1
|
Kojima A, Nadai M, Murayama N, Yamazaki H, Katoh M. Effects of tyrosine kinase inhibitors used for the treatment of non-small cell lung carcinoma on cytochrome P450 2J2 activities. Xenobiotica 2024:1-6. [PMID: 39105612 DOI: 10.1080/00498254.2024.2389401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/07/2024]
Abstract
Cytochrome P450 (CYP) 2J2 is responsible for the epoxidation of arachidonic acid, producing epoxyeicosatrienoic acids (EETs) that are known to enhance tumorigenesis. CYP2J2 is prominently expressed in the heart and also found in the lungs. Furthermore, the expression level of CYP2J2 in tumour tissues is higher than that in adjacent normal tissues. Non-small cell lung carcinoma is a common cancer, and tyrosine kinase inhibitors (TKIs) are powerful tools for its treatment. This study aimed to elucidate the inhibitory effects of 17 TKIs on CYP2J2 activity using LC-MS/MS.Seventeen TKIs exhibited different inhibitory effects on CYP2J2-catalysed astemizole O-demethylation in recombinant CYP2J2. Pralsetinib and selpercatinib showed strong competitive inhibition, with inhibition constant values of 0.48 and 1.1 µM, respectively. They also inhibited other CYP2J2 activities, including arachidonic acid epoxidation, hydroxyebastine carboxylation, and rivaroxaban hydroxylation.In conclusion, we showed that pralsetinib and selpercatinib strongly inhibit CYP2J2 activity. Inhibition of 14,15-EET production by these TKIs may be a novel mechanism for suppressing tumour growth and proliferation. Additionally, when these TKIs are co-administered with a CYP2J2 substrate, we may consider the possibility of drug-drug interactions via CYP2J2 inhibition.
Collapse
Affiliation(s)
- Ayaka Kojima
- Laboratory of Pharmaceutics, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Masayuki Nadai
- Laboratory of Pharmaceutics, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan
| | - Miki Katoh
- Laboratory of Pharmaceutics, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| |
Collapse
|
2
|
Krüger-Genge A, Köhler S, Laube M, Haileka V, Lemm S, Majchrzak K, Kammerer S, Schulz C, Storsberg J, Pietzsch J, Küpper JH, Jung F. Anti-Cancer Prodrug Cyclophosphamide Exerts Thrombogenic Effects on Human Venous Endothelial Cells Independent of CYP450 Activation-Relevance to Thrombosis. Cells 2023; 12:1965. [PMID: 37566045 PMCID: PMC10416884 DOI: 10.3390/cells12151965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/09/2023] [Accepted: 07/13/2023] [Indexed: 08/12/2023] Open
Abstract
Cancer patients are at a very high risk of serious thrombotic events, often fatal. The causes discussed include the detachment of thrombogenic particles from tumor cells or the adverse effects of chemotherapeutic agents. Cytostatic agents can either act directly on their targets or, in the case of a prodrug approach, require metabolization for their action. Cyclophosphamide (CPA) is a widely used cytostatic drug that requires prodrug activation by cytochrome P450 enzymes (CYP) in the liver. We hypothesize that CPA could induce thrombosis in one of the following ways: (1) damage to endothelial cells (EC) after intra-endothelial metabolization; or (2) direct damage to EC without prior metabolization. In order to investigate this hypothesis, endothelial cells (HUVEC) were treated with CPA in clinically relevant concentrations for up to 8 days. HUVECs were chosen as a model representing the first place of action after intravenous CPA administration. No expression of CYP2B6, CYP3A4, CYP2C9 and CYP2C19 was found in HUVEC, but a weak expression of CYP2C18 was observed. CPA treatment of HUVEC induced DNA damage and a reduced formation of an EC monolayer and caused an increased release of prostacyclin (PGI2) and thromboxane (TXA) associated with a shift of the PGI2/TXA balance to a prothrombotic state. In an in vivo scenario, such processes would promote the risk of thrombus formation.
Collapse
Affiliation(s)
- Anne Krüger-Genge
- Department of Healthcare, Biomaterials and Cosmeceuticals, Fraunhofer Institute for Applied Polymer Research (IAP), 14476 Potsdam, Germany
| | - Susanne Köhler
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
| | - Markus Laube
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Vanessa Haileka
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
| | - Sandy Lemm
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, 01069 Dresden, Germany
| | - Karolina Majchrzak
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
| | - Sarah Kammerer
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
| | - Christian Schulz
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
- Brandenburg University of Technology Cottbus-Senftenberg, Fraunhofer Project Group PZ-Syn of the Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), 14476 Potsdam, Germany
| | - Joachim Storsberg
- Department of Healthcare, Biomaterials and Cosmeceuticals, Fraunhofer Institute for Applied Polymer Research (IAP), 14476 Potsdam, Germany
- Faculty of Medicine, Private University in the Principality of Liechtenstein (UFL), 9495 Triesen, Liechtenstein
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, 01069 Dresden, Germany
| | - Jan-Heiner Küpper
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
| | - Friedrich Jung
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
| |
Collapse
|
3
|
Zhang Y, Gao L, Yao B, Huang S, Zhang Y, Liu J, Liu Z, Wang X. Role of epoxyeicosatrienoic acids in cardiovascular diseases and cardiotoxicity of drugs. Life Sci 2022; 310:121122. [DOI: 10.1016/j.lfs.2022.121122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022]
|
4
|
Alonso-Alvarez C, Andrade P, Cantarero A, Morales J, Carneiro M. Relocation to avoid costs: A hypothesis on red carotenoid-based signals based on recent CYP2J19 gene expression data. Bioessays 2022; 44:e2200037. [PMID: 36209392 DOI: 10.1002/bies.202200037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/25/2022] [Accepted: 09/22/2022] [Indexed: 11/11/2022]
Abstract
In many vertebrates, the enzymatic oxidation of dietary yellow carotenoids generates red keto-carotenoids giving color to ornaments. The oxidase CYP2J19 is here a key effector. Its purported intracellular location suggests a shared biochemical pathway between trait expression and cell functioning. This might guarantee the reliability of red colorations as individual quality signals independent of production costs. We hypothesize that the ornament type (feathers vs. bare parts) and production costs (probably CYP2J19 activity compromising vital functions) could have promoted tissue-specific gene relocation. We review current avian tissue-specific CYP2J19 expression data. Among the ten red-billed species showing CYP2J19 bill expression, only one showed strong hepatic expression. Moreover, a phylogenetically-controlled analysis of 25 red-colored species shows that those producing red bare parts are less likely to have strong hepatic CYP2J19 expression than species with only red plumages. Thus, both production costs and shared pathways might have contributed to the evolution of red signals.
Collapse
Affiliation(s)
- Carlos Alonso-Alvarez
- Department of Evolutionary Ecology, National Museum of Natural Sciences - CSIC. C/ José Gutiérrez Abascal 2, Madrid, Spain
| | - Pedro Andrade
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, Vairão, Portugal.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Alejandro Cantarero
- Department of Evolutionary Ecology, National Museum of Natural Sciences - CSIC. C/ José Gutiérrez Abascal 2, Madrid, Spain.,Department of Physiology, Veterinary School, Complutense University of Madrid, Madrid, Spain
| | - Judith Morales
- Department of Evolutionary Ecology, National Museum of Natural Sciences - CSIC. C/ José Gutiérrez Abascal 2, Madrid, Spain
| | - Miguel Carneiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, Vairão, Portugal.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| |
Collapse
|
5
|
Shi Z, He Z, Wang DW. CYP450 Epoxygenase Metabolites, Epoxyeicosatrienoic Acids, as Novel Anti-Inflammatory Mediators. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123873. [PMID: 35744996 PMCID: PMC9230517 DOI: 10.3390/molecules27123873] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 12/25/2022]
Abstract
Inflammation plays a crucial role in the initiation and development of a wide range of systemic illnesses. Epoxyeicosatrienoic acids (EETs) are derived from arachidonic acid (AA) metabolized by CYP450 epoxygenase (CYP450) and are subsequently hydrolyzed by soluble epoxide hydrolase (sEH) to dihydroxyeicosatrienoic acids (DHETs), which are merely biologically active. EETs possess a wide range of established protective effects on many systems of which anti-inflammatory actions have gained great interest. EETs attenuate vascular inflammation and remodeling by inhibiting activation of endothelial cells and reducing cross-talk between inflammatory cells and blood vessels. EETs also process direct and indirect anti-inflammatory properties in the myocardium and therefore alleviate inflammatory cardiomyopathy and cardiac remodeling. Moreover, emerging studies show the substantial roles of EETs in relieving inflammation under other pathophysiological environments, such as diabetes, sepsis, lung injuries, neurodegenerative disease, hepatic diseases, kidney injury, and arthritis. Furthermore, pharmacological manipulations of the AA-CYP450-EETs-sEH pathway have demonstrated a contribution to the alleviation of numerous inflammatory diseases, which highlight a therapeutic potential of drugs targeting this pathway. This review summarizes the progress of AA-CYP450-EETs-sEH pathway in regulation of inflammation under different pathological conditions and discusses the existing challenges and future direction of this research field.
Collapse
Affiliation(s)
- Zeqi Shi
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan 430030, China;
| | - Zuowen He
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan 430030, China;
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (Z.H.); (D.W.W.)
| | - Dao Wen Wang
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan 430030, China;
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (Z.H.); (D.W.W.)
| |
Collapse
|
6
|
He Z, Wang DW. The roles of eicosanoids in myocardial diseases. ADVANCES IN PHARMACOLOGY 2022; 97:167-200. [DOI: 10.1016/bs.apha.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Pidkovka N, Rachkevych O, Belkhiri A. Extrahepatic cytochrome P450 epoxygenases: pathophysiology and clinical significance in human gastrointestinal cancers. Oncotarget 2021; 12:379-391. [PMID: 33659048 PMCID: PMC7899545 DOI: 10.18632/oncotarget.27893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/01/2021] [Indexed: 12/29/2022] Open
Abstract
Cytochrome P450 (CYP) epoxygenases, a multi-gene superfamily of heme-containing enzymes, are commonly known to metabolize endogenous arachidonic acid (AA) to epoxyeicosatrienoic acids (EETs). The role of CYPs is mostly studied in liver drugs metabolism, cardiac pathophysiology, and hypertension fields. Particularly, the biological functions of these enzymes have increasingly attracted a growing interest in cancer biology. Most published studies on CYPs in cancer have been limited to their role as drug metabolizing systems. The activity of these enzymes may affect drug pharmacokinetics and bioavailability as well as exogenous compounds turnover. Some CYP isoforms are selectively highly expressed in tumors, suggesting a potential mechanistic role in promoting resistance to chemotherapy. Majority of drugs elicit their effects in extrahepatic tissues whereby their metabolism can significantly determine treatment outcome. Nonetheless, the role of extrahepatic CYPs is not fully understood and targeting these enzymes as effective anti-cancer therapies are yet to be developed. This review article summarizes an up-to-date body of information from published studies on CYP enzymes expression levels and pathophysiological functions in human normal and malignant gastrointestinal (GI) tract tissues. Specifically, we reviewed and discussed the current research initiatives by emphasizing on the clinical significance and the pathological implication of CYPs in GI malignancies of esophagus, stomach, and colon.
Collapse
Affiliation(s)
| | - Olena Rachkevych
- Department of Obstetrics and Gynecology, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Abbes Belkhiri
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
8
|
Fanni D, Pinna F, Gerosa C, Paribello P, Carpiniello B, Faa G, Manchia M. Anatomical distribution and expression of CYP in humans: Neuropharmacological implications. Drug Dev Res 2021; 82:628-667. [PMID: 33533102 DOI: 10.1002/ddr.21778] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022]
Abstract
The cytochrome P450 (CYP450) superfamily is responsible for the metabolism of most xenobiotics and pharmacological treatments generally used in clinical settings. Genetic factors as well as environmental determinants acting through fine epigenetic mechanisms modulate the expression of CYP over the lifespan (fetal vs. infancy vs. adult phases) and in diverse organs. In addition, pathological processes might alter the expression of CYP. In this selective review, we sought to summarize the evidence on the expression of CYP focusing on three specific aspects: (a) the anatomical distribution of the expression in body districts relevant in terms of drug pharmacokinetics (liver, gut, and kidney) and pharmacodynamics, focusing for the latter on the brain, since this is the target organ of psychopharmacological agents; (b) the patterns of expression during developmental phases; and (c) the expression of CYP450 enzymes during pathological processes such as cancer. We showed that CYP isoforms show distinct patterns of expression depending on the body district and the specific developmental phases. Of particular relevance for neuropsychopharmacology is the complex regulatory mechanisms that significantly modulate the complexity of the pharmacokinetic regulation, including the concentration of specific CYP isoforms in distinct areas of the brain, where they could greatly affect local substrate and metabolite concentrations of drugs.
Collapse
Affiliation(s)
- Daniela Fanni
- Unit of Anatomic Pathology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Anatomic Pathology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Federica Pinna
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Clara Gerosa
- Unit of Anatomic Pathology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Anatomic Pathology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Pasquale Paribello
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Bernardo Carpiniello
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Gavino Faa
- Unit of Anatomic Pathology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Anatomic Pathology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy.,Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
9
|
Das A, Weigle AT, Arnold WR, Kim JS, Carnevale LN, Huff HC. CYP2J2 Molecular Recognition: A New Axis for Therapeutic Design. Pharmacol Ther 2020; 215:107601. [PMID: 32534953 PMCID: PMC7773148 DOI: 10.1016/j.pharmthera.2020.107601] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/28/2020] [Indexed: 12/11/2022]
Abstract
Cytochrome P450 (CYP) epoxygenases are a special subset of heme-containing CYP enzymes capable of performing the epoxidation of polyunsaturated fatty acids (PUFA) and the metabolism of xenobiotics. This dual functionality positions epoxygenases along a metabolic crossroad. Therefore, structure-function studies are critical for understanding their role in bioactive oxy-lipid synthesis, drug-PUFA interactions, and for designing therapeutics that directly target the epoxygenases. To better exploit CYP epoxygenases as therapeutic targets, there is a need for improved understanding of epoxygenase structure-function. Of the characterized epoxygenases, human CYP2J2 stands out as a potential target because of its role in cardiovascular physiology. In this review, the early research on the discovery and activity of epoxygenases is contextualized to more recent advances in CYP epoxygenase enzymology with respect to PUFA and drug metabolism. Additionally, this review employs CYP2J2 epoxygenase as a model system to highlight both the seminal works and recent advances in epoxygenase enzymology. Herein we cover CYP2J2's interactions with PUFAs and xenobiotics, its tissue-specific physiological roles in diseased states, and its structural features that enable epoxygenase function. Additionally, the enumeration of research on CYP2J2 identifies the future needs for the molecular characterization of CYP2J2 to enable a new axis of therapeutic design.
Collapse
Affiliation(s)
- Aditi Das
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Computational Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Department of Bioengineering, Neuroscience Program, Beckman Institute for Advanced Science and Technology, Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| | - Austin T Weigle
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - William R Arnold
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Justin S Kim
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Lauren N Carnevale
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Hannah C Huff
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
10
|
Li AP, Ho MD, Alam N, Mitchell W, Wong S, Yan Z, Kenny JR, E. C. A. Hop C. Inter-individual and inter-regional variations in enteric drug metabolizing enzyme activities: Results with cryopreserved human intestinal mucosal epithelia (CHIM) from the small intestines of 14 donors. Pharmacol Res Perspect 2020; 8:e00645. [PMID: 32851819 PMCID: PMC7449955 DOI: 10.1002/prp2.645] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 11/10/2022] Open
Abstract
We have previously reported successful isolation and cryopreservation of human intestinal mucosa (CHIM) with retention of viability and drug metabolizing enzyme activities. Here we report the results of the quantification of drug metabolizing enzyme activities in CHIM from different regions of the small intestines from 14 individual donors. CHIM were isolated from the duodenum, jejunum, and ileum of 10 individuals, and from 10 consecutive 12-inch segments starting from the pyloric sphincter of human small intestines from four additional individuals. P450 and non-P450 drug metabolizing enzyme activities (CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A, UGT, SULT, FMO, MAO, AO, NAT1, and NAT2) were quantified via incubation with pathway-selective substrates. Quantifiable activities were observed for all pathways except for CYP2A6. Comparison of the duodenum, jejunum, and ileum in 10 donors shows jejunum had higher activities for CYP2C9, CYP3A, UGT, SULT, MAO, and NAT1. Further definition of regional variations with CHIM from ten 12-inch segments of the proximal small intestine shows that the segments immediately after the first 12-inch segment (duodenum) had the highest activity for most of the drug metabolizing enzymes but with substantial differences among the four donors. Our overall results demonstrate that there are substantial individual differences in drug metabolizing enzymes and that jejunum, especially the regions immediately after the duodenum, had the highest drug metabolizing enzyme activities.
Collapse
Affiliation(s)
| | | | - Novera Alam
- In Vitro ADMET Laboratories, Inc.ColumbiaMDUSA
| | | | | | | | | | | |
Collapse
|
11
|
Evangelista EA, Cho CW, Aliwarga T, Totah RA. Expression and Function of Eicosanoid-Producing Cytochrome P450 Enzymes in Solid Tumors. Front Pharmacol 2020; 11:828. [PMID: 32581794 PMCID: PMC7295938 DOI: 10.3389/fphar.2020.00828] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022] Open
Abstract
Oxylipins derived from the oxidation of polyunsaturated fatty acids (PUFAs) act as important paracrine and autocrine signaling molecules. A subclass of oxylipins, the eicosanoids, have a broad range of physiological outcomes in inflammation, the immune response, cardiovascular homeostasis, and cell growth regulation. Consequently, eicosanoids are implicated in the pathophysiology of various diseases, most notably cancer, where eicosanoid mediated signaling is involved in tumor development, progression, and angiogenesis. Cytochrome P450s (CYPs) are a superfamily of heme monooxygenases generally involved in the clearance of xenobiotics while a subset of isozymes oxidize PUFAs to eicosanoids. Several eicosanoid forming CYPs are overexpressed in tumors, elevating eicosanoid levels and suggesting a key function in tumorigenesis and progression of tumors in the lung, breast, prostate, and kidney. This review summarizes the current understanding of CYPs' involvement in solid tumor etiology and progression providing supporting public data for gene expression from The Cancer Genome Atlas.
Collapse
Affiliation(s)
- Eric A Evangelista
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA, United States
| | - Christi W Cho
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, United States
| | - Theresa Aliwarga
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, United States
| | - Rheem A Totah
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA, United States
| |
Collapse
|
12
|
A Pilot Study towards the Impact of Type 2 Diabetes on the Expression and Activities of Drug Metabolizing Enzymes and Transporters in Human Duodenum. Int J Mol Sci 2019; 20:ijms20133257. [PMID: 31269743 PMCID: PMC6651059 DOI: 10.3390/ijms20133257] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/13/2019] [Accepted: 06/21/2019] [Indexed: 12/24/2022] Open
Abstract
To characterize effects of type 2 diabetes (T2D) on mRNA expression levels for 10 Cytochromes P450 (CYP450s), two carboxylesterases, and three drug transporters (ABCB1, ABCG2, SLCO2B1) in human duodenal biopsies. To compare drug metabolizing enzyme activities of four CYP450 isoenzymes in duodenal biopsies from patients with or without T2D. mRNA levels were quantified (RT-qPCR) in human duodenal biopsies obtained from patients with (n = 20) or without (n = 16) T2D undergoing a scheduled gastro-intestinal endoscopy. CYP450 activities were determined following incubation of biopsy homogenates with probe substrates for CYP2B6 (bupropion), CYP2C9 (tolbutamide), CYP2J2 (ebastine), and CYP3A4/5 (midazolam). Covariables related to inflammation, T2D, demographic, and genetics were investigated. T2D had no major effects on mRNA levels of all enzymes and transporters assessed. Formation rates of metabolites (pmoles mg protein−1 min−1) determined by LC-MS/MS for CYP2C9 (0.48 ± 0.26 vs. 0.41 ± 0.12), CYP2J2 (2.16 ± 1.70 vs. 1.69 ± 0.93), and CYP3A (5.25 ± 3.72 vs. 5.02 ± 4.76) were not different between biopsies obtained from individuals with or without T2D (p > 0.05). No CYP2B6 specific activity was measured. TNF-α levels were higher in T2D patients but did not correlate with any changes in mRNA expression levels for drug metabolizing enzymes or transporters in the duodenum. T2D did not modulate expression or activity of tested drug metabolizing enzymes and transporters in the human duodenum. Previously reported changes in drug oral clearances in patients with T2D could be due to a tissue-specific disease modulation occurring in the liver and/or in other parts of the intestines.
Collapse
|
13
|
Ikemura N, Yamaori S, Kobayashi C, Kamijo S, Murayama N, Yamazaki H, Ohmori S. Inhibitory effects of antihypertensive drugs on human cytochrome P450 2J2 activity: Potent inhibition by azelnidipine and manidipine. Chem Biol Interact 2019; 306:1-9. [DOI: 10.1016/j.cbi.2019.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/25/2019] [Accepted: 04/02/2019] [Indexed: 12/24/2022]
|
14
|
Cizkova K, Tauber Z. Time-dependent expression pattern of cytochrome P450 epoxygenases and soluble epoxide hydrolase in normal human placenta. Acta Histochem 2018; 120:513-519. [PMID: 29908721 DOI: 10.1016/j.acthis.2018.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/06/2018] [Accepted: 06/08/2018] [Indexed: 11/17/2022]
Abstract
CYP2C and CYP2 J enzymes, commonly named as cytochrome P450 (CYP) epoxygenases, convert arachidonic acid to four regioisomeric epoxyeicosatrienoic acids (EETs), biologically active eicosanoids with many functions in organism. EETs are rapidly hydrolysed to less active dihydroxyeicosatrienoic acids (DHETs) by soluble epoxide hydrolase (sEH). We investigated spatio-temporal expression pattern of CYP2C8, CYP2C9, CYP2 J2 and sEH in normal human placenta by immunohistochemical method. In the villous trophoblast, CYP2C8 was the most abundant protein. Its expression is higher than the CYP2C9 and CYP2 J2 in the cytotrophoblast in the embryonic stage of development and remains higher in syncytiotrophoblast of term placenta. Unlike to CYP2C8, CYP2C9 and CYP2 J2 expression decrease in term placenta. sEH expression increases with gestation age and is strictly limited to cytotrophoblast in embryonic and foetal stages of the development. Moreover, CYP2C8 shows more intensive staining than the other protein monitored in Hofbauer cells in villous stroma. Specific information regarding the exact role of EETs and DHETs functions in a normal placenta is still unknown. Based on CYP epoxygenases and sEH localization and well known information about the functions of placental structures during development, we suggest that these enzymes could play different roles in various cell populations in the placenta. As the placenta is absolutely crucial for prenatal development, arachidonic acid is essential part of human nutrient and CYP epoxygenases expression can be affected by xenobiotics, further investigation of the exact role of CYP epoxygenases, sEH, and their metabolites in normal pregnancy and under pathological conditions is needed.
Collapse
Affiliation(s)
- K Cizkova
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University, 77900, Olomouc, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77900, Olomouc, Czech Republic.
| | - Z Tauber
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University, 77900, Olomouc, Czech Republic.
| |
Collapse
|
15
|
Lafite P, André F, Graves JP, Zeldin DC, Dansette PM, Mansuy D. Role of Arginine 117 in Substrate Recognition by Human Cytochrome P450 2J2. Int J Mol Sci 2018; 19:ijms19072066. [PMID: 30012976 PMCID: PMC6073854 DOI: 10.3390/ijms19072066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/06/2018] [Accepted: 07/13/2018] [Indexed: 01/10/2023] Open
Abstract
The influence of Arginine 117 of human cytochrome P450 2J2 in the recognition of ebastine and a series of terfenadone derivatives was studied by site-directed mutagenesis. R117K, R117E, and R117L mutants were produced, and the behavior of these mutants in the hydroxylation of ebastine and terfenadone derivatives was compared to that of wild-type CYP2J2. The data clearly showed the importance of the formation of a hydrogen bond between R117 and the keto group of these substrates. The data were interpreted on the basis of 3D homology models of the mutants and of dynamic docking of the substrates in their active site. These modeling studies also suggested the existence of a R117-E222 salt bridge between helices B’ and F that would be important for maintaining the overall folding of CYP2J2.
Collapse
Affiliation(s)
- Pierre Lafite
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR8601, Université Paris Descartes, 75270 Paris CEDEX 06, France.
| | - François André
- Institute for Integrative Biology of the Cell (I2BC), DRF/Joliot/SB2SM, CEA, CNRS, Université Paris-Saclay, F-91198 Gif-sur-Yvette CEDEX, France.
| | - Joan P Graves
- Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA.
| | - Darryl C Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA.
| | - Patrick M Dansette
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR8601, Université Paris Descartes, 75270 Paris CEDEX 06, France.
| | - Daniel Mansuy
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR8601, Université Paris Descartes, 75270 Paris CEDEX 06, France.
| |
Collapse
|
16
|
Lin HL, Zhang H, Hollenberg PF. Formation of Both Heme and Apoprotein Adducts Contributes to the Mechanism-Based Inactivation of Human CYP2J2 by 17 α-Ethynylestradiol. Drug Metab Dispos 2018; 46:813-822. [PMID: 29602797 DOI: 10.1124/dmd.118.080903] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 03/27/2018] [Indexed: 12/22/2022] Open
Abstract
17α-Ethynylestradiol (EE), a major component of many oral contraceptives, affects the activities of a number of the human cytochrome P450 (P450) enzymes. Here, we characterized the effect of EE on CYP2J2, a major human P450 isoform that participates in metabolism of arachidonic acid. EE inactivated the hydroxyebastine carboxylation activity of CYP2J2 in a reconstituted system. The loss of activity is time and concentration dependent and requires NADPH. The KI and kinact values for the inactivation were 3.6 μM and 0.08 minute-1, respectively. Inactivation of CYP2J2 by EE was due to formation of a heme adduct as well as an apoprotein adduct. Mass spectral analysis of CYP2J2 partially inactivated by EE showed two distinct protein masses in the deconvoluted spectrum that exhibited a mass difference of approximately 312 Da, which is equivalent to the sum of the mass of EE and one oxygen atom. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis revealed a heme adduct with MH+ ion at m/z 875.5, corresponding to alkylation of an iron-depleted prosthetic heme by EE plus one oxygen atom. The reactive intermediate responsible for covalently modifying both the prosthetic heme and apoprotein was characterized by trapping with glutathione (GSH). LC-MS/MS analysis revealed two GSH conjugate isomers with MH+ ions at m/z 620, which were formed by reaction between GSH and EE with the oxygen being added to either the internal or terminal carbon of the ethynyl moiety. High-pressure liquid chromatography analysis revealed that three other major metabolites were formed during EE metabolism by CYP2J2.
Collapse
Affiliation(s)
- Hsia-Lien Lin
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| | - Haoming Zhang
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| | - Paul F Hollenberg
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
17
|
Park SH, Lee J, Shon JC, Phuc NM, Jee JG, Liu KH. The inhibitory potential of Broussochalcone A for the human cytochrome P450 2J2 isoform and its anti-cancer effects via FOXO3 activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 42:199-206. [PMID: 29655687 DOI: 10.1016/j.phymed.2018.03.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 02/09/2018] [Accepted: 03/17/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Broussonetia papyrifera (L.) Ventenat, a traditional medicinal herb, has been applied as a folk medicine to treat various diseases. Broussochalcone A (BCA), a chalcone compound isolated from the cortex of Broussonetia papyrifera (L.) Ventenat, exhibits several biological activities including potent anti-oxidant, antiplatelet, and cytotoxic effects. PURPOSE The purpose of this study is to elucidate the inhibitory effect of BCA against CYP2J2 enzyme which is predominantly expressed in human tumor tissues and carcinoma cell lines. STUDY DESIGN The inhibitory effect of BCA on the activities of CYP2J2-mediated metabolism were investigated using human liver microsomes (HLMs), and its anti-cancer effect against human hepatoma HepG2 cells was also evaluated. METHODS Two representative CYP2J2-specific probe substrates, astemizole and ebastine, were incubated in HLMs with BCA. After incubation, the samples were analyzed using liquid chromatography-tandem mass spectrometry. To investigate the binding model between BCA and CYP2J2, we carried out structure-based docking simulations by using software and scripts written in-house. RESULTS BCA inhibited CYP2J2-mediated astemizole O-demethylation and ebastine hydroxylase activities in a concentration dependent manner with Ki values of 2.3 and 3.7 µM, respectively. It also showed cytotoxic effects against human hepatoma HepG2 cells in a dose-dependent manner with activation of apoptosis related proteins. CONCLUSION Overall, this was the first report of the inhibitory effects of BCA on CYP2J2 in HLMs. The present data suggest that BCA is a potential candidate for further evaluation for its CYP2J2 targeting anti-cancer activities.
Collapse
Affiliation(s)
- See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea
| | - Jongsung Lee
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jong Cheol Shon
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Nguyen Minh Phuc
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; Saokim Pharmaceutical Company, Hanoi, Vietnam
| | - Jun Goo Jee
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Kwang-Hyeon Liu
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
18
|
Evangelista EA, Lemaitre RN, Sotoodehnia N, Gharib SA, Totah RA. CYP2J2 Expression in Adult Ventricular Myocytes Protects Against Reactive Oxygen Species Toxicity. Drug Metab Dispos 2018; 46:380-386. [PMID: 29343610 DOI: 10.1124/dmd.117.078840] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/11/2018] [Indexed: 01/08/2023] Open
Abstract
Cytochrome P450 2J2 isoform (CYP2J2) is a drug-metabolizing enzyme that is highly expressed in adult ventricular myocytes. It is responsible for the bioactivation of arachidonic acid (AA) into epoxyeicosatrienoic acids (EETs). EETs are biologically active signaling compounds that protect against disease progression, particularly in cardiovascular diseases. As a drug-metabolizing enzyme, CYP2J2 is susceptible to drug interactions that could lead to cardiotoxicity. CYP2J2 has been shown to be resistant to induction by canonical CYP inducers such as phenytoin and rifampin. It is, however, unknown how cellular stresses augment CYP2J2 expression. Here, we determine the effects of oxidative stress on gene expression in adult ventricular myocytes. Further, we assess the consequences of CYP2J2 inhibition and CYP2J2 silencing on cells when levels of reactive oxygen species (ROS) are elevated. Findings indicate that CYP2J2 expression increases in response to external ROS or when internal ROS levels are elevated. In addition, cell survival decreases with ROS exposure when CYP2J2 is chemically inhibited or when CYP2J2 expression is reduced using small interfering RNA. These effects are mitigated with external addition of EETs to the cells. Finally, we determined the results of external EETs on gene expression and show that only two of the four regioisomers cause an increase in HMOX1 expression. This work is the first to determine the consequence of cellular stress, specifically high ROS levels, on CYP2J2 expression in human ventricular myocytes and discusses how this enzyme may play an important role in response to cardiac oxidative stress.
Collapse
Affiliation(s)
- Eric A Evangelista
- Department of Medicinal Chemistry (E.A.E., R.A.T.), Cardiovascular Health Research Unit, Department of Medicine (R.N.L., N.S.), Division of Cardiology (N.S.), and Computational Medicinal Core, Center for Lung Biology, Division of Pulmonary and Critical Care Medicine, Department of Medicine (S.A.G.), University of Washington, Seattle, Washington
| | - Rozenn N Lemaitre
- Department of Medicinal Chemistry (E.A.E., R.A.T.), Cardiovascular Health Research Unit, Department of Medicine (R.N.L., N.S.), Division of Cardiology (N.S.), and Computational Medicinal Core, Center for Lung Biology, Division of Pulmonary and Critical Care Medicine, Department of Medicine (S.A.G.), University of Washington, Seattle, Washington
| | - Nona Sotoodehnia
- Department of Medicinal Chemistry (E.A.E., R.A.T.), Cardiovascular Health Research Unit, Department of Medicine (R.N.L., N.S.), Division of Cardiology (N.S.), and Computational Medicinal Core, Center for Lung Biology, Division of Pulmonary and Critical Care Medicine, Department of Medicine (S.A.G.), University of Washington, Seattle, Washington
| | - Sina A Gharib
- Department of Medicinal Chemistry (E.A.E., R.A.T.), Cardiovascular Health Research Unit, Department of Medicine (R.N.L., N.S.), Division of Cardiology (N.S.), and Computational Medicinal Core, Center for Lung Biology, Division of Pulmonary and Critical Care Medicine, Department of Medicine (S.A.G.), University of Washington, Seattle, Washington
| | - Rheem A Totah
- Department of Medicinal Chemistry (E.A.E., R.A.T.), Cardiovascular Health Research Unit, Department of Medicine (R.N.L., N.S.), Division of Cardiology (N.S.), and Computational Medicinal Core, Center for Lung Biology, Division of Pulmonary and Critical Care Medicine, Department of Medicine (S.A.G.), University of Washington, Seattle, Washington
| |
Collapse
|
19
|
Altered Protein Expression of Cardiac CYP2J and Hepatic CYP2C, CYP4A, and CYP4F in a Mouse Model of Type II Diabetes-A Link in the Onset and Development of Cardiovascular Disease? Pharmaceutics 2017; 9:pharmaceutics9040044. [PMID: 29023376 PMCID: PMC5750650 DOI: 10.3390/pharmaceutics9040044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/30/2017] [Accepted: 10/06/2017] [Indexed: 12/23/2022] Open
Abstract
Arachidonic acid can be metabolized by cytochrome P450 (CYP450) enzymes in a tissue- and cell-specific manner to generate vasoactive products such as epoxyeicosatrienoic acids (EETs-cardioprotective) and hydroxyeicosatetraenoic acids (HETEs-cardiotoxic). Type II diabetes is a well-recognized risk factor for developing cardiovascular disease. A mouse model of Type II diabetes (C57BLKS/J-db/db) was used. After sacrifice, livers and hearts were collected, washed, and snap frozen. Total proteins were extracted. Western blots were performed to assess cardiac CYP2J and hepatic CYP2C, CYP4A, and CYP4F protein expression, respectively. Significant decreases in relative protein expression of cardiac CYP2J and hepatic CYP2C were observed in Type II diabetes animals compared to controls (CYP2J: 0.80 ± 0.03 vs. 1.05 ± 0.06, n = 20, p < 0.001); (CYP2C: 1.56 ± 0.17 vs. 2.21 ± 0.19, n = 19, p < 0.01). In contrast, significant increases in relative protein expression of both hepatic CYP4A and CYP4F were noted in Type II diabetes mice compared to controls (CYP4A: 1.06 ± 0.09 vs. 0.18 ± 0.01, n = 19, p < 0.001); (CYP4F: 2.53 ± 0.22 vs. 1.10 ± 0.07, n = 19, p < 0.001). These alterations induced by Type II diabetes in the endogenous pathway (CYP450) of arachidonic acid metabolism may increase the risk for cardiovascular disease by disrupting the fine equilibrium between cardioprotective (CYP2J/CYP2C-generated) and cardiotoxic (CYP4A/CYP4F-generated) metabolites of arachidonic acid.
Collapse
|
20
|
Lin HL, Zhang H, Walker VJ, D'Agostino J, Hollenberg PF. Heme Modification Contributes to the Mechanism-Based Inactivation of Human Cytochrome P450 2J2 by Two Terminal Acetylenic Compounds. Drug Metab Dispos 2017; 45:990-999. [PMID: 28698302 DOI: 10.1124/dmd.117.075846] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/06/2017] [Indexed: 12/18/2022] Open
Abstract
The mechanism-based inactivation of human CYP2J2 by three terminal acetylenic compounds: N-(methylsulfonyl)-6-(2-propargyloxyphenyl)hexanamide (MS), 17-octadecynoic acid (OD), and danazol (DZ) was investigated. The loss of hydroxyebastine (OHEB) carboxylation activity in a reconstituted system was time- and concentration-dependent and required NADPH for MS and OD, but not DZ. The kinetic constants for the mechanism-based inactivation of OHEB carboxylation activity were: KI of 6.1 μM and kinact of 0.22 min-1 for MS and KI of 2.5 μM and kinact of 0.05 min-1 for OD. The partition ratios for MS and OD were ∼10 and ∼20, respectively. Inactivation of CYP2J2 by MS or OD resulted in a loss of the native heme spectrum and a similar decrease in the reduced CO difference spectrum. A heme adduct was observed in the MS-inactivated CYP2J2. The possible reactive metabolite which covalently modified the prosthetic heme was characterized by analysis of the glutathione conjugates formed by MS or OD following oxygenation of the ethynyl moiety. Liquid chromatography-mass spectrometry showed that inactivation by MS or OD did not lead to modification of apoprotein. Interaction of CYP2J2 with DZ produced a type II binding spectrum with a Ks of 2.8 μM and the IC50 for loss of OHEB carboxylation activity was 0.18 μM. In conclusion, heme modification by MS and OD was responsible for the mechanism-based inactivation of CYP2J2. The results suggest that the ethynyl moiety of MS and OD faces the heme iron, whereas the isoxazole ring of DZ is preferentially oriented toward the heme iron of CYP2J2.
Collapse
Affiliation(s)
- Hsia-Lien Lin
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| | - Haoming Zhang
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| | - Vyvyca J Walker
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| | - Jaime D'Agostino
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| | - Paul F Hollenberg
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
21
|
Inhibition and inactivation of human CYP2J2: Implications in cardiac pathophysiology and opportunities in cancer therapy. Biochem Pharmacol 2017; 135:12-21. [PMID: 28237650 DOI: 10.1016/j.bcp.2017.02.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 02/21/2017] [Indexed: 12/15/2022]
Abstract
Extrahepatic cytochrome P450 enzymes (CYP450) are pivotal in the metabolism of endogenous substrates and xenobiotics. CYP2J2 is a major cardiac CYP450 and primarily metabolizes polyunsaturated fatty acids such as arachidonic acid to cardioactive epoxyeicosatrienoic acids. Due to its role in endobiotic metabolism, CYP2J2 has been actively studied in recent years with the focus on its biological functions in cardiac pathophysiology. Additionally, CYP2J2 metabolizes a number of xenobiotics such as astemizole and terfenadine and is potently inhibited by danazol and telmisartan. Notably, CYP2J2 is found to be upregulated in multiple cancers. Hence a number of specific CYP2J2 inhibitors have been developed and their efficacy in inhibiting tumor progression has been actively studied. CYP2J2 inhibitor such as C26 (1-[4-(vinyl)phenyl]-4-[4-(diphenyl-hydroxymethyl)-piperidinyl]-butanone hydrochloride) caused marked reduction in tumor proliferation and migration as well as promoted apoptosis in cancer cells. In this review, we discuss the role of CYP2J2 in cardiac pathophysiology and cancer therapeutics. Additionally, we provide an update on the substrates, reversible inhibitors and irreversible inhibitors of CYP2J2. Finally, we discuss the current gaps and future directions in CYP2J2 research.
Collapse
|
22
|
Mi J, Zhao M, Yang S, Jia Y, Wang Y, Wang B, Jin J, Wang X, Xiao Q, Hu J, Li Y. Identification of cytochrome P450 isoforms involved in the metabolism of Syl930, a selective S1PR 1 agonist acting as a potential therapeutic agent for autoimmune encephalitis. Drug Metab Pharmacokinet 2017; 32:53-60. [DOI: 10.1016/j.dmpk.2016.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/06/2016] [Accepted: 07/06/2016] [Indexed: 10/21/2022]
|
23
|
Xie F, Ding X, Zhang QY. An update on the role of intestinal cytochrome P450 enzymes in drug disposition. Acta Pharm Sin B 2016; 6:374-383. [PMID: 27709006 PMCID: PMC5045550 DOI: 10.1016/j.apsb.2016.07.012] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 12/05/2022] Open
Abstract
Oral administration is the most commonly used route for drug treatment. Intestinal cytochrome P450 (CYP)-mediated metabolism can eliminate a large proportion of some orally administered drugs before they reach systemic circulation, while leaving the passage of other drugs unimpeded. A better understanding of the ability of intestinal P450 enzymes to metabolize various clinical drugs in both humans and preclinical animal species, including the identification of the CYP enzymes expressed, their regulation, and the relative importance of intestinal metabolism compared to hepatic metabolism, is important for improving bioavailability of current drugs and new drugs in development. Here, we briefly review the expression of drug-metabolizing P450 enzymes in the small intestine of humans and several preclinical animal species, and provide an update of the various factors or events that regulate intestinal P450 expression, including a cross talk between the liver and the intestine. We further compare various clinical and preclinical approaches for assessing the impact of intestinal drug metabolism on bioavailability, and discuss the utility of the intestinal epithelium–specific NADPH-cytochrome P450 reductase-null (IECN) mouse as a useful model for studying in vivo roles of intestinal P450 in the disposition of orally administered drugs.
Collapse
|
24
|
|
25
|
Walker VJ, Griffin AP, Hammar DK, Hollenberg PF. Metabolism of Anandamide by Human Cytochrome P450 2J2 in the Reconstituted System and Human Intestinal Microsomes. J Pharmacol Exp Ther 2016; 357:537-44. [PMID: 27000802 DOI: 10.1124/jpet.116.232553] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 03/18/2016] [Indexed: 12/14/2022] Open
Abstract
According to the Centers for Disease Control and Prevention, the incidence of inflammatory bowel diseases (IBD) is about 1 in 250 people in the United States. The disease is characterized by chronic or recurring inflammation of the gut. Because of the localization of the endocannabinoid system in the gastrointestinal tract, it may be a potential pharmacologic target for the treatment of IBD and other diseases. Fatty acid amide hydrolase (FAAH) is a potential candidate because it is upregulated in IBD. FAAH hydrolyzes and, as a consequence, inactivates anandamide (AEA), a prominent endocannabinoid. Inhibition of FAAH would lead to increases in the amount of AEA oxidized by cytochrome P450s (P450s). CYP2J2, the major P450 epoxygenase expressed in the heart, is also expressed in the intestine and has previously been reported to oxidize AEA. We have investigated the possibility that it may play a role in AEA metabolism in the gut and have demonstrated that purified human CYP2J2 metabolizes AEA to form the 20-hydroxyeicosatetraenoic acid ethanolamide (HETE-EA) and several epoxygenated products, including the 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid ethanolamides (EET-EAs), in the reconstituted system. Kinetic studies suggest that the KM values for these products range from approximately 10 to 468 μM and the kcat values from 0.2 to 23.3 pmol/min per picomole of P450. Human intestinal microsomes, which express CYP2J2, metabolize AEA to give the 5,6-, 8,9-, and 11,12-EET-EAs, as well as 20-HETE-EA. Studies using specific P450 inhibitors suggest that although CYP2J2 metabolizes AEA, it is not the primary P450 responsible for AEA metabolism in human intestines.
Collapse
Affiliation(s)
- Vyvyca J Walker
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| | - Alisha P Griffin
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| | - Dagan K Hammar
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| | - Paul F Hollenberg
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
26
|
Karlgren M, Bergström CAS. How Physicochemical Properties of Drugs Affect Their Metabolism and Clearance. NEW HORIZONS IN PREDICTIVE DRUG METABOLISM AND PHARMACOKINETICS 2015. [DOI: 10.1039/9781782622376-00001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In this chapter the transport proteins and enzymes of importance for drug clearance are discussed. The primary organ for drug metabolism is the liver and to reach the intracellular compartment of hepatocytes, orally administered drugs must cross both the intestinal wall and the cell membrane of the liver cells. Transport proteins present in the cellular membrane may facilitate or hinder the compounds crossing these cellular barriers and hence will influence to what extent compounds will reach the enzymes. Here, the enzymes and transport proteins of importance for drug clearance are discussed. The molecular features of importance for drug interactions with transport proteins and enzymes are analyzed and the possibility to predict molecular features vulnerable to enzymatic degradation is discussed. From detailed analysis of the current literature it is concluded that for interaction, both with transport proteins and enzymes, lipophilicity plays a major role. In addition to this property, molecular properties such as hydrogen bond acceptors and donors, charge, aromaticity and molecular size can be used to distinguish between routes of clearance.
Collapse
Affiliation(s)
- Maria Karlgren
- Department of Pharmacy, Uppsala University Biomedical Centre P.O. Box 580, Husargatan 3 SE-75123 Uppsala Sweden
| | - Christel A. S. Bergström
- Department of Pharmacy, Uppsala University Biomedical Centre P.O. Box 580, Husargatan 3 SE-75123 Uppsala Sweden
| |
Collapse
|
27
|
Lee E, Wu Z, Shon JC, Liu KH. Danazol Inhibits Cytochrome P450 2J2 Activity in a Substrate-independent Manner. Drug Metab Dispos 2015; 43:1250-3. [DOI: 10.1124/dmd.115.064345] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/05/2015] [Indexed: 11/22/2022] Open
|
28
|
Shahabi P, Siest G, Meyer UA, Visvikis-Siest S. Human cytochrome P450 epoxygenases: Variability in expression and role in inflammation-related disorders. Pharmacol Ther 2014; 144:134-61. [DOI: 10.1016/j.pharmthera.2014.05.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/15/2014] [Indexed: 12/19/2022]
|
29
|
McDougle DR, Kambalyal A, Meling DD, Das A. Endocannabinoids anandamide and 2-arachidonoylglycerol are substrates for human CYP2J2 epoxygenase. J Pharmacol Exp Ther 2014; 351:616-27. [PMID: 25277139 DOI: 10.1124/jpet.114.216598] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The endocannabinoids, anandamide (AEA) and 2-arachidonoylglycerol (2-AG), are arachidonic acid (AA) derivatives that are known to regulate human cardiovascular functions. CYP2J2 is the primary cytochrome P450 in the human heart and is most well known for the metabolism of AA to the biologically active epoxyeicosatrienoic acids. In this study, we demonstrate that both 2-AG and AEA are substrates for metabolism by CYP2J2 epoxygenase in the model membrane bilayers of nanodiscs. Reactions of CYP2J2 with AEA formed four AEA-epoxyeicosatrienoic acids, whereas incubations with 2-AG yielded detectable levels of only two 2-AG epoxides. Notably, 2-AG was shown to undergo enzymatic oxidative cleavage to form AA through a NADPH-dependent reaction with CYP2J2 and cytochrome P450 reductase. The formation of the predominant AEA and 2-AG epoxides was confirmed using microsomes prepared from the left myocardium of porcine and bovine heart tissues. The nuances of the ligand-protein interactions were further characterized using spectral titrations, stopped-flow small-molecule ligand egress, and molecular modeling. The experimental and theoretical data were in agreement, which showed that substitution of the AA carboxylic acid with the 2-AG ester-glycerol changes the binding interaction of these lipids within the CYP2J2 active site, leading to different product distributions. In summary, we present data for the functional metabolomics of AEA and 2-AG by a membrane-bound cardiovascular epoxygenase.
Collapse
Affiliation(s)
- Daniel R McDougle
- Department of Comparative Biosciences (D.R.M., A.D.), Department of Biochemistry (A.K., D.D.M., A.D.), and Medical Scholars Program (D.R.M.), Beckman Institute for Advanced Science and Technology, and Department of Bioengineering (A.D.), University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Amogh Kambalyal
- Department of Comparative Biosciences (D.R.M., A.D.), Department of Biochemistry (A.K., D.D.M., A.D.), and Medical Scholars Program (D.R.M.), Beckman Institute for Advanced Science and Technology, and Department of Bioengineering (A.D.), University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Daryl D Meling
- Department of Comparative Biosciences (D.R.M., A.D.), Department of Biochemistry (A.K., D.D.M., A.D.), and Medical Scholars Program (D.R.M.), Beckman Institute for Advanced Science and Technology, and Department of Bioengineering (A.D.), University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Aditi Das
- Department of Comparative Biosciences (D.R.M., A.D.), Department of Biochemistry (A.K., D.D.M., A.D.), and Medical Scholars Program (D.R.M.), Beckman Institute for Advanced Science and Technology, and Department of Bioengineering (A.D.), University of Illinois Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
30
|
Potential of decursin to inhibit the human cytochrome P450 2J2 isoform. Food Chem Toxicol 2014; 70:94-9. [DOI: 10.1016/j.fct.2014.04.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 04/07/2014] [Accepted: 04/11/2014] [Indexed: 11/20/2022]
|
31
|
Gundert-Remy U, Bernauer U, Blömeke B, Döring B, Fabian E, Goebel C, Hessel S, Jäckh C, Lampen A, Oesch F, Petzinger E, Völkel W, Roos PH. Extrahepatic metabolism at the body's internal–external interfaces. Drug Metab Rev 2014; 46:291-324. [DOI: 10.3109/03602532.2014.900565] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
Xu M, Ju W, Hao H, Wang G, Li P. Cytochrome P450 2J2: distribution, function, regulation, genetic polymorphisms and clinical significance. Drug Metab Rev 2014; 45:311-52. [PMID: 23865864 DOI: 10.3109/03602532.2013.806537] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cytochrome P450 2J2 (CYP2J2) is an enzyme mainly found in human extrahepatic tissues, with predominant expression in the cardiovascular systems and lower levels in the intestine, kidney, lung, pancreas, brain, liver, etc. During the past 15 years, CYP2J2 has attracted much attention for its epoxygenase activity in arachidonic acid (AA) metabolism. It converts AA to four epoxyeicosatrienoic acids (EETs) that have various biological effects, especially in the cardiovascular systems. In recent publications, CYP2J2 is shown highly expressed in various human tumor cells, and its EET metabolites are demonstrated to implicate in the pathologic development of human cancers. CYP2J2 is also a human CYP that involved in phase I xenobiotics metabolism. Antihistamine drugs and many other compounds were identified as the substrates of CYP2J2, and studies have demonstrated that these substrates have a broad structural diversity. CYP2J2 is found not readily induced by known P450 inducers; however, its expression could be regulated in some pathological conditions, might through the activator protein-1(AP-1), the AP-1-like element and microRNA let-7b. Several genetic mutations in the CYP2J2 gene have been identified in humans, and some of them have been shown to have potential associations with some diseases. With the increasing awareness of its roles in cancer disease and drug metabolism, studies about CYP2J2 are still going on, and various inhibitors of CYP2J2 have been determined. Further studies are needed to delineate the roles of CYP2J2 in disease pathology, drug development and clinical practice.
Collapse
Affiliation(s)
- Meijuan Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | | | | | | | | |
Collapse
|
33
|
Cizkova K, Konieczna A, Erdosova B, Ehrmann J. Time-dependent expression of cytochrome p450 epoxygenases during human prenatal development. Organogenesis 2014; 10:53-61. [PMID: 24492490 PMCID: PMC4049895 DOI: 10.4161/org.27911] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 01/08/2014] [Accepted: 01/19/2014] [Indexed: 11/19/2022] Open
Abstract
There is growing evidence that some members of cytochrome P450 enzymes contribute to regulation of normal prenatal development. CYP epoxygenases (CYP2C and CYP2J subfamilies) convert arachidonic acid into four regioisomeric epoxyeicosatrienoic acids (EETs), biologically active molecules involved in mitogenesis and cell signaling. Almost nothing is known about localization of their expression in tissues during human prenatal development. The spatio-temporal expression pattern of CYP2C8, CYP2C9, CYP2C19 and CYP2J2 in human embryonic/fetal intestines, liver, and kidney was investigated by immunohistochemical method. CYP epoxygenases are expressed already in early stages of development in these embryonic/fetal tissues (as early as 7th week of IUD in the intestines, 5th week of IUD in the liver, and 6th week of IUD in the kidney). In kidney, CYP epoxygenases are expressed in the metanephrogenic blastema (but not in the uninduced mesenchyme) and in the tubular system. In the intestines, diverse CYP epoxygenases distribution along crypt-villus axis could suggest role in cell differentiation. Moreover, we detected higher CYP2J2 level in these organs than in adult tissue samples.
Collapse
Affiliation(s)
- Katerina Cizkova
- Department of Histology and Embryology; Palacky University; Olomouc, Czech Republic
| | - Anna Konieczna
- Department of Histology and Embryology; Palacky University; Olomouc, Czech Republic
| | - Bela Erdosova
- Department of Histology and Embryology; Palacky University; Olomouc, Czech Republic
| | - Jiri Ehrmann
- Department of Histology and Embryology; Palacky University; Olomouc, Czech Republic
- Department of Clinical and Molecular Pathology & Laboratory of Molecular Pathology; Palacky University; Olomouc, Czech Republic
| |
Collapse
|
34
|
Evangelista EA, Kaspera R, Mokadam NA, Jones JP, Totah RA. Activity, inhibition, and induction of cytochrome P450 2J2 in adult human primary cardiomyocytes. Drug Metab Dispos 2013; 41:2087-94. [PMID: 24021950 DOI: 10.1124/dmd.113.053389] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cytochrome P450 2J2 plays a significant role in the epoxidation of arachidonic acid to signaling molecules important in cardiovascular events. CYP2J2 also contributes to drug metabolism and is responsible for the intestinal clearance of ebastine. However, the interaction between arachidonic acid metabolism and drug metabolism in cardiac tissue, the main expression site of CYP2J2, has not been examined. Here we investigate an adult-derived human primary cardiac cell line as a suitable model to study metabolic drug interactions (inhibition and induction) of CYP2J2 in cardiac tissue. The primary human cardiomyocyte cell line demonstrated similar mRNA-expression profiles of P450 enzymes to adult human ventricular tissue. CYP2J2 was the dominant isozyme with minor contributions from CYP2D6 and CYP2E1. Both terfenadine and astemizole oxidation were observed in this cell line, whereas midazolam was not metabolized suggesting lack of CYP3A activity. Compared with recombinant CYP2J2, terfenadine was hydroxylated in cardiomyocytes at a similar K(m) value of 1.5 μM. The V(max) of terfenadine hydroxylation in recombinant enzyme was found to be 29.4 pmol/pmol P450 per minute and in the cells 6.0 pmol/pmol P450 per minute. CYP2J2 activity in the cell line was inhibited by danazol, astemizole, and ketoconazole in submicromolar range, but also by xenobiotics known to cause cardiac adverse effects. Of the 14 compounds tested for CYP2J2 induction, only rosiglitazone increased mRNA expression, by 1.8-fold. This cell model can be a useful in vitro model to investigate the role of CYP2J2-mediated drug metabolism, arachidonic acid metabolism, and their association to drug induced cardiotoxicity.
Collapse
Affiliation(s)
- Eric A Evangelista
- Department of Medicinal Chemistry (E.A.E., R.K., J.P.J., R.A.T.) and Division of Cardiothoracic Surgery, University of Washington, Seattle, Washington (N.A.M.)
| | | | | | | | | |
Collapse
|
35
|
Bylund J, Bueters T. Presystemic metabolism of AZ'0908, a novel mPGES-1 inhibitor: an in vitro and in vivo cross-species comparison. J Pharm Sci 2013; 102:1106-15. [PMID: 23316000 DOI: 10.1002/jps.23443] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 11/11/2012] [Accepted: 12/14/2012] [Indexed: 12/15/2022]
Abstract
AZ'0908 is a novel microsomal prostaglandin E synthase-1 inhibitor intended for oral administration. Pharmacokinetic experiments in rats showed that bioavailability was much lower than anticipated and increased following pretreatment with the nonspecific cytochrome P450 (CYP) inhibitor 1-aminobenzotriazole, presumably by inhibition of intestinal metabolism. Stability experiments in rat liver and intestinal fractions revealed that the intrinsic clearance (Cl(int)) was much higher in intestinal than in liver microsomes. Caco2 experiments showed that AZ'0908 was a substrate for breast cancer resistance protein. Permeability was generally high and the efflux component was saturable predicting good absorption. The Cl(int) values in human intestinal microsome and S9 fractions were low. A correlation occurred between in vitro intestinal metabolism and in vivo intestinal loss in rats and dogs. Enzyme identification experiments showed that human CYP2J2 was involved in the oxidation of AZ'0908. In rats, the major metabolic enzyme was not identified. However, rat CYP2J2 analogs were not investigated. Intestinal metabolism appeared to be a major occurrence, explaining intestinal loss of AZ'0908 in the rats. In view of good overall permeability, low in vitro intestinal turnover, and relative low intestinal abundance of CYP2J2, we predict that intestinal metabolism of AZ'0908 in human does not exert a major issue.
Collapse
Affiliation(s)
- Johan Bylund
- DMPK, CNSP iMed Science, AstraZeneca R&D, Innovative Medicines, Södertälje, Sweden.
| | | |
Collapse
|
36
|
Ruparel S, Henry MA, Akopian A, Patil M, Zeldin DC, Roman L, Hargreaves KM. Plasticity of cytochrome P450 isozyme expression in rat trigeminal ganglia neurons during inflammation. Pain 2012; 153:2031-2039. [PMID: 22633978 DOI: 10.1016/j.pain.2012.04.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 04/25/2012] [Accepted: 04/26/2012] [Indexed: 10/28/2022]
Abstract
Recently, specific oxidized linoleic acid metabolites (OLAMs) have been identified as transient receptor potential vanilloid 1 (TRPV1) channel agonists that contribute to inflammatory and heat hyperalgesia mechanisms, yet the specific mechanism responsible for OLAM synthesis in sensory neurons is unknown. Here, we use molecular, anatomical, calcium imaging, and perforated patch electrophysiology methods to demonstrate the specific involvement of cytochrome P450 enzymes (CYPs) in the oxidation of linoleic acid leading to neuronal activation and show that this is enhanced under inflammatory conditions. Additional studies evaluated CYP expressions in the native rat trigeminal ganglia (TG) tissue and cultures as well as changes in their expression pattern following the induction of peripheral inflammation. Fourteen of 20 candidate transcripts were detected in native TG, and 7 of these displayed altered expression under cultured conditions. Moreover, complete Freund's adjuvant-induced inflammation of vibrissal pad selectively increased expression of CYP3A23/3A1 and CYP2J4 transcripts in TG. In situ hybridization studies demonstrated broad expression pattern of CYP3A23/3A1 and CYP2J4 within TG neurons. Anatomical studies characterized the expression of CYP3A1 and the CYP2J families within TG sensory neurons, including those with TRPV1, with about half of all TRPV1-positive neurons showing more prominent CYP3A1 and CYP2J expression. Together, these findings show that CYP enzymes play a primary role in mediating linoleic acid-evoked activation of sensory neurons and furthermore, implicate the involvement of specific CYPs as contributing to the formation of OLAMs that act as TRPV1 agonists within this subpopulation of nociceptors.
Collapse
Affiliation(s)
- Shivani Ruparel
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA Division of Intramural Research, National Institute of Environmental Health Science (NIEHS), National Institutes of Health, Research Triangle Park, NC, USA Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Ikehara O, Hayashi H, Waguri T, Kaji I, Karaki SI, Kuwahara A, Suzuki Y. Subepithelial trypsin induces enteric nerve-mediated anion secretion by activating proteinase-activated receptor 1 in the mouse cecum. J Physiol Sci 2012; 62:211-9. [PMID: 22389134 PMCID: PMC10717934 DOI: 10.1007/s12576-012-0198-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Accepted: 02/07/2012] [Indexed: 12/19/2022]
Abstract
Serine proteases are versatile signaling molecules and often exert this function by activating the proteinase-activated receptors (PAR(1)-PAR(4)). Our previous study on the mouse cecum has shown that the PAR(1)-activating peptide (AP) and PAR(2)-AP both induced electrogenic anion secretion. This secretion mediated by PAR(1) probably occurred by activating the receptor on the submucosal secretomotor neurons, while PAR(2)-mediated anion secretion probably occurred by activating the receptor on the epithelial cells. This present study was aimed at using trypsin to further elucidate the roles of serine proteases and PARs in regulating intestinal anion secretion. A mucosal-submucosal sheet of the mouse cecum was mounted in Ussing chambers, and the short-circuit current (I(sc)) was measured. Trypsin added to the serosal side increased I(sc) with an ED(50) value of approximately 100 nM. This I(sc) increase was suppressed by removing Cl(-) from the bathing solution. The I(sc) increase induced by 100 nM trypsin was substantially suppressed by tetrodotoxin, and partially inhibited by an NK(1) receptor antagonist, by a muscarinic Ach-receptor antagonist, and by 5-hydroxytryptamine-3 (5-HT(3)) and 5-HT(4) receptor antagonists. The I(sc) increase induced by trypsin was partially suppressed when the tissue had been pretreated with PAR(1)-AP, but not by a pretreatment with PAR(2)-AP. These results suggest that the serine protease, trypsin, induced anion secretion by activating the enteric secretomotor nerves. This response was initiated in part by activating PAR(1) on the enteric nerves. Serine proteases and PARs are likely to be responsible for the diarrhea occurring under intestinal inflammatory conditions.
Collapse
Affiliation(s)
- Osamu Ikehara
- Laboratory of Physiology, School of Food and Nutritional Sciences, University of Shizuoka, Yada 52-1, Surugaku, Shizuoka 422-8526 Japan
| | - Hisayoshi Hayashi
- Laboratory of Physiology, School of Food and Nutritional Sciences, University of Shizuoka, Yada 52-1, Surugaku, Shizuoka 422-8526 Japan
| | - Toshiharu Waguri
- Laboratory of Physiology, School of Food and Nutritional Sciences, University of Shizuoka, Yada 52-1, Surugaku, Shizuoka 422-8526 Japan
| | - Izumi Kaji
- Laboratory of Physiology, Department of Environmental Health Sciences, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Yada 52-1, Surugaku, Shizuoka 422-8526 Japan
| | - Shin-ichiro Karaki
- Laboratory of Physiology, Department of Environmental Health Sciences, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Yada 52-1, Surugaku, Shizuoka 422-8526 Japan
| | - Atsukazu Kuwahara
- Laboratory of Physiology, Department of Environmental Health Sciences, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Yada 52-1, Surugaku, Shizuoka 422-8526 Japan
| | - Yuichi Suzuki
- Laboratory of Physiology, School of Food and Nutritional Sciences, University of Shizuoka, Yada 52-1, Surugaku, Shizuoka 422-8526 Japan
| |
Collapse
|
38
|
Zhao G, Tu L, Li X, Yang S, Chen C, Xu X, Wang P, Wang DW. Delivery of AAV2-CYP2J2 protects remnant kidney in the 5/6-nephrectomized rat via inhibition of apoptosis and fibrosis. Hum Gene Ther 2012; 23:688-99. [PMID: 22260463 DOI: 10.1089/hum.2011.135] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The cytochrome P450 epoxygenase, CYP2J2, converts arachidonic acid to four regioisomeric epoxyeicosatrienoic acids (EETs), which are highly abundant in the kidney and considered renoprotective. Accumulating evidence suggests that EETs are important in regulating renal and cardiovascular function. Further, EETs have been confirmed to exert diverse biological activities including potent vasodilation; fibrinolytic properties; and antiinflammatory, antiapoptotic, and mitogenic effects. In the current study, we investigated the effects of overexpression of CYP2J2 via recombinant adeno-associated virus (rAAV) in protection against renal damage in a rat 5/6 nephrectomy (5/6-Nx) model of chronic renal failure. The rAAV-CYP2J2 gene delivery in vivo increased EET generation; attenuated the rise in blood pressure; and reduced the levels of proteinuria, serum creatinine, and blood urea nitrogen. Morphological analysis indicated that rAAV-CYP2J2 gene delivery reduced 5/6 nephrectomy-induced glomerular sclerosis, tubular dilatation, luminal protein cast formation, and tubulointerstitial fibrosis. rAAV-CYP2J2 gene delivery also significantly lowered collagen I and IV deposition, as well as renal cell apoptosis detected by TUNEL staining, caspase-3 activity, and the loss of mitochondrial membrane potential (ΔΨ(m)). Furthermore, rAAV-CYP2J2 gene delivery regulated the level of protein expression including transforming growth factor (TGF)-β(1)/SMADs; matrix metalloproteinases (MMPs); mitogen-activated protein kinases (MAPKs); and apoptosis-related proteins Bax, Bcl-2, and Bcl-x(L). Together, these findings demonstrated that rAAV-CYP2J2 gene delivery can protect remnant kidney against renal injury in 5/6-Nx rats by inhibiting apoptosis and fibrosis via regulation of protein expression including TGF-β(1)/SMADs, MMPs, MAPKs, and apoptosis-related proteins.
Collapse
Affiliation(s)
- Gang Zhao
- Department of Internal Medicine and Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Do KN, Fink LN, Jensen TE, Gautier L, Parlesak A. TLR2 controls intestinal carcinogen detoxication by CYP1A1. PLoS One 2012; 7:e32309. [PMID: 22442665 PMCID: PMC3307708 DOI: 10.1371/journal.pone.0032309] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 01/26/2012] [Indexed: 02/06/2023] Open
Abstract
Intestinal cytochrome P450 subclass 1A1 (CYP1A1) contributes to a metabolic “shield” protecting the host from ingested carcinogens such as polycyclic aromatic hydrocarbons (PAH). The expression of CYP1 (including CYP1A2 and CYP1B1) is considered to depend solely on a heterodimeric transcription factor consisting of the arylhydrocarbon receptor (AHR) and the AHR nuclear translocator (ARNT). So far, no interference has been noted between the regulation of CYP1 and the activation of Toll-like receptor 2 (TLR2), which modulates the inflammatory response to bacterial cell wall components in immune cells and enterocytes. Here we report that intestinal CYP1A1 is silenced in TLR2-deficient mice, even when under exposure to the carcinogenic PAH benzo[a]pyrene (BaP). In contrast, hepatic CYP1A1 was moderately induced in TLR2-deficient mice without restoring their ability to clear BaP from systemic circulation, as present in wild-type animals. After feeding of BaP for 21 days, only TLR2−/− mice, but not their wild type littermates developed polyps in the colon. Gene expressions and protein concentrations of AHR and ARNT in the intestine did not differ between the genotypes. In conclusion, the presence of ligands for TLR2 of bacterial origin seems to be crucial for detoxication of luminal carcinogens by CYP1A1 in the intestine. This unprecedented finding indicates a complex interplay between the immune system of the host and intestinal bacteria with detoxication mechanisms. This highlights the relevance of intestinal microbiota when trying to unravel pathways present in mammals and opens new perspectives for research in human health.
Collapse
Affiliation(s)
- Khoa Nguyen Do
- Center for Biological Sequence Analysis, Technical University of Denmark (DTU), Lyngby, Denmark
- DTU Multiassay Core (DMAC), Technical University of Denmark (DTU), Lyngby, Denmark
| | - Lisbeth Nielsen Fink
- Center for Biological Sequence Analysis, Technical University of Denmark (DTU), Lyngby, Denmark
| | | | - Laurent Gautier
- DTU Multiassay Core (DMAC), Technical University of Denmark (DTU), Lyngby, Denmark
| | - Alexandr Parlesak
- Center for Biological Sequence Analysis, Technical University of Denmark (DTU), Lyngby, Denmark
- Metropolitan University College, Global Nutrition and Health, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
40
|
Lee CA, Jones JP, Katayama J, Kaspera R, Jiang Y, Freiwald S, Smith E, Walker GS, Totah RA. Identifying a selective substrate and inhibitor pair for the evaluation of CYP2J2 activity. Drug Metab Dispos 2012; 40:943-51. [PMID: 22328583 DOI: 10.1124/dmd.111.043505] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CYP2J2, an arachidonic acid epoxygenase, is recognized for its role in the first-pass metabolism of astemizole and ebastine. To fully assess the role of CYP2J2 in drug metabolism, a selective substrate and potent specific chemical inhibitor are essential. In this study, we report amiodarone 4-hydoxylation as a specific CYP2J2-catalyzed reaction with no CYP3A4, or other drug-metabolizing enzyme, involvement. Amiodarone 4-hydroxylation enabled the determination of liver relative activity factor and intersystem extrapolation factor for CYP2J2. Amiodarone 4-hydroxylation correlated with astemizole O-demethylation but not with CYP2J2 protein content in a sample of human liver microsomes. To identify a specific CYP2J2 inhibitor, 138 drugs were screened using terfenadine and astemizole as probe substrates with recombinant CYP2J2. Forty-two drugs inhibited CYP2J2 activity by ≥50% at 30 μM, but inhibition was substrate-dependent. Of these, danazol was a potent inhibitor of both hydroxylation of terfenadine (IC(50) = 77 nM) and O-demethylation of astemizole (K(i) = 20 nM), and inhibition was mostly competitive. Danazol inhibited CYP2C9, CYP2C8, and CYP2D6 with IC(50) values of 1.44, 1.95, and 2.74 μM, respectively. Amiodarone or astemizole were included in a seven-probe cocktail for cytochrome P450 (P450) drug-interaction screening potential, and astemizole demonstrated a better profile because it did not appreciably interact with other P450 probes. Thus, danazol, amiodarone, and astemizole will facilitate the ability to determine the metabolic role of CYP2J2 in hepatic and extrahepatic tissues.
Collapse
Affiliation(s)
- Caroline A Lee
- Department of Drug Metabolism, Pfizer Global Research, La Jolla, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Neilson AP, Ren J, Hong YH, Sen A, Smith WL, Brenner DE, Djuric Z. Effect of fish oil on levels of R- and S-enantiomers of 5-, 12-, and 15-hydroxyeicosatetraenoic acids in mouse colonic mucosa. Nutr Cancer 2011; 64:163-72. [PMID: 22149144 DOI: 10.1080/01635581.2012.630168] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The balance of putative pro- and antiinflammatory lipoxygenase (LOX)-derived S-hydroxyeicosatetraenoic acids (S-HETEs) in colon mucosa is a potential target for modulating colon cancer risk and progression. The biological effects of S-HETEs and R-hydroxyeicosatetraenoic acids (produced by distinct pathways) may differ, but levels of these compounds in the colon are unknown. The objective of this study was to develop chiral methods to characterize hydroxyeicosatetraenoic (HETE) enantiomers in colonic mucosa and evaluate the effects of fish oil on HETE formation. C57BL/6 mice (COX-1 null, COX-2 null, wild-type) were fed a diet supplemented with either olive oil or menhaden oil for 11 wk, and R-/S-HETEs in colonic mucosa were quantified by chiral LC-MS/MS. The R-enantiomer comprised 60-72% of 5-HETE, 18-58% of 15-HETE, and 1-16% of 12-HETE in colonic mucosa, suggesting that non-LOX sources contribute to HETE profiles. Fish oil reduced levels of both R- and S-HETEs, and increased the preponderance of the R-enantiomers (particularly 12- and 15-HETEs). There was apparent shunting of arachidonic acid to 12-/15-LOX in the COX-1 null animals. This is the first report of the enantiomeric composition of HETEs in the colon in vivo and shows large effects of fish oil in the normal colon.
Collapse
Affiliation(s)
- Andrew P Neilson
- Department of Family Medicine, University of Michigan Medical School, University of Michigan, Ann Arbor, Michigan 48197, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Bergstrand M, Söderlind E, Eriksson UG, Weitschies W, Karlsson MO. A Semi-mechanistic Modeling Strategy for Characterization of Regional Absorption Properties and Prospective Prediction of Plasma Concentrations Following Administration of New Modified Release Formulations. Pharm Res 2011; 29:574-84. [DOI: 10.1007/s11095-011-0595-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 09/14/2011] [Indexed: 11/24/2022]
|
43
|
Xu X, Zhang XA, Wang DW. The roles of CYP450 epoxygenases and metabolites, epoxyeicosatrienoic acids, in cardiovascular and malignant diseases. Adv Drug Deliv Rev 2011; 63:597-609. [PMID: 21477627 DOI: 10.1016/j.addr.2011.03.006] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 02/03/2011] [Accepted: 03/19/2011] [Indexed: 12/11/2022]
Abstract
Cytochrome P450 (CYP) epoxygenases metabolize arachidonic acid to biologically active eicosanoids. The primary epoxidation products are four regioisomers of cis-epoxyeicosatrienoic acid (EET): 5,6-, 8,9-, 11,12-, and 14,15-EET. CYP2J2, CYP2C8, and CYP2C9 are the predominant epoxygenase isoforms involved in EET formation. CYP2J and CYP2C gene families in humans are abundantly expressed in the endothelium, myocardium, and kidney. The cardiovascular effects of CYP epoxygenases and EETs range from vasodilation, anti-hypertension, pro-angiogenesis, anti-atherosclerosis, and anti-inflammation to anti-injury caused by ischemia-reperfusion. Using transgenic animals for in vivo analyses of CYP epoxygenases revealed comprehensive and marked cardiovascular protective effects. In contrast, CYP epoxygenases and their metabolites, EETs, are upregulated in human tumors and promote tumor progression and metastasis. These biological effects result from the anti-apoptosis, pro-mitogenesis, and anti-migration roles of CYP epoxygenases and EETs at the cellular level. Importantly, soluble epoxide hydrolase (sEH) inhibitors are anti-hypertensive and anti-inflammatory and, therefore, protect the heart from damage, whereas the terfenadine-related, specific inhibitors of CYP2J2 exhibit strong anti-tumor activity in vitro and in vivo. Thus, CYP2J2 and arachidonic acid-derived metabolites likely play important roles in regulating cardiovascular functions and malignancy under physiological and/or pathological conditions. Moreover, although challenges remain to improving the drug-like properties of sEH inhibitors and identifying efficient ways to deliver sEH inhibitors, sEH will likely become an important therapeutic target for cardiovascular diseases. In addition, CYP2J2 may be a therapeutic target for treating human cancers and leukemia.
Collapse
|
44
|
Morin C, Sirois M, Échavé V, Albadine R, Rousseau E. 17,18-Epoxyeicosatetraenoic Acid Targets PPARγ and p38 Mitogen–Activated Protein Kinase to Mediate Its Anti-inflammatory Effects in the Lung. Am J Respir Cell Mol Biol 2010; 43:564-75. [DOI: 10.1165/rcmb.2009-0155oc] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
45
|
Chen C, Wei X, Rao X, Wu J, Yang S, Chen F, Ma D, Zhou J, Dackor RT, Zeldin DC, Wang DW. Cytochrome P450 2J2 is highly expressed in hematologic malignant diseases and promotes tumor cell growth. J Pharmacol Exp Ther 2010; 336:344-55. [PMID: 21030485 DOI: 10.1124/jpet.110.174805] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cytochrome P450 2J2 (CYP2J2) epoxygenase converts arachidonic acid to four regioisomeric epoxyeicosatrienoic acids (EETs) that exert multiple biological effects in the cardiovascular system and in various human solid cancers. However, it is unknown whether this enzyme is expressed or plays any role in malignant hematological diseases. In this study, we found strong and highly selective CYP2J2 expression in five human-derived malignant hematological cell lines and in leukemia cells from peripheral blood and bone marrow in 36 of 42 patients (86%) with malignant hematologic diseases. Furthermore, increased levels of EETs were detected in urine and blood samples from these patients. Addition of exogenous EET or CYP2J2 overexpression in cultured human-derived malignant hematologic cell lines markedly accelerated proliferation and attenuated apoptosis. Addition of the selective CYP2J2 inhibitor compound 26 (C26; 1-[4-(vinyl) phenyl]-4-[4-(diphenyl-hydroxymethyl)-piperidinyl]-butanone hydrochloride) inhibited cell proliferation and increased apoptosis, an effect that was significantly reversed by EET. CYP2J2 overexpression and exogenous EET activated AMP-activated protein kinase, c-Jun NH(2)-terminal kinase, and phosphatidylinositol 3-kinase/Akt signaling pathways, and increased epidermal growth factor receptor phosphorylation levels. CYP2J2 overexpression also enhanced malignant xenograft growth, which was efficiently inhibited by oral administration of C26 in Tie2-CYP2J2 transgenic mice and in severe combined immunodeficiency (SCID) xenograft mice. Together, these results suggest that CYP2J2 plays a key role in the pathogenesis of human hematologic malignant diseases. Selective inhibition of CYP2J2 may be a promising therapeutic strategy for these conditions.
Collapse
Affiliation(s)
- Chen Chen
- Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Role of cytochrome P450 enzymes in the bioactivation of polyunsaturated fatty acids. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:210-22. [PMID: 20869469 DOI: 10.1016/j.bbapap.2010.09.009] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 09/07/2010] [Accepted: 09/09/2010] [Indexed: 12/21/2022]
Abstract
Cytochrome P450 (CYP)-dependent metabolites of arachidonic acid (AA), such as epoxyeicosatrienoic acids and 20-hydroxyeicosatetraenoic acid, serve as second messengers of various hormones and growth factors and play pivotal roles in the regulation of vascular, renal and cardiac function. As discussed in the present review, virtually all of the major AA metabolizing CYP isoforms accept a variety of other polyunsaturated fatty acids (PUFA), including linoleic, eicosapentaenoic (EPA) and docosahexaenoic acids (DHA), as efficient alternative substrates. The metabolites of these alternative PUFAs also elicit profound biological effects. The CYP enzymes respond to alterations in the chain-length and double bond structure of their substrates with remarkable changes in the regio- and stereoselectivity of product formation. The omega-3 double bond that distinguishes EPA and DHA from their omega-6 counterparts provides a preferred epoxidation site for CYP1A, CYP2C, CYP2J and CYP2E subfamily members. CYP4A enzymes that predominantly function as AA ω-hydroxylases show largely increased (ω-1)-hydroxylase activities towards EPA and DHA. Taken together, these findings indicate that CYP-dependent signaling pathways are highly susceptible to changes in the relative bioavailability of the different PUFAs and may provide novel insight into the complex mechanisms that link essential dietary fatty acids to the development of cardiovascular disease.
Collapse
|
47
|
Bruyère A, Declèves X, Bouzom F, Ball K, Marques C, Treton X, Pocard M, Valleur P, Bouhnik Y, Panis Y, Scherrmann JM, Mouly S. Effect of Variations in the Amounts of P-Glycoprotein (ABCB1), BCRP (ABCG2) and CYP3A4 along the Human Small Intestine on PBPK Models for Predicting Intestinal First Pass. Mol Pharm 2010; 7:1596-607. [DOI: 10.1021/mp100015x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Arnaud Bruyère
- INSERM U705-CNRS UMR 7157, Faculté de Pharmacie, Université Paris Descartes, Paris, France, Department of Non-Clinical Modelling, Technologie Servier, Orléans, France, Department of Gastroenterology, Beaujon Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris VII—Denis Diderot, Clichy, France, Department of Digestive Surgery, Lariboisière Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris VII—Denis Diderot, Paris, France, Department of Digestive Surgery, Beaujon Hospital,
| | - Xavier Declèves
- INSERM U705-CNRS UMR 7157, Faculté de Pharmacie, Université Paris Descartes, Paris, France, Department of Non-Clinical Modelling, Technologie Servier, Orléans, France, Department of Gastroenterology, Beaujon Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris VII—Denis Diderot, Clichy, France, Department of Digestive Surgery, Lariboisière Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris VII—Denis Diderot, Paris, France, Department of Digestive Surgery, Beaujon Hospital,
| | - Francois Bouzom
- INSERM U705-CNRS UMR 7157, Faculté de Pharmacie, Université Paris Descartes, Paris, France, Department of Non-Clinical Modelling, Technologie Servier, Orléans, France, Department of Gastroenterology, Beaujon Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris VII—Denis Diderot, Clichy, France, Department of Digestive Surgery, Lariboisière Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris VII—Denis Diderot, Paris, France, Department of Digestive Surgery, Beaujon Hospital,
| | - Kathryn Ball
- INSERM U705-CNRS UMR 7157, Faculté de Pharmacie, Université Paris Descartes, Paris, France, Department of Non-Clinical Modelling, Technologie Servier, Orléans, France, Department of Gastroenterology, Beaujon Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris VII—Denis Diderot, Clichy, France, Department of Digestive Surgery, Lariboisière Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris VII—Denis Diderot, Paris, France, Department of Digestive Surgery, Beaujon Hospital,
| | - Catie Marques
- INSERM U705-CNRS UMR 7157, Faculté de Pharmacie, Université Paris Descartes, Paris, France, Department of Non-Clinical Modelling, Technologie Servier, Orléans, France, Department of Gastroenterology, Beaujon Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris VII—Denis Diderot, Clichy, France, Department of Digestive Surgery, Lariboisière Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris VII—Denis Diderot, Paris, France, Department of Digestive Surgery, Beaujon Hospital,
| | - Xavier Treton
- INSERM U705-CNRS UMR 7157, Faculté de Pharmacie, Université Paris Descartes, Paris, France, Department of Non-Clinical Modelling, Technologie Servier, Orléans, France, Department of Gastroenterology, Beaujon Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris VII—Denis Diderot, Clichy, France, Department of Digestive Surgery, Lariboisière Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris VII—Denis Diderot, Paris, France, Department of Digestive Surgery, Beaujon Hospital,
| | - Marc Pocard
- INSERM U705-CNRS UMR 7157, Faculté de Pharmacie, Université Paris Descartes, Paris, France, Department of Non-Clinical Modelling, Technologie Servier, Orléans, France, Department of Gastroenterology, Beaujon Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris VII—Denis Diderot, Clichy, France, Department of Digestive Surgery, Lariboisière Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris VII—Denis Diderot, Paris, France, Department of Digestive Surgery, Beaujon Hospital,
| | - Patrice Valleur
- INSERM U705-CNRS UMR 7157, Faculté de Pharmacie, Université Paris Descartes, Paris, France, Department of Non-Clinical Modelling, Technologie Servier, Orléans, France, Department of Gastroenterology, Beaujon Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris VII—Denis Diderot, Clichy, France, Department of Digestive Surgery, Lariboisière Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris VII—Denis Diderot, Paris, France, Department of Digestive Surgery, Beaujon Hospital,
| | - Yoram Bouhnik
- INSERM U705-CNRS UMR 7157, Faculté de Pharmacie, Université Paris Descartes, Paris, France, Department of Non-Clinical Modelling, Technologie Servier, Orléans, France, Department of Gastroenterology, Beaujon Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris VII—Denis Diderot, Clichy, France, Department of Digestive Surgery, Lariboisière Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris VII—Denis Diderot, Paris, France, Department of Digestive Surgery, Beaujon Hospital,
| | - Yves Panis
- INSERM U705-CNRS UMR 7157, Faculté de Pharmacie, Université Paris Descartes, Paris, France, Department of Non-Clinical Modelling, Technologie Servier, Orléans, France, Department of Gastroenterology, Beaujon Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris VII—Denis Diderot, Clichy, France, Department of Digestive Surgery, Lariboisière Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris VII—Denis Diderot, Paris, France, Department of Digestive Surgery, Beaujon Hospital,
| | - Jean-Michel Scherrmann
- INSERM U705-CNRS UMR 7157, Faculté de Pharmacie, Université Paris Descartes, Paris, France, Department of Non-Clinical Modelling, Technologie Servier, Orléans, France, Department of Gastroenterology, Beaujon Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris VII—Denis Diderot, Clichy, France, Department of Digestive Surgery, Lariboisière Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris VII—Denis Diderot, Paris, France, Department of Digestive Surgery, Beaujon Hospital,
| | - Stephane Mouly
- INSERM U705-CNRS UMR 7157, Faculté de Pharmacie, Université Paris Descartes, Paris, France, Department of Non-Clinical Modelling, Technologie Servier, Orléans, France, Department of Gastroenterology, Beaujon Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris VII—Denis Diderot, Clichy, France, Department of Digestive Surgery, Lariboisière Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris VII—Denis Diderot, Paris, France, Department of Digestive Surgery, Beaujon Hospital,
| |
Collapse
|
48
|
Knoch B, Barnett MPG, McNabb WC, Zhu S, Park ZA, Khan A, Roy NC. Dietary arachidonic acid-mediated effects on colon inflammation using transcriptome analysis. Mol Nutr Food Res 2010; 54 Suppl 1:S62-74. [DOI: 10.1002/mnfr.200900543] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
49
|
Xu X, Zhao CX, Wang L, Tu L, Fang X, Zheng C, Edin ML, Zeldin DC, Wang DW. Increased CYP2J3 expression reduces insulin resistance in fructose-treated rats and db/db mice. Diabetes 2010; 59:997-1005. [PMID: 20068141 PMCID: PMC2844847 DOI: 10.2337/db09-1241] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Accumulating evidence suggests that cytochrome P450 (CYP) epoxygenases metabolize arachidonic acid into epoxyeicosatrienoic acids (EETs), which play crucial and diverse roles in cardiovascular homeostasis. The anti-inflammatory, antihypertensive, and pro-proliferative effects of EETs suggest a possible beneficial role for EETs on insulin resistance and diabetes. RESEARCH DESIGN AND METHODS This study investigated the effects of CYP2J3 epoxygenase gene therapy on insulin resistance and blood pressure in diabetic db/db mice and in a model of fructose-induced hypertension and insulin resistance in rats. RESULTS CYP2J3 gene delivery in vivo increased EET generation, reduced blood pressure, and reversed insulin resistance as determined by plasma glucose levels, homeostasis model assessment insulin resistance index, and glucose tolerance test. Furthermore, CYP2J3 treatment prevented fructose-induced decreases in insulin receptor signaling and phosphorylation of AMP-activated protein kinases (AMPKs) in liver, muscle, heart, kidney, and aorta. Thus, overexpression of CYP2J3 protected against diabetes and insulin resistance in peripheral tissues through activation of insulin receptor and AMPK pathways. CONCLUSIONS These results highlight the beneficial roles of the CYP epoxygenase-EET system in diabetes and insulin resistance.
Collapse
Affiliation(s)
- Xizhen Xu
- Department of Internal Medicine and The Institute of Hypertension, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Chun Xia Zhao
- Department of Internal Medicine and The Institute of Hypertension, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Luyun Wang
- Department of Internal Medicine and The Institute of Hypertension, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ling Tu
- Department of Internal Medicine and The Institute of Hypertension, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaosai Fang
- Department of Internal Medicine and The Institute of Hypertension, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Changlong Zheng
- Department of Internal Medicine and The Institute of Hypertension, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Matthew L. Edin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Darryl C. Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Dao Wen Wang
- Department of Internal Medicine and The Institute of Hypertension, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Corresponding author: Dao Wen Wang,
| |
Collapse
|
50
|
Kaspera R, Totah RA. Epoxyeicosatrienoic acids: formation, metabolism and potential role in tissue physiology and pathophysiology. Expert Opin Drug Metab Toxicol 2010; 5:757-71. [PMID: 19505190 DOI: 10.1517/17425250902932923] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND CYP enzymes from the CYP2C and CYP2J subfamilies metabolize arachidonic acid in a regiospecific and stereoselective manner to eight epoxyeicosatrienoic acids (EETs). Various EETs have been detected in the liver, as well as in many extrahepatic tissues, and have been implicated in numerous physiological functions from cell signaling to vasodilation and angiogenesis. OBJECTIVE This report reviews the sites of expression and activity of arachidonic acid epoxygenase CYP isoforms, as well as the physiological role and metabolism of EETs in various extrahepatic tissues. Possible functions of EETs in tissue pathophysiology and implications as potential drug targets are also discussed. METHODS The most recent primary research literature on EET forming enzymes and the new physiological functions of EETs in various tissues were reviewed. RESULTS/CONCLUSIONS Epoxyeicosatrienoic acids are important in maintaining the homeostasis and in responding to stress in various extra hepatic tissues. It is not clear whether these effects are owing to EETs acting on a universal receptor or through a mechanism involving a second messenger. A better understanding of the regulation of EET levels and their mechanism of action on various receptors will accelerate research aiming at developing therapeutic agents that target EET formation or metabolism pathways.
Collapse
Affiliation(s)
- Rüdiger Kaspera
- University of Washington, Department of Medicinal Chemistry, Seattle, WA 98195, USA
| | | |
Collapse
|