1
|
Hernández-Ramírez LC, Perez-Rivas LG, Theodoropoulou M, Korbonits M. An Update on the Genetic Drivers of Corticotroph Tumorigenesis. Exp Clin Endocrinol Diabetes 2024. [PMID: 38830604 DOI: 10.1055/a-2337-2265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The genetic landscape of corticotroph tumours of the pituitary gland has dramatically changed over the last 10 years. Somatic changes in the USP8 gene account for the most common genetic defect in corticotrophinomas, especially in females, while variants in TP53 or ATRX are associated with a subset of aggressive tumours. Germline defects have also been identified in patients with Cushing's disease: some are well-established (MEN1, CDKN1B, DICER1), while others are rare and could represent coincidences. In this review, we summarise the current knowledge on the genetic drivers of corticotroph tumorigenesis, their molecular consequences, and their impact on the clinical presentation and prognosis.
Collapse
Affiliation(s)
- Laura C Hernández-Ramírez
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | - Marily Theodoropoulou
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, LMU München, Munich 80336, Germany
| | - Márta Korbonits
- Centre for Endocrinology, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London, UK
| |
Collapse
|
2
|
Morotti M, Grimm AJ, Hope HC, Arnaud M, Desbuisson M, Rayroux N, Barras D, Masid M, Murgues B, Chap BS, Ongaro M, Rota IA, Ronet C, Minasyan A, Chiffelle J, Lacher SB, Bobisse S, Murgues C, Ghisoni E, Ouchen K, Bou Mjahed R, Benedetti F, Abdellaoui N, Turrini R, Gannon PO, Zaman K, Mathevet P, Lelievre L, Crespo I, Conrad M, Verdeil G, Kandalaft LE, Dagher J, Corria-Osorio J, Doucey MA, Ho PC, Harari A, Vannini N, Böttcher JP, Dangaj Laniti D, Coukos G. PGE 2 inhibits TIL expansion by disrupting IL-2 signalling and mitochondrial function. Nature 2024; 629:426-434. [PMID: 38658764 PMCID: PMC11078736 DOI: 10.1038/s41586-024-07352-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
Expansion of antigen-experienced CD8+ T cells is critical for the success of tumour-infiltrating lymphocyte (TIL)-adoptive cell therapy (ACT) in patients with cancer1. Interleukin-2 (IL-2) acts as a key regulator of CD8+ cytotoxic T lymphocyte functions by promoting expansion and cytotoxic capability2,3. Therefore, it is essential to comprehend mechanistic barriers to IL-2 sensing in the tumour microenvironment to implement strategies to reinvigorate IL-2 responsiveness and T cell antitumour responses. Here we report that prostaglandin E2 (PGE2), a known negative regulator of immune response in the tumour microenvironment4,5, is present at high concentrations in tumour tissue from patients and leads to impaired IL-2 sensing in human CD8+ TILs via the PGE2 receptors EP2 and EP4. Mechanistically, PGE2 inhibits IL-2 sensing in TILs by downregulating the IL-2Rγc chain, resulting in defective assembly of IL-2Rβ-IL2Rγc membrane dimers. This results in impaired IL-2-mTOR adaptation and PGC1α transcriptional repression, causing oxidative stress and ferroptotic cell death in tumour-reactive TILs. Inhibition of PGE2 signalling to EP2 and EP4 during TIL expansion for ACT resulted in increased IL-2 sensing, leading to enhanced proliferation of tumour-reactive TILs and enhanced tumour control once the cells were transferred in vivo. Our study reveals fundamental features that underlie impairment of human TILs mediated by PGE2 in the tumour microenvironment. These findings have therapeutic implications for cancer immunotherapy and cell therapy, and enable the development of targeted strategies to enhance IL-2 sensing and amplify the IL-2 response in TILs, thereby promoting the expansion of effector T cells with enhanced therapeutic potential.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Proliferation
- Dinoprostone/metabolism
- Down-Regulation
- Ferroptosis
- Interleukin Receptor Common gamma Subunit/biosynthesis
- Interleukin Receptor Common gamma Subunit/deficiency
- Interleukin Receptor Common gamma Subunit/metabolism
- Interleukin-2/antagonists & inhibitors
- Interleukin-2/immunology
- Interleukin-2/metabolism
- Interleukin-2 Receptor beta Subunit/metabolism
- Lymphocytes, Tumor-Infiltrating/cytology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Mitochondria/metabolism
- Oxidative Stress
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
- Receptors, Prostaglandin E, EP2 Subtype/metabolism
- Receptors, Prostaglandin E, EP2 Subtype/antagonists & inhibitors
- Receptors, Prostaglandin E, EP4 Subtype/metabolism
- Receptors, Prostaglandin E, EP4 Subtype/antagonists & inhibitors
- Signal Transduction
- TOR Serine-Threonine Kinases/metabolism
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Matteo Morotti
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Alizee J Grimm
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Helen Carrasco Hope
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Marion Arnaud
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Mathieu Desbuisson
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Nicolas Rayroux
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - David Barras
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Maria Masid
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Baptiste Murgues
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Bovannak S Chap
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Marco Ongaro
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Ioanna A Rota
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Catherine Ronet
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Aspram Minasyan
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Johanna Chiffelle
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Sebastian B Lacher
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Sara Bobisse
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Clément Murgues
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Eleonora Ghisoni
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Khaoula Ouchen
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Ribal Bou Mjahed
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Fabrizio Benedetti
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Naoill Abdellaoui
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Riccardo Turrini
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Philippe O Gannon
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Khalil Zaman
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Patrice Mathevet
- Department of Gynaecology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Loic Lelievre
- Department of Gynaecology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Isaac Crespo
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Molecular Target and Therapeutics Centre, Helmholtz Munich, Neuherberg, Germany
| | - Gregory Verdeil
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Lana E Kandalaft
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Julien Dagher
- Unit of Translational Oncopathology, Institute of Pathology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Jesus Corria-Osorio
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Marie-Agnes Doucey
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Ping-Chih Ho
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Alexandre Harari
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Nicola Vannini
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Jan P Böttcher
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Denarda Dangaj Laniti
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland.
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland.
- Agora Cancer Research Center, Lausanne, Switzerland.
| | - George Coukos
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland.
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland.
- Agora Cancer Research Center, Lausanne, Switzerland.
| |
Collapse
|
3
|
Hetty S, Vranic M, Kamble PG, Lundqvist MH, Pereira MJ, Eriksson JW. CABLES1 expression is reduced in human subcutaneous adipose tissue in obesity and type 2 diabetes but may not directly impact adipocyte glucose and lipid metabolism. Adipocyte 2023; 12:2242997. [PMID: 37555665 PMCID: PMC10413912 DOI: 10.1080/21623945.2023.2242997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/16/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023] Open
Abstract
Cdk5 and Abl enzyme substrate 1 (CABLES1) is a cell cycle regulator that has previously been identified as a candidate gene for obesity-related phenotypes, but little is known about its role in adipose tissue metabolism. In this study, we explore the role of CABLES1 in obesity and type 2 diabetes (T2D) in human subcutaneous adipose tissue (SAT). We performed gene expression analysis of SAT obtained from subjects with and without T2D, and from a second validation cohort consisting of subjects without T2D. We used CRISPR/Cas9 genome editing to perform CABLES1 loss-of-function studies in human primary preadipocytes and assessed them functionally after differentiation. CABLES1 gene expression in SAT was decreased in T2D by almost 25%, and inversely associated with insulin resistance markers and hyperglycaemia. mRNA levels were reduced with increasing BMI and negatively correlated with obesity markers. We found that adipocytes are likely the main CABLES1-expressing cell type in SAT, but CABLES1 depletion in adipocytes caused no phenotypical changes in regards to differentiation, glucose uptake, or expression of key genes of adipocyte function. These findings suggest that CABLES1 gene expression in SAT might be altered in obesity and T2D as a consequence of metabolic dysregulation rather than being a causal factor.
Collapse
Affiliation(s)
- Susanne Hetty
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Milica Vranic
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Prasad G Kamble
- Innovation Strategies & External Liaison, Pharmaceutical Technologies & Development, AstraZeneca R&D, Mölndal, Sweden
| | - Martin H Lundqvist
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Maria J Pereira
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Jan W Eriksson
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Kashiwabara L, Pirard L, Debier C, Crocker D, Khudyakov J. Effects of cortisol, epinephrine, and bisphenol contaminants on the transcriptional landscape of marine mammal blubber. Am J Physiol Regul Integr Comp Physiol 2023; 325:R504-R522. [PMID: 37602383 DOI: 10.1152/ajpregu.00165.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/04/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023]
Abstract
Top ocean predators such as marine mammals are threatened by intensifying anthropogenic activity, and understanding the combined effects of multiple stressors on their physiology is critical for conservation efforts. We investigated potential interactions between stress hormones and bisphenol contaminants in a model marine mammal, the northern elephant seal (NES). We exposed precision-cut adipose tissue slices (PCATS) from blubber of weaned NES pups to cortisol (CORT), epinephrine (EPI), bisphenol A (BPA), bisphenol S (BPS), or their combinations (CORT-EPI, BPA-EPI, and BPS-EPI) ex vivo and identified hundreds of genes that were differentially regulated in response to these treatments. CORT altered expression of genes associated with lipolysis and adipogenesis, whereas EPI and CORT-EPI-regulated genes were associated with responses to hormones, lipid and protein turnover, immune function, and transcriptional and epigenetic regulation of gene expression, suggesting that EPI has wide-ranging and prolonged impacts on the transcriptional landscape and function of blubber. Bisphenol treatments alone had a weak impact on gene expression compared with stress hormones. However, the combination of EPI with bisphenols altered expression of genes associated with inflammation, cell stress, DNA damage, regulation of nuclear hormone receptor activity, cell cycle, mitochondrial function, primary ciliogenesis, and lipid metabolism in blubber. Our results suggest that CORT, EPI, bisphenols, and their combinations impact cellular, immune, and metabolic homeostasis in marine mammal blubber, which may affect the ability of marine mammals to sustain prolonged fasting during reproduction and migration, renew tissues, and mount appropriate responses to immune challenges and additional stressors.
Collapse
Affiliation(s)
- Lauren Kashiwabara
- Department of Biological Sciences, University of the Pacific, Stockton, California, United States
| | - Laura Pirard
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la Neuve, Belgium
| | - Cathy Debier
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la Neuve, Belgium
| | - Daniel Crocker
- Department of Biology, Sonoma State University, Rohnert Park, California, United States
| | - Jane Khudyakov
- Department of Biological Sciences, University of the Pacific, Stockton, California, United States
| |
Collapse
|
5
|
Ojha U, Ogunmwonyi I, Xiang J, Ojha H. Gene Mutations in Cushing's Syndrome. Mol Syndromol 2023; 13:459-470. [PMID: 36660032 PMCID: PMC9843556 DOI: 10.1159/000524267] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/23/2022] [Indexed: 01/22/2023] Open
Abstract
Background Prolonged exposure to glucocorticoids can result in the development of Cushing's syndrome. Excess serum cortisol can occur due to several factors including exogenous steroids, pituitary and adrenal adenoma, and ectopic ACTH secretion. Summary The last 2 decades have seen significant progress in identifying new genetic and molecular mechanisms underlying hypercortisolemia. This has implicated mutations seen in a multitude of aberrant pathways that underpin the pathophysiology of Cushing's syndrome. Key Messages There is much overlap between the different, with mutations affecting well-understood molecular pathways such as the cAMP/PKA/MAPK and Wnt signalling systems. Further work should delineate the exact involvement of specific mutations in Cushing's syndrome and the effect of epigenetic/microenvironmental interactions. This could have implications for screening, as the identification of specific mutations may lead to earlier identification and subsequently improved prognosis.
Collapse
Affiliation(s)
- Utkarsh Ojha
- Royal Brompton & Harefield Hospitals, Uxbridge, UK,*Utkarsh Ojha,
| | | | - Jinpo Xiang
- Royal Stoke University Hospital, Stoke-on-Trent, UK
| | | |
Collapse
|
6
|
Chen J, Zhang Y, Zhang M. Prenatal diagnosis and genetic counseling of a paternally inherited microduplication 18q11.1 to 18q11.2 in a chinese family. Mol Cytogenet 2022; 15:38. [PMID: 36050713 PMCID: PMC9434864 DOI: 10.1186/s13039-022-00617-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/22/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Copy number variants are a substantial source of pathogenic or normal genome variations. Chromosomal imbalances of several megabasepair are normally harmful for the affected person. Still, rarely reported are so-called "unbalanced chromosome abnormalities" (UBCAs), which are either losses or gains or equally large genomic regions, but the carrier is only minimally clinically affected even no clinically affected. The knowledge of such UBCAs is imperative also in noninvasive prenatal testing (NIPT) or chromosomal microarray analysis. CASE PRESENTATION A paternally inherited dup(18)(q11.1q11.2) was identified in a over two generations in a Chinese family. The affected region encompasses 25 genes, among which GATA6 is expressed in fetal endothelial cells and mesodermal cells. GATA6 duplications and /or mutations have been seen in cases with congenital heart disease but also non-affected individuals, suggesting incomplete penetrance and variable expressivity. CONCLUSIONS Duplications in the region of chromosome 18q11 have been rare reported previously in clinically healthy persons. Here a further family with an UBCA in 18q11 is added to the literature, suggesting a careful genetic counselling in prenatal diagnosis.
Collapse
Affiliation(s)
- Juan Chen
- Reproductive Medicine Center, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
- Prenatal Diagnosis Center, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
- Hubei Clinical Research Center for Reproductive Medicine, Shiyan, Hubei, People's Republic of China
- Biomedical Engineering College, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Ying Zhang
- Reproductive Medicine Center, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
- Prenatal Diagnosis Center, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
- Hubei Clinical Research Center for Reproductive Medicine, Shiyan, Hubei, People's Republic of China
- Biomedical Engineering College, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Mingxi Zhang
- Division of Cardiology, Department of Internal Medicine, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
7
|
Wang S, Bryan C, Xie J, Zhao H, Lin L, Tai JAC, Horzmann KA, Sanchez O, Zhang M, Freeman JL, Yuan C. Atrazine exposure in zebrafish induces aberrant genome-wide methylation. Neurotoxicol Teratol 2022; 92:107091. [DOI: 10.1016/j.ntt.2022.107091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/30/2022] [Accepted: 04/18/2022] [Indexed: 01/19/2023]
|
8
|
Zhang X, Li TY, Xiao HM, Ehrlich KC, Shen H, Deng HW, Ehrlich M. Epigenomic and Transcriptomic Prioritization of Candidate Obesity-Risk Regulatory GWAS SNPs. Int J Mol Sci 2022; 23:1271. [PMID: 35163195 PMCID: PMC8836216 DOI: 10.3390/ijms23031271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
Concern about rising rates of obesity has prompted searches for obesity-related single nucleotide polymorphisms (SNPs) in genome-wide association studies (GWAS). Identifying plausible regulatory SNPs is very difficult partially because of linkage disequilibrium. We used an unusual epigenomic and transcriptomic analysis of obesity GWAS-derived SNPs in adipose versus heterologous tissues. From 50 GWAS and 121,064 expanded SNPs, we prioritized 47 potential causal regulatory SNPs (Tier-1 SNPs) for 14 gene loci. A detailed examination of seven loci revealed that four (CABLES1, PC, PEMT, and FAM13A) had Tier-1 SNPs positioned so that they could regulate use of alternative transcription start sites, resulting in different polypeptides being generated or different amounts of an intronic microRNA gene being expressed. HOXA11 and long noncoding RNA gene RP11-392O17.1 had Tier-1 SNPs in their 3' or promoter region, respectively, and strong preferences for expression in subcutaneous versus visceral adipose tissue. ZBED3-AS1 had two intragenic Tier-1 SNPs, each of which could contribute to mediating obesity risk through modulating long-distance chromatin interactions. Our approach not only revealed especially credible novel regulatory SNPs, but also helped evaluate previously highlighted obesity GWAS SNPs that were candidates for transcription regulation.
Collapse
Affiliation(s)
- Xiao Zhang
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (X.Z.); (K.C.E.); (H.S.)
| | - Tian-Ying Li
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha 410013, China; (T.-Y.L.); (H.-M.X.)
| | - Hong-Mei Xiao
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha 410013, China; (T.-Y.L.); (H.-M.X.)
| | - Kenneth C. Ehrlich
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (X.Z.); (K.C.E.); (H.S.)
| | - Hui Shen
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (X.Z.); (K.C.E.); (H.S.)
| | - Hong-Wen Deng
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (X.Z.); (K.C.E.); (H.S.)
| | - Melanie Ehrlich
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (X.Z.); (K.C.E.); (H.S.)
- Tulane Cancer Center and Hayward Genetics Center, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
9
|
Huang T, Pu Y, Song C, Sheng Z, Hu X. A quantitative trait locus on chromosome 2 was identified that accounts for a substantial proportion of phenotypic variance of the yellow plumage color in chicken. Poult Sci 2020; 99:2902-2910. [PMID: 32475423 PMCID: PMC7597730 DOI: 10.1016/j.psj.2020.01.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/02/2019] [Accepted: 01/01/2020] [Indexed: 12/12/2022] Open
Abstract
Chicken plumage color is an important economical trait in poultry breeding, as triple-yellow indigenous broilers are preferred over western commercial broilers in the Chinese market. However, the studies on the pigmentation of plumage coloration are relatively rare at present. Here, we performed a genome-wide mapping study on an F2 intercross, whose 2 founders were one hybrid commercial line “High Quality chicken Line A” that originated from the Anak red chicken and one indigenous line “Huiyang Beard” chicken that is a classical “triple-yellow” Chinese indigenous breed. Moreover, we used an automatic colorimeter that can quantitatively assess the colorations in L∗, a∗, and b∗ values. One major quantitative trait locus (QTL) on chromosome 2 was thus identified by both genome-wide association and linkage analyses, which could explain 10 to 20% of the total phenotypic variance of the b∗ measurements of the back plumage color. Using linkage analysis, 2 additional QTL on chromosome 1 and 20 were also found to be significantly associated with the plumage coloration in this cross. With additional samples from Anak red and Huiyang Beard chickens as well as pooled resequencing data from the 2 founders of this cross, we then further narrowed down the QTL regions and identified several candidate genes, such as CABLES1, CHST11, BCL2L1, and CHD22. As the effects of QTL found in this study were substantial, quantitatively measuring the coloration rather than the descriptive measurements provides stronger statistical power for the analyses. In addition, this major QTL on chromosome 2 that was associated with feather pigmentation at the genome-wide level will facilitate the future chicken breeding for yellow plumage color. In conclusions, we mapped 3 associated QTL on chromosome 1, 2, and 20. The candidate genes identified in this study shed light in the genetic basis of yellow plumage color in chicken.
Collapse
Affiliation(s)
- Tao Huang
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, Hubei Province, China; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Yuejin Pu
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, Hubei Province, China
| | - Chi Song
- State Key Laboratory for Agro-Biotechnology, China Agricultural University, Beijing, China
| | - Zheya Sheng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, China.
| | - Xiaoxiang Hu
- State Key Laboratory for Agro-Biotechnology, China Agricultural University, Beijing, China.
| |
Collapse
|
10
|
Quandt E, Ribeiro MPC, Clotet J. Atypical cyclins: the extended family portrait. Cell Mol Life Sci 2020; 77:231-242. [PMID: 31420702 PMCID: PMC6971155 DOI: 10.1007/s00018-019-03262-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 12/12/2022]
Abstract
Regulation of cell division is orchestrated by cyclins, which bind and activate their catalytic workmates, the cyclin-dependent kinases (CDKs). Cyclins have been traditionally defined by an oscillating (cyclic) pattern of expression and by the presence of a characteristic "cyclin box" that determines binding to the CDKs. Noteworthy, the Human Genome Sequence Project unveiled the existence of several other proteins containing the "cyclin box" domain. These potential "cyclins" have been named new, orphan or atypical, creating a conundrum in cyclins nomenclature. Moreover, although many years have passed after their discovery, the scarcity of information regarding these possible members of the family has hampered the establishment of criteria for systematization. Here, we discuss the criteria that define cyclins and we propose a classification and nomenclature update based on structural features, interactors, and phylogenetic information. The application of these criteria allows to systematically define, for the first time, the subfamily of atypical cyclins and enables the use of a common nomenclature for this extended family.
Collapse
Affiliation(s)
- Eva Quandt
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta, s/n, Sant Cugat del Vallès, 08195, Barcelona, Spain
| | - Mariana P C Ribeiro
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta, s/n, Sant Cugat del Vallès, 08195, Barcelona, Spain.
| | - Josep Clotet
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta, s/n, Sant Cugat del Vallès, 08195, Barcelona, Spain.
| |
Collapse
|
11
|
Prince GMSH, Yang TY, Lin H, Chen MC. Mechanistic insight of cyclin-dependent kinase 5 in modulating lung cancer growth. CHINESE J PHYSIOL 2019; 62:231-240. [PMID: 31793458 DOI: 10.4103/cjp.cjp_67_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Lung harbors the growth of primary and secondary tumors. Even though numerous factors regulate the complex signal transduction and cytoskeletal remodeling toward the progression of lung cancer, cyclin-dependent kinase 5 (Cdk5), a previously known kinase in the central nervous system, has raised much attention in the recent years. Patients with aberrant Cdk5 expression also lead to poor survival. Cdk5 has already been employed in various cellular processes which shape the fate of cancer. In lung cancer, Cdk5 mainly regulates tumor suppressor genes, carcinogenesis, cytoskeletal remodeling, and immune checkpoints. Inhibiting Cdk5 by using drugs, siRNA or CRISP-Cas9 system has rendered crucial therapeutic advantage in the combat against lung cancer. Thus, the relation of Cdk5 to lung cancer needs to be addressed in detail. In this review, we will discuss various cellular events modulated by Cdk5 and we will go further into their underlying mechanism in lung cancer.
Collapse
Affiliation(s)
| | - Tsung-Ying Yang
- Department of Internal Medicine, Division of Chest Medicine, Taichung Veterans General Hospital, Taichung; Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ho Lin
- Department of Life Sciences; Program in Translational Medicine and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Mei-Chih Chen
- Department of Nursing, Asia University; Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
12
|
Eleuteri S, Fierabracci A. Insights into the Secretome of Mesenchymal Stem Cells and Its Potential Applications. Int J Mol Sci 2019; 20:ijms20184597. [PMID: 31533317 PMCID: PMC6770239 DOI: 10.3390/ijms20184597] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have regenerative, immunoregulatory properties and can be easily isolated and expanded in vitro. Despite being a powerful tool for clinical applications, they present limitations in terms of delivery, safety, and variability of therapeutic response. Interestingly, the MSC secretome composed by cytokines, chemokines, growth factors, proteins, and extracellular vesicles, could represent a valid alternative to their use. It is noteworthy that MSC-derived extracellular vesicles (MSC-EVs) have the same effect and could be advantageous compared to the parental cells because of their specific miRNAs load. MiRNAs could be useful both in diagnostic procedures such as “liquid biopsy” to identify early pathologies and in the therapeutic field. Not only are MSC-EVs’ preservation, transfer, and production easier, but their administration is also safer, hence some clinical trials are ongoing. However, much effort is required to improve the characterization of EVs to avoid artifacts and guarantee reproducibility of the studies.
Collapse
Affiliation(s)
- Sharon Eleuteri
- Infectivology and Clinical Trials Area, Children's Hospital Bambino Gesù, Viale San Paolo 15, 00146 Rome, Italy.
| | - Alessandra Fierabracci
- Infectivology and Clinical Trials Area, Children's Hospital Bambino Gesù, Viale San Paolo 15, 00146 Rome, Italy.
| |
Collapse
|
13
|
CABLES1 Deficiency Impairs Quiescence and Stress Responses of Hematopoietic Stem Cells in Intrinsic and Extrinsic Manners. Stem Cell Reports 2019; 13:274-290. [PMID: 31327733 PMCID: PMC6700604 DOI: 10.1016/j.stemcr.2019.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/20/2022] Open
Abstract
Bone marrow (BM) niche cells help to keep adult hematopoietic stem cells (HSCs) in a quiescent state via secreted factors and induction of cell-cycle inhibitors. Here, we demonstrate that the adapter protein CABLES1 is a key regulator of long-term hematopoietic homeostasis during stress and aging. Young mice lacking Cables1 displayed hyperproliferation of hematopoietic progenitor cells. This defect was cell intrinsic, since it was reproduced in BM transplantation assays using wild-type animals as recipients. Overexpression and short hairpin RNA-mediated depletion of CABLES1 protein resulted in p21Cip/waf up- and downregulation, respectively. Aged mice lacking Cables1 displayed abnormalities in peripheral blood cell counts accompanied by a significant reduction in HSC compartment, concomitant with an increased mobilization of progenitor cells. In addition, Cables1−/− mice displayed increased sensitivity to the chemotherapeutic agent 5-fluorouracil due to an abnormal microenvironment. Altogether, our findings uncover a key role for CABLES1 in HSC homeostasis and stress hematopoiesis. CABLES1 is expressed in immature hematopoietic progenitor cells and niche cells CABLES1 in an intrinsic negative cell-cycle regulator of hematopoietic progenitor cells CABLES1 regulates p21Cip/waf protein levels The abnormal stress responses of Cables1−/− HSC during aging are niche cell dependent
Collapse
|
14
|
Selective 14-3-3γ Upregulation Promotes Beclin-1-LC3-Autophagic Influx via β-Catenin Interaction in Starved Neurons In Vitro and In Vivo. Neurochem Res 2019; 44:849-858. [DOI: 10.1007/s11064-019-02717-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 01/02/2019] [Indexed: 12/30/2022]
|
15
|
Abstract
The knowledge on the molecular and genetic causes of Cushing's syndrome (CS) has greatly increased in the recent years. Somatic mutations leading to overactive 3',5'-cyclic adenosine monophosphate/protein kinase A and wingless-type MMTV integration site family/beta-catenin pathways are the main molecular mechanisms underlying adrenocortical tumorigenesis. Corticotropinomas are characterized by resistance to glucocorticoid negative feedback, impaired cell cycle control and overexpression of pathways sustaining ACTH secretion. Recognizing the genetic defects behind corticotroph and adrenocortical tumorigenesis proves crucial for tailoring the clinical management of CS patients and for designing strategies for genetic counseling and clinical screening to be applied in routine medical practice.
Collapse
Affiliation(s)
- Laura C Hernández-Ramírez
- Section on Endocrinology and Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 10 Center Drive, CRC, Room 1E-3216, Bethesda, MD 20892-1862, USA
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 10 Center Drive, CRC, Room 1E-3216, Bethesda, MD 20892-1862, USA.
| |
Collapse
|
16
|
Genome-wide association analysis identifies new candidate risk loci for familial intracranial aneurysm in the French-Canadian population. Sci Rep 2018. [PMID: 29531279 PMCID: PMC5847615 DOI: 10.1038/s41598-018-21603-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Intracranial Aneurysm (IA) is a common disease with a worldwide prevalence of 1–3%. In the French-Canadian (FC) population, where there is an important founder effect, the incidence of IA is higher and is frequently seen in families. In this study, we genotyped a cohort of 257 mostly familial FC IA patients and 1,992 FC controls using the Illumina NeuroX SNP-chip. The most strongly associated loci were tested in 34 Inuit IA families and in 32 FC IA patients and 106 FC controls that had been exome sequenced (WES). After imputation, one locus at 3p14.2 (FHIT, rs1554600, p = 4.66 × 10–9) reached a genome-wide significant level of association and a subsequent validation in Nunavik Inuit cohort further confirmed the significance of the FHIT variant association (rs780365, FBAT-O, p = 0.002839). Additionally, among the other promising loci (p < 5 × 10−6), the one at 3q13.2 (rs78125721, p = 4.77 × 10−7), which encompasses CCDC80, also showed an increased mutation burden in the WES data (CCDC80, SKAT-O, p = 0.0005). In this study, we identified two new potential IA loci in the FC population: FHIT, which is significantly associated with hypertensive IA, and CCDC80, which has potential genetic and functional relevance to IA pathogenesis, providing evidence on the additional risk loci for familial IA. We also replicated the previous IA GWAS risk locus 18q11.2, and suggested a potential locus at 8p23.1 that warrants further study.
Collapse
|