1
|
Zarei M, Sahebi Vaighan N, Ziai SA. Purinergic receptor ligands: the cytokine storm attenuators, potential therapeutic agents for the treatment of COVID-19. Immunopharmacol Immunotoxicol 2021; 43:633-643. [PMID: 34647511 PMCID: PMC8544669 DOI: 10.1080/08923973.2021.1988102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/25/2021] [Indexed: 12/13/2022]
Abstract
The coronavirus disease-19 (COVID-19), at first, was reported in Wuhan, China, and then rapidly became pandemic throughout the world. Cytokine storm syndrome (CSS) in COVID-19 patients is associated with high levels of cytokines and chemokines that cause multiple organ failure, systemic inflammation, and hemodynamic instabilities. Acute respiratory distress syndrome (ARDS), a common complication of COVID-19, is a consequence of cytokine storm. In this regard, several drugs have been being investigated to suppress this inflammatory condition. Purinergic signaling receptors comprising of P1 adenosine and P2 purinoceptors play a critical role in inflammation. Therefore, activation or inhibition of some subtypes of these kinds of receptors is most likely to be beneficial to attenuate cytokine storm. This article summarizes suggested therapeutic drugs with potential anti-inflammatory effects through purinergic receptors.
Collapse
Affiliation(s)
- Malek Zarei
- Department of Pharmacology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Navideh Sahebi Vaighan
- Department of Pharmacology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Ziai
- Department of Pharmacology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Hixson EA, Borker PV, Jackson EK, Macatangay BJ. The Adenosine Pathway and Human Immunodeficiency Virus-Associated Inflammation. Open Forum Infect Dis 2021; 8:ofab396. [PMID: 34557556 PMCID: PMC8454523 DOI: 10.1093/ofid/ofab396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/23/2021] [Indexed: 12/15/2022] Open
Abstract
Human immunodeficiency virus (HIV) is associated with an increased risk of age-associated comorbidities and mortality compared to people without HIV. This has been attributed to HIV-associated chronic inflammation and immune activation despite viral suppression. The adenosine pathway is an established mechanism by which the body regulates persistent inflammation to limit tissue damage associated with inflammatory conditions. However, HIV infection is associated with derangements in the adenosine pathway that limits its ability to control HIV-associated inflammation. This article reviews the function of purinergic signaling and the role of the adenosine signaling pathway in HIV-associated chronic inflammation. This review also discusses the beneficial and potential detrimental effects of pharmacotherapeutic strategies targeting this pathway among people with HIV.
Collapse
Affiliation(s)
- Emily A Hixson
- Department of Infectious Disease and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Priya V Borker
- Division of Pulmonary Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Bernard J Macatangay
- Department of Infectious Disease and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA.,Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pennsylvania, USA
| |
Collapse
|
3
|
Garren MR, Ashcraft M, Qian Y, Douglass M, Brisbois EJ, Handa H. Nitric oxide and viral infection: Recent developments in antiviral therapies and platforms. APPLIED MATERIALS TODAY 2021; 22:100887. [PMID: 38620577 PMCID: PMC7718584 DOI: 10.1016/j.apmt.2020.100887] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/11/2020] [Accepted: 11/14/2020] [Indexed: 05/09/2023]
Abstract
Nitric oxide (NO) is a gasotransmitter of great significance to developing the innate immune response to many bacterial and viral infections, while also modulating vascular physiology. The generation of NO from the upregulation of endogenous nitric oxide synthases serves as an efficacious method for inhibiting viral replication in host defense and warrants investigation for the development of antiviral therapeutics. With increased incidence of global pandemics concerning several respiratory-based viral infections, it is necessary to develop broad therapeutic platforms for inhibiting viral replication and enabling more efficient host clearance, as well as to fabricate new materials for deterring viral transmission from medical devices. Recent developments in creating stabilized NO donor compounds and their incorporation into macromolecular scaffolds and polymeric substrates has created a new paradigm for developing NO-based therapeutics for long-term NO release in applications for bactericidal and blood-contacting surfaces. Despite this abundance of research, there has been little consideration of NO-releasing scaffolds and substrates for reducing passive transmission of viral infections or for treating several respiratory viral infections. The aim of this review is to highlight the recent advances in developing gaseous NO, NO prodrugs, and NO donor compounds for antiviral therapies; discuss the limitations of NO as an antiviral agent; and outline future prospects for guiding materials design of a next generation of NO-releasing antiviral platforms.
Collapse
Key Words
- ACE, angiotensin converting enzyme
- AP1, activator protein 1
- COVID-19
- COVID-19, coronavirus disease 2019
- ECMO, extracorporeal membrane oxygenation, FDA, United States Food and Drug Administration
- GNSO, S-nitrosoglutathione
- H1N1, influenza A virus subtype H1N1
- HI, Host Immunology
- HIV, human immunodeficiency virus
- HPV, human papillomavirus
- HSV, herpes simplex virus
- I/R, pulmonary ischemia-reperfusion
- IC50, inhibitory concentration 50
- IFN, interferon
- IFNγ, interferon gamma
- IKK, inhibitor of nuclear factor kappa B kinase
- IRF-1, interferon regulatory factor 1
- Inhalation therapy
- Medical Terminology: ARDS, acute respiratory distress syndrome
- NF-κB, nuclear factor kappa-light-chain enhancer of activated B cells
- NO, nitric oxide
- NOS, nitric oxide synthase
- Nitric Oxide and Related Compounds: eNOS/NOS 3, endothelial nitric oxide synthase
- Nitric oxide
- Other: DNA, deoxyribonucleic acid
- P38-MAPK, P38 mitogen-activated protein kinases
- PAMP, pathogen-associated molecular pattern
- PCV2, porcine circovirus type 2
- PHT, pulmonary hypertension
- PKR, protein kinase R
- RNA, ribonucleic acid
- RNI, reactive nitrogen intermediate
- RSNO, S-nitrosothiol
- SARS, severe acute respiratory syndrome
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- SNAP, S-nitroso-N-acetyl-penicillamine
- STAT-1, signal transducer and activator of transcription 1
- Severe acute respiratory distress
- TAK1, transforming growth factor β-activated kinases-1
- TLR, toll-like receptor
- VAP, ventilator associated pneumonia
- Viral infection
- Viruses: CVB3, coxsackievirus
- dsRNA, double stranded (viral) ribonucleic acid
- gNO, gaseous nitric oxide
- iNOS/NOS 2, inducible nitric oxide synthase
- mtALDH, mitochondrial aldehyde dehydrogenase
- nNOS/NOS 1, neuronal nitric oxide synthase
Collapse
Affiliation(s)
- Mark R Garren
- School of Chemical, Materials, and Biochemical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Morgan Ashcraft
- School of Chemical, Materials, and Biochemical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Yun Qian
- School of Chemical, Materials, and Biochemical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Megan Douglass
- School of Chemical, Materials, and Biochemical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Elizabeth J Brisbois
- School of Chemical, Materials, and Biochemical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Hitesh Handa
- School of Chemical, Materials, and Biochemical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| |
Collapse
|
4
|
Alves VS, Leite-Aguiar R, Silva JPD, Coutinho-Silva R, Savio LEB. Purinergic signaling in infectious diseases of the central nervous system. Brain Behav Immun 2020; 89:480-490. [PMID: 32717399 PMCID: PMC7378483 DOI: 10.1016/j.bbi.2020.07.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
The incidence of infectious diseases affecting the central nervous system (CNS) has been increasing over the last several years. Among the reasons for the expansion of these diseases and the appearance of new neuropathogens are globalization, global warming, and the increased proximity between humans and wild animals due to human activities such as deforestation. Neurotropism affecting normal brain function is shared by organisms such as viruses, bacteria, fungi, and parasites. Neuroinfections caused by these agents activate immune responses, inducing neuroinflammation, excitotoxicity, and neurodegeneration. Purinergic signaling is an evolutionarily conserved signaling pathway associated with these neuropathologies. During neuroinfections, host cells release ATP as an extracellular danger signal with pro-inflammatory activities. ATP is metabolized to its derivatives by ectonucleotidases such as CD39 and CD73; ATP and its metabolites modulate neuronal and immune mechanisms through P1 and P2 purinergic receptors that are involved in pathophysiological mechanisms of neuroinfections. In this review we discuss the beneficial or deleterious effects of various components of the purinergic signaling pathway in infectious diseases that affect the CNS, including human immunodeficiency virus (HIV-1) infection, herpes simplex virus type 1 (HSV-1) infection, bacterial meningitis, sepsis, cryptococcosis, toxoplasmosis, and malaria. We also provide a description of this signaling pathway in emerging viral infections with neurological implications such as Zika and SARS-CoV-2.
Collapse
Affiliation(s)
- Vinícius Santos Alves
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raíssa Leite-Aguiar
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Joyce Pereira da Silva
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson Coutinho-Silva
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz Eduardo Baggio Savio
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
5
|
Silva D, Moreira D, Cordeiro-da-Silva A, Quintas C, Gonçalves J, Fresco P. Intracellular adenosine released from THP-1 differentiated human macrophages is involved in an autocrine control of Leishmania parasitic burden, mediated by adenosine A 2A and A 2B receptors. Eur J Pharmacol 2020; 885:173504. [PMID: 32858046 DOI: 10.1016/j.ejphar.2020.173504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 12/22/2022]
Abstract
Leishmania infected macrophages have conditions to produce adenosine. Despite its known immunosuppressive effects, no studies have yet established whether adenosine alter Leishmania parasitic burden upon macrophage infection. This work aimed at investigating whether endogenous adenosine exerts an autocrine modulation of macrophage response towards Leishmania infection, identifying its origin and potential pharmacological targets for visceral leishmaniasis (VL), using THP-1 differentiated macrophages. Adenosine deaminase treatment of infected THP-1 cells reduced the parasitic burden (29.1 ± 2.2%, P < 0.05). Adenosine A2A and A2B receptor subtypes expression was confirmed by RT-qPCR and by immunocytochemistry and their blockade with selective adenosine A2A and A2B antagonists reduced the parasitic burden [14.5 ± 3.1% (P < 0.05) and 12.3 ± 3.1% (P < 0.05), respectively; and 24.9 ± 2.8% (P < 0.05), by the combination of the two antagonists)], suggesting that adenosine A2 receptors are tonically activated in infected THP-1 differentiated macrophages. The tonic activation of adenosine A2 receptors was dependent on the release of intracellular adenosine through equilibrative nucleoside transporters (ENT1/ENT2): NBTI or dipyridamole reduced (~25%) whereas, when ENTs were blocked, adenosine A2 receptor antagonists failed to reduce and A2 agonists increase parasitic burden. Effects of adenosine A2 receptors antagonists and ENT1/2 inhibitor were prevented by L-NAME, indicating that nitric oxide production inhibition prevents adenosine from increasing parasitic burden. Results suggest that intracellular adenosine, released through ENTs, elicits an autocrine increase in parasitic burden in THP-1 macrophages, through adenosine A2 receptors activation. These observations open the possibility to use well-established ENT inhibitors or adenosine A2 receptor antagonists as new therapeutic approaches in VL.
Collapse
Affiliation(s)
- Dany Silva
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| | - Diana Moreira
- Parasite Disease Group, Institute of Molecular and Cellular Biology, Institute for Research and Innovation in Health Sciences, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal; Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| | - Anabela Cordeiro-da-Silva
- Parasite Disease Group, Institute of Molecular and Cellular Biology, Institute for Research and Innovation in Health Sciences, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal; Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| | - Clara Quintas
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| | - Jorge Gonçalves
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; Epithelial Interactions in Cancer, Institute of Molecular Pathology and Immunology, Institute for Research and Innovation in Health Sciences, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
| | - Paula Fresco
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| |
Collapse
|
6
|
Faia C, Plaisance-Bonstaff K, Peruzzi F. In vitro models of HIV-1 infection of the Central Nervous System. DRUG DISCOVERY TODAY. DISEASE MODELS 2020; 32:5-11. [PMID: 33692833 PMCID: PMC7938360 DOI: 10.1016/j.ddmod.2019.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Neurocognitive disorders associated with HIV-1 infection affect more than half of persons living with HIV (PLWH) under retroviral therapy. Understanding the molecular mechanisms and the complex cellular network communication underlying neurological dysfunction is critical for the development of an effective therapy. As with other neurological disorders, challenges to studying HIV infection of the brain include limited access to clinical samples and proper reproducibility of the complexity of brain networks in cellular and animal models. This review focuses on cellular models used to investigate various aspects of neurological dysfunction associated with HIV infection.
Collapse
Affiliation(s)
- Celeste Faia
- Louisiana State University Health Sciences Center and S Stanley Scott Cancer Center
- Department of Microbiology Immunology and Parasitology
| | | | - Francesca Peruzzi
- Louisiana State University Health Sciences Center and S Stanley Scott Cancer Center
- Department of Microbiology Immunology and Parasitology
- Department of Medicine
- Corresponding author: Francesca Peruzzi, 1700 Tulane Ave, New Orleans, LA 70112, Tel: (504) 210-2978,
| |
Collapse
|
7
|
Gholinejad M, Jafari Anarkooli I, Taromchi A, Abdanipour A. Adenosine decreases oxidative stress and protects H 2O 2-treated neural stem cells against apoptosis through decreasing Mst1 expression. Biomed Rep 2018; 8:439-446. [PMID: 29732147 DOI: 10.3892/br.2018.1083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/09/2018] [Indexed: 12/20/2022] Open
Abstract
Overproduction of free radicals during oxidative stress induces damage to key biomolecules and activates programed cell death pathways. Neuronal cell death in the nervous system leads to a number of neurodegenerative diseases. The aim of the present study was to evaluate the neuroprotective effect of adenosine on inhibition of apoptosis induced by hydrogen peroxide (H2O2) in bone marrow-derived neural stem cells (B-dNSCs), with focus on its regulatory effect on the expression of mammalian sterile 20-like kinase 1 (Mst1), as a novel proapoptotic kinase. B-dNSCs were exposed to adenosine at different doses (2, 4, 6, 8 and 10 µM) for 48 h followed by 125 µM H2O2 for 30 min. Using MTT, terminal deoxynucleotidyl transferase dUTP nick-end labeling and real-time reverse transcription polymerase chain reaction assays, the effects of adenosine on cell survival, apoptosis and Mst1, nuclear factor (erythroid-derived 2)-like 2 and B-cell lymphoma 2 and adenosine A1 receptor expression were evaluated in pretreated B-dNSCs compared with controls (cells treated with H2O2 only). Firstly, results of the MTT assay indicated 6 µM adenosine to be the most protective dose in terms of promotion of cell viability. Subsequent assays using this dosage indicated that apoptosis rate and Mst1 expression in B-dNSCs pretreated with 6 µM adenosine were significantly decreased compared with the control group. These findings suggest that adenosine protects B-dNSCs against oxidative stress-induced cell death, and therefore, that it may be used to promote the survival rate of B-dNSCs and as a candidate for the treatment of oxidative stress-mediated neurological diseases.
Collapse
Affiliation(s)
- Masoumeh Gholinejad
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan 45139-56184, Iran
| | - Iraj Jafari Anarkooli
- Department of Anatomy, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan 45139-56184, Iran
| | - Amirhossein Taromchi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan 45139-56184, Iran
| | - Alireza Abdanipour
- Department of Anatomy, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan 45139-56184, Iran
| |
Collapse
|
8
|
Valdebenito S, Barreto A, Eugenin EA. The role of connexin and pannexin containing channels in the innate and acquired immune response. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:154-165. [PMID: 28559189 DOI: 10.1016/j.bbamem.2017.05.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/17/2017] [Accepted: 05/25/2017] [Indexed: 12/20/2022]
Abstract
Connexin (Cx) and pannexin (Panx) containing channels - gap junctions (GJs) and hemichannels (HCs) - are present in virtually all cells and tissues. Currently, the role of these channels under physiological conditions is well defined. However, their role in the immune response and pathological conditions has only recently been explored. Data from several laboratories demonstrates that infectious agents, including HIV, have evolved to take advantage of GJs and HCs to improve viral/bacterial replication, enhance inflammation, and help spread toxicity into neighboring areas. In the current review, we discuss the role of Cx and Panx containing channels in immune activation and the pathogenesis of several infectious diseases. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Silvana Valdebenito
- Public Health Research Institute (PHRI), Newark, NJ, USA; Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers the State University of New Jersey, Newark, NJ, USA
| | - Andrea Barreto
- Public Health Research Institute (PHRI), Newark, NJ, USA; Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers the State University of New Jersey, Newark, NJ, USA
| | - Eliseo A Eugenin
- Public Health Research Institute (PHRI), Newark, NJ, USA; Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers the State University of New Jersey, Newark, NJ, USA.
| |
Collapse
|
9
|
Sagar V, Atluri VSR, Pilakka-Kanthikeel S, Nair M. Magnetic nanotherapeutics for dysregulated synaptic plasticity during neuroAIDS and drug abuse. Mol Brain 2016; 9:57. [PMID: 27216740 PMCID: PMC4878083 DOI: 10.1186/s13041-016-0236-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 05/06/2016] [Indexed: 01/02/2023] Open
Abstract
The human immunodeficiency virus (HIV) is a neurotropic virus. It induces neurotoxicity and subsequent brain pathologies in different brain cells. Addiction to recreational drugs remarkably affects the initiation of HIV infections and expedites the progression of acquired immunodeficiency syndrome (AIDS) associated neuropathogenesis. Symptoms of HIV-associated neurocognitive disorders (HAND) are noticed in many AIDS patients. At least 50 % of HIV diagnosed cases show one or other kind of neuropathological signs or symptoms during different stages of disease progression. In the same line, mild to severe neurological alterations are seen in at least 80 % autopsies of AIDS patients. Neurological illnesses weaken the connections between neurons causing significant altercations in synaptic plasticity. Synaptic plasticity alterations during HIV infection and recreational drug abuse are mediated by complex cellular phenomena involving changes in gene expression and subsequent loss of dendritic and spine morphology and physiology. New treatment strategies with ability to deliver drugs across blood-brain barrier (BBB) are being intensively investigated. In this context, magnetic nanoparticles (MNPs) based nanoformulations have shown significant potential for target specificity, drug delivery, drug release, and bioavailability of desired amount of drugs in non-invasive brain targeting. MNPs-based potential therapies to promote neuronal plasticity during HIV infection and recreational drug abuse are being developed.
Collapse
Affiliation(s)
- Vidya Sagar
- Department of Immunology, Center for Personalized Nanomedicine/Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Venkata Subba Rao Atluri
- Department of Immunology, Center for Personalized Nanomedicine/Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Sudheesh Pilakka-Kanthikeel
- Department of Immunology, Center for Personalized Nanomedicine/Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Madhavan Nair
- Department of Immunology, Center for Personalized Nanomedicine/Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA.
| |
Collapse
|
10
|
Kaur T, Borse V, Sheth S, Sheehan K, Ghosh S, Tupal S, Jajoo S, Mukherjea D, Rybak LP, Ramkumar V. Adenosine A1 Receptor Protects Against Cisplatin Ototoxicity by Suppressing the NOX3/STAT1 Inflammatory Pathway in the Cochlea. J Neurosci 2016; 36:3962-77. [PMID: 27053204 PMCID: PMC4821909 DOI: 10.1523/jneurosci.3111-15.2016] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 02/16/2016] [Accepted: 02/26/2016] [Indexed: 01/19/2023] Open
Abstract
Cisplatin is a commonly used antineoplastic agent that produces ototoxicity that is mediated in part by increasing levels of reactive oxygen species (ROS) via the NOX3 NADPH oxidase pathway in the cochlea. Recent studies implicate ROS generation in mediating inflammatory and apoptotic processes and hearing loss by activating signal transducer and activator of transcription (STAT1). In this study, we show that the adenosine A1 receptor (A1AR) protects against cisplatin ototoxicity by suppressing an inflammatory response initiated by ROS generation via NOX3 NADPH oxidase, leading to inhibition of STAT1. Trans-tympanic administration of the A1AR agonist R-phenylisopropyladenosine (R-PIA) inhibited cisplatin-induced ototoxicity, as measured by auditory brainstem responses and scanning electron microscopy in male Wistar rats. This was associated with reduced NOX3 expression, STAT1 activation, tumor necrosis factor-α (TNF-α) levels, and apoptosis in the cochlea. In vitro studies in UB/OC-1 cells, an organ of Corti immortalized cell line, showed that R-PIA reduced cisplatin-induced phosphorylation of STAT1 Ser(727) (but not Tyr(701)) and STAT1 luciferase activity by suppressing the ERK1/2, p38, and JNK mitogen-activated protein kinase (MAPK) pathways.R-PIA also decreased the expression of STAT1 target genes, such as TNF-α, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and reduced cisplatin-mediated apoptosis. These data suggest that the A1AR provides otoprotection by suppressing NOX3 and inflammation in the cochlea and could serve as an ideal target for otoprotective drug therapy. SIGNIFICANCE STATEMENT Cisplatin is a widely used chemotherapeutic agent for the treatment of solid tumors. Its use results in significant and permanent hearing loss, for which no US Food and Drug Administration-approved treatment is currently available. In this study, we targeted the cochlear adenosine A1 receptor (A1AR) by trans-tympanic injections of the agonist R-phenylisopropyladenosine (R-PIA) and showed that it reduced cisplatin-induced inflammation and apoptosis in the rat cochlea and preserved hearing. The mechanism of protection involves suppression of the NOX3 NADPH oxidase enzyme, a major target of cisplatin-induced reactive oxygen species (ROS) generation in the cochlea. ROS initiates an inflammatory and apoptotic cascade in the cochlea by activating STAT1 transcription factor, which is attenuated byR-PIA. Therefore, trans-tympanic delivery of A1AR agonists could effectively treat cisplatin ototoxicity.
Collapse
Affiliation(s)
- Tejbeer Kaur
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, Missouri 63110, and
| | | | | | - Kelly Sheehan
- Department of Surgery, Southern Illinois University School of Medicine, Springfield, Illinois 62794
| | | | | | | | - Debashree Mukherjea
- Department of Surgery, Southern Illinois University School of Medicine, Springfield, Illinois 62794
| | - Leonard P Rybak
- Department of Pharmacology and Department of Surgery, Southern Illinois University School of Medicine, Springfield, Illinois 62794
| | | |
Collapse
|
11
|
Samikkannu T, Atluri VSR, Arias AY, Rao KVK, Mulet CT, Jayant RD, Nair MPN. HIV-1 subtypes B and C Tat differentially impact synaptic plasticity expression and implicates HIV-associated neurocognitive disorders. Curr HIV Res 2015; 12:397-405. [PMID: 25613138 DOI: 10.2174/1570162x13666150121104720] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/12/2014] [Accepted: 12/17/2014] [Indexed: 11/22/2022]
Abstract
Earlier studies have established that infection with HIV-1 subtypes (clades) might differentially influence the neuropathogenesis of HIV-1-associated neurocognitive dysfunction (HAND). HIV-1 Trans activator of transcription protein (Tat) is of considerable significance and plays a major role in the central nervous system (CNS) dysfunction. However, these HIV-1 clades exert diverse cellular effects that leads to neuropathogenic dysfunction has not been well established. We hypothesized that the HIV-1 clade B and clade C Tat proteins effect synaptic plasticity expression in neuroblastoma cells (SK-N-MC) by diverse methods, and accordingly modulates the development of HAND. In the present study, we have analyzed important and highly expressed 84 key human synaptic plasticity genes expression which differentially impact in clade B and clade C Tat treated SK-N-MC cells using RT(2) Profile PCR Array human Synaptic Plasticity kit. Observed results demonstrate that out of 84 key synaptic plasticity genes, 36 and 25 synaptic genes were substantially (≥3 fold) up-regulated and 5 and 5 genes considerably (≥3 fold) down-regulated in clade B and clade C Tat treated cells, respectively, compared to the control SK-N-MC. We have also estimated the levels of glutamine and glutamate in HIV-1 clade B and C Tat exposed SK-N-MC cells compared to untreated cells. Our results indicate that levels of glutamate, glutamine and expression of synaptic plasticity genes were highly dysregulated by HIV-1 clade B Tat compared to clade C Tat in SK-N-MC cells. In summary, this study suggests that clade B Tat substantially potentiates neuronal toxicity and further dysregulated synaptic plasticity genes in SK-N-MC may contribute to the severe neuropathogenesis linked with HAND.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Madhavan P N Nair
- Department of Immunology, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, ACH-1# 417B, Florida International University, Modesto A. Maidique Campus (MMC), 11200 S.W. 8th Street, Miami, FL-33199, USA.
| |
Collapse
|
12
|
Pacheco PAF, Faria RX, Ferreira LGB, Paixão ICNP. Putative roles of purinergic signaling in human immunodeficiency virus-1 infection. Biol Direct 2014; 9:21. [PMID: 25351961 PMCID: PMC4218944 DOI: 10.1186/1745-6150-9-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 10/09/2014] [Indexed: 02/07/2023] Open
Abstract
Reviewers This article was reviewed by Neil S. Greenspan and Rachel Gerstein. Nucleotides and nucleosides act as potent extracellular messengers via the activation of the family of cell-surface receptors termed purinergic receptors. These receptors are categorized into P1 and P2 receptors (P2Rs). P2Rs are further classified into two distinct families, P2X receptors (P2XRs) and P2Y receptors (P2YRs). These receptors display broad tissue distribution throughout the body and are involved in several biological events. Immune cells express various P2Rs, and purinergic signaling mechanisms have been shown to play key roles in the regulation of many aspects of immune responses. Researchers have elucidated the involvement of these receptors in the host response to infections. The evidences indicate a dual function of these receptors, depending on the microorganism and the cellular model involved. Three recent reports have examined the relationship between the level of extracellular ATP, the mechanisms underlying purinergic receptors participating in the infection mechanism of HIV-1 in the cell. Although preliminary, these results indicate that purinergic receptors are putative pharmacological targets that should be further explored in future studies.
Collapse
Affiliation(s)
| | - Robson X Faria
- Laboratory of Cellular Communication, Oswaldo Cruz Foundation, Av, Brazil, 4365 Rio de Janeiro, Brazil.
| | | | | |
Collapse
|
13
|
Yang J, Zheng X, Haugen F, Darè E, Lövdahl C, Schulte G, Fredholm BB, Valen G. Adenosine increases LPS-induced nuclear factor kappa B activation in smooth muscle cells via an intracellular mechanism and modulates it via actions on adenosine receptors. Acta Physiol (Oxf) 2014; 210:590-9. [PMID: 24119187 DOI: 10.1111/apha.12176] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 08/26/2013] [Accepted: 09/26/2013] [Indexed: 12/16/2022]
Abstract
AIM In inflamed and damaged cardiovascular tissues, local extracellular adenosine concentrations increase coincidentally with activation of the transcription factor nuclear factor kappa B (NFκB). To investigate whether adenosine influences NFκB activation in vascular smooth muscle cells (VSMCs) and, if so, to examine the role of its receptors. METHODS VSMCs were isolated from NFκB-luciferase reporter mice, cultured and then treated by lipopolysaccharide (LPS) to activate NFκB signalling. Adenosine, adenosine receptor agonists and antagonists, adenosine deaminase and uptake inhibitors were used together with LPS to evaluate the role of adenosine and its receptors on NFκB activation, which was assessed by luciferase activity and NFκB target gene expression. RESULTS Adenosine potentiated LPS-induced NFκB activation. This was dependent on adenosine uptake and enhanced by an adenosine deaminase inhibitor, suggesting that intracellular adenosine plays an important role. Non-selective adenosine receptor agonists (2Cl-Ado and NECA) inhibited NFκB activation induced by LPS. Selective A1 or A2A antagonist given alone could not completely antagonize the NECA effect, indicating that the inhibitory effect was due to multiple adenosine receptors. The activation of the A3 receptor further increased LPS-induced NFκB activation. CONCLUSIONS Adenosine increases LPS-induced nuclear factor kappa B activation in smooth muscle cells via an intracellular mechanism and decreases it via actions on A1 and A2A receptors. These results provide novel insights into the role of adenosine as a regulator of inflammation-induced NFκB activation.
Collapse
Affiliation(s)
- J. Yang
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
- Department of Molecular Medicine and Surgery; Karolinska Institutet; Stockholm Sweden
- Department of Medicine; Karolinska Institutet; Stockholm Sweden
| | - X. Zheng
- Department of Molecular Medicine and Surgery; Karolinska Institutet; Stockholm Sweden
| | - F. Haugen
- Department of Physiology; Institute of Basic Medical Science; University of Oslo; Oslo Norway
| | - E. Darè
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
- Department of Molecular Medicine and Surgery; Karolinska Institutet; Stockholm Sweden
| | - C. Lövdahl
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
| | - G. Schulte
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
| | - B. B. Fredholm
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
| | - G. Valen
- Department of Physiology; Institute of Basic Medical Science; University of Oslo; Oslo Norway
| |
Collapse
|
14
|
Kirkebøen KA. Adenosine as a regulator of NFκB activation. Acta Physiol (Oxf) 2014; 210:465-7. [PMID: 24256311 DOI: 10.1111/apha.12203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- K. A. Kirkebøen
- Department of Anaesthesiology; Oslo University Hospital; Ullevål Oslo Norway
- Faculty of Medicine; University of Oslo; Oslo Norway
| |
Collapse
|
15
|
Teng B, Smith JD, Rosenfeld ME, Robinet P, Davis ME, Morrison RR, Mustafa SJ. A₁ adenosine receptor deficiency or inhibition reduces atherosclerotic lesions in apolipoprotein E deficient mice. Cardiovasc Res 2014; 102:157-65. [PMID: 24525840 DOI: 10.1093/cvr/cvu033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS The goal of this study was to determine whether the A1 adenosine receptor (AR) plays a role in atherosclerosis development and to explore its potential mechanisms. METHODS AND RESULTS Double knockout (DKO) mice, deficient in the genes encoding A1 AR and apolipoprotein E (apoE), demonstrated reduced atherosclerotic lesions in aortic arch (en face), aortic root, and innominate arteries when compared with apoE-deficient mice (APOE-KO) of the same age. Treating APOE-KO with an A1 AR antagonist (DPCPX) also led to a concentration-dependent reduction in lesions. The total plasma cholesterol and triglyceride levels were not different between DKO and APOE-KO; however, higher triglyceride was observed in DKO fed a high-fat diet. DKO also had higher body weights than APOE-KO. Plasma cytokine concentrations (IL-5, IL-6, and IL-13) were significantly lower in DKO. Proliferating cell nuclear antigen expression was also significantly reduced in the aorta from DKO. Despite smaller lesions in DKO, the composition of the innominate artery lesion and cholesterol loading and efflux from bone marrow-derived macrophages of DKO were not different from APOE-KO. CONCLUSION The A1 AR may play a role in the development of atherosclerosis, possibly due to its pro-inflammatory and mitogenic properties.
Collapse
Affiliation(s)
- Bunyen Teng
- Department of Physiology and Pharmacology, Center for Cardiovascular and Respiratory Sciences, West Virginia University, 1 Medical Center Drive, Morgantown, WV, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Eugenin EA. Role of connexin/pannexin containing channels in infectious diseases. FEBS Lett 2014; 588:1389-95. [PMID: 24486013 DOI: 10.1016/j.febslet.2014.01.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 01/20/2014] [Accepted: 01/21/2014] [Indexed: 12/12/2022]
Abstract
In recent years it has become evident that gap junctions and hemichannels, in concert with extracellular ATP and purinergic receptors, play key roles in several physiological processes and pathological conditions. However, only recently has their importance in infectious diseases been explored, likely because early reports indicated that connexin containing channels were completely inactivated under inflammatory conditions, and therefore no further research was performed. However, recent evidence indicates that several infectious agents take advantage of these communication systems to enhance inflammation and apoptosis, as well as to participate in the infectious cycle of several pathogens. In the current review, we will discuss the role of these channels/receptors in the pathogenesis of several infectious diseases and the possibilities of generating novel therapeutic approaches to reduce or prevent these diseases.
Collapse
Affiliation(s)
- Eliseo A Eugenin
- Public Health Research Institute (PHRI), Rutgers New Jersey Medical School, Rutgers The State University of New Jersey, Newark, NJ, USA; Department of Microbiology and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers The State University of New Jersey, Newark, NJ, USA.
| |
Collapse
|
17
|
Gessi S, Merighi S, Stefanelli A, Fazzi D, Varani K, Borea PA. A1 and A3 adenosine receptors inhibit LPS-induced hypoxia-inducible factor-1 accumulation in murine astrocytes. Pharmacol Res 2013; 76:157-70. [DOI: 10.1016/j.phrs.2013.08.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/24/2013] [Accepted: 08/08/2013] [Indexed: 11/27/2022]
|
18
|
Adenosine A2B receptor-mediated leukemia inhibitory factor release from astrocytes protects cortical neurons against excitotoxicity. J Neuroinflammation 2012; 9:198. [PMID: 22894638 PMCID: PMC3458985 DOI: 10.1186/1742-2094-9-198] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 08/01/2012] [Indexed: 02/07/2023] Open
Abstract
Background Neuroprotective and neurotrophic properties of leukemia inhibitory factor (LIF) have been widely reported. In the central nervous system (CNS), astrocytes are the major source for LIF, expression of which is enhanced following disturbances leading to neuronal damage. How astrocytic LIF expression is regulated, however, has remained an unanswered question. Since neuronal stress is associated with production of extracellular adenosine, we investigated whether LIF expression in astrocytes was mediated through adenosine receptor signaling. Methods Mouse cortical neuronal and astrocyte cultures from wild-type and adenosine A2B receptor knock-out animals, as well as adenosine receptor agonists/antagonists and various enzymatic inhibitors, were used to study LIF expression and release in astrocytes. When needed, a one-way analysis of variance (ANOVA) followed by Bonferroni post-hoc test was used for statistical analysis. Results We show here that glutamate-stressed cortical neurons induce LIF expression through activation of adenosine A2B receptor subtype in cultured astrocytes and require signaling of protein kinase C (PKC), mitogen-activated protein kinases (MAPKs: p38 and ERK1/2), and the nuclear transcription factor (NF)-κB. Moreover, LIF concentration in the supernatant in response to 5′-N-ethylcarboxamide (NECA) stimulation was directly correlated to de novo protein synthesis, suggesting that LIF release did not occur through a regulated release pathway. Immunocytochemistry experiments show that LIF-containing vesicles co-localize with clathrin and Rab11, but not with pHogrin, Chromogranin (Cg)A and CgB, suggesting that LIF might be secreted through recycling endosomes. We further show that pre-treatment with supernatants from NECA-treated astrocytes increased survival of cultured cortical neurons against glutamate, which was absent when the supernatants were pre-treated with an anti-LIF neutralizing antibody. Conclusions Adenosine from glutamate-stressed neurons induces rapid LIF release in astrocytes. This rapid release of LIF promotes the survival of cortical neurons against excitotoxicity.
Collapse
|
19
|
Corti F, Olson KE, Marcus AJ, Levi R. The expression level of ecto-NTP diphosphohydrolase1/CD39 modulates exocytotic and ischemic release of neurotransmitters in a cellular model of sympathetic neurons. J Pharmacol Exp Ther 2011; 337:524-32. [PMID: 21325440 PMCID: PMC3083107 DOI: 10.1124/jpet.111.179994] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 02/16/2011] [Indexed: 11/22/2022] Open
Abstract
Once released, norepinephrine is removed from cardiac synapses via reuptake into sympathetic nerves, whereas transmitter ATP is catabolized by ecto-NTP diphosphohydrolase 1 (E-NTPDase1)/CD39, an ecto-ATPase. Because ATP is known to modulate neurotransmitter release at prejunctional sites, we questioned whether this action may be ultimately controlled by the expression of E-NTPDase1/CD39 at sympathetic nerve terminals. Accordingly, we silenced E-NTPDase1/CD39 expression in nerve growth factor-differentiated PC12 cells, a cellular model of sympathetic neuron, in which dopamine is the predominant catecholamine. We report that E-NTPDase1/CD39 deletion markedly increases depolarization-induced exocytosis of ATP and dopamine and increases ATP-induced dopamine release. Moreover, overexpression of E-NTPDase1/CD39 resulted in enhanced removal of exogenous ATP, a marked decrease in exocytosis of ATP and dopamine, and a large decrease in ATP-induced dopamine release. Administration of a recombinant form of E-NTPDase1/CD39 reproduced the effects of E-NTPDase1/CD39 overexpression. Exposure of PC12 cells to simulated ischemia elicited a release of ATP and dopamine that was markedly increased in E-NTPDase1/CD39-silenced cells and decreased in E-NTPDase1/CD39-overexpressing cells. Therefore, transmitter ATP acts in an autocrine manner to promote its own release and that of dopamine, an action that is controlled by the level of E-NTPDase1/CD39 expression. Because ATP availability greatly increases in myocardial ischemia, recombinant E-NTPDase1/CD39 therapeutically used may offer a novel approach to reduce cardiac dysfunctions caused by excessive catecholamine release.
Collapse
Affiliation(s)
- Federico Corti
- Department of Pharmacology, Weill Cornell Medical College, 1300 York Ave., New York, NY 10065-4896, USA
| | | | | | | |
Collapse
|
20
|
Adenosine: an endogenous modulator of innate immune system with therapeutic potential. Eur J Pharmacol 2009; 616:7-15. [PMID: 19464286 DOI: 10.1016/j.ejphar.2009.05.005] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2008] [Revised: 05/02/2009] [Accepted: 05/14/2009] [Indexed: 12/13/2022]
Abstract
Adenosine is a purine nucleoside, which is produced inside the body under metabolic stress like hypoxic conditions, acute or chronic inflammatory tissue insults. The synthesis of adenosine involves the catabolism of adenine nucleotides (ATP, ADP and AMP) by the action of extracellular ectonucleotidases i.e. CD39 or nucleoside triphosphate dephosphorylase (NTPD) and CD73 or 5'-ectonucleotidase. Once adenosine is released in the extracellular environment, it binds to different types of adenosine (i.e. adenosine A(1), A(2A), A(2B) and A(3) receptors) receptors expressed on various innate immune cells [Neutrophils, macrophages, mast cells, dendritic cells and natural killer cells]. Thus, depending on the type of adenosine receptor to which it binds, adenosine modulates innate immune response during various inflammatory conditions [i.e. chronic (cancer, asthma) as well as acute (sepsis, acute lung injury) inflammatory diseases]. This review summarizes the effect of adenosine on innate immunity and the use of adenosine receptor specific agonists or antagonists in various immunologic disorders (asthma, cancer, HIV-1 infection) as future immunomodulatory therapeutics.
Collapse
|
21
|
Proteomic modeling for HIV-1 infected microglia-astrocyte crosstalk. PLoS One 2008; 3:e2507. [PMID: 18575609 PMCID: PMC2429966 DOI: 10.1371/journal.pone.0002507] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 05/15/2008] [Indexed: 12/20/2022] Open
Abstract
Background HIV-1-infected and immune competent brain mononuclear phagocytes (MP; macrophages and microglia) secrete cellular and viral toxins that affect neuronal damage during advanced disease. In contrast, astrocytes can affect disease by modulating the nervous system's microenvironment. Interestingly, little is known how astrocytes communicate with MP to influence disease. Methods and Findings MP-astrocyte crosstalk was investigated by a proteomic platform analysis using vesicular stomatitis virus pseudotyped HIV infected murine microglia. The microglial-astrocyte dialogue was significant and affected microglial cytoskeleton by modulation of cell death and migratory pathways. These were mediated, in part, through F-actin polymerization and filament formation. Astrocyte secretions attenuated HIV-1 infected microglia neurotoxicity and viral growth linked to the regulation of reactive oxygen species. Conclusions These observations provide unique insights into glial crosstalk during disease by supporting astrocyte-mediated regulation of microglial function and its influence on the onset and progression of neuroAIDS. The results open new insights into previously undisclosed pathogenic mechanisms and open the potential for biomarker discovery and therapeutics that may influence the course of HIV-1-mediated neurodegeneration.
Collapse
|
22
|
Pertussis toxin B-oligomer suppresses human immunodeficiency virus-1 Tat-induced neuronal apoptosis through feedback inhibition of phospholipase C-beta by protein kinase C. Neuroscience 2007; 151:525-32. [PMID: 18093742 DOI: 10.1016/j.neuroscience.2007.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 10/30/2007] [Accepted: 11/30/2007] [Indexed: 11/20/2022]
Abstract
Human immunodeficiency virus (HIV)-1 Tat is a multifunctional protein involved in viral replication, inflammation and apoptosis. Tat activates phospholipase C-beta (PLC-beta), presumably via a pertussis toxin (PTX) sensitive G(i) protein, which is critical for neuronal apoptosis. In this study, we show that Tat-mediated intracellular Ca(2+) release in rat pheochromocytoma (PC-12) cells and rat primary cortical neuronal cultures was abrogated by pretreatment with either pertussis toxin and/or its B-oligomer subunit (PTX-B), devoid of ADP ribosyltransferase activity. PTX-B pretreatment also inhibited intracellular Ca(2+) release by bradykinin and 2,4,6-trimethyl-N-(m-3-trifluoromethylphenyl) benzenesulfonamide (m-3M3FBS), a director activator of phospholipase C. Activation of protein kinase C (PKC) by phorbol 12,13-dibutyrate (PdBu) mimicked the PTX-B-mediated inhibition of m-3M3FBS-stimulated intracellular Ca(2+) increase, while inhibition of PKC by bisindolylmaleimide I hydrochloride (BIM) reversed the inhibitory action of PTX-B. Functionally, PTX-B reduced Tat-induced Bax and caspase-3 proteins and reduced cell apoptosis. We conclude that PTX inhibition of Tat-mediated intracellular Ca(2+) release is independent of ADP ribosylation of the G(i) protein via the A protomer, but mediated by the B-oligomer. Furthermore, PTX-B suppresses HIV-1 Tat-mediated apoptosis by reducing its activation of PLC-beta through a PKC activation pathway.
Collapse
|