1
|
Wang K, Chen M, Yan S, Han Y, Yuan H, Liu Q, Lu D, Li L, Wang K, Liu F, Li Q, Luo D, Jiang J, Zhou H, Chen Y, Qin J, Gao D. Zinc ions activate AKT and promote prostate cancer cell proliferation via disrupting AKT intramolecular interaction. Oncogene 2024:10.1038/s41388-024-03195-x. [PMID: 39438763 DOI: 10.1038/s41388-024-03195-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/29/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Prostate is a zinc rich organ and the physiological function of the abundant zinc ions is relatively less understood. AKT kinase is a pivotal regulator downstream of cytokines, growth factors and other extracellular stimuli, and the attachment of its PH domain to PtdIns-3,4,5-P3 (PIP3) and the subsequent phosphorylation of its kinase domain by PDPK1 are considered important for its activation. Herein, we report a regulatory mechanism of AKT kinase by zinc ions. Mechanistically, zinc ions directly bind to AKT and facilitate AKT activation through disrupting the interaction between PH and kinase domains within AKT molecule. Consistently, AKT1-H89A/E91A mutant (zinc-binding-deficient) fails to respond to zinc ions and exhibits strong interaction between PH and kinase domains, and it is less oncogenic in orthotopic xenograft model of prostate cancer. On the other hand, the AKT1-W80L mutant with minimum intra-molecular interaction between PH and kinase domains shows strong tumor promoting capacity although it could not be further stimulated by zinc ions. Overall, this study reveals a distinctive regulatory mechanism of AKT activation and implies a tumor promoting role of the zinc ions in prostate cancer.
Collapse
Affiliation(s)
- Kangjunjie Wang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Min Chen
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Shukun Yan
- University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing, 100049, China
- Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ying Han
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Huairui Yuan
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing, 100049, China
| | - Qiuli Liu
- Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Dayun Lu
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Long Li
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Kaihua Wang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Fen Liu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing, 100049, China
| | - Qianqian Li
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing, 100049, China
| | - Dakui Luo
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Jun Jiang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Hu Zhou
- University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing, 100049, China
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Yong Chen
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
- University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing, 100049, China.
- Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Jun Qin
- University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing, 100049, China.
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
- Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Daming Gao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
2
|
Niu L, Chu X, Jiang Y, Zeng W. HPV infection upregulates the expression of ZNT-1 in condyloma acuminatum. Eur J Histochem 2021; 65. [PMID: 33908744 PMCID: PMC8103779 DOI: 10.4081/ejh.2021.3228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/13/2021] [Indexed: 11/23/2022] Open
Abstract
Condyloma acuminata (CA) are benign anogenital warts caused by human papillomavirus (HPV) infection with a high recurrence rate. Despite its high contagiousness, high recurrence rate and potential for malignant transformation, effective treatments for CA have not yet been developed. Accordingly, it is necessary to clarify the mechanisms underlying CA development. Zinc (Zn) is stably maintained in the weight of human body. Skin is the third most Zn-abundant tissue in the body. Zn is present as a divalent ion (Zn2+) in cells and does not need a redox reaction upon crossing the cellular membrane. Zn transporters (ZnTs; SLC30A) and Irt-like proteins (ZIPs; SLC39A) are involved in Zn2+ efflux and uptake, respectively. ZnT1 is one of the ZnTs, which associates with the development of HPV. However, the role of ZnT1 regulation in the CA caused by HPV infection remains unknown. A multigroup case-control study was designed to investigate the expression and significance of the ZnT1 in patients with CA infected with HPV and in normal vulva controls. ZnT1 was assessed by immunohistochemistry in 44 patients with CA at Zhongnan Hospital of Wuhan University 2019-2020. Samples were analyzed by paraffin embedding and sectioning and hematoxylin-eosin and immunohistochemical staining. Immunohistochemical methods detected specific, dark brown, positive staining of ZnT1 in the keratinocytes of epidermis. We verified that the expression levels of ZnT1 that interact with HPV were upregulated in the CA groups independently of genotype compared with the control group. And then we found that the HPV risk grade in CA patients has a certain correlation with ZnT1 expression. These findings showed that HPV infection upregulated the expression of ZnT1 in CA. Additionally, there were obvious differences in the expression of ZnT1 between the different HPV risk grade infection groups. The higher the HPV risk grade, the stronger the ZNT1 protein expression. This study provided new insights into the sign pathway to HPV infection.
Collapse
Affiliation(s)
- Li Niu
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan.
| | - Xiaoying Chu
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan.
| | - Yaofei Jiang
- Hubei Cancer Clinical Study Centre and Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan.
| | - Wei Zeng
- Hubei Cancer Clinical Study Centre and Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan.
| |
Collapse
|
3
|
ZnT7 RNAi favors Raf GOFscrib -/--induced tumor growth and invasion in Drosophila through JNK signaling pathway. Oncogene 2021; 40:2217-2229. [PMID: 33649534 DOI: 10.1038/s41388-021-01703-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/31/2021] [Accepted: 02/05/2021] [Indexed: 01/31/2023]
Abstract
The disruption of zinc homeostasis has been identified in patients suffering from various cancers, but a causative relationship has not yet been established. Drosophila melanogaster has become a powerful model to study cancer biology. Here using a Drosophila model of malignant tumor RafGOFscrib-/-, we observed that the tumor growth, invasion and migration were enhanced by silencing dZnT7, a zinc transporter localized on the Golgi apparatus. Further study indicated that the zinc deficiency in Golgi of dZnT7 RNAi resulted in ER stress which could activate the c-Jun-N-terminal Kinase (JNK) signaling and this process is mediated by Atg9. Lastly, we demonstrated that the exacerbation of dZnT7 RNAi on tumor was promoted by JNK signaling-dependent cell autonomous and non-autonomous autophagy. These findings suggest that zinc homeostasis in secretory compartments may provide a new therapeutic target for tumor treatment.
Collapse
|
4
|
A review on ameliorative green nanotechnological approaches in diabetes management. Biomed Pharmacother 2020; 127:110198. [DOI: 10.1016/j.biopha.2020.110198] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/19/2020] [Accepted: 04/27/2020] [Indexed: 12/16/2022] Open
|
5
|
Kaushik N, Anang S, Ganti KP, Surjit M. Zinc: A Potential Antiviral Against Hepatitis E Virus Infection? DNA Cell Biol 2018; 37:593-599. [PMID: 29897788 DOI: 10.1089/dna.2018.4175] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hepatitis E virus (HEV) is a major cause of viral hepatitis worldwide. Owing to its feco oral transmission route, sporadic as well as epidemic outbreaks recurrently occur. No specific antiviral therapy is available against the disease caused by HEV. Broad spectrum antivirals such as ribavirin and interferon alfa are prescribed in severe and chronic HEV cases. However, the side effects, cost, and limitations of usage render the available treatment unsuitable for several categories of patients. We recently reported the ability of zinc to inhibit viral replication in mammalian cell culture models of HEV infection. Zinc will be a safe and economical antiviral therapy option if it inhibits HEV replication during the natural course of infection. This essay discusses the putative mechanism(s) by which zinc inhibits HEV replication and provides an overview of the possible therapeutic potential of zinc in HEV patients.
Collapse
Affiliation(s)
- Nidhi Kaushik
- 1 Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute , NCR Biotech Science Cluster, Faridabad, India
| | - Saumya Anang
- 1 Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute , NCR Biotech Science Cluster, Faridabad, India
| | | | - Milan Surjit
- 1 Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute , NCR Biotech Science Cluster, Faridabad, India
| |
Collapse
|
6
|
Wessels I, Maywald M, Rink L. Zinc as a Gatekeeper of Immune Function. Nutrients 2017; 9:E1286. [PMID: 29186856 PMCID: PMC5748737 DOI: 10.3390/nu9121286] [Citation(s) in RCA: 371] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 12/27/2022] Open
Abstract
After the discovery of zinc deficiency in the 1960s, it soon became clear that zinc is essential for the function of the immune system. Zinc ions are involved in regulating intracellular signaling pathways in innate and adaptive immune cells. Zinc homeostasis is largely controlled via the expression and action of zinc "importers" (ZIP 1-14), zinc "exporters" (ZnT 1-10), and zinc-binding proteins. Anti-inflammatory and anti-oxidant properties of zinc have long been documented, however, underlying mechanisms are still not entirely clear. Here, we report molecular mechanisms underlying the development of a pro-inflammatory phenotype during zinc deficiency. Furthermore, we describe links between altered zinc homeostasis and disease development. Consequently, the benefits of zinc supplementation for a malfunctioning immune system become clear. This article will focus on underlying mechanisms responsible for the regulation of cellular signaling by alterations in zinc homeostasis. Effects of fast zinc flux, intermediate "zinc waves", and late homeostatic zinc signals will be discriminated. Description of zinc homeostasis-related effects on the activation of key signaling molecules, as well as on epigenetic modifications, are included to emphasize the role of zinc as a gatekeeper of immune function.
Collapse
Affiliation(s)
- Inga Wessels
- Institute of Immunology, Faculty of Medicine, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany.
| | - Martina Maywald
- Institute of Immunology, Faculty of Medicine, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany.
| | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany.
| |
Collapse
|
7
|
Zinc Signals and Immunity. Int J Mol Sci 2017; 18:ijms18102222. [PMID: 29064429 PMCID: PMC5666901 DOI: 10.3390/ijms18102222] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/13/2017] [Accepted: 10/19/2017] [Indexed: 01/11/2023] Open
Abstract
Zinc homeostasis is crucial for an adequate function of the immune system. Zinc deficiency as well as zinc excess result in severe disturbances in immune cell numbers and activities, which can result in increased susceptibility to infections and development of especially inflammatory diseases. This review focuses on the role of zinc in regulating intracellular signaling pathways in innate as well as adaptive immune cells. Main underlying molecular mechanisms and targets affected by altered zinc homeostasis, including kinases, caspases, phosphatases, and phosphodiesterases, will be highlighted in this article. In addition, the interplay of zinc homeostasis and the redox metabolism in affecting intracellular signaling will be emphasized. Key signaling pathways will be described in detail for the different cell types of the immune system. In this, effects of fast zinc flux, taking place within a few seconds to minutes will be distinguish from slower types of zinc signals, also designated as “zinc waves”, and late homeostatic zinc signals regarding prolonged changes in intracellular zinc.
Collapse
|
8
|
Nazarizadeh A, Asri-Rezaie S. Comparative Study of Antidiabetic Activity and Oxidative Stress Induced by Zinc Oxide Nanoparticles and Zinc Sulfate in Diabetic Rats. AAPS PharmSciTech 2016; 17:834-43. [PMID: 26349687 DOI: 10.1208/s12249-015-0405-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/24/2015] [Indexed: 11/30/2022] Open
Abstract
In the current study, antidiabetic activity and toxic effects of zinc oxide nanoparticles (ZnO) were investigated in diabetic rats compared to zinc sulfate (ZnSO4) with particular emphasis on oxidative stress parameters. One hundred and twenty male Wistar rats were divided into two healthy and diabetic groups, randomly. Each major group was further subdivided into five subgroups and then orally supplemented with various doses of ZnO (1, 3, and 10 mg/kg) and ZnSO4 (30 mg/kg) for 56 consecutive days. ZnO showed greater antidiabetic activity compared to ZnSO4 evidenced by improved glucose disposal, insulin levels, and zinc status. The altered activities of erythrocyte antioxidant enzymes as well as raised levels of lipid peroxidation and a marked reduction of total antioxidant capacity were observed in rats receiving ZnO. ZnO nanoparticles acted as a potent antidiabetic agent, however, severely elicited oxidative stress particularly at higher doses.
Collapse
|
9
|
The EVER genes - the genetic etiology of carcinogenesis in epidermodysplasia verruciformis and a possible role in non-epidermodysplasia verruciformis patients. Postepy Dermatol Alergol 2016; 33:75-80. [PMID: 27279814 PMCID: PMC4884774 DOI: 10.5114/ada.2016.59145] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 11/16/2014] [Indexed: 01/29/2023] Open
Abstract
In recent years, the two adjacent novel EVER1 and EVER2 genes have been identified, whose mutations are responsible for the development of epidermodysplasia verruciformis (EV). Epidermodysplasia verruciformis is a rare, autosomal recessive genodermatosis associated with increased risk of skin carcinoma. Up to now 7 mutations in the EVER1 gene and 5 mutations in the EVER2 gene have been identified only in EV. It was also determined that the EVER genes belong to a novel gene family, the transmembrane channel-like (TMC) family, and are responsible for properly functioning zinc homeostasis. These observations have given new insights into EV pathogenesis.
Collapse
|
10
|
Rodríguez-Gaxiola MA, Domínguez-Vara IA, Barajas-Cruz R, Mariezcurrema-Berasain MA, Bórquez-Gastelum JL, Cervantes-Pacheco BJ. Effects of zilpaterol hydrochloride and zinc methionine on growth performance and carcass characteristics of beef bulls. CANADIAN JOURNAL OF ANIMAL SCIENCE 2015. [DOI: 10.4141/cjas-2014-175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Rodríguez-Gaxiola, M. A., Domínguez-Vara, I. A., Barajas-Cruz, R., Mariezcurrema-Berasain, M. A., Bórquez-Gastelum, J. L. and Cervantes-Pacheco, B. J. 2015. Effects of zilpaterol hydrochloride and zinc methionine on growth performance and carcass characteristics of beef bulls. Can. J. Anim. Sci. 95: 609–615. Sixty beef bulls with a body weight (BW) of 314.7±16.2 kg were used to evaluate the effects of zilpaterol hydrochloride (ZH) and zinc methionine (ZM) on growth performance and carcass characteristics. The experimental design was a randomized complete block, with a factorial 2×2 arrangement of treatments (ZH: 0 and 0.15 mg kg−1 BW; ZM: 0 and 80 mg kg−1 dry matter). The ZH increased (P<0.05) the final BW, average daily gain, feed conversion, carcass yield and longissimus dorsi area. Bulls fed ZH plus ZM had less (P<0.01) backfat thickness and intramuscular fat (IMF) compared with those fed ZH or ZM alone. The ZH increased (P<0.02) the meat crude protein content and cooking loss. It is therefore concluded that ZH increases growth performance, carcass yield, longissimus dorsi area, and meat crude protein. The interaction of ZM and ZH did not present additional advantages. The reason for the reduction in backfat thickness and IMF by ZH plus ZM is unclear, and implies that our knowledge of β-agonistic adrenergic substances and their interactions with minerals is incomplete.
Collapse
Affiliation(s)
- Miguel A. Rodríguez-Gaxiola
- Universidad Autónoma del Estado de México, Facultad de Medicina Veterinaria y Zootecnia, Departamento de Nutrición Animal, Campus Universitario “El Cerrillo”, Toluca, Estado de México, CP. 50090
| | - Ignacio A. Domínguez-Vara
- Universidad Autónoma del Estado de México, Facultad de Medicina Veterinaria y Zootecnia, Departamento de Nutrición Animal, Campus Universitario “El Cerrillo”, Toluca, Estado de México, CP. 50090
| | - Rubén Barajas-Cruz
- Universidad Autónoma de Sinaloa, Facultad de Medicina Veterinaria y Zootecnia, Gral. Ángel Flores Pte. S/N Col. Centro, 8000 Culiacán, Sinaloa, México
| | - María A. Mariezcurrema-Berasain
- Universidad Autónoma del Estado de México, Facultad de Medicina Veterinaria y Zootecnia, Departamento de Nutrición Animal, Campus Universitario “El Cerrillo”, Toluca, Estado de México, CP. 50090
| | - José L. Bórquez-Gastelum
- Universidad Autónoma del Estado de México, Facultad de Medicina Veterinaria y Zootecnia, Departamento de Nutrición Animal, Campus Universitario “El Cerrillo”, Toluca, Estado de México, CP. 50090
| | | |
Collapse
|
11
|
Chen Y, Wang S, Fu X, Zhou W, Hong W, Zou D, Li X, Liu J, Ran P, Li B. tert-Butylhydroquinone mobilizes intracellular-bound zinc to stabilize Nrf2 through inhibiting phosphatase activity. Am J Physiol Cell Physiol 2015; 309:C148-58. [DOI: 10.1152/ajpcell.00031.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 05/05/2015] [Indexed: 01/06/2023]
Abstract
The nuclear factor erythroid 2-related factor 2 (Nrf2) is required to combat increases in oxidative stress. The chemical compound tert-butylhydroquinone (tBHQ) can downregulate Kelch-like ECH-associated protein 1 (Keap1), a repressor of Nrf2, thus maintaining the stability of Nrf2. tBHQ can also increase intracellular “free” zinc in human bronchial epithelial (16HBE) cells. We aim to investigate whether the intracellular free zinc change plays a role in Nrf2 activation. tBHQ exposure dose-dependently increases intracellular free zinc concentrations within 30 min in 16HBE cells by mobilizing intracellular zinc pools. Active Nrf2 and the antioxidant enzyme heme oxygenase-1 (HO-1) increase at 3 h after tBHQ treatment. Chelating intracellular free zinc with tetrakis-(2-pyridylmethyl)ethylenediamine (TPEN) during tBHQ exposure partially abrogates the tBHQ-induced activation of Nrf2 and HO-1 expression, while Keap1 is further decreased. These results indicate that tBHQ-induced stability of Nrf2 is associated with the intracellular free zinc level. Because the activated Nrf2 is phosphorylated, the serine/threonine protein phosphatase activity, which is known to be inhibited by zinc, is assayed. The results showed that tBHQ treatment can suppress cellular protein phosphatase-2A (PP2A) and protein phosphatase-2C (PP2C) activity, which can be abrogated by adding TPEN. This finding is verified in a cell-free protein extract experiment by supplying zinc or by chelating zinc with TPEN. These results provide a novel mechanistic insight into Nrf2 activation in antioxidant enzyme induction involving zinc signaling. The increase of intracellular free zinc may be one mechanism for Nrf2 activation. The inhibition of PP2A and PP2C activity may be involved in Nrf2 phosphorylation modulation.
Collapse
Affiliation(s)
- Yunfang Chen
- Experiment Medical Research Center, Guangzhou Medical University, Guangzhou, China
| | - Sheng Wang
- National key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
| | - Xin Fu
- Experiment Medical Research Center, Guangzhou Medical University, Guangzhou, China
| | - Wenqu Zhou
- Experiment Medical Research Center, Guangzhou Medical University, Guangzhou, China
| | - Wei Hong
- Experiment Medical Research Center, Guangzhou Medical University, Guangzhou, China
| | - Dongting Zou
- Experiment Medical Research Center, Guangzhou Medical University, Guangzhou, China
| | - Xichong Li
- Experiment Medical Research Center, Guangzhou Medical University, Guangzhou, China
| | - Jinbao Liu
- Department of Pathophysiology, Guangzhou Medical University, Guangzhou, China; and
| | - Pixin Ran
- National key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
| | - Bing Li
- Experiment Medical Research Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
12
|
He X, Aker WG, Leszczynski J, Hwang HM. Using a holistic approach to assess the impact of engineered nanomaterials inducing toxicity in aquatic systems. J Food Drug Anal 2014; 22:128-146. [PMID: 24673910 PMCID: PMC9359143 DOI: 10.1016/j.jfda.2014.01.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 11/21/2013] [Indexed: 11/17/2022] Open
Abstract
In this report, we critically reviewed selected intrinsic physicochemical properties of engineered nanomaterials (ENMs) and their role in the interaction of the ENMs with the immediate surroundings in representative aquatic environments. The behavior of ENMs with respect to dynamic microenvironments at the nano–bio–eco interface level, and the resulting impact on their toxicity, fate, and exposure potential are elaborated. Based on this literature review, we conclude that a holistic approach is urgently needed to fulfill our knowledge gap regarding the safety of discharged ENMs. This comparative approach affords the capability to recognize and understand the potential hazards of ENMs and their toxicity mechanisms, and ultimately to establish a quantitative and reliable system to predict such outcomes.
Collapse
|
13
|
Insulino-mimetic and anti-diabetic effects of zinc. J Inorg Biochem 2013; 120:8-17. [DOI: 10.1016/j.jinorgbio.2012.11.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/26/2012] [Accepted: 11/26/2012] [Indexed: 12/24/2022]
|
14
|
Tissue plasminogen activator alters intracellular sequestration of zinc through interaction with the transporter ZIP4. J Neurosci 2010; 30:6538-47. [PMID: 20463217 DOI: 10.1523/jneurosci.6250-09.2010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Glutamatergic neurons contain free zinc packaged into neurotransmitter-loaded synaptic vesicles. Upon neuronal activation, the vesicular contents are released into the synaptic space, whereby the zinc modulates activity of postsynaptic neurons though interactions with receptors, transporters and exchangers. However, high extracellular concentrations of zinc trigger seizures and are neurotoxic if substantial amounts of zinc reenter the cells via ion channels and accumulate in the cytoplasm. Tissue plasminogen activator (tPA), a secreted serine protease, is also proepileptic and excitotoxic. However, tPA counters zinc toxicity by promoting zinc import back into the neurons in a sequestered form that is nontoxic. Here, we identify the zinc influx transporter, ZIP4, as the pathway through which tPA mediates the zinc uptake. We show that ZIP4 is upregulated after excitotoxin stimulation of the mouse, male and female, hippocampus. ZIP4 physically interacts with tPA, correlating with an increased intracellular zinc influx and lysosomal sequestration. Changes in prosurvival signals support the idea that this sequestration results in neuroprotection. These experiments identify a mechanism via which neurons use tPA to efficiently neutralize the toxic effects of excessive concentrations of free zinc.
Collapse
|
15
|
Hudson GA, Cheng L, Yu J, Yan Y, Dyer DJ, McCarroll ME, Wang L. Computational studies on response and binding selectivity of fluorescence sensors. J Phys Chem B 2010; 114:870-6. [PMID: 20039659 DOI: 10.1021/jp908368k] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Using a computational strategy based on density functional theory calculations, we successfully designed a fluorescent sensor for detecting Zn(2+) [J. Phys. Chem. B 2006, 110, 22991-22994]. In this work, we report our further studies on the computational design protocol for developing Photoinduced Electron Transfer (PET) fluorescence sensors. This protocol was applied to design a PET fluorescence sensor for Zn(2+) ions, which consists of anthracene as the fluorophore connected to pyridine as the receptor through dimethylethanamine as the linker. B3LYP and time-dependent B3LYP calculations were performed with the basis set 6-31G(d,p), 6-31+G(d,p), 6-311G(d,p), and 6-311+G(d,p). The calculated HOMO and LUMO energies of the fluorophore and receptor using all four basis sets show that the relative energy levels remain unchanged. This indicates that any of these basis sets can be used in calculating the relative molecular orbital (MO) energy levels. Furthermore, the relative MO energies of the independent fluorophore and receptor are not altered when they are linked together, which suggests that one can calculate the MO energies of these components separately and use them as the MO energies of the free sensor. These are promising outcomes for the computational design of sensors, though more case studies are needed to further confirm these conclusions. The binding selectivity studies indicate that the predicted sensor can be used for Zn(2+) even in the presence of the divalent cation, Ca(2+).
Collapse
Affiliation(s)
- George A Hudson
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois 62901, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Dailianis S, Patetsini E, Kaloyianni M. The role of signalling molecules on actin glutathionylation and protein carbonylation induced by cadmium in haemocytes of mussel Mytilus galloprovincialis (Lmk). ACTA ACUST UNITED AC 2010; 212:3612-20. [PMID: 19880721 DOI: 10.1242/jeb.030817] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This study investigated the role of Na(+)/H(+) exchanger (NHE) and signalling molecules, such as cAMP, PKC, PI 3-kinase, and immune defence enzymes, NADPH oxidase and nitric oxide synthase, in the induction of protein glutathionylation and carbonylation in cadmium-treated haemocytes of mussel Mytilus galloprovincialis. Glutathionylation was detected by western blot analysis and showed actin as its main target. A significant increase of both actin glutathionylation and protein carbonylation, were observed in haemocytes exposed to micromolar concentration of cadmium chloride (5 micromol l(-1)). Cadmium seems to cause actin polymerization that may lead to its increased glutathionylation, probably to protect it from cadmium-induced oxidative stress. It is therefore possible that polymerization of actin plays a signalling role in the induction of both glutathionylation and carbonylation processes. NHE seems to play a regulatory role in the induction of oxidative damage and actin glutathionylation, since its inhibition by 2 micromol l(-1) cariporide, significantly diminished cadmium effects in each case. Similarly, attenuation of cadmium effects were observed in cells pre-treated with either 11 micromol l(-1) GF-109203X, a potent inhibitor of PKC, 50 nmol l(-1) wortmannin, an inhibitor of PI 3-kinase, 0.01 mmol l(-1) forskolin, an adenylyl cyclase activator, 10 micromol l(-1) DPI, a NADPH oxidase inhibitor, or 10 micromol l(-1) L-NAME, a nitric oxide synthase inhibitor, suggesting a possible role of PKC, PI 3-kinase and cAMP, as well as NADPH oxidase and nitric oxide synthase in the enhancement of cadmium effects on both actin glutathionylation and protein carbonylation.
Collapse
|
17
|
Cell-type-specific roles of IGF-1R and EGFR in mediating Zn2+-induced ERK1/2 and PKB phosphorylation. J Biol Inorg Chem 2009; 15:399-407. [PMID: 19946718 DOI: 10.1007/s00775-009-0612-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 11/04/2009] [Indexed: 12/18/2022]
Abstract
Zn(2+) exerts insulin-mimetic and antidiabetic effects in rodent models of insulin resistance, and activates extracellular-signal-regulated kinases 1 and 2 (ERK1/2) and protein kinase B (PKB), key components of the insulin signaling pathway. Zn(2+)-induced signaling has been shown to be associated with an increase in the tyrosine phosphorylation of insulin receptor (IR), as well as of insulin-like growth factor 1 receptor (IGF-1R) and epidermal growth factor receptor (EGFR) in several cell types. However, the specific contribution of these receptor protein tyrosine kinases (R-PTKs) in mediating Zn(2+)-induced responses in a cell-specific fashion remains to be established. Therefore, using a series of pharmacological inhibitors and genetically engineered cells, we have investigated the roles of various R-PTKs in Zn(2+)-induced ERK1/2 and PKB phosphorylation. Pretreatment of Chinese hamster ovary (CHO) cells overexpressing a human IR (CHO-HIR cells) with AG1024, an inhibitor for IR protein tyrosine kinase (PTK) and IGF-1R-PTK, blocked Zn(2+)-induced ERK1/2 and PKB phosphorylation, but AG1478, an inhibitor for EGFR, was without effect in CHO cells. On the other hand, both of these inhibitors were able to attenuate Zn(2+)-induced phosphorylation of ERK1/2 and PKB in A10 vascular smooth muscle cells. In addition, in CHO cells overexpressing tyrosine kinase deficient IR, Zn(2+) was still able to induce the phosphorylation of these two signaling molecules, whereas the insulin effect was significantly attenuated. Furthermore, both Zn(2+) and insulin-like growth factor 1 failed to stimulate ERK1/2 and PKB phosphorylation in IGF-1R knockout cells. Also, Zn(2+)-induced responses in CHO-HIR cells were not associated with an increase in the tyrosine phosphorylation of the IR beta-subunit and insulin receptor substrate 1 in CHO-HIR cells. Taken together, these data suggest that distinct R-PTKs mediate Zn(2+)-evoked ERK1/2 and PKB phosphorylation in a cell-specific manner.
Collapse
|
18
|
Haase H, Rink L. Functional significance of zinc-related signaling pathways in immune cells. Annu Rev Nutr 2009; 29:133-52. [PMID: 19400701 DOI: 10.1146/annurev-nutr-080508-141119] [Citation(s) in RCA: 220] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent years have brought a paradigm shift for the role of the essential trace element zinc in immunity. Although its function as a structural component of many enzymes has been known for decades, current experimental evidence points to an additional function of the concentration of free or loosely bound zinc ions as an intracellular signal. The activity of virtually all immune cells is modulated by zinc in vitro and in vivo. In this review, we discuss the interactions of zinc with major signaling pathways that regulate immune cell activity, and the implications of zinc deficiency or supplementation on zinc signaling as the molecular basis for an effect of zinc on immune cell function.
Collapse
Affiliation(s)
- Hajo Haase
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
19
|
The EVER proteins as a natural barrier against papillomaviruses: a new insight into the pathogenesis of human papillomavirus infections. Microbiol Mol Biol Rev 2009; 73:348-70. [PMID: 19487731 DOI: 10.1128/mmbr.00033-08] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Infections by human papillomaviruses (HPVs) are the most frequently occurring sexually transmitted diseases. The crucial role of genital oncogenic HPV in cervical carcinoma development is now well established. In contrast, the role of cutaneous HPV in skin cancer development remains a matter of debate. Cutaneous beta-HPV strains show an amazing ubiquity. The fact that a few oncogenic genotypes cause cancers in patients suffering from epidermodysplasia verruciformis is in sharp contrast to the unapparent course of infection in the general population. Our recent investigations revealed that a natural barrier exists in humans, which protects them against infection with these papillomaviruses. A central role in the function of this HPV-specific barrier is played by a complex of the zinc-transporting proteins EVER1, EVER2, and ZnT-1, which maintain cellular zinc homeostasis. Apparently, the deregulation of the cellular zinc balance emerges as an important step in the life cycles not only of cutaneous but also of genital HPVs, although the latter viruses have developed a mechanism by which they can break the barrier and impose a zinc imbalance. Herein, we present a previously unpublished list of the cellular partners of EVER proteins, which points to future directions concerning investigations of the mechanisms of action of the EVER/ZnT-1 complex. We also present a general overview of the pathogenesis of HPV infections, taking into account the latest discoveries regarding the role of cellular zinc homeostasis in the HPV life cycle. We propose a potential model for the mechanism of function of the anti-HPV barrier.
Collapse
|
20
|
Abstract
Despite zinc ions being redox inert in biologic systems, zinc-finger structures act as redox-sensitive molecular switches controlling several crucial cellular processes. Oxidative or nitrosative stress, via modification of zinc finger cysteine thiols, leads to a release of Zn(2+) from these structures, causing not only a loss of zinc-finger function but also an increase of cytoplasmic or nuclear free Zn(2+) that may, in turn, stimulate and interfere with cellular signaling cascades. A signaling cascade stimulated by exposure of cells to zinc ions or to stressful stimuli that are reported to cause an intracellular release of zinc ions involves phosphoinositide 3'-kinases and the Ser/Thr protein kinase Akt, resulting in an inactivation of transcriptional regulators of the FoxO family. Possible modes of action of zinc ions to stimulate this signaling cascade and consequences of stimulation are discussed. Moreover, we present an overview on human diseases or disorders characterized by an intracellular Zn(2+) dyshomeostasis.
Collapse
Affiliation(s)
- Klaus-D Kröncke
- Institute of Biochemistry and Molecular Biology I, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany.
| | | |
Collapse
|
21
|
Ryu JM, Lee MY, Yun SP, Han HJ. Zinc chloride stimulates DNA synthesis of mouse embryonic stem cells: involvement of PI3K/Akt, MAPKs, and mTOR. J Cell Physiol 2009; 218:558-67. [PMID: 18988195 DOI: 10.1002/jcp.21628] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Although zinc is one of the most important trace elements in the body, the mechanisms underlying zinc-induced cell proliferation have yet to be unraveled. Thus, we investigated the effect of zinc chloride (ZnCl(2)) on mouse embryonic stem (ES) cell proliferation and related signaling pathways. ZnCl(2) (40 microM) significantly increased [(3)H]-thymidine incorporation after 12 h of treatment. At moderate concentrations (> or =4 microM), ZnCl(2) increased cell cycle regulatory protein levels, [(3)H]-thymidine incorporation, and total cell numbers, but higher doses of ZnCl(2) (> or =200 microM) blocked this proliferative effect. ZnCl(2) induced the phosphorylation of Akt, c-Jun N-terminal kinases/stress-activated protein kinases (JNK/SAPK), p44/42 MAPKs, and mammalian target of rapamycin (mTOR) in a time-dependent manner. Pretreatment of LY 294002 (a PI3K inhibitor, 10(-6) M), wortmannin (a PI3K inhibitor, 10(-7) M), or an Akt inhibitor (10(-5) M), which inhibited the activation of JNK/SAPK and p44/42 MAPKs, blocked the ZnCl(2)-induced expression of cyclins and cyclin-dependent kinases (CDKs). Furthermore, pretreatment with PD 98059 (a p44/42 inhibitor, 10(-5) M) or SP 600125 (a JNK inhibitor, 10(-6) M) inhibited ZnCl(2)-induced activation of mTOR, p70S6K, and 4E-BP1. In addition, rapamycin (an mTOR inhibitor, 10(-8) M) blocked the ZnCl(2)-induced increase in [(3)H]-thymidine incorporation and cell cycle regulatory protein expression. In conclusion, ZnCl(2) stimulated ES cell proliferation through the PI3K/Akt, p44/42 MAPKs, JNK/SAPK, and mTOR signal pathways.
Collapse
Affiliation(s)
- Jung Min Ryu
- Department of Veterinary Physiology, College of Veterinary Medicine, Biotherapy Human Resources Center (BK21), Chonnam National University, Gwangju, Korea
| | | | | | | |
Collapse
|
22
|
Ondrousková E, Slovácková J, Pelková V, Procházková J, Soucek K, Benes P, Smarda J. Heavy metals induce phosphorylation of the Bcl-2 protein by Jun N-terminal kinase. Biol Chem 2008; 390:49-58. [PMID: 19007308 DOI: 10.1515/bc.2009.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The Bcl-2 protein is one of the key components of biochemical pathways controlling programmed cell death. The function of this protein can be regulated by posttranslational modifications. Phosphorylation of Bcl-2 has been considered to be significantly associated with cell cycle arrest in the G2/M phase of the cell cycle, and with cell death caused by defects of microtubule dynamics. This study shows that phosphorylation of Bcl-2 can be induced by heavy metals due to activation of the Jun N-terminal kinase pathway that is not linked to the G2/M cell cycle arrest. Furthermore, we demonstrate that hyperphosphorylated Bcl-2 protein is a more potent inhibitor of zinc-induced cell death than its hypophosphorylated mutant form. These data suggest that regulation of Bcl-2 protein function by phosphorylation is an important part of cell responses to stress.
Collapse
Affiliation(s)
- Eva Ondrousková
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Kotlárská 2, CZ-611 37 Brno, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Molecular mechanism of antidiabetic zinc–allixin complexes: regulations of glucose utilization and lipid metabolism. J Biol Inorg Chem 2008; 13:675-84. [DOI: 10.1007/s00775-008-0352-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Accepted: 02/05/2008] [Indexed: 01/03/2023]
|
25
|
Lazarczyk M, Pons C, Mendoza JA, Cassonnet P, Jacob Y, Favre M. Regulation of cellular zinc balance as a potential mechanism of EVER-mediated protection against pathogenesis by cutaneous oncogenic human papillomaviruses. ACTA ACUST UNITED AC 2007; 205:35-42. [PMID: 18158319 PMCID: PMC2234378 DOI: 10.1084/jem.20071311] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Epidermodysplasia verruciformis (EV) is a genodermatosis associated with skin cancers that results from a selective susceptibility to related human papillomaviruses (EV HPV). Invalidating mutations in either of two genes (EVER1 and EVER2) with unknown functions cause most EV cases. We report that EVER1 and EVER2 proteins form a complex and interact with the zinc transporter 1 (ZnT-1), as shown by yeast two-hybrid screening, GST pull-down, and immunoprecipitation experiments. In keratinocytes, EVER and ZnT-1 proteins do not influence intracellular zinc concentration, but do affect intracellular zinc distribution. EVER2 was found to inhibit free zinc influx to nucleoli. Keratinocytes with a mutated EVER2 grew faster than wild-type keratinocytes. In transiently and stably transfected HaCaT cells, EVER and ZnT-1 down-regulated transcription factors stimulated by zinc (MTF-1) or cytokines (c-Jun and Elk), as detected with luciferase assays. To get some insight into the control of EV HPV infection, we searched for interaction between EVER and ZnT-1 and oncoproteins of cutaneous (HPV5) and genital (HPV16) genotypes. HPV16 E5 protein binds to EVER and ZnT-1 and blocks their negative regulation. The lack of a functional E5 protein encoded by EV HPV genome may account for host restriction of these viruses.
Collapse
Affiliation(s)
- Maciej Lazarczyk
- Unité de Génétique, Papillomavirus et Cancer Humain, Institut Pasteur, 75015 Paris, France
| | | | | | | | | | | |
Collapse
|
26
|
Sun Z, Xia J, Dong N, Du X, Chi Y, Yang T, Yang C. Effects of metallothionein on isolated rat heart. JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY. MEDICAL SCIENCES = HUA ZHONG KE JI DA XUE XUE BAO. YI XUE YING DE WEN BAN = HUAZHONG KEJI DAXUE XUEBAO. YIXUE YINGDEWEN BAN 2007; 27:448-50. [PMID: 17828508 DOI: 10.1007/s11596-007-0425-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Indexed: 10/22/2022]
Abstract
To investigate the effects of metallothionein (MT) on isolated rat heart, 16 Wistar rats were randomly divided into 2 groups. In control group (group C), distilled water was injected intraperitoneally and 24 h later isolated hearts were perfused with Langendorff and stored at 4 degrees C for 3 h with histidine-tryptophan-ketoglutarate (HTK) solutions, and then isolated hearts were perfused for 2 h by Langendorff. In experimental group (group E), 3.6% ZnSO(4) was injected intraperitoneally, 24 h later isolated hearts were perfused by Langendorff and stored at 4 degrees C for 3 h with HTK solutions, and then the isolated hearts were perfused for 2 h with Langendorff. MT content, the recovery of hemodynamics, myocardial water content (MWC), lactate dehydrogenase (LDH) and creatine kinase (CK) leakage, adenosine triphosphate (ATP) and malondialdehyde (MDA) content, superoxide dismutase (SOD) activity, myocardial cell Ca(2+) content, Ca(2+)-ATPase activity of mitochondria ([Ca(2+)-ATPase](m)) and its Ca(2+) content ([Ca(2+)](m)), synthesizing ATP activity of mitochondria ([ATP](m)), and the ultrastructure of cells were examined. There were a significant increase in group E in hemodynamic recovery, ATP content, SOD activity, [Ca(2+)-ATPase](m) activity, [ATP](m) activity, and substantial reduction in MWC, LDH and CK leakage, MDA content, myocardial cell Ca(2+) content, [Ca(2+)](m) content, and the ultrastructural injury were obviously milder than that of group C. This study demonstrated that MT has protective effects on isolated rat heart.
Collapse
Affiliation(s)
- Zhongdong Sun
- Department of Cardiovascular Surgery, Qingdao Municipal Hospital, Medical College of Qingdao University, Qingdao 266011, China.
| | | | | | | | | | | | | |
Collapse
|
27
|
Baek SH, Kim MY, Mo JS, Ann EJ, Lee KS, Park JH, Kim JY, Seo MS, Choi EJ, Park HS. Zinc-induced downregulation of Notch signaling is associated with cytoplasmic retention of Notch1-IC and RBP-Jk via PI3k-Akt signaling pathway. Cancer Lett 2007; 255:117-26. [PMID: 17513037 DOI: 10.1016/j.canlet.2007.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 04/04/2007] [Accepted: 04/10/2007] [Indexed: 01/01/2023]
Abstract
The Notch signaling pathway appears to perform an important function in the determination of cell fate and in differentiation, in a wide variety of organisms and cell types. In this study, we provide evidence that the inactivation of Notch signaling by zinc is achieved via a PI3K-Akt-dependent, cytoplasmic retention of Notch1-IC and RBP-Jk. Extracellular zinc has been determined to inhibit constitutive active mutants of both Notch1 (DeltaEN1) and Notch1-IC-mediated transcription. However, in such cases, neither the cleavage pattern of Notch nor the protein stability of Notch1-IC and RBP-Jk was found to have significantly changed. With regard to the modulation of Notch signaling, zinc appears to exert a significant negative influence on the binding occurring between Notch1 and RBP-Jk, both in vivo and in vitro. The zinc-induced inhibition of Notch signaling can be rescued via pretreatment with wortmannin or LY294002, both of which are specific PI3K signaling pathway inhibitors. Furthermore, we ascertained that zinc triggers the cytoplasmic retention of Notch1-IC and RBP-Jk, and that cytoplasmic retention could be rescued via treatment with wortmannin. Overall, we have determined that an important relationship exists between zinc and the Notch1 signaling pathway, and that this relationship is intimately involved with the cytoplasmic retention of Notch and RBP-Jk.
Collapse
Affiliation(s)
- Sang-Hyun Baek
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, 300, Yongbong-Dong, Buk-Ku, Gwangju, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Barthel A, Ostrakhovitch EA, Walter PL, Kampkötter A, Klotz LO. Stimulation of phosphoinositide 3-kinase/Akt signaling by copper and zinc ions: mechanisms and consequences. Arch Biochem Biophys 2007; 463:175-82. [PMID: 17509519 DOI: 10.1016/j.abb.2007.04.015] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Accepted: 04/12/2007] [Indexed: 12/01/2022]
Abstract
The phosphoinositide 3'-kinase (PI3K)/Akt signaling cascade controls cellular processes such as apoptosis and proliferation. Moreover, it is a mediator of insulin effects on target cells and as such is a major regulator of fuel metabolism. The PI3K/Akt cascade was demonstrated to be activated by stressful stimuli, including heat shock and reactive oxygen species (ROS). This minireview focuses on activation of the pathway by exposure of cells to heavy metal ions, Cu2+ and Zn2+. It is hypothesized that stimulation of PI3K/Akt is the molecular mechanism underlying the known insulin-mimetic effects of copper and zinc ions. Following a brief summary of PI3K/Akt signaling and of activation of the cascade by Cu2+ and Zn2+, mechanisms of metal-induced PI3K/Akt activation are discussed with a focus on the role of ROS and of cellular thiols (glutathione, thioredoxin) and protein tyrosine phosphatases in Cu2+ and Zn2+ signaling. Finally, consequences of metal-induced PI3K/Akt activation are discussed, focusing on the modulation of FoxO-family transcription factors by Cu2+ and Zn2+.
Collapse
Affiliation(s)
- Andreas Barthel
- Medizinische Klinik I, BG Kliniken Bergmannsheil, Ruhr-Universität, Bochum, Germany
| | | | | | | | | |
Collapse
|
29
|
Min YK, Lee JE, Chung KC. Zinc induces cell death in immortalized embryonic hippocampal cells via activation of Akt-GSK-3β signaling. Exp Cell Res 2007; 313:312-21. [PMID: 17098228 DOI: 10.1016/j.yexcr.2006.10.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 10/04/2006] [Accepted: 10/16/2006] [Indexed: 11/21/2022]
Abstract
Zinc is an essential catalytic and structural element of many proteins and a signaling messenger that is released by neuronal activity at many central excitatory synapses. Excessive synaptic release of zinc followed by entry into vulnerable neurons contributes severe neuronal cell death. We have previously observed that zinc-induced neuronal cell death is accompanied by Akt activation in embryonic hippocampal progenitor (H19-7) cells. In the present study, we examined the role of Akt activation and its downstream signaling events during extracellular zinc-induced neuronal cell death. Treatment of H19-7 cells with 10 microM of zinc plus zinc ionophore, pyrithione, led to increased phosphorylation of Akt at Ser-473/Thr-308 and increased Akt kinase activity. Zinc-induced Akt activation was accompanied by increased Tyr-phosphorylated GSK-3beta as well as increased GSK-3beta kinase activity. Transient overexpression of a kinase-deficient Akt mutant remarkably suppressed GSK-3beta activation and cell death. Furthermore, tau phosphorylation, but not the degradation of beta-catenin, was dependent upon zinc-induced GSK-3beta activation and contributed to cell death. The current data suggest that, following exposure to zinc, the sequential activation of Akt and GSK-3beta plays an important role directing hippocampal neural precursor cell death.
Collapse
Affiliation(s)
- Young Kyu Min
- Department of Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | |
Collapse
|
30
|
Lee SB, Bae IH, Bae YS, Um HD. Link between Mitochondria and NADPH Oxidase 1 Isozyme for the Sustained Production of Reactive Oxygen Species and Cell Death. J Biol Chem 2006; 281:36228-35. [PMID: 17015444 DOI: 10.1074/jbc.m606702200] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Although mitochondria and the Nox family of NADPH oxidase are major sources of reactive oxygen species (ROS) induced by external stimuli, there is limited information on their functional relationship. This study has shown that serum withdrawal promotes the production of ROS in human 293T cells by stimulating both the mitochondria and Nox1. An analysis of their relationship revealed that the mitochondria respond to serum withdrawal within a few minutes, and the ROS produced by the mitochondria trigger Nox1 action by stimulating phosphoinositide 3-kinase (PI3K) and Rac1. Activation of the PI3K/Rac1/Nox1 pathway was evident 4-8 h after but not earlier than serum withdrawal initiation, and this time lag was found to be required for an additional activator of the pathway, Lyn, to be expressed. Functional analysis suggested that, although the mitochondria contribute to the early (0-4 h) accumulation of ROS, the maintenance of the induced ROS levels to the later (4-8 h) phase required the action of the PI3K/Rac1/Nox1 pathway. Serum withdrawal-treated cells eventually lost their viability, which was reversed by blocking either the mitochondria-dependent induction of ROS using rotenone or KCN or the PI3K/Rac1/Nox1 pathway using the dominant negative mutants or small interfering RNAs. This suggests that mitochondrial ROS are essential but not enough to promote cell death, which requires the sustained accumulation of ROS by the subsequent action of Nox1. Overall, this study shows a signaling link between the mitochondria and Nox1, which is crucial for the sustained accumulation of ROS and cell death in serum withdrawal-induced signaling.
Collapse
Affiliation(s)
- Seung Bum Lee
- Laboratory of Radiation Tumor Physiology, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul 139-706, Korea
| | | | | | | |
Collapse
|
31
|
Gilmour PS, Schladweiler MC, Nyska A, McGee JK, Thomas R, Jaskot RH, Schmid J, Kodavanti UP. Systemic imbalance of essential metals and cardiac gene expression in rats following acute pulmonary zinc exposure. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2006; 69:2011-32. [PMID: 17074742 DOI: 10.1080/15287390600746173] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
It was recently demonstrated that particulate matter (PM) containing water-soluble zinc produces cardiac injury following pulmonary exposure. To investigate whether pulmonary zinc exposure produces systemic metal imbalance and direct cardiac effects, male Wistar Kyoto (WKY) rats (12-14 wk age) were intratracheally (IT) instilled with saline or 2 micromol/kg zinc sulfate. Temporal analysis was performed for systemic levels of essential metals (zinc, copper, and selenium), and induction of zinc transporter-2 (ZT-2) and metallothionein-1 (MT-1) mRNA in the lung, heart, and liver. Additionally, cardiac gene expression profile was evaluated using Affymetrix GeneChips (rat 230A) arrays to identify zinc-specific effects. Pulmonary zinc instillation produced an increase in plasma zinc to approximately 20% at 1 and 4 h postexposure with concomitant decline in the lung levels. At 24 and 48 h postexposure, zinc levels rose significantly (approximately 35%) in the liver. At these time points, plasma and liver levels of copper and selenium also increased significantly, suggesting systemic disturbance in essential metals. Zinc exposure was associated with marked induction of MT-1 and ZT-2 mRNA in lung, heart, and liver, suggesting systemic metal sequestration response. Given the functional role of zinc in hundreds of proteins, the gene expression profiles demonstrated changes that are expected based on its physiological role. Zinc exposure produced an increase in expression of kinases and inhibition of expression of phosphatases; up- or downregulation of genes involved in mitochondrial function; changes in calcium regulatory proteins suggestive of elevated intracellular free calcium and increases in sulfotransferases; upregulation of potassium channel genes; and changes in free radical-sensitive proteins. Some of these expression changes are reflective of a direct effect of zinc on myocardium following pulmonary exposure, which may result in impaired mitochondrial respiration, stimulated cell signaling, altered Ca2+ homeostasis, and increased transcription of sulfotransferases. Cardiotoxicity may be an outcome of acute zinc toxicosis and occupational exposures to metal fumes containing soluble zinc. Imbalance of systemic metal homeostasis as a result of pulmonary zinc exposure may underlie the cause of extrapulmonary effects.
Collapse
Affiliation(s)
- Peter S Gilmour
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Walter PL, Kampkötter A, Eckers A, Barthel A, Schmoll D, Sies H, Klotz LO. Modulation of FoxO signaling in human hepatoma cells by exposure to copper or zinc ions. Arch Biochem Biophys 2006; 454:107-13. [PMID: 16973122 DOI: 10.1016/j.abb.2006.08.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 08/11/2006] [Accepted: 08/11/2006] [Indexed: 11/15/2022]
Abstract
Cells respond to heavy metal stress by activating signaling cascades regulating cellular proliferation and survival. We here demonstrate that the anti-apoptotic kinase Akt is activated in HepG2 human hepatoma cells exposed to copper or zinc ions. Cu2+- and Zn2+-induced phosphorylation of Akt was blocked by phosphoinositide 3-kinase (PI3K) inhibitors, wortmannin and LY294002. Moreover, several endogenous Akt substrates were phosphorylated, including glycogen synthase kinase-3 and transcription factors of the FoxO family, FoxO1a and FoxO4. Exposure to Cu2+ or Zn2+ elicited the subcellular redistribution of an overexpressed FoxO1a-EGFP fusion protein from nucleus to cytoplasm, which was not seen with a mutant FoxO1a form devoid of Akt phosphorylation sites. Both FoxO phosphorylation and nuclear exclusion were blocked by wortmannin. Likewise, the subcellular translocation from nucleus to cytoplasm of the Caenorhabditis elegans FoxO ortholog, DAF-16, was caused in starved worms exposed to copper ions. Activity of the promoter of the human glucose 6-phosphatase gene, known to be regulated by insulin and FoxO1a, was demonstrated in reporter gene assays to be attenuated in hepatoma cells exposed to Cu2+. However, this suppression of glucose 6-phosphatase promoter activity was independent of modulation of the PI3K/Akt pathway. In summary, the PI3K/Akt pathway is activated in human hepatoma cells exposed to Cu2+ or Zn2+, resulting in the phosphorylation and subcellular relocalisation of transcription factor FoxO1a. Furthermore, copper is demonstrated to exert an insulin-mimetic effect also independently of the PI3K/Akt/FoxO pathway.
Collapse
Affiliation(s)
- Philippe L Walter
- Institut für Biochemie und Molekularbiologie I, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Tomik B, Chwiej J, Szczerbowska-Boruchowska M, Lankosz M, Wójcik S, Adamek D, Falkenberg G, Bohic S, Simionovici A, Stegowski Z, Szczudlik A. Implementation of X-ray fluorescence microscopy for investigation of elemental abnormalities in amyotrophic lateral sclerosis. Neurochem Res 2006; 31:321-31. [PMID: 16733809 DOI: 10.1007/s11064-005-9030-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2005] [Indexed: 12/01/2022]
Abstract
The abnormalities of metallochemical reactions may contribute to the pathogenesis of Amyotrophic Lateral Sclerosis (ALS). In the present work, an investigation of the elemental composition of the gray matter, nerve cells and white matter from spinal cord tissues representing three ALS cases and five non-ALS controls was performed. This was done with the use of the synchrotron microbeam X-ray fluorescence technique (micro-SRXRF). The following elements were detected in the tissue sections: P, S, Cl, K, Ca, Fe, Cu, Zn and Br. A higher accumulation of Cl, K, Ca, Zn and Br was observed in the nerve cell bodies than in the surrounding tissue. Contrary to all other elements, Zn accumulation was lower in the white matter areas than in the gray matter ones. The results of quantitative analysis showed that there were no general abnormalities in the elemental accumulation between the ALS and the control group. However, for individual ALS cases such abnormalities were observed for the nerve cells. We also demonstrated differences in the elemental accumulation between the analyzed ALS cases.
Collapse
Affiliation(s)
- B Tomik
- Institute of Neurology, Jagiellonian University Medical College, Krakow, Poland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Malaiyandi LM, Honick AS, Rintoul GL, Wang QJ, Reynolds IJ. Zn2+ inhibits mitochondrial movement in neurons by phosphatidylinositol 3-kinase activation. J Neurosci 2006; 25:9507-14. [PMID: 16221861 PMCID: PMC6725691 DOI: 10.1523/jneurosci.0868-05.2005] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mitochondria have been identified as targets of the neurotoxic actions of zinc, possibly through decreased mitochondrial energy production and increased reactive oxygen species accumulation. It has been hypothesized that impairment of mitochondrial trafficking may be a mechanism of neuronal injury. Here, we report that elevated intraneuronal zinc impairs mitochondrial trafficking. At concentrations just sufficient to cause injury, zinc rapidly inhibited mitochondrial movement without altering morphology. Zinc chelation initially restored movement, but the actions of zinc became insensitive to chelator in <10 min. A search for downstream signaling events revealed that inhibitors of phosphatidylinositol (PI) 3-kinase prevented this zinc effect on movement. Moreover, transient inhibition of PI 3-kinase afforded neuroprotection against zinc-mediated toxicity. These data illustrate a novel mechanism that regulates mitochondrial trafficking in neurons and also suggest that mitochondrial trafficking may be closely coupled to neuronal viability.
Collapse
Affiliation(s)
- Latha M Malaiyandi
- Department of Pharmacology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
35
|
Lin CW, Chang HB, Huang HJ. Zinc induces mitogen-activated protein kinase activation mediated by reactive oxygen species in rice roots. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2005; 43:963-8. [PMID: 16324848 DOI: 10.1016/j.plaphy.2005.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2005] [Indexed: 05/05/2023]
Abstract
It is well known that zinc (Zn) is one of the micronutrients essential for normal growth and development of plants. However, the molecular mechanisms responsible for the regulation of plant growth by Zn are still not completely understood. The aim of this study was to investigate the signalling transduction pathways activated by Zn. We show that Zn elicited a remarkable increase in myelin basic protein (MBP) kinase activities. By immunoblot analysis, we suggest that Zn-activated 40- and 42-kDa MBP kinases are mitogen-activated protein kinases (MAPK). Pre-treatment of rice roots with reactive oxygen species (ROS) scavenger, sodium benzoate, was able to effectively prevent Zn-induced MAPK activation. However, phosphoinositide 3-kinase (PI-3K) inhibitor, LY294002, was unable to inhibit Zn-induced MAPK activation. These results suggest that the ROS may function in the Zn-triggered MAPK signalling pathway in rice roots.
Collapse
Affiliation(s)
- Chung-Wen Lin
- Department of Life Sciences, National Cheng Kung University, No.1, University Road, Tainan 701, Taiwan, ROC
| | | | | |
Collapse
|
36
|
Lee SB, Cho ES, Yang HS, Kim H, Um HD. Serum withdrawal kills U937 cells by inducing a positive mutual interaction between reactive oxygen species and phosphoinositide 3-kinase. Cell Signal 2005; 17:197-204. [PMID: 15494211 DOI: 10.1016/j.cellsig.2004.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Revised: 07/05/2004] [Accepted: 07/05/2004] [Indexed: 11/30/2022]
Abstract
Reactive oxygen species (ROS) can be generated following cell stimulation and function as intracellular signaling molecules. To determine signaling components involved in ROS induction, human U937 blood cells grown in 10% serum were exposed to serum-free media. It was previously reported that serum withdrawal (SW) killed cells by elevating cellular ROS levels. This study showed that SW activates phosphoinositide 3-kinase (PI3K). PI3K activation was evident after the ROS levels began increasing, and an antioxidant blockade of this increase resulted in PI3K activation suppression. Interestingly, the inhibition of PI3K activity/activation using either its specific inhibitor or dominant-negative mutant attenuated the subsequent additional increase in the ROS levels. These results suggest that SW-induced ROS activate PI3K, which in turn promotes the process leading to ROS accumulation. The present study also revealed that both ROS and PI3K support SW-induced cell death by activating stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK). Overall, it appears that SW triggers a positive mutual interaction between ROS and PI3K, which amplifies signals required for the induction of an SAPK-dependent death pathway.
Collapse
Affiliation(s)
- Seung Bum Lee
- Laboratory of Experimental Pathology, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul 139-706, South Korea
| | | | | | | | | |
Collapse
|
37
|
Watanabe KI, Tokumoto T, Ishikawa K. 1,10-Phenanthroline phosphorylates (activates) MAP kinase in Xenopus oocytes. Cell Signal 2003; 15:1139-47. [PMID: 14575869 DOI: 10.1016/s0898-6568(03)00116-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The membrane-permeable intracellular heavy metal chelator, 1,10-phenanthroline, which prevents progesterone-induced germinal vesicle breakdown (GVBD), would be expected to regulate phosphorylation (activation) of the MAP kinase (MAPK) cascade in Xenopus oocytes. Here, our experiments show that 1,10-phenanthroline itself results in the phosphorylation of MAPK in both oocytes and a cell-free system. In contrast, 1,7-phenanthroline, the nonchelating analogue, had no effect. A supplement of zinc (as a heavy metal) given to 1,10-phenanthroline-loaded oocytes suppressed the stimulatory effects of 1,10-phenanthroline, while 1,10-phenanthroline withdrawal caused dephosphorylation of activated MAPK. Further, treatment with a MEK (a MAPK kinase) inhibitor, PD 098059 or U0126, suppressed 1,10-phenanthroline-stimulated MAPK phosphorylation, indicating that 1,10-phenanthroline can phosphorylate MAPK in a MEK-dependent fashion. Our results suggest that phosphorylation of MAPK by 1,10-phenanthroline depends on the interaction of MEK. Thus, the intracellular heavy metal (zinc) regulates MAPK phosphorylation and 1,10-phenanthroline can serve as a unique tool for investigating MAPK phosphorylation mechanism.
Collapse
Affiliation(s)
- Ken-Ichi Watanabe
- Department of Biology and Geosciences, Faculty of Science, Shizuoka University, Ohya 836, Shizuoka 422-8529, Japan.
| | | | | |
Collapse
|
38
|
Min YK, Park JH, Chong SA, Kim YS, Ahn YS, Seo JT, Bae YS, Chung KC. Pyrrolidine dithiocarbamate-induced neuronal cell death is mediated by Akt, casein kinase 2, c-Jun N-terminal kinase, and IkappaB kinase in embryonic hippocampal progenitor cells. J Neurosci Res 2003; 71:689-700. [PMID: 12584727 DOI: 10.1002/jnr.10520] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Pyrrolidine dithiocarbamate (PDTC) is known to induce cell death by the stimulation of intracellular zinc transport and subsequent modulation of nuclear factor-kappaB (NF-kappaB) activity. Zinc is a signaling messenger that is released by neuronal activity at many central excitatory synapses. Excessive synaptic release of zinc followed by entry into vulnerable neurons contributes to severe neuronal cell death. In the present study, we explored how PDTC modulates intracellular signal transduction pathways, leading to neuronal cell death. The exposure of immortalized embryonic hippocampal cells (H19-7) to PDTC within the range of 1-100 microM caused cell death in a dose-dependent manner. During the cell death, NF-kappaB activity increased in response to PDTC, and this activity corresponded well with the increase of intracellular free zinc levels, implying that the activation of NF-kappaB transmits the cell death signals of PDTC. Furthermore, PDTC caused the activation of IkappaB kinase (IKK), casein kinase 2 (CK2), phosphatidylinositol 3-kinase (PI-3K), and Akt, as well as mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), but not p38 kinase. The blockade of PI-3K, JNK, and CK2 pathways resulted in a remarkable suppression of PDTC-induced cell death and also the activation of IKK, which subsequently led to a decrease of IkappaB phosphorylation. Although the overexpression of dominant-negative SEK in a transient manner did not inhibit the activation of Akt by PDTC, the transfection of kinase-inactive Akt mutants did cause a remarkable blockade of JNK activation, implying that Akt is present upstream of JNK in the PDTC-signaling pathways. Moreover, whereas selective CK2 inhibitors suppressed PDTC-induced JNK activation, the inhibition of JNK did not affect CK2 activity, suggesting that CK2 is directly related to the regulation of cell viability by PDTC and that the CK2-JNK pathway could be a downstream target of PDTC. Taken together, our results suggest that PDTC-mediated accumulation of intracellular zinc ions may affect cell viability by modulating several intracellular signaling pathways in neuronal hippocampal progenitor cells.
Collapse
Affiliation(s)
- Young Kyu Min
- Department of Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Ueno S, Tsukamoto M, Hirano T, Kikuchi K, Yamada MK, Nishiyama N, Nagano T, Matsuki N, Ikegaya Y. Mossy fiber Zn2+ spillover modulates heterosynaptic N-methyl-D-aspartate receptor activity in hippocampal CA3 circuits. J Cell Biol 2002; 158:215-20. [PMID: 12119362 PMCID: PMC2173116 DOI: 10.1083/jcb.200204066] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Although Zn2+ is contained in large amounts in the synaptic terminals of hippocampal mossy fibers (MFs), its physiological role in synaptic transmission is poorly understood. By using the newly developed high-sensitivity Zn2+ indicator ZnAF-2, the spatiotemporal dynamics of Zn2+ was monitored in rat hippocampal slices. When high-frequency stimulation was delivered to the MFs, the concentration of extracellular Zn2+ was immediately elevated in the stratum lucidum, followed by a mild increase in the stratum radiatum adjacent to the stratum lucidum, but not in the distal area of stratum radiatum. The Zn2+ increase was insensitive to a non-N-methyl-d-aspartate (NMDA) receptor antagonist but was efficiently attenuated by tetrodotoxin or Ca2+-free medium, suggesting that Zn2+ is released by MF synaptic terminals in an activity-dependent manner, and thereafter diffuses extracellularly into the neighboring stratum radiatum. Electrophysiological analyses revealed that NMDA receptor-mediated synaptic responses in CA3 proximal stratum radiatum were inhibited in the immediate aftermath of MF activation and that this inhibition was no longer observed in the presence of a Zn2+-chelating agent. Thus, Zn2+ serves as a spatiotemporal mediator in imprinting the history of MF activity in contiguous hippocampal networks. We predict herein a novel form of metaplasticity, i.e., an experience-dependent non-Hebbian modulation of synaptic plasticity.
Collapse
Affiliation(s)
- Sayaka Ueno
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Miao H, Yuan S, Wang Y, Tsygankov A, Chien S. Role of Cbl in shear-activation of PI 3-kinase and JNK in endothelial cells. Biochem Biophys Res Commun 2002; 292:892-9. [PMID: 11944898 DOI: 10.1006/bbrc.2002.6750] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fluid shear stress can activate PI-3 kinase and JNK in vascular endothelial cells. This study was designed to establish the role of Cbl as an upstream molecule in the shear stress activation of PI-3 kinase and JNK. Confluent monolayers of bovine aortic endothelial cells (BAECs) were subjected to a shear stress of 12 dyn/cm(2) over intervals ranging from 0.5 to 30 min. Shear stress increased Cbl phosphorylation to 2.9-fold of control and Cbl association with the regulatory PI-3 kinase subunit p85 to 5.4-fold. The PI-3 kinase activity measured in Cbl-immunoprecipitated complexes increased to 11.7-fold in response to shear, suggesting that the shear stress activation of PI-3 kinase involves its association with Cbl. Furthermore, the shear stress induction of JNK was attenuated by a negative mutant of Cbl. Finally, shear stress caused an activation of PI 3-kinase only in BAECs seeded onto fibronectin, vitronectin, or laminin, but not poly-l-lysine. Our results suggest that Cbl plays a critical role in the shear stress induction of PI 3-kinase and JNK activities, and that this shear-induced activation requires the interaction of endothelial integrins with extracellular matrix proteins.
Collapse
Affiliation(s)
- Hui Miao
- Department of Bioengineering, University of California at San Diego, La Jolla, California 92093-0427, USA
| | | | | | | | | |
Collapse
|