1
|
The Bidirectional Relationship of NPY and Mitochondria in Energy Balance Regulation. Biomedicines 2023; 11:biomedicines11020446. [PMID: 36830982 PMCID: PMC9953676 DOI: 10.3390/biomedicines11020446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Energy balance is regulated by several hormones and peptides, and neuropeptide Y is one of the most crucial in feeding and energy expenditure control. NPY is regulated by a series of peripheral nervous and humoral signals that are responsive to nutrient sensing, but its role in the energy balance is also intricately related to the energetic status, namely mitochondrial function. During fasting, mitochondrial dynamics and activity are activated in orexigenic neurons, increasing the levels of neuropeptide Y. By acting on the sympathetic nervous system, neuropeptide Y modulates thermogenesis and lipolysis, while in the peripheral sites, it triggers adipogenesis and lipogenesis instead. Moreover, both central and peripheral neuropeptide Y reduces mitochondrial activity by decreasing oxidative phosphorylation proteins and other mediators important to the uptake of fatty acids into the mitochondrial matrix, inhibiting lipid oxidation and energy expenditure. Dysregulation of the neuropeptide Y system, as occurs in metabolic diseases like obesity, may lead to mitochondrial dysfunction and, consequently, to oxidative stress and to the white adipose tissue inflammatory environment, contributing to the development of a metabolically unhealthy profile. This review focuses on the interconnection between mitochondrial function and dynamics with central and peripheral neuropeptide Y actions and discusses possible therapeutical modulations of the neuropeptide Y system as an anti-obesity tool.
Collapse
|
2
|
Bischoff A, Stickan-Verfürth M, Michel MC. Effects of Nifedipine on Renal and Cardiovascular Responses to Neuropeptide Y in Anesthetized Rats. Molecules 2021; 26:molecules26154460. [PMID: 34361613 PMCID: PMC8347858 DOI: 10.3390/molecules26154460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/07/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022] Open
Abstract
Neuropeptide Y (NPY) acts via multiple receptor subtypes termed Y1, Y2 and Y5. While Y1 receptor-mediated effects, e.g., in the vasculature, are often sensitive to inhibitors of L-type Ca2+ channels such as nifedipine, little is known about the role of such channels in Y5-mediated effects such as diuresis and natriuresis. Therefore, we explored whether nifedipine affects NPY-induced diuresis and natriuresis. After pre-treatment with nifedipine or vehicle, anesthetized rats received infusions or bolus injections of NPY. Infusion NPY (1 µg/kg/min) increased diuresis and natriuresis, and this was attenuated by intraperitoneal injection of nifedipine (3 µg/kg). Concomitant decreases in heart rate and reductions of renal blood flow were not attenuated by nifedipine. Bolus injections of NPY (0.3, 1, 3, 10 and 30 μg/kg) dose-dependently increased mean arterial pressure and renovascular vascular resistance; only the higher dose of nifedipine (100 μg/kg/min i.v.) moderately inhibited these effects. We conclude that Y5-mediated diuresis and natriuresis are more sensitive to inhibition by nifedipine than Y1-mediated renovascular effects. Whether this reflects a general sensitivity of Y5 receptor-mediated responses or is specific for diuresis and natriuresis remains to be investigated.
Collapse
Affiliation(s)
- Angela Bischoff
- Arensia Exploratory Medicine GmbH, 20225 Düsseldorf, Germany;
| | - Martina Stickan-Verfürth
- Department of Nephrology and of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre, 45147 Essen, Germany;
| | - Martin C. Michel
- Department of Pharmacology, Johannes Gutenberg University, 55131 Mainz, Germany
- Correspondence:
| |
Collapse
|
3
|
Zhao H, Zhang F, Sun D, Wang X, Zhang X, Zhang J, Yan F, Huang C, Xie H, Lin C, Liu Y, Fan M, Yan W, Chen Y, Lian K, Li Y, Zhang L, Wang S, Tao L. Branched-Chain Amino Acids Exacerbate Obesity-Related Hepatic Glucose and Lipid Metabolic Disorders via Attenuating Akt2 Signaling. Diabetes 2020; 69:1164-1177. [PMID: 32184272 DOI: 10.2337/db19-0920] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/09/2020] [Indexed: 01/08/2023]
Abstract
Branched chain amino acids (BCAAs) are associated with the progression of obesity-related metabolic disorders, including type 2 diabetes and nonalcoholic fatty liver disease. However, whether BCAAs disrupt the homeostasis of hepatic glucose and lipid metabolism remains unknown. In this study, we observed that BCAAs supplementation significantly reduced high-fat (HF) diet-induced hepatic lipid accumulation while increasing the plasma lipid levels and promoting muscular and renal lipid accumulation. Further studies demonstrated that BCAAs supplementation significantly increased hepatic gluconeogenesis and suppressed hepatic lipogenesis in HF diet-induced obese (DIO) mice. These phenotypes resulted from severe attenuation of Akt2 signaling via mTORC1- and mTORC2-dependent pathways. BCAAs/branched-chain α-keto acids (BCKAs) chronically suppressed Akt2 activation through mTORC1 and mTORC2 signaling and promoted Akt2 ubiquitin-proteasome-dependent degradation through the mTORC2 pathway. Moreover, the E3 ligase Mul1 played an essential role in BCAAs/BCKAs-mTORC2-induced Akt2 ubiquitin-dependent degradation. We also demonstrated that BCAAs inhibited hepatic lipogenesis by blocking Akt2/SREBP1/INSIG2a signaling and increased hepatic glycogenesis by regulating Akt2/Foxo1 signaling. Collectively, these data demonstrate that in DIO mice, BCAAs supplementation resulted in serious hepatic metabolic disorder and severe liver insulin resistance: insulin failed to not only suppress gluconeogenesis but also activate lipogenesis. Intervening BCAA metabolism is a potential therapeutic target for severe insulin-resistant disease.
Collapse
Affiliation(s)
- Huishou Zhao
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Fuyang Zhang
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Dan Sun
- Department of Assisted Reproduction Center, Tangdu Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Xiong Wang
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Xiaomeng Zhang
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Jinglong Zhang
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Feng Yan
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Chong Huang
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Huaning Xie
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Chen Lin
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Yi Liu
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Miaomiao Fan
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Wenjun Yan
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Youhu Chen
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Kun Lian
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Yueyang Li
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Ling Zhang
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Shan Wang
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
4
|
Indexes of citrulline metabolism in rat liver under the toxic injury against the background of alimentary protein deficiency. UKRAINIAN BIOCHEMICAL JOURNAL 2020. [DOI: 10.15407/ubj92.01.113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
5
|
Shareghi Brojeni M, Salimi M, Mirmohammadsadeghi Z, Haghparast A, Eliassi A. Comparison of Effects of Light Anesthetics, Diethyl Ether and Carbon Dioxide, on Hypothalamic Paraventricular Nucleus D 1 and D 2 Dopamine Receptors- and Glucosensitive Neurons-Induced Food Intake in Fasted Conscious Rats. Basic Clin Neurosci 2018; 9:269-274. [PMID: 30519385 PMCID: PMC6276533 DOI: 10.32598/bcn.9.4.269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 05/15/2017] [Accepted: 07/30/2017] [Indexed: 11/20/2022] Open
Abstract
Introduction Carbon Dioxide (CO2) and diethyl ether are used as light anesthetics. However, experimental data about their side effects are scarce. In addition, in all our previous works on regulatory mechanisms of hypothalamus during food intake, including the effect of Paraventricular Nucleus (PVN) D1 and D2 dopamine receptors and glucosensitive neurons, the drug injections were performed under brief diethyl ether anesthesia. In the current study, we tested the hypothesis which postulates that CO2 and diethyl ether as light anesthetic agents affect the stimulatory effect of PVN dopamine receptors and glucosensitive neurons in feeding behavior. Methods Male Wistar rats were implanted with guide cannula directed to their PVN. Glucose (0.8 μg), SKF38393 (D1 agonist, 0.5 μg), quinpirole (D2 agonist, 0.3 μg) and saline (0.3 μL) were microinjected into the PVN and food intake was measured over 1 hour. Results Our results showed that CO2 but not diethyl ether decreased food intake compared to intact animals. The PVN injections of glucose, SKF38393, and quinpirole increased food intake under brief diethyl ether anesthesia. In contrast, the PVN microinjected glucose-induced and dopamine receptor agonists-induced food intake were inhibited under light CO2 anesthesia. Conclusion Our results suggest that brief exposure to CO2 and diethyl ether as light anesthetic agents may affect PVN glucosensing neurons-induced and dopamine receptors-induced food intake in fasted rats.
Collapse
Affiliation(s)
- Masoud Shareghi Brojeni
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Morteza Salimi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Mirmohammadsadeghi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afsaneh Eliassi
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Businaro R, Scaccia E, Bordin A, Pagano F, Corsi M, Siciliano C, Capoano R, Procaccini E, Salvati B, Petrozza V, Totta P, Vietri MT, Frati G, De Falco E. Platelet Lysate-Derived Neuropeptide y Influences Migration and Angiogenesis of Human Adipose Tissue-Derived Stromal Cells. Sci Rep 2018; 8:14365. [PMID: 30254326 PMCID: PMC6156505 DOI: 10.1038/s41598-018-32623-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 07/24/2018] [Indexed: 02/07/2023] Open
Abstract
Neuropeptide Y (NPY), a powerful neurotransmitter of the central nervous system, is a key regulator of angiogenesis and biology of adipose depots. Intriguingly, its peripheral vascular and angiogenic powerful activity is strictly associated to platelets, which are source of clinical hemoderivates, such as platelet lysate (PL), routinely employed in several clinical applications as wound healing, and to preserve ex vivo the progenitor properties of the adipose stromal cells pool. So far, the presence of NPY in PL and its biological effects on the adipose stromal cell fraction (ASCs) have never been investigated. Here, we aimed to identify endogenous sources of NPY such as PL-based preparations and to investigate which biological properties PL-derived NPY is able to exert on ASCs. The results show that PL contains a high amount of NPY, which is in part also excreted by ASCs when stimulated with PL. The protein levels of the three main NPY subtype receptors (Y1, Y2, Y5) are unaltered by stimulation of ASCs with PL, but their inhibition through selective pharmacological antagonists, considerably enhances migration, and a parallel reduction of angiogenic features of ASCs including decrease in VEGF mRNA and intracellular calcium levels, both downstream targets of NPY. The expression of VEGF and NPY is enhanced within the sites of neovascularisation of difficult wounds in patients after treatment with leuco-platelet concentrates. Our data highlight the presence of NPY in PL preparations and its peripheral effects on adipose progenitors.
Collapse
Affiliation(s)
- Rita Businaro
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100, Latina, Italy
| | - Eleonora Scaccia
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100, Latina, Italy
| | - Antonella Bordin
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100, Latina, Italy
| | - Francesca Pagano
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100, Latina, Italy
| | - Mariangela Corsi
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100, Latina, Italy
| | - Camilla Siciliano
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100, Latina, Italy
| | - Raffaele Capoano
- Department of Surgical Sciences, Sapienza University of Rome, V.le del Policlinico 155, 00161, Rome, Italy
| | - Eugenio Procaccini
- Breast Unit, A.O. U. Università della Campania Luigi Vanvitelli, piazza Luigi Miraglia, 280138, Naples, Italy
| | - Bruno Salvati
- Department of Surgical Sciences, Sapienza University of Rome, V.le del Policlinico 155, 00161, Rome, Italy
| | - Vincenzo Petrozza
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100, Latina, Italy
| | | | - Maria Teresa Vietri
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via Luigi De Crecchio 7, 80138, Naples, Italy
| | - Giacomo Frati
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100, Latina, Italy
- Department of AngioCardioNeurology, IRCCS NeuroMed, 86077, Pozzilli, (IS), Italy
| | - Elena De Falco
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100, Latina, Italy.
| |
Collapse
|
7
|
Chatree S, Sitticharoon C, Maikaew P, Uawithya P, Chearskul S. Adipose Y5R mRNA is higher in obese than non-obese humans and is correlated with obesity parameters. Exp Biol Med (Maywood) 2018; 243:786-795. [PMID: 29763369 PMCID: PMC5956667 DOI: 10.1177/1535370218774889] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/13/2018] [Indexed: 01/13/2023] Open
Abstract
Neuropeptide Y is mainly expressed in the central nervous system to regulate food intake via its receptors, Y receptors, and in various peripheral tissues including adipose tissue. The objectives of this study were to compare Y5R mRNA and adipocyte parameters consisting of area, width, height, and perimeter either between obese and non-obese subjects or between subcutaneous and visceral fat as well as to compare between NPY, Y1R, Y2R, and Y5R mRNA expressions in subcutaneous and visceral adipose tissues. In subcutaneous and visceral adipose tissues, Y5R was greater in obese than in non-obese humans (both P < 0.05). Y1R mRNA expression was highest followed by Y5R, Y2R, and NPY mRNA expressions, respectively, in subcutaneous and visceral adipose tissues. Visceral Y5R mRNA had positive correlations with body weight, body mass index, waist circumference, hip circumference (R ≍ 0.4), and visceral Y1R mRNA (R = 0.773), but had a negative correlation with the quantitative insulin sensitivity check index (R=-0.421) (all P < 0.05). Subcutaneous and visceral adipocyte parameters were positively correlated with body weight, waist circumference, hip circumference, and waist-to-hip ratio, with greater values of correlation coefficient shown in visceral (R ≍ 0.5-0.8) than in subcutaneous adipocytes (R ≍ 0.4-0.6, all P < 0.05). The parameters of visceral adipocytes had positive correlations with serum NPY levels (R ≍ 0.4, all P < 0.05). Y5R mRNA in visceral adipose tissue is related to increased obesity and reduced insulin sensitivity. The dominant Y receptors in subcutaneous and visceral adipose tissue might be the Y1R and Y5R. Visceral adipocytes show higher correlations with obesity parameters than subcutaneous adipocytes, suggestive of an increased risk of metabolic syndrome in visceral obesity. Y1R and Y5R in visceral adipose tissue might be targets of drug development in prevention or treatment of adiposity. Impact statement Obesity, defined as excess fat accumulation, has been increasingly diagnosed worldwide causing adverse health consequences. The novel findings of this study were that Y5R mRNA expression in both subcutaneous and visceral fat was higher in obese than non-obese subjects. Furthermore, Y5R only in visceral fat, not subcutaneous fat, was positively correlated with visceral Y1R and obesity parameters but it was negatively correlated with the QUICKI. Moreover, we found that Y1R expression was highest followed by Y5R and Y2R, respectively, in both subcutaneous and visceral fat. Our results suggested that Y5R in visceral fat was associated with increased obesity and decreased insulin sensitivity. Y1R and Y5R might be the dominant receptors that mediate the effect of NPY-induced fat accumulation in both subcutaneous and visceral adipose tissues. Y1R and Y5R in visceral adipose tissue might be targets of drug development in prevention or treatment of obesity.
Collapse
Affiliation(s)
- Saimai Chatree
- Department of Physiology, Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Chantacha Sitticharoon
- Department of Physiology, Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Pailin Maikaew
- Department of Physiology, Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Panapat Uawithya
- Department of Physiology, Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Supornpim Chearskul
- Department of Physiology, Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| |
Collapse
|
8
|
Derous D, Mitchell SE, Green CL, Chen L, Han JJ, Wang Y, Promislow DE, Lusseau D, Speakman JR, Douglas A. The effects of graded levels of calorie restriction: VI. Impact of short-term graded calorie restriction on transcriptomic responses of the hypothalamic hunger and circadian signaling pathways. Aging (Albany NY) 2016; 8:642-63. [PMID: 26945906 PMCID: PMC4925820 DOI: 10.18632/aging.100895] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/20/2016] [Indexed: 01/03/2023]
Abstract
Food intake and circadian rhythms are regulated by hypothalamic neuropeptides and circulating hormones, which could mediate the anti-ageing effect of calorie restriction (CR). We tested whether these two signaling pathways mediate CR by quantifying hypothalamic transcripts of male C57BL/6 mice exposed to graded levels of CR (10 % to 40 %) for 3 months. We found that the graded CR manipulation resulted in upregulation of core circadian rhythm genes, which correlated negatively with circulating levels of leptin, insulin-like growth factor 1 (IGF-1), insulin, and tumor necrosis factor alpha (TNF-α). In addition, key components in the hunger signaling pathway were expressed in a manner reflecting elevated hunger at greater levels of restriction, and which also correlated negatively with circulating levels of insulin, TNF-α, leptin and IGF-1. Lastly, phenotypes, such as food anticipatory activity and body temperature, were associated with expression levels of both hunger genes and core clock genes. Our results suggest modulation of the hunger and circadian signaling pathways in response to altered levels of circulating hormones, that are themselves downstream of morphological changes resulting from CR treatment, may be important elements in the response to CR, driving some of the key phenotypic outcomes.
Collapse
Affiliation(s)
- Davina Derous
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, AB24 2TZ, UK
- Centre for Genome Enabled Biology and Medicine, University of Aberdeen, Aberdeen, Scotland, AB24 3RL, UK
| | - Sharon E. Mitchell
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, AB24 2TZ, UK
| | - Cara L. Green
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, AB24 2TZ, UK
| | - Luonan Chen
- Key laboratory of Systems Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jing‐Dong J. Han
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences‐Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yingchun Wang
- State Key laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang, Beijing, 100101, China
| | - Daniel E.L. Promislow
- Department of Pathology and Department of Biology, University of Washington at Seattle, Seattle, WA 98195, USA
| | - David Lusseau
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, AB24 2TZ, UK
| | - John R. Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, AB24 2TZ, UK
- State Key laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang, Beijing, 100101, China
| | - Alex Douglas
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, AB24 2TZ, UK
- Centre for Genome Enabled Biology and Medicine, University of Aberdeen, Aberdeen, Scotland, AB24 3RL, UK
| |
Collapse
|
9
|
Pérez-Fernández J, Megías M, Pombal MA. Cloning, phylogeny, and regional expression of a Y5 receptor mRNA in the brain of the sea lamprey (Petromyzon marinus). J Comp Neurol 2014; 522:1132-54. [PMID: 24127055 DOI: 10.1002/cne.23481] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 09/27/2013] [Accepted: 09/27/2013] [Indexed: 12/12/2022]
Abstract
The NPY receptors known as Y receptors are classified into three subfamilies, Y1, Y2, and Y5, and are involved in different physiological functions. The Y5 receptor is the only member of the Y5 subfamily, and it is present in all vertebrate groups, except for teleosts. Both molecular and pharmacological studies show that Y5 receptor is highly conserved during vertebrate evolution. Furthermore, this receptor is widely expressed in the mammalian brain, including the hypothalamus, where it is thought to take part in feeding and homeostasis regulation. Lampreys belong to the agnathan lineage, and they are thought to have branched out between the two whole-genome duplications that occurred in vertebrates. Therefore, they are in a key position for studies on the evolution of gene families in vertebrates. Here we report the cloning, phylogeny, and brain expression pattern of the sea lamprey Y5 receptor. In phylogenetic studies, the lamprey Y5 receptor clusters in a basal position, together with Y5 receptors of other vertebrates. The mRNA of this receptor is broadly expressed in the lamprey brain, being especially abundant in hypothalamic areas. Its expression pattern is roughly similar to that reported for other vertebrates and parallels the expression pattern of the Y1 receptor subtype previously described by our group, as it occurs in mammals. Altogether, these results confirm that a Y5 receptor is present in lampreys, thus being highly conserved during the evolution of vertebrates, and suggest that it is involved in many brain functions, the only known exception being teleosts.
Collapse
Affiliation(s)
- Juan Pérez-Fernández
- Neurolam Group, Department of Functional Biology and Health Sciences, Faculty of Biology, University of Vigo, 36310-Vigo, Spain
| | | | | |
Collapse
|
10
|
Bartfai T, Conti B. Molecules affecting hypothalamic control of core body temperature in response to calorie intake. Front Genet 2012; 3:184. [PMID: 23097647 PMCID: PMC3466567 DOI: 10.3389/fgene.2012.00184] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 08/31/2012] [Indexed: 01/07/2023] Open
Abstract
Core body temperature (CBT) and calorie intake are main components of energy homeostasis and two important regulators of health, longevity, and aging. In homeotherms, CBT can be influenced by calorie intake as food deprivation or calorie restriction (CR) lowers CBT whereas feeding has hyperthermic effects. The finding that in mice CBT prolonged lifespan independently of CR, suggested that the mechanisms modulating CBT may represent important regulators of aging. Here we summarize the current knowledge on the signaling molecules and their receptors that participate in the regulation of CBT responses to calorie intake. These include hypothalamic neuropeptides regulating feeding but also energy expenditure via modulation of thermogenesis. We also report studies indicating that nutrient signals can contribute to regulation of CBT by direct action on hypothalamic preoptic warm-sensitive neurons that in turn regulate adaptive thermogenesis and hence CBT. Finally, we show the role played by two orphans G protein-coupled receptor: GPR50 and GPR83, that were recently demonstrated to regulate temperature-dependent energy expenditure.
Collapse
Affiliation(s)
- Tamas Bartfai
- Department of Chemical Physiology, The Scripps Research Institute La Jolla, CA, USA
| | | |
Collapse
|
11
|
Affiliation(s)
- Alexander Dömling
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
| | | | | |
Collapse
|
12
|
McAllan L, Cotter PD, Roche HM, Korpela R, Nilaweera KN. Impact of leucine on energy balance. J Physiol Biochem 2012; 69:155-63. [PMID: 22535285 DOI: 10.1007/s13105-012-0170-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 04/10/2012] [Indexed: 12/14/2022]
Abstract
Body weight is determined by the balance between energy intake and energy expenditure. When energy intake exceeds energy expenditure, the surplus energy is stored as fat in the adipose tissue, which causes its expansion and may even lead to the development of obesity. Thus, there is a growing interest to develop dietary interventions that could reduce the current obesity epidemic. In this regard, data from a number of in vivo and in vitro studies suggest that the branched-chain amino acid leucine influences energy balance. However, this has not been consistently reported. Here, we review the literature related to the effects of leucine on energy intake, energy expenditure and lipid metabolism as well as its effects on the cellular activity in the brain (hypothalamus) and in peripheral tissues (gastro-intestinal tract, adipose tissue, liver and muscle) regulating the above physiological processes. Moreover, we discuss how obesity may influence the actions of this amino acid.
Collapse
Affiliation(s)
- Liam McAllan
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | | | | | | | | |
Collapse
|
13
|
Han R, Li A, Li L, Kitlinska JB, Zukowska Z. Maternal low-protein diet up-regulates the neuropeptide Y system in visceral fat and leads to abdominal obesity and glucose intolerance in a sex- and time-specific manner. FASEB J 2012; 26:3528-36. [PMID: 22539639 DOI: 10.1096/fj.12-203943] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neuropeptide Y (NPY) mediates stress-induced obesity in adult male mice by activating its Y2 receptor (Y2R) in visceral adipose tissue (VAT). Here, we studied whether the NPY-Y2R system is also activated by maternal low-protein diet (LPD) and linked to obesity in offspring. Prenatal LPD offspring had lower birth weights compared to normal-protein diet (NPD) offspring. Female prenatal and lactation stress (PLS) offspring from mothers fed an LPD developed abdominal adiposity and glucose intolerance associated with a 5-fold up-regulation of NPY mRNA and a 6-fold up-regulation of Y2R mRNA specifically in VAT, in addition to elevated platelet-rich-plasma (PRP) NPY, compared to control females fed a high-fat diet (HFD). Conversely, PLS male offspring showed lower NPY in PRP, a 10-fold decrease of Y2R mRNA in VAT, lower adiposity, and improved glucose tolerance compared to control males. Interestingly, prenatal LPD offspring cross-fostered to control lactating mothers had completely inverse metabolic and NPY phenotypes. Taken together, these findings suggested that maternal LPD activates the VAT NPY-Y2R system and increases abdominal adiposity and glucose intolerance in a sex- and time-specific fashion, suggesting that the peripheral NPY system is a potential mediator of programming for the offspring's vulnerability to obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Ruijun Han
- Department of Integrative Biology and Physiology, Stress Physiology Center, University of Minnesota, 321 Church St. SE, Minneapolis, MN 55455, USA.
| | | | | | | | | |
Collapse
|
14
|
Discovery and evaluation of spirocyclic derivatives as antagonists of the neuropeptide Y5 receptor. Bioorg Med Chem Lett 2012; 22:2738-43. [DOI: 10.1016/j.bmcl.2012.02.098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 02/24/2012] [Accepted: 02/28/2012] [Indexed: 11/17/2022]
|
15
|
Yulyaningsih E, Zhang L, Herzog H, Sainsbury A. NPY receptors as potential targets for anti-obesity drug development. Br J Pharmacol 2011; 163:1170-202. [PMID: 21545413 DOI: 10.1111/j.1476-5381.2011.01363.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The neuropeptide Y system has proven to be one of the most important regulators of feeding behaviour and energy homeostasis, thus presenting great potential as a therapeutic target for the treatment of disorders such as obesity and at the other extreme, anorexia. Due to the initial lack of pharmacological tools that are active in vivo, functions of the different Y receptors have been mainly studied in knockout and transgenic mouse models. However, over recent years various Y receptor selective peptidic and non-peptidic agonists and antagonists have been developed and tested. Their therapeutic potential in relation to treating obesity and other disorders of energy homeostasis is discussed in this review.
Collapse
Affiliation(s)
- Ernie Yulyaningsih
- Neuroscience Research Program, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
16
|
Central NPY-Y5 receptors activation plays a major role in fasting-induced pituitary–thyroid axis suppression in adult rat. ACTA ACUST UNITED AC 2011; 171:43-7. [DOI: 10.1016/j.regpep.2011.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 06/06/2011] [Accepted: 07/05/2011] [Indexed: 12/17/2022]
|
17
|
The neuropeptide Y system: Pathophysiological and therapeutic implications in obesity and cancer. Pharmacol Ther 2011; 131:91-113. [DOI: 10.1016/j.pharmthera.2011.03.011] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Accepted: 03/07/2011] [Indexed: 12/28/2022]
|
18
|
Lopaschuk GD, Ussher JR, Jaswal JS. Targeting intermediary metabolism in the hypothalamus as a mechanism to regulate appetite. Pharmacol Rev 2010; 62:237-64. [PMID: 20392806 DOI: 10.1124/pr.109.002428] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The central nervous system mediates energy balance (energy intake and energy expenditure) in the body; the hypothalamus has a key role in this process. Recent evidence has demonstrated an important role for hypothalamic malonyl CoA in mediating energy balance. Malonyl CoA is generated by the carboxylation of acetyl CoA by acetyl CoA carboxylase and is then either incorporated into long-chain fatty acids by fatty acid synthase, or converted back to acetyl-CoA by malonyl CoA decarboxylase. Increased hypothalamic malonyl CoA is an indicator of energy surplus, resulting in a decrease in food intake and an increase in energy expenditure. In contrast, a decrease in hypothalamic malonyl CoA signals an energy deficit, resulting in an increased appetite and a decrease in body energy expenditure. A number of hormonal and neural orexigenic and anorexigenic signaling pathways have now been shown to be associated with changes in malonyl CoA levels in the arcuate nucleus (ARC) of the hypothalamus. Despite compelling evidence that malonyl CoA is an important mediator in the hypothalamic ARC control of food intake and regulation of energy balance, the mechanism(s) by which this occurs has not been established. Malonyl CoA inhibits carnitine palmitoyltransferase-1 (CPT-1), and it has been proposed that the substrate of CPT-1, long-chain acyl CoA(s), may act as a mediator(s) of appetite and energy balance. However, recent evidence has challenged the role of long-chain acyl CoA(s) in this process, as well as the involvement of CPT-1 in hypothalamic malonyl CoA signaling. A better understanding of how malonyl CoA regulates energy balance should provide novel approaches to targeting intermediary metabolism in the hypothalamus as a mechanism to control appetite and body weight. Here, we review the data supporting an important role for malonyl CoA in mediating hypothalamic control of energy balance, and recent evidence suggesting that targeting malonyl CoA synthesis or degradation may be a novel approach to favorably modify appetite and weight gain.
Collapse
Affiliation(s)
- Gary D Lopaschuk
- 423 Heritage Medical Research Center, University of Alberta, Edmonton, Canada T6G2S2.
| | | | | |
Collapse
|
19
|
Sargent BJ, Moore NA. New central targets for the treatment of obesity. Br J Clin Pharmacol 2009; 68:852-60. [PMID: 20002079 PMCID: PMC2810796 DOI: 10.1111/j.1365-2125.2009.03550.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 09/15/2009] [Indexed: 01/28/2023] Open
Abstract
The review focuses on the central neuronal circuits involved in energy homeostasis and the opportunities these offer for pharmacological intervention to decrease feeding behaviour and reduce weight. This article is based on the presentation 'New central targets for the treatment of obesity' (Sargent, British Pharmacological society, Clinical Section Symposium, December 2008). Central neuronal substrates controlling weight offer numerous opportunities for pharmacological intervention. These opportunities range from non-specific enhancement of monoamine signalling (triple reuptake inhibitors) to targeting specific monoamine receptor subtypes (5-HT(2c) and 5-HT(6)). The data reviewed suggest that these approaches will lead to weight loss; whether this is sufficient to produce clinically meaningful effect remains to be determined. Combination therapy targeting more than one mechanism may be a means of increasing the magnitude of the response. Preclinical studies also suggest that novel approaches targeting specific neuronal pathways within the hypothalamus, e.g. MCH(1) receptor antagonism, offer an opportunity for weight reduction. However, these approaches are at an early stage and clinical studies will be needed to determine if these novel approaches lead to clinically meaningful weight loss and improvements in co-morbid conditions such as diabetes and cardiovascular disorders.
Collapse
|
20
|
Moriya R, Mashiko S, Ishihara A, Takahashi T, Murai T, Ito J, Mitobe Y, Oda Z, Iwaasa H, Takehiro F, Kanatani A. Comparison of independent and combined chronic anti-obese effects of NPY Y2 receptor agonist, PYY(3-36), and NPY Y5 receptor antagonist in diet-induced obese mice. Peptides 2009; 30:1318-22. [PMID: 19394383 DOI: 10.1016/j.peptides.2009.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 04/11/2009] [Accepted: 04/14/2009] [Indexed: 10/20/2022]
Abstract
Neuropeptide Y (NPY) and its family of peptides are thought to have a major role in the physiological control of energy homeostasis. Among five NPY receptors described, stimulation of the Y2 receptor (Y2R) or inhibition of the Y5 receptor (Y5R) has recently been shown to produce weight-lowering effects in obese rodents. The present study examined and compared the effects of a Y2R agonist, PYY(3-36), and a Y5R antagonist, alone and in combination, on food intake and body weight in diet-induced obese (DIO) mice. Acute intraperitoneal injection of PYY(3-36) dose-dependently reduced spontaneous feeding in lean and DIO mice. In contrast, acute oral administration of the Y5R antagonist had no effect on spontaneous feeding or the anorexigenic effects of PYY(3-36). In a chronic study, subcutaneous infusion of PYY(3-36) (1 mg/kg/day for 14 days) significantly reduced food intake and body weight in DIO mice. The Y5R antagonist (10 mg/kg/day for 14 days, orally) reduced body weight to the same extent as PYY(3-36) without a significant feeding reduction. Combined administration of PYY(3-36) and the Y5R antagonist resulted in a greater body weight reduction than treatment with either agent alone. The combined effects on food intake, body weight, and adiposity are almost the same as a hypothetical sum of the effects of each drug alone. These results illustrate that the combination of a Y2R agonist, PYY(3-36), and a Y5R antagonist resulted in additive effects on body weight and adiposity in DIO mice, suggesting that Y2R stimulation signal and Y5R blockade signal act by distinct pathways.
Collapse
Affiliation(s)
- Ryuichi Moriya
- Tsukuba Research Institute, Banyu Pharmaceutical Co., Ltd., Okubo 3, Tsukuba 300-2611, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Sakamoto T, Moriya M, Tsuge H, Takahashi T, Haga Y, Nonoshita K, Okamoto O, Takahashi H, Sakuraba A, Hirohashi T, Shibata T, Kanno T, Ito J, Iwaasa H, Gomori A, Ishihara A, Fukuroda T, Kanatani A, Fukami T. Novel orally active NPY Y5 receptor antagonists: Synthesis and structure-activity relationship of spiroindoline class compounds. Bioorg Med Chem 2009; 17:5015-26. [PMID: 19525116 DOI: 10.1016/j.bmc.2009.05.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 05/25/2009] [Accepted: 05/27/2009] [Indexed: 10/20/2022]
Abstract
Spiroindoline urea derivatives, designed to act as NPY Y5 receptor antagonists, were synthesized and their structure-activity relationships were investigated. Of these derivatives, compound 3a showed good Y5 binding affinity with favorable pharmacokinetic properties. Compound 3a significantly inhibited bPP Y5 agonist-induced food intake in rats, and suppressed body weight gain in DIO mice.
Collapse
Affiliation(s)
- Toshihiro Sakamoto
- Tsukuba Research Institute, Merck Research Laboratories, Banyu Pharmaceutical Co., Ltd, Okubo-3, Tsukuba, Ibaraki 300-2611, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ladyman SR, Woodside B. Regulation of maternal food intake and mother-pup interactions by the Y5 receptor. Physiol Behav 2009; 97:91-7. [PMID: 19419662 DOI: 10.1016/j.physbeh.2009.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 02/03/2009] [Accepted: 02/04/2009] [Indexed: 01/30/2023]
Abstract
Neuropeptide Y (NPY) is increased in the hypothalamus during lactation. To investigate the role of the NPY Y5 receptor during lactation, an antisense oligodeoxynucleotide (ODN) targeted to the NPY Y5 receptor, an equivalent scrambled ODN or vehicle, was chronically infused into the 3rd ventricle of lactating rats from day 8 postpartum. Y5 antisense ODN treatment reduced Y5 positive cell number in the paraventricular nucleus and resulted in significant reductions in food intake and litter growth. Litters from pair-fed vehicle treated dams gained significantly more weight than the litters of Y5 antisense ODN treated dams suggesting that decreased maternal food intake is not the only mechanism involved in suppressing litter weight gain. When mother-litter interaction was examined on day 13 pp, Y5 antisense ODN treated dams spent significantly less time on the nest and had significantly shorter nest bouts. These results suggest that in addition to regulating feeding behaviour, the Y5 receptor subtype may have previously unrecognised roles in the control of nesting behaviour during lactation with subsequent effects on litter growth rates.
Collapse
Affiliation(s)
- Sharon R Ladyman
- Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Quebec, Canada
| | | |
Collapse
|
23
|
Xu J, Kirigiti MA, Cowley MA, Grove KL, Smith MS. Suppression of basal spontaneous gonadotropin-releasing hormone neuronal activity during lactation: role of inhibitory effects of neuropeptide Y. Endocrinology 2009; 150:333-40. [PMID: 18719019 PMCID: PMC2630892 DOI: 10.1210/en.2008-0962] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Increased neuropeptide Y (NPY) activity drives the chronic hyperphagia of lactation and may contribute to the suppression of GnRH activity. The majority of GnRH neurons are contacted by NPY fibers, and GnRH cells express NPY Y5 receptor (Y5R). Therefore, NPY provides a neurocircuitry for information about food intake/energy balance to be directly transmitted to GnRH neurons. To investigate the effects of lactation on GnRH neuronal activity, hypothalamic slices were prepared from green fluorescent protein-GnRH transgenic rats. Extracellular loose-patch recordings determined basal GnRH neuronal activity from slices of ovariectomized control and lactating rats. Compared with controls, hypothalamic slices from lactating rats had double the number of quiescent GnRH neurons (14.51 +/- 2.86 vs. 7.04 +/- 2.84%) and significantly lower firing rates of active GnRH neurons (0.25 +/- 0.02 vs. 0.37 +/- 0.03 Hz). To study the NPY-postsynaptic Y5R system, whole-cell current-clamp recordings were performed in hypothalamic slices from control rats to examine NPY/Y5R antagonist effects on GnRH neuronal resting membrane potential. Under tetrodotoxin treatment, NPY hyperpolarized GnRH neurons from -56.7 +/- 1.94 to -62.1 +/- 1.83 mV; NPY's effects were blocked by Y5R antagonist. To determine whether increased endogenous NPY tone contributes to GnRH neuronal suppression during lactation, hypothalamic slices were treated with Y5R antagonist. A significantly greater percentage of GnRH cells were activated in slices from lactating rats (52%) compared with controls (28%). These results suggest that: 1) basal GnRH neuronal activity is suppressed during lactation; 2) NPY can hyperpolarize GnRH neurons via postsynaptic Y5R; and 3) increased inhibitory NPY tone during lactation is a component of the mechanisms responsible for suppression of GnRH neuronal activity.
Collapse
Affiliation(s)
- Jing Xu
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, 505 Northwest 185th Avenue, Beaverton, Oregon 97006, USA
| | | | | | | | | |
Collapse
|
24
|
The effects of high fat on central appetite genes in Wistar rats: a microarray analysis. Clin Chim Acta 2008; 397:96-100. [PMID: 18721800 DOI: 10.1016/j.cca.2008.07.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2008] [Revised: 07/25/2008] [Accepted: 07/25/2008] [Indexed: 11/22/2022]
Abstract
BACKGROUND To evaluate the effects of high fat on central appetite regulatory genes in Wistar rats by microarray. METHODS Sixteen male Wistar rats were randomly assigned to control (15% energy from fat) and high-fat (60% energy from fat) diets for 12 weeks. Body weight and food intake were recorded. Plasma leptin, ghrelin and insulin were measured by radioimmunoassay method. The expression of 111 appetite regulatory genes in the hypothalamus was evaluated by microarray and six genes, including leptin receptor, insulin receptor, orexin, NPY, AgRP, MC-4R, were further evaluated by real-time RT-PCR. RESULTS Body weight increased significantly in HF group compared with control group, whereas energy intake was similar in the two groups. HF had a time dependent effect on plasma leptin, but insulin and ghrelin level remained stable throughout the study. A positive relation was also found between body weight and plasma leptin (r=0.88, P<0.01). The expression of 27 appetite genes in the hypothalamus was significantly affected by HF diet. However, only the expression of leptin receptor was confirmed lower in HF group than that in control by real-time PCR, which suggested that lower expression of leptin receptor might be another reason for leptin resistance. CONCLUSIONS HF diet fed rats demonstrated leptin resistance, which could be targeted for obesity treatment.
Collapse
|
25
|
Mashiko S, Ishihara A, Iwaasa H, Moriya R, Kitazawa H, Mitobe Y, Ito J, Gomori A, Matsushita H, Takahashi T, MacNeil DJ, Van der Ploeg LHT, Fukami T, Kanatani A. Effects of a novel Y5 antagonist in obese mice: combination with food restriction or sibutramine. Obesity (Silver Spring) 2008; 16:1510-5. [PMID: 18421274 DOI: 10.1038/oby.2008.223] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To further address the function of the Y5 receptor in energy homeostasis, we investigated the effects of a novel spironolactone Y5 antagonist in diet-induced obese (DIO) mice. METHODS AND PROCEDURES Male C57BL/6 or Npy5r(-/-) mice were adapted to high-fat (HF) diet for 6-10 months and were submitted to three experimental treatments. First, the Y5 antagonist at a dose of 10 or 30 mg/kg was administered for 1 month to DIO C57BL/6 or Npy5r(-/-) mice. Second, the Y5 antagonist at 30 mg/kg was administered for 1.5 months to DIO C57BL/6 mice, and insulin sensitivity was evaluated using an insulin tolerance test. After a recovery period, nuclear magnetic resonance measurement was performed to evaluate body composition. Third, DIO mice were treated with the Y5 antagonist alone, or in combination with 10% food restriction, or with another anorectic agent, sibutramine at 10 mg/kg, for 1.5 months. Plasma glucose, insulin, and leptin levels, and adipose tissue weights were quantified. RESULTS The spironolactone Y5 antagonist significantly reduced body weight in C57BL DIO mice, but not in Npy5r(-/-) DIO mice. The Y5 antagonist produced a fat-selective loss of body weight, and ameliorated obesity-associated insulin resistance in DIO mice. In addition, the Y5 antagonist combined with either food restriction or sibutramine tended to produce greater body weight loss, as compared with single treatment. DISCUSSION These findings demonstrate that the Y5 receptor is an important mediator of energy homeostasis in rodents.
Collapse
Affiliation(s)
- Satoshi Mashiko
- Tsukuba Research Institute, Banyu Pharmaceutical Co., Ltd., Tsukuba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Choi YH, Li C, Hartzell DL, Little DE, Della-Fera MA, Baile CA. ICV leptin effects on spontaneous physical activity and feeding behavior in rats. Behav Brain Res 2008; 188:100-8. [DOI: 10.1016/j.bbr.2007.10.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 10/19/2007] [Accepted: 10/25/2007] [Indexed: 10/22/2022]
|
27
|
Dark J, Pelz KM. NPY Y1 receptor antagonist prevents NPY-induced torporlike hypothermia in cold-acclimated Siberian hamsters. Am J Physiol Regul Integr Comp Physiol 2008; 294:R236-45. [DOI: 10.1152/ajpregu.00587.2007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Siberian hamsters ( Phodopus sungorus) undergo bouts of daily torpor during which body temperature decreases by as much as 20°C and provides a significant savings in energy expenditure. Natural torpor in this species is normally triggered by winterlike photoperiods and low ambient temperatures. Intracerebroventricular injection of neuropeptide Y (NPY) reliably induces torporlike hypothermia that resembles natural torpor. NPY-induced torporlike hypothermia is also produced by intracerebroventricular injections of an NPY Y1 receptor agonist but not by injections of an NPY Y5 receptor agonist. In this research, groups of cold-acclimated Siberian hamsters were either coinjected with a Y1 receptor antagonist (1229U91) and NPY or were coinjected with a Y5 receptor antagonist ( CGP71683 ) and NPY in counterbalanced designs. Paired vehicle + NPY induced torporlike hypothermia in 92% of the hamsters, whereas coinjection of Y1 antagonist + NPY induced torporlike hypothermia in 4% of the hamsters. In contrast, paired injections of vehicle + NPY and Y5 antagonist + NPY induced torporlike hypothermia in 100% and 91% of the hamsters, respectively. Although Y5 antagonist treatment alone had no effect on body temperature, Y1 antagonist injections produced hyperthermia compared with controls. Both Y1 antagonist and Y5 antagonist injections significantly reduced food ingestion 24 h after treatment. We conclude that activation of NPY 1 receptors is both sufficient and necessary for NPY-induced torporlike hypothermia.
Collapse
|
28
|
Li G, Stamford AW, Huang Y, Cheng KC, Cook J, Farley C, Gao J, Ghibaudi L, Greenlee WJ, Guzzi M, van Heek M, Hwa JJ, Kelly J, Mullins D, Parker EM, Wainhaus S, Zhang X. Discovery of novel orally active ureido NPY Y5 receptor antagonists. Bioorg Med Chem Lett 2007; 18:1146-50. [PMID: 18160282 DOI: 10.1016/j.bmcl.2007.11.132] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 11/29/2007] [Accepted: 11/30/2007] [Indexed: 11/16/2022]
Abstract
We have derived a novel series of neuropeptide Y (NPY) Y5 receptor antagonists from the biphenylurea 3. Cyclohexylurea 21c, a member of the series, is a potent NPY Y5 receptor antagonist that exhibits excellent pharmacokinetic parameters in rats and dogs. On chronic oral administration to diet-induced obese rats, 21c displayed an anti-obesity profile, causing a modest reduction in food intake, a significant decrease in body weight gain, a decrease in adipose mass, and an increase in lean tissue mass.
Collapse
Affiliation(s)
- Guoqing Li
- Department of Chemical Research, Schering-Plough Research Institute, 2015 Galloping Hill Road MS 2545, Kenilworth, NJ 07033-0359, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Obesity is a serious public health problem throughout the world, affecting both developed societies and developing countries. The central nervous system has developed a meticulously interconnected circuitry in order to keep us fed and in an adequate nutritional state. One of these consequences is that an energy-dense environment favors the development of obesity. Neuropeptide Y (NPY) is one of the most abundant and widely distributed peptides in the central nervous system of both rodents and humans and has been implicated in a variety of physiological actions. Within the hypothalamus, NPY plays an essential role in the control of food intake and body weight. Centrally administered NPY causes robust increases in food intake and body weight and, with chronic administration, can eventually produce obesity. NPY activates a population of at least six G protein-coupled Y receptors. NPY analogs exhibit varying degrees of affinity and specificity for these Y receptors. There has been renewed speculation that ligands for Y receptors may be of benefit for the treatment of obesity. This review highlights the therapeutic potential of Y(1), Y(2), Y(4), and Y(5) receptor agonists and antagonists as additional intervention to treat human obesity.
Collapse
Affiliation(s)
- M M Kamiji
- Department of Gastroenterology, Faculty of Medicine, University of Sao Paulo, Ribeirão Preto Campus 14048-900, Ribeirão Preto-SP, Brazil
| | | |
Collapse
|
30
|
Ortiz AA, Milardo LF, DeCarr LB, Buckholz TM, Mays MR, Claus TH, Livingston JN, Mahle CD, Lumb KJ. A novel long-acting selective neuropeptide Y2 receptor polyethylene glycol-conjugated peptide agonist reduces food intake and body weight and improves glucose metabolism in rodents. J Pharmacol Exp Ther 2007; 323:692-700. [PMID: 17671099 DOI: 10.1124/jpet.107.125211] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Selective activation of the neuropeptide Y (NPY)2 receptor to suppress appetite provides a promising approach to obesity management. A selective NPY2 polyethylene glycol-conjugated (PEGylated) peptide agonist is described that consists of a peptide core corresponding to residues 13 to 36 of human peptide YY (PYY) and a nonpeptidic moiety (2-mercaptonicotinic acid) at the peptide N terminus that is derivatized with 20-kDa monomethoxypolyethylene glycol. The PEGylated peptide elicits a dose-dependent reduction in food intake in lean C57BL/6 mice and Wistar rats that persists for 72 and 48 h, respectively. The effect on food intake in lean C57BL/6 mice is blocked by the selective NPY2 antagonist BIIE0246 (N-[(1S)-4-[(aminoiminomethyl)amino]-1-[[[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]amino]carbonyl]butyl]-1-[2-[4-(6,11-dihydro-6-oxo-5H-dibenz[b,e]azepin-11-yl)-1-piperazinyl]-2-oxoethyl]-cyclopentaneacetamide formate). A dose-dependent reduction in body weight in diet-induced obese (DIO) mice is seen following daily dosing for 14 days. The reduction in body weight is sustained following dosing for 40 days, and it is accompanied by an increase in plasma adiponectin. Improvements in glucose disposal and in plasma insulin and glucose levels that are risk factors for type II diabetes are observed following once-daily subcutaneous dosing in DIO mice. The results provide evidence from two animal species that the long-acting selective NPY2 peptide agonist has potential for obesity management.
Collapse
Affiliation(s)
- Astrid A Ortiz
- Department of Metabolic Disorders Research, Bayer Pharmaceuticals Corporation, West Haven, Connecticut, USA
| | | | | | | | | | | | | | | | | |
Collapse
|