1
|
Tollefson AE, Cline-Smith A, Spencer JF, Ying B, Reyna DM, Lipka E, James SH, Toth K. Longitudinal Monitoring of the Effects of Anti-Adenoviral Treatment Regimens in a Permissive In Vivo Model. Viruses 2024; 16:1200. [PMID: 39205174 PMCID: PMC11359180 DOI: 10.3390/v16081200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Adenovirus infections of immunocompromised patients can cause life-threatening disseminated disease. While there are presently no drugs specifically approved to treat these infections, there are several compounds that showed efficacy against adenovirus in preclinical studies. For any such compound, low toxicity is an essential requirement. As cumulative drug effects can accentuate pathology, especially in patients with other morbidities, it is important to limit antiviral exposure to what is absolutely necessary. This is achievable by monitoring the virus burden of the patients and administering antivirals to suppress virus replication to a non-pathogenic level. We modeled such a system using Syrian hamsters infected with a replication-competent adenovirus vector, in which luciferase expression is coupled to virus replication. We found that virus replication could be followed in vivo in the same animal by repeated measurement of luciferase expression. To test the utility of an interrupted treatment regimen, we used NPP-669 and valganciclovir, two antiviral compounds with high and moderate anti-adenoviral efficacy, respectively. We found that short-term treatment of adenovirus-infected hamsters at times of peak virus replication can prevent virus-associated pathology. Thus, we believe that this animal model can be used to model different treatment regimens for anti-adenoviral compounds.
Collapse
Affiliation(s)
- Ann E Tollefson
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Anna Cline-Smith
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Jacqueline F Spencer
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Baoling Ying
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | | | | | - Scott H James
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Karoly Toth
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| |
Collapse
|
2
|
Tollefson AE, Cline-Smith AB, Spencer JF, Reyna DM, Lipka E, Toth K. NPP-669, a prodrug of cidofovir, is highly efficacious against human adenovirus infection in the permissive Syrian hamster model. Antimicrob Agents Chemother 2024; 68:e0048924. [PMID: 38775484 PMCID: PMC11232382 DOI: 10.1128/aac.00489-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/29/2024] [Indexed: 07/10/2024] Open
Abstract
Human adenoviruses can cause serious, disseminated infections in immunocompromised patients. For pediatric allogeneic stem cell transplant patients, the case fatality rate can reach 80%. Still, there is no available antiviral drug that is specifically approved by the Food and Drug Administration for the treatment of adenovirus infections. To fill this pressing medical need, we have developed NPP-669, a prodrug of cidofovir with broad activity against double-stranded DNA viruses, including adenoviruses. Here, we report on the in vivo anti-adenoviral efficacy of NPP-669. Using the immunosuppressed Syrian hamster as the model, we show that NPP-669 is highly efficacious when dosed orally at 1 mg/kg and 3 mg/kg. In a delayed administration experiment, NPP-669 was more effective than brincidofovir, a similar compound that reached Phase III clinical trials. Furthermore, parenteral administration of NPP-669 increased its efficacy approximately 10-fold compared to oral dosing without apparent toxicity, suggesting that this route may be preferable in a hospital setting. Based on these findings, we believe that NPP-669 is a promising new compound that needs to be further investigated.
Collapse
Affiliation(s)
- Ann E Tollefson
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Anna B Cline-Smith
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Jacqueline F Spencer
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | | | | | - Karoly Toth
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
3
|
Janaszkiewicz A, Tóth Á, Faucher Q, Arnion H, Védrenne N, Barin-Le Guellec C, Marquet P, Di Meo F. Substrate binding and lipid-mediated allostery in the human organic anion transporter 1 at the atomic-scale. Biomed Pharmacother 2023; 160:114342. [PMID: 36739760 DOI: 10.1016/j.biopha.2023.114342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
The Organic Anion Transporter 1 is a membrane transporter known for its central role in drug elimination by the kidney. hOAT1 is an antiporter translocating substrate in exchange for a-ketoglutarate. The understanding of hOAT1 structure and function remains limited due to the absence of resolved structure of hOAT1. Benefiting from conserved structural and functional patterns shared with other Major Facilitator Superfamily transporters, the present study intended to investigate fragments of hOAT1 transport function and modulation of its activity in order to make a step forward the understanding of its transport cycle. μs-long molecular dynamics simulation of hOAT1 were carried out suggesting two plausible binding sites for a typical substrate, adefovir, in line with experimental observations. The well-known B-like motif binding site was observed in line with previous studies. However, we here propose a new inner binding cavity which is expected to be involved in substrate translocation event. Binding modes of hOAT1 co-substrate α-ketoglutarate were also investigated suggesting that it may bind to highly conserved intracellular motifs. We here hypothesise that α-ketoglutarate may disrupt the pseudo-symmetrical intracellular charge-relay system which in turn may participate to the destabilisation of OF conformation. Investigations regarding allosteric communications along hOAT1 also suggest that substrate binding event might modulate the dynamics of intracellular charge relay system, assisted by surrounding lipids as active partners. We here proposed a structural rationalisation of transport impairments observed for two single nucleotide polymorphisms, p.Arg50His and p.Arg454Gln suggesting that the present model may be used to transport dysfunctions arising from hOAT1 mutations.
Collapse
Affiliation(s)
| | - Ágota Tóth
- Inserm U1248 Pharmacology & Transplantation, Univ. Limoges, 87000 Limoges, France
| | - Quentin Faucher
- Inserm U1248 Pharmacology & Transplantation, Univ. Limoges, 87000 Limoges, France; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utre-cht University, 3584 CG Utrecht, The Netherlands
| | - Hélène Arnion
- Inserm U1248 Pharmacology & Transplantation, Univ. Limoges, 87000 Limoges, France
| | - Nicolas Védrenne
- Inserm U1248 Pharmacology & Transplantation, Univ. Limoges, 87000 Limoges, France
| | - Chantal Barin-Le Guellec
- Inserm U1248 Pharmacology & Transplantation, Univ. Limoges, 87000 Limoges, France; CHU de Tours, 2 Boulevard Tonnellé, 37044 Tours, France
| | - Pierre Marquet
- Inserm U1248 Pharmacology & Transplantation, Univ. Limoges, 87000 Limoges, France; Department of Pharmacology and Toxicology, CHU Limoges, F-87000 Limoges, France
| | - Florent Di Meo
- Inserm U1248 Pharmacology & Transplantation, Univ. Limoges, 87000 Limoges, France.
| |
Collapse
|
4
|
Floerl S, Kuehne A, Hagos Y. Functional characterization and comparison of human and mouse organic anion transporter 1 as drugs and pesticides uptake carrier. Eur J Pharm Sci 2022; 175:106217. [DOI: 10.1016/j.ejps.2022.106217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/27/2022] [Accepted: 05/21/2022] [Indexed: 11/30/2022]
|
5
|
Yang M, Xu X. Important roles of transporters in the pharmacokinetics of anti-viral nucleoside/nucleotide analogs. Expert Opin Drug Metab Toxicol 2022; 18:483-505. [PMID: 35975669 PMCID: PMC9506706 DOI: 10.1080/17425255.2022.2112175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/02/2022] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Nucleoside analogs are an important class of antiviral agents. Due to the high hydrophilicity and limited membrane permeability of antiviral nucleoside/nucleotide analogs (AVNAs), transporters play critical roles in AVNA pharmacokinetics. Understanding the properties of these transporters is important to accelerate translational research for AVNAs. AREAS COVERED The roles of key transporters in the pharmacokinetics of 25 approved AVNAs were reviewed. Clinically relevant information that can be explained by the modulation of transporter functions is also highlighted. EXPERT OPINION Although the roles of transporters in the intestinal absorption and renal excretion of AVNAs have been well identified, more research is warranted to understand their roles in the distribution of AVNAs, especially to immune privileged compartments where treatment of viral infection is challenging. P-gp, MRP4, BCRP, and nucleoside transporters have shown extensive impacts in the disposition of AVNAs. It is highly recommended that the role of transporters should be investigated during the development of novel AVNAs. Clinically, co-administered inhibitors and genetic polymorphism of transporters are the two most frequently reported factors altering AVNA pharmacokinetics. Physiopathology conditions also regulate transporter activities, while their effects on pharmacokinetics need further exploration. Pharmacokinetic models could be useful for elucidating these complicated factors in clinical settings.
Collapse
Affiliation(s)
- Mengbi Yang
- Drug Metabolism and Pharmacokinetics, Division of Preclinical Innovation (DPI), National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Xin Xu
- Drug Metabolism and Pharmacokinetics, Division of Preclinical Innovation (DPI), National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| |
Collapse
|
6
|
Insights into the structure and function of the human organic anion transporter 1 in lipid bilayer membranes. Sci Rep 2022; 12:7057. [PMID: 35488116 PMCID: PMC9054760 DOI: 10.1038/s41598-022-10755-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/12/2022] [Indexed: 01/27/2023] Open
Abstract
The human SLC22A6/OAT1 plays an important role in the elimination of a broad range of endogenous substances and xenobiotics thus attracting attention from the pharmacological community. Furthermore, OAT1 is also involved in key physiological events such as the remote inter-organ communication. Despite its significance, the knowledge about hOAT1 structure and the transport mechanism at the atomic level remains fragmented owing to the lack of resolved structures. By means of protein-threading modeling refined by μs-scaled Molecular Dynamics simulations, the present study provides the first robust model of hOAT1 in outward-facing conformation. Taking advantage of the AlphaFold 2 predicted structure of hOAT1 in inward-facing conformation, we here provide the essential structural and functional features comparing both states. The intracellular motifs conserved among Major Facilitator Superfamily members create a so-called “charge-relay system” that works as molecular switches modulating the conformation. The principal element of the event points at interactions of charged residues that appear crucial for the transporter dynamics and function. Moreover, hOAT1 model was embedded in different lipid bilayer membranes highlighting the crucial structural dependence on lipid-protein interactions. MD simulations supported the pivotal role of phosphatidylethanolamine components to the protein conformation stability. The present model is made available to decipher the impact of any observed polymorphism and mutation on drug transport as well as to understand substrate binding modes.
Collapse
|
7
|
Kidney Transporters Drug Discovery, Development, and Safety. CURRENT OPINION IN TOXICOLOGY 2022. [DOI: 10.1016/j.cotox.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Kawasaki T, Kondo M, Hiramatsu R, Nabekura T. (-)-Epigallocatechin-3-gallate Inhibits Human and Rat Renal Organic Anion Transporters. ACS OMEGA 2021; 6:4347-4354. [PMID: 33623845 PMCID: PMC7893792 DOI: 10.1021/acsomega.0c05586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/22/2021] [Indexed: 05/15/2023]
Abstract
Organic anion transporter 1 (OAT1, SLC22A6) and 3 (OAT3, SLC22A8) are multispecific drug transporters highly expressed on the basolateral membranes of the renal proximal tubules. OAT1 and OAT3 mediate the tubular secretion of clinically significant drugs; thus, they influence the pharmacokinetics of drugs and further determine their efficacy and toxicity. OAT1 and OAT3 are also the target of drug-drug interactions. In this study, we examined the effects of the tea catechin (-)-epigallocatechin-3-gallate (EGCG) on human (h) and rat (r) OAT1 and OAT3 using the fluorescent organic anion 6-carboxyfluorescein (6-CF) and hOAT1-, hOAT3-, rOat1-, or rOat3-expressing HEK293 cells and on renal elimination of 6-CF in rats. 6-CF is transported by hOAT1, hOAT3, rOat1, and rOat3. 6-CF is urinary excreted by Oats in rats. EGCG, a dominant catechin in green tea leaf, inhibits human and rat OAT1 and OAT3 and reduces the renal elimination of 6-CF in rats. Our findings are useful for the assessment of food-drug interactions mediated by renal OATs.
Collapse
Affiliation(s)
- Tatsuya Kawasaki
- Department of Pharmaceutics, School
of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa, Nagoya 464-8650, Japan
| | - Masaki Kondo
- Department of Pharmaceutics, School
of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa, Nagoya 464-8650, Japan
| | - Rioka Hiramatsu
- Department of Pharmaceutics, School
of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa, Nagoya 464-8650, Japan
| | - Tomohiro Nabekura
- Department of Pharmaceutics, School
of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa, Nagoya 464-8650, Japan
| |
Collapse
|
9
|
Gai Z, Gui T, Kullak-Ublick GA, Li Y, Visentin M. The Role of Mitochondria in Drug-Induced Kidney Injury. Front Physiol 2020; 11:1079. [PMID: 33013462 PMCID: PMC7500167 DOI: 10.3389/fphys.2020.01079] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022] Open
Abstract
The kidneys utilize roughly 10% of the body’s oxygen supply to produce the energy required for accomplishing their primary function: the regulation of body fluid composition through secreting, filtering, and reabsorbing metabolites and nutrients. To ensure an adequate ATP supply, the kidneys are particularly enriched in mitochondria, having the second highest mitochondrial content and thus oxygen consumption of our body. The bulk of the ATP generated in the kidneys is consumed to move solutes toward (reabsorption) or from (secretion) the peritubular capillaries through the concerted action of an array of ATP-binding cassette (ABC) pumps and transporters. ABC pumps function upon direct ATP hydrolysis. Transporters are driven by the ion electrochemical gradients and the membrane potential generated by the asymmetric transport of ions across the plasma membrane mediated by the ATPase pumps. Some of these transporters, namely the polyspecific organic anion transporters (OATs), the organic anion transporting polypeptides (OATPs), and the organic cation transporters (OCTs) are highly expressed on the proximal tubular cell membranes and happen to also transport drugs whose levels in the proximal tubular cells can rapidly rise, thereby damaging the mitochondria and resulting in cell death and kidney injury. Drug-induced kidney injury (DIKI) is a growing public health concern and a major cause of drug attrition in drug development and post-marketing approval. As part of the article collection “Mitochondria in Renal Health and Disease,” here, we provide a critical overview of the main molecular mechanisms underlying the mitochondrial damage caused by drugs inducing nephrotoxicity.
Collapse
Affiliation(s)
- Zhibo Gai
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ting Gui
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Mechanistic Safety, CMO & Patient Safety, Global Drug Development, Novartis Pharma, Basel, Switzerland
| | - Yunlun Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,The Third Department of Cardiovascular Diseases, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Michele Visentin
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Gote V, Ansong M, Pal D. Prodrugs and nanomicelles to overcome ocular barriers for drug penetration. Expert Opin Drug Metab Toxicol 2020; 16:885-906. [PMID: 32729364 DOI: 10.1080/17425255.2020.1803278] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Ocular barriers hinder drug delivery and reduce drug bioavailability. This article focuses on enhancing drug absorption across the corneal and conjunctival epithelium. Both, transporter targeted prodrug formulations and nanomicellar strategy is proven to enhance the drug permeation of therapeutic agents across various ocular barriers. These strategies can increase aqueous drug solubility and stability of many hydrophobic drugs for topical ophthalmic formulations. AREAS COVERED The article discusses various ocular barriers, ocular influx, and efflux transporters. It elaborates various prodrug strategies used for enhancing drug absorption. Along with this, the article also describes nanomicellar formulation, its characteristic and advantages, and applications in for anterior and posterior segment drug delivery. EXPERT OPINION Prodrugs and nanomicellar formulations provide an effective strategy for improving drug absorption and drug bioavailability across various ocular barriers. It will be exciting to see the efficacy of nanomicelles for treating back of the eye disorders after their topical application. This is considered as a holy grail of ocular drug delivery due to the dynamic and static ocular barriers, restricting posterior entry of topically applied drug formulations.
Collapse
Affiliation(s)
- Vrinda Gote
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City , Kansas City, MO, USA
| | - Michael Ansong
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City , Kansas City, MO, USA
| | - Dhananjay Pal
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City , Kansas City, MO, USA
| |
Collapse
|
11
|
Sun L, Yi D, Sun W, Wang C. Retrospective analysis of the clinical characteristics of adefovir dipivoxil-induced Fanconi's syndrome in the Chinese population. J Clin Pharm Ther 2020; 45:722-728. [PMID: 32406123 DOI: 10.1111/jcpt.13154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 12/19/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE To explore the clinical characteristics of adefovir dipivoxil-induced Fanconi's syndrome in the Chinese population and provide a reference for rational drug use in the clinic. METHODS By searching the CNKI, Wanfang, Chinese VIP, PubMed/MEDLINE, Web of Knowledge, Ovid, Elsevier and SpringerLink databases during 1 January 2008 to 31 December 2019, 78 studies of ADV-induced Fanconi's syndrome involving a total of 110 patients were collected and analysed retrospectively. RESULTS AND DISCUSSION Prolonged usage of adefovir dipivoxil at low doses to treat hepatitis B might cause Fanconi's syndrome as the first symptom, especially for use over 12 months.The main clinical manifestation was bone pain accompanied by hypophosphataemia, elevated alkaline phosphatase (ALP), urine glycosuria and urine protein. X-rays and bone mineral density (BMD) examinations were mainly used to characterized osteoporosis. The patients had pain relief within 1 week to 1 month, and the biochemical indicators returned to normal within from 2 to 4 months. WHAT IS NEW AND CONCLUSION Sufficient attention is required before and during exposure to long-term ADV therapy. The clinical picture, laboratory and radiograph alterations are important clues for ADV-induced Fanconi's syndrome.
Collapse
Affiliation(s)
- Linli Sun
- Department of general surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Dan Yi
- Drug clinical trial center, Zhuzhou central hospital, Zhuzhou, China
| | - Wei Sun
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Chunjiang Wang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
12
|
Leowattana W. Antiviral Drugs and Acute Kidney Injury (AKI). Infect Disord Drug Targets 2019; 19:375-382. [PMID: 31288730 DOI: 10.2174/1871526519666190617154137] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 03/15/2019] [Accepted: 06/17/2019] [Indexed: 02/05/2023]
Abstract
The introduction of more efficient antiviral drugs are common cause drug-induced
acute kidney injury (AKI). The true prevalence of antiviral drugs induced nephrotoxicity is hardly
determined. It causes AKI by many mechanisms including acute tubular necrosis (ATN), allergic
interstitial nephritis (AIN), and crystal nephropathy. ATN has been described with a few kinds of
antiviral drugs such as cidofovir, adefovir and tenofovir with unique effects on transporter defects,
apoptosis, and mitochondrial injury. AIN from atazanavir is a rapid onset of AKI and usually nonoliguric
but dialytic therapy are needed because of severity. Additionally, crystal nephropathy
from acyclovir, indinavir, and foscarnet can cause AKI due to intratubular obstruction. In this article,
the mechanisms of antiviral drug-induced AKI were reviewed and strategies for preventing
AKI were mentioned.
Collapse
Affiliation(s)
- Wattana Leowattana
- Department of Clinical Tropical Medicine, Mahidol University, 420/6 Rajavithi Road, Rachatawee, Bangkok 10400, Thailand
| |
Collapse
|
13
|
Li TT, An JX, Xu JY, Tuo BG. Overview of organic anion transporters and organic anion transporter polypeptides and their roles in the liver. World J Clin Cases 2019; 7:3915-3933. [PMID: 31832394 PMCID: PMC6906560 DOI: 10.12998/wjcc.v7.i23.3915] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 02/05/2023] Open
Abstract
Organic anion transporters (OATs) and organic anion transporter polypeptides (OATPs) are classified within two SLC superfamilies, namely, the SLC22A superfamily and the SLCO superfamily (formerly the SLC21A family), respectively. They are expressed in many tissues, such as the liver and kidney, and mediate the absorption and excretion of many endogenous and exogenous substances, including various drugs. Most are composed of 12 transmembrane polypeptide chains with the C-terminus and the N-terminus located in the cell cytoplasm. OATs and OATPs are abundantly expressed in the liver, where they mainly promote the uptake of various endogenous substrates such as bile acids and various exogenous drugs such as antifibrotic and anticancer drugs. However, differences in the locations of glycosylation sites, phosphorylation sites, and amino acids in the OAT and OATP structures lead to different substrates being transported to the liver, which ultimately results in their different roles in the liver. To date, few articles have addressed these aspects of OAT and OATP structures, and we study further the similarities and differences in their structures, tissue distribution, substrates, and roles in liver diseases.
Collapse
Affiliation(s)
- Ting-Ting Li
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical University, Zunyi 563100, Guizhou Province, China
| | - Jia-Xing An
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical University, Zunyi 563100, Guizhou Province, China
| | - Jing-Yu Xu
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical University, Zunyi 563100, Guizhou Province, China
| | - Bi-Guang Tuo
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical University, Zunyi 563100, Guizhou Province, China
| |
Collapse
|
14
|
Makita T, Kanzaki H, Onishi H, Ikeda A, Takaki A, Wada N, Takeuchi Y, Yasunaka T, Ikeda F, Shiraha H, Tanaka Y, Nishihara S, Murakawa K, Kitamura Y, Okada H, Sendo T. [Adefovir Dipivoxil-induced Fanconi's Syndrome and Osteomalacia Following Multiple Bone Fractures in a Patient with Chronic Hepatitis B]. YAKUGAKU ZASSHI 2019; 139:641-645. [PMID: 30930400 DOI: 10.1248/yakushi.18-00170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We herein present the case of a 66-year-old Japanese man with Fanconi's syndrome. He had been receiving adefovir dipivoxil (ADV) for the treatment of entecavir (ETV)-resistant chronic hepatitis B (CHB) for four years in his 8-year treatment of hepatocellular carcinoma (HCC), but was referred to our hospital after increased levels of bone pain in his ribs, knees, and ankles. Renal dysfunction, hypophosphatemia, and increased levels of bone alkaline phosphatase were found by a hematology test after admission for treatment of HCC. Radiography and 99m Tc-labeled hydroxymethylene diphosphonate (HMDP) scintigraphy revealed multiple insufficiency fractures in the ribs, knees, ankles, and heels. After switching from ADV to tenofovir disoproxil fumarate (TDF) and treatment with calcitriol and sodium dihydrogenphosphate, the patient's serum phosphate levels slightly increased and renal dysfunction did not improve, but after six months his clinical symptoms disappeared. To detect and prevent adverse effects from ADV, physicians and pharmacists should carefully monitor renal function and serum phosphate levels in patients with hepatitis B virus (HBV) treated for a long time with ADV.
Collapse
Affiliation(s)
| | | | - Hideki Onishi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Ailee Ikeda
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Akinobu Takaki
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Nozomu Wada
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Yasuto Takeuchi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Tetsuya Yasunaka
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Fusao Ikeda
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Hidenori Shiraha
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Yuta Tanaka
- Department of Pharmacy, Okayama University Hospital
| | | | | | | | - Hiroyuki Okada
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | | |
Collapse
|
15
|
Shen H, Scialis RJ, Lehman-McKeeman L. Xenobiotic Transporters in the Kidney: Function and Role in Toxicity. Semin Nephrol 2019; 39:159-175. [DOI: 10.1016/j.semnephrol.2018.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
16
|
Transport of 2,4-dichloro phenoxyacetic acid by human Na+-coupled monocarboxylate transporter 1 (hSMCT1, SLC5A8). Drug Metab Pharmacokinet 2019; 34:95-103. [DOI: 10.1016/j.dmpk.2018.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 11/18/2022]
|
17
|
A novel multi-parametric high content screening assay in ciPTEC-OAT1 to predict drug-induced nephrotoxicity during drug discovery. Arch Toxicol 2018; 92:3175-3190. [PMID: 30155723 DOI: 10.1007/s00204-018-2284-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/06/2018] [Indexed: 12/11/2022]
Abstract
Drug-induced nephrotoxicity is a major concern in the clinic and hampers the use of available treatments as well as the development of innovative medicines. It is typically discovered late during drug development, which reflects a lack of in vitro nephrotoxicity assays available that can be employed readily in early drug discovery, to identify and hence steer away from the risk. Here, we report the development of a high content screening assay in ciPTEC-OAT1, a proximal tubular cell line that expresses several relevant renal transporters, using five fluorescent dyes to quantify cell health parameters. We used a validation set of 62 drugs, tested across a relevant concentration range compared to their exposure in humans, to develop a model that integrates multi-parametric data and drug exposure information, which identified most proximal tubular toxic drugs tested (sensitivity 75%) without any false positives (specificity 100%). Due to the relatively high throughput (straight-forward assay protocol, 96-well format, cost-effective) the assay is compatible with the needs in the early drug discovery setting to enable identification, quantification and subsequent mitigation of the risk for nephrotoxicity.
Collapse
|
18
|
Soo JYC, Jansen J, Masereeuw R, Little MH. Advances in predictive in vitro models of drug-induced nephrotoxicity. Nat Rev Nephrol 2018; 14:378-393. [PMID: 29626199 PMCID: PMC6013592 DOI: 10.1038/s41581-018-0003-9] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In vitro screens for nephrotoxicity are currently poorly predictive of toxicity in humans. Although the functional proteins that are expressed by nephron tubules and mediate drug susceptibility are well known, current in vitro cellular models poorly replicate both the morphology and the function of kidney tubules and therefore fail to demonstrate injury responses to drugs that would be nephrotoxic in vivo. Advances in protocols to enable the directed differentiation of pluripotent stem cells into multiple renal cell types and the development of microfluidic and 3D culture systems have opened a range of potential new platforms for evaluating drug nephrotoxicity. Many of the new in vitro culture systems have been characterized by the expression and function of transporters, enzymes, and other functional proteins that are expressed by the kidney and have been implicated in drug-induced renal injury. In vitro platforms that express these proteins and exhibit molecular biomarkers that have been used as readouts of injury demonstrate improved functional maturity compared with static 2D cultures and represent an opportunity to model injury to renal cell types that have hitherto received little attention. As nephrotoxicity screening platforms become more physiologically relevant, they will facilitate the development of safer drugs and improved clinical management of nephrotoxicants.
Collapse
Affiliation(s)
- Joanne Y-C Soo
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Jitske Jansen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Melissa H Little
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia.
- Murdoch Children's Research Institute, Parkville, Victoria, Australia.
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
19
|
Zou L, Stecula A, Gupta A, Prasad B, Chien HC, Yee SW, Wang L, Unadkat JD, Stahl SH, Fenner KS, Giacomini KM. Molecular Mechanisms for Species Differences in Organic Anion Transporter 1, OAT1: Implications for Renal Drug Toxicity. Mol Pharmacol 2018; 94:689-699. [PMID: 29720497 DOI: 10.1124/mol.117.111153] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 04/25/2018] [Indexed: 12/31/2022] Open
Abstract
Species differences in renal drug transporters continue to plague drug development with animal models failing to adequately predict renal drug toxicity. For example, adefovir, a renally excreted antiviral drug, failed clinical studies for human immunodeficiency virus due to pronounced nephrotoxicity in humans. In this study, we demonstrated that there are large species differences in the kinetics of interactions of a key class of antiviral drugs, acyclic nucleoside phosphonates (ANPs), with organic anion transporter 1 [(OAT1) SLC22A6] and identified a key amino acid residue responsible for these differences. In OAT1 stably transfected human embryonic kidney 293 cells, the Km value of tenofovir for human OAT1 (hOAT1) was significantly lower than for OAT1 orthologs from common preclinical animals, including cynomolgus monkey, mouse, rat, and dog. Chimeric and site-directed mutagenesis studies along with comparative structure modeling identified serine at position 203 (S203) in hOAT1 as a determinant of its lower Km value. Furthermore, S203 is conserved in apes, and in contrast alanine at the equivalent position is conserved in preclinical animals and Old World monkeys, the most related primates to apes. Intriguingly, transport efficiencies are significantly higher for OAT1 orthologs from apes with high serum uric acid (SUA) levels than for the orthologs from species with low serum uric acid levels. In conclusion, our data provide a molecular mechanism underlying species differences in renal accumulation of nephrotoxic ANPs and a novel insight into OAT1 transport function in primate evolution.
Collapse
Affiliation(s)
- Ling Zou
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California (L.Z., A.S., H.-C.C., S.W.Y., K.M.G.); Pharmacokinetics and Drug Metabolism, Amgen Inc., Cambridge, Massachusetts (A.G.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., L.W., J.D.U.); and Safety and ADME Translational Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK (S.H.S., K.S.F.)
| | - Adrian Stecula
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California (L.Z., A.S., H.-C.C., S.W.Y., K.M.G.); Pharmacokinetics and Drug Metabolism, Amgen Inc., Cambridge, Massachusetts (A.G.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., L.W., J.D.U.); and Safety and ADME Translational Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK (S.H.S., K.S.F.)
| | - Anshul Gupta
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California (L.Z., A.S., H.-C.C., S.W.Y., K.M.G.); Pharmacokinetics and Drug Metabolism, Amgen Inc., Cambridge, Massachusetts (A.G.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., L.W., J.D.U.); and Safety and ADME Translational Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK (S.H.S., K.S.F.)
| | - Bhagwat Prasad
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California (L.Z., A.S., H.-C.C., S.W.Y., K.M.G.); Pharmacokinetics and Drug Metabolism, Amgen Inc., Cambridge, Massachusetts (A.G.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., L.W., J.D.U.); and Safety and ADME Translational Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK (S.H.S., K.S.F.)
| | - Huan-Chieh Chien
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California (L.Z., A.S., H.-C.C., S.W.Y., K.M.G.); Pharmacokinetics and Drug Metabolism, Amgen Inc., Cambridge, Massachusetts (A.G.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., L.W., J.D.U.); and Safety and ADME Translational Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK (S.H.S., K.S.F.)
| | - Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California (L.Z., A.S., H.-C.C., S.W.Y., K.M.G.); Pharmacokinetics and Drug Metabolism, Amgen Inc., Cambridge, Massachusetts (A.G.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., L.W., J.D.U.); and Safety and ADME Translational Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK (S.H.S., K.S.F.)
| | - Li Wang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California (L.Z., A.S., H.-C.C., S.W.Y., K.M.G.); Pharmacokinetics and Drug Metabolism, Amgen Inc., Cambridge, Massachusetts (A.G.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., L.W., J.D.U.); and Safety and ADME Translational Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK (S.H.S., K.S.F.)
| | - Jashvant D Unadkat
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California (L.Z., A.S., H.-C.C., S.W.Y., K.M.G.); Pharmacokinetics and Drug Metabolism, Amgen Inc., Cambridge, Massachusetts (A.G.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., L.W., J.D.U.); and Safety and ADME Translational Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK (S.H.S., K.S.F.)
| | - Simone H Stahl
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California (L.Z., A.S., H.-C.C., S.W.Y., K.M.G.); Pharmacokinetics and Drug Metabolism, Amgen Inc., Cambridge, Massachusetts (A.G.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., L.W., J.D.U.); and Safety and ADME Translational Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK (S.H.S., K.S.F.)
| | - Katherine S Fenner
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California (L.Z., A.S., H.-C.C., S.W.Y., K.M.G.); Pharmacokinetics and Drug Metabolism, Amgen Inc., Cambridge, Massachusetts (A.G.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., L.W., J.D.U.); and Safety and ADME Translational Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK (S.H.S., K.S.F.)
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California (L.Z., A.S., H.-C.C., S.W.Y., K.M.G.); Pharmacokinetics and Drug Metabolism, Amgen Inc., Cambridge, Massachusetts (A.G.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., L.W., J.D.U.); and Safety and ADME Translational Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK (S.H.S., K.S.F.)
| |
Collapse
|
20
|
Genetic Heterogeneity of SLC22 Family of Transporters in Drug Disposition. J Pers Med 2018; 8:jpm8020014. [PMID: 29659532 PMCID: PMC6023491 DOI: 10.3390/jpm8020014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/04/2018] [Accepted: 04/10/2018] [Indexed: 12/14/2022] Open
Abstract
An important aspect of modern medicine is its orientation to achieve more personalized pharmacological treatments. In this context, transporters involved in drug disposition have gained well-justified attention. Owing to its broad spectrum of substrate specificity, including endogenous compounds and xenobiotics, and its strategical expression in organs accounting for drug disposition, such as intestine, liver and kidney, the SLC22 family of transporters plays an important role in physiology, pharmacology and toxicology. Among these carriers are plasma membrane transporters for organic cations (OCTs) and anions (OATs) with a marked overlap in substrate specificity. These two major clades of SLC22 proteins share a similar membrane topology but differ in their degree of genetic variability. Members of the OCT subfamily are highly polymorphic, whereas OATs have a lower number of genetic variants. Regarding drug disposition, changes in the activity of these variants affect intestinal absorption and target tissue uptake, but more frequently they modify plasma levels due to enhanced or reduced clearance by the liver and secretion by the kidney. The consequences of these changes in transport-associated function markedly affect the effectiveness and toxicity of the treatment in patients carrying the mutation. In solid tumors, changes in the expression of these transporters and the existence of genetic variants substantially determine the response to anticancer drugs. Moreover, chemoresistance usually evolves in response to pharmacological and radiological treatment. Future personalized medicine will require monitoring these changes in a dynamic way to adapt the treatment to the weaknesses shown by each tumor at each stage in each patient.
Collapse
|
21
|
Organic solute carrier 22 (SLC22) family: Potential for interactions with food, herbal/dietary supplements, endogenous compounds, and drugs. J Food Drug Anal 2018; 26:S45-S60. [PMID: 29703386 PMCID: PMC9326878 DOI: 10.1016/j.jfda.2018.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 02/07/2023] Open
|
22
|
He C, Griffies A, Liu X, Adamczyk R, Huang SP. A Pooled Analysis of Pharmacokinetic Variability Information for Common Probe Substrates Used in Drug-Drug Interaction Studies. Pharmacology 2018; 101:170-175. [DOI: 10.1159/000485516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 11/17/2017] [Indexed: 11/19/2022]
Abstract
Sample size estimates for drug-drug interaction (DDI) studies are often based on variability information from the literature or from historical studies, but small sample sizes in these sources may limit the precision of the estimates obtained. This project aimed to create an intra-subject variability library of the pharmacokinetic (PK) exposure parameters, area under the curve, and maximum plasma concentration, for probes commonly used in DDI studies. Data from 66 individual DDI studies in healthy subjects relating to 18 common probe substrates were pooled to increase the effective sample size for the identified probes by 1.5- to 9-fold, with corresponding improvements in precision of the intra-subject PK variability estimates in this library. These improved variability estimates will allow better assessment of the sample sizes needed for DDI studies in future.
Collapse
|
23
|
Feng B, Varma MV. Evaluation and Quantitative Prediction of Renal Transporter-Mediated Drug-Drug Interactions. J Clin Pharmacol 2017; 56 Suppl 7:S110-21. [PMID: 27385169 DOI: 10.1002/jcph.702] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/18/2015] [Accepted: 12/28/2015] [Indexed: 12/22/2022]
Abstract
With numerous drugs cleared renally, inhibition of uptake transporters localized on the basolateral membrane of renal proximal tubule cells, eg, organic anion transporters (OATs) and organic cation transporters (OCTs), may lead to clinically meaningful drug-drug interactions (DDIs). Additionally, clinical evidence for the possible involvement of efflux transporters, such as P-glycoprotein (P-gp) and multidrug and toxin extrusion protein 1/2-K (MATE1/2-K), in the renal DDIs is emerging. Herein, we review recent progress regarding mechanistic understanding of transporter-mediated renal DDIs as well as the quantitative predictability of renal DDIs using static and physiologically based pharmacokinetic (PBPK) models. Generally, clinical DDI data suggest that the magnitude of plasma exposure changes attributable to renal DDIs is less than 2-fold, unlike the DDIs associated with inhibition of cytochrome P-450s and/or hepatic uptake transporters. It is concluded that although there is a need for risk assessment early in drug development, current available data imply that safety concerns related to the renal DDIs are generally low. Nevertheless, consideration must be given to the therapeutic index of the victim drug and potential risk in a specific patient population (eg, renal impairment). Finally, in vitro transporter data and clinical pharmacokinetic parameters obtained from the first-in-human studies have proven useful in support of quantitative prediction of DDIs associated with inhibition of renal secretory transporters, OATs or OCTs.
Collapse
Affiliation(s)
- Bo Feng
- Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer Global Research & Development, Groton, CT, USA
| | - Manthena V Varma
- Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer Global Research & Development, Groton, CT, USA
| |
Collapse
|
24
|
Kawasaki T, Takeichi Y, Tomita M, Uwai Y, Epifano F, Fiorito S, Taddeo VA, Genovese S, Nabekura T. Effects of phenylpropanoids on human organic anion transporters hOAT1 and hOAT3. Biochem Biophys Res Commun 2017; 489:375-380. [DOI: 10.1016/j.bbrc.2017.05.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 05/22/2017] [Indexed: 12/26/2022]
|
25
|
Abstract
Transporters in proximal renal tubules contribute to the disposition of numerous drugs. Furthermore, the molecular mechanisms of tubular secretion have been progressively elucidated during the past decades. Organic anions tend to be secreted by the transport proteins OAT1, OAT3 and OATP4C1 on the basolateral side of tubular cells, and multidrug resistance protein (MRP) 2, MRP4, OATP1A2 and breast cancer resistance protein (BCRP) on the apical side. Organic cations are secreted by organic cation transporter (OCT) 2 on the basolateral side, and multidrug and toxic compound extrusion (MATE) proteins MATE1, MATE2/2-K, P-glycoprotein, organic cation and carnitine transporter (OCTN) 1 and OCTN2 on the apical side. Significant drug-drug interactions (DDIs) may affect any of these transporters, altering the clearance and, consequently, the efficacy and/or toxicity of substrate drugs. Interactions at the level of basolateral transporters typically decrease the clearance of the victim drug, causing higher systemic exposure. Interactions at the apical level can also lower drug clearance, but may be associated with higher renal toxicity, due to intracellular accumulation. Whereas the importance of glomerular filtration in drug disposition is largely appreciated among clinicians, DDIs involving renal transporters are less well recognized. This review summarizes current knowledge on the roles, quantitative importance and clinical relevance of these transporters in drug therapy. It proposes an approach based on substrate-inhibitor associations for predicting potential tubular-based DDIs and preventing their adverse consequences. We provide a comprehensive list of known drug interactions with renally-expressed transporters. While many of these interactions have limited clinical consequences, some involving high-risk drugs (e.g. methotrexate) definitely deserve the attention of prescribers.
Collapse
Affiliation(s)
- Anton Ivanyuk
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland.
| | - Françoise Livio
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| | - Jérôme Biollaz
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| | - Thierry Buclin
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| |
Collapse
|
26
|
Xenobiotic transporters and kidney injury. Adv Drug Deliv Rev 2017; 116:73-91. [PMID: 28111348 DOI: 10.1016/j.addr.2017.01.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 01/02/2017] [Accepted: 01/13/2017] [Indexed: 02/07/2023]
Abstract
Renal proximal tubules are targets for toxicity due in part to the expression of transporters that mediate the secretion and reabsorption of xenobiotics. Alterations in transporter expression and/or function can enhance the accumulation of toxicants and sensitize the kidneys to injury. This can be observed when xenobiotic uptake by carrier proteins is increased or efflux of toxicants and their metabolites is reduced. Nephrotoxic chemicals include environmental contaminants (halogenated hydrocarbon solvents, the herbicide paraquat, the fungal toxin ochratoxin, and heavy metals) as well as pharmaceuticals (certain beta-lactam antibiotics, antiviral drugs, and chemotherapeutic drugs). This review explores the mechanisms by which transporters mediate the entry and exit of toxicants from renal tubule cells and influence the degree of kidney injury. Delineating how transport proteins regulate the renal accumulation of toxicants is critical for understanding the likelihood of nephrotoxicity resulting from competition for excretion or genetic polymorphisms that affect transporter function.
Collapse
|
27
|
Zhou F, Zhu L, Wang K, Murray M. Recent advance in the pharmacogenomics of human Solute Carrier Transporters (SLCs) in drug disposition. Adv Drug Deliv Rev 2017; 116:21-36. [PMID: 27320645 DOI: 10.1016/j.addr.2016.06.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/01/2016] [Accepted: 06/08/2016] [Indexed: 12/11/2022]
Abstract
Drug pharmacokinetics is influenced by the function of metabolising enzymes and influx/efflux transporters. Genetic variability of these genes is known to impact on clinical therapies. Solute Carrier Transporters (SLCs) are the primary influx transporters responsible for the cellular uptake of drug molecules, which consequently, impact on drug efficacy and toxicity. The Organic Anion Transporting Polypeptides (OATPs), Organic Anion Transporters (OATs) and Organic Cation Transporters (OCTs/OCTNs) are the most important SLCs involved in drug disposition. The information regarding the influence of SLC polymorphisms on drug pharmacokinetics is limited and remains a hot topic of pharmaceutical research. This review summarises the recent advance in the pharmacogenomics of SLCs with an emphasis on human OATPs, OATs and OCTs/OCTNs. Our current appreciation of the degree of variability in these transporters may contribute to better understanding the inter-patient variation of therapies and thus, guide the optimisation of clinical treatments.
Collapse
|
28
|
Disposition and clinical implications of protein-bound uremic toxins. Clin Sci (Lond) 2017; 131:1631-1647. [DOI: 10.1042/cs20160191] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 12/11/2022]
Abstract
In patients with chronic kidney disease (CKD), adequate renal clearance is compromised, resulting in the accumulation of a plethora of uremic solutes. These uremic retention solutes, also named uremic toxins, are a heterogeneous group of organic compounds with intrinsic biological activities, many of which are too large to be filtered and/or are protein bound. The renal excretion of protein-bound toxins depends largely on active tubular secretion, which shifts the binding and allows for active secretion of the free fraction. To facilitate this process, renal proximal tubule cells are equipped with a range of transporters that co-operate in basolateral uptake and luminal excretion. Many of these transporters have been characterized as mediators of drug disposition, but have recently been recognized for their importance in the proximal renal tubular transport of uremic toxins as well. This also indicates that during uremia, drug disposition may be severely affected as a result of drug–uremic toxin interaction. In addition, CKD patients receive various drugs to treat their complications potentially resulting in drug–drug interactions (DDIs), also for drugs that are non-renally excreted. This review discusses the current knowledge on formation, disposition and removal of protein-bound uremic toxins. Furthermore, implications associated with drug treatment in kidney failure, as well as innovative renal replacement therapies targetting the protein-bound uremic toxins are being discussed. It will become clear that the complex problems associated with uremia warrant a transdisciplinary approach that unites research experts in the area of fundamental biomedical research with their colleagues in clinical nephrology.
Collapse
|
29
|
Murray M, Zhou F. Trafficking and other regulatory mechanisms for organic anion transporting polypeptides and organic anion transporters that modulate cellular drug and xenobiotic influx and that are dysregulated in disease. Br J Pharmacol 2017; 174:1908-1924. [PMID: 28299773 DOI: 10.1111/bph.13785] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/01/2017] [Accepted: 03/05/2017] [Indexed: 12/25/2022] Open
Abstract
Organic anion transporters (OATs) and organic anion-transporting polypeptides (OATPs), encoded by a number of solute carrier (SLC)22A and SLC organic anion (SLCO) genes, mediate the absorption and distribution of drugs and other xenobiotics. The regulation of OATs and OATPs is complex, comprising both transcriptional and post-translational mechanisms. Plasma membrane expression is required for cellular substrate influx by OATs/OATPs. Thus, interest in post-translational regulatory processes, including membrane targeting, endocytosis, recycling and degradation of transporter proteins, is increasing because these are critical for plasma membrane expression. After being synthesized, transporters undergo N-glycosylation in the endoplasmic reticulum and Golgi apparatus and are delivered to the plasma membrane by vesicular transport. Their expression at the cell surface is maintained by de novo synthesis and recycling, which occurs after clathrin- and/or caveolin-dependent endocytosis of existing protein. Several studies have shown that phosphorylation by signalling kinases is important for the internalization and recycling processes, although the transporter protein does not appear to be directly phosphorylated. After internalization, transporters that are targeted for degradation undergo ubiquitination, most likely on intracellular loop residues. Epigenetic mechanisms, including methylation of gene regulatory regions and transcription from alternate promoters, are also significant in the regulation of certain SLC22A/SLCO genes. The membrane expression of OATs/OATPs is dysregulated in disease, which affects drug efficacy and detoxification. Several transporters are expressed in the cytoplasmic subcompartment in disease states, which suggests that membrane targeting/internalization/recycling may be impaired. This article focuses on recent developments in OAT and OATP regulation, their dysregulation in disease and the significance for drug therapy.
Collapse
Affiliation(s)
- Michael Murray
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, The University of Sydney, NSW, 2006, Australia
| | - Fanfan Zhou
- Faculty of Pharmacy, The University of Sydney, NSW, 2006, Australia
| |
Collapse
|
30
|
Dolberg AM, Reichl S. Activity of Multidrug Resistance-Associated Proteins 1-5 (MRP1-5) in the RPMI 2650 Cell Line and Explants of Human Nasal Turbinate. Mol Pharm 2017; 14:1577-1590. [PMID: 28291371 DOI: 10.1021/acs.molpharmaceut.6b00838] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The profound influence of ATP-binding cassette (ABC) transporters on the disposition of numerous drugs has led to increased interest in characterizing their expression profiles in various epithelial and endothelial barriers. The present work examined the presence and functional activity of five ABC efflux proteins, i.e., MRP 1-5, in freshly isolated human nasal epithelial cells and two in vitro models based on the human RPMI 2650 cell line. To evaluate the expression patterns of MRP1, MRP2, MRP3, MRP4, and MRP5 at the mRNA and protein levels in the ex vivo model and the differently cultured RPMI 2650 cells, reverse transcriptase polymerase chain reaction (RT-PCR), Western blot analysis, and indirect immunofluorescence staining were used. The functionality of the MRP transporters in the three models was assessed using efflux experiments and accumulation assays with the respective substrates and inhibitors. The mRNA and protein expression of all selected ABC transporters was detected in excised human nasal mucosa as well as in the corresponding cell culture models. Moreover, the functional expression of the MRP transport proteins was demonstrated in the three models for the first time. Therefore, the potential impact of multidrug resistance-associated proteins 1-5 on drug disposition after intranasal administration may be taken into consideration for future developments. The specimens of human nasal turbinate exhibited slightly lower efflux capacities of MRP1, MRP3, and MRP5 in relation to the submerged and ALI-cultured RPMI 2650 cells, but showed a promising comparability to both in vitro models concerning the activity of MRP2 and MRP4. In this regard, the different RPMI 2650 cell culture models will be able to provide useful experimental data in the preclinical phase to estimate the interaction of particular efflux transporters with drug candidates for nasal application.
Collapse
Affiliation(s)
- Anne M Dolberg
- Institut für Pharmazeutische Technologie, Technische Universität Braunschweig , Braunschweig 38106, Germany
| | - Stephan Reichl
- Institut für Pharmazeutische Technologie, Technische Universität Braunschweig , Braunschweig 38106, Germany.,Zentrum für Pharmaverfahrenstechnik, Technische Universität Braunschweig , Braunschweig 38106, Germany
| |
Collapse
|
31
|
Joseph A, Vidal-Petiot E, Yazdanpanah Y, Flamant M. Syndrome de Fanconi lié au Tenofovir et récupération à l’arrêt du traitement : considérations physiologiques à propos d’un cas. Presse Med 2017; 46:233-236. [DOI: 10.1016/j.lpm.2016.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 11/21/2016] [Indexed: 10/20/2022] Open
|
32
|
Tippin TK, Morrison ME, Brundage TM, Momméja-Marin H. Brincidofovir Is Not a Substrate for the Human Organic Anion Transporter 1: A Mechanistic Explanation for the Lack of Nephrotoxicity Observed in Clinical Studies. Ther Drug Monit 2016; 38:777-786. [PMID: 27851688 PMCID: PMC5113238 DOI: 10.1097/ftd.0000000000000353] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/05/2016] [Indexed: 01/02/2023]
Abstract
BACKGROUND Brincidofovir (BCV) is an orally bioavailable lipid conjugate of cidofovir (CDV) with increased in vitro potency relative to CDV against all 5 families of double-stranded DNA viruses that cause human disease. After intravenous (IV) administration of CDV, the organic anion transporter 1 (OAT1) transports CDV from the blood into the renal proximal tubule epithelial cells with resulting dose-limiting nephrotoxicity. OBJECTIVE To study whether OAT1 transports BCV and to evaluate the pharmacokinetic and renal safety profile of oral BCV compared with IV CDV. METHODS The cellular uptake of BCV and its major metabolites was assessed in vitro. Renal function at baseline and during and after treatment in subjects in BCV clinical studies was examined. RESULTS In OAT1-expressing cells, uptake of BCV and its 2 major metabolites (CMX103 and CMX064) was the same as in mock-transfected control cells and was not inhibited by the OAT inhibitor probenecid. In human pharmacokinetic studies, BCV administration at therapeutic doses resulted in detection of CDV as a circulating metabolite; peak CDV plasma concentrations after oral BCV administration in humans were <1% of those observed after IV CDV administration at therapeutic doses. Analysis of renal function and adverse events from 3 BCV clinical studies in immunocompromised adult and pediatric subjects indicated little to no evidence of associated nephrotoxicity. Over 80% of subjects who switched from CDV or foscarnet to BCV experienced an improvement in renal function as measured by maximum on-treatment estimated glomerular filtration rate. CONCLUSIONS The lack of BCV uptake through OAT1, together with lower CDV concentrations after oral BCV compared with IV CDV administration, likely explains the superior renal safety profile observed in immunocompromised subjects receiving BCV compared with CDV.
Collapse
|
33
|
Lin Y, Pan F, Wang Y, Chen Z, Lin C, Yao L, Zhang X, Zhou R, Pan C. Adefovir dipivoxil-induced Fanconi syndrome and its predictive factors: A study of 28 cases. Oncol Lett 2016; 13:307-314. [PMID: 28123560 DOI: 10.3892/ol.2016.5393] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 09/14/2016] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to identify monitoring and prevention measures as well as predictive factors for early detection of renal toxicity associated with long-term administration of adefovir dipivoxil in order to avoid progression to Fanconi syndrome. Clinical data of 28 patients with Fanconi syndrome caused by long-term administration of adefovir dipivoxil for the treatment of chronic hepatitis B virus (HBV) infection were collected pre-and post-administration for analysis. Patients presented with fatigue, progressive systemic pain in multiple bones and joints, as well as difficulty in walking and pathological fractures in a number of severe cases. Laboratory examinations revealed hypophosphatemia, elevated serum cystatin C (Cys-C), elevated serum creatinine (SCr), reduced glomerular filtration rate (GFR), positive urinary protein, erythrocytes and glucose, as well as osteoporosis. In consequence, adefovir dipivoxil administration was stopped, and patients received concentrated divitamins, sodium phosphate syrup and calcitriol. Symptoms and abnormalities in laboratory examinations were significantly improved in all patients after 2-6 months. Therefore, serum phosphate, SCr, routine urine parameters, Cys-C and GFR should be monitored regularly in chronic HBV patients treated with adefovir dipivoxil. The following factors were identified as predictive of kidney damage and Fanconi syndrome: Age ≥40 years, living in rural areas, previous renal toxicity, estimated GFR (eGFR) <90 ml/min/1.73 m2, hypertension, diabetes, cirrhosis and duration of adefovir dipivoxil treatment exceeding 24 months. The present results indicate that timely termination of adefovir dipivoxil treatment and replacement with other antiviral agents is critical once renal impairment appears, and that it is necessary to change to other antiviral agents and prolong the interval of administration according to the eGFR level.
Collapse
Affiliation(s)
- Yong Lin
- Department of Gastroenterology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Fan Pan
- Department of Hepatobiliary Surgery, Fuzhou General Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Yingchao Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Ziqian Chen
- Department of Medical Imaging, Fuzhou General Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Chun Lin
- Department of Gastroenterology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Lvfeng Yao
- Department of Gastroenterology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Xin Zhang
- Department of Gastroenterology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Rui Zhou
- Department of Gastroenterology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Chen Pan
- Department of Gastroenterology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| |
Collapse
|
34
|
Yin J, Duan H, Wang J. Impact of Substrate-Dependent Inhibition on Renal Organic Cation Transporters hOCT2 and hMATE1/2-K-Mediated Drug Transport and Intracellular Accumulation. J Pharmacol Exp Ther 2016; 359:401-410. [PMID: 27758931 DOI: 10.1124/jpet.116.236158] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/26/2016] [Indexed: 01/28/2023] Open
Abstract
Renal transporter-mediated drug-drug interactions (DDIs) are of significant clinical concern, as they can adversely impact drug disposition, efficacy, and toxicity. Emerging evidence suggests that human renal organic cation transporter 2 (hOCT2) and multidrug and toxin extrusion proteins 1 and 2-K (hMATE1/2-K) exhibit substrate-dependent inhibition, but their impact on renal drug secretion and intracellular accumulation is unknown. Using metformin and atenolol as the probe substrates, we found that the classic inhibitors (e.g., cimetidine) of renal organic cation secretion were approximately 10-fold more potent for hOCT2 when atenolol was used, suggesting that atenolol is a more sensitive in vitro substrate for hOCT2 than metformin. In contrast, inhibition of hMATE1/2-K was influenced much less by the choice of substrate. Cimetidine is a much more potent inhibitor for hMATE1/2-K when metformin is the substrate but acts as an equally potent inhibitor of hOCT2 and hMATE1/2-K when atenolol is the substrate. Using hOCT2/hMATE1 double-transfected Madin-Darby canine kidney cells, we evaluated the impact of substrate-dependent inhibition on hOCT2/hMATE1-mediated transepithelial flux and intracellular drug accumulation. At clinically relevant concentrations, cimetidine dose dependently inhibited basal-to-apical flux of atenolol and metformin but impacted their intracellular accumulation differently, indicating that substrate-dependent inhibition may shift the major substrate-inhibitor interaction site between apical and basolateral transporters. Cimetidine is effective only when applied to the basal compartment. Our findings revealed the complex and dynamic nature of substrate-dependent inhibition of renal organic cation drug transporters and highlighted the importance of considering substrate-dependent inhibition in predicting transporter-mediated renal drug interaction, accumulation, and toxicity.
Collapse
Affiliation(s)
- Jia Yin
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | - Haichuan Duan
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | - Joanne Wang
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| |
Collapse
|
35
|
Renal drug transporters and their significance in drug-drug interactions. Acta Pharm Sin B 2016; 6:363-373. [PMID: 27709005 PMCID: PMC5045553 DOI: 10.1016/j.apsb.2016.07.013] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/30/2016] [Accepted: 07/07/2016] [Indexed: 12/12/2022] Open
Abstract
The kidney is a vital organ for the elimination of therapeutic drugs and their metabolites. Renal drug transporters, which are primarily located in the renal proximal tubules, play an important role in tubular secretion and reabsorption of drug molecules in the kidney. Tubular secretion is characterized by high clearance capacities, broad substrate specificities, and distinct charge selectivity for organic cations and anions. In the past two decades, substantial progress has been made in understanding the roles of transporters in drug disposition, efficacy, toxicity and drug-drug interactions (DDIs). In the kidney, several transporters are involved in renal handling of organic cation (OC) and organic anion (OA) drugs. These transporters are increasingly recognized as the target for clinically significant DDIs. This review focuses on the functional characteristics of major human renal drug transporters and their involvement in clinically significant DDIs.
Collapse
Key Words
- ABC, ATP-binding cassette
- ATP, adenosine triphosphate
- AUC, area under the plasma concentration curve
- BBB, blood–brain barrier
- CHO, Chinese hamster ovary
- CL, plasma clearance
- CLR, renal clearance
- Cmax, maximum plasma concentration
- DDIs, drug–drug interactions
- Drug–drug interactions
- FDA, U.S. Food and Drug Administration
- GSH, glutathione
- HEK, human embryonic kidney
- IC50, half maximal inhibitory concentration
- ITC, International Transporter Consortium
- Ki, inhibitory constant
- MATE, multidrug and toxin extrusion protein
- MPP+, 1-methyl-4-phenylpyridimium
- MRP, multidrug resistance-associated protein
- MSD, membrane-spanning domain
- MW, molecular weight
- NBD, nucleotide-binding domain
- NME, new molecular entity
- NSAID, non-steroidal anti-inflammatory drugs
- Nephrotoxicity
- OA, organic anion
- OAT or Oat, organic anion transporters
- OATP or Oatp, organic anion-transporting peptide
- OC, organic cation
- OCT or Oct, organic cation transporter
- OCTN, Organic zwitterions/cation transporters
- Organic anions
- Organic cations
- P-gp, P-glycoprotein
- PAH, p-aminohippurate
- Renal drug transporters
- SLC, solute carrier
- SNP, single-nucleotide polymorphism
- TEA, tetraethylammonium
- TMD, transmembrane domain
- URAT, urate transporter
- fe, fraction of the absorbed dose excreted unchanged in urine
Collapse
|
36
|
Lampertico P, Chan HLY, Janssen HLA, Strasser SI, Schindler R, Berg T. Review article: long-term safety of nucleoside and nucleotide analogues in HBV-monoinfected patients. Aliment Pharmacol Ther 2016; 44:16-34. [PMID: 27198929 DOI: 10.1111/apt.13659] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/15/2016] [Accepted: 04/21/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Nucleos(t)ide analogues (NUCs) for chronic hepatitis B treatment achieve high rates of viral suppression and are generally well tolerated. Entecavir (ETV) and tenofovir disoproxil fumarate (TDF) are the currently preferred first-line agents. The safety of these agents in clinical practice is particularly relevant since long-term treatment is usually required. AIM To summarise and critically discuss recent real-world evidence on the safety of treatment with ETV or TDF in hepatitis B virus (HBV)-monoinfected patients. METHODS PubMed and conference proceedings up to 15th June 2015 were searched using the terms ((((Hepatitis_B) OR HBV) AND ((tenofovir) OR entecavir)) AND (((lactic_acidosis) OR bone) OR renal)). RESULTS In selected populations included in registration studies, both ETV and TDF were well tolerated with no clinically significant renal toxicity or lactic acidosis. Growing 'real-world' clinical experience with these agents includes some reports of ETV-associated lactic acidosis and TDF-associated renal impairment; however, evidence from cohort studies appears to be conflicting. In the case of ETV-related lactic acidosis, a small number of cases have been reported, all in patients with decompensated cirrhosis. The degree of association between TDF treatment and changes in markers of renal function varies between studies: discrepancies may result from the use of different definitions and cut-offs for reporting renal toxicities, and differences in patient populations. CONCLUSIONS Pre-treatment and on-treatment monitoring of eGFR and phosphorus, with prompt appropriate dose adjustment or treatment switch can minimise the impact of NUC renal toxicity. Standardisation of measures of renal impairment and identification of early molecular markers remain an unmet need.
Collapse
Affiliation(s)
- P Lampertico
- Division of Gastroenterology and Hepatology, "A.M. and A. Migliavacca" Center for Liver Disease, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| | - H L Y Chan
- Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - H L A Janssen
- Toronto Centre for Liver Diseases, University Health Network, Toronto, ON, Canada
| | - S I Strasser
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - R Schindler
- Department of Nephrology and Intensive Care, Campus Virchow, Charité - Universitätsmedizin, Berlin, Germany
| | - T Berg
- Section Hepatology, Clinic for Gastroenterology and Rheumatology, University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
37
|
|
38
|
Nieskens TTG, Peters JGP, Schreurs MJ, Smits N, Woestenenk R, Jansen K, van der Made TK, Röring M, Hilgendorf C, Wilmer MJ, Masereeuw R. A Human Renal Proximal Tubule Cell Line with Stable Organic Anion Transporter 1 and 3 Expression Predictive for Antiviral-Induced Toxicity. AAPS JOURNAL 2016; 18:465-75. [PMID: 26821801 PMCID: PMC4779111 DOI: 10.1208/s12248-016-9871-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/07/2016] [Indexed: 12/13/2022]
Abstract
Drug-induced nephrotoxicity still hampers drug development, because current translation from in vitro or animal studies to human lacks high predictivity. Often, renal adverse effects are recognized only during clinical stages of drug development. The current study aimed to establish a robust and a more complete human cell model suitable for screening of drug-related interactions and nephrotoxicity. In addition to endogenously expressed renal organic cation transporters and efflux transporters, conditionally immortalized proximal tubule epithelial cells (ciPTEC) were completed by transduction of cells with the organic anion transporter (OAT) 1 or OAT3. Fluorescence-activated cell sorting upon exposure to the OAT substrate fluorescein successfully enriched transduced cells. A panel of organic anions was screened for drug-interactions in ciPTEC-OAT1 and ciPTEC-OAT3. The cytotoxic response to the drug-interactions with antivirals was further examined by cell viability assays. Upon subcloning, concentration-dependent fluorescein uptake was found with a higher affinity for ciPTEC-OAT1 (Km = 0.8 ± 0.1 μM) than ciPTEC-OAT3 (Km = 3.7 ± 0.5 μM). Co-exposure to known OAT1 and/or OAT3 substrates (viz. para-aminohippurate, estrone sulfate, probenecid, furosemide, diclofenac, and cimetidine) in cultures spanning 29 passage numbers revealed relevant inhibitory potencies, confirming the robustness of our model for drug-drug interactions studies. Functional OAT1 was directly responsible for cytotoxicity of adefovir, cidofovir, and tenofovir, while a drug interaction with zidovudine was not associated with decreased cell viability. Our data demonstrate that human-derived ciPTEC-OAT1 and ciPTEC-OAT3 are promising platforms for highly predictive drug screening during early phases of drug development.
Collapse
Affiliation(s)
- Tom T G Nieskens
- Department of Pharmacology and Toxicology, Radboud Institute of Molecular Life Sciences, Radboud University medical center, Nijmegen, The Netherlands
| | - Janny G P Peters
- Department of Pharmacology and Toxicology, Radboud Institute of Molecular Life Sciences, Radboud University medical center, Nijmegen, The Netherlands
| | - Marieke J Schreurs
- Department of Pharmacology and Toxicology, Radboud Institute of Molecular Life Sciences, Radboud University medical center, Nijmegen, The Netherlands
| | - Niels Smits
- Department of Pharmacology and Toxicology, Radboud Institute of Molecular Life Sciences, Radboud University medical center, Nijmegen, The Netherlands
| | - Rob Woestenenk
- Department of Laboratory Medicine - Laboratory of Hematology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Katja Jansen
- Department of Pharmacology and Toxicology, Radboud Institute of Molecular Life Sciences, Radboud University medical center, Nijmegen, The Netherlands
| | - Thom K van der Made
- Department of Pharmacology and Toxicology, Radboud Institute of Molecular Life Sciences, Radboud University medical center, Nijmegen, The Netherlands
| | - Melanie Röring
- Department of Pharmacology and Toxicology, Radboud Institute of Molecular Life Sciences, Radboud University medical center, Nijmegen, The Netherlands
| | - Constanze Hilgendorf
- Innovative Medicines, Drug Safety and Metabolism, AstraZeneca R&D, Mölndal, Sweden
| | - Martijn J Wilmer
- Department of Pharmacology and Toxicology, Radboud Institute of Molecular Life Sciences, Radboud University medical center, Nijmegen, The Netherlands. .,Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University medical centre, P.O. box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Rosalinde Masereeuw
- Department of Pharmacology and Toxicology, Radboud Institute of Molecular Life Sciences, Radboud University medical center, Nijmegen, The Netherlands.,Division Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
39
|
Mandíková J, Volková M, Pávek P, Navrátilová L, Hyršová L, Janeba Z, Pavlík J, Bárta P, Trejtnar F. Entecavir Interacts with Influx Transporters hOAT1, hCNT2, hCNT3, but Not with hOCT2: The Potential for Renal Transporter-Mediated Cytotoxicity and Drug-Drug Interactions. Front Pharmacol 2016; 6:304. [PMID: 26779022 PMCID: PMC4700268 DOI: 10.3389/fphar.2015.00304] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/11/2015] [Indexed: 12/29/2022] Open
Abstract
Entecavir (ETV) is one of the most potent agents for the treatment of the hepatitis B viral infection. The drug is principally eliminated by the kidney. The goal of this study was to investigate the potential of ETV to interact in vitro with the renal SLC transporters hOAT1, hOCT2, hCNT2 and hCNT3. Potential drug–drug interactions of ETV at the renal transporters with antiviral drugs known to be excreted by the kidney (adefovir, tenofovir, cidofovir) as well as transporter-dependent cytotoxicity were also examined. Interactions with the selected transporters along with cytotoxicity were studied in several transiently transfected cellular models using specific substrates and inhibitors. ETV was found to be both a substrate and inhibitor of hOAT1 (IC50 = 175.3 μM), hCNT2 (IC50 = 241.9 μM) and hCNT3 (IC50 = 278.4 μM) transporters, although it interacted with the transporters with relatively low affinities. ETV inhibited the cellular uptake of adefovir, tenofovir, and cidofovir by hOAT1; however, effective inhibition was shown at ETV concentrations exceeding therapeutic levels. In comparison with adefovir, tenofovir, and cidofovir, ETV displayed no transporter-mediated cytotoxicity in cells transfected with hOAT1, hCNT2, and hCNT3. No significant interaction of ETV with hOCT2 was detected. The study demonstrates interactions of ETV with several human renal transporters. For the first time, an interaction of ETV with the hCNTs was proved. We show that the potency of ETV to cause nephrotoxicity and/or clinically significant drug-drug interactions related to the tested transporters is considerably lower than that of adefovir, tenofovir, and cidofovir.
Collapse
Affiliation(s)
- Jana Mandíková
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University in Prague Hradec Králové, Czech Republic
| | - Marie Volková
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University in Prague Hradec Králové, Czech Republic
| | - Petr Pávek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University in Prague Hradec Králové, Czech Republic
| | - Lucie Navrátilová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University in Prague Hradec Králové, Czech Republic
| | - Lucie Hyršová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University in Prague Hradec Králové, Czech Republic
| | - Zlatko Janeba
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic Prague, Czech Republic
| | - Jan Pavlík
- Cayman Pharma Ltd. Neratovice, Czech Republic
| | - Pavel Bárta
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University in Prague Hradec Králové, Czech Republic
| | - František Trejtnar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University in Prague Hradec Králové, Czech Republic
| |
Collapse
|
40
|
Abe Y, Nakano Y, Kanazawa T, Furihata T, Endo T, Kobayashi M. Investigation of Drug-Drug Interactions Between Ritobegron, a Selective β3-Adrenoceptor Agonist, With Probenecid in Healthy Men. Clin Pharmacol Drug Dev 2015; 5:201-7. [DOI: 10.1002/cpdd.212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/30/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Yoshikazu Abe
- Pharmacokinetics Research Laboratories; Kissei Pharmaceutical Co., Ltd.; Nagano Japan
| | - Yuki Nakano
- Clinical Development Planning & Management Dept.; Kissei Pharmaceutical Co., Ltd.; Tokyo Japan
| | - Toru Kanazawa
- Toxicological Laboratories; Kissei Pharmaceutical Co., Ltd.; Nagano Japan
| | - Takao Furihata
- Clinical Development Planning & Management Dept.; Kissei Pharmaceutical Co., Ltd.; Tokyo Japan
| | - Takuro Endo
- Pharmacokinetics Research Laboratories; Kissei Pharmaceutical Co., Ltd.; Nagano Japan
| | - Mamoru Kobayashi
- Central Research Laboratories; Kissei Pharmaceutical Co., Ltd.; Nagano Japan
| |
Collapse
|
41
|
Glycosylation of solute carriers: mechanisms and functional consequences. Pflugers Arch 2015; 468:159-76. [PMID: 26383868 DOI: 10.1007/s00424-015-1730-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/19/2015] [Accepted: 08/21/2015] [Indexed: 12/21/2022]
Abstract
Solute carriers (SLCs) are one of the largest groups of multi-spanning membrane proteins in mammals and include ubiquitously expressed proteins as well as proteins with highly restricted tissue expression. A vast number of studies have addressed the function and organization of SLCs as well as their posttranslational regulation, but only relatively little is known about the role of SLC glycosylation. Glycosylation is one of the most abundant posttranslational modifications of animal proteins and through recent advances in our understanding of protein-glycan interactions, the functional roles of SLC glycosylation are slowly emerging. The purpose of this review is to provide a concise overview of the aspects of glycobiology most relevant to SLCs, to discuss the roles of glycosylation in the regulation and function of SLCs, and to outline the major open questions in this field, which can now be addressed given major technical advances in this and related fields of study in recent years.
Collapse
|
42
|
Intracellular concentrations determine the cytotoxicity of adefovir, cidofovir and tenofovir. Toxicol In Vitro 2015; 29:251-8. [PMID: 25448811 DOI: 10.1016/j.tiv.2014.10.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 09/27/2014] [Accepted: 10/22/2014] [Indexed: 01/01/2023]
Abstract
Lack of in vitro to in vivo translation is a major challenge in safety prediction during early drug discovery.One of the most common in vitro assays to evaluate the probability of a compound to cause adverse effects is a cytotoxicity assay. Cytotoxicity of a compound is often measured by dose–response curves assuming the administered doses and intracellular exposures are equal at the time of measurement.However, this may not be true for compounds with low membrane permeability or those which are substrates for drug transporters as intracellular concentrations are determined both by passive permeability and active uptake through drug transporters. We show here that three antiviral drugs, adefovir, cidofovir and tenofovir exhibit significantly increased cytotoxicity in HEK293 cells transfected with organic anion transporter (OAT) 1 and 3 compared to a lack of cytotoxicity in HEK293 wildtype cells. A further look at the media and intracellular drug concentrations showed that 24 h after dosing, all three drugs had higher intracellular drug concentrations than that of media in the HEK-OAT1 cells whereas the intracellular drug concentrations in the wildtype cells were much lower than the administered doses. Comparing cytotoxicity IC(50) values of adefovir, cidofovir and tenofovir based on administered doses and measured intracellular concentrations in HEK-OAT1 cells revealed that intracellular drug concentrations have significant impact on calculated IC(50) values. Tenofovir showed much less intrinsic cytotoxicity than adefovir and cidofovir using intracellular concentrations rather than media concentration. Our data suggest that for low permeable drugs or drugs that are substrates for drug transporters, the choice of cellular model is critical for providing an accurate determination of cytotoxicity.
Collapse
|
43
|
Caroleo B, Staltari O, Gallelli L, Perticone F. Reactivation of chronic hepatitis B during treatment with tenofovir disoproxil fumarate: drug interactions or low adherence? BMJ Case Rep 2015; 2015:bcr-2015-209586. [PMID: 26123461 DOI: 10.1136/bcr-2015-209586] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We describe a case of a 61-year-old man with chronic hepatitis B, hepatitis B e antibody (HBeAb) positive, treated with tenofovir disoproxil fumarate (TDF), who developed virological and biochemical viremic reactivation with an increase in transaminase plasma levels. The patient's history revealed that he had discontinued TDF about 5 days before admission and, from December 2013, had been taking venlafaxine, paroxetine and zolpidem for some episodes of depression. Clinical evaluation and laboratory findings excluded the presence of systemic diseases that might have been able to explain the drug inefficacy, while pharmacological evaluation suggested a possible drug-drug interaction. In order to assess the possible occurrence of resistance, mutational analysis of hepatitis B virus (HBV) was performed and excluded the presence of resistance for TDF. TDF was prescribed, and venlafaxine, paroxetine and zolpidem were discontinued. The follow-up at 3, 6 and 12 months documented a good response to TDF with a time-related decrease of HBV-DNA and alanine aminotransferase.
Collapse
|
44
|
Pastor-Anglada M, Pérez-Torras S. Nucleoside transporter proteins as biomarkers of drug responsiveness and drug targets. Front Pharmacol 2015; 6:13. [PMID: 25713533 PMCID: PMC4322540 DOI: 10.3389/fphar.2015.00013] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/13/2015] [Indexed: 12/13/2022] Open
Abstract
Nucleoside and nucleobase analogs are currently used in the treatment of solid tumors, lymphoproliferative diseases, viral infections such as hepatitis and AIDS, and some inflammatory diseases such as Crohn. Two gene families are implicated in the uptake of nucleosides and nucleoside analogs into cells, SCL28 and SLC29. The former encodes hCNT1, hCNT2, and hCNT3 proteins. They translocate nucleosides in a Na+ coupled manner with high affinity and some substrate selectivity, being hCNT1 and hCNT2 pyrimidine- and purine-preferring, respectively, and hCNT3 a broad selectivity transporter. SLC29 genes encode four members, being hENT1 and hENT2 the only two which are unequivocally implicated in the translocation of nucleosides and nucleobases (the latter mostly via hENT2) at the cell plasma membrane. Some nucleoside-derived drugs can also interact with and be translocated by members of the SLC22 gene family, particularly hOCT and hOAT proteins. Inter-individual differences in transporter function and perhaps, more importantly, altered expression associated with the disease itself might modulate the transporter profile of target cells, thereby determining drug bioavailability and action. Drug transporter pharmacology has been periodically reviewed. Thus, with this contribution we aim at providing a state-of-the-art overview of the clinical evidence generated so far supporting the concept that these membrane proteins can indeed be biomarkers suitable for diagnosis and/or prognosis. Last but not least, some of these transporter proteins can also be envisaged as drug targets, as long as they can show “transceptor” functions, in some cases related to their role as modulators of extracellular adenosine levels, thereby providing a functional link between P1 receptors and transporters.
Collapse
Affiliation(s)
- Marçal Pastor-Anglada
- Molecular Pharmacology and Experimental Therapeutics, Department of Biochemistry and Molecular Biology, Institute of Biomedicine, University of Barcelona, Barcelona Spain ; Oncology Program, CIBER ehd, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, Barcelona Spain
| | - Sandra Pérez-Torras
- Molecular Pharmacology and Experimental Therapeutics, Department of Biochemistry and Molecular Biology, Institute of Biomedicine, University of Barcelona, Barcelona Spain ; Oncology Program, CIBER ehd, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, Barcelona Spain
| |
Collapse
|
45
|
Lee J, Shahidullah M, Hotchkiss A, Coca-Prados M, Delamere NA, Pelis RM. A renal-like organic anion transport system in the ciliary epithelium of the bovine and human eye. Mol Pharmacol 2015; 87:697-705. [PMID: 25661037 DOI: 10.1124/mol.114.096578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The purpose of this study was to determine the direction of organic anion (OA) transport across the ciliary body and the transport proteins that may contribute. Transport of several OAs across the bovine ciliary body was examined using ciliary body sections mounted in Ussing chambers and a perfused eye preparation. Microarray, reverse-transcription polymerase chain reaction (RT-PCR), immunoblotting, and immunohistochemistry were used to examine OA transporter expression in human ocular tissues. Microarray analysis showed that many OA transporters common to other barrier epithelia are expressed in ocular tissues. mRNA (RT-PCR) and protein (immunoblotting) for OAT1, OAT3, NaDC3, and MRP4 were detected in extracts of the human ciliary body from several donors. OAT1 and OAT3 localized to basolateral membranes of nonpigmented epithelial cells and MRP4 to basolateral membranes of pigmented cells in the human eye. Para-aminohippurate (PAH) and estrone-3-sulfate transport across the bovine ciliary body in the Ussing chambers was greater in the aqueous humor-to-blood direction than in the blood-to-aqueous humor direction, and active. There was little net directional movement of cidofovir. Probenecid (0.1 mM) or novobiocin (0.1 mM) added to the aqueous humor side of the tissue, or MK571 (5-(3-(2-(7-chloroquinolin-2-yl)ethenyl)phenyl)-8-dimethylcarbamyl-4,6-dithiaoctanoic acid; 0.1 mM) added to the blood side significantly reduced net active PAH transport. The rate of 6-carboxyfluorescein elimination from the aqueous humor of the perfused eye was reduced 80% when novobiocin (0.1 mM) was present in the aqueous humor. These data indicate that the ciliary body expresses a variety of OA transporters, including those common to the kidney. They are likely involved in clearing potentially harmful endobiotic and xenobiotic OAs from the eye.
Collapse
Affiliation(s)
- Jonghwa Lee
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada (J.L., A.H., R.M.P.); Department of Physiology, University of Arizona, Tucson, Arizona (M.S., N.A.D.); and Department of Ophthalmology and Visual Sciences, Yale University, New Haven, Connecticut (M.C.-P.)
| | - Mohammad Shahidullah
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada (J.L., A.H., R.M.P.); Department of Physiology, University of Arizona, Tucson, Arizona (M.S., N.A.D.); and Department of Ophthalmology and Visual Sciences, Yale University, New Haven, Connecticut (M.C.-P.)
| | - Adam Hotchkiss
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada (J.L., A.H., R.M.P.); Department of Physiology, University of Arizona, Tucson, Arizona (M.S., N.A.D.); and Department of Ophthalmology and Visual Sciences, Yale University, New Haven, Connecticut (M.C.-P.)
| | - Miguel Coca-Prados
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada (J.L., A.H., R.M.P.); Department of Physiology, University of Arizona, Tucson, Arizona (M.S., N.A.D.); and Department of Ophthalmology and Visual Sciences, Yale University, New Haven, Connecticut (M.C.-P.)
| | - Nicholas A Delamere
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada (J.L., A.H., R.M.P.); Department of Physiology, University of Arizona, Tucson, Arizona (M.S., N.A.D.); and Department of Ophthalmology and Visual Sciences, Yale University, New Haven, Connecticut (M.C.-P.)
| | - Ryan M Pelis
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada (J.L., A.H., R.M.P.); Department of Physiology, University of Arizona, Tucson, Arizona (M.S., N.A.D.); and Department of Ophthalmology and Visual Sciences, Yale University, New Haven, Connecticut (M.C.-P.)
| |
Collapse
|
46
|
Zhang ZC, Su GH, Luo CL, Pang YL, Wang L, Li X, Wen JH, Zhang JL. Effects of anthocyanins from purple sweet potato (Ipomoea batatas L. cultivar Eshu No. 8) on the serum uric acid level and xanthine oxidase activity in hyperuricemic mice. Food Funct 2015. [DOI: 10.1039/c5fo00499c] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This study was aimed at evaluating the hypouricemic effect of the anthocyanin-rich purple sweet potato extract (APSPE).
Collapse
Affiliation(s)
- Zi-Cheng Zhang
- College of Food Science and Technology
- Huazhong Agricultural University
- Wuhan 430070
- China
| | - Guan-Hua Su
- Department of Cardiology
- Union Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430022
| | - Chun-Li Luo
- College of Food Science and Technology
- Huazhong Agricultural University
- Wuhan 430070
- China
| | - Ya-Lu Pang
- College of Food Science and Technology
- Huazhong Agricultural University
- Wuhan 430070
- China
| | - Lin Wang
- College of Food Science and Technology
- Huazhong Agricultural University
- Wuhan 430070
- China
| | - Xing Li
- College of Food Science and Technology
- Huazhong Agricultural University
- Wuhan 430070
- China
| | - Jia-Hao Wen
- College of Food Science and Technology
- Huazhong Agricultural University
- Wuhan 430070
- China
| | - Jiu-Liang Zhang
- College of Food Science and Technology
- Huazhong Agricultural University
- Wuhan 430070
- China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University)
| |
Collapse
|
47
|
Expression of xenobiotic transporters in the human renal proximal tubule cell line RPTEC/TERT1. Toxicol In Vitro 2014; 30:95-105. [PMID: 25500123 DOI: 10.1016/j.tiv.2014.12.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 11/17/2014] [Accepted: 12/03/2014] [Indexed: 12/20/2022]
Abstract
The kidney is a major target for drug-induced injury, primarily due the fact that it transports a wide variety of chemical entities into and out of the tubular lumen. Here, we investigated the expression of the main xenobiotic transporters in the human renal proximal tubule cell line RPTEC/TERT1 at an mRNA and/or protein level. RPTEC/TERT1 cells expressed OCT2, OCT3, OCTN2, MATE1, MATE2, OAT1, OAT3 and OAT4. The functionality of the OCTs was demonstrated by directional transport of the fluorescent dye 4-Di-1-ASP. In addition, P-glycoprotein activity in RPTEC/TERT1 cells was verified by fluorescent dye retention in presence of various P-glycoprotein inhibitors. In comparison to proliferating cells, contact inhibited RPTEC/TERT1 cells expressed increased mRNA levels of several ABC transporter family members and were less sensitive to cyclosporine A. We conclude that differentiated RPTEC/TERT1 cells are well suited for utilisation in xenobiotic transport and pharmacokinetic studies.
Collapse
|
48
|
Abstract
Potential drug-drug interactions mediated by the ATP-binding cassette (ABC) transporter and solute carrier (SLC) transporter families are of clinical and regulatory concern. However, the endogenous functions of these drug transporters are not well understood. Discussed here is evidence for the roles of ABC and SLC transporters in the handling of diverse substrates, including metabolites, antioxidants, signalling molecules, hormones, nutrients and neurotransmitters. It is suggested that these transporters may be part of a larger system of remote communication ('remote sensing and signalling') between cells, organs, body fluid compartments and perhaps even separate organisms. This broader view may help to clarify disease mechanisms, drug-metabolite interactions and drug effects relevant to diabetes, chronic kidney disease, metabolic syndrome, hypertension, gout, liver disease, neuropsychiatric disorders, inflammatory syndromes and organ injury, as well as prenatal and postnatal development.
Collapse
Affiliation(s)
- Sanjay K Nigam
- Departments of Pediatrics, Medicine, and Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0693, USA
| |
Collapse
|
49
|
Sahoo S, Haraldsdóttir HS, Fleming RMT, Thiele I. Modeling the effects of commonly used drugs on human metabolism. FEBS J 2014; 282:297-317. [PMID: 25345908 DOI: 10.1111/febs.13128] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 09/21/2014] [Accepted: 10/13/2014] [Indexed: 02/02/2023]
Abstract
Metabolism contributes significantly to the pharmacokinetics and pharmacodynamics of a drug. In addition, diet and genetics have a profound effect on cellular metabolism with respect to both health and disease. In the present study, we assembled a comprehensive, literature-based drug metabolic reconstruction of the 18 most highly prescribed drug groups, including statins, anti-hypertensives, immunosuppressants and analgesics. This reconstruction captures in detail our current understanding of their absorption, intracellular distribution, metabolism and elimination. We combined this drug module with the most comprehensive reconstruction of human metabolism, Recon 2, yielding Recon2_DM1796, which accounts for 2803 metabolites and 8161 reactions. By defining 50 specific drug objectives that captured the overall drug metabolism of these compounds, we investigated the effects of dietary composition and inherited metabolic disorders on drug metabolism and drug-drug interactions. Our main findings include: (a) a shift in dietary patterns significantly affects statins and acetaminophen metabolism; (b) disturbed statin metabolism contributes to the clinical phenotype of mitochondrial energy disorders; and (c) the interaction between statins and cyclosporine can be explained by several common metabolic and transport pathways other than the previously established CYP3A4 connection. This work holds the potential for studying adverse drug reactions and designing patient-specific therapies.
Collapse
Affiliation(s)
- Swagatika Sahoo
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belval, Luxembourg
| | | | | | | |
Collapse
|
50
|
Kaneko S, Hatakeyama Y, Tsukamoto Y. Acquired Fanconi syndrome due to long-term adefovir administration in a patient with IgG-kappa monoclonal gammopathy and kappa Bence-Jones protein. CEN Case Rep 2014; 3:188-194. [PMID: 28509196 DOI: 10.1007/s13730-014-0115-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 02/17/2014] [Indexed: 10/25/2022] Open
Abstract
A 77-year-old man was admitted to our hospital for a right femoral neck fracture. He had been prescribed lamivudine for chronic hepatitis B infection for 11 years, and adefovir was added 5 years ago. After hospitalization, a right femoral head prosthesis was performed successfully, but an unknown hypokalemia was revealed. Hypophosphatemia, hypouricemia, glucosuria, and panaminoaciduria were also revealed, and multiple microfractures were detected by bone scintigraphy. We diagnosed him as 'osteomalacia associated with Fanconi syndrome,' which was likely due to the adefovir. Moreover, a monoclonal IgG-kappa and a kappa Bence-Jones protein were detected in his serum and urine, respectively. We switched from adefovir plus lamivudine to entecavir and started calcitriol. His excessive urinary β2-microglobulin excretion and glucosuria had decreased dramatically at 10 weeks after the modification of drugs; those of the phosphate, uric acid and total protein, however, continued. Renal biopsy specimens obtained at 10 weeks after discontinuation of adefovir revealed focal tubular atrophic changes with/without inflammatory cells, which were predominantly observed next to glomeruli. Kappa-dominant staining was not observed in either glomeruli or tubules with immunostaining by the enzyme-labeled antibody method. Electron microscopy revealed neither crystalline structures in the cytoplasm of proximal tubules nor electron-dense deposits. Because of the remarkable proportional reduction of other urinary protein fractions, urinary M-peak appeared 26 weeks after discontinuation of adefovir, but the net amounts of the fraction decreased gradually.
Collapse
Affiliation(s)
- Shuzo Kaneko
- Department of Nephrology, Itabashi Chuo Medical Center, 2-12-7 Azusawa, Itabashiku, Tokyo, 174-0051, Japan.
| | - Yoshiyuki Hatakeyama
- Department of Nephrology, Itabashi Chuo Medical Center, 2-12-7 Azusawa, Itabashiku, Tokyo, 174-0051, Japan
| | - Yusuke Tsukamoto
- Department of Nephrology, Itabashi Chuo Medical Center, 2-12-7 Azusawa, Itabashiku, Tokyo, 174-0051, Japan
| |
Collapse
|