control, (2) Sham, (3) Digox (Negative control, Digoxin 1.67 μg/min), (4) Levo 1 (Levosimendan 0.01 μg/min), (5) Levo 2 (Levosimendan 0.03 μg/mL), (6) Levo 3 (Levosimendan 0.1 μg/min), (7) Levo 4 (Levosimendan 0.3 μg/min), (8) Levo 5 (Levosimendan 1 μg/min), (9) Exen 1 (Exenatide 0.001 μg/min), (10) Exen 2 (Exenatide 0.01 μg/min), (11) Exen 3 (Exenatide 0.1 μg/min) and (12) Combi (Levosimendan 0.1 µg/mL + Exenatide 0.001 μg/min). The hemodynamic parameters were recorded throughout the experiment. Arrhythmias and coronary flow were also evaluated. After every experiment the heart was suitably prepared and infarct size was measured. Markers of myocardial injury were also measured. Finally, oxidative stress was evaluated measuring reactive oxygen species. (3) Results: A dose-dependent improvement of the haemodynamic response was observed after the administration of both Levosimendan and Exenatide. The coadministration of both agents presented an even greater effect, improving the haemodynamic parameters further than the two agents separately. Levosimendan offered an increase of the coronary flow and both agents offered a reduction of arrhythmias. A dose-dependent reduction of the size of myocardial infarction and myocardial injury was observed after administration of Levosimendan and Exenatide. The coadministration of both agents offered a further improving the above parameters. Levosimendan also offered a significant reduction of oxidative stress. (4) Conclusions: The administration of Levosimendan and Exenatide offers a significant benefit by improving the haemodynamic response, increasing the coronary flow and reducing the occurrence of arrhythmias, the size of myocardial injury and myocardial oxidative stress in isolated rat hearts.
Collapse
Affiliation(s)
- Vasileios Leivaditis
- Department of Cardiothoracic and Vascular Surgery, Westpfalz-Klinikum, Hellmut-Hartert-Strasse 1, 67655 Kaiserslautern, Germany
- Department of Cardiothoracic Surgery, University Hospital of Patras, 26504 Patras, Greece
- Correspondence: ; Tel.: +49-151-50225145
| | - Efstratios Koletsis
- Department of Cardiothoracic Surgery, University Hospital of Patras, 26504 Patras, Greece
| | - Nikolaos Tsopanoglou
- Department of Pharmacology, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Nikolaos Charokopos
- Department of Cardiothoracic Surgery, University Hospital of Patras, 26504 Patras, Greece
| | - Cristian D’Alessandro
- Laboratory of Biomechanics & Biomedical Engineering, Department of Mechanical Engineering & Aeronautics, University of Patras, 26504 Patras, Greece
| | - Konstantinos Grapatsas
- Department of Thoracic Surgery, Medical Center-University of Freiburg, Faculty of Medicine, 79106 Freiburg, Germany
| | - Efstratios Apostolakis
- Department of Cardiothoracic Surgery, University Hospital of Ioannina, 45500 Ioannina, Greece
| | - Effrosyni Choleva
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, 26504 Patras, Greece
| | - Maria Plota
- Department of Microbiology, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Andreas Emmanuil
- Laboratory of Hematology, University Hospital of Patras, 26504 Patras, Greece
| | - Manfred Dahm
- Department of Cardiothoracic and Vascular Surgery, Westpfalz-Klinikum, Hellmut-Hartert-Strasse 1, 67655 Kaiserslautern, Germany
| | - Dimitrios Dougenis
- Department of Cardiothoracic Surgery, Attikon University Hospital of Athens, 12462 Athens, Greece
| |
Collapse
|
14
|
Lohakul J, Jeayeng S, Chaiprasongsuk A, Torregrossa R, Wood ME, Saelim M, Thangboonjit W, Whiteman M, Panich U. Mitochondria-Targeted Hydrogen Sulfide Delivery Molecules Protect Against UVA-Induced Photoaging in Human Dermal Fibroblasts, and in Mouse Skin In Vivo. Antioxid Redox Signal 2022; 36:1268-1288. [PMID: 34235951 DOI: 10.1089/ars.2020.8255] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aims: Oxidative stress and mitochondrial dysfunction play a role in the process of skin photoaging via activation of matrix metalloproteases (MMPs) and the subsequent degradation of collagen. The activation of nuclear factor E2-related factor 2 (Nrf2), a transcription factor controlling antioxidant and cytoprotective defense systems, might offer a pharmacological approach to prevent skin photoaging. We therefore investigated a pharmacological approach to prevent skin photoaging, and also investigated a protective effect of the novel mitochondria-targeted hydrogen sulfide (H2S) delivery molecules AP39 and AP123, and nontargeted control molecules, on ultraviolet A light (UVA)-induced photoaging in normal human dermal fibroblasts (NHDFs) in vitro and the skin of BALB/c mice in vivo. Results: In NHDFs, AP39 and AP123 (50-200 nM) but not nontargeted controls suppressed UVA (8 J/cm2)-mediated cytotoxicity and induction of MMP-1 activity, preserved cellular bioenergetics, and increased the expression of collagen and nuclear levels of Nrf2. In in vivo experiments, topical application of AP39 or AP123 (0.3-1 μM/cm2; but not nontargeted control molecules) to mouse skin before UVA (60 J/cm2) irradiation prevented skin thickening, MMP induction, collagen loss of oxidative stress markers 8-hydroxy-2'-deoxyguanosine (8-OHdG), increased Nrf2-dependent signaling, as well as increased manganese superoxide dismutase levels and levels of the mitochondrial biogenesis marker peroxisome proliferator-activated receptor-gamma coactivator (PGC-1α). Innovation and Conclusion: Targeting H2S delivery to mitochondria may represent a novel approach for the prevention and treatment of skin photoaging, as well as being useful tools for determining the role of mitochondrial H2S in skin disorders and aging. Antioxid. Redox Signal. 36, 1268-1288.
Collapse
Affiliation(s)
- Jinapath Lohakul
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Saowanee Jeayeng
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Anyamanee Chaiprasongsuk
- Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | | | - Mark E Wood
- University of Exeter Medical School, Exeter, United Kingdom
| | - Malinee Saelim
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Weerawon Thangboonjit
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Uraiwan Panich
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
15
|
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiol Rev 2022; 103:31-276. [DOI: 10.1152/physrev.00028.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
H2S belongs to the class of molecules known as gasotransmitters, which also includes nitric oxide (NO) and carbon monoxide (CO). Three enzymes are recognized as endogenous sources of H2S in various cells and tissues: cystathionine g-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current article reviews the regulation of these enzymes as well as the pathways of their enzymatic and non-enzymatic degradation and elimination. The multiple interactions of H2S with other labile endogenous molecules (e.g. NO) and reactive oxygen species are also outlined. The various biological targets and signaling pathways are discussed, with special reference to H2S and oxidative posttranscriptional modification of proteins, the effect of H2S on channels and intracellular second messenger pathways, the regulation of gene transcription and translation and the regulation of cellular bioenergetics and metabolism. The pharmacological and molecular tools currently available to study H2S physiology are also reviewed, including their utility and limitations. In subsequent sections, the role of H2S in the regulation of various physiological and cellular functions is reviewed. The physiological role of H2S in various cell types and organ systems are overviewed. Finally, the role of H2S in the regulation of various organ functions is discussed as well as the characteristic bell-shaped biphasic effects of H2S. In addition, key pathophysiological aspects, debated areas, and future research and translational areas are identified A wide array of significant roles of H2S in the physiological regulation of all organ functions emerges from this review.
Collapse
Affiliation(s)
- Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece & Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
16
|
da Costa Marques LA, Teixeira SA, de Jesus FN, Wood ME, Torregrossa R, Whiteman M, Costa SKP, Muscará MN. Vasorelaxant Activity of AP39, a Mitochondria-Targeted H 2S Donor, on Mouse Mesenteric Artery Rings In Vitro. Biomolecules 2022; 12:280. [PMID: 35204781 PMCID: PMC8961640 DOI: 10.3390/biom12020280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/21/2022] [Accepted: 01/29/2022] [Indexed: 02/01/2023] Open
Abstract
Mitochondria-targeted hydrogen sulfide (H2S) donor compounds, such as compound AP39, supply H2S into the mitochondrial environment and have shown several beneficial in vitro and in vivo effects in cardiovascular conditions such as diabetes and hypertension. However, the study of their direct vascular effects has not been addressed to date. Thus, the objective of the present study was to analyze the effects and describe the mechanisms of action of AP39 on the in vitro vascular reactivity of mouse mesenteric artery. Protein and gene expressions of the H2S-producing enzymes (CBS, CSE, and 3MPST) were respectively analyzed by Western blot and qualitative RT-PCR, as well the in vitro production of H2S by mesenteric artery homogenates. Gene expression of CSE and 3MPST in the vessels has been evidenced by RT-PCR experiments, whereas the protein expression of all the three enzymes was demonstrated by Western blotting experiments. Nonselective inhibition of H2S-producing enzymes by AOAA abolished H2S production, whereas it was partially inhibited by PAG (a CSE selective inhibitor). Vasorelaxation promoted by AP39 and its H2S-releasing moiety (ADT-OH) were significantly reduced after endothelium removal, specifically dependent on NO-cGMP signaling and SKCa channel opening. Endogenous H2S seems to participate in the mechanism of action of AP39, and glibenclamide-induced KATP blockade did not affect the vasorelaxant response. Considering the results of the present study and the previously demonstrated antioxidant and bioenergetic effects of AP39, we conclude that mitochondria-targeted H2S donors may offer a new promising perspective in cardiovascular disease therapeutics.
Collapse
Affiliation(s)
- Leonardo A. da Costa Marques
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, SP, Brazil; (L.A.d.C.M.); (S.A.T.); (F.N.d.J.); (S.K.P.C.)
| | - Simone A. Teixeira
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, SP, Brazil; (L.A.d.C.M.); (S.A.T.); (F.N.d.J.); (S.K.P.C.)
| | - Flávia N. de Jesus
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, SP, Brazil; (L.A.d.C.M.); (S.A.T.); (F.N.d.J.); (S.K.P.C.)
| | - Mark E. Wood
- Medical School, University of Exeter, Exeter EX1 2LU, UK; (M.E.W.); (R.T.); (M.W.)
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Roberta Torregrossa
- Medical School, University of Exeter, Exeter EX1 2LU, UK; (M.E.W.); (R.T.); (M.W.)
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Matthew Whiteman
- Medical School, University of Exeter, Exeter EX1 2LU, UK; (M.E.W.); (R.T.); (M.W.)
| | - Soraia K. P. Costa
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, SP, Brazil; (L.A.d.C.M.); (S.A.T.); (F.N.d.J.); (S.K.P.C.)
| | - Marcelo N. Muscará
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, SP, Brazil; (L.A.d.C.M.); (S.A.T.); (F.N.d.J.); (S.K.P.C.)
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
17
|
Peleli M, Zampas P, Papapetropoulos A. Hydrogen Sulfide and the Kidney: Physiological Roles, Contribution to Pathophysiology, and Therapeutic Potential. Antioxid Redox Signal 2022; 36:220-243. [PMID: 34978847 DOI: 10.1089/ars.2021.0014] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: Hydrogen sulfide (H2S), the third member of the gasotransmitter family, has a broad spectrum of biological activities, including antioxidant and cytoprotective actions, as well as vasodilatory, anti-inflammatory and antifibrotic effects. New, significant aspects of H2S biology in the kidney continue to emerge, underscoring the importance of this signaling molecule in kidney homeostasis, function, and disease. Recent Advances: H2S signals via three main mechanisms, by maintaining redox balance through its antioxidant actions, by post-translational modifications of cellular proteins (S-sulfhydration), and by binding to protein metal centers. Important renal functions such as glomerular filtration, renin release, or sodium reabsorption have been shown to be regulated by H2S, using either exogenous donors or by the endogenous-producing systems. Critical Issues: Lower H2S levels are observed in many renal pathologies, including renal ischemia-reperfusion injury and obstructive, diabetic, or hypertensive nephropathy. Unraveling the molecular targets through which H2S exerts its beneficial effects would be of great importance not only for understanding basic renal physiology, but also for identifying new pharmacological interventions for renal disease. Future Directions: Additional studies are needed to better understand the role of H2S in the kidney. Mapping the expression pattern of H2S-producing and -degrading enzymes in renal cells and generation of cell-specific knockout mice based on this information will be invaluable in the effort to unravel additional roles for H2S in kidney (patho)physiology. With this knowledge, novel targeted more effective therapeutic strategies for renal disease can be designed. Antioxid. Redox Signal. 36, 220-243.
Collapse
Affiliation(s)
- Maria Peleli
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Laboratory of Pharmacology, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Paraskevas Zampas
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Laboratory of Pharmacology, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Papapetropoulos
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Laboratory of Pharmacology, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
18
|
Magli E, Perissutti E, Santagada V, Caliendo G, Corvino A, Esposito G, Esposito G, Fiorino F, Migliaccio M, Scognamiglio A, Severino B, Sparaco R, Frecentese F. H 2S Donors and Their Use in Medicinal Chemistry. Biomolecules 2021; 11:1899. [PMID: 34944543 PMCID: PMC8699746 DOI: 10.3390/biom11121899] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/30/2022] Open
Abstract
Hydrogen sulfide (H2S) is a ubiquitous gaseous signaling molecule that has an important role in many physiological and pathological processes in mammalian tissues, with the same importance as two others endogenous gasotransmitters such as NO (nitric oxide) and CO (carbon monoxide). Endogenous H2S is involved in a broad gamut of processes in mammalian tissues including inflammation, vascular tone, hypertension, gastric mucosal integrity, neuromodulation, and defense mechanisms against viral infections as well as SARS-CoV-2 infection. These results suggest that the modulation of H2S levels has a potential therapeutic value. Consequently, synthetic H2S-releasing agents represent not only important research tools, but also potent therapeutic agents. This review has been designed in order to summarize the currently available H2S donors; furthermore, herein we discuss their preparation, the H2S-releasing mechanisms, and their -biological applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Francesco Frecentese
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy; (E.M.); (E.P.); (V.S.); (G.C.); (A.C.); (G.E.); (G.E.); (F.F.); (M.M.); (A.S.); (B.S.); (R.S.)
| |
Collapse
|
19
|
Dugbartey GJ, Juriasingani S, Zhang MY, Sener A. H 2S donor molecules against cold ischemia-reperfusion injury in preclinical models of solid organ transplantation. Pharmacol Res 2021; 172:105842. [PMID: 34450311 DOI: 10.1016/j.phrs.2021.105842] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/30/2022]
Abstract
Cold ischemia-reperfusion injury (IRI) is an inevitable and unresolved problem that poses a great challenge in solid organ transplantation (SOT). It represents a major factor that increases acute tubular necrosis, decreases graft survival, and delays graft function. This complicates graft quality, post-transplant patient care and organ transplantation outcomes, and therefore undermines the success of SOT. Herein, we review recent advances in research regarding novel pharmacological strategies involving the use of different donor molecules of hydrogen sulfide (H2S), the third established member of the gasotransmitter family, against cold IRI in different experimental models of SOT (kidney, heart, lung, liver, pancreas and intestine). Additionally, we discuss the molecular mechanisms underlying the effects of these H2S donor molecules in SOT, and suggestions for clinical translation. Our reviewed findings showed that storage of donor organs in H2S-supplemented preservation solution or administration of H2S to organ donor prior to organ procurement and to recipient at the start and during reperfusion is a novel, simple and cost-effective pharmacological approach to minimize cold IRI, limit post-transplant complications and improve transplantation outcomes. In conclusion, experimental evidence demonstrate that H2S donors can significantly mitigate cold IRI during SOT through inhibition of a complex cascade of interconnected cellular and molecular events involving microcirculatory disturbance and microvascular dysfunction, mitochondrial injury, inflammatory responses, cell damage and cell death, and other damaging molecular pathways while promoting protective pathways. Translating these promising findings from bench to bedside will lay the foundation for the use of H2S donor molecules in clinical SOT in the future.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Surgery, Division of Urology, London Health Sciences Center, Western University, London, Ontario, Canada; Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, Ontario, Canada; Multi-Organ Transplant Program, Western University, London Health Sciences Center, Western University, London, Ontario, Canada; Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Smriti Juriasingani
- Department of Surgery, Division of Urology, London Health Sciences Center, Western University, London, Ontario, Canada; Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, Ontario, Canada
| | - Max Y Zhang
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, Ontario, Canada; Multi-Organ Transplant Program, Western University, London Health Sciences Center, Western University, London, Ontario, Canada
| | - Alp Sener
- Department of Surgery, Division of Urology, London Health Sciences Center, Western University, London, Ontario, Canada; Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, Ontario, Canada; Multi-Organ Transplant Program, Western University, London Health Sciences Center, Western University, London, Ontario, Canada; Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
20
|
Andreadou I, Efentakis P, Frenis K, Daiber A, Schulz R. Thiol-based redox-active proteins as cardioprotective therapeutic agents in cardiovascular diseases. Basic Res Cardiol 2021; 116:44. [PMID: 34275052 DOI: 10.1007/s00395-021-00885-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022]
Abstract
Thiol-based redox compounds, namely thioredoxins (Trxs), glutaredoxins (Grxs) and peroxiredoxins (Prxs), stand as a pivotal group of proteins involved in antioxidant processes and redox signaling. Glutaredoxins (Grxs) are considered as one of the major families of proteins involved in redox regulation by removal of S-glutathionylation and thereby reactivation of other enzymes with thiol-dependent activity. Grxs are also coupled to Trxs and Prxs recycling and thereby indirectly contribute to reactive oxygen species (ROS) detoxification. Peroxiredoxins (Prxs) are a ubiquitous family of peroxidases, which play an essential role in the detoxification of hydrogen peroxide, aliphatic and aromatic hydroperoxides, and peroxynitrite. The Trxs, Grxs and Prxs systems, which reversibly induce thiol modifications, regulate redox signaling involved in various biological events in the cardiovascular system. This review focuses on the current knowledge of the role of Trxs, Grxs and Prxs on cardiovascular pathologies and especially in cardiac hypertrophy, ischemia/reperfusion (I/R) injury and heart failure as well as in the presence of cardiovascular risk factors, such as hypertension, hyperlipidemia, hyperglycemia and metabolic syndrome. Further studies on the roles of thiol-dependent redox systems in the cardiovascular system will support the development of novel protective and therapeutic strategies against cardiovascular diseases.
Collapse
Affiliation(s)
- Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece.
| | - Panagiotis Efentakis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Katie Frenis
- Department of Cardiology 1, Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology 1, Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany.,Partner Site Rhine-Main, German Center for Cardiovascular Research (DZHK), Langenbeckstr 1, 55131, Mainz, Germany
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
21
|
Testai L, Brancaleone V, Flori L, Montanaro R, Calderone V. Modulation of EndMT by Hydrogen Sulfide in the Prevention of Cardiovascular Fibrosis. Antioxidants (Basel) 2021; 10:antiox10060910. [PMID: 34205197 PMCID: PMC8229400 DOI: 10.3390/antiox10060910] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/23/2021] [Accepted: 06/01/2021] [Indexed: 02/06/2023] Open
Abstract
Endothelial mesenchymal transition (EndMT) has been described as a fundamental process during embryogenesis; however, it can occur also in adult age, underlying pathological events, including fibrosis. Indeed, during EndMT, the endothelial cells lose their specific markers, such as vascular endothelial cadherin (VE-cadherin), and acquire a mesenchymal phenotype, expressing specific products, such as α-smooth muscle actin (α-SMA) and type I collagen; moreover, the integrity of the endothelium is disrupted, and cells show a migratory, invasive and proliferative phenotype. Several stimuli can trigger this transition, but transforming growth factor (TGF-β1) is considered the most relevant. EndMT can proceed in a canonical smad-dependent or non-canonical smad-independent manner and ultimately regulate gene expression of pro-fibrotic machinery. These events lead to endothelial dysfunction and atherosclerosis at the vascular level as well as myocardial hypertrophy and fibrosis. Indeed, EndMT is the mechanism which promotes the progression of cardiovascular disorders following hypertension, diabetes, heart failure and also ageing. In this scenario, hydrogen sulfide (H2S) has been widely described for its preventive properties, but its role in EndMT is poorly investigated. This review is focused on the evaluation of the putative role of H2S in the EndMT process.
Collapse
Affiliation(s)
- Lara Testai
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (L.F.); (V.C.)
- Interdepartmental Center of Ageing, University of Pisa, 56126 Pisa, Italy
- Correspondence:
| | - Vincenzo Brancaleone
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (V.B.); (R.M.)
| | - Lorenzo Flori
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (L.F.); (V.C.)
| | - Rosangela Montanaro
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (V.B.); (R.M.)
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (L.F.); (V.C.)
- Interdepartmental Center of Ageing, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
22
|
Prikhodko VA, Selizarova NO, Okovityi SV. [Molecular mechanisms of hypoxia and adaptation to it. Part II]. Arkh Patol 2021; 83:62-69. [PMID: 34041899 DOI: 10.17116/patol20218303162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Reprogramming of the mitochondrial electron transport chain (ETC) is the most important physiological mechanism that provides short- and long-term adaptation to hypoxia. The possibilities of additional pharmacological regulation of ETC activity are of considerable practical interest in correcting hypoxia-associated disorders. This review considers the main groups of antihypoxic compounds that exhibit their effect at the interface of ETC and the cycle of tricarboxylic acids, including succinate-containing and succinate-forming antihypoxants. The role of succinate during adaptation to hypoxia, the biological activity of the succinate, and its potentially adverse effects are currently not fully understood and require further clarification.
Collapse
Affiliation(s)
- V A Prikhodko
- St. Petersburg State Chemical Pharmaceutical University, St. Petersburg, Russia
| | - N O Selizarova
- St. Petersburg State Chemical Pharmaceutical University, St. Petersburg, Russia
| | - S V Okovityi
- St. Petersburg State Chemical Pharmaceutical University, St. Petersburg, Russia
| |
Collapse
|
23
|
Tsoumani M, Georgoulis A, Nikolaou PE, Kostopoulos IV, Dermintzoglou T, Papatheodorou I, Zoga A, Efentakis P, Konstantinou M, Gikas E, Kostomitsopoulos N, Papapetropoulos A, Lazou A, Skaltsounis AL, Hausenloy DJ, Tsitsilonis O, Tseti I, Di Lisa F, Iliodromitis EK, Andreadou I. Acute administration of the olive constituent, oleuropein, combined with ischemic postconditioning increases myocardial protection by modulating oxidative defense. Free Radic Biol Med 2021; 166:18-32. [PMID: 33582227 DOI: 10.1016/j.freeradbiomed.2021.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/22/2021] [Accepted: 02/06/2021] [Indexed: 12/13/2022]
Abstract
Oleuropein, one of the main polyphenolic constituents of olive, is cardioprotective against ischemia reperfusion injury (IRI). We aimed to assess the cardioprotection afforded by acute administration of oleuropein and to evaluate the underlying mechanism. Importantly, since antioxidant therapies have yielded inconclusive results in attenuating IRI-induced damage on top of conditioning strategies, we investigated whether oleuropein could enhance or imbed the cardioprotective manifestation of ischemic postconditioning (PostC). Oleuropein, given during ischemia as a single intravenous bolus dose reduced the infarct size compared to the control group both in rabbits and mice subjected to myocardial IRI. None of the inhibitors of the cardioprotective pathways, l-NAME, wortmannin and AG490, influence its infarct size limiting effects. Combined oleuropein and PostC cause further limitation of infarct size in comparison with PostC alone in both animal models. Oleuropein did not inhibit the calcium induced mitochondrial permeability transition pore opening in isolated mitochondria and did not increase cGMP production. To provide further insights to the different cardioprotective mechanism of oleuropein, we sought to characterize its anti-inflammatory potential in vivo. Oleuropein, PostC and their combination reduce inflammatory monocytes infiltration into the heart and the circulating monocyte cell population. Oleuropein's mechanism of action involves a direct protective effect on cardiomyocytes since it significantly increased their viability following simulated IRI as compared to non-treated cells. Οleuropein confers additive cardioprotection on top of PostC, via increasing the expression of the transcription factor Nrf-2 and its downstream targets in vivo. In conclusion, acute oleuropein administration during ischemia in combination with PostC provides robust and synergistic cardioprotection in experimental models of IRI by inducing antioxidant defense genes through Nrf-2 axis and independently of the classic cardioprotective signaling pathways (RISK, cGMP/PKG, SAFE).
Collapse
Affiliation(s)
- Maria Tsoumani
- Laboratory of Pharmacology, School of Pharmacy, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Anastasios Georgoulis
- Laboratory of Pharmacology, School of Pharmacy, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Panagiota-Efstathia Nikolaou
- Laboratory of Pharmacology, School of Pharmacy, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Ioannis V Kostopoulos
- Department of Animal and Human Physiology, Faculty of Biology, National and Kapodistrian University of Athens, 15784, Athens, Greece
| | - Theano Dermintzoglou
- Laboratory of Pharmacology, School of Pharmacy, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Ioanna Papatheodorou
- Laboratory of Animal Physiology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Anastasia Zoga
- 2nd Department of Cardiology, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, 12462, Athens, Greece
| | - Panagiotis Efentakis
- Laboratory of Pharmacology, School of Pharmacy, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Maria Konstantinou
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Evangelos Gikas
- Laboratory of Analytical Chemistry, Department of Chemistry, School of Science, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Nikolaos Kostomitsopoulos
- Centre of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527, Αthens Greece
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, School of Pharmacy, National and Kapodistrian University of Athens, 15771, Athens, Greece; Centre of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527, Αthens Greece
| | - Antigone Lazou
- Laboratory of Animal Physiology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Alexios-Leandros Skaltsounis
- Division of Pharmacognosy and Natural Products Chemistry, School of Pharmacy, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Derek J Hausenloy
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore; National Heart Research Institute Singapore, National Heart Centre, Singapore; Yong Loo Lin School of Medicine, National University Singapore, Singapore; The Hatter Cardiovascular Institute, University College London, London, UK; Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan
| | - Ourania Tsitsilonis
- Department of Animal and Human Physiology, Faculty of Biology, National and Kapodistrian University of Athens, 15784, Athens, Greece
| | | | - Fabio Di Lisa
- Department of Biomedical Sciences, Università Degli Studi di Padova, Padova, Italy
| | - Efstathios K Iliodromitis
- 2nd Department of Cardiology, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, 12462, Athens, Greece
| | - Ioanna Andreadou
- Laboratory of Pharmacology, School of Pharmacy, National and Kapodistrian University of Athens, 15771, Athens, Greece.
| |
Collapse
|
24
|
Trends in H 2S-Donors Chemistry and Their Effects in Cardiovascular Diseases. Antioxidants (Basel) 2021; 10:antiox10030429. [PMID: 33799669 PMCID: PMC8002049 DOI: 10.3390/antiox10030429] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 12/15/2022] Open
Abstract
Hydrogen sulfide (H2S) is an endogenous gasotransmitter recently emerged as an important regulatory mediator of numerous human cell functions in health and in disease. In fact, much evidence has suggested that hydrogen sulfide plays a significant role in many physio-pathological processes, such as inflammation, oxidation, neurophysiology, ion channels regulation, cardiovascular protection, endocrine regulation, and tumor progression. Considering the plethora of physiological effects of this gasotransmitter, the protective role of H2S donors in different disease models has been extensively studied. Based on the growing interest in H2S-releasing compounds and their importance as tools for biological and pharmacological studies, this review is an exploration of currently available H2S donors, classifying them by the H2S-releasing-triggered mechanism and highlighting those potentially useful as promising drugs in the treatment of cardiovascular diseases.
Collapse
|
25
|
Ascenção K, Dilek N, Augsburger F, Panagaki T, Zuhra K, Szabo C. Pharmacological induction of mesenchymal-epithelial transition via inhibition of H2S biosynthesis and consequent suppression of ACLY activity in colon cancer cells. Pharmacol Res 2021; 165:105393. [PMID: 33484818 DOI: 10.1016/j.phrs.2020.105393] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/12/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023]
Abstract
Hydrogen sulfide (H2S) is an important endogenous gaseous transmitter mediator, which regulates a variety of cellular functions in autocrine and paracrine manner. The enzymes responsible for the biological generation of H2S include cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST). Increased expression of these enzymes and overproduction of H2S has been implicated in essential processes of various cancer cells, including the stimulation of metabolism, maintenance of cell proliferation and cytoprotection. Cancer cell identity is characterized by so-called "transition states". The progression from normal (epithelial) to transformed (mesenchymal) state is termed epithelial-to-mesenchymal transition (EMT) whereby epithelial cells lose their cell-to-cell adhesion capacity and gain mesenchymal characteristics. The transition process can also proceed in the opposite direction, and this process is termed mesenchymal-to-epithelial transition (MET). The current project was designed to determine whether inhibition of endogenous H2S production in colon cancer cells affects the EMT/MET balance in vitro. Inhibition of H2S biosynthesis in HCT116 human colon cancer cells was achieved either with aminooxyacetic acid (AOAA) or 2-[(4-hydroxy-6-methylpyrimidin-2-yl)sulfanyl]-1-(naphthalen-1-yl)ethan-1-one (HMPSNE). These inhibitors induced an upregulation of E-cadherin and Zonula occludens-1 (ZO-1) expression and downregulation of fibronectin expression, demonstrating that H2S biosynthesis inhibitors can produce a pharmacological induction of MET in colon cancer cells. These actions were functionally reflected in an inhibition of cell migration, as demonstrated in an in vitro "scratch wound" assay. The mechanisms involved in the action of endogenously produced H2S in cancer cells in promoting (or maintaining) EMT (or tonically inhibiting MET) relate, at least in part, in the induction of ATP citrate lyase (ACLY) protein expression, which occurs via upregulation of ACLY mRNA (via activation of the ACLY promoter). ACLY in turn, regulates the Wnt-β-catenin pathway, an essential regulator of the EMT/MET balance. Taken together, pharmacological inhibition of endogenous H2S biosynthesis in cancer cells induces MET. We hypothesize that this may contribute to anti-cancer / anti-metastatic effects of H2S biosynthesis inhibitors.
Collapse
Affiliation(s)
- Kelly Ascenção
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| | - Nahzli Dilek
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| | - Fiona Augsburger
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| | - Theodora Panagaki
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| | - Karim Zuhra
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| | - Csaba Szabo
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
26
|
Lin J, Li X, Lin Y, Huang Z, Wu W. Exogenous sodium hydrosulfide protects against high glucose‑induced injury and inflammation in human umbilical vein endothelial cells by inhibiting necroptosis via the p38 MAPK signaling pathway. Mol Med Rep 2021; 23:67. [PMID: 33215220 PMCID: PMC7716414 DOI: 10.3892/mmr.2020.11706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/05/2020] [Indexed: 12/30/2022] Open
Abstract
In recent years hydrogen sulfide (H2S) has demonstrated vasculoprotective effects against cell death, which suggests its promising therapeutic potential for numerous types of disease. Additionally, a protective effect of exogenous H2S in HG‑induced injuries in HUVECs was demonstrated, suggesting a potential protective effect for diabetic vascular complications. The present study aimed to investigate the mechanism accounting for the cytoprotective role of exogenous H2S against high glucose [HG (40 mM glucose)]‑induced injury and inflammation in human umbilical vein endothelial cells (HUVECs). HUVECs were exposed to HG for 24 h to establish an in vitro model of HG‑induced cytotoxicity. The cells were pretreated with sodium hydrosulfide (NaHS), a donor of H2S, or inhibitors of necroptosis and p38 MAPK prior to the exposure to HG. Cell viability, intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP), IL‑1β, IL‑6, IL‑8, TNF‑α, phosphorylated‑(p)38 and receptor‑interacting protein 3 (RIP3) expression levels were detected using the indicated methods, including Cell Counting Kit 8, fluorescence detection, western blotting, immunofluorescence assay and ELISAs. The results demonstrated that necroptosis and the p38 MAPK signaling pathway mediated HG‑induced injury and inflammation. Notably, NaHS was discovered to significantly ameliorate p38 MAPK/necroptosis‑mediated injury and inflammation in response to HG, as evidenced by an increase in cell viability, a decrease in ROS generation and loss of MMP, as well as the reduction in the secretion of proinflammatory cytokines. In addition, the upregulated expression of RIP3 induced by HG was repressed by treatment with SB203580, while the HG‑induced upregulation of p‑p38 expression levels were significantly downregulated following the treatment of Nec‑1 and RIP3‑siRNA. In conclusion, the findings of the present study indicated that NaHS may protect HUVECs against HG‑induced injury and inflammation by inhibiting necroptosis via the p38 MAPK signaling pathway, which may represent a promising drug for the therapy of diabetic vascular complications.
Collapse
Affiliation(s)
- Jiaqiong Lin
- Department of Endocrinology, Guangdong Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Xiaoyong Li
- Department of Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Yan Lin
- Department of Nephrology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Zena Huang
- Department of General Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Wen Wu
- Department of Endocrinology, Guangdong Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
27
|
Ali A, Wang Y, Wu L, Yang G. Gasotransmitter signaling in energy homeostasis and metabolic disorders. Free Radic Res 2020; 55:83-105. [PMID: 33297784 DOI: 10.1080/10715762.2020.1862827] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Gasotransmitters are small molecules of gases, including nitric oxide (NO), hydrogen sulfide (H2S), and carbon monoxide (CO). These three gasotransmitters can be endogenously produced and regulate a wide range of pathophysiological processes by interacting with specific targets upon diffusion in the biological media. By redox and epigenetic regulation of various physiological functions, NO, H2S, and CO are critical for the maintenance of intracellular energy homeostasis. Accumulated evidence has shown that these three gasotransmitters control ATP generation, mitochondrial biogenesis, glucose metabolism, insulin sensitivity, lipid metabolism, and thermogenesis, etc. Abnormal generation and metabolism of NO, H2S, and/or CO are involved in various abnormal metabolic diseases, including obesity, diabetes, and dyslipidemia. In this review, we summarized the roles of NO, H2S, and CO in the regulation of energy homeostasis as well as their involvements in the metabolism of dysfunction-related diseases. Understanding the interaction among these gasotransmitters and their specific molecular targets are very important for therapeutic applications.
Collapse
Affiliation(s)
- Amr Ali
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada.,Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Yuehong Wang
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada.,Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Lingyun Wu
- Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada.,School of Human Kinetics, Laurentian University, Sudbury, Canada.,Health Science North Research Institute, Sudbury, Canada
| | - Guangdong Yang
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada.,Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| |
Collapse
|
28
|
Forini F, Canale P, Nicolini G, Iervasi G. Mitochondria-Targeted Drug Delivery in Cardiovascular Disease: A Long Road to Nano-Cardio Medicine. Pharmaceutics 2020; 12:E1122. [PMID: 33233847 PMCID: PMC7699942 DOI: 10.3390/pharmaceutics12111122] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease (CVD) represents a major threat for human health. The available preventive and treatment interventions are insufficient to revert the underlying pathological processes, which underscores the urgency of alternative approaches. Mitochondria dysfunction plays a key role in the etiopathogenesis of CVD and is regarded as an intriguing target for the development of innovative therapies. Oxidative stress, mitochondrial permeability transition pore opening, and excessive fission are major noxious pathways amenable to drug therapy. Thanks to the advancements of nanotechnology research, several mitochondria-targeted drug delivery systems (DDS) have been optimized with improved pharmacokinetic and biocompatibility, and lower toxicity and antigenicity for application in the cardiovascular field. This review summarizes the recent progress and remaining obstacles in targeting mitochondria as a novel therapeutic option for CVD. The advantages of nanoparticle delivery over un-targeted strategies are also discussed.
Collapse
Affiliation(s)
- Francesca Forini
- CNR Intitute of Clinical Physiology, Via G.Moruzzi 1, 56124 Pisa, Italy; (P.C.); (G.N.); (G.I.)
| | - Paola Canale
- CNR Intitute of Clinical Physiology, Via G.Moruzzi 1, 56124 Pisa, Italy; (P.C.); (G.N.); (G.I.)
- Department of Biology, University of Pisa, Via Volta 4 bis, 56126 Pisa, Italy
| | - Giuseppina Nicolini
- CNR Intitute of Clinical Physiology, Via G.Moruzzi 1, 56124 Pisa, Italy; (P.C.); (G.N.); (G.I.)
| | - Giorgio Iervasi
- CNR Intitute of Clinical Physiology, Via G.Moruzzi 1, 56124 Pisa, Italy; (P.C.); (G.N.); (G.I.)
| |
Collapse
|
29
|
Gorini F, Bustaffa E, Chatzianagnostou K, Bianchi F, Vassalle C. Hydrogen sulfide and cardiovascular disease: Doubts, clues, and interpretation difficulties from studies in geothermal areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140818. [PMID: 32758850 DOI: 10.1016/j.scitotenv.2020.140818] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/10/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Hydrogen sulfide (H2S) represents one of the main pollutants originating from both geologic phenomena such as volcanoes, geysers, fumaroles and hot springs, and geothermal plants that produce heat and electricity. Many increasing data suggest that H2S retains a variety of biological properties, and modulates many pathways related to cardiovascular pathophysiology although its role as beneficial/adverse determinant on cardiovascular disease (CVD) is not clearly established. In this review, the current knowledge on the association between H2S exposure and risk of CVD in geothermal areas has been examined. The few epidemiological studies carried out in geothermal areas suggest, in some cases, a protective role of H2S towards CVD, while in others a positive association between exposure to H2S and increased incidence of CVD. Most of the studies have an ecological design that does not allow to produce evidence to support a causal relationship and also often lack for an adequate adjustment for individual CVD risk factors. The review has also considered the potential role of two other aspects not sufficiently explored in this relationship: the production of endogenous H2S that is a gasotransmitter producing beneficial effects on cardiovascular function at low concentration and the intake of H2S-releasing drugs for the treatment of patients affected by hypertension, inflammatory diseases, and CVD. Thus, a threshold effect of H2S and the shift of action as beneficial/adverse determinant given by the synergy of exogenous exposure and endogenous production cannot be excluded. In this complex scenario, an effort is warranted in the future to include a more comprehensive evaluation of risk for CVD in relation to H2S emissions, especially in geothermal areas.
Collapse
Affiliation(s)
- Francesca Gorini
- Unit of Environmental Epidemiology and Diseases Registries, Institute of Clinical Physiology, National Research Council, IFC-CNR, via Moruzzi 1, Pisa 56124, Italy.
| | - Elisa Bustaffa
- Unit of Environmental Epidemiology and Diseases Registries, Institute of Clinical Physiology, National Research Council, IFC-CNR, via Moruzzi 1, Pisa 56124, Italy
| | | | - Fabrizio Bianchi
- Unit of Environmental Epidemiology and Diseases Registries, Institute of Clinical Physiology, National Research Council, IFC-CNR, via Moruzzi 1, Pisa 56124, Italy
| | - Cristina Vassalle
- Gabriele Monasterio Foundation for the Medical and Public Health Research, via Moruzzi 1, Pisa 56124, Italy
| |
Collapse
|
30
|
Pieretti JC, Junho CVC, Carneiro-Ramos MS, Seabra AB. H 2S- and NO-releasing gasotransmitter platform: A crosstalk signaling pathway in the treatment of acute kidney injury. Pharmacol Res 2020; 161:105121. [PMID: 32798649 PMCID: PMC7426260 DOI: 10.1016/j.phrs.2020.105121] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/15/2022]
Abstract
Acute kidney injury (AKI) is a syndrome affecting most patients hospitalized due to kidney disease; it accounts for 15 % of patients hospitalized in intensive care units worldwide. AKI is mainly caused by ischemia and reperfusion (IR) injury, which temporarily obstructs the blood flow, increases inflammation processes and induces oxidative stress. AKI treatments available nowadays present notable disadvantages, mostly for patients with other comorbidities. Thus, it is important to investigate different approaches to help minimizing side effects such as the ones observed in patients subjected to the aforementioned treatments. Therefore, the aim of the current review is to highlight the potential of two endogenous gasotransmitters - hydrogen sulfide (H2S) and nitric oxide (NO) - and their crosstalk in AKI treatment. Both H2S and NO are endogenous signalling molecules involved in several physiological and pathophysiological processes, such as the ones taking place in the renal system. Overall, these molecules act by decreasing inflammation, controlling reactive oxygen species (ROS) concentrations, activating/inactivating pro-inflammatory cytokines, as well as promoting vasodilation and decreasing apoptosis, hypertrophy and autophagy. Since these gasotransmitters are found in gaseous state at environmental conditions, they can be directly applied by inhalation, or in combination with H2S and NO donors, which are compounds capable of releasing these molecules at biological conditions, thus enabling higher stability and slow release of NO and H2S. Moreover, the combination between these donor compounds and nanomaterials has the potential to enable targeted treatments, reduce side effects and increase the potential of H2S and NO. Finally, it is essential highlighting challenges to, and perspectives in, pharmacological applications of H2S and NO to treat AKI, mainly in combination with nanoparticulated delivery platforms.
Collapse
Affiliation(s)
- Joana Claudio Pieretti
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | | | | | - Amedea Barozzi Seabra
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil.
| |
Collapse
|
31
|
Denoix N, McCook O, Ecker S, Wang R, Waller C, Radermacher P, Merz T. The Interaction of the Endogenous Hydrogen Sulfide and Oxytocin Systems in Fluid Regulation and the Cardiovascular System. Antioxidants (Basel) 2020; 9:E748. [PMID: 32823845 PMCID: PMC7465147 DOI: 10.3390/antiox9080748] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022] Open
Abstract
The purpose of this review is to explore the parallel roles and interaction of hydrogen sulfide (H2S) and oxytocin (OT) in cardiovascular regulation and fluid homeostasis. Their interaction has been recently reported to be relevant during physical and psychological trauma. However, literature reports on H2S in physical trauma and OT in psychological trauma are abundant, whereas available information regarding H2S in psychological trauma and OT in physical trauma is much more limited. This review summarizes recent direct and indirect evidence of the interaction of the two systems and their convergence in downstream nitric oxide-dependent signaling pathways during various types of trauma, in an effort to better understand biological correlates of psychosomatic interdependencies.
Collapse
Affiliation(s)
- Nicole Denoix
- Clinic for Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, 89081 Ulm, Germany;
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, 89081 Ulm, Germany; (S.E.); (P.R.); (T.M.)
| | - Oscar McCook
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, 89081 Ulm, Germany; (S.E.); (P.R.); (T.M.)
| | - Sarah Ecker
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, 89081 Ulm, Germany; (S.E.); (P.R.); (T.M.)
| | - Rui Wang
- Faculty of Science, York University, Toronto, ON M3J 1P3, Canada;
| | - Christiane Waller
- Department of Psychosomatic Medicine and Psychotherapy, Nuremberg General Hospital, Paracelsus Medical University, 90419 Nuremberg, Germany;
| | - Peter Radermacher
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, 89081 Ulm, Germany; (S.E.); (P.R.); (T.M.)
| | - Tamara Merz
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, 89081 Ulm, Germany; (S.E.); (P.R.); (T.M.)
| |
Collapse
|
32
|
Chen Y, Zhang F, Yin J, Wu S, Zhou X. Protective mechanisms of hydrogen sulfide in myocardial ischemia. J Cell Physiol 2020; 235:9059-9070. [PMID: 32542668 DOI: 10.1002/jcp.29761] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/09/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023]
Abstract
Hydrogen sulfide (H2 S), which has been identified as the third gaseous signaling molecule after nitric oxide (NO) and carbon monoxide (CO), plays an important role in maintaining homeostasis in the cardiovascular system. Endogenous H2 S is produced mainly by three endogenous enzymes: cystathionine β-synthase, cystathionine γ-lyase, and 3-mercaptopyruvate sulfur transferase. Numerous studies have shown that H2 S has a significant protective role in myocardial ischemia. The mechanisms by which H2 S affords cardioprotection include the antifibrotic and antiapoptotic effects, regulation of ion channels, protection of mitochondria, reduction of oxidative stress and inflammatory response, regulation of microRNA expression, and promotion of angiogenesis. Amplification of NO- and CO-mediated signaling through crosstalk between H2 S, NO, and CO may also contribute to the cardioprotective effect. Exogenous H2 S donors are expected to become effective drugs for the treatment of cardiovascular diseases. This review article focuses on the protective mechanisms and potential therapeutic applications of H2 S in myocardial ischemia.
Collapse
Affiliation(s)
- Yuqi Chen
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Feng Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Jiayu Yin
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Siyi Wu
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Zhou
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
33
|
Andreadou I, Schulz R, Papapetropoulos A, Turan B, Ytrehus K, Ferdinandy P, Daiber A, Di Lisa F. The role of mitochondrial reactive oxygen species, NO and H 2 S in ischaemia/reperfusion injury and cardioprotection. J Cell Mol Med 2020; 24:6510-6522. [PMID: 32383522 PMCID: PMC7299678 DOI: 10.1111/jcmm.15279] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/04/2020] [Accepted: 03/08/2020] [Indexed: 12/12/2022] Open
Abstract
Redox signalling in mitochondria plays an important role in myocardial ischaemia/reperfusion (I/R) injury and in cardioprotection. Reactive oxygen and nitrogen species (ROS/RNS) modify cellular structures and functions by means of covalent changes in proteins including among others S‐nitros(yl)ation by nitric oxide (NO) and its derivatives, and S‐sulphydration by hydrogen sulphide (H2S). Many enzymes are involved in the mitochondrial formation and handling of ROS, NO and H2S under physiological and pathological conditions. In particular, the balance between formation and removal of reactive species is impaired during I/R favouring their accumulation. Therefore, various interventions aimed at decreasing mitochondrial ROS accumulation have been developed and have shown cardioprotective effects in experimental settings. However, ROS, NO and H2S play also a role in endogenous cardioprotection, as in the case of ischaemic pre‐conditioning, so that preventing their increase might hamper self‐defence mechanisms. The aim of the present review was to provide a critical analysis of formation and role of reactive species, NO and H2S in mitochondria, with a special emphasis on mechanisms of injury and protection that determine the fate of hearts subjected to I/R. The elucidation of the signalling pathways of ROS, NO and H2S is likely to reveal novel molecular targets for cardioprotection that could be modulated by pharmacological agents to prevent I/R injury.
Collapse
Affiliation(s)
- Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Rainer Schulz
- Institute for Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Belma Turan
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Kirsti Ytrehus
- Department of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,Pharmahungary Group, Szeged, Hungary
| | - Andreas Daiber
- Molecular Cardiology, Center for Cardiology 1, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Fabio Di Lisa
- Department of Biomedical Sciences, Università degli Studi di Padova, Padova, Italy
| |
Collapse
|
34
|
Bibli SI, Papapetropoulos A, Iliodromitis EK, Daiber A, Randriamboavonjy V, Steven S, Brouckaert P, Chatzianastasiou A, Kypreos KE, Hausenloy DJ, Fleming I, Andreadou I. Nitroglycerine limits infarct size through S-nitrosation of cyclophilin D: a novel mechanism for an old drug. Cardiovasc Res 2020; 115:625-636. [PMID: 30165375 DOI: 10.1093/cvr/cvy222] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/23/2018] [Indexed: 12/22/2022] Open
Abstract
AIMS Nitroglycerine (NTG) given prior to an ischaemic insult exerts cardioprotective effects. However, whether administration of an acute low dose of NTG in a clinically relevant manner following an ischaemic episode limits infarct size, has not yet been explored. METHODS AND RESULTS Adult mice were subjected to acute myocardial infarction in vivo and then treated with vehicle or low-dose NTG prior to reperfusion. This treatment regimen minimized myocardial infarct size without affecting haemodynamic parameters but the protective effect was absent in mice rendered tolerant to the drug. Mechanistically, NTG was shown to nitrosate and inhibit cyclophilin D (CypD), and NTG administration failed to limit infarct size in CypD knockout mice. Additional experiments revealed lack of the NTG protective effect following genetic (knockout mice) or pharmacological inhibition (L-NAME treatment) of the endothelial nitric oxide synthase (eNOS). The protective effect of NTG was attributed to preservation of the eNOS dimer. Moreover, NTG retained its cardioprotective effects in a model of endothelial dysfunction (ApoE knockout) by preserving CypD nitrosation. Human ischaemic heart biopsies revealed reduced eNOS activity and exhibited reduced CypD nitrosation. CONCLUSION Low-dose NTG given prior to reperfusion reduces myocardial infarct size by preserving eNOS function, and the subsequent eNOS-dependent S-nitrosation of CypD, inhibiting cardiomyocyte necrosis. This novel pharmacological action of NTG warrants confirmation in clinical studies, although our data in human biopsies provide promising preliminary results.
Collapse
Affiliation(s)
- Sofia-Iris Bibli
- Laboratoty of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, Athens, Greece.,Institute for Vascular Signaling, Goethe University, Theodor Stern Kai 7, Frankfurt, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Andreas Papapetropoulos
- Laboratoty of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, Athens, Greece
| | - Efstathios K Iliodromitis
- Faculty of Medicine, Second Department of Cardiology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Daiber
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.,University Medical Center of Mainz, Center for Cardiology, Cardiology I, Molecular Cardiology, Mainz, Germany
| | - Voahanginirina Randriamboavonjy
- Institute for Vascular Signaling, Goethe University, Theodor Stern Kai 7, Frankfurt, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Sebastian Steven
- University Medical Center of Mainz, Center for Cardiology, Cardiology I, Molecular Cardiology, Mainz, Germany.,University Medical Center of Mainz, Center for Thrombosis and Hemostasis (CTH), Mainz, Germany
| | - Peter Brouckaert
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Department of Molecular Biomedical Research, VIB, Ghent, Belgium
| | - Athanasia Chatzianastasiou
- Laboratoty of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, Athens, Greece
| | - Kyriakos E Kypreos
- Department of Pharmacology, University of Patras Medical School, Patras, Greece
| | - Derek J Hausenloy
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore.,National Heart Research Institute Singapore, National Heart Centre, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, Singapore.,The Hatter Cardiovascular Institute, University College London, London, UK.,The National Institute of Health Research University College London Hospitals Biomedical Research Centre, Research & Development, London, UK.,Department of Cardiology, Barts Heart Centre, St Bartholomew's Hospital, London, UK
| | - Ingrid Fleming
- Institute for Vascular Signaling, Goethe University, Theodor Stern Kai 7, Frankfurt, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Ioanna Andreadou
- Laboratoty of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, Athens, Greece
| |
Collapse
|
35
|
Zhang N, Hu P, Wang Y, Tang Q, Zheng Q, Wang Z, He Y. A Reactive Oxygen Species (ROS) Activated Hydrogen Sulfide (H 2S) Donor with Self-Reporting Fluorescence. ACS Sens 2020; 5:319-326. [PMID: 31913018 DOI: 10.1021/acssensors.9b01093] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hydrogen sulfide (H2S) is an important cellular signaling molecule, and its physiological and pathophysiological properties have been under intensive investigation. In this study, a novel ratiometric fluorescent H2S donor (HSD-B) has been developed, which exhibited the following advantages: (i) scavenging ROS and producing H2S simultaneously; (ii) providing ratiometric fluorescence for visualization and quantification of H2S releasing; and (iii) targeting mitochondrion specifically. Moreover, it demonstrated protective effects on myocardial ischemia reperfusion injury in a cellular model. These attractive features promise this HSD-B as a fluorescent H2S donor for future research studies.
Collapse
Affiliation(s)
- Ning Zhang
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research , Chongqing University , 55 South Daxuecheng Road , Chongqing 401331 , China
| | - Ping Hu
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research , Chongqing University , 55 South Daxuecheng Road , Chongqing 401331 , China
| | - Yanfang Wang
- First Affiliated Hospital of the Medical College , Shihezi University , Xinjiang 832008 , PR China
| | - Qing Tang
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research , Chongqing University , 55 South Daxuecheng Road , Chongqing 401331 , China
| | - Qiang Zheng
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research , Chongqing University , 55 South Daxuecheng Road , Chongqing 401331 , China
| | - Zhanlong Wang
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research , Chongqing University , 55 South Daxuecheng Road , Chongqing 401331 , China
| | - Yun He
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research , Chongqing University , 55 South Daxuecheng Road , Chongqing 401331 , China
| |
Collapse
|
36
|
Hydrogen Sulfide as a Potential Alternative for the Treatment of Myocardial Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4105382. [PMID: 32064023 PMCID: PMC6998763 DOI: 10.1155/2020/4105382] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022]
Abstract
Harmful, stressful conditions or events in the cardiovascular system result in cellular damage, inflammation, and fibrosis. Currently, there is no targeted therapy for myocardial fibrosis, which is highly associated with a large number of cardiovascular diseases and can lead to fatal heart failure. Hydrogen sulfide (H2S) is an endogenous gasotransmitter similar to nitric oxide and carbon monoxide. H2S is involved in the suppression of oxidative stress, inflammation, and cellular death in the cardiovascular system. The level of H2S in the body can be boosted by stimulating its synthesis or supplying it exogenously with a simple H2S donor with a rapid- or slow-releasing mode, an organosulfur compound, or a hybrid with known drugs (e.g., aspirin). Hypertension, myocardial infarction, and inflammation are exaggerated when H2S is reduced. In addition, the exogenous delivery of H2S mitigates myocardial fibrosis caused by various pathological conditions, such as a myocardial infarct, hypertension, diabetes, or excessive β-adrenergic stimulation, via its involvement in a variety of signaling pathways. Numerous experimental findings suggest that H2S may work as a potential alternative for the management of myocardial fibrosis. In this review, the antifibrosis role of H2S is briefly addressed in order to gain insight into the development of novel strategies for the treatment of myocardial fibrosis.
Collapse
|
37
|
Mitochondrial dysfunction plays a key role in the abrogation of cardioprotection by sodium hydrosulfide post-conditioning in diabetic cardiomyopathy rat heart. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:339-348. [PMID: 31624852 DOI: 10.1007/s00210-019-01733-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/10/2019] [Indexed: 10/25/2022]
Abstract
Our previous study demonstrated that hydrogen sulfide post-conditioning (HPOC) renders cardioprotection against ischemia-reperfusion (I/R) injury in normal rat by preserving mitochondria. But its efficacy in ameliorating I/R in the diabetic heart with (DCM) or without cardiomyopathy (DM) is unclear and is the focus of the present study. Normal (N), diabetes mellitus (streptozotocin, 35 mg/kg; normal diet), and DCM (streptozotocin, 35 mg/kg; high-fat diet) rats were subjected to I/R (30 min global ischemia followed by 60 min reperfusion) in presence and absence of HPOC using ex vivo Langendorff perfusion system. At the end of heart perfusion, subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM) fractions from the tissue were isolated and measured for the ATP production, electron transport chain (ETC) enzyme activity, and membrane potential. The prominent I/R-associated injury in DCM rat was not subsequently attenuated by HPOC protocol unlike in the normal or diabetic rat heart (latter rat heart showed moderate protection) (HPOC recovery on infarct size: N 75% vs. DM 63% vs. DCM 48%). The baseline ATP content and subsequent ATP-producing capacity in DCM rat heart were low as compared with those in normal or DM rat heart, especially in SSM. HPOC protocol reversed the I/R-induced low mitochondrial ATP content and low ATP-producing capacity (both in non-energized and energized with glutamate/malate) significantly in normal and DM hearts, but not in DCM heart. Moreover in DCM, decreased activity of mitochondrial electron chain enzymes (complexes I, II, III, and IV) in SSM (26%, 88%, 57%, and 17%) and IFM (76%, 89%, 60%, and 13%) from sham control was maintained even after the conditioning of heart with hydrogen sulfide donor. Results altogether suggest that significantly higher levels of perturbing mitochondria in DCM rat heart underline the deteriorated cardiac recovery by HPOC.
Collapse
|
38
|
Abstract
Hydrogen sulfide (H2S)-a potent gaseous signaling molecule-has emerged as a critical regulator of cardiovascular homeostasis. H2S is produced enzymatically by 3 constitutively active endogenous enzymes in all mammalian species. Within the past 2 decades, studies administering H2S-donating agents and the genetic manipulation of H2S-producing enzymes have revealed multiple beneficial effects of H2S, including vasodilation, activation of antiapoptotic and antioxidant pathways, and anti-inflammatory effects. More recently, the heightened enthusiasm in this field has shifted to the development of novel H2S-donating agents that exert favorable pharmacological profiles. This has led to the discovery of novel H2S-mediated signaling pathways. This review will discuss recently developed H2S therapeutics, introduce signaling pathways that are influenced by H2S-dependent sulfhydration, and explore the dual-protective effect of H2S in cardiorenal syndrome.
Collapse
Affiliation(s)
- Zhen Li
- From the Cardiovascular Center of Excellence and Department of Pharmacology, LSU Health Science Center, New Orleans, LA
| | - David J Polhemus
- From the Cardiovascular Center of Excellence and Department of Pharmacology, LSU Health Science Center, New Orleans, LA
| | - David J Lefer
- From the Cardiovascular Center of Excellence and Department of Pharmacology, LSU Health Science Center, New Orleans, LA
| |
Collapse
|
39
|
Wepler M, Merz T, Wachter U, Vogt J, Calzia E, Scheuerle A, Möller P, Gröger M, Kress S, Fink M, Lukaschewski B, Rumm G, Stahl B, Georgieff M, Huber-Lang M, Torregrossa R, Whiteman M, McCook O, Radermacher P, Hartmann C. The Mitochondria-Targeted H2S-Donor AP39 in a Murine Model of Combined Hemorrhagic Shock and Blunt Chest Trauma. Shock 2019; 52:230-239. [PMID: 29927788 DOI: 10.1097/shk.0000000000001210] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Hemorrhagic shock (HS) accounts for 30% to 40% of trauma-induced mortality, which is due to multi-organ-failure subsequent to systemic hyper-inflammation, triggered by hypoxemia and tissue ischemia. The slow-releasing, mitochondria-targeted H2S donor AP39 exerted beneficial effects in several models of ischemia-reperfusion injury and acute inflammation. Therefore, we tested the effects of AP39-treatment in a murine model of combined blunt chest trauma (TxT) and HS with subsequent resuscitation. METHODS After blast wave-induced TxT or sham procedure, anesthetized and instrumented mice underwent 1 h of hemorrhage followed by 4 h of resuscitation comprising an i.v. bolus injection of 100 or 10 nmol kg AP39 or vehicle, retransfusion of shed blood, fluid resuscitation, and norepinephrine. Lung mechanics and gas exchange were assessed together with hemodynamics, metabolism, and acid-base status. Blood and tissue samples were analyzed for cytokine and chemokine levels, western blot, immunohistochemistry, mitochondrial oxygen consumption (JO2), and histological changes. RESULTS High dose AP39 attenuated systemic inflammation and reduced the expression of inducible nitric oxide synthase (iNOS) and IκBα expression in lung tissue. In the combined trauma group (TxT + HS), animals treated with high dose AP39 presented with the lowest mean arterial pressure and thus highest norepinephrine requirements and higher mortality. Low dose AP39 had no effects on hemodynamics, leading to unchanged norepinephrine requirements and mortality rates. CONCLUSION AP39 is a systemic anti-inflammatory agent. In our model of trauma with HS, there may be a narrow dosing and timing window due to its potent vasodilatory properties, which might result in or contribute to aggravation of circulatory shock-related hypotension.
Collapse
Affiliation(s)
- Martin Wepler
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital, Ulm, Germany
- Department of Anesthesiology, University Hospital, Ulm, Germany
| | - Tamara Merz
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital, Ulm, Germany
| | - Ulrich Wachter
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital, Ulm, Germany
| | - Josef Vogt
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital, Ulm, Germany
| | - Enrico Calzia
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital, Ulm, Germany
| | | | - Peter Möller
- Institute of Pathology, University Hospital, Ulm, Germany
| | - Michael Gröger
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital, Ulm, Germany
| | - Sandra Kress
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital, Ulm, Germany
| | - Marina Fink
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital, Ulm, Germany
| | - Britta Lukaschewski
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital, Ulm, Germany
| | - Grégoire Rumm
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital, Ulm, Germany
| | - Bettina Stahl
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital, Ulm, Germany
| | | | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital, Ulm, Germany
| | | | - Matthew Whiteman
- University of Exeter Medical School, St. Luke's Campus, Exeter, England, UK
| | - Oscar McCook
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital, Ulm, Germany
| | - Peter Radermacher
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital, Ulm, Germany
| | - Clair Hartmann
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Hospital, Ulm, Germany
- Department of Anesthesiology, University Hospital, Ulm, Germany
| |
Collapse
|
40
|
Nikolaou PE, Boengler K, Efentakis P, Vouvogiannopoulou K, Zoga A, Gaboriaud-Kolar N, Myrianthopoulos V, Alexakos P, Kostomitsopoulos N, Rerras I, Tsantili-Kakoulidou A, Skaltsounis AL, Papapetropoulos A, Iliodromitis EK, Schulz R, Andreadou I. Investigating and re-evaluating the role of glycogen synthase kinase 3 beta kinase as a molecular target for cardioprotection by using novel pharmacological inhibitors. Cardiovasc Res 2019; 115:1228-1243. [PMID: 30843027 DOI: 10.1093/cvr/cvz061] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/13/2019] [Accepted: 03/01/2019] [Indexed: 12/27/2022] Open
Abstract
AIMS Glycogen synthase kinase 3 beta (GSK3β) link with the mitochondrial Permeability Transition Pore (mPTP) in cardioprotection is debated. We investigated the role of GSK3β in ischaemia (I)/reperfusion (R) injury using pharmacological tools. METHODS AND RESULTS Infarct size using the GSK3β inhibitor BIO (6-bromoindirubin-3'-oxime) and several novel analogues (MLS2776-MLS2779) was determined in anaesthetized rabbits and mice. In myocardial tissue GSK3β inhibition and the specificity of the compounds was tested. The mechanism of protection focused on autophagy-related proteins. GSK3β localization was determined in subsarcolemmal (SSM) and interfibrillar mitochondria (IFM) isolated from Langendorff-perfused murine hearts (30'I/10'R or normoxic conditions). Calcium retention capacity (CRC) was determined in mitochondria after administration of the inhibitors in mice and in vitro. The effects of the inhibitors on mitochondrial respiration, reactive oxygen species (ROS) formation, ATP production, or hydrolysis were measured in SSM at baseline. Cyclosporine A (CsA) was co-administered with the inhibitors to address putative additive cardioprotective effects. Rabbits and mice treated with MLS compounds had smaller infarct size compared with control. In rabbits, MLS2776 and MLS2778 possessed greater infarct-sparing effects than BIO. GSK3β inhibition was confirmed at the 10th min and 2 h of reperfusion, while up-regulation of autophagy-related proteins was evident at late reperfusion. The mitochondrial amount of GSK3β was similar in normoxic SSM and IFM and was not altered by I/R. The inhibitors did not affect CRC or respiration, ROS and ATP production/hydrolysis at baseline. The co-administration of CsA ensured that cardioprotection was CypD-independent. CONCLUSION Pharmacological inhibition of GSK3β attenuates infarct size beyond mPTP inhibition.
Collapse
Affiliation(s)
- Panagiota-Efstathia Nikolaou
- National and Kapodistrian University of Athens, Faculty of Pharmacy, Panepistimiopolis, Zografou, Athens, Greece
| | - Kerstin Boengler
- Institute for Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Panagiotis Efentakis
- National and Kapodistrian University of Athens, Faculty of Pharmacy, Panepistimiopolis, Zografou, Athens, Greece
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | | | - Anastasia Zoga
- National and Kapodistrian University of Athens, Medical School, Attikon University Hospital, Athens, Greece
| | - Nicholas Gaboriaud-Kolar
- National and Kapodistrian University of Athens, Faculty of Pharmacy, Panepistimiopolis, Zografou, Athens, Greece
- Bioval Océan Indien, Montpellier Cedex, France
| | - Vassilios Myrianthopoulos
- National and Kapodistrian University of Athens, Faculty of Pharmacy, Panepistimiopolis, Zografou, Athens, Greece
| | - Pavlos Alexakos
- Academy of Athens Biomedical Research Foundation, Centre of Clinical Experimental Surgery and Translational Research, Athens, Greece
| | - Nikolaos Kostomitsopoulos
- Academy of Athens Biomedical Research Foundation, Centre of Clinical Experimental Surgery and Translational Research, Athens, Greece
| | - Ioannis Rerras
- National and Kapodistrian University of Athens, Faculty of Pharmacy, Panepistimiopolis, Zografou, Athens, Greece
| | - Anna Tsantili-Kakoulidou
- National and Kapodistrian University of Athens, Faculty of Pharmacy, Panepistimiopolis, Zografou, Athens, Greece
| | - Alexios Leandros Skaltsounis
- National and Kapodistrian University of Athens, Faculty of Pharmacy, Panepistimiopolis, Zografou, Athens, Greece
| | - Andreas Papapetropoulos
- National and Kapodistrian University of Athens, Faculty of Pharmacy, Panepistimiopolis, Zografou, Athens, Greece
- Academy of Athens Biomedical Research Foundation, Centre of Clinical Experimental Surgery and Translational Research, Athens, Greece
| | - Efstathios K Iliodromitis
- National and Kapodistrian University of Athens, Medical School, Attikon University Hospital, Athens, Greece
| | - Rainer Schulz
- Institute for Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Ioanna Andreadou
- National and Kapodistrian University of Athens, Faculty of Pharmacy, Panepistimiopolis, Zografou, Athens, Greece
| |
Collapse
|
41
|
Liu J, Li J, Tian P, Guli B, Weng G, Li L, Cheng Q. H 2S attenuates sepsis-induced cardiac dysfunction via a PI3K/Akt-dependent mechanism. Exp Ther Med 2019; 17:4064-4072. [PMID: 31007743 PMCID: PMC6468938 DOI: 10.3892/etm.2019.7440] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 02/08/2019] [Indexed: 12/16/2022] Open
Abstract
The heart is the most vulnerable target organ in sepsis, and it has been previously reported that hydrogen sulfide (H2S) has a protective role in heart dysfunction caused by sepsis. Additionally, studies have demonstrated that the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) signaling pathway has a protective function during sepsis. However, the potential association between H2S and PI3K/Akt in sepsis-induced cardiac dysfunction is unclear. Therefore, the PI3K inhibitor LY294002 was used to investigate the role of PI3K/Akt signaling in the protective effects of H2S during sepsis-induced myocardial injury. A rat sepsis model was established using cecal ligation and puncture (CLP) surgery. Sodium hydrosulfide, a H2S donor, was administered intraperitoneally (8.9 µmol/kg), and serum myocardial enzyme levels, inflammatory cytokine levels, cardiac histology and cardiomyocyte apoptosis were assessed to determine the extent of myocardial damage. The results demonstrated that exogenous H2S reduced serum myocardial enzyme levels, decreased the levels of the inflammatory factors tumor necrosis factor (TNF)-α and interleukin (IL)-6, and increased the level of anti-inflammatory IL-10 following CLP. Staining of histological sections demonstrated that myocardial damage and cardiomyocyte apoptosis were alleviated by the administration of exogenous H2S. Western blot analysis was used to detect phosphorylated and total PI3K and Akt levels, as well as NF-κB, B-cell lymphoma-2, Bcl-2-associated X protein (Bax) and caspase levels, and the results demonstrated that H2S significantly increased PI3K and Akt phosphorylation. This indicated that the PI3K/Akt signaling pathway was activated by H2S. Additionally, H2S reduced Bax and caspase expression, indicating that apoptosis was inhibited, and decreased NF-κB levels, indicating that inflammation was reduced. Furthermore, the PI3K inhibitor LY294002 eliminated the protective effects of H2S. In conclusion, the results of the current study suggest that exogenous H2S activates PI3K/Akt signaling to attenuate myocardial damage in sepsis.
Collapse
Affiliation(s)
- Jianping Liu
- Department of Critical Care Medicine, Medical School of Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Jianhua Li
- Department of Critical Care Medicine, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Peigang Tian
- Department of Critical Care Medicine, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Bahaer Guli
- Department of Critical Care Medicine, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Guopeng Weng
- Department of Critical Care Medicine, Medical School of Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Lei Li
- Department of Critical Care Medicine, Medical School of Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Qinghong Cheng
- Department of Critical Care Medicine, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| |
Collapse
|
42
|
Galber C, Valente G, von Stockum S, Giorgio V. Purification of Functional F-ATP Synthase from Blue Native PAGE. Methods Mol Biol 2019; 1925:233-243. [PMID: 30674031 DOI: 10.1007/978-1-4939-9018-4_20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In the presence of Ca2+, F-ATP synthase preparations eluted from Blue Native gels generate electrophysiological currents that are typical of an inner mitochondrial membrane mega-channel, the permeability transition pore. Here we describe an experimental protocol for purification of F-ATP synthase that allows to maintain the enzyme assembly and activity that are essential for catalysis and channel formation.
Collapse
Affiliation(s)
- Chiara Galber
- Neuroscience Institute and Department of Biomedical Sciences, CNR and University of Padua, Padua, Italy
| | - Giulia Valente
- Neuroscience Institute and Department of Biomedical Sciences, CNR and University of Padua, Padua, Italy
| | - Sophia von Stockum
- Department of Biology, University of Padua, Padua, Italy
- Fondazione Ospedale San Camillo, IRCCS, Venezia, Italy
| | - Valentina Giorgio
- Neuroscience Institute and Department of Biomedical Sciences, CNR and University of Padua, Padua, Italy.
| |
Collapse
|
43
|
Drucker NA, Jensen AR, Te Winkel JP, Markel TA. Hydrogen Sulfide Donor GYY4137 Acts Through Endothelial Nitric Oxide to Protect Intestine in Murine Models of Necrotizing Enterocolitis and Intestinal Ischemia. J Surg Res 2018; 234:294-302. [PMID: 30527488 DOI: 10.1016/j.jss.2018.08.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 08/01/2018] [Accepted: 08/24/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) in premature infants is often a devastating surgical condition with poor outcomes. GYY4137 is a long-acting donor of hydrogen sulfide, a gasotransmitter that is protective against intestinal injury in experimental NEC, likely through protection against injury secondary to ischemia. We hypothesized that administration of GYY4137 would improve mesenteric perfusion, reduce intestinal injury, and reduce inflammatory responses in experimental NEC and ischemia-reperfusion injury, and that these benefits would be mediated through endothelial nitric oxide synthase-dependent pathways. METHODS NEC was induced in C57BL/6 wild-type (WT) and endothelial nitric oxide synthase (eNOS) knockout (eNOSKO) pups via maternal separation, formula feeding, enteral lipopolysaccharide, and intermittent hypoxic and hypothermic stress. Pups received daily intraperitoneal injections of 50 mg/kg GYY4137 or phosphate buffered saline vehicle. In separate groups, adult male WT and eNOSKO mice underwent superior mesenteric artery occlusion for 60 min. Before abdominal closure, 50 mg/kg GYY4137 or phosphate buffered saline vehicle was administered into the peritoneal cavity. Laser doppler imaging was used to assess mesenteric perfusion of pups at baseline and on postnatal day 9, and the adult mice at baseline and 24 h after ischemic insult. After euthanasia, the terminal ileum of each animal was fixed, paraffin embedded, sectioned, and stained with hematoxylin and eosin. Sections were blindly graded using published injury scores. Intestinal tissue was homogenized and cytokines measured by ELISA. Data were compared using Mann-Whitney U test, and P-values <0.05 were significant. RESULTS After NEC and ischemia reperfusion (I/R) injury, GYY4137 improved perfusion in WT mice compared to vehicle, but this effect was lost in the eNOSKO animals. Histologic injury followed a similar pattern with reduced intestinal injury in WT mice treated with GYY4137, and no significant improvement in the eNOSKO group. Cytokine expression after GYY4137 administration was altered by the ablation of eNOS in both NEC and I/R injury groups, with significant differences noted in Interleukin 6 and vascular endothelial growth factor. CONCLUSIONS GYY4137, a long-acting donor of hydrogen sulfide, has potential as a therapeutic compound for NEC. It improves mesenteric perfusion and intestinal injury in experimental NEC and intestinal I/R injury, and these benefits appear to be mediated through eNOS-dependent pathways.
Collapse
Affiliation(s)
- Natalie A Drucker
- Department of Surgery, Section of Pediatric Surgery, Riley Hospital for Children at Indiana University Health, Indianapolis, Indiana; Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Amanda R Jensen
- Department of Surgery, Section of Pediatric Surgery, Riley Hospital for Children at Indiana University Health, Indianapolis, Indiana; Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jan P Te Winkel
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Troy A Markel
- Department of Surgery, Section of Pediatric Surgery, Riley Hospital for Children at Indiana University Health, Indianapolis, Indiana; Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
44
|
Merz T, Lukaschewski B, Wigger D, Rupprecht A, Wepler M, Gröger M, Hartmann C, Whiteman M, Szabo C, Wang R, Waller C, Radermacher P, McCook O. Interaction of the hydrogen sulfide system with the oxytocin system in the injured mouse heart. Intensive Care Med Exp 2018; 6:41. [PMID: 30341744 PMCID: PMC6195501 DOI: 10.1186/s40635-018-0207-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/07/2018] [Indexed: 02/08/2023] Open
Abstract
Background Both the hydrogen sulfide/cystathionine-γ-lyase (H2S/CSE) and oxytocin/oxytocin receptor (OT/OTR) systems have been reported to be cardioprotective. H2S can stimulate OT release, thereby affecting blood volume and pressure regulation. Systemic hyper-inflammation after blunt chest trauma is enhanced in cigarette smoke (CS)-exposed CSE−/− mice compared to wildtype (WT). CS increases myometrial OTR expression, but to this point, no data are available on the effects CS exposure on the cardiac OT/OTR system. Since a contusion of the thorax (Txt) can cause myocardial injury, the aim of this post hoc study was to investigate the effects of CSE−/− and exogenous administration of GYY4137 (a slow release H2S releasing compound) on OTR expression in the heart, after acute on chronic disease, of CS exposed mice undergoing Txt. Methods This study is a post hoc analysis of material obtained in wild type (WT) homozygous CSE−/− mice after 2-3 weeks of CS exposure and subsequent anesthesia, blast wave-induced TxT, and surgical instrumentation for mechanical ventilation (MV) and hemodynamic monitoring. CSE−/− animals received a 50 μg/g GYY4137-bolus after TxT. After 4h of MV, animals were exsanguinated and organs were harvested. The heart was cut transversally, formalin-fixed, and paraffin-embedded. Immunohistochemistry for OTR, arginine-vasopressin-receptor (AVPR), and vascular endothelial growth factor (VEGF) was performed with naïve animals as native controls. Results CSE−/− was associated with hypertension and lower blood glucose levels, partially and significantly restored by GYY4137 treatment, respectively. Myocardial OTR expression was reduced upon injury, and this was aggravated in CSE−/−. Exogenous H2S administration restored myocardial protein expression to WT levels. Conclusions This study suggests that cardiac CSE regulates cardiac OTR expression, and this effect might play a role in the regulation of cardiovascular function.
Collapse
Affiliation(s)
- Tamara Merz
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Medical School, Helmholtzstrasse 8-1, 89081, Ulm, Germany.
| | - Britta Lukaschewski
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Medical School, Helmholtzstrasse 8-1, 89081, Ulm, Germany
| | - Daniela Wigger
- Clinic for Psychsomatic Medicine and Psychotherapy, University Medical Center, Ulm, Germany
| | - Aileen Rupprecht
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Medical School, Helmholtzstrasse 8-1, 89081, Ulm, Germany
| | - Martin Wepler
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Medical School, Helmholtzstrasse 8-1, 89081, Ulm, Germany.,Department of Anesthesiology, University Medical Center, Ulm, Germany
| | - Michael Gröger
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Medical School, Helmholtzstrasse 8-1, 89081, Ulm, Germany
| | - Clair Hartmann
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Medical School, Helmholtzstrasse 8-1, 89081, Ulm, Germany.,Department of Anesthesiology, University Medical Center, Ulm, Germany
| | - Matthew Whiteman
- University of Exeter Medical School, St. Luke's Campus, Exeter, England, UK
| | - Csaba Szabo
- Chair of Pharmacology, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.,Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Rui Wang
- Department of Biology, Laurentian University, Sudbury, ON, Canada
| | - Christiane Waller
- Clinic for Psychsomatic Medicine and Psychotherapy, University Medical Center, Ulm, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Paracelsus Medical University, Nuremberg General Hospital, Nuremberg, Germany
| | - Peter Radermacher
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Medical School, Helmholtzstrasse 8-1, 89081, Ulm, Germany
| | - Oscar McCook
- Institute of Anesthesiological Pathophysiology and Process Engineering, University Medical School, Helmholtzstrasse 8-1, 89081, Ulm, Germany
| |
Collapse
|
45
|
Role of oxidative stress in the process of vascular remodeling following coronary revascularization. Int J Cardiol 2018; 268:27-33. [DOI: 10.1016/j.ijcard.2018.05.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/17/2018] [Accepted: 05/14/2018] [Indexed: 12/26/2022]
|
46
|
Drucker NA, Jensen AR, Ferkowicz M, Markel TA. Hydrogen sulfide provides intestinal protection during a murine model of experimental necrotizing enterocolitis. J Pediatr Surg 2018; 53:1692-1698. [PMID: 29338840 DOI: 10.1016/j.jpedsurg.2017.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/24/2017] [Accepted: 12/10/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) continues to be a morbid surgical condition among preterm infants. Novel therapies for this condition are desperately needed. Hydrogen sulfide (H2S) is an endogenous gasotransmitter that has been found to have beneficial properties. We therefore hypothesized that intraperitoneal injection of various H2S donors would improve clinical outcomes, increase intestinal perfusion, and reduce intestinal injury in an experimental mouse model of necrotizing enterocolitis. METHODS NEC was induced in five-day-old mouse C57BL/6 mouse pups through maternal separation, formula feeding, and intermittent hypoxic and hypothermic stress. The control group (n=10) remained with their mother and breastfed ad lib. Experimental groups (n=10/group) received intraperitoneal injections of phosphate buffered saline (PBS) vehicle or one of the following H2S donors: (1) GYY4137, 50mg/kg daily; (2) Sodium sulfide (Na2S), 20mg/kg three times daily; (3) AP39, 0.16mg/kg daily. Pups were monitored for weight gain, clinical status, and intestinal perfusion via transcutaneous Laser Doppler Imaging (LDI). After sacrifice on day nine, intestinal appearance and histology were scored and cytokines were measured in tissue homogenates of intestine, liver, and lung. Data were compared with Mann-Whitney and p<0.05 was considered significant. RESULTS Clinical score and weight gain were significantly improved in all three H2S-treated groups as compared to vehicle (p<0.05 for all groups). Intestinal perfusion of the vehicle group was 22% of baseline while the GYY4137 group was 38.7% (p=0.0103), Na2S was 47.0% (p=0.0040), and AP39 was 43.0% (p=0.0018). The vehicle group had a median histology score of 2.5, while the GYY4137 group's was 1 (p=0.0013), Na2S was 0.5 (p=0.0004), and AP39 was 0.5 (p=0.0001). Cytokine analysis of the intestine of the H2S-treated groups revealed levels closer to breastfed pups as compared to vehicle (p<0.05 for all groups). CONCLUSION Intraperitoneal administration of H2S protects against development of NEC by improving mesenteric perfusion, and by limiting mucosal injury and altering the tissue inflammatory response. Further experimentation is necessary to elucidate downstream mechanisms prior to clinical implementation.
Collapse
Affiliation(s)
- Natalie A Drucker
- Department of Surgery, Section of Pediatric Surgery, Indianapolis, IN; The Indiana University School of Medicine, Indianapolis, IN
| | - Amanda R Jensen
- Department of Surgery, Section of Pediatric Surgery, Indianapolis, IN; The Indiana University School of Medicine, Indianapolis, IN
| | - Michael Ferkowicz
- Department of Surgery, Section of Pediatric Surgery, Indianapolis, IN; The Indiana University School of Medicine, Indianapolis, IN
| | - Troy A Markel
- Department of Surgery, Section of Pediatric Surgery, Indianapolis, IN; Riley Hospital for Children at Indiana University Health, Indianapolis, IN; The Indiana University School of Medicine, Indianapolis, IN.
| |
Collapse
|
47
|
Cao X, Xiong S, Zhou Y, Wu Z, Ding L, Zhu Y, Wood ME, Whiteman M, Moore PK, Bian JS. Renal Protective Effect of Hydrogen Sulfide in Cisplatin-Induced Nephrotoxicity. Antioxid Redox Signal 2018; 29:455-470. [PMID: 29316804 DOI: 10.1089/ars.2017.7157] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AIMS Cisplatin is a major therapeutic drug for solid tumors, but can cause severe nephrotoxicity. However, the role and therapeutic potential of hydrogen sulfide (H2S), an endogenous gasotransmitter, in cisplatin-induced nephrotoxicity remain to be defined. RESULTS Cisplatin led to the impairment of H2S production in vitro and in vivo by downregulating the expression level of cystathionine γ-lyase (CSE), which may contribute to the subsequent renal proximal tubule (RPT) cell death and thereby renal toxicity. H2S donors NaHS and GYY4137, but not AP39, mitigated cisplatin-induced RPT cell death and nephrotoxicity. The mechanisms underlying the protective effect of H2S donors included the suppression of intracellular reactive oxygen species generation and downstream mitogen-activated protein kinases by inhibiting NADPH oxidase activity, which may be possibly through persulfidating the subunit p47phox. Importantly, GYY4137 not only ameliorated cisplatin-caused renal injury but also added on more anticancer effect to cisplatin in cancer cell lines. Innovation and Conclusion: Our study provides a comprehensive understanding of the role and therapeutic potential of H2S in cisplatin-induced nephrotoxicity. Our results indicate that H2S may be a novel and promising therapeutic target to prevent cisplatin-induced nephrotoxicity. Antioxid. Redox Signal. 29, 455-470.
Collapse
Affiliation(s)
- Xu Cao
- 1 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Siping Xiong
- 1 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Yebo Zhou
- 1 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Zhiyuan Wu
- 1 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore .,2 Life Science Institute, National University of Singapore , Singapore, Singapore
| | - Lei Ding
- 1 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Yike Zhu
- 1 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Mark E Wood
- 3 Department of Biosciences, University of Exeter , Exeter, United Kingdom
| | - Matthew Whiteman
- 4 School of Biosciences, College of Life and Environmental Science, University of Exeter , Exeter, United Kingdom
| | - Philip K Moore
- 1 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore .,2 Life Science Institute, National University of Singapore , Singapore, Singapore
| | - Jin-Song Bian
- 1 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore .,2 Life Science Institute, National University of Singapore , Singapore, Singapore
| |
Collapse
|
48
|
Abstract
Hydrogen sulfide (H2S) is a novel signaling molecule most recently found to be of fundamental importance in cellular function as a regulator of apoptosis, inflammation, and perfusion. Mechanisms of endogenous H2S signaling are poorly understood; however, signal transmission is thought to occur via persulfidation at reactive cysteine residues on proteins. Although much has been discovered about how H2S is synthesized in the body, less is known about how it is metabolized. Recent studies have discovered a multitude of different targets for H2S therapy, including those related to protein modification, intracellular signaling, and ion channel depolarization. The most difficult part of studying hydrogen sulfide has been finding a way to accurately and reproducibly measure it. The purpose of this review is to: elaborate on the biosynthesis and catabolism of H2S in the human body, review current knowledge of the mechanisms of action of this gas in relation to ischemic injury, define strategies for physiological measurement of H2S in biological systems, and review potential novel therapies that use H2S for treatment.
Collapse
|
49
|
Dugbartey GJ, Bouma HR, Saha MN, Lobb I, Henning RH, Sener A. A Hibernation-Like State for Transplantable Organs: Is Hydrogen Sulfide Therapy the Future of Organ Preservation? Antioxid Redox Signal 2018; 28:1503-1515. [PMID: 28747071 DOI: 10.1089/ars.2017.7127] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
SIGNIFICANCE Renal transplantation is the treatment of choice for end-stage renal disease, during which renal grafts from deceased donors are routinely cold stored to suppress metabolic demand and thereby limit ischemic injury. However, prolonged cold storage, followed by reperfusion, induces extensive tissue damage termed cold ischemia/reperfusion injury (IRI) and puts the graft at risk of both early and late rejection. Recent Advances: Deep hibernators constitute a natural model of coping with cold IRI as they regularly alternate between 4°C and 37°C. Recently, endogenous hydrogen sulfide (H2S), a gas with a characteristic rotten egg smell, has been implicated in organ protection in hibernation. CRITICAL ISSUES In renal transplantation, H2S also seems to confer cytoprotection by lowering metabolism, thereby creating a hibernation-like environment, and increasing preservation time while allowing cellular processes of preservation of homeostasis and tissue remodeling to take place, thus increasing renal graft survival. FUTURE DIRECTIONS Although the underlying cellular and molecular mechanisms of organ protection during hibernation have not been fully explored, mammalian hibernation may offer a great clinical promise to safely cold store and reperfuse donor organs. In this review, we first discuss mammalian hibernation as a natural model of cold organ preservation with reference to the kidney and highlight the involvement of H2S during hibernation. Next, we present recent developments on the protective effects and mechanisms of exogenous and endogenous H2S in preclinical models of transplant IRI and evaluate the potential of H2S therapy in organ preservation as great promise for renal transplant recipients in the future. Antioxid. Redox Signal. 28, 1503-1515.
Collapse
Affiliation(s)
- George J Dugbartey
- 1 Department of Medicine, Division of Cardiology, The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,2 Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen , Groningen, Netherlands
| | - Hjalmar R Bouma
- 2 Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen , Groningen, Netherlands
| | - Manujendra N Saha
- 3 Matthew Mailing Center for Translational Transplant Studies, Western University , London, Canada .,4 Department of Surgery, Division of Urology, London Health Sciences Center, Western University , London, Canada .,5 Department of Microbiology and Immunology, London Health Sciences Center, Western University , London, Canada
| | - Ian Lobb
- 3 Matthew Mailing Center for Translational Transplant Studies, Western University , London, Canada
| | - Robert H Henning
- 2 Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen , Groningen, Netherlands
| | - Alp Sener
- 3 Matthew Mailing Center for Translational Transplant Studies, Western University , London, Canada .,4 Department of Surgery, Division of Urology, London Health Sciences Center, Western University , London, Canada .,5 Department of Microbiology and Immunology, London Health Sciences Center, Western University , London, Canada .,6 London Health Sciences Center, Western University , London, Canada
| |
Collapse
|
50
|
Mercaptopyruvate acts as endogenous vasodilator independently of 3-mercaptopyruvate sulfurtransferase activity. Nitric Oxide 2018; 75:53-59. [PMID: 29452248 DOI: 10.1016/j.niox.2018.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/30/2018] [Accepted: 02/12/2018] [Indexed: 12/16/2022]
Abstract
Hydrogen sulfide (H2S) is produced by the action of cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE) or 3-mercaptopyruvate sulfurtransferase (3-MST). 3-MST converts 3-mercaptopyruvate (MPT) to H2S and pyruvate. H2S is recognized as an endogenous gaseous mediator with multiple regulatory roles in mammalian cells and organisms. In the present study we demonstrate that MPT, the endogenous substrate of 3-MST, acts also as endogenous H2S donor. Colorimetric, amperometric and fluorescence based assays demonstrated that MPT releases H2S in vitro in an enzyme-independent manner. A functional study was performed on aortic rings harvested from C57BL/6 (WT) or 3-MST-knockout (3-MST-/-) mice with and without endothelium. MPT relaxed mouse aortic rings in endothelium-independent manner and at the same extent in both WT and 3-MST-/- mice. N5-(1-Iminoethyl)-l-ornithine dihydrochloride (L-NIO, an inhibitor of endothelial nitric oxide synthase) as well as 1H-[1,2,4]oxadiazolo [4,3-a]quinoxalin-1-one (ODQ, a soluble guanylyl cyclase inhibitor) did not affect MPT relaxant action. Conversely, hemoglobin (as H2S scavenger), as well as glybenclamide (an ATP-dependent potassium channel blocker) markedly reduced MPT-induced relaxation. The functional data clearly confirmed a non enzymatic vascular effect of MPT. In conclusion, MPT acts also as an endogenous H2S donor and not only as 3-MST substrate. MPT could, thus, be further investigated as a means to increase H2S in conditions where H2S bioavailability is reduced such as hypertension, coronary artery disease, diabetes or urogenital tract disease.
Collapse
|