1
|
Geng D, Wu B, Lin Y, Chen J, Tang W, Liu Y, He J. High total bilirubin-to-uric acid ratio predicts poor sleep quality after acute ischemic stroke: a prospective nested case-control study. Psychogeriatrics 2023; 23:897-907. [PMID: 37525331 DOI: 10.1111/psyg.12992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/11/2023] [Accepted: 05/29/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND Sleep disorders are prevalent after stroke, resulting in high recurrence rates and mortality. But the biomarkers of sleep disorders in stroke patients remain to be elucidated. This study aimed to explore the relationship between total bilirubin-to-uric acid ratio (TUR) and sleep quality after acute ischemic stroke (AIS). METHODS Three hundred twenty-six AIS patients were recruited and followed up 1 month after stroke in our study. Serum total bilirubin and uric acid levels were obtained within 24 h after admission. The Pittsburgh Sleep Quality Index (PSQI) was used to evaluate sleep quality 1 month after stroke. We conducted receiver operating characteristic (ROC) curve analysis and screened the optimal biomarker to differentiate sleep disorders after stroke. Then the TUR was stratified according to the best cut-off value (0.036) of the ROC and further analysed by binary logistic regression analysis. Additionally, the interaction was used to explore the difference in its effect on post-stroke sleep quality in different subgroups. RESULTS Three hundred thirty-one patients (40.2%) were considered as having poor sleep quality during the one-month follow-up. Compared to patients with good sleep, patients with poor sleep were more likely to have higher TUR (IQR), 0.05 (0.03-0.06) versus 0.03 (0.02-0.04), P < 0.001. After adjusting for confounding factors, binary regression analysis demonstrated that a high TUR (≥0.036) was independently related to post-stroke poor sleep quality (OR = 3.75, 95% CI = 2.02-6.96, P < 0.001). CONCLUSIONS High TUR is associated with an increased risk of poor sleep quality in AIS patients, especially in females, diabetics, and patients with hyperlipidaemia.
Collapse
Affiliation(s)
- Dandan Geng
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Beilan Wu
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yisi Lin
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiahao Chen
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenjie Tang
- The First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yuntao Liu
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jincai He
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Han L, Wang Q. Urinary polycyclic aromatic hydrocarbon metabolites were associated with short sleep duration and self-reported trouble sleeping in US adults: data from NHANES 2005-2016 study population. Front Public Health 2023; 11:1190948. [PMID: 37427274 PMCID: PMC10325832 DOI: 10.3389/fpubh.2023.1190948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Background The aim of the current study was to investigate the link between human exposure to PAHs with short sleep duration (SSD) and self-reported trouble sleeping. Methods A total of 9,754 participants and 9,777 participants obtained from NHANES 2005-2016 were included in this cross-sectional study about SSD and self-reported trouble sleeping, respectively. The association between urinary PAHs metabolites with the prevalence of SSD and self-reported trouble sleeping by the weighted multivariate logistic regression model, restricted cubic spline (RCS) curves, and weighted quantile sum (WQS) regression. Results After adjusting for all covariates, 1-hydroxynapthalene, 2-hydroxynapthalene, 3-hydroxyfluorene, 2-hydroxyfluorene, 1-hydroxyphenanthrene, and 1-hydroxyphenanthrene demonstrated positive associations with SSD prevalence. Besides, 1-hydroxynapthalene, 2-hydroxynapthalene, 3-hydroxyfluorene, 2-hydroxyfluorene, 1-hydroxyphenanthrene, and 1-hydroxyphenanthrene exhibited positive associations with the prevalence of self-reported trouble sleeping following the adjustment for all covariates. RCS curves confirmed the non-linear associations between 1-hydroxynapthalene, 2-hydroxynapthalene, 3-hydroxyfluorene, 2-hydroxyfluorene, and 1-hydroxyphenanthrene with the prevalence of SSD, and 1-hydroxynapthalene, 3-hydroxyfluorene, and 2-hydroxyfluorene with the prevalence of self-reported trouble sleeping. The WQS results showed that mixed exposure to PAH metabolites had a significant positive association with the prevalence of SSD (OR: 1.087, 95% CI: 1.026, 1.152, p = 0.004) and self-reported trouble sleeping (OR: 1.190, 95% CI: 1.108, 1.278, p < 0.001). Conclusion Urinary concentrations of PAH metabolites exhibited a close association with the prevalence of SSD and self-reported trouble sleeping in US adults. More emphasis should be placed on the importance of environmental effects on sleep health.
Collapse
|
3
|
Tawa M, Okamura T. Factors influencing the soluble guanylate cyclase heme redox state in blood vessels. Vascul Pharmacol 2022; 145:107023. [PMID: 35718342 DOI: 10.1016/j.vph.2022.107023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/09/2022] [Accepted: 06/12/2022] [Indexed: 11/15/2022]
Abstract
Soluble guanylate cyclase (sGC) plays an important role in maintaining vascular homeostasis, as an acceptor for the biological messenger nitric oxide (NO). However, only reduced sGC (with a ferrous heme) can be activated by NO; oxidized (ferric heme) and apo (absent heme) sGC cannot. In addition, the proportions of reduced, oxidized, and apo sGC change under pathological conditions. Although diseased blood vessels often show decreased NO bioavailability in the vascular wall, a shift of sGC heme redox balance in favor of the oxidized/apo forms can also occur. Therefore, sGC is of growing interest as a drug target for various cardiovascular diseases. Notably, the balance between NO-sensitive reduced sGC and NO-insensitive oxidized/apo sGC in the body is regulated in a reversible manner by various biological molecules and proteins. Many studies have attempted to identify endogenous factors and determinants that influence this redox state. For example, various reactive nitrogen and oxygen species are capable of inducing the oxidation of sGC heme. Conversely, a heme reductase and some antioxidants reduce the ferric heme in sGC to the ferrous state. This review summarizes the factors and mechanisms identified by these studies that operate to regulate the sGC heme redox state.
Collapse
Affiliation(s)
- Masashi Tawa
- Department of Pathological and Molecular Pharmacology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569-1094, Japan.
| | - Tomio Okamura
- Emeritus Professor, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| |
Collapse
|
4
|
Toral M, de la Fuente-Alonso A, Campanero MR, Redondo JM. The NO signalling pathway in aortic aneurysm and dissection. Br J Pharmacol 2021; 179:1287-1303. [PMID: 34599830 DOI: 10.1111/bph.15694] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 12/20/2022] Open
Abstract
Recent studies have shown that NO is a central mediator in diseases associated with thoracic aortic aneurysm, such as Marfan syndrome. The progressive dilation of the aorta in thoracic aortic aneurysm ultimately leads to aortic dissection. Unfortunately, current medical treatments have neither halt aortic enlargement nor prevented rupture, leaving surgical repair as the only effective treatment. There is therefore a pressing need for effective therapies to delay or even avoid the need for surgical repair in thoracic aortic aneurysm patients. Here, we summarize the mechanisms through which NO signalling dysregulation causes thoracic aortic aneurysm, particularly in Marfan syndrome. We discuss recent advances based on the identification of new Marfan syndrome mediators related to pathway overactivation that represent potential disease biomarkers. Likewise, we propose iNOS, sGC and PRKG1, whose pharmacological inhibition reverses aortopathy in Marfan syndrome mice, as targets for therapeutic intervention in thoracic aortic aneurysm and are candidates for clinical trials.
Collapse
Affiliation(s)
- Marta Toral
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Andrea de la Fuente-Alonso
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Miguel R Campanero
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan Miguel Redondo
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
5
|
The putative role of oxidative stress and inflammation in the pathophysiology of sleep dysfunction across neuropsychiatric disorders: Focus on chronic fatigue syndrome, bipolar disorder and multiple sclerosis. Sleep Med Rev 2018; 41:255-265. [PMID: 29759891 DOI: 10.1016/j.smrv.2018.03.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 02/20/2018] [Accepted: 03/27/2018] [Indexed: 12/29/2022]
Abstract
Sleep and circadian abnormalities are prevalent and burdensome manifestations of diverse neuro-immune diseases, and may aggravate the course of several neuropsychiatric disorders. The underlying pathophysiology of sleep abnormalities across neuropsychiatric disorders remains unclear, and may involve the inter-play of several clinical variables and mechanistic pathways. In this review, we propose a heuristic framework in which reciprocal interactions of immune, oxidative and nitrosative stress, and mitochondrial pathways may drive sleep abnormalities across potentially neuroprogressive disorders. Specifically, it is proposed that systemic inflammation may activate microglial cells and astrocytes in brain regions involved in sleep and circadian regulation. Activated glial cells may secrete pro-inflammatory cytokines (for example, interleukin-1 beta and tumour necrosis factor alpha), nitric oxide and gliotransmitters, which may influence the expression of key circadian regulators (e.g., the Circadian Locomotor Output Cycles Kaput (CLOCK) gene). Furthermore, sleep disruption may further aggravate oxidative and nitrosative, peripheral immune activation, and (neuro) inflammation across these disorders in a vicious pathophysiological loop. This review will focus on chronic fatigue syndrome, bipolar disorder, and multiple sclerosis as exemplars of neuro-immune disorders. We conclude that novel therapeutic targets exploring immune and oxidative & nitrosative pathways (p.e. melatonin and molecular hydrogen) hold promise in alleviating sleep and circadian dysfunction in these disorders.
Collapse
|
6
|
Murugesan T, Durairaj N, Ramasamy M, Jayaraman K, Palaniswamy M, Jayaraman A. Analeptic agent from microbes upon cyanide degradation. Appl Microbiol Biotechnol 2017; 102:1557-1565. [PMID: 29285551 DOI: 10.1007/s00253-017-8674-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/23/2017] [Accepted: 11/23/2017] [Indexed: 01/15/2023]
Abstract
Microbes being the initial form of life and ubiquitous in occurrence, they adapt to the environment quickly. The microbial metabolism undergoes alteration to ensure conducive environment either by degrading the toxic substances or producing toxins to protect themselves. The presence of cyanide waste triggers the cyanide degrading enzymes in the microbes which facilitate the microbes to utilize the cyanide for its growth. To enable the degradation of cyanide, the microbes also produce the necessary cofactors and enhancers catalyzing the degradation pathways. Pterin, a cofactor of the enzyme cyanide monooxygenase catalyzing the oxidation of cyanide, is considered to be a potentially bioactive compound. Besides that, the pterins also act as cofactor for the enzymes involved in neurotransmitter metabolism. The therapeutic values of pterin as neuromodulating agent validate the necessity to pursue the commercial production of pterin. Even though chemical synthesis is possible, the non-toxic methods of pterin production need to be given greater attention in future.
Collapse
Affiliation(s)
- Thandeeswaran Murugesan
- Cancer Therapeutics Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Nisshanthini Durairaj
- Cancer Therapeutics Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Mahendran Ramasamy
- Cancer Therapeutics Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Karunya Jayaraman
- Cancer Therapeutics Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Muthusamy Palaniswamy
- Department of Microbiology, Karpagam University, Coimbatore, Tamil Nadu, 641021, India
| | - Angayarkanni Jayaraman
- Cancer Therapeutics Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India.
| |
Collapse
|
7
|
Caffeine ameliorates hyperoxia-induced lung injury by protecting GCH1 function in neonatal rat pups. Pediatr Res 2017; 82:483-489. [PMID: 28399119 PMCID: PMC5570644 DOI: 10.1038/pr.2017.89] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/21/2017] [Indexed: 11/08/2022]
Abstract
BackgroundBronchopulmonary dysplasia (BPD) is a major morbidity in premature infants, and impaired angiogenesis is considered a major contributor to BPD. Early caffeine treatment decreases the incidence of BPD; the mechanism remains incompletely understood.MethodsSprague-Dawley rat pups exposed to normoxia or hyperoxia since birth were treated daily with either 20 mg/kg caffeine or normal saline by an intraperitoneal injection from day 2 of life. The lungs were obtained for studies at days 10 and 21.ResultsHyperoxia impaired somatic growth and lung growth in the rat pups. The impaired lung growth during hyperoxia was associated with decreased levels of cyclic AMP (cAMP) and tetrahydrobiopterin (BH4) in the lungs. Early caffeine treatment increased cAMP levels in the lungs of hyperoxia-exposed pups. Caffeine also increased the levels of phosphorylated endothelial nitric oxide synthase (eNOS) at serine1177, total and serine51 phosphorylated GTP cyclohydrolase 1 (GCH1), and BH4 levels, with improved alveolar structure and angiogenesis in hyperoxia-exposed lungs. Reduced GCH1 levels in hyperoxia were due, in part, to increased degradation by the ubiquitin-proteasome system.ConclusionOur data support the notion that early caffeine treatment can protect immature lungs from hyperoxia-induced damage by improving eNOS activity through increased BH4 bioavailability.
Collapse
|
8
|
Münzel T, Daiber A. Redox Regulation of Dihydrofolate Reductase: Friend or Troublemaker? Arterioscler Thromb Vasc Biol 2016; 35:2261-2. [PMID: 26490273 DOI: 10.1161/atvbaha.115.306556] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Thomas Münzel
- From the Second Medical Clinic, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany (T.M., A.D.); and The German Center for Cardiovascular Research (DZHK, partner site RhineMain), Mainz, Germany (T.M., A.D.)
| | - Andreas Daiber
- From the Second Medical Clinic, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany (T.M., A.D.); and The German Center for Cardiovascular Research (DZHK, partner site RhineMain), Mainz, Germany (T.M., A.D.)
| |
Collapse
|
9
|
Baumgardt SL, Paterson M, Leucker TM, Fang J, Zhang DX, Bosnjak ZJ, Warltier DC, Kersten JR, Ge ZD. Chronic Co-Administration of Sepiapterin and L-Citrulline Ameliorates Diabetic Cardiomyopathy and Myocardial Ischemia/Reperfusion Injury in Obese Type 2 Diabetic Mice. Circ Heart Fail 2016; 9:e002424. [PMID: 26763290 PMCID: PMC4714787 DOI: 10.1161/circheartfailure.115.002424] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Diabetic heart disease is associated with tetrahydrobiopterin oxidation and high arginase activity, leading to endothelial nitric oxide synthase dysfunction. Sepiapterin (SEP) is a tetrahydrobiopterin precursor, and L-citrulline (L-Cit) is converted to endothelial nitric oxide synthase substrate, L-arginine. Whether SEP and L-Cit are effective at reducing diabetic heart disease is not known. The present study examined the effects of SEP and L-Cit on diabetic cardiomyopathy and ischemia/reperfusion injury in obese type 2 diabetic mice. METHODS AND RESULTS Db/db and C57BLKS/J mice at 6 to 8 weeks of age received vehicle, SEP, or L-Cit orally alone or in combination for 8 weeks. Cardiac function was evaluated with echocardiography. Db/db mice displayed hyperglycemia, obesity, and normal blood pressure and cardiac function compared with C57BLKS/J mice at 6 to 8 weeks of age. After vehicle treatment for 8 weeks, db/db mice had reduced ejection fraction, mitral E/A ratio, endothelium-dependent relaxation of coronary arteries, tetrahydrobiopterin concentrations, ratio of endothelial nitric oxide synthase dimers/monomers, and nitric oxide levels compared with vehicle-treated C57BLKS/J mice. These detrimental effects of diabetes mellitus were abrogated by co-administration of SEP and L-Cit. Myocardial infarct size was increased, and coronary flow rate and ± dP/dt were decreased during reperfusion in vehicle-treated db/db mice subjected to ischemia/reperfusion injury compared with control mice. Co-administration of SEP and L-Cit decreased infarct size and improved coronary flow rate and cardiac function in both C57BLKS/J and db/db mice. CONCLUSIONS Co-administration of SEP and L-Cit limits diabetic cardiomyopathy and ischemia/reperfusion injury in db/db mice through a tetrahydrobiopterin/endothelial nitric oxide synthase/nitric oxide pathway.
Collapse
Affiliation(s)
- Shelley L Baumgardt
- From the Department of Anesthesiology (S.L.B., M.P., Z.J.B., D.C.W., J.R.K., Z.-D.G.), Department of Pediatrics (J.F.), Department of Medicine (D.X.Z.), Department of Physiology (Z.J.B.), and Department of Pharmacology and Toxicology (D.C.W., J.R.K.), Medical College of Wisconsin, Milwaukee; and Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD (T.M.L.)
| | - Mark Paterson
- From the Department of Anesthesiology (S.L.B., M.P., Z.J.B., D.C.W., J.R.K., Z.-D.G.), Department of Pediatrics (J.F.), Department of Medicine (D.X.Z.), Department of Physiology (Z.J.B.), and Department of Pharmacology and Toxicology (D.C.W., J.R.K.), Medical College of Wisconsin, Milwaukee; and Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD (T.M.L.)
| | - Thorsten M Leucker
- From the Department of Anesthesiology (S.L.B., M.P., Z.J.B., D.C.W., J.R.K., Z.-D.G.), Department of Pediatrics (J.F.), Department of Medicine (D.X.Z.), Department of Physiology (Z.J.B.), and Department of Pharmacology and Toxicology (D.C.W., J.R.K.), Medical College of Wisconsin, Milwaukee; and Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD (T.M.L.)
| | - Juan Fang
- From the Department of Anesthesiology (S.L.B., M.P., Z.J.B., D.C.W., J.R.K., Z.-D.G.), Department of Pediatrics (J.F.), Department of Medicine (D.X.Z.), Department of Physiology (Z.J.B.), and Department of Pharmacology and Toxicology (D.C.W., J.R.K.), Medical College of Wisconsin, Milwaukee; and Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD (T.M.L.)
| | - David X Zhang
- From the Department of Anesthesiology (S.L.B., M.P., Z.J.B., D.C.W., J.R.K., Z.-D.G.), Department of Pediatrics (J.F.), Department of Medicine (D.X.Z.), Department of Physiology (Z.J.B.), and Department of Pharmacology and Toxicology (D.C.W., J.R.K.), Medical College of Wisconsin, Milwaukee; and Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD (T.M.L.)
| | - Zeljko J Bosnjak
- From the Department of Anesthesiology (S.L.B., M.P., Z.J.B., D.C.W., J.R.K., Z.-D.G.), Department of Pediatrics (J.F.), Department of Medicine (D.X.Z.), Department of Physiology (Z.J.B.), and Department of Pharmacology and Toxicology (D.C.W., J.R.K.), Medical College of Wisconsin, Milwaukee; and Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD (T.M.L.)
| | - David C Warltier
- From the Department of Anesthesiology (S.L.B., M.P., Z.J.B., D.C.W., J.R.K., Z.-D.G.), Department of Pediatrics (J.F.), Department of Medicine (D.X.Z.), Department of Physiology (Z.J.B.), and Department of Pharmacology and Toxicology (D.C.W., J.R.K.), Medical College of Wisconsin, Milwaukee; and Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD (T.M.L.)
| | - Judy R Kersten
- From the Department of Anesthesiology (S.L.B., M.P., Z.J.B., D.C.W., J.R.K., Z.-D.G.), Department of Pediatrics (J.F.), Department of Medicine (D.X.Z.), Department of Physiology (Z.J.B.), and Department of Pharmacology and Toxicology (D.C.W., J.R.K.), Medical College of Wisconsin, Milwaukee; and Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD (T.M.L.)
| | - Zhi-Dong Ge
- From the Department of Anesthesiology (S.L.B., M.P., Z.J.B., D.C.W., J.R.K., Z.-D.G.), Department of Pediatrics (J.F.), Department of Medicine (D.X.Z.), Department of Physiology (Z.J.B.), and Department of Pharmacology and Toxicology (D.C.W., J.R.K.), Medical College of Wisconsin, Milwaukee; and Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD (T.M.L.).
| |
Collapse
|
10
|
Daiber A, Münzel T. Organic Nitrate Therapy, Nitrate Tolerance, and Nitrate-Induced Endothelial Dysfunction: Emphasis on Redox Biology and Oxidative Stress. Antioxid Redox Signal 2015; 23:899-942. [PMID: 26261901 PMCID: PMC4752190 DOI: 10.1089/ars.2015.6376] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Organic nitrates, such as nitroglycerin (GTN), isosorbide-5-mononitrate and isosorbide dinitrate, and pentaerithrityl tetranitrate (PETN), when given acutely, have potent vasodilator effects improving symptoms in patients with acute and chronic congestive heart failure, stable coronary artery disease, acute coronary syndromes, or arterial hypertension. The mechanisms underlying vasodilation include the release of •NO or a related compound in response to intracellular bioactivation (for GTN, the mitochondrial aldehyde dehydrogenase [ALDH-2]) and activation of the enzyme, soluble guanylyl cyclase. Increasing cyclic guanosine-3',-5'-monophosphate (cGMP) levels lead to an activation of the cGMP-dependent kinase I, thereby causing the relaxation of the vascular smooth muscle by decreasing intracellular calcium concentrations. The hemodynamic and anti-ischemic effects of organic nitrates are rapidly lost upon long-term (low-dose) administration due to the rapid development of tolerance and endothelial dysfunction, which is in most cases linked to increased intracellular oxidative stress. Enzymatic sources of reactive oxygen species under nitrate therapy include mitochondria, NADPH oxidases, and an uncoupled •NO synthase. Acute high-dose challenges with organic nitrates cause a similar loss of potency (tachyphylaxis), but with distinct pathomechanism. The differences among organic nitrates are highlighted regarding their potency to induce oxidative stress and subsequent tolerance and endothelial dysfunction. We also address pleiotropic effects of organic nitrates, for example, their capacity to stimulate antioxidant pathways like those demonstrated for PETN, all of which may prevent adverse effects in response to long-term therapy. Based on these considerations, we will discuss and present some preclinical data on how the nitrate of the future should be designed.
Collapse
Affiliation(s)
- Andreas Daiber
- The 2nd Medical Clinic, Medical Center of the Johannes Gutenberg University , Mainz, Germany
| | - Thomas Münzel
- The 2nd Medical Clinic, Medical Center of the Johannes Gutenberg University , Mainz, Germany
| |
Collapse
|
11
|
Rabender CS, Alam A, Sundaresan G, Cardnell RJ, Yakovlev VA, Mukhopadhyay ND, Graves P, Zweit J, Mikkelsen RB. The Role of Nitric Oxide Synthase Uncoupling in Tumor Progression. Mol Cancer Res 2015; 13:1034-43. [PMID: 25724429 PMCID: PMC4470720 DOI: 10.1158/1541-7786.mcr-15-0057-t] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 02/21/2015] [Indexed: 02/07/2023]
Abstract
UNLABELLED Here, evidence suggests that nitric oxide synthases (NOS) of tumor cells, in contrast with normal tissues, synthesize predominantly superoxide and peroxynitrite. Based on high-performance liquid chromatography analysis, the underlying mechanism for this uncoupling is a reduced tetrahydrobiopterin:dihydrobiopterin ratio (BH4:BH2) found in breast, colorectal, epidermoid, and head and neck tumors compared with normal tissues. Increasing BH4:BH2 and reconstitution of coupled NOS activity in breast cancer cells with the BH4 salvage pathway precursor, sepiapterin, causes significant shifts in downstream signaling, including increased cGMP-dependent protein kinase (PKG) activity, decreased β-catenin expression, and TCF4 promoter activity, and reduced NF-κB promoter activity. Sepiapterin inhibited breast tumor cell growth in vitro and in vivo as measured by a clonogenic assay, Ki67 staining, and 2[18F]fluoro-2-deoxy-D-glucose-deoxyglucose positron emission tomography (FDG-PET). In summary, using diverse tumor types, it is demonstrated that the BH4:BH2 ratio is lower in tumor tissues and, as a consequence, NOS activity generates more peroxynitrite and superoxide anion than nitric oxide, resulting in important tumor growth-promoting and antiapoptotic signaling properties. IMPLICATIONS The synthetic BH4, Kuvan, is used to elevate BH4:BH2 in some phenylketonuria patients and to treat diseases associated with endothelial dysfunction, suggesting a novel, testable approach for correcting an abnormality of tumor metabolism to control tumor growth.
Collapse
Affiliation(s)
| | - Asim Alam
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia
| | - Gobalakrishnan Sundaresan
- Department of Radiology and Center for Molecular Imaging, Virginia Commonwealth University, Richmond, Virginia
| | - Robert J Cardnell
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson, Houston, Texas
| | - Vasily A Yakovlev
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia
| | - Nitai D Mukhopadhyay
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia
| | - Paul Graves
- Department of Radiation Oncology, New York Methodist Hospital, Weill Cornell Medical College, Brooklyn, New York
| | - Jamal Zweit
- Department of Radiology and Center for Molecular Imaging, Virginia Commonwealth University, Richmond, Virginia
| | - Ross B Mikkelsen
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
12
|
Chronic β1-adrenergic blockade enhances myocardial β3-adrenergic coupling with nitric oxide-cGMP signaling in a canine model of chronic volume overload: new insight into mechanisms of cardiac benefit with selective β1-blocker therapy. Basic Res Cardiol 2014; 110:456. [PMID: 25480109 DOI: 10.1007/s00395-014-0456-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 11/21/2014] [Accepted: 11/28/2014] [Indexed: 11/27/2022]
Abstract
The β1-adrenergic antagonist metoprolol improves cardiac function in animals and patients with chronic heart failure, isolated mitral regurgitation (MR), and ischemic heart disease, though the molecular mechanisms remain incompletely understood. Metoprolol has been reported to upregulate cardiac expression of β3-adrenergic receptors (β3AR) in animal models. Myocardial β3AR signaling via neuronal nitric oxide synthase (nNOS) activation has recently emerged as a cardioprotective pathway. We tested whether chronic β1-adrenergic blockade with metoprolol enhances myocardial β3AR coupling with nitric oxide-stimulated cyclic guanosine monophosphate (β3AR/NO-cGMP) signaling in the MR-induced, volume-overloaded heart. We compared the expression, distribution, and inducible activation of β3AR/NO-cGMP signaling proteins within myocardial membrane microdomains in dogs (canines) with surgically induced MR, those also treated with metoprolol succinate (MR+βB), and unoperated controls. β3AR mRNA transcripts, normalized to housekeeping gene RPLP1, increased 4.4 × 10(3)- and 3.2 × 10(2)-fold in MR and MR+βB hearts, respectively, compared to Control. Cardiac β3AR expression was increased 1.4- and nearly twofold in MR and MR+βB, respectively, compared to Control. β3AR was detected within caveolae-enriched lipid rafts (Cav3(+)LR) and heavy density, non-lipid raft membrane (NLR) across all groups. However, in vitro selective β3AR stimulation with BRL37344 (BRL) triggered cGMP production within only NLR of MR+βB. BRL induced Ser (1412) phosphorylation of nNOS within NLR of MR+βB, but not Control or MR, consistent with detection of NLR-specific β3AR/NO-cGMP coupling. Treatment with metoprolol prevented MR-associated oxidation of NO biosensor soluble guanylyl cyclase (sGC) within NLR. Metoprolol therapy also prevented MR-induced relocalization of sGCβ1 subunit away from caveolae, suggesting preserved NO-sGC-cGMP signaling, albeit without coupling to β3AR, within MR+βB caveolae. Chronic β1-blockade is associated with myocardial β3AR/NO-cGMP coupling in a microdomain-specific fashion. Our canine study suggests that microdomain-targeted enhancement of myocardial β3AR/NO-cGMP signaling may explain, in part, β1-adrenergic antagonist-mediated preservation of cardiac function in the volume-overloaded heart.
Collapse
|
13
|
Schmidt K, Kolesnik B, Gorren ACF, Werner ER, Mayer B. Cell type-specific recycling of tetrahydrobiopterin by dihydrofolate reductase explains differential effects of 7,8-dihydrobiopterin on endothelial nitric oxide synthase uncoupling. Biochem Pharmacol 2014; 90:246-53. [PMID: 24863258 PMCID: PMC4099517 DOI: 10.1016/j.bcp.2014.05.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/14/2014] [Accepted: 05/14/2014] [Indexed: 11/26/2022]
Abstract
(6R)-5,6,7,8-Tetrahydro-L-biopterin (BH4) availability regulates nitric oxide and superoxide formation by endothelial nitric oxide synthase (eNOS). At low BH4 or low BH4 to 7,8-dihydrobiopterin (BH2) ratios the enzyme becomes uncoupled and generates superoxide at the expense of NO. We studied the effects of exogenously added BH2 on intracellular BH4/BH2 ratios and eNOS activity in different types of endothelial cells. Incubation of porcine aortic endothelial cells with BH2 increased BH4/BH2 ratios from 8.4 (controls) and 0.5 (BH4-depleted cells) up to ~20, demonstrating efficient reduction of BH2. Uncoupled eNOS activity observed in BH4-depleted cells was prevented by preincubation with BH2. Recycling of BH4 was much less efficient in human endothelial cells isolated from umbilical veins or derived from dermal microvessels (HMEC-1 cells), which exhibited eNOS uncoupling and low BH4/BH2 ratios under basal conditions and responded to exogenous BH2 with only moderate increases in BH4/BH2 ratios. The kinetics of dihydrofolate reductase-catalyzed BH4 recycling in endothelial cytosols showed that the apparent BH2 affinity of the enzyme was 50- to 300-fold higher in porcine than in human cell preparations. Thus, the differential regulation of eNOS uncoupling in different types of endothelial cells may be explained by striking differences in the apparent BH2 affinity of dihydrofolate reductase.
Collapse
Affiliation(s)
- Kurt Schmidt
- Department of Pharmacology and Toxicology, Karl-Franzens-Universität Graz, A-8010 Graz, Austria.
| | - Bernd Kolesnik
- Department of Pharmacology and Toxicology, Karl-Franzens-Universität Graz, A-8010 Graz, Austria
| | - Antonius C F Gorren
- Department of Pharmacology and Toxicology, Karl-Franzens-Universität Graz, A-8010 Graz, Austria
| | - Ernst R Werner
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | - Bernd Mayer
- Department of Pharmacology and Toxicology, Karl-Franzens-Universität Graz, A-8010 Graz, Austria
| |
Collapse
|
14
|
Rochette L, Lorin J, Zeller M, Guilland JC, Lorgis L, Cottin Y, Vergely C. Nitric oxide synthase inhibition and oxidative stress in cardiovascular diseases: Possible therapeutic targets? Pharmacol Ther 2013; 140:239-57. [DOI: 10.1016/j.pharmthera.2013.07.004] [Citation(s) in RCA: 269] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 12/14/2022]
|
15
|
Dubois M, Delannoy E, Duluc L, Closs E, Li H, Toussaint C, Gadeau AP, Gödecke A, Freund-Michel V, Courtois A, Marthan R, Savineau JP, Muller B. Biopterin metabolism and eNOS expression during hypoxic pulmonary hypertension in mice. PLoS One 2013; 8:e82594. [PMID: 24312428 PMCID: PMC3842263 DOI: 10.1371/journal.pone.0082594] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 11/04/2013] [Indexed: 11/18/2022] Open
Abstract
Tetrahydrobiopterin (BH4), which fosters the formation of and stabilizes endothelial NO synthase (eNOS) as an active dimer, tightly regulates eNOS coupling / uncoupling. Moreover, studies conducted in genetically-modified models demonstrate that BH4 pulmonary deficiency is a key determinant in the pathogenesis of pulmonary hypertension. The present study thus investigates biopterin metabolism and eNOS expression, as well as the effect of sepiapterin (a precursor of BH4) and eNOS gene deletion, in a mice model of hypoxic pulmonary hypertension. In lungs, chronic hypoxia increased BH4 levels and eNOS expression, without modifying dihydrobiopterin (BH2, the oxidation product of BH4) levels, GTP cyclohydrolase-1 or dihydrofolate reductase expression (two key enzymes regulating BH4 availability). In intrapulmonary arteries, chronic hypoxia also increased expression of eNOS, but did not induce destabilisation of eNOS dimers into monomers. In hypoxic mice, sepiapterin prevented increase in right ventricular systolic pressure and right ventricular hypertrophy, whereas it modified neither remodelling nor alteration in vasomotor responses (hyper-responsiveness to phenylephrine, decrease in endothelium-dependent relaxation to acetylcholine) in intrapulmonary arteries. Finally, deletion of eNOS gene partially prevented hypoxia-induced increase in right ventricular systolic pressure, right ventricular hypertrophy and remodelling of intrapulmonary arteries. Collectively, these data demonstrate the absence of BH4/BH2 changes and eNOS dimer destabilisation, which may induce eNOS uncoupling during hypoxia-induced pulmonary hypertension. Thus, even though eNOS gene deletion and sepiapterin treatment exert protective effects on hypoxia-induced pulmonary vascular remodelling, increase on right ventricular pressure and / or right ventricular hypertrophy, these effects appear unrelated to biopterin-dependent eNOS uncoupling within pulmonary vasculature of hypoxic wild-type mice.
Collapse
Affiliation(s)
- Mathilde Dubois
- University Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Estelle Delannoy
- University Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- CHU de, Bordeaux, Bordeaux, France
| | - Lucie Duluc
- University Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Ellen Closs
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | | | | | - Axel Gödecke
- Institute of Cardiovascular Physiology, Heinrich-Heine University, Düsseldorf, Germany
| | - Véronique Freund-Michel
- University Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Arnaud Courtois
- University Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Roger Marthan
- University Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- CHU de, Bordeaux, Bordeaux, France
| | - Jean-Pierre Savineau
- University Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Bernard Muller
- University Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| |
Collapse
|
16
|
The NO/ONOO-cycle as the central cause of heart failure. Int J Mol Sci 2013; 14:22274-330. [PMID: 24232452 PMCID: PMC3856065 DOI: 10.3390/ijms141122274] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 10/23/2013] [Accepted: 10/24/2013] [Indexed: 01/08/2023] Open
Abstract
The NO/ONOO-cycle is a primarily local, biochemical vicious cycle mechanism, centered on elevated peroxynitrite and oxidative stress, but also involving 10 additional elements: NF-κB, inflammatory cytokines, iNOS, nitric oxide (NO), superoxide, mitochondrial dysfunction (lowered energy charge, ATP), NMDA activity, intracellular Ca(2+), TRP receptors and tetrahydrobiopterin depletion. All 12 of these elements have causal roles in heart failure (HF) and each is linked through a total of 87 studies to specific correlates of HF. Two apparent causal factors of HF, RhoA and endothelin-1, each act as tissue-limited cycle elements. Nineteen stressors that initiate cases of HF, each act to raise multiple cycle elements, potentially initiating the cycle in this way. Different types of HF, left vs. right ventricular HF, with or without arrhythmia, etc., may differ from one another in the regions of the myocardium most impacted by the cycle. None of the elements of the cycle or the mechanisms linking them are original, but they collectively produce the robust nature of the NO/ONOO-cycle which creates a major challenge for treatment of HF or other proposed NO/ONOO-cycle diseases. Elevated peroxynitrite/NO ratio and consequent oxidative stress are essential to both HF and the NO/ONOO-cycle.
Collapse
|
17
|
Cardnell RJG, Rabender CS, Ross GR, Guo C, Howlett EL, Alam A, Wang XY, Akbarali HI, Mikkelsen RB. Sepiapterin ameliorates chemically induced murine colitis and azoxymethane-induced colon cancer. J Pharmacol Exp Ther 2013; 347:117-25. [PMID: 23912334 DOI: 10.1124/jpet.113.203828] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The effects of modulating tetrahydrobiopterin (BH4) levels with a metabolic precursor, sepiapterin (SP), on dextran sodium sulfate (DSS)-induced colitis and azoxymethane (AOM)-induced colorectal cancer were studied. SP in the drinking water blocks DSS-induced colitis measured as decreased disease activity index (DAI), morphologic criteria, and recovery of Ca(2+)-induced contractility responses lost as a consequence of DSS treatment. SP reduces inflammatory responses measured as the decreased number of infiltrating inflammatory macrophages and neutrophils and decreased expression of proinflammatory cytokines interleukin 1β (IL-1β), IL-6, and IL-17A. High-performance liquid chromatography analyses of colonic BH4 and its oxidized derivative 7,8-dihydrobiopterin (BH2) are inconclusive although there was a trend for lower BH4:BH2 with DSS treatment that was reversed with SP. Reduction of colonic cGMP levels by DSS was reversed with SP by a mechanism sensitive to 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), a specific inhibitor of the NO-sensitive soluble guanylate cyclase (sGC). ODQ abrogates the protective effects of SP on colitis. This plus the finding that SP reduces DSS-enhanced protein Tyr nitration are consistent with DSS-induced uncoupling of NOS. The results agree with previous studies that demonstrated inactivation of sGC in DSS-treated animals as being important in recruitment of inflammatory cells and in altered cholinergic signaling and colon motility. SP also reduces the number of colon tumors in AOM/DSS-treated mice from 7 to 1 per unit colon length. Thus, pharmacologic modulation of BH4 with currently available drugs may provide a mechanism for alleviating some forms of colitis and potentially minimizing the potential for colorectal cancer in patients with colitis.
Collapse
Affiliation(s)
- Robert J G Cardnell
- Departments of Radiation Oncology (R.J.G.C., C.S.R., E.L.H., A.A., R.B.M.), Pharmacology and Toxicology (C.S.R., G.R.R., H.I.A.), and Human and Molecular Genetics (C.G., X.-Y.W.), Virginia Commonwealth University, Richmond, Virginia
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW The endothelial isoform of nitric oxide synthase (eNOS) is constitutively expressed but dynamically regulated by a number of factors. Building our knowledge of this regulation is necessary to understand and modulate the bioavailability of nitric oxide, central to the cardiovascular complications of diabetes and other diseases. This review will focus on the eNOS substrate (L-arginine), its cofactor (tetrahydrobiopterin), and mechanisms related to the uncoupling of eNOS activity. RECENT FINDINGS The global arginine bioavailability ratio has been proposed as a biomarker reflective of L-arginine availability, arginase activity, and citrulline cycling, as all of these processes impact eNOS activity. The failure of oral supplementation of tetrahydrobiopterin to recouple eNOS has emphasized the importance of the tetrahydrobiopterin to dihydrobiopterin ratio. Identification of transporters for biopterin species as well as signals that regulate endogenous arginine production have provided insight for alternative strategies to raise endothelial tetrahydrobiopterin levels while reducing dihydrobiopterin and alter eNOS activity. Finally, new information about redox regulation of eNOS itself may point to ways of controlling oxidative stress in the vasculature. SUMMARY Restoring proper eNOS activity is key to ameliorating or preventing cardiovascular complications of diabetes. Continued investigation is needed to uncover new means for maintaining endothelial nitric oxide bioavailability.
Collapse
Affiliation(s)
- Hai H Hoang
- Department of Systems Biology and Translational Medicine, Texas A&M Health Science Center, Temple, Texas 76504, USA
| | | | | |
Collapse
|