1
|
Brown J, Grayson B, Neill JC, Harte M, Wall MJ, Ngomba RT. Oscillatory Deficits in the Sub-Chronic PCP Rat Model for Schizophrenia Are Reversed by mGlu5 Receptor-Positive Allosteric Modulators VU0409551 and VU0360172. Cells 2023; 12:cells12060919. [PMID: 36980260 PMCID: PMC10047164 DOI: 10.3390/cells12060919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
The cognitive deficits of schizophrenia are linked to imbalanced excitatory and inhibitory signalling in the prefrontal cortex (PFC), disrupting gamma oscillations. We previously demonstrated that two mGlu5 receptor-positive allosteric modulators (PAMs), VU0409551 and VU0360172, restore cognitive deficits in the sub-chronic PCP (scPCP) rodent model for schizophrenia via distinct changes in PFC intracellular signalling molecules. Here, we have assessed ex vivo gamma oscillatory activity in PFC slices from scPCP rats and investigated the effects of VU0409551 and VU0360172 upon oscillatory power. mGlu5 receptor, protein kinase C (PKC), and phospholipase C (PLC) inhibition were also used to examine ‘modulation bias’ in PAM activity. The amplitude and area power of gamma oscillations were significantly diminished in the scPCP model. Slice incubation with either VU0409551 or VU0360172 rescued scPCP-induced oscillatory deficits in a concentration-dependent manner. MTEP blocked the PAM-induced restoration of oscillatory power, confirming the requirement of mGlu5 receptor modulation. Whilst PLC inhibition prevented the power increase mediated by both PAMs, PKC inhibition diminished the effects of VU0360172 but not VU0409551. This aligns with previous reports that VU0409551 exhibits preferential activation of the phosphatidylinositol-3-kinase (PI3K) signalling pathway over the PKC cascade. Restoration of the excitatory/inhibitory signalling balance and gamma oscillations may therefore underlie the mGluR5 PAM-mediated correction of scPCP-induced cognitive deficits.
Collapse
Affiliation(s)
- Jessica Brown
- Division of Pharmacy & Optometry, University of Manchester, Manchester M13 9PT, UK
| | - Ben Grayson
- Division of Pharmacy & Optometry, University of Manchester, Manchester M13 9PT, UK
| | - Joanna C. Neill
- Division of Pharmacy & Optometry, University of Manchester, Manchester M13 9PT, UK
| | - Michael Harte
- Division of Pharmacy & Optometry, University of Manchester, Manchester M13 9PT, UK
- Correspondence: (M.H.); (M.J.W.); (R.T.N.); Tel.: +44-(0)161-2752328 (M.H.); +44-(0)247-6573772 (M.J.W.); +44-(0)152-2837392 (R.T.N.)
| | - Mark J. Wall
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
- Correspondence: (M.H.); (M.J.W.); (R.T.N.); Tel.: +44-(0)161-2752328 (M.H.); +44-(0)247-6573772 (M.J.W.); +44-(0)152-2837392 (R.T.N.)
| | - Richard T. Ngomba
- School of Pharmacy, University of Lincoln, Lincoln LN6 7DL, UK
- Correspondence: (M.H.); (M.J.W.); (R.T.N.); Tel.: +44-(0)161-2752328 (M.H.); +44-(0)247-6573772 (M.J.W.); +44-(0)152-2837392 (R.T.N.)
| |
Collapse
|
2
|
Luessen DJ, Conn PJ. Allosteric Modulators of Metabotropic Glutamate Receptors as Novel Therapeutics for Neuropsychiatric Disease. Pharmacol Rev 2022; 74:630-661. [PMID: 35710132 PMCID: PMC9553119 DOI: 10.1124/pharmrev.121.000540] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Metabotropic glutamate (mGlu) receptors, a family of G-protein-coupled receptors, have been identified as novel therapeutic targets based on extensive research supporting their diverse contributions to cell signaling and physiology throughout the nervous system and important roles in regulating complex behaviors, such as cognition, reward, and movement. Thus, targeting mGlu receptors may be a promising strategy for the treatment of several brain disorders. Ongoing advances in the discovery of subtype-selective allosteric modulators for mGlu receptors has provided an unprecedented opportunity for highly specific modulation of signaling by individual mGlu receptor subtypes in the brain by targeting sites distinct from orthosteric or endogenous ligand binding sites on mGlu receptors. These pharmacological agents provide the unparalleled opportunity to selectively regulate neuronal excitability, synaptic transmission, and subsequent behavioral output pertinent to many brain disorders. Here, we review preclinical and clinical evidence supporting the utility of mGlu receptor allosteric modulators as novel therapeutic approaches to treat neuropsychiatric diseases, such as schizophrenia, substance use disorders, and stress-related disorders.
Collapse
|
3
|
Dogra S, Stansley BJ, Xiang Z, Qian W, Gogliotti RG, Nicoletti F, Lindsley CW, Niswender CM, Joffe ME, Conn PJ. Activating mGlu 3 Metabotropic Glutamate Receptors Rescues Schizophrenia-like Cognitive Deficits Through Metaplastic Adaptations Within the Hippocampus. Biol Psychiatry 2021; 90:385-398. [PMID: 33965197 PMCID: PMC8403106 DOI: 10.1016/j.biopsych.2021.02.970] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Polymorphisms in GRM3, the gene encoding the mGlu3 metabotropic glutamate receptor, are associated with impaired cognition and neuropsychiatric disorders such as schizophrenia. Limited availability of selective genetic and molecular tools has hindered progress in developing a clear understanding of the mechanisms through which mGlu3 receptors regulate synaptic plasticity and cognition. METHODS We examined associative learning in mice with trace fear conditioning, a hippocampal-dependent learning task disrupted in patients with schizophrenia. Underlying cellular mechanisms were assessed using ex vivo hippocampal slice preparations with selective pharmacological tools and selective genetic deletion of mGlu3 receptor expression in specific neuronal subpopulations. RESULTS mGlu3 receptor activation enhanced trace fear conditioning and reversed deficits induced by subchronic phencyclidine. Mechanistic studies revealed that mGlu3 receptor activation induced metaplastic changes, biasing afferent stimulation to induce long-term potentiation through an mGlu5 receptor-dependent, endocannabinoid-mediated, disinhibitory mechanism. Selective genetic deletion of either mGlu3 or mGlu5 from hippocampal pyramidal cells eliminated effects of mGlu3 activation, revealing a novel mechanism by which mGlu3 and mGlu5 interact to enhance cognitive function. CONCLUSIONS These data demonstrate that activation of mGlu3 receptors in hippocampal pyramidal cells enhances hippocampal-dependent cognition in control and impaired mice by inducing a novel form of metaplasticity to regulate circuit function, providing a clear mechanism through which genetic variation in GRM3 can contribute to cognitive deficits. Developing approaches to positively modulate mGlu3 receptor function represents an encouraging new avenue for treating cognitive disruption in schizophrenia and other psychiatric diseases.
Collapse
Affiliation(s)
- Shalini Dogra
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA,Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Branden J. Stansley
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA,Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Zixiu Xiang
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA,Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Weilun Qian
- Vanderbilt University, Nashville, TN 37232, USA
| | - Rocco G. Gogliotti
- Molecular Pharmacology and Neuroscience Department, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Ferdinando Nicoletti
- IRCCS Neuromed, Pozzilli, Italy,Department of Physiology and Pharmacology, University Sapienza of Roma, Roma, Italy
| | - Craig W. Lindsley
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA,Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA,Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, 37232, USA,Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Colleen M. Niswender
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA,Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA,Vanderbilt Kennedy Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Max E. Joffe
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA,Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA,Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, 37232, USA,Correspondence to: Max E. Joffe, Ph.D., Research Instructor, Department of Pharmacology, Vanderbilt University, 12475E MRB4, Nashville, TN 37232-0697, Tel. (615) 322-6730, Fax. (615) 343-3088, , Twitter: @mejoffe; P. Jeffrey Conn, Ph.D., Lee E. Limbird Professor of Pharmacology, Warren Center for Neuroscience Drug Discovery, Vanderbilt University, 1205 Light Hall, Nashville, TN 37232-0697, Tel. (615) 936-2478, Fax. (615) 343-3088,
| | - P. Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA,Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA,Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, 37232, USA,Vanderbilt Kennedy Center, Vanderbilt University, Nashville, TN 37232, USA,Correspondence to: Max E. Joffe, Ph.D., Research Instructor, Department of Pharmacology, Vanderbilt University, 12475E MRB4, Nashville, TN 37232-0697, Tel. (615) 322-6730, Fax. (615) 343-3088, , Twitter: @mejoffe; P. Jeffrey Conn, Ph.D., Lee E. Limbird Professor of Pharmacology, Warren Center for Neuroscience Drug Discovery, Vanderbilt University, 1205 Light Hall, Nashville, TN 37232-0697, Tel. (615) 936-2478, Fax. (615) 343-3088,
| |
Collapse
|
4
|
Diao J, DeBono A, Josephs TM, Bourke JE, Capuano B, Gregory KJ, Leach K. Therapeutic Opportunities of Targeting Allosteric Binding Sites on the Calcium-Sensing Receptor. ACS Pharmacol Transl Sci 2021; 4:666-679. [PMID: 33860192 DOI: 10.1021/acsptsci.1c00046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 01/24/2023]
Abstract
The CaSR is a class C G protein-coupled receptor (GPCR) that acts as a multimodal chemosensor to maintain diverse homeostatic functions. The CaSR is a clinical therapeutic target in hyperparathyroidism and has emerged as a putative target in several other diseases. These include hyper- and hypocalcaemia caused either by mutations in the CASR gene or in genes that regulate CaSR signaling and expression, and more recently in asthma. The development of CaSR-targeting drugs is complicated by the fact that the CaSR possesses many different binding sites for endogenous and exogenous agonists and allosteric modulators. Binding sites for endogenous and exogenous ligands are located throughout the large CaSR protein and are interconnected in ways that we do not yet fully understand. This review summarizes our current understanding of CaSR physiology, signaling, and structure and how the many different binding sites of the CaSR may be targeted to treat disease.
Collapse
Affiliation(s)
- Jiayin Diao
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Aaron DeBono
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia.,Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Tracy M Josephs
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Jane E Bourke
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, 9 Ancora Imparo Way, Clayton, Victoria 3800, Australia
| | - Ben Capuano
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Karen J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia.,Department of Pharmacology, Biomedicine Discovery Institute, Monash University, 9 Ancora Imparo Way, Clayton, Victoria 3800, Australia
| | - Katie Leach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia.,Department of Pharmacology, Biomedicine Discovery Institute, Monash University, 9 Ancora Imparo Way, Clayton, Victoria 3800, Australia
| |
Collapse
|
5
|
Gregory KJ, Goudet C. International Union of Basic and Clinical Pharmacology. CXI. Pharmacology, Signaling, and Physiology of Metabotropic Glutamate Receptors. Pharmacol Rev 2020; 73:521-569. [PMID: 33361406 DOI: 10.1124/pr.119.019133] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Metabotropic glutamate (mGlu) receptors respond to glutamate, the major excitatory neurotransmitter in the mammalian brain, mediating a modulatory role that is critical for higher-order brain functions such as learning and memory. Since the first mGlu receptor was cloned in 1992, eight subtypes have been identified along with many isoforms and splice variants. The mGlu receptors are transmembrane-spanning proteins belonging to the class C G protein-coupled receptor family and represent attractive targets for a multitude of central nervous system disorders. Concerted drug discovery efforts over the past three decades have yielded a wealth of pharmacological tools including subtype-selective agents that competitively block or mimic the actions of glutamate or act allosterically via distinct sites to enhance or inhibit receptor activity. Herein, we review the physiologic and pathophysiological roles for individual mGlu receptor subtypes including the pleiotropic nature of intracellular signal transduction arising from each. We provide a comprehensive analysis of the in vitro and in vivo pharmacological properties of prototypical and commercially available orthosteric agonists and antagonists as well as allosteric modulators, including ligands that have entered clinical trials. Finally, we highlight emerging areas of research that hold promise to facilitate rational design of highly selective mGlu receptor-targeting therapeutics in the future. SIGNIFICANCE STATEMENT: The metabotropic glutamate receptors are attractive therapeutic targets for a range of psychiatric and neurological disorders. Over the past three decades, intense discovery efforts have yielded diverse pharmacological tools acting either competitively or allosterically, which have enabled dissection of fundamental biological process modulated by metabotropic glutamate receptors and established proof of concept for many therapeutic indications. We review metabotropic glutamate receptor molecular pharmacology and highlight emerging areas that are offering new avenues to selectively modulate neurotransmission.
Collapse
Affiliation(s)
- Karen J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.) and Institut de Génomique Fonctionnelle (IGF), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Sante et de la Recherche Medicale (INSERM), Montpellier, France (C.G.)
| | - Cyril Goudet
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.) and Institut de Génomique Fonctionnelle (IGF), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Sante et de la Recherche Medicale (INSERM), Montpellier, France (C.G.)
| |
Collapse
|
6
|
Sengmany K, Hellyer SD, Christopoulos A, Lapinsky DJ, Leach K, Gregory KJ. Differential contribution of metabotropic glutamate receptor 5 common allosteric binding site residues to biased allosteric agonism. Biochem Pharmacol 2020; 177:114011. [DOI: 10.1016/j.bcp.2020.114011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/29/2020] [Indexed: 01/06/2023]
|
7
|
Probe dependence and biased potentiation of metabotropic glutamate receptor 5 is mediated by differential ligand interactions in the common allosteric binding site. Biochem Pharmacol 2020; 177:114013. [DOI: 10.1016/j.bcp.2020.114013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/30/2020] [Indexed: 01/04/2023]
|
8
|
Hellyer SD, Aggarwal S, Chen ANY, Leach K, Lapinsky DJ, Gregory KJ. Development of Clickable Photoaffinity Ligands for Metabotropic Glutamate Receptor 2 Based on Two Positive Allosteric Modulator Chemotypes. ACS Chem Neurosci 2020; 11:1597-1609. [PMID: 32396330 DOI: 10.1021/acschemneuro.0c00009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The metabotropic glutamate receptor 2 (mGlu2) is a transmembrane-spanning class C G protein-coupled receptor that is an attractive therapeutic target for multiple psychiatric and neurological disorders. A key challenge has been deciphering the contribution of mGlu2 relative to other closely related mGlu receptors in mediating different physiological responses, which could be achieved through the utilization of subtype selective pharmacological tools. In this respect, allosteric modulators that recognize ligand-binding sites distinct from the endogenous neurotransmitter glutamate offer the promise of higher receptor-subtype selectivity. We hypothesized that mGlu2-selective positive allosteric modulators could be derivatized to generate bifunctional pharmacological tools. Here we developed clickable photoaffinity probes for mGlu2 based on two different positive allosteric modulator scaffolds that retained similar pharmacological activity to parent compounds. We demonstrate successful probe-dependent incorporation of a commercially available clickable fluorophore using bioorthogonal conjugation. Importantly, we also show the limitations of using these probes to assess in situ fluorescence of mGlu2 in intact cells where significant nonspecific membrane binding is evident.
Collapse
Affiliation(s)
- Shane D. Hellyer
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, 399 Royal Parade, Parkville, Victoria 3052, Australia
| | - Shaili Aggarwal
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Amy N. Y. Chen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, 399 Royal Parade, Parkville, Victoria 3052, Australia
| | - Katie Leach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, 399 Royal Parade, Parkville, Victoria 3052, Australia
| | - David J. Lapinsky
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Karen J. Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, 399 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
9
|
Josephs TM, Keller AN, Khajehali E, DeBono A, Langmead CJ, Conigrave AD, Capuano B, Kufareva I, Gregory KJ, Leach K. Negative allosteric modulators of the human calcium-sensing receptor bind to overlapping and distinct sites within the 7-transmembrane domain. Br J Pharmacol 2020; 177:1917-1930. [PMID: 31881094 PMCID: PMC7070164 DOI: 10.1111/bph.14961] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Negative allosteric modulators (NAMs) that target the calcium-sensing receptor (CaS receptor) were originally developed for the treatment of osteoporosis by stimulating the release of endogenous parathyroid hormone, but failed in human clinical trials. Several chemically and structurally distinct NAM scaffolds have been described, but it is not known how these different scaffolds interact with the CaS receptor to inhibit receptor signalling in response to agonists. EXPERIMENTAL APPROACH In the present study, we used a mutagenesis approach combined with analytical pharmacology and computational modelling to probe the binding sites of four distinct NAM scaffolds. KEY RESULTS Although all four scaffolds bind to the 7-transmembrane and/or extracellular or intracellular loops, they occupy distinct regions, as previously shown for positive allosteric modulators of the CaS receptor. Furthermore, different NAM scaffolds mediate negative allosteric modulation via distinct amino acid networks. CONCLUSION AND IMPLICATIONS These findings aid our understanding of how different NAMs bind to and inhibit the CaS receptor. Elucidation of allosteric binding sites in the CaS receptor has implications for the discovery of novel allosteric modulators.
Collapse
Affiliation(s)
- Tracy M. Josephs
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVICAustralia
| | - Andrew N. Keller
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVICAustralia
| | - Elham Khajehali
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVICAustralia
| | - Aaron DeBono
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVICAustralia
| | - Christopher J. Langmead
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVICAustralia
| | - Arthur D. Conigrave
- School of Life and Environmental SciencesUniversity of SydneySydneyNSWAustralia
| | - Ben Capuano
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVICAustralia
| | - Irina Kufareva
- Skaggs School of Pharmacy & Pharmaceutical SciencesUniversity of CaliforniaSan DiegoCAUSA
| | - Karen J. Gregory
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVICAustralia
| | - Katie Leach
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVICAustralia
| |
Collapse
|
10
|
Gregory KJ, Bridges TM, Gogliotti RG, Stauffer SR, Noetzel MJ, Jones CK, Lindsley CW, Conn PJ, Niswender CM. In Vitro to in Vivo Translation of Allosteric Modulator Concentration-Effect Relationships: Implications for Drug Discovery. ACS Pharmacol Transl Sci 2019; 2:442-452. [PMID: 32259076 DOI: 10.1021/acsptsci.9b00062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Indexed: 12/15/2022]
Abstract
Allosteric modulation of GPCRs represents an increasingly explored approach in drug development. Due to complex pharmacology, however, the relationship(s) between modulator properties determined in vitro with in vivo concentration-effect phenomena is frequently unclear. We investigated key pharmacological properties of a set of metabotropic glutamate receptor 5 (mGlu5) positive allosteric modulators (PAMs) and their relevance to in vivo concentration-response relationships. These studies identified a significant relationship between in vitro PAM cooperativity (αβ), as well as the maximal response obtained from a simple in vitro PAM concentration-response experiment, with in vivo efficacy for reversal of amphetamine-induced hyperlocomotion. This correlation did not exist with PAM potency or affinity. Data across PAMs were then converged to calculate an in vivo concentration of glutamate putatively relevant to the mGlu5 PAM mechanism of action. This work demonstrates the ability to merge in vitro pharmacology profiles with relevant behavioral outcomes and also provides a novel method to estimate neurotransmitter concentrations in vivo.
Collapse
Affiliation(s)
- Karen J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria 3052, Australia
| | - Thomas M Bridges
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Rocco G Gogliotti
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Shaun R Stauffer
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Meredith J Noetzel
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Carrie K Jones
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Craig W Lindsley
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States.,Departments of Chemistry and Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States.,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - P Jeffrey Conn
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States.,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Colleen M Niswender
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States.,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| |
Collapse
|
11
|
Hellyer SD, Albold S, Sengmany K, Singh J, Leach K, Gregory KJ. Metabotropic glutamate receptor 5 (mGlu 5 )-positive allosteric modulators differentially induce or potentiate desensitization of mGlu 5 signaling in recombinant cells and neurons. J Neurochem 2019; 151:301-315. [PMID: 31376155 DOI: 10.1111/jnc.14844] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/17/2019] [Accepted: 07/31/2019] [Indexed: 12/14/2022]
Abstract
Allosteric modulators of metabotropic glutamate receptor 5 (mGlu5 ) are a promising therapeutic strategy for a number of neurological disorders. Multiple mGlu5 -positive allosteric modulator (PAM) chemotypes have been discovered that act as either pure PAMs or as PAM-agonists in recombinant and native cells. While these compounds have been tested in paradigms of receptor activation, their effects on receptor regulatory processes are largely unknown. In this study, acute desensitization of mGlu5 mediated intracellular calcium mobilization by structurally diverse mGlu5 orthosteric and allosteric ligands was assessed in human embryonic kidney 293 cells and primary murine neuronal cultures from both striatum and cortex. We aimed to determine the intrinsic efficacy and modulatory capacity of diverse mGlu5 PAMs [(R)-5-((3-fluorophenyl)ethynyl)-N-(3-hydroxy-3-methylbutan-2-yl)picolinamide (VU0424465), N-cyclobutyl-6-((3-fluorophenyl)ethynyl)picolinamide (VU0360172), 1-(4-(2,4-difluorophenyl)piperazin-1-yl)-2-((4-fluorobenzyl)oxy)ethanone (DPFE), ((4-fluorophenyl) (2-(phenoxymethyl)-6,7-dihydrooxazolo[5,4-c]pyridin-5(4H)-yl)methanone) (VU0409551), 3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB)] on receptor desensitization and whether cellular context influences receptor regulatory processes. Only VU0424465 and VU0409551 induced desensitization alone in human embryonic kidney 293-mGlu5 cells, while all PAMs enhanced (S)-3,5-dihydroxyphenylglycine (DHPG)-induced desensitization. All mGlu5 PAMs induced receptor desensitization alone and enhanced DHPG-induced desensitization in striatal neurons. VU0424465 and VU0360172 were the only PAMs that induced desensitization alone in cortical neurons. With the exception of (CDPPB), PAMs enhanced DHPG-induced desensitization in cortical neurons. Moreover, differential apparent affinities, efficacies, and cooperativities with DHPG were observed for VU0360172, VU0409551, and VU0424465 when comparing receptor activation and desensitization in a cell type-dependent manner. These data indicate that biased mGlu5 allosteric modulator pharmacology extends to receptor regulatory processes in a tissue dependent manner, adding yet another layer of complexity to rational mGlu5 drug discovery.
Collapse
Affiliation(s)
- Shane D Hellyer
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Sabine Albold
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Kathy Sengmany
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Junaid Singh
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Katie Leach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Karen J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
12
|
Butkiewicz M, Rodriguez AL, Rainey SE, Wieting J, Luscombe VB, Stauffer SR, Lindsley CW, Conn PJ, Meiler J. Identification of Novel Allosteric Modulators of Metabotropic Glutamate Receptor Subtype 5 Acting at Site Distinct from 2-Methyl-6-(phenylethynyl)-pyridine Binding. ACS Chem Neurosci 2019; 10:3427-3436. [PMID: 31132237 DOI: 10.1021/acschemneuro.8b00227] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
As part of the G-protein coupled receptor (GPCR) family, metabotropic glutamate (mGlu) receptors play an important role as drug targets of cognitive diseases. Selective allosteric modulators of mGlu subtype 5 (mGlu5) have the potential to alleviate symptoms of numerous central nervous system disorders such as schizophrenia in a more targeted fashion. Multiple mGlu5 positive allosteric modulators (PAMs), such as 1-(3-fluorophenyl)-N-((3-fluorophenyl)-methylideneamino)-methanimine (DFB), 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)-benzamide (CDPPB), and 4-nitro-N-(1,3-diphenyl-1H-pyrazol-5-yl)-benzamide (VU-29), exert their actions by binding to a defined allosteric site on mGlu5 located in the seven-transmembrane domain (7TM) and shared by mGlu5 negative allosteric modulator (NAM) 2-methyl-6-(phenylethynyl)-pyridine (MPEP). Actions of the PAM N-{4-chloro-2-[(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)methyl]phenyl}-2-hydroxybenzamide (CPPHA) are mediated by a distinct allosteric site in the 7TM domain different from the MPEP binding site. Experimental evidence confirms these findings through mutagenesis experiments involving residues F585 (TM1) and A809 (TM7). In an effort to investigate mGlu5 PAM selectivity for this alternative allosteric site distinct from MPEP binding, we employed in silico quantitative structure-activity relationship (QSAR) modeling. Subsequent ligand-based virtual screening prioritized a set of 63 candidate compounds predicted from a library of over 4 million commercially available compounds to bind exclusively to this novel site. Experimental validation verified the biological activity for seven of 63 selected candidates. Further, medicinal chemistry optimizations based on these molecules revealed compound VU6003586 with an experimentally validated potency of 174 nM. Radioligand binding experiments showed only partial inhibition at very high concentrations, most likely indicative of binding at a non-MPEP site. Selective positive allosteric modulators for mGlu5 have the potential for tremendous impact concerning devastating neurological disorders such as schizophrenia and Huntington's disease. These identified and validated novel selective compounds can serve as starting points for more specifically tailored lead and probe molecules and thus help the development of potential therapeutic agents with reduced adverse effects.
Collapse
|
13
|
Xiang Z, Lv X, Maksymetz J, Stansley BJ, Ghoshal A, Gogliotti RG, Niswender CM, Lindsley CW, Conn PJ. mGlu 5 Positive Allosteric Modulators Facilitate Long-Term Potentiation via Disinhibition Mediated by mGlu 5-Endocannabinoid Signaling. ACS Pharmacol Transl Sci 2019; 2:198-209. [PMID: 31259318 PMCID: PMC6591772 DOI: 10.1021/acsptsci.9b00017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Indexed: 11/29/2022]
Abstract
Metabotropic glutamate (mGlu) receptor type 5 (mGlu5) positive allosteric modulators (PAMs) enhance hippocampal long-term potentiation (LTP) and have cognition-enhancing effects in animal models. These effects were initially thought to be mediated by potentiation of mGlu5 modulation of N-methyl-d-aspartate receptor (NMDAR) currents. However, a biased mGlu5 PAM that potentiates Gαq-dependent mGlu5 signaling, but not mGlu5 modulation of NMDAR currents, retains cognition-enhancing effects in animal models, suggesting that potentiation of NMDAR currents is not required for these in vivo effects of mGlu5 PAMs. However, it is not clear whether the potentiation of NMDAR currents is critical for the ability of mGlu5 PAMs to enhance hippocampal LTP. We now report the characterization of effects of two structurally distinct mGlu5 PAMs, VU-29 and VU0092273, on NMDAR currents and hippocampal LTP. As with other mGlu5 PAMs that do not display observable bias for potentiation of NMDAR currents, VU0092273 enhanced both mGlu5 modulation of NMDAR currents and induction of LTP at the hippocampal Schaffer collateral (SC)-CA1 synapse. In contrast, VU-29 did not potentiate mGlu5 modulation of NMDAR currents but induced robust potentiation of hippocampal LTP. Interestingly, both VU-29 and VU0092273 suppressed evoked inhibitory postsynaptic currents (eIPSCs) in CA1 pyramidal cells, and this effect was blocked by the cannabinoid receptor type 1 (CB1) antagonist AM251. Furthermore, AM251 blocked the ability of both mGlu5 PAMs to enhance LTP. Finally, both PAMs failed to enhance LTP in mice with the restricted genetic deletion of mGlu5 in CA1 pyramidal cells. Taken together with previous findings, these results suggest that enhancement of LTP by mGlu5 PAMs does not depend on mGlu5 modulation of NMDAR currents but is mediated by a previously established mechanism in which mGlu5 in CA1 pyramidal cells induces endocannabinoid release and CB1-dependent disinhibition.
Collapse
Affiliation(s)
- Zixiu Xiang
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery,Department of Chemistry, Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Xiaohui Lv
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery,Department of Chemistry, Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - James Maksymetz
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery,Department of Chemistry, Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Branden J Stansley
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery,Department of Chemistry, Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Ayan Ghoshal
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery,Department of Chemistry, Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Rocco G Gogliotti
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery,Department of Chemistry, Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery,Department of Chemistry, Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery,Department of Chemistry, Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery,Department of Chemistry, Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| |
Collapse
|
14
|
Chen ANY, Hellyer SD, Trinh PNH, Leach K, Gregory KJ. Identification of monellin as the first naturally derived proteinaceous allosteric agonist of metabotropic glutamate receptor 5. Basic Clin Pharmacol Toxicol 2019; 126 Suppl 6:104-115. [DOI: 10.1111/bcpt.13239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/10/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Amy N. Y. Chen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology Monash University Parkville Victoria Australia
| | - Shane D. Hellyer
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology Monash University Parkville Victoria Australia
| | - Phuc N. H. Trinh
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology Monash University Parkville Victoria Australia
| | - Katie Leach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology Monash University Parkville Victoria Australia
| | - Karen J. Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology Monash University Parkville Victoria Australia
| |
Collapse
|
15
|
Jakubík J, Randáková A, El-Fakahany EE, Doležal V. Analysis of equilibrium binding of an orthosteric tracer and two allosteric modulators. PLoS One 2019; 14:e0214255. [PMID: 30917186 PMCID: PMC6436737 DOI: 10.1371/journal.pone.0214255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/08/2019] [Indexed: 02/07/2023] Open
Abstract
Allosteric ligands bind to receptors at sites that are distinct from those endogenous agonists and orthosteric pharmacological agents interact with. Both an allosteric and orthosteric ligand bind simultaneously to the receptor to form a ternary complex, where each ligand influences binding affinity of the other to the receptor, either positively or negatively. Allosteric modulators are an intensively studied group of receptor ligands because of their potentially greater selectivity over orthosteric ligands, with the possibility of fine tuning of the effects of endogenous neurotransmitters and hormones. The affinity of an unlabelled allosteric ligand is commonly estimated by measuring its effects on binding of a radio-labelled orthosteric tracer. This scenario is complicated by many folds when one studies the kinetics of interactions of two allosteric agents, added simultaneously, on binding of an orthosteric tracer. In this paper, we provide, for the first time, theoretical basis for analysis of such complex interactions. We have expanded our analysis to include the possibility of having two allosteric modulators interact with the same or different sites on the receptor. An added value of our analysis is to provide a tool to distinguish between the two situations. Finally, we also modelled binding of two molecules of one allosteric modulator to one receptor.
Collapse
Affiliation(s)
- Jan Jakubík
- Department of Neurochemistry, Institute of Physiology CAS, Prague, Czech Republic
- * E-mail:
| | - Alena Randáková
- Department of Neurochemistry, Institute of Physiology CAS, Prague, Czech Republic
| | - Esam E. El-Fakahany
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, United States of America
| | - Vladimír Doležal
- Department of Neurochemistry, Institute of Physiology CAS, Prague, Czech Republic
| |
Collapse
|
16
|
Sengmany K, Hellyer SD, Albold S, Wang T, Conn PJ, May LT, Christopoulos A, Leach K, Gregory KJ. Kinetic and system bias as drivers of metabotropic glutamate receptor 5 allosteric modulator pharmacology. Neuropharmacology 2019; 149:83-96. [PMID: 30763654 DOI: 10.1016/j.neuropharm.2019.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/18/2019] [Accepted: 02/04/2019] [Indexed: 12/17/2022]
Abstract
Allosteric modulators of the metabotropic glutamate receptor subtype 5 (mGlu5) have been proposed as potential therapies for various CNS disorders. These ligands bind to sites distinct from the orthosteric (or endogenous) ligand, often with improved subtype selectivity and spatio-temporal control over receptor responses. We recently revealed that mGlu5 allosteric agonists and positive allosteric modulators exhibit biased agonism and/or modulation. To establish whether negative allosteric modulators (NAMs) engender similar bias, we rigorously characterized the pharmacology of eight diverse mGlu5 NAMs. Radioligand inhibition binding studies revealed novel modes of interaction with mGlu5 for select NAMs, with biphasic or incomplete inhibition of the radiolabeled NAM, [3H]methoxy-PEPy. We assessed mGlu5-mediated intracellular Ca2+ (iCa2+) mobilization and inositol phosphate (IP1) accumulation in HEK293A cells stably expressing low levels of mGlu5 (HEK293A-rat mGlu5-low) and mouse embryonic cortical neurons. The apparent affinity of acetylenic NAMs, MPEP, MTEP and dipraglurant, was dependent on the signaling pathway measured, agonist used, and cell type (HEK293A-rat mGlu5-low versus mouse cortical neurons). In contrast, the acetylenic partial NAM, M-5MPEP, and structurally distinct NAMs (VU0366248, VU0366058, fenobam), had similar affinity estimates irrespective of the assay or cellular background. Biased modulation was evident for VU0366248 in mouse cortical neurons where it was a NAM for DHPG-mediated iCa2+ mobilization, but neutral with DHPG in IP1 accumulation assays. Overall, this study highlights the inherent complexity in mGlu5 NAM pharmacology that we hypothesize may influence interpretation when translating into preclinical models and beyond in the design and development of novel therapeutics for neuropsychiatric and neurological disorders.
Collapse
Affiliation(s)
- Kathy Sengmany
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Department of Pharmacology, Monash University, Parkville, VIC, Australia
| | - Shane D Hellyer
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Department of Pharmacology, Monash University, Parkville, VIC, Australia
| | - Sabine Albold
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Department of Pharmacology, Monash University, Parkville, VIC, Australia
| | - Taide Wang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Department of Pharmacology, Monash University, Parkville, VIC, Australia
| | - P Jeffrey Conn
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lauren T May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Department of Pharmacology, Monash University, Parkville, VIC, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Department of Pharmacology, Monash University, Parkville, VIC, Australia
| | - Katie Leach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Department of Pharmacology, Monash University, Parkville, VIC, Australia
| | - Karen J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Department of Pharmacology, Monash University, Parkville, VIC, Australia.
| |
Collapse
|
17
|
Xu Y, Li Z. Imaging metabotropic glutamate receptor system: Application of positron emission tomography technology in drug development. Med Res Rev 2019; 39:1892-1922. [DOI: 10.1002/med.21566] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Youwen Xu
- Independent Consultant and Contractor, Radiopharmaceutical Development, Validation and Bio-Application; Philadelphia Pennsylvania
| | - Zizhong Li
- Pharmaceutical Research and Development, SOFIE Biosciences; Somerset New Jersey
| |
Collapse
|
18
|
Belhocine A, Veglianese P, Hounsou C, Dupuis E, Acher F, Durroux T, Goudet C, Pin JP. Profiling of orthosteric and allosteric group-III metabotropic glutamate receptor ligands on various G protein-coupled receptors with Tag-lite ® assays. Neuropharmacology 2018; 140:233-245. [PMID: 30099051 DOI: 10.1016/j.neuropharm.2018.07.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 12/21/2022]
Abstract
Group-III metabotropic glutamate (mGlu) receptors are important synaptic regulators and are potential druggable targets for Parkinson disease, autism and pain. Potential drugs include orthosteric agonists in the glutamate binding extracellular domain and positive allosteric modulators interacting with seven-pass transmembrane domains. Orthosteric agonists are rarely completely specific for an individual group-III mGlu subtype. Furthermore they often fail to pass the blood-brain barrier and they constitutively activate their target receptor. These properties limit the potential therapeutic use of orthosteric agonists. Allosteric modulators are more specific and maintain the biological activity of the targeted receptor. However, they bind in a hydrophobic pocket and this limits their bio-availability and increases possible off-target action. It is therefore important to characterize the action of potential drug targets with a multifaceted and deeply informative assay. Here we aimed at multifaceted deep profiling of the effect of seven different agonists, and seven positive allosteric modulators on 34 different G protein-coupled receptors by a Tag-lite® assay. Our results did not reveal off-target activity of mGlu orthosteric agonists. However, five allosteric modulators had either positive or negative effects on non-cognate G protein-coupled receptors. In conclusion, we demonstrate the power of the Tag-lite® assay for potential drug ligand profiling on G protein-coupled receptors and its potential to identify positive allosteric compounds.
Collapse
Affiliation(s)
| | | | | | | | - Francine Acher
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR8601, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | | - Cyril Goudet
- IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | | |
Collapse
|
19
|
Tan L, Yan W, McCorvy JD, Cheng J. Biased Ligands of G Protein-Coupled Receptors (GPCRs): Structure-Functional Selectivity Relationships (SFSRs) and Therapeutic Potential. J Med Chem 2018; 61:9841-9878. [PMID: 29939744 DOI: 10.1021/acs.jmedchem.8b00435] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
G protein-coupled receptors (GPCRs) signal through both G-protein-dependent and G-protein-independent pathways, and β-arrestin recruitment is the most recognized one of the latter. Biased ligands selective for either pathway are expected to regulate biological functions of GPCRs in a more precise way, therefore providing new drug molecules with superior efficacy and/or reduced side effects. During the past decade, biased ligands have been discovered and developed for many GPCRs, such as the μ opioid receptor, the angiotensin II receptor type 1, the dopamine D2 receptor, and many others. In this Perspective, recent advances in this field are reviewed by discussing the structure-functional selectivity relationships (SFSRs) of GPCR biased ligands and the therapeutic potential of these molecules. Further understanding of the biological functions associated with each signaling pathway and structural basis for biased signaling will facilitate future drug design in this field.
Collapse
Affiliation(s)
- Liang Tan
- iHuman Institute , ShanghaiTech University , 393 Middle Huaxia Road , Pudong District, Shanghai 201210 , China
| | - Wenzhong Yan
- iHuman Institute , ShanghaiTech University , 393 Middle Huaxia Road , Pudong District, Shanghai 201210 , China
| | - John D McCorvy
- Department of Cell Biology, Neurobiology and Anatomy , Medical College of Wisconsin , 8701 W. Watertown Plank Road , Milwaukee , Wisconsin 53226 , United States
| | - Jianjun Cheng
- iHuman Institute , ShanghaiTech University , 393 Middle Huaxia Road , Pudong District, Shanghai 201210 , China
| |
Collapse
|
20
|
Hellyer SD, Albold S, Wang T, Chen ANY, May LT, Leach K, Gregory KJ. "Selective" Class C G Protein-Coupled Receptor Modulators Are Neutral or Biased mGlu 5 Allosteric Ligands. Mol Pharmacol 2018; 93:504-514. [PMID: 29514854 DOI: 10.1124/mol.117.111518] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/01/2018] [Indexed: 02/14/2025] Open
Abstract
Numerous positive and negative allosteric modulators (PAMs and NAMs) of class C G protein-coupled receptors (GPCRs) have been developed as valuable preclinical pharmacologic tools and therapeutic agents. Although many class C GPCR allosteric modulators have undergone subtype selectivity screening, most assay paradigms have failed to perform rigorous pharmacologic assessment. Using mGlu5 as a representative class C GPCR, we tested the hypothesis that allosteric modulator selectivity was based on cooperativity rather than affinity. Specifically, we aimed to identify ligands that bound to mGlu5 but exhibited neutral cooperativity with mGlu5 agonists. We additionally evaluated the potential for these ligands to exhibit biased pharmacology. Radioligand binding, intracellular calcium (iCa2+) mobilization, and inositol monophosphate (IP1) accumulation assays were undertaken in human embryonic kidney cells expressing low levels of rat mGlu5 (HEK293A-mGlu5-low) for diverse allosteric chemotypes. Numerous "non-mGlu5" class C GPCR allosteric modulators incompletely displaced allosteric mGlu5 radioligand [3H]methoxy-PEPy binding, consistent with a negative allosteric interaction. Affinity estimates for CPCCOEt (mGlu1 ligand), PHCCC (mGlu4 ligand), GS39783 (GABAB ligand), AZ12216052 (mGlu8 ligand), and CGP7930 (GABAB ligand) at mGlu5 were within 10-fold of their target receptor. Most class C GPCR allosteric modulators had neutral cooperativity with both orthosteric and allosteric mGlu5 agonists in functional assays; however, NPS2143 (calcium-sensing receptor (CaSR) NAM), cinacalcet (CaSR PAM), CGP7930, and AZ12216052 were partial mGlu5 agonists for IP1 accumulation, but not iCa2+ mobilization. By using mGlu5 as a model class C GPCR, we find that for many class C GPCR allosteric modulators, subtype selectivity is driven by cooperativity and misinterpreted owing to unappreciated bias.
Collapse
Affiliation(s)
- Shane D Hellyer
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Sabine Albold
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Taide Wang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Amy N Y Chen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Lauren T May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Katie Leach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Karen J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
21
|
Varnäs K, Juréus A, Finnema SJ, Johnström P, Raboisson P, Amini N, Takano A, Stepanov V, Halldin C, Farde L. The metabotropic glutamate receptor 5 radioligand [ 11C]AZD9272 identifies unique binding sites in primate brain. Neuropharmacology 2018; 135:455-463. [PMID: 29608920 DOI: 10.1016/j.neuropharm.2018.03.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/25/2018] [Accepted: 03/29/2018] [Indexed: 12/11/2022]
Abstract
The metabotropic glutamate receptor 5 (mGluR5) is a target for drug development and for imaging studies of the glutamate system in neurological and psychiatric disorders. [11C]AZD9272 is a selective mGluR5 PET radioligand that is structurally different from hitherto applied mGluR5 radioligands. In the present investigation we compared the binding patterns of radiolabeled AZD9272 and other mGluR5 radioligands in the non-human primate (NHP) brain. PET studies were undertaken using [11C]AZD9272 and the commonly applied mGluR5 radioligand [11C]ABP688. Autoradiography studies were performed in vitro using [3H]AZD9272 and the standard mGluR5 radioligands [3H]M-MTEP and [3H]ABP688 in NHP tissue. Competition binding studies were undertaken in vivo and in vitro using different mGluR5 selective compounds as inhibitors. In comparison to other mGluR5 radioligands radiolabeled AZD9272 displayed a distinct regional distribution pattern with high binding in ventral striatum, midbrain, thalamus and cerebellum. While the binding of [11C]AZD9272 was almost completely inhibited by the structurally unique mGluR5 compound fenobam (2.0 mg/kg; 98% occupancy), it was only partially inhibited (46% and 20%, respectively) by the mGluR5 selective compounds ABP688 and MTEP, at a dose (2.0 mg/kg) expected to saturate the mGluR5. Autoradiography studies using [3H]AZD9272 confirmed a distinct pharmacologic profile characterized by preferential sensitivity to fenobam. The distinctive binding in ventral striato-pallido-thalamic circuits and shared pharmacologic profile with the pro-psychotic compound fenobam warrants further examination of [11C]AZD9272 for potential application in psychiatric neuroimaging studies.
Collapse
Affiliation(s)
- Katarina Varnäs
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden.
| | | | - Sjoerd J Finnema
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Peter Johnström
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden; PET Science Centre, Precision Medicine and Genomics, IMED Biotech Unit, AstraZeneca, Karolinska Institutet, Sweden
| | | | - Nahid Amini
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Akihiro Takano
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Vladimir Stepanov
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Lars Farde
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden; PET Science Centre, Precision Medicine and Genomics, IMED Biotech Unit, AstraZeneca, Karolinska Institutet, Sweden
| |
Collapse
|
22
|
Co-Activation of Metabotropic Glutamate Receptor 3 and Beta-Adrenergic Receptors Modulates Cyclic-AMP and Long-Term Potentiation, and Disrupts Memory Reconsolidation. Neuropsychopharmacology 2017; 42:2553-2566. [PMID: 28664928 PMCID: PMC5686489 DOI: 10.1038/npp.2017.136] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 05/20/2017] [Accepted: 06/14/2017] [Indexed: 12/13/2022]
Abstract
Activation of β-adrenergic receptors (βARs) enhances both the induction of long-term potentiation (LTP) in hippocampal CA1 pyramidal cells and hippocampal-dependent cognitive function. Interestingly, previous studies reveal that coincident activation of group II metabotropic glutamate (mGlu) receptors with βARs in the hippocampal astrocytes induces a large increase in cyclic-AMP (cAMP) accumulation and release of adenosine. Adenosine then acts on A1 adenosine receptors at neighboring excitatory Schaffer collateral terminals, which could counteract effects of activation of neuronal βARs on excitatory transmission. On the basis of this, we postulated that activation of the specific mGlu receptor subtype that mediates this response could inhibit βAR-mediated effects on hippocampal synaptic plasticity and cognitive function. Using novel mGlu receptor subtype-selective allosteric modulators along with knockout mice we now report that the effects of mGlu2/3 agonists on βAR-mediated increases in cAMP accumulation are exclusively mediated by mGlu3. Furthermore, mGlu3 activation inhibits the ability of the βAR agonist isoproterenol to enhance hippocampal LTP, and this effect is absent in slices treated with either a glial toxin or an adenosine A1 receptor antagonist. Finally, systemic administration of the mGlu2/3 agonist LY379268 disrupted contextual fear memory in a manner similar to the effect of the βAR antagonist propranolol, and this effect was reversed by the mGlu3-negative allosteric modulator VU0650786. Taken together, these data suggest that mGlu3 can influence astrocytic signaling and modulate βAR-mediated effects on hippocampal synaptic plasticity and cognitive function.
Collapse
|
23
|
Lacivita E, Perrone R, Margari L, Leopoldo M. Targets for Drug Therapy for Autism Spectrum Disorder: Challenges and Future Directions. J Med Chem 2017; 60:9114-9141. [PMID: 29039668 DOI: 10.1021/acs.jmedchem.7b00965] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by persistent deficits in social communication and interaction and restricted, repetitive patterns of behavior, interests, and activities. Various factors are involved in the etiopathogenesis of ASD, including genetic factors, environmental toxins and stressors, impaired immune responses, mitochondrial dysfunction, and neuroinflammation. The heterogeneity in the phenotype among ASD patients and the complex etiology of the condition have long impeded the advancement of the development of pharmacological therapies. In the recent years, the integration of findings from mouse models to human genetics resulted in considerable progress toward the understanding of ASD pathophysiology. Currently, strategies to treat core symptoms of ASD are directed to correct synaptic dysfunctions, abnormalities in central oxytocin, vasopressin, and serotonin neurotransmission, and neuroinflammation. Here, we present a survey of the studies that have suggested molecular targets for drug development for ASD and the state-of-the-art of medicinal chemistry efforts in related areas.
Collapse
Affiliation(s)
- Enza Lacivita
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro , via Orabona 4, 70125, Bari, Italy
| | - Roberto Perrone
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro , via Orabona 4, 70125, Bari, Italy
| | - Lucia Margari
- Dipartimento di Scienze Mediche di Base, Neuroscienze e Organi di Senso, Unità di Neuropsichiatria Infantile, Università degli Studi di Bari Aldo Moro , Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Marcello Leopoldo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro , via Orabona 4, 70125, Bari, Italy
| |
Collapse
|
24
|
Ghoshal A, Moran SP, Dickerson JW, Joffe ME, Grueter BA, Xiang Z, Lindsley CW, Rook JM, Conn PJ. Role of mGlu 5 Receptors and Inhibitory Neurotransmission in M 1 Dependent Muscarinic LTD in the Prefrontal Cortex: Implications in Schizophrenia. ACS Chem Neurosci 2017; 8:2254-2265. [PMID: 28679049 DOI: 10.1021/acschemneuro.7b00167] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Selective potentiation of the mGlu5 subtype of metabotropic glutamate (mGlu) receptor using positive allosteric modulators (PAMs) has robust cognition-enhancing effects in rodent models that are relevant for schizophrenia. Until recently, these effects were thought to be due to potentiation of mGlu5-induced modulation of NMDA receptor (NMDAR) currents and NMDAR-dependent synaptic plasticity. However, "biased" mGlu5 PAMs that do not potentiate mGlu5 effects on NMDAR currents show efficacy that is similar to that of prototypical mGlu5 PAMs, suggesting that NMDAR-independent mechanisms must be involved in these actions. We now report that synaptic activation of mGlu5 is required for a form of long-term depression (mLTD) in mouse prefrontal cortex (PFC) that is induced by activation of M1 muscarinic acetylcholine (mAChR) receptors, which was previously thought to be independent of mGlu5 activation. Interestingly, a biased mGlu5 PAM, VU0409551, that does not potentiate mGlu5 modulation of NMDAR currents, potentiated induction of mLTD. Furthermore, coactivation of mGlu5 and M1 receptors increased GABAA-dependent inhibitory tone in the PFC pyramidal neurons, which likely contributes to the observed mLTD. Finally, systemic administration of the biased mGlu5 PAM reversed deficits in mLTD and associated cognitive deficits in a model of cortical disruption caused by repeated phencyclidine exposure that is relevant for schizophrenia and was previously shown to be responsive to selective M1 muscarinic receptor PAMs. These studies provide exciting new insights into a novel mechanism by which mGlu5 PAMs can reverse deficits in PFC function and cognition that is independent of modulation of NMDAR currents.
Collapse
Affiliation(s)
- Ayan Ghoshal
- Department of Pharmacology,
Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37240, United States
| | - Sean P. Moran
- Department of Pharmacology,
Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37240, United States
| | - Jonathan W. Dickerson
- Department of Pharmacology,
Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37240, United States
| | - Max E. Joffe
- Department of Pharmacology,
Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37240, United States
| | - Brad A. Grueter
- Department of Pharmacology,
Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37240, United States
| | - Zixiu Xiang
- Department of Pharmacology,
Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37240, United States
| | - Craig W. Lindsley
- Department of Pharmacology,
Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37240, United States
| | - Jerri M. Rook
- Department of Pharmacology,
Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37240, United States
| | - P. Jeffrey Conn
- Department of Pharmacology,
Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37240, United States
| |
Collapse
|
25
|
Foster DJ, Conn PJ. Allosteric Modulation of GPCRs: New Insights and Potential Utility for Treatment of Schizophrenia and Other CNS Disorders. Neuron 2017; 94:431-446. [PMID: 28472649 PMCID: PMC5482176 DOI: 10.1016/j.neuron.2017.03.016] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/02/2017] [Accepted: 03/09/2017] [Indexed: 01/11/2023]
Abstract
G-protein-coupled receptors (GPCRs) play critical roles in regulating brain function. Recent advances have greatly expanded our understanding of these receptors as complex signaling machines that can adopt numerous conformations and modulate multiple downstream signaling pathways. While agonists and antagonists have traditionally been pursued to target GPCRs, allosteric modulators provide several mechanistic advantages, including the ability to distinguish between closely related receptor subtypes. Recently, the discovery of allosteric ligands that confer bias and modulate some, but not all, of a given receptor's downstream signaling pathways can provide pharmacological modulation of brain circuitry with remarkable precision. In addition, allosteric modulators with unprecedented specificity have been developed that can differentiate between subpopulations of a given receptor subtype based on the receptor's dimerization state. These advances are not only providing insight into the biological roles of specific receptor populations, but hold great promise for treating numerous CNS disorders.
Collapse
Affiliation(s)
- Daniel J Foster
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
26
|
Rook JM, Abe M, Cho HP, Nance KD, Luscombe VB, Adams JJ, Dickerson JW, Remke DH, Garcia-Barrantes PM, Engers DW, Engers JL, Chang S, Foster JJ, Blobaum AL, Niswender CM, Jones CK, Conn PJ, Lindsley CW. Diverse Effects on M 1 Signaling and Adverse Effect Liability within a Series of M 1 Ago-PAMs. ACS Chem Neurosci 2017; 8:866-883. [PMID: 28001356 DOI: 10.1021/acschemneuro.6b00429] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Both historical clinical and recent preclinical data suggest that the M1 muscarinic acetylcholine receptor is an exciting target for the treatment of Alzheimer's disease and the cognitive and negative symptom clusters in schizophrenia; however, early drug discovery efforts targeting the orthosteric binding site have failed to afford selective M1 activation. Efforts then shifted to focus on selective activation of M1 via either allosteric agonists or positive allosteric modulators (PAMs). While M1 PAMs have robust efficacy in rodent models, some chemotypes can induce cholinergic adverse effects (AEs) that could limit their clinical utility. Here, we report studies aimed at understanding the subtle structural and pharmacological nuances that differentiate efficacy from adverse effect liability within an indole-based series of M1 ago-PAMs. Our data demonstrate that closely related M1 PAMs can display striking differences in their in vivo activities, especially their propensities to induce adverse effects. We report the discovery of a novel PAM in this series that is devoid of observable adverse effect liability. Interestingly, the molecular pharmacology profile of this novel PAM is similar to that of a representative M1 PAM that induces severe AEs. For instance, both compounds are potent ago-PAMs that demonstrate significant interaction with the orthosteric site (either bitopic or negative cooperativity). However, there are subtle differences in efficacies of the compounds at potentiating M1 responses, agonist potencies, and abilities to induce receptor internalization. While these differences may contribute to the differential in vivo profiles of these compounds, the in vitro differences are relatively subtle and highlight the complexities of allosteric modulators and the need to focus on in vivo phenotypic screening to identify safe and effective M1 PAMs.
Collapse
Affiliation(s)
- Jerri M. Rook
- Department
of Pharmacology, ‡Department of Chemistry, §Vanderbilt Center for Neuroscience
Drug Discovery, ∥Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6600, United States
| | - Masahito Abe
- Department
of Pharmacology, ‡Department of Chemistry, §Vanderbilt Center for Neuroscience
Drug Discovery, ∥Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6600, United States
| | - Hyekyung P. Cho
- Department
of Pharmacology, ‡Department of Chemistry, §Vanderbilt Center for Neuroscience
Drug Discovery, ∥Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6600, United States
| | - Kellie D. Nance
- Department
of Pharmacology, ‡Department of Chemistry, §Vanderbilt Center for Neuroscience
Drug Discovery, ∥Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6600, United States
| | - Vincent B. Luscombe
- Department
of Pharmacology, ‡Department of Chemistry, §Vanderbilt Center for Neuroscience
Drug Discovery, ∥Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6600, United States
| | - Jeffrey J. Adams
- Department
of Pharmacology, ‡Department of Chemistry, §Vanderbilt Center for Neuroscience
Drug Discovery, ∥Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6600, United States
| | - Jonathan W. Dickerson
- Department
of Pharmacology, ‡Department of Chemistry, §Vanderbilt Center for Neuroscience
Drug Discovery, ∥Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6600, United States
| | - Daniel H. Remke
- Department
of Pharmacology, ‡Department of Chemistry, §Vanderbilt Center for Neuroscience
Drug Discovery, ∥Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6600, United States
| | - Pedro M. Garcia-Barrantes
- Department
of Pharmacology, ‡Department of Chemistry, §Vanderbilt Center for Neuroscience
Drug Discovery, ∥Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6600, United States
| | - Darren W. Engers
- Department
of Pharmacology, ‡Department of Chemistry, §Vanderbilt Center for Neuroscience
Drug Discovery, ∥Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6600, United States
| | - Julie L. Engers
- Department
of Pharmacology, ‡Department of Chemistry, §Vanderbilt Center for Neuroscience
Drug Discovery, ∥Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6600, United States
| | - Sichen Chang
- Department
of Pharmacology, ‡Department of Chemistry, §Vanderbilt Center for Neuroscience
Drug Discovery, ∥Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6600, United States
| | - Jarrett J. Foster
- Department
of Pharmacology, ‡Department of Chemistry, §Vanderbilt Center for Neuroscience
Drug Discovery, ∥Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6600, United States
| | - Anna L. Blobaum
- Department
of Pharmacology, ‡Department of Chemistry, §Vanderbilt Center for Neuroscience
Drug Discovery, ∥Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6600, United States
| | - Colleen M. Niswender
- Department
of Pharmacology, ‡Department of Chemistry, §Vanderbilt Center for Neuroscience
Drug Discovery, ∥Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6600, United States
| | - Carrie K. Jones
- Department
of Pharmacology, ‡Department of Chemistry, §Vanderbilt Center for Neuroscience
Drug Discovery, ∥Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6600, United States
| | - P. Jeffrey Conn
- Department
of Pharmacology, ‡Department of Chemistry, §Vanderbilt Center for Neuroscience
Drug Discovery, ∥Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6600, United States
| | - Craig W. Lindsley
- Department
of Pharmacology, ‡Department of Chemistry, §Vanderbilt Center for Neuroscience
Drug Discovery, ∥Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6600, United States
| |
Collapse
|
27
|
Hellyer S, Leach K, Gregory KJ. Neurobiological insights and novel therapeutic opportunities for CNS disorders from mGlu receptor allosteric and biased modulation. Curr Opin Pharmacol 2017; 32:49-55. [DOI: 10.1016/j.coph.2016.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 11/30/2022]
|
28
|
Riddy DM, Cook AE, Diepenhorst NA, Bosnyak S, Brady R, Mannoury la Cour C, Mocaer E, Summers RJ, Charman WN, Sexton PM, Christopoulos A, Langmead CJ. Isoform-Specific Biased Agonism of Histamine H3 Receptor Agonists. Mol Pharmacol 2017; 91:87-99. [PMID: 27864425 DOI: 10.1124/mol.116.106153] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 11/17/2016] [Indexed: 12/11/2022] Open
Abstract
The human histamine H3 receptor (hH3R) is subject to extensive gene splicing that gives rise to a large number of functional and nonfunctional isoforms. Despite the general acceptance that G protein-coupled receptors can adopt different ligand-induced conformations that give rise to biased signaling, this has not been studied for the H3R; further, it is unknown whether splice variants of the same receptor engender the same or differential biased signaling. Herein, we profiled the pharmacology of histamine receptor agonists at the two most abundant hH3R splice variants (hH3R445 and hH3R365) across seven signaling endpoints. Both isoforms engender biased signaling, notably for 4-[3-(benzyloxy)propyl]-1H-imidazole (proxyfan) [e.g., strong bias toward phosphorylation of glycogen synthase kinase 3β (GSK3β) via the full-length receptor] and its congener 3-(1H-imidazol-4-yl)propyl-(4-iodophenyl)-methyl ether (iodoproxyfan), which are strongly consistent with the former's designation as a "protean" agonist. The 80 amino acid IL3 deleted isoform hH3R365 is more permissive in its signaling than hH3R445: 2-(1H-imidazol-5-yl)ethyl imidothiocarbamate (imetit), proxyfan, and iodoproxyfan were all markedly biased away from calcium signaling, and principal component analysis of the full data set revealed divergent profiles for all five agonists. However, most interesting was the identification of differential biased signaling between the two isoforms. Strikingly, hH3R365 was completely unable to stimulate GSK3β phosphorylation, an endpoint robustly activated by the full-length receptor. To the best of our knowledge, this is the first quantitative example of differential biased signaling via isoforms of the same G protein-coupled receptor that are simultaneously expressed in vivo and gives rise to the possibility of selective pharmacological targeting of individual receptor splice variants.
Collapse
Affiliation(s)
- Darren M Riddy
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (D.M.R., A.E.C., N.A.D., S.B., R.B., R.J.S., W.N.C., P.M.S., A.C., C.J.L.); and Institut de Recherches Internationales Servier, Suresnes, France (C.M.C., E.M.)
| | - Anna E Cook
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (D.M.R., A.E.C., N.A.D., S.B., R.B., R.J.S., W.N.C., P.M.S., A.C., C.J.L.); and Institut de Recherches Internationales Servier, Suresnes, France (C.M.C., E.M.)
| | - Natalie A Diepenhorst
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (D.M.R., A.E.C., N.A.D., S.B., R.B., R.J.S., W.N.C., P.M.S., A.C., C.J.L.); and Institut de Recherches Internationales Servier, Suresnes, France (C.M.C., E.M.)
| | - Sanja Bosnyak
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (D.M.R., A.E.C., N.A.D., S.B., R.B., R.J.S., W.N.C., P.M.S., A.C., C.J.L.); and Institut de Recherches Internationales Servier, Suresnes, France (C.M.C., E.M.)
| | - Ryan Brady
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (D.M.R., A.E.C., N.A.D., S.B., R.B., R.J.S., W.N.C., P.M.S., A.C., C.J.L.); and Institut de Recherches Internationales Servier, Suresnes, France (C.M.C., E.M.)
| | - Clotilde Mannoury la Cour
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (D.M.R., A.E.C., N.A.D., S.B., R.B., R.J.S., W.N.C., P.M.S., A.C., C.J.L.); and Institut de Recherches Internationales Servier, Suresnes, France (C.M.C., E.M.)
| | - Elisabeth Mocaer
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (D.M.R., A.E.C., N.A.D., S.B., R.B., R.J.S., W.N.C., P.M.S., A.C., C.J.L.); and Institut de Recherches Internationales Servier, Suresnes, France (C.M.C., E.M.)
| | - Roger J Summers
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (D.M.R., A.E.C., N.A.D., S.B., R.B., R.J.S., W.N.C., P.M.S., A.C., C.J.L.); and Institut de Recherches Internationales Servier, Suresnes, France (C.M.C., E.M.)
| | - William N Charman
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (D.M.R., A.E.C., N.A.D., S.B., R.B., R.J.S., W.N.C., P.M.S., A.C., C.J.L.); and Institut de Recherches Internationales Servier, Suresnes, France (C.M.C., E.M.)
| | - Patrick M Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (D.M.R., A.E.C., N.A.D., S.B., R.B., R.J.S., W.N.C., P.M.S., A.C., C.J.L.); and Institut de Recherches Internationales Servier, Suresnes, France (C.M.C., E.M.)
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (D.M.R., A.E.C., N.A.D., S.B., R.B., R.J.S., W.N.C., P.M.S., A.C., C.J.L.); and Institut de Recherches Internationales Servier, Suresnes, France (C.M.C., E.M.)
| | - Christopher J Langmead
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (D.M.R., A.E.C., N.A.D., S.B., R.B., R.J.S., W.N.C., P.M.S., A.C., C.J.L.); and Institut de Recherches Internationales Servier, Suresnes, France (C.M.C., E.M.)
| |
Collapse
|
29
|
Leach K, Gregory KJ. Molecular insights into allosteric modulation of Class C G protein-coupled receptors. Pharmacol Res 2017; 116:105-118. [DOI: 10.1016/j.phrs.2016.12.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 11/18/2016] [Accepted: 12/07/2016] [Indexed: 12/23/2022]
|
30
|
Senter RK, Ghoshal A, Walker AG, Xiang Z, Niswender CM, Conn PJ. The Role of mGlu Receptors in Hippocampal Plasticity Deficits in Neurological and Psychiatric Disorders: Implications for Allosteric Modulators as Novel Therapeutic Strategies. Curr Neuropharmacol 2017; 14:455-73. [PMID: 27296640 PMCID: PMC4983746 DOI: 10.2174/1570159x13666150421003225] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/18/2015] [Accepted: 04/09/2015] [Indexed: 11/22/2022] Open
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) are two distinct forms of synaptic plasticity that have been extensively characterized at the Schaffer collateral-CA1 (SCCA1) synapse and the mossy fiber (MF)-CA3 synapse within the hippocampus, and are postulated to be the molecular underpinning for several cognitive functions. Deficits in LTP and LTD have been implicated in the pathophysiology of several neurological and psychiatric disorders. Therefore, there has been a large effort focused on developing an understanding of the mechanisms underlying these forms of plasticity and novel therapeutic strategies that improve or rescue these plasticity deficits. Among many other targets, the metabotropic glutamate (mGlu) receptors show promise as novel therapeutic candidates for the treatment of these disorders. Among the eight distinct mGlu receptor subtypes (mGlu1-8), the mGlu1,2,3,5,7 subtypes are expressed throughout the hippocampus and have been shown to play important roles in the regulation of synaptic plasticity in this brain area. However, development of therapeutic agents that target these mGlu receptors has been hampered by a lack of subtype-selective compounds. Recently, discovery of allosteric modulators of mGlu receptors has provided novel ligands that are highly selective for individual mGlu receptor subtypes. The mGlu receptors modulate the multiple forms of synaptic plasticity at both SC-CA1 and MF synapses and allosteric modulators of mGlu receptors have emerged as potential therapeutic agents that may rescue plasticity deficits and improve cognitive function in patients suffering from multiple neurological and psychiatric disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - P Jeffrey Conn
- Department of Pharmacology, Faculty of Vanderbilt University Medical Center, 1205 Light Hall, Nashville, TN 37232, USA.
| |
Collapse
|
31
|
Hill MD, Fang H, Brown JM, Molski T, Easton A, Han X, Miller R, Hill-Drzewi M, Gallagher L, Matchett M, Gulianello M, Balakrishnan A, Bertekap RL, Santone KS, Whiterock VJ, Zhuo X, Bronson JJ, Macor JE, Degnan AP. Development of 1 H-Pyrazolo[3,4- b]pyridines as Metabotropic Glutamate Receptor 5 Positive Allosteric Modulators. ACS Med Chem Lett 2016; 7:1082-1086. [PMID: 27994742 DOI: 10.1021/acsmedchemlett.6b00292] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/03/2016] [Indexed: 01/04/2023] Open
Abstract
The metabotropic glutamate receptor 5 (mGluR5) is an attractive target for the treatment of schizophrenia due to its role in regulating glutamatergic signaling in association with the N-methyl-d-aspartate receptor (NMDAR). We describe the synthesis of 1H-pyrazolo[3,4-b]pyridines and their utility as mGluR5 positive allosteric modulators (PAMs) without inherent agonist activity. A facile and convergent synthetic route provided access to a structurally diverse set of analogues that contain neither the aryl-acetylene-aryl nor aryl-methyleneoxy-aryl elements, the predominant structural motifs described in the literature. Binding studies suggest that members of our new chemotype do not engage the receptor at the MPEP and CPPHA mGluR5 allosteric sites. SAR studies culminated in the first non-MPEP site PAM, 1H-pyrazolo[3,4-b]pyridine 31 (BMT-145027), to improve cognition in a preclinical rodent model of learning and memory.
Collapse
Affiliation(s)
- Matthew D. Hill
- Research and Development, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Haiquan Fang
- Research and Development, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Jeffrey M. Brown
- Research and Development, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Thaddeus Molski
- Research and Development, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Amy Easton
- Research and Development, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Xiaojun Han
- Research and Development, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Regina Miller
- Research and Development, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Melissa Hill-Drzewi
- Research and Development, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Lizbeth Gallagher
- Research and Development, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Michele Matchett
- Research and Development, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Michael Gulianello
- Research and Development, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Anand Balakrishnan
- Research and Development, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Robert L. Bertekap
- Research and Development, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Kenneth S. Santone
- Research and Development, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Valerie J. Whiterock
- Research and Development, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Xiaoliang Zhuo
- Research and Development, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Joanne J. Bronson
- Research and Development, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - John E. Macor
- Research and Development, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Andrew P. Degnan
- Research and Development, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| |
Collapse
|
32
|
Panarese JD, Cho HP, Adams JJ, Nance KD, Garcia-Barrantes PM, Chang S, Morrison RD, Blobaum AL, Niswender CM, Stauffer SR, Conn PJ, Lindsley CW. Further optimization of the M1 PAM VU0453595: Discovery of novel heterobicyclic core motifs with improved CNS penetration. Bioorg Med Chem Lett 2016; 26:3822-5. [PMID: 27173801 PMCID: PMC5082649 DOI: 10.1016/j.bmcl.2016.04.083] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 01/28/2023]
Abstract
This Letter describes the continued chemical optimization of the VU0453595 series of M1 positive allosteric modulators (PAMs). By surveying alternative 5,6- and 6,6-heterobicylic cores for the 6,7-dihydro-5H-pyrrolo[3,4-b]pyridine-5-one core of VU453595, we found new cores that engendered not only comparable or improved M1 PAM potency, but significantly improved CNS distribution (Kps 0.3-3.1). Moreover, this campaign provided fundamentally distinct M1 PAM chemotypes, greatly expanding the available structural diversity for this valuable CNS target, devoid of hydrogen-bond donors.
Collapse
Affiliation(s)
- Joseph D Panarese
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Hykeyung P Cho
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffrey J Adams
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kellie D Nance
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Pedro M Garcia-Barrantes
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sichen Chang
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ryan D Morrison
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Anna L Blobaum
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Colleen M Niswender
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Shaun R Stauffer
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - P Jeffrey Conn
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Craig W Lindsley
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
33
|
Biased allosteric agonism and modulation of metabotropic glutamate receptor 5: Implications for optimizing preclinical neuroscience drug discovery. Neuropharmacology 2016; 115:60-72. [PMID: 27392634 DOI: 10.1016/j.neuropharm.2016.07.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 12/20/2022]
Abstract
Allosteric modulators, that exhibit no intrinsic agonist activity, offer the advantage of spatial and temporal fine-tuning of endogenous agonist activity, allowing the potential for increased selectivity, reduced adverse effects and improved clinical outcomes. Some allosteric ligands can differentially activate and/or modulate distinct signaling pathways arising from the same receptor, phenomena referred to as 'biased agonism' and 'biased modulation'. Emerging evidence for CNS disorders with glutamatergic dysfunction suggests the metabotropic glutamate receptor subtype 5 (mGlu5) is a promising target. Current mGlu5 allosteric modulators have largely been classified based on modulation of intracellular calcium (iCa2+) responses to orthosteric agonists alone. We assessed eight mGlu5 allosteric modulators previously classified as mGlu5 PAMs or PAM-agonists representing four distinct chemotypes across multiple measures of receptor activity, to explore their potential for engendering biased agonism and/or modulation. Relative to the reference orthosteric agonist, DHPG, the eight allosteric ligands exhibited distinct biased agonism fingerprints for iCa2+ mobilization, IP1 accumulation and ERK1/2 phosphorylation in HEK293A cells stably expressing mGlu5 and in cortical neuron cultures. VU0424465, DPFE and VU0409551 displayed the most disparate biased signaling fingerprints in both HEK293A cells and cortical neurons that may account for the marked differences observed previously for these ligands in vivo. Select mGlu5 allosteric ligands also showed 'probe dependence' with respect to their cooperativity with different orthosteric agonists, as well as biased modulation for the magnitude of positive cooperativity observed. Unappreciated biased agonism and modulation may contribute to unanticipated effects (both therapeutic and adverse) when translating from recombinant systems to preclinical models. This article is part of the Special Issue entitled 'Metabotropic Glutamate Receptors, 5 years on'.
Collapse
|
34
|
Lindsley CW, Emmitte KA, Hopkins CR, Bridges TM, Gregory KJ, Niswender CM, Conn PJ. Practical Strategies and Concepts in GPCR Allosteric Modulator Discovery: Recent Advances with Metabotropic Glutamate Receptors. Chem Rev 2016; 116:6707-41. [PMID: 26882314 PMCID: PMC4988345 DOI: 10.1021/acs.chemrev.5b00656] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Allosteric modulation of GPCRs has initiated a new era of basic and translational discovery, filled with therapeutic promise yet fraught with caveats. Allosteric ligands stabilize unique conformations of the GPCR that afford fundamentally new receptors, capable of novel pharmacology, unprecedented subtype selectivity, and unique signal bias. This review provides a comprehensive overview of the basics of GPCR allosteric pharmacology, medicinal chemistry, drug metabolism, and validated approaches to address each of the major challenges and caveats. Then, the review narrows focus to highlight recent advances in the discovery of allosteric ligands for metabotropic glutamate receptor subtypes 1-5 and 7 (mGlu1-5,7) highlighting key concepts ("molecular switches", signal bias, heterodimers) and practical solutions to enable the development of tool compounds and clinical candidates. The review closes with a section on late-breaking new advances with allosteric ligands for other GPCRs and emerging data for endogenous allosteric modulators.
Collapse
Affiliation(s)
- Craig W. Lindsley
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Kyle A. Emmitte
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, Texas 76107, United States
| | - Corey R. Hopkins
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Thomas M. Bridges
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Karen J. Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville VIC 3052, Australia
| | - Colleen M. Niswender
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - P. Jeffrey Conn
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
35
|
O'Brien DE, Conn PJ. Neurobiological Insights from mGlu Receptor Allosteric Modulation. Int J Neuropsychopharmacol 2016; 19:pyv133. [PMID: 26647381 PMCID: PMC4886670 DOI: 10.1093/ijnp/pyv133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/15/2015] [Accepted: 12/02/2015] [Indexed: 12/25/2022] Open
Abstract
Allosteric modulation of metabotropic glutamate (mGlu) receptors offers a promising pharmacological approach to normalize neural circuit dysfunction associated with various psychiatric and neurological disorders. As mGlu receptor allosteric modulators progress through discovery and clinical development, both technical advances and novel tool compounds are providing opportunities to better understand mGlu receptor pharmacology and neurobiology. Recent advances in structural biology are elucidating the structural determinants of mGlu receptor-negative allosteric modulation and supplying the means to resolve active, allosteric modulator-bound mGlu receptors. The discovery and characterization of allosteric modulators with novel pharmacological profiles is uncovering the biological significance of their intrinsic agonist activity, biased mGlu receptor modulation, and novel mGlu receptor heterodimers. The development and exploitation of optogenetic and optopharmacological tools is permitting a refined spatial and temporal understanding of both mGlu receptor functions and their allosteric modulation in intact brain circuits. Together, these lines of research promise to provide a more refined understanding of mGlu receptors and their allosteric modulation that will inform the development of mGlu receptor allosteric modulators as neurotherapeutics in the years to come.
Collapse
Affiliation(s)
- Daniel E O'Brien
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee (Drs O'Brien and Conn)
| | - P Jeffrey Conn
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee (Drs O'Brien and Conn).
| |
Collapse
|
36
|
Bruno V, Caraci F, Copani A, Matrisciano F, Nicoletti F, Battaglia G. The impact of metabotropic glutamate receptors into active neurodegenerative processes: A "dark side" in the development of new symptomatic treatments for neurologic and psychiatric disorders. Neuropharmacology 2016; 115:180-192. [PMID: 27140693 DOI: 10.1016/j.neuropharm.2016.04.044] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/22/2016] [Accepted: 04/28/2016] [Indexed: 12/17/2022]
Abstract
Metabotropic glutamate (mGlu) receptor ligands are under clinical development for the treatment of CNS disorders with high social and economic burden, such as schizophrenia, major depressive disorder (MDD), and Parkinson's disease (PD), and are promising drug candidates for the treatment of Alzheimer's disease (AD). So far, clinical studies have shown symptomatic effects of mGlu receptor ligands, but it is unknown whether these drugs act as disease modifiers or, at the opposite end, they accelerate disease progression by enhancing neurodegeneration. This is a fundamental issue in the treatment of PD and AD, and is also an emerging theme in the treatment of schizophrenia and MDD, in which neurodegeneration is also present and contribute to disease progression. Moving from in vitro data and preclinical studies, we discuss the potential impact of drugs targeting mGlu2, mGlu3, mGlu4 and mGlu5 receptor ligands on active neurodegeneration associated with AD, PD, schizophrenia, and MDD. We wish to highlight that our final comments on the best drug candidates are not influenced by commercial interests or by previous or ongoing collaborations with drug companies. This article is part of the Special Issue entitled 'Metabotropic Glutamate Receptors, 5 years on'.
Collapse
Affiliation(s)
- Valeria Bruno
- Department of Physiology and Pharmacology, University Sapienza, 00185 Rome, Italy; I.R.C.C.S. Neuromed, 86077 Pozzilli, Italy.
| | - Filippo Caraci
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; I.R.C.C.S. Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, 94018 Troina, Italy
| | - Agata Copani
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; National Research Council, Institute of Biostructure and Bioimaging (IBB-CNR), 95126 Catania, Italy
| | - Francesco Matrisciano
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, USA
| | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology, University Sapienza, 00185 Rome, Italy; I.R.C.C.S. Neuromed, 86077 Pozzilli, Italy
| | | |
Collapse
|
37
|
Gould RW, Amato RJ, Bubser M, Joffe ME, Nedelcovych MT, Thompson AD, Nickols HH, Yuh JP, Zhan X, Felts AS, Rodriguez AL, Morrison RD, Byers FW, Rook JM, Daniels JS, Niswender CM, Conn PJ, Emmitte KA, Lindsley CW, Jones CK. Partial mGlu₅ Negative Allosteric Modulators Attenuate Cocaine-Mediated Behaviors and Lack Psychotomimetic-Like Effects. Neuropsychopharmacology 2016; 41:1166-78. [PMID: 26315507 PMCID: PMC4748441 DOI: 10.1038/npp.2015.265] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/17/2015] [Accepted: 08/21/2015] [Indexed: 11/09/2022]
Abstract
Cocaine abuse remains a public health concern for which pharmacotherapies are largely ineffective. Comorbidities between cocaine abuse, depression, and anxiety support the development of novel treatments targeting multiple symptom clusters. Selective negative allosteric modulators (NAMs) targeting the metabotropic glutamate receptor 5 (mGlu5) subtype are currently in clinical trials for the treatment of multiple neuropsychiatric disorders and have shown promise in preclinical models of substance abuse. However, complete blockade or inverse agonist activity by some full mGlu5 NAM chemotypes demonstrated adverse effects, including psychosis in humans and psychotomimetic-like effects in animals, suggesting a narrow therapeutic window. Development of partial mGlu5 NAMs, characterized by their submaximal but saturable levels of blockade, may represent a novel approach to broaden the therapeutic window. To understand potential therapeutic vs adverse effects in preclinical behavioral assays, we examined the partial mGlu5 NAMs, M-5MPEP and Br-5MPEPy, in comparison with the full mGlu5 NAM MTEP across models of addiction and psychotomimetic-like activity. M-5MPEP, Br-5MPEPy, and MTEP dose-dependently decreased cocaine self-administration and attenuated the discriminative stimulus effects of cocaine. M-5MPEP and Br-5MPEPy also demonstrated antidepressant- and anxiolytic-like activity. Dose-dependent effects of partial and full mGlu5 NAMs in these assays corresponded with increasing in vivo mGlu5 occupancy, demonstrating an orderly occupancy-to-efficacy relationship. PCP-induced hyperlocomotion was potentiated by MTEP, but not by M-5MPEP and Br-5MPEPy. Further, MTEP, but not M-5MPEP, potentiated the discriminative-stimulus effects of PCP. The present data suggest that partial mGlu5 NAM activity is sufficient to produce therapeutic effects similar to full mGlu5 NAMs, but with a broader therapeutic index.
Collapse
Affiliation(s)
- Robert W Gould
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Russell J Amato
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael Bubser
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Max E Joffe
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael T Nedelcovych
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Analisa D Thompson
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hilary H Nickols
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Pathology, Microbiology and Immunology, Division of Neuropathology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Johannes P Yuh
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiaoyan Zhan
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew S Felts
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Chemistry, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alice L Rodriguez
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ryan D Morrison
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Frank W Byers
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jerri M Rook
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John S Daniels
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kyle A Emmitte
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Chemistry, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Chemistry, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Carrie K Jones
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
38
|
Sengmany K, Gregory KJ. Metabotropic glutamate receptor subtype 5: molecular pharmacology, allosteric modulation and stimulus bias. Br J Pharmacol 2015; 173:3001-17. [PMID: 26276909 DOI: 10.1111/bph.13281] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/30/2015] [Accepted: 07/26/2015] [Indexed: 12/12/2022] Open
Abstract
The metabotropic glutamate receptor subtype 5 (mGlu5 ) is a family C GPCR that has been implicated in various neuronal processes and, consequently, in several CNS disorders. Over the past few decades, GPCR-based drug discovery, including that for mGlu5 receptors, has turned considerable attention to targeting allosteric binding sites. Modulation of endogenous agonists by allosteric ligands offers the advantages of spatial and temporal fine-tuning of receptor activity, increased selectivity and reduced adverse effects with the potential to elicit improved clinical outcomes. Further, with greater appreciation of the multifaceted nature of the transduction of mGlu5 receptor signalling, it is increasingly apparent that drug discovery must take into consideration unique receptor conformations and the potential for stimulus-bias. This novel paradigm proposes that different ligands may differentially modulate distinct signalling pathways arising from the same receptor. We review our current understanding of the complexities of mGlu5 receptor signalling and regulation, and how these relate to allosteric ligands. Ultimately, a deeper appreciation of these relationships will provide the foundation for targeted drug design of compounds with increased selectivity, not only for the desired receptor but also for the desired signalling outcome from the receptor. Linked Articles This article is part of a themed section on Molecular Pharmacology of G Protein-Coupled Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.20/issuetoc.
Collapse
Affiliation(s)
- K Sengmany
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, Australia
| | - K J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, Australia.
| |
Collapse
|
39
|
Nickols HH, Yuh JP, Gregory KJ, Morrison RD, Bates BS, Stauffer SR, Emmitte KA, Bubser M, Peng W, Nedelcovych MT, Thompson A, Lv X, Xiang Z, Daniels JS, Niswender CM, Lindsley CW, Jones CK, Conn PJ. VU0477573: Partial Negative Allosteric Modulator of the Subtype 5 Metabotropic Glutamate Receptor with In Vivo Efficacy. J Pharmacol Exp Ther 2015; 356:123-36. [PMID: 26503377 DOI: 10.1124/jpet.115.226597] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/23/2015] [Indexed: 12/16/2022] Open
Abstract
Negative allosteric modulators (NAMs) of metabotropic glutamate receptor subtype 5 (mGlu5) have potential applications in the treatment of fragile X syndrome, levodopa-induced dyskinesia in Parkinson disease, Alzheimer disease, addiction, and anxiety; however, clinical and preclinical studies raise concerns that complete blockade of mGlu5 and inverse agonist activity of current mGlu5 NAMs contribute to adverse effects that limit the therapeutic use of these compounds. We report the discovery and characterization of a novel mGlu5 NAM, N,N-diethyl-5-((3-fluorophenyl)ethynyl)picolinamide (VU0477573) that binds to the same allosteric site as the prototypical mGlu5 NAM MPEP but displays weak negative cooperativity. Because of this weak cooperativity, VU0477573 acts as a "partial NAM" so that full occupancy of the MPEP site does not completely inhibit maximal effects of mGlu5 agonists on intracellular calcium mobilization, inositol phosphate (IP) accumulation, or inhibition of synaptic transmission at the hippocampal Schaffer collateral-CA1 synapse. Unlike previous mGlu5 NAMs, VU0477573 displays no inverse agonist activity assessed using measures of effects on basal [(3)H]inositol phosphate (IP) accumulation. VU0477573 acts as a full NAM when measuring effects on mGlu5-mediated extracellular signal-related kinases 1/2 phosphorylation, which may indicate functional bias. VU0477573 exhibits an excellent pharmacokinetic profile and good brain penetration in rodents and provides dose-dependent full mGlu5 occupancy in the central nervous system (CNS) with systemic administration. Interestingly, VU0477573 shows robust efficacy, comparable to the mGlu5 NAM MTEP, in models of anxiolytic activity at doses that provide full CNS occupancy of mGlu5 and demonstrate an excellent CNS occupancy-efficacy relationship. VU0477573 provides an exciting new tool to investigate the efficacy of partial NAMs in animal models.
Collapse
Affiliation(s)
- Hilary Highfield Nickols
- Department of Pathology, Microbiology and Immunology, Division of Neuropathology (H.H.N., J.P.Y.), Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery (H.H.N., R.D.M., B.S.B., K.A.E., M.B., W.P., M.T.N., A.T., X.L., Z.X., J.S.D., C.M.N., C.W.L., C.K.J., P.J.C.), Department of Chemistry and Vanderbilt Institute of Chemical Biology (S.R.S., K.A.E., C.W.L.) Vanderbilt University Medical Center, Nashville, Tennessee; and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.)
| | - Joannes P Yuh
- Department of Pathology, Microbiology and Immunology, Division of Neuropathology (H.H.N., J.P.Y.), Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery (H.H.N., R.D.M., B.S.B., K.A.E., M.B., W.P., M.T.N., A.T., X.L., Z.X., J.S.D., C.M.N., C.W.L., C.K.J., P.J.C.), Department of Chemistry and Vanderbilt Institute of Chemical Biology (S.R.S., K.A.E., C.W.L.) Vanderbilt University Medical Center, Nashville, Tennessee; and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.)
| | - Karen J Gregory
- Department of Pathology, Microbiology and Immunology, Division of Neuropathology (H.H.N., J.P.Y.), Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery (H.H.N., R.D.M., B.S.B., K.A.E., M.B., W.P., M.T.N., A.T., X.L., Z.X., J.S.D., C.M.N., C.W.L., C.K.J., P.J.C.), Department of Chemistry and Vanderbilt Institute of Chemical Biology (S.R.S., K.A.E., C.W.L.) Vanderbilt University Medical Center, Nashville, Tennessee; and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.)
| | - Ryan D Morrison
- Department of Pathology, Microbiology and Immunology, Division of Neuropathology (H.H.N., J.P.Y.), Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery (H.H.N., R.D.M., B.S.B., K.A.E., M.B., W.P., M.T.N., A.T., X.L., Z.X., J.S.D., C.M.N., C.W.L., C.K.J., P.J.C.), Department of Chemistry and Vanderbilt Institute of Chemical Biology (S.R.S., K.A.E., C.W.L.) Vanderbilt University Medical Center, Nashville, Tennessee; and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.)
| | - Brittney S Bates
- Department of Pathology, Microbiology and Immunology, Division of Neuropathology (H.H.N., J.P.Y.), Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery (H.H.N., R.D.M., B.S.B., K.A.E., M.B., W.P., M.T.N., A.T., X.L., Z.X., J.S.D., C.M.N., C.W.L., C.K.J., P.J.C.), Department of Chemistry and Vanderbilt Institute of Chemical Biology (S.R.S., K.A.E., C.W.L.) Vanderbilt University Medical Center, Nashville, Tennessee; and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.)
| | - Shaun R Stauffer
- Department of Pathology, Microbiology and Immunology, Division of Neuropathology (H.H.N., J.P.Y.), Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery (H.H.N., R.D.M., B.S.B., K.A.E., M.B., W.P., M.T.N., A.T., X.L., Z.X., J.S.D., C.M.N., C.W.L., C.K.J., P.J.C.), Department of Chemistry and Vanderbilt Institute of Chemical Biology (S.R.S., K.A.E., C.W.L.) Vanderbilt University Medical Center, Nashville, Tennessee; and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.)
| | - Kyle A Emmitte
- Department of Pathology, Microbiology and Immunology, Division of Neuropathology (H.H.N., J.P.Y.), Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery (H.H.N., R.D.M., B.S.B., K.A.E., M.B., W.P., M.T.N., A.T., X.L., Z.X., J.S.D., C.M.N., C.W.L., C.K.J., P.J.C.), Department of Chemistry and Vanderbilt Institute of Chemical Biology (S.R.S., K.A.E., C.W.L.) Vanderbilt University Medical Center, Nashville, Tennessee; and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.)
| | - Michael Bubser
- Department of Pathology, Microbiology and Immunology, Division of Neuropathology (H.H.N., J.P.Y.), Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery (H.H.N., R.D.M., B.S.B., K.A.E., M.B., W.P., M.T.N., A.T., X.L., Z.X., J.S.D., C.M.N., C.W.L., C.K.J., P.J.C.), Department of Chemistry and Vanderbilt Institute of Chemical Biology (S.R.S., K.A.E., C.W.L.) Vanderbilt University Medical Center, Nashville, Tennessee; and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.)
| | - Weimin Peng
- Department of Pathology, Microbiology and Immunology, Division of Neuropathology (H.H.N., J.P.Y.), Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery (H.H.N., R.D.M., B.S.B., K.A.E., M.B., W.P., M.T.N., A.T., X.L., Z.X., J.S.D., C.M.N., C.W.L., C.K.J., P.J.C.), Department of Chemistry and Vanderbilt Institute of Chemical Biology (S.R.S., K.A.E., C.W.L.) Vanderbilt University Medical Center, Nashville, Tennessee; and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.)
| | - Michael T Nedelcovych
- Department of Pathology, Microbiology and Immunology, Division of Neuropathology (H.H.N., J.P.Y.), Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery (H.H.N., R.D.M., B.S.B., K.A.E., M.B., W.P., M.T.N., A.T., X.L., Z.X., J.S.D., C.M.N., C.W.L., C.K.J., P.J.C.), Department of Chemistry and Vanderbilt Institute of Chemical Biology (S.R.S., K.A.E., C.W.L.) Vanderbilt University Medical Center, Nashville, Tennessee; and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.)
| | - Analisa Thompson
- Department of Pathology, Microbiology and Immunology, Division of Neuropathology (H.H.N., J.P.Y.), Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery (H.H.N., R.D.M., B.S.B., K.A.E., M.B., W.P., M.T.N., A.T., X.L., Z.X., J.S.D., C.M.N., C.W.L., C.K.J., P.J.C.), Department of Chemistry and Vanderbilt Institute of Chemical Biology (S.R.S., K.A.E., C.W.L.) Vanderbilt University Medical Center, Nashville, Tennessee; and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.)
| | - Xiaohui Lv
- Department of Pathology, Microbiology and Immunology, Division of Neuropathology (H.H.N., J.P.Y.), Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery (H.H.N., R.D.M., B.S.B., K.A.E., M.B., W.P., M.T.N., A.T., X.L., Z.X., J.S.D., C.M.N., C.W.L., C.K.J., P.J.C.), Department of Chemistry and Vanderbilt Institute of Chemical Biology (S.R.S., K.A.E., C.W.L.) Vanderbilt University Medical Center, Nashville, Tennessee; and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.)
| | - Zixiu Xiang
- Department of Pathology, Microbiology and Immunology, Division of Neuropathology (H.H.N., J.P.Y.), Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery (H.H.N., R.D.M., B.S.B., K.A.E., M.B., W.P., M.T.N., A.T., X.L., Z.X., J.S.D., C.M.N., C.W.L., C.K.J., P.J.C.), Department of Chemistry and Vanderbilt Institute of Chemical Biology (S.R.S., K.A.E., C.W.L.) Vanderbilt University Medical Center, Nashville, Tennessee; and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.)
| | - J Scott Daniels
- Department of Pathology, Microbiology and Immunology, Division of Neuropathology (H.H.N., J.P.Y.), Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery (H.H.N., R.D.M., B.S.B., K.A.E., M.B., W.P., M.T.N., A.T., X.L., Z.X., J.S.D., C.M.N., C.W.L., C.K.J., P.J.C.), Department of Chemistry and Vanderbilt Institute of Chemical Biology (S.R.S., K.A.E., C.W.L.) Vanderbilt University Medical Center, Nashville, Tennessee; and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.)
| | - Colleen M Niswender
- Department of Pathology, Microbiology and Immunology, Division of Neuropathology (H.H.N., J.P.Y.), Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery (H.H.N., R.D.M., B.S.B., K.A.E., M.B., W.P., M.T.N., A.T., X.L., Z.X., J.S.D., C.M.N., C.W.L., C.K.J., P.J.C.), Department of Chemistry and Vanderbilt Institute of Chemical Biology (S.R.S., K.A.E., C.W.L.) Vanderbilt University Medical Center, Nashville, Tennessee; and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.)
| | - Craig W Lindsley
- Department of Pathology, Microbiology and Immunology, Division of Neuropathology (H.H.N., J.P.Y.), Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery (H.H.N., R.D.M., B.S.B., K.A.E., M.B., W.P., M.T.N., A.T., X.L., Z.X., J.S.D., C.M.N., C.W.L., C.K.J., P.J.C.), Department of Chemistry and Vanderbilt Institute of Chemical Biology (S.R.S., K.A.E., C.W.L.) Vanderbilt University Medical Center, Nashville, Tennessee; and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.)
| | - Carrie K Jones
- Department of Pathology, Microbiology and Immunology, Division of Neuropathology (H.H.N., J.P.Y.), Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery (H.H.N., R.D.M., B.S.B., K.A.E., M.B., W.P., M.T.N., A.T., X.L., Z.X., J.S.D., C.M.N., C.W.L., C.K.J., P.J.C.), Department of Chemistry and Vanderbilt Institute of Chemical Biology (S.R.S., K.A.E., C.W.L.) Vanderbilt University Medical Center, Nashville, Tennessee; and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.)
| | - P Jeffrey Conn
- Department of Pathology, Microbiology and Immunology, Division of Neuropathology (H.H.N., J.P.Y.), Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery (H.H.N., R.D.M., B.S.B., K.A.E., M.B., W.P., M.T.N., A.T., X.L., Z.X., J.S.D., C.M.N., C.W.L., C.K.J., P.J.C.), Department of Chemistry and Vanderbilt Institute of Chemical Biology (S.R.S., K.A.E., C.W.L.) Vanderbilt University Medical Center, Nashville, Tennessee; and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.)
| |
Collapse
|
40
|
Shifting towards a model of mGluR5 dysregulation in schizophrenia: Consequences for future schizophrenia treatment. Neuropharmacology 2015; 115:73-91. [PMID: 26349010 DOI: 10.1016/j.neuropharm.2015.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 08/02/2015] [Accepted: 08/03/2015] [Indexed: 12/22/2022]
Abstract
Metabotropic glutamate receptor subtype 5 (mGluR5), encoded by the GRM5 gene, represents a compelling novel drug target for the treatment of schizophrenia. mGluR5 is a postsynaptic G-protein coupled glutamate receptor strongly linked with several critical cellular processes that are reported to be disrupted in schizophrenia. Accordingly, mGluR5 positive allosteric modulators show encouraging therapeutic potential in preclinical schizophrenia models, particularly for the treatment of cognitive dysfunctions against which currently available therapeutics are largely ineffective. More work is required to support the progression of mGluR5-targeting drugs into the clinic for schizophrenia treatment, although some obstacles may be overcome by comprehensively understanding how mGluR5 itself is involved in the neurobiology of the disorder. Several processes that are necessary for the regulation of mGluR5 activity have been identified, but not examined, in the context of schizophrenia. These processes include protein-protein interactions, dimerisation, subcellular trafficking, the impact of genetic variability or mutations on protein function, as well as epigenetic, post-transcriptional and post-translational processes. It is essential to understand these aspects of mGluR5 to determine whether they are affected in schizophrenia pathology, and to assess the consequences of mGluR5 dysfunction for the future use of mGluR5-based drugs. Here, we summarise the known processes that regulate mGluR5 and those that have already been studied in schizophrenia, and discuss the consequences of this dysregulation for current mGluR5 pharmacological strategies. This article is part of the Special Issue entitled 'Metabotropic Glutamate Receptors, 5 years on'.
Collapse
|
41
|
Christopher JA, Aves SJ, Bennett KA, Doré AS, Errey JC, Jazayeri A, Marshall FH, Okrasa K, Serrano-Vega MJ, Tehan BG, Wiggin GR, Congreve M. Fragment and Structure-Based Drug Discovery for a Class C GPCR: Discovery of the mGlu5 Negative Allosteric Modulator HTL14242 (3-Chloro-5-[6-(5-fluoropyridin-2-yl)pyrimidin-4-yl]benzonitrile). J Med Chem 2015. [PMID: 26225459 DOI: 10.1021/acs.jmedchem.5b00892] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fragment screening of a thermostabilized mGlu5 receptor using a high-concentration radioligand binding assay enabled the identification of moderate affinity, high ligand efficiency (LE) pyrimidine hit 5. Subsequent optimization using structure-based drug discovery methods led to the selection of 25, HTL14242, as an advanced lead compound for further development. Structures of the stabilized mGlu5 receptor complexed with 25 and another molecule in the series, 14, were determined at resolutions of 2.6 and 3.1 Å, respectively.
Collapse
Affiliation(s)
- John A Christopher
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Sarah J Aves
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Kirstie A Bennett
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Andrew S Doré
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - James C Errey
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Ali Jazayeri
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Fiona H Marshall
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Krzysztof Okrasa
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Maria J Serrano-Vega
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Benjamin G Tehan
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Giselle R Wiggin
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Miles Congreve
- Heptares Therapeutics Ltd. , BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| |
Collapse
|
42
|
Fuxe K, Borroto-Escuela DO. Basimglurant for treatment of major depressive disorder: a novel negative allosteric modulator of metabotropic glutamate receptor 5. Expert Opin Investig Drugs 2015. [DOI: 10.1517/13543784.2015.1074175] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
43
|
Zhou Y, Malosh C, Conde-Ceide S, Martínez-Viturro CM, Alcázar J, Lavreysen H, Mackie C, Bridges TM, Daniels JS, Niswender CM, Jones CK, Macdonald GJ, Steckler T, Conn PJ, Stauffer SR, Bartolomé-Nebreda JM, Lindsley CW. Further optimization of the mGlu5 PAM clinical candidate VU0409551/JNJ-46778212: Progress and challenges towards a back-up compound. Bioorg Med Chem Lett 2015; 25:3515-9. [PMID: 26183084 DOI: 10.1016/j.bmcl.2015.06.096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/24/2015] [Accepted: 06/26/2015] [Indexed: 10/23/2022]
Abstract
This Letter describes the progress and challenges in the continued optimization of the mGlu5 positive allosteric modulator (PAM) clinical candidate VU0490551/JNJ-46778212. While many analogs addressed key areas for improvement, no one compound possessed the amalgamation of improvements needed within the (2(phenoxymethyl)-6,7-dihydrooxazolo[5,4-c]pyridine-5(4H)-yl(aryl)methanone scaffold to advance as a back-up clinical candidate. However, many analogs displayed excellent solubility and physiochemical properties, and were active in the amphetamine-induced hyperlocomotion (AHL) model. Moreover, the SAR was robust for this series of PAMs, and both polar and hydrogen-bond donors were found to be tolerated, leading to analogs with overall attractive profiles and good ligand efficiencies.
Collapse
Affiliation(s)
- Ya Zhou
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Chrysa Malosh
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Susana Conde-Ceide
- Neuroscience Medicinal Chemistry, Janssen Research and Development, Jarama 75A, 45007 Toledo, Spain
| | | | - Jesus Alcázar
- Neuroscience Medicinal Chemistry, Janssen Research and Development, Jarama 75A, 45007 Toledo, Spain
| | - Hilde Lavreysen
- Neuroscience, Janssen Research and Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Claire Mackie
- Discovery Sciences ADME/Tox, Janssen Research and Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Thomas M Bridges
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - J Scott Daniels
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Colleen M Niswender
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Carrie K Jones
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Gregor J Macdonald
- Neuroscience, Janssen Research and Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Thomas Steckler
- Neuroscience, Janssen Research and Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - P Jeffrey Conn
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Shaun R Stauffer
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Craig W Lindsley
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
44
|
Gregory KJ, Conn PJ. Molecular Insights into Metabotropic Glutamate Receptor Allosteric Modulation. Mol Pharmacol 2015; 88:188-202. [PMID: 25808929 PMCID: PMC4468636 DOI: 10.1124/mol.114.097220] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/24/2015] [Indexed: 12/21/2022] Open
Abstract
The metabotropic glutamate (mGlu) receptors are a group of eight family C G protein-coupled receptors that are expressed throughout the central nervous system (CNS) and periphery. Within the CNS the different subtypes are found in neurons, both pre- and/or postsynaptically, where they mediate modulatory roles and in glial cells. The mGlu receptor family provides attractive targets for numerous psychiatric and neurologic disorders, with the majority of discovery programs focused on targeting allosteric sites, with allosteric ligands now available for all mGlu receptor subtypes. However, the development of allosteric ligands remains challenging. Biased modulation, probe dependence, and molecular switches all contribute to the complex molecular pharmacology exhibited by mGlu receptor allosteric ligands. In recent years we have made significant progress in our understanding of this molecular complexity coupled with an increased understanding of the structural basis of mGlu allosteric modulation.
Collapse
Affiliation(s)
- Karen J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.); and Vanderbilt Center for Neuroscience Drug Discovery & Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (P.J.C)
| | - P Jeffrey Conn
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.); and Vanderbilt Center for Neuroscience Drug Discovery & Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (P.J.C)
| |
Collapse
|
45
|
Gentry PR, Sexton PM, Christopoulos A. Novel Allosteric Modulators of G Protein-coupled Receptors. J Biol Chem 2015; 290:19478-88. [PMID: 26100627 DOI: 10.1074/jbc.r115.662759] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are allosteric proteins, because their signal transduction relies on interactions between topographically distinct, yet conformationally linked, domains. Much of the focus on GPCR allostery in the new millennium, however, has been on modes of targeting GPCR allosteric sites with chemical probes due to the potential for novel therapeutics. It is now apparent that some GPCRs possess more than one targetable allosteric site, in addition to a growing list of putative endogenous modulators. Advances in structural biology are also shedding new insights into mechanisms of allostery, although the complexities of candidate allosteric drugs necessitate rigorous biological characterization.
Collapse
Affiliation(s)
- Patrick R Gentry
- From Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, Victoria 3052, Australia
| | - Patrick M Sexton
- From Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, Victoria 3052, Australia
| | - Arthur Christopoulos
- From Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
46
|
Conde-Ceide S, Martínez-Viturro C, Alcázar J, Garcia-Barrantes PM, Lavreysen H, Mackie C, Vinson PN, Rook J, Bridges TM, Daniels JS, Megens A, Langlois X, Drinkenburg WH, Ahnaou A, Niswender CM, Jones C, Macdonald GJ, Steckler T, Conn PJ, Stauffer S, Bartolomé-Nebreda JM, Lindsley CW. Discovery of VU0409551/JNJ-46778212: An mGlu5 Positive Allosteric Modulator Clinical Candidate Targeting Schizophrenia. ACS Med Chem Lett 2015; 6:716-20. [PMID: 26157544 PMCID: PMC4492464 DOI: 10.1021/acsmedchemlett.5b00181] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 05/20/2015] [Indexed: 12/24/2022] Open
Abstract
Herein, we report the structure-activity relationship of a novel series of (2(phenoxymethyl)-6,7-dihydrooxazolo[5,4-c]pyridine-5(4H)-yl(aryl)methanones as potent, selective, and orally bioavailable metabotropic glutamate receptor subtype 5 (mGlu5) positive allosteric modulators (PAMs). On the basis of its robust in vitro potency and in vivo efficacy in multiple preclinical models of multiple domains of schizophrenia, coupled with a good DMPK profile and an acceptable therapeutic window, 17a (VU0409551/JNJ-46778212) was selected as a candidate for further development.
Collapse
Affiliation(s)
- Susana Conde-Ceide
- Neuroscience
Medicinal Chemistry and Discovery Sciences Lead Discovery, Janssen Research and Development, Jarama 75A, 45007 Toledo, Spain
| | - Carlos
M. Martínez-Viturro
- Neuroscience
Medicinal Chemistry and Discovery Sciences Lead Discovery, Janssen Research and Development, Jarama 75A, 45007 Toledo, Spain
| | - Jesús Alcázar
- Neuroscience
Medicinal Chemistry and Discovery Sciences Lead Discovery, Janssen Research and Development, Jarama 75A, 45007 Toledo, Spain
| | - Pedro M. Garcia-Barrantes
- Department
of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Hilde Lavreysen
- Neuroscience and Discovery Sciences
ADME/Tox, Janssen Research and Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Claire Mackie
- Neuroscience and Discovery Sciences
ADME/Tox, Janssen Research and Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Paige N. Vinson
- Department
of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Jerri
M. Rook
- Department
of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Thomas M. Bridges
- Department
of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - J. Scott Daniels
- Department
of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Anton Megens
- Neuroscience and Discovery Sciences
ADME/Tox, Janssen Research and Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Xavier Langlois
- Neuroscience and Discovery Sciences
ADME/Tox, Janssen Research and Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Wilhelmus H. Drinkenburg
- Neuroscience and Discovery Sciences
ADME/Tox, Janssen Research and Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Abdellah Ahnaou
- Neuroscience and Discovery Sciences
ADME/Tox, Janssen Research and Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Colleen M. Niswender
- Department
of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Carrie
K. Jones
- Department
of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Gregor J. Macdonald
- Neuroscience and Discovery Sciences
ADME/Tox, Janssen Research and Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Thomas Steckler
- Neuroscience and Discovery Sciences
ADME/Tox, Janssen Research and Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - P. Jeffrey Conn
- Department
of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Shaun
R. Stauffer
- Department
of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - José Manuel Bartolomé-Nebreda
- Neuroscience
Medicinal Chemistry and Discovery Sciences Lead Discovery, Janssen Research and Development, Jarama 75A, 45007 Toledo, Spain
| | - Craig W. Lindsley
- Department
of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| |
Collapse
|
47
|
Biased mGlu5-Positive Allosteric Modulators Provide In Vivo Efficacy without Potentiating mGlu5 Modulation of NMDAR Currents. Neuron 2015; 86:1029-1040. [PMID: 25937172 DOI: 10.1016/j.neuron.2015.03.063] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 02/22/2015] [Accepted: 03/24/2015] [Indexed: 12/14/2022]
Abstract
Schizophrenia is associated with disruptions in N-methyl-D-aspartate glutamate receptor subtype (NMDAR)-mediated excitatory synaptic signaling. The metabotropic glutamate receptor subtype 5 (mGlu5) is a closely associated signaling partner with NMDARs and regulates NMDAR function in forebrain regions implicated in the pathology of schizophrenia. Efficacy of mGlu5 positive allosteric modulators (PAMs) in animal models of psychosis and cognition was previously attributed to potentiation of NMDAR function. To directly test this hypothesis, we identified VU0409551 as a novel mGlu5 PAM that exhibits distinct stimulus bias and selectively potentiates mGlu5 coupling to Gαq-mediated signaling but not mGlu5 modulation of NMDAR currents or NMDAR-dependent synaptic plasticity in the rat hippocampus. Interestingly, VU0409551 produced robust antipsychotic-like and cognition-enhancing activity in animal models. These data provide surprising new mechanistic insights into the actions of mGlu5 PAMs and suggest that modulation of NMDAR currents is not critical for in vivo efficacy. VIDEO ABSTRACT.
Collapse
|
48
|
Rovira X, Malhaire F, Scholler P, Rodrigo J, Gonzalez-Bulnes P, Llebaria A, Pin JP, Giraldo J, Goudet C. Overlapping binding sites drive allosteric agonism and positive cooperativity in type 4 metabotropic glutamate receptors. FASEB J 2014; 29:116-30. [PMID: 25342125 DOI: 10.1096/fj.14-257287] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Type 4 metabotropic glutamate (mGlu4) receptors are emerging targets for the treatment of various disorders. Accordingly, numerous mGlu4-positive allosteric modulators (PAMs) have been identified, some of which also display agonist activity. To identify the structural bases for their allosteric action, we explored the relationship between the binding pockets of mGlu4 PAMs with different chemical scaffolds and their functional properties. By use of innovative mGlu4 biosensors and second-messenger assays, we show that all PAMs enhance agonist action on the receptor through different degrees of allosteric agonism and positive cooperativity. For example, whereas VU0155041 and VU0415374 display equivalent efficacies [log(τ(B)) = 1.15 ± 0.38 and 1.25 ± 0.44, respectively], they increase the ability of L-AP4 to stabilize the active conformation of the receptor by 4 and 39 times, respectively. Modeling and docking studies identify 2 overlapping binding pockets as follows: a first site homologous to the pocket of natural agonists of class A GPCRs linked to allosteric agonism and a second one pointing toward a site topographically homologous to the Na(+) binding pocket of class A GPCRs, occupied by PAMs exhibiting the strongest cooperativity. These results reveal that intrinsic efficacy and cooperativity of mGlu4 PAMs are correlated with their binding mode, and vice versa, integrating structural and functional knowledge from different GPCR classes.
Collapse
Affiliation(s)
- Xavier Rovira
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, Université de Montpellier, Montpellier, France; INSERM, U661, Montpellier, France
| | - Fanny Malhaire
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, Université de Montpellier, Montpellier, France; INSERM, U661, Montpellier, France
| | - Pauline Scholler
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, Université de Montpellier, Montpellier, France; INSERM, U661, Montpellier, France
| | - Jordi Rodrigo
- Laboratoire de Chimie Thérapeutique, BioCIS UMR-CNRS 8076, LabEx LERMIT, Faculté de Pharmacie, Université Paris-Sud, Châtenay-Malabry, Paris, France
| | - Patricia Gonzalez-Bulnes
- Laboratory of Medicinal Chemistry, Departament of Biomedicinal Chemistry, Institute of Advanced Chemistry of Catalonia IQAC-CSIC, Barcelona, Spain; and
| | - Amadeu Llebaria
- Laboratory of Medicinal Chemistry, Departament of Biomedicinal Chemistry, Institute of Advanced Chemistry of Catalonia IQAC-CSIC, Barcelona, Spain; and
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, Université de Montpellier, Montpellier, France; INSERM, U661, Montpellier, France
| | - Jesús Giraldo
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Institut de Neurociències and Unitat de Bioestadística, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Cyril Goudet
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, Université de Montpellier, Montpellier, France; INSERM, U661, Montpellier, France;
| |
Collapse
|
49
|
Christopoulos A, Changeux JP, Catterall WA, Fabbro D, Burris TP, Cidlowski JA, Olsen RW, Peters JA, Neubig RR, Pin JP, Sexton PM, Kenakin TP, Ehlert FJ, Spedding M, Langmead CJ. International Union of Basic and Clinical Pharmacology. XC. multisite pharmacology: recommendations for the nomenclature of receptor allosterism and allosteric ligands. Pharmacol Rev 2014; 66:918-47. [PMID: 25026896 PMCID: PMC11060431 DOI: 10.1124/pr.114.008862] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Allosteric interactions play vital roles in metabolic processes and signal transduction and, more recently, have become the focus of numerous pharmacological studies because of the potential for discovering more target-selective chemical probes and therapeutic agents. In addition to classic early studies on enzymes, there are now examples of small molecule allosteric modulators for all superfamilies of receptors encoded by the genome, including ligand- and voltage-gated ion channels, G protein-coupled receptors, nuclear hormone receptors, and receptor tyrosine kinases. As a consequence, a vast array of pharmacologic behaviors has been ascribed to allosteric ligands that can vary in a target-, ligand-, and cell-/tissue-dependent manner. The current article presents an overview of allostery as applied to receptor families and approaches for detecting and validating allosteric interactions and gives recommendations for the nomenclature of allosteric ligands and their properties.
Collapse
Affiliation(s)
- Arthur Christopoulos
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (A.C., P.M.S., C.J.L.); Collège de France and CNRS URA 2182, Institut Pasteur, Paris, France (J.-P.C.); Department of Pharmacology, School of Medicine, University of Washington, Seattle, Washington (W.A.C.); PIQUR Therapeutics AG, Basel, Switzerland (D.F.); Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine, St. Louis, Louisiana (T.P.B.); Signal Transduction Laboratory, Molecular Endocrinology Group, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (J.A.C.); Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California (R.W.O.); Division of Neuroscience, School of Medicine, University of Dundee, Scotland, United Kingdom (J.A.P.); Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (R.R.N.); Institut de Genomique Fonctionelle, CNRS, Montpellier, France (J.-P.P.); Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina (T.P.K.); Department of Pharmacology, University of California, Irvine, California (F.J.E.); and Research Solutions SARL, Paris, France (M.S.)
| | - Jean-Pierre Changeux
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (A.C., P.M.S., C.J.L.); Collège de France and CNRS URA 2182, Institut Pasteur, Paris, France (J.-P.C.); Department of Pharmacology, School of Medicine, University of Washington, Seattle, Washington (W.A.C.); PIQUR Therapeutics AG, Basel, Switzerland (D.F.); Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine, St. Louis, Louisiana (T.P.B.); Signal Transduction Laboratory, Molecular Endocrinology Group, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (J.A.C.); Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California (R.W.O.); Division of Neuroscience, School of Medicine, University of Dundee, Scotland, United Kingdom (J.A.P.); Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (R.R.N.); Institut de Genomique Fonctionelle, CNRS, Montpellier, France (J.-P.P.); Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina (T.P.K.); Department of Pharmacology, University of California, Irvine, California (F.J.E.); and Research Solutions SARL, Paris, France (M.S.)
| | - William A Catterall
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (A.C., P.M.S., C.J.L.); Collège de France and CNRS URA 2182, Institut Pasteur, Paris, France (J.-P.C.); Department of Pharmacology, School of Medicine, University of Washington, Seattle, Washington (W.A.C.); PIQUR Therapeutics AG, Basel, Switzerland (D.F.); Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine, St. Louis, Louisiana (T.P.B.); Signal Transduction Laboratory, Molecular Endocrinology Group, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (J.A.C.); Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California (R.W.O.); Division of Neuroscience, School of Medicine, University of Dundee, Scotland, United Kingdom (J.A.P.); Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (R.R.N.); Institut de Genomique Fonctionelle, CNRS, Montpellier, France (J.-P.P.); Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina (T.P.K.); Department of Pharmacology, University of California, Irvine, California (F.J.E.); and Research Solutions SARL, Paris, France (M.S.)
| | - Doriano Fabbro
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (A.C., P.M.S., C.J.L.); Collège de France and CNRS URA 2182, Institut Pasteur, Paris, France (J.-P.C.); Department of Pharmacology, School of Medicine, University of Washington, Seattle, Washington (W.A.C.); PIQUR Therapeutics AG, Basel, Switzerland (D.F.); Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine, St. Louis, Louisiana (T.P.B.); Signal Transduction Laboratory, Molecular Endocrinology Group, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (J.A.C.); Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California (R.W.O.); Division of Neuroscience, School of Medicine, University of Dundee, Scotland, United Kingdom (J.A.P.); Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (R.R.N.); Institut de Genomique Fonctionelle, CNRS, Montpellier, France (J.-P.P.); Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina (T.P.K.); Department of Pharmacology, University of California, Irvine, California (F.J.E.); and Research Solutions SARL, Paris, France (M.S.)
| | - Thomas P Burris
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (A.C., P.M.S., C.J.L.); Collège de France and CNRS URA 2182, Institut Pasteur, Paris, France (J.-P.C.); Department of Pharmacology, School of Medicine, University of Washington, Seattle, Washington (W.A.C.); PIQUR Therapeutics AG, Basel, Switzerland (D.F.); Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine, St. Louis, Louisiana (T.P.B.); Signal Transduction Laboratory, Molecular Endocrinology Group, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (J.A.C.); Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California (R.W.O.); Division of Neuroscience, School of Medicine, University of Dundee, Scotland, United Kingdom (J.A.P.); Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (R.R.N.); Institut de Genomique Fonctionelle, CNRS, Montpellier, France (J.-P.P.); Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina (T.P.K.); Department of Pharmacology, University of California, Irvine, California (F.J.E.); and Research Solutions SARL, Paris, France (M.S.)
| | - John A Cidlowski
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (A.C., P.M.S., C.J.L.); Collège de France and CNRS URA 2182, Institut Pasteur, Paris, France (J.-P.C.); Department of Pharmacology, School of Medicine, University of Washington, Seattle, Washington (W.A.C.); PIQUR Therapeutics AG, Basel, Switzerland (D.F.); Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine, St. Louis, Louisiana (T.P.B.); Signal Transduction Laboratory, Molecular Endocrinology Group, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (J.A.C.); Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California (R.W.O.); Division of Neuroscience, School of Medicine, University of Dundee, Scotland, United Kingdom (J.A.P.); Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (R.R.N.); Institut de Genomique Fonctionelle, CNRS, Montpellier, France (J.-P.P.); Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina (T.P.K.); Department of Pharmacology, University of California, Irvine, California (F.J.E.); and Research Solutions SARL, Paris, France (M.S.)
| | - Richard W Olsen
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (A.C., P.M.S., C.J.L.); Collège de France and CNRS URA 2182, Institut Pasteur, Paris, France (J.-P.C.); Department of Pharmacology, School of Medicine, University of Washington, Seattle, Washington (W.A.C.); PIQUR Therapeutics AG, Basel, Switzerland (D.F.); Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine, St. Louis, Louisiana (T.P.B.); Signal Transduction Laboratory, Molecular Endocrinology Group, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (J.A.C.); Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California (R.W.O.); Division of Neuroscience, School of Medicine, University of Dundee, Scotland, United Kingdom (J.A.P.); Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (R.R.N.); Institut de Genomique Fonctionelle, CNRS, Montpellier, France (J.-P.P.); Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina (T.P.K.); Department of Pharmacology, University of California, Irvine, California (F.J.E.); and Research Solutions SARL, Paris, France (M.S.)
| | - John A Peters
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (A.C., P.M.S., C.J.L.); Collège de France and CNRS URA 2182, Institut Pasteur, Paris, France (J.-P.C.); Department of Pharmacology, School of Medicine, University of Washington, Seattle, Washington (W.A.C.); PIQUR Therapeutics AG, Basel, Switzerland (D.F.); Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine, St. Louis, Louisiana (T.P.B.); Signal Transduction Laboratory, Molecular Endocrinology Group, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (J.A.C.); Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California (R.W.O.); Division of Neuroscience, School of Medicine, University of Dundee, Scotland, United Kingdom (J.A.P.); Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (R.R.N.); Institut de Genomique Fonctionelle, CNRS, Montpellier, France (J.-P.P.); Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina (T.P.K.); Department of Pharmacology, University of California, Irvine, California (F.J.E.); and Research Solutions SARL, Paris, France (M.S.)
| | - Richard R Neubig
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (A.C., P.M.S., C.J.L.); Collège de France and CNRS URA 2182, Institut Pasteur, Paris, France (J.-P.C.); Department of Pharmacology, School of Medicine, University of Washington, Seattle, Washington (W.A.C.); PIQUR Therapeutics AG, Basel, Switzerland (D.F.); Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine, St. Louis, Louisiana (T.P.B.); Signal Transduction Laboratory, Molecular Endocrinology Group, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (J.A.C.); Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California (R.W.O.); Division of Neuroscience, School of Medicine, University of Dundee, Scotland, United Kingdom (J.A.P.); Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (R.R.N.); Institut de Genomique Fonctionelle, CNRS, Montpellier, France (J.-P.P.); Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina (T.P.K.); Department of Pharmacology, University of California, Irvine, California (F.J.E.); and Research Solutions SARL, Paris, France (M.S.)
| | - Jean-Philippe Pin
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (A.C., P.M.S., C.J.L.); Collège de France and CNRS URA 2182, Institut Pasteur, Paris, France (J.-P.C.); Department of Pharmacology, School of Medicine, University of Washington, Seattle, Washington (W.A.C.); PIQUR Therapeutics AG, Basel, Switzerland (D.F.); Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine, St. Louis, Louisiana (T.P.B.); Signal Transduction Laboratory, Molecular Endocrinology Group, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (J.A.C.); Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California (R.W.O.); Division of Neuroscience, School of Medicine, University of Dundee, Scotland, United Kingdom (J.A.P.); Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (R.R.N.); Institut de Genomique Fonctionelle, CNRS, Montpellier, France (J.-P.P.); Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina (T.P.K.); Department of Pharmacology, University of California, Irvine, California (F.J.E.); and Research Solutions SARL, Paris, France (M.S.)
| | - Patrick M Sexton
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (A.C., P.M.S., C.J.L.); Collège de France and CNRS URA 2182, Institut Pasteur, Paris, France (J.-P.C.); Department of Pharmacology, School of Medicine, University of Washington, Seattle, Washington (W.A.C.); PIQUR Therapeutics AG, Basel, Switzerland (D.F.); Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine, St. Louis, Louisiana (T.P.B.); Signal Transduction Laboratory, Molecular Endocrinology Group, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (J.A.C.); Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California (R.W.O.); Division of Neuroscience, School of Medicine, University of Dundee, Scotland, United Kingdom (J.A.P.); Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (R.R.N.); Institut de Genomique Fonctionelle, CNRS, Montpellier, France (J.-P.P.); Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina (T.P.K.); Department of Pharmacology, University of California, Irvine, California (F.J.E.); and Research Solutions SARL, Paris, France (M.S.)
| | - Terry P Kenakin
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (A.C., P.M.S., C.J.L.); Collège de France and CNRS URA 2182, Institut Pasteur, Paris, France (J.-P.C.); Department of Pharmacology, School of Medicine, University of Washington, Seattle, Washington (W.A.C.); PIQUR Therapeutics AG, Basel, Switzerland (D.F.); Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine, St. Louis, Louisiana (T.P.B.); Signal Transduction Laboratory, Molecular Endocrinology Group, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (J.A.C.); Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California (R.W.O.); Division of Neuroscience, School of Medicine, University of Dundee, Scotland, United Kingdom (J.A.P.); Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (R.R.N.); Institut de Genomique Fonctionelle, CNRS, Montpellier, France (J.-P.P.); Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina (T.P.K.); Department of Pharmacology, University of California, Irvine, California (F.J.E.); and Research Solutions SARL, Paris, France (M.S.)
| | - Frederick J Ehlert
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (A.C., P.M.S., C.J.L.); Collège de France and CNRS URA 2182, Institut Pasteur, Paris, France (J.-P.C.); Department of Pharmacology, School of Medicine, University of Washington, Seattle, Washington (W.A.C.); PIQUR Therapeutics AG, Basel, Switzerland (D.F.); Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine, St. Louis, Louisiana (T.P.B.); Signal Transduction Laboratory, Molecular Endocrinology Group, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (J.A.C.); Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California (R.W.O.); Division of Neuroscience, School of Medicine, University of Dundee, Scotland, United Kingdom (J.A.P.); Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (R.R.N.); Institut de Genomique Fonctionelle, CNRS, Montpellier, France (J.-P.P.); Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina (T.P.K.); Department of Pharmacology, University of California, Irvine, California (F.J.E.); and Research Solutions SARL, Paris, France (M.S.)
| | - Michael Spedding
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (A.C., P.M.S., C.J.L.); Collège de France and CNRS URA 2182, Institut Pasteur, Paris, France (J.-P.C.); Department of Pharmacology, School of Medicine, University of Washington, Seattle, Washington (W.A.C.); PIQUR Therapeutics AG, Basel, Switzerland (D.F.); Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine, St. Louis, Louisiana (T.P.B.); Signal Transduction Laboratory, Molecular Endocrinology Group, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (J.A.C.); Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California (R.W.O.); Division of Neuroscience, School of Medicine, University of Dundee, Scotland, United Kingdom (J.A.P.); Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (R.R.N.); Institut de Genomique Fonctionelle, CNRS, Montpellier, France (J.-P.P.); Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina (T.P.K.); Department of Pharmacology, University of California, Irvine, California (F.J.E.); and Research Solutions SARL, Paris, France (M.S.)
| | - Christopher J Langmead
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (A.C., P.M.S., C.J.L.); Collège de France and CNRS URA 2182, Institut Pasteur, Paris, France (J.-P.C.); Department of Pharmacology, School of Medicine, University of Washington, Seattle, Washington (W.A.C.); PIQUR Therapeutics AG, Basel, Switzerland (D.F.); Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine, St. Louis, Louisiana (T.P.B.); Signal Transduction Laboratory, Molecular Endocrinology Group, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (J.A.C.); Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California (R.W.O.); Division of Neuroscience, School of Medicine, University of Dundee, Scotland, United Kingdom (J.A.P.); Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (R.R.N.); Institut de Genomique Fonctionelle, CNRS, Montpellier, France (J.-P.P.); Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina (T.P.K.); Department of Pharmacology, University of California, Irvine, California (F.J.E.); and Research Solutions SARL, Paris, France (M.S.)
| |
Collapse
|
50
|
Conn PJ, Lindsley CW, Meiler J, Niswender CM. Opportunities and challenges in the discovery of allosteric modulators of GPCRs for treating CNS disorders. Nat Rev Drug Discov 2014; 13:692-708. [PMID: 25176435 PMCID: PMC4208620 DOI: 10.1038/nrd4308] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Novel allosteric modulators of G protein-coupled receptors (GPCRs) are providing fundamental advances in the development of GPCR ligands with high subtype selectivity and novel modes of efficacy that have not been possible with traditional approaches. As new allosteric modulators are advancing as drug candidates, we are developing an increased understanding of the major advantages and broad range of activities that can be achieved with these agents through selective modulation of specific signalling pathways, differential effects on GPCR homodimers versus heterodimers, and other properties. This understanding creates exciting opportunities, as well as unique challenges, in the optimization of novel therapeutic agents for disorders of the central nervous system.
Collapse
Affiliation(s)
- P Jeffrey Conn
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 1215D LH, USA
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 1215D LH, USA
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 1215D LH, USA
| |
Collapse
|