1
|
Qi Y, Zhong Y, Luo L, He J, Feng B, Zhang X, Xia Y, Ren H. Feasibility analysis of reclaimed water reuse based on water quality data and microbial community structure study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:174781. [PMID: 39094655 DOI: 10.1016/j.scitotenv.2024.174781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024]
Abstract
The ecological recharge of urban landscapes with reclaimed water plays a crucial role in alleviating urban water shortage. In Yinchuan, we examined the effects of recharging urban rivers with either Yellow River or reclaimed water on the abundance and diversity of microbial communities. This study aimed to support the effective utilization of reclaimed water. We monitored six sites: three in the reclaimed water recharge area (Lucaowa inlet (ZLJ), Lucaowa channel (ZLH), and Lucaowa outlet (ZLC)) and three in the Yellow River water recharge area (Ningcheng lock (FNCZ), Qingfengjie (FQFJ), and Laifosi (FLFS)). Various indicators (pH, turbidity, temperature (T), dissolved oxygen (DO), electrical conductivity (EC), chemical oxygen demand (COD), total phosphorus (TP), total nitrogen (TN), ammonia nitrogen (NH3-N), and nitrate nitrogen (NO3-N)) were used to assess the water quality. The microbial community abundance and diversity were evaluated using 16S rRNA high-throughput sequencing. The results indicated that throughout the monitoring period, the reclaimed water recharge area exhibited increased water transparency and greater microbial community abundance and diversity than the Yellow River water recharge area. However, the reclaimed water recharge area also showed significantly higher levels of nitrogen, phosphorus, organic matter, and electrical conductivity, along with an increase in Firmicutes. Seasonal changes significantly influenced water quality factors, significantly affecting Cyanobacteria and Campylobacter populations, as demonstrated by RDA analysis, which showed a close relationship between microbial communities and environmental factors. Further comparative analysis revealed that erythrocytic bacteria were predominant in the reclaimed water recharge area, whereas Actinobacteria, Planktonia, and Aspergillus spp. were more significant in the Yellow River water recharge area. Predictive analysis of microbial functions suggested that carbon and nitrogen cycle-related functions were more abundant in the reclaimed water recharge area, indicating that reclaimed water recharge could improve the self-purification capacity of the water body.
Collapse
Affiliation(s)
- Yarong Qi
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, People's Republic of China
| | - Yanxia Zhong
- School of Ecology and Environment, Ningxia University, Yinchuan 750021, People's Republic of China; Ningxia University Northwest State Key Laboratory of Land Degradation and Ecological Restoration Cultivation Base, Yinchuan 750021, People's Republic of China.
| | - Lingling Luo
- School of Ecology and Environment, Ningxia University, Yinchuan 750021, People's Republic of China; Ningxia University Northwest State Key Laboratory of Land Degradation and Ecological Restoration Cultivation Base, Yinchuan 750021, People's Republic of China
| | - Jing He
- School of Ecology and Environment, Ningxia University, Yinchuan 750021, People's Republic of China; Ningxia University Northwest State Key Laboratory of Land Degradation and Ecological Restoration Cultivation Base, Yinchuan 750021, People's Republic of China
| | - Bo Feng
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, People's Republic of China
| | - Xin Zhang
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, People's Republic of China
| | - Yuan Xia
- School of Ecology and Environment, Ningxia University, Yinchuan 750021, People's Republic of China
| | - Huiqin Ren
- School of Geography and Planning, Ningxia University, Yinchuan 750021, People's Republic of China
| |
Collapse
|
2
|
Liao Q, Sun L, Lu H, Qin X, Liu J, Zhu X, Li XY, Lin L, Li RH. Iron driven organic carbon capture, pretreatment, recovery and upgrade in wastewater: Process technologies, mechanisms, and implications. WATER RESEARCH 2024; 263:122173. [PMID: 39111213 DOI: 10.1016/j.watres.2024.122173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/26/2024]
Abstract
Wastewater treatment plants face significant challenges in transitioning from energy-intensive systems to carbon-neutral, energy-saving systems, and a large amount of chemical energy in wastewater remains untapped. Iron is widely used in modern wastewater treatment. Research shows that leveraging the coupled redox relationship of iron and carbon can redirect this energy (in the form of carbon) towards resource utilization. Therefore, re-examining the application of iron in existing wastewater carbon processes is particularly important. In this review, we investigate the latest research progress on iron for wastewater carbon flow restructuring. During the iron-based chemically enhanced primary treatment (CEPT) process, organic carbon is captured into sludge and its bioavailability is enhanced through iron-based advanced oxidation processes (AOP) pretreatment, further being recovered or upgraded to value-added products in anaerobic biological processes. We discuss the roles and mechanisms of iron in CEPT, AOP, anaerobic biological processes, and biorefining in driving organic carbon conversion. The dosage of iron, as a critical parameter, significantly affects the recovery and utilization of sludge carbon resources, particularly by promoting effective electron transfer. We propose a pathway for beneficial conversion of wastewater organic carbon driven by iron and analyze the benefits of the main products in detail. Through this review, we hope to provide new insights into the application of iron chemicals and current wastewater treatment models.
Collapse
Affiliation(s)
- Quan Liao
- Department of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Lianpeng Sun
- Department of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| | - Hui Lu
- Department of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| | - Xianglin Qin
- Department of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Junhong Liu
- Department of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Xinzhe Zhu
- Department of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| | - Xiao-Yan Li
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, China
| | - Lin Lin
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, China
| | - Ruo-Hong Li
- Department of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China.
| |
Collapse
|
3
|
Qin Z, Ke X, Wei C, Zhang H, Pang Z, Chen A, Wei C, Luo P, Qiu G. Energy-Saving Mechanism of Wastewater Treatment Process Adaptation on Natural Temperature Variation: The Case from Coking Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16399-16409. [PMID: 39235209 DOI: 10.1021/acs.est.4c04155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
The cyclical variations in environmental temperature generated by natural rhythms constantly impact the wastewater treatment process through the aeration system. Engineering data show that fluctuations in environmental temperature cause the reactor temperature to drop at night, resulting in increased dissolved oxygen concentration and improved effluent wastewater quality. However, the impact of natural temperature variation on wastewater treatment systems and the energy-saving potential has yet to be fully recognized. Here, we conducted a comprehensive study, using a full-scale oxic-hydrolytic and denitrification-oxic (OHO) coking wastewater treatment process as a case and developed a dynamic aeration model integrating thermodynamics and kinetics to elucidate the energy-saving mechanisms of wastewater treatment systems in response to diurnal temperature variations. Our case study results indicate that natural diurnal temperature variations can cut the energy consumption of 660,980 kWh annually (up to 30%) for the aeration unit in the OHO system. Wastewater treatment facilities located in regions with significant environmental temperature variation stand to benefit more from this energy-saving mechanism. Methods such as flow dynamic control, load shifting, and process unit editing can be fitted into the new or retrofitted wastewater treatment engineering.
Collapse
Affiliation(s)
- Zhi Qin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Xiong Ke
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
| | - Heng Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Zijun Pang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Acong Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Cong Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
- School of Emergent Soft Matter, South China University of Technology, Guangzhou 510006, P. R. China
| | - Pei Luo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
- Shenzhen Research Academy of Environmental Sciences, Shenzhen 518000, P. R. China
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
4
|
Liu L, Bai Z, Yang J, Yuan Z, Lun F, Wang M, Strokal M, Kroeze C, Cui Z, Chen X, Ma L. An optimized crop-livestock system can achieve a safe and just planetary boundary for phosphorus at the sub-basin level in China. NATURE FOOD 2024; 5:499-512. [PMID: 38849568 DOI: 10.1038/s43016-024-00977-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 04/08/2024] [Indexed: 06/09/2024]
Abstract
The contribution of crop and livestock production to the exceedance of the planetary boundary for phosphorus (P) in China is still unclear, despite the country's well-known issues with P fertilizer overuse and P-related water pollution. Using coupled models at sub-basin scales we estimate that livestock production increased the consumption of P fertilizer fivefold and exacerbated P losses twofold from 1980 to 2017. At present, China's crop-livestock system is responsible for exceeding what is considered a 'just' threshold for fertilizer P use by 30% (ranging from 17% to 68%) and a 'safe' water quality threshold by 45% (ranging from 31% to 74%) in 25 sub-basins in China. Improving the crop-livestock system will keep all sub-basins within safe water quality and just multigenerational limits for P in 2050.
Collapse
Affiliation(s)
- Ling Liu
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, The Chinese Academy of Sciences, Shijiazhuang, Hebei, China
| | - Zhaohai Bai
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, The Chinese Academy of Sciences, Shijiazhuang, Hebei, China.
| | - Jing Yang
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, The Chinese Academy of Sciences, Shijiazhuang, Hebei, China
| | - Zengwei Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
- Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, China
| | - Fei Lun
- College of Land Science and Technology, China Agricultural University, Beijing, China
| | - Mengru Wang
- Water Systems and Global Change Group, Wageningen University & Research, Wageningen, the Netherlands
| | - Maryna Strokal
- Water Systems and Global Change Group, Wageningen University & Research, Wageningen, the Netherlands
| | - Carolien Kroeze
- Water Systems and Global Change Group, Wageningen University & Research, Wageningen, the Netherlands
| | - Zhenling Cui
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, PR China
| | - Xinping Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, China
| | - Lin Ma
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, The Chinese Academy of Sciences, Shijiazhuang, Hebei, China.
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China.
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, China.
| |
Collapse
|
5
|
Jin X, Li X, Liu Y, Cui Y, Liang Y, Wang Q, Wang J, Yang R, Zhao J, Xia C. Self-assembly of metal-polyphenolic network on biomass for enhanced organic contaminant capturing from water with a high cost-to-benefit ratio. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134183. [PMID: 38574663 DOI: 10.1016/j.jhazmat.2024.134183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/24/2024] [Accepted: 03/30/2024] [Indexed: 04/06/2024]
Abstract
Nanomaterials present a vast potential as functional materials in environmental engineering. However, there are challenges with nanocomplex for recyclability, reliable/stable, and scale-up industrial integration. Here, a versatile, low-cost, stable and recycled easily metal-polyphenolic-based material carried by wood powder (bioCar-MPNs) adsorption platform was nano-engineered by a simple, fast self-assembly strategy, in which wood powder is an excellent substrate serving as a scaffold and stabilizer to prevent the nanocomplex from aggregating and is easier to recycle. Life cycle analysis highlights a green preparation process and environmental sustainability for bioCar-MPNs. The metal-polyphenolic nanocomplex coated on the wood surface in bioCar-MPNs presents a remarkable surface adsorption property (1829.4 mg/g) at a low cost (2.4 US dollars per 1000 g bioCar-MPNs) for organic dye. Quartz crystal microbalance analysis (QCM) demonstrates an existing strong affinity between polyphenols and organic dyes. Furthermore, Independent Gradient Model (IGM) and Hirshfeld surface analysis reveal the presence of the electrostatic interactions, π-π interactions, and hydrogen bonding. Meanwhile, adsorption efficiency of bioCar-MPNs maintains over 95% in the presence of co-existing ions (Na+, 0.5 M). Importantly, the reasonable utilization of biomass for water treatment can contribute to achieving the high-value and resource utilization of biomass materials.
Collapse
Affiliation(s)
- Xin Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xueyi Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yubo Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yilong Cui
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yunyi Liang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Qin Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China; School of Pharmacy, Southwest Minzu University, Chengdu, Sichuan 610225, China
| | - Jin Wang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Rui Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | | | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
6
|
Chen H, Wu Y, Zou Z, Yang X, Tsang YF. Thermal hydrolysis alleviates polyethylene microplastic-induced stress in anaerobic digestion of waste activated sludge. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134124. [PMID: 38565020 DOI: 10.1016/j.jhazmat.2024.134124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/19/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
Microplastics are known to negatively affect anaerobic digestion (AD) of waste activated sludge. However, whether thermal hydrolysis (TH) pretreatment alters the impact of microplastics on sludge AD remains unknown. Herein, the effect of TH on the impact of polyethylene (PE) microplastics in sludge AD was investigated. The results showed that the inhibition of methane production by PE at 100 particles/g total solids (TS) was reduced by 31.4% from 12.1% to 8.3% after TH at 170 °C for 30 min. Mechanism analysis indicated TH reduced the potential for reactive oxygen species production induced by PE, resulting in a 29.1 ± 5.5% reduction in cell viability loss. In addition, additive leaching increased as a result of rapid aging of PE microplastics by TH. Acetyl tri-n-butyl citrate (ATBC) release from PE with 10 and 100 particles/g TS increased 11.5-fold and 8.6-fold after TH to 68.2 ± 5.5 μg/L and 124.0 ± 5.1 μg/L, respectively. ATBC at 124.0 μg/L increased methane production by 21.4%. The released ATBC enriched SBR1031 and Euryarchaeota, which facilitate the degradation of proteins and promote methane production. This study reveals the overestimated impact of PE microplastics in sludge AD and provides new insights into the PE microplastics-induced impact in practical sludge treatment and anaerobic biological processes.
Collapse
Affiliation(s)
- Hongbo Chen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| | - Yi Wu
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Zhiming Zou
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Xiao Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories 999077, Hong Kong, China
| |
Collapse
|
7
|
Chen Y, Ding W, Bai Y, Wang X, Shen N, Li L, Lu D, Zhou Y. Phosphorus release and realignment in anaerobic digestion of thermal hydrolysis pretreatment sludge - Masking effects from high ammonium. WATER RESEARCH 2024; 255:121488. [PMID: 38513371 DOI: 10.1016/j.watres.2024.121488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/18/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Waste activated sludge (WAS) is a significant phosphorus (P) repository, and there is a growing interest in P recovery from WAS. Typically, the commercial technology for treating WAS involves thermal hydrolysis pretreatment (THP) coupled with anaerobic digestion (AD). However, there is ongoing debate regarding the transformation and distribution of P throughout this process. To address this, a long-term THP-AD process was operated in this study to comprehensively investigate P transformation and distribution. The results revealed that a substantial biodegradation of dissolved organic nitrogen (DON) raised the pH of the digestate to 8.3 during the AD process. This increased pH facilitated the dissolution of Al, leading to a reduction of 6.92 mg/L of NaOH-P. Simultaneously, sulfate reduction contributed to a decrease of 11.04 mg/L of Bipy-P in the solid. However, the reduction of Bipy-P and NaOH-P in the solid did not result in an improved P release to the supernatant. Conversely, a decrease of 23.60 mg/L P in the aqueous phase was observed after anaerobic digestion. The disappeared P was primarily precipitated with Mg and Ca, driven by the increased pH, and it contributed to the increase of HCl-P in the solid from 107.80 to 144.52 mg/L. These findings were further confirmed by results obtained from scanning electron microscopy (SEM), X-ray powder diffraction (XRD), and solid-state 31P nuclear magnetic resonance (NMR) spectroscopy. This study provides valuable insights into the mechanisms of P transformation during THP-AD process that is nearly opposite from conventional AD system.
Collapse
Affiliation(s)
- Yun Chen
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, PR China
| | - Wei Ding
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, PR China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, Jiangsu 210023, PR China
| | - Yu Bai
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, PR China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, Jiangsu 210023, PR China
| | - Xiao Wang
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, PR China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, Jiangsu 210023, PR China
| | - Nan Shen
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, PR China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, Jiangsu 210023, PR China
| | - Lei Li
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Dan Lu
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yan Zhou
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
8
|
Yu Y, Zeng H, Wang L, Wang R, Zhou H, Zhong L, Zeng J, Chen Y, Tan Z. Modeling nitrogen removal performance based on novel microbial activity indicators in WWTP by machine learning and biological interpretation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120256. [PMID: 38341909 DOI: 10.1016/j.jenvman.2024.120256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/20/2024] [Accepted: 01/28/2024] [Indexed: 02/13/2024]
Abstract
Modeling the pollutant removal performance of wastewater treatment plants (WWTPs) plays a crucial role in regulating their operation, mitigating effluent anomalies and reducing operating costs. Pollutants removal in WWTPs is closely related to microbial activity. However, there is extremely limited knowledge on the models accurately characterizing pollutants removal performance by microbial activity indicators. This study proposed a novel specific oxygen uptake rate (SOURATP) with adenosine triphosphate (ATP) as biomass. Firstly, it was found that SOURATP and total nitrogen (TN) removal rate showed similar fluctuated trends, and their correlation was stronger than that of TN removal rate and common SOURMLSS with mixed liquor suspended solids (MLSS) as biomass. Then, support vector regressor (SVR), K-nearest neighbor regressor (KNR), linear regressor (LR), and random forest (RF) models were developed to predict TN removal rate only with microbial activity as features. Models utilizing the novel SOURATP resulted in better performance than those based on SOURMLSS. A model fusion (MF) algorithm based on the above four models was proposed to enhance the accuracy with lower root mean square error (RMSE) of 2.25 mg/L/h and explained 75% of the variation in the test data with SOURATP as features as opposed to other base learners. Furthermore, the interpretation of predictive results was explored through microbial community structure and metabolic pathway. Strong correlations were found between SOURATP and the proportion of nitrifiers in aerobic pool, as well as between heterotrophic bacteria respiratory activity (SOURATP_HB) and the proportion of denitrifies in anoxic pool. SOURATP also displayed consistent positive responses with most key enzymes in Embden-Meyerhof-Parnas pathway (EMP), tricarboxylic acid cycle (TCA) and oxidative phosphorylation cycle. In this study, SOURATP provides a reliable indication of the composition and metabolic activity of nitrogen removal bacteria, revealing the potential reasons underlying the accurate predictive result of nitrogen removal rates based on novel microbial activity indicators. This study offers new insights for the prediction and further optimization operation of WWTPs from the perspective of microbial activity regulation.
Collapse
Affiliation(s)
- Yadan Yu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Zeng
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Liyun Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Rui Wang
- China MCC5 Group Corp.Ltd., Chengdu, China
| | - Houzhen Zhou
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Liang Zhong
- Jintang Haitian Water Co., Chengdu, 610400, China
| | - Jun Zeng
- Jintang Haitian Water Co., Chengdu, 610400, China
| | - Yangwu Chen
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Zhouliang Tan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
9
|
Park H, He H, Yan X, Liu X, Scrutton NS, Chen GQ. PHA is not just a bioplastic! Biotechnol Adv 2024; 71:108320. [PMID: 38272380 DOI: 10.1016/j.biotechadv.2024.108320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Polyhydroxyalkanoates (PHA) have evolved into versatile biopolymers, transcending their origins as mere bioplastics. This extensive review delves into the multifaceted landscape of PHA applications, shedding light on the diverse industries that have harnessed their potential. PHA has proven to be an invaluable eco-conscious option for packaging materials, finding use in films foams, paper coatings and even straws. In the textile industry, PHA offers a sustainable alternative, while its application as a carbon source for denitrification in wastewater treatment showcases its versatility in environmental remediation. In addition, PHA has made notable contributions to the medical and consumer sectors, with various roles ranging from 3D printing, tissue engineering implants, and cell growth matrices to drug delivery carriers, and cosmetic products. Through metabolic engineering efforts, PHA can be fine-tuned to align with the specific requirements of each industry, enabling the customization of material properties such as ductility, elasticity, thermal conductivity, and transparency. To unleash PHA's full potential, bridging the gap between research and commercial viability is paramount. Successful PHA production scale-up hinges on establishing direct supply chains to specific application domains, including packaging, food and beverage materials, medical devices, and agriculture. This review underscores that PHA's future rests on ongoing exploration across these industries and more, paving the way for PHA to supplant conventional plastics and foster a circular economy.
Collapse
Affiliation(s)
- Helen Park
- School of Life Sciences, Tsinghua University, Beijing 100084, China; EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC Synthetic Biology Research Centre, SYNBIOCHEM, Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester M1 7DN, UK
| | - Hongtao He
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xu Yan
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xu Liu
- PhaBuilder Biotech Co. Ltd., Shunyi District, Zhaoquan Ying, Beijing 101309, China
| | - Nigel S Scrutton
- EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC Synthetic Biology Research Centre, SYNBIOCHEM, Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester M1 7DN, UK
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing, China; MOE Key Lab of Industrial Biocatalysis, Dept Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
10
|
Wang X, Yang Y, Wan J, Chen Z, Wang N, Guo Y, Wang Y. Water quality variation and driving factors quantitatively evaluation of urban lakes during quick socioeconomic development. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118615. [PMID: 37454450 DOI: 10.1016/j.jenvman.2023.118615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/27/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Rapid urbanisation has caused a significant impact on the ecological environment of urban lakes in the world. To maintain the harmonious development of urban progress and water quality, it is essential to evaluate water quality variation and explore the driving factors quantitatively. A comprehensive evaluation method with cluster analysis and Kriging interpolation was used to explore the spatiotemporal variation in a typical urban lake in China, Chaohu Lake, from 2011 to 2020. The correlation between water quality and socioeconomic factors was evaluated by Pearson correlation analysis. Results indicated that: total phosphorus (TP) and total nitrogen (TN) were the key pollution parameters of Chaohu Lake. The pollution situation was gradually improving, however, and the improvement in chemical oxygen demand (COD) is more evident due to anthropogenic control. The spatial heterogeneity of water quality in Chaohu Lake is remarkable, and the water quality is poor in the west but better in the east. Natural attributes of lakes and external load were the main reasons for the spatial heterogeneity. The western residential areas of Chaohu Lake Basin (CLB) are concentrated, and a large amount of industrial and domestic sewage exacerbates water pollution in the west of tributaries. In contrast, the implementation of water environmental governance policies in recent years has alleviated water pollution. From 2011 to 2020, water quality has improved by 23%-35% in the west and 7%-14% in the east. This study provided a framework for quantitatively assessing water quality variation and its driving forces in urban lakes.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Hubei Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan, 430074, China
| | - Yinqun Yang
- Changjiang Water Resources Protection Institute, Wuhan, 430051, China
| | - Jing Wan
- Hubei Provincial Academy of Eco-environmental Sciences, Wuhan, 430064, PR China
| | - Zhuo Chen
- Hubei Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan, 430074, China
| | - Nan Wang
- Hubei Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan, 430074, China
| | - Yanqi Guo
- Hubei Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan, 430074, China
| | - Yonggui Wang
- Hubei Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan, 430074, China.
| |
Collapse
|
11
|
Xie YD, Zhang QH, Li Y, Jin PK, Dzakpasu M, Wang XC. A new paradigm of sewage collection in rural areas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28609-28620. [PMID: 36401008 DOI: 10.1007/s11356-022-24014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Rural sewage collection networks play extremely important roles in rural sewage treatment, and the lack of a suitable collection model makes this task difficult. Hence, there is an urgent need to develop a new method to collect and deal with rural sewage. This paper establishes a rural sewage optimal collection model (RSOCM) with critical distance (d) and sewage quota per unit area (qs) as the constraint factors. The implementation of critical distance for rural sewage collection pipeline networks was demonstrated for 38 rural areas in the Huicheng District, Huizhou City, Guangdong Province of China. The average critical distances of 22 m, 38 m, 29 m, 29 m, 41 m, and 55 m were demonstrated for Sandong Town, Ma'an Town, Luzhou Town, Ruhu Town, Hengli Town, and Shuikou Subdistrict, respectively. The qs is used to create the best possible pipe network layout, determine the appropriate treatment method, and reduce construction costs. This model can be widely applied to sewage collection in rural areas of China, where the overall sewage collection system can implement different regional strategies to maximize rural pollution control and protect the environment.
Collapse
Affiliation(s)
- Y D Xie
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Q H Zhang
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an, 710055, China.
| | - Y Li
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - P K Jin
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an, 710055, China
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi Province, China
| | - M Dzakpasu
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an, 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - X C Wang
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an, 710055, China
| |
Collapse
|
12
|
Kwon S, Zhang C, Oh J, Park K. Sustainability assessment of retrofitting alternatives for large and old wastewater treatment plants in Seoul. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:969-986. [PMID: 36853774 DOI: 10.2166/wst.2023.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Old wastewater treatment plants (WWTPs) must be upgraded to alleviate the problems associated with aging and reduce their total environmental impacts. To enhance the environmental sustainability in retrofitting large and old WWTPs, the decision-making process for selecting the most appropriate alternative is complicated. In this study, evaluation criteria were proposed to select the most sustainable alternatives for mid- to long-term retrofitting plans for a large WWTP with the treatment capacity of 1.6 M m3/d, which is initially built in 1987. An analytic hierarchy process was applied to estimate the weights of each criterion. Fourteen experts evaluated the relative importance of criteria through pairwise comparisons. In order to assess the current retrofitting opinions, three retrofitting alternatives were constructed: A focused on energy sufficiency; B expanded the bioreactor capacity and enhancement of the facility for incinerating the sludge leaving the anaerobic digestor; C emphasized the treatment of contaminants of emerging concerns (CECs). A achieved the highest score (0.623) owing to the environmental benefits associated with recycling and first flush stormwater treatment. C exhibited the second highest score (0.612) as the focus on CECs removal. B corresponded to the lowest sustainability (0.426), with the lowest scores pertaining to effective land use and first flush stormwater treatment.
Collapse
Affiliation(s)
- Soonwon Kwon
- Department of Civil Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea E-mail:
| | - Chuanli Zhang
- Department of Civil Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea E-mail:
| | - Jeill Oh
- Department of Civil Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea E-mail:
| | - Kyoohong Park
- Department of Civil Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea E-mail:
| |
Collapse
|
13
|
Ji M, Wang J, Khanal SK, Wang S, Zhang J, Liang S, Xie H, Wu H, Hu Z. Water-energy-greenhouse gas nexus of a novel high-rate activated sludge-two-stage vertical up-flow constructed wetland system for low-carbon wastewater treatment. WATER RESEARCH 2023; 229:119491. [PMID: 36535087 DOI: 10.1016/j.watres.2022.119491] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Municipal wastewater treatment which is associated with high energy consumption and excessive greenhouse gas (GHG) emissions, has been facing severe challenges toward carbon emissions. In this study, a high-rate activated sludge-two-stage vertical up-flow constructed wetland (HRAS-TVUCW) system was developed to reduce carbon emissions during municipal wastewater treatment. Through carbon management, optimized mass and energy flows were achieved, resulting in high treatment efficiency and low operational energy consumption. The carbon emission of the HRAS-TVUCW system (i.e., 0.21 kg carbon dioxide equivalent/m3 wastewater) was 4.1-folds lower than that of the conventional anaerobic/anoxic/aerobic (A2O) process. Meanwhile, the recovered energy from the HRAS-TVUCW system increased its contribution to carbon neutrality to 40.2%, 4.6-folds higher than that of the A2O process. Results of functional microbial community analysis at the genus level revealed that the controlled dissolved oxygen allocation led to distinctive microbial communities in each unit of HRAS-TVUCW system, which facilitated denitrification efficiency increase and carbon emissions reduction. Overall, the HRAS-TVUCW system could be considered as a cost-effective and sustainable low-carbon technology for municipal wastewater treatment.
Collapse
Affiliation(s)
- Mingde Ji
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Jie Wang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Saqi Wang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Jian Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| | - Shuang Liang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Huijun Xie
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Haiming Wu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Zhen Hu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
14
|
Jiang X, Shan X, Li F. Improving the Quality of Reclaimed Water via Applying Spirulina platensis to Eliminate Residual Nitrate. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2117. [PMID: 36767484 PMCID: PMC9916132 DOI: 10.3390/ijerph20032117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
The application of reclaimed water has been recognized as the key approach for alleviating water scarcity, while its low quality, such as high nitrogen content, still makes people worry about the corresponding ecological risk. Herein, we investigated the feasibility of removing residual nitrate from reclaimed water by applying Spirulina platensis. It is found that 15 mg/L total nitrogen could be decreased to 1.8 mg/L in 5 days, equaling 88.1 % removal efficiency under the optimized conditions. The deficient phosphorus at 0.5-1.0 mg/L was rapidly eliminated but was already sufficient to support nitrate removal by S. platensis. The produced ammonia is generally below 0.2 mg/L, which is much lower than the standard limit of 5 mg/L. In such a nutrient deficiency condition, S. platensis could maintain biomass growth well via photosynthesis. The variation of pigments, including chlorophyll a and carotenoids, suggested a certain degree of influences of illumination intensity and phosphorus starvation on microalgae. The background cations Cu2+ and Zn2+ exhibited significant inhibition on biomass growth and nitrate removal; thus, more attention needs to be paid to the further application of microalgae in reclaimed water. Our results demonstrated that cultivation of S. platensis should be a very promising solution to improve the quality of reclaimed water by efficiently removing nitrate and producing biomass.
Collapse
Affiliation(s)
- Xiaohua Jiang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xin Shan
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Fengmin Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
- Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| |
Collapse
|
15
|
Zhang K, Wu X, Wang W, Luo H, Chen W, Chen J. Effects of the bioelectrochemical technique on methane emission and energy recovery in constructed wetlands (CWs) and related biological mechanisms. ENVIRONMENTAL TECHNOLOGY 2023; 44:540-551. [PMID: 34542386 DOI: 10.1080/09593330.2021.1976846] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
In this study, effects of bioelectrochemical technique on methane emission and energy recovery, and related mechanism underlying microbial competition were investigated. The results showed that running MFC was beneficial in reducing CH4 emissions and promoting COD removal rates, regardless of whether the plant roots were located at the anode or the cathode. CH4 emission was significantly higher in open-circuit reactors (6.2 mg m-2 h-1) than in closed-circuit reactors (3.1 mg m-2 h-1). Plant roots at the cathode had the highest electricity generation and the lowest CH4 emissions. The highest power generation (0.49 V, 0.33 w m-3) and the lowest CH4 emissions (2.3 mg m-2 h-1) were observed in the reactors where Typha orientalis was planted with plant roots at the cathode. The role of plants in strengthening electron acceptor was greater than that of plant rhizodeposits in strengthening electron donors. Real-time quantitative PCR (q-PCR) and correlation analysis indicated that the mcrA genes and CH4 emissions were positively correlated (r = 0.98, p < 0.01), while no significant relationship between CH4 emissions and pmoA genes was observed. Illumina sequencing revealed that more abundant exoelectrogens and denitrifying bacteria were observed when plant roots were located in cathodes. Strictly acetotrophic archae (Methanosaetaceae) were likely the main electron donor competitors with exoelectrogens. The results showed that the location of both plant species and plant roots at the electrode played an important role in CH4 control and electricity generation. Therefore, it is necessary to strengthen plant configuration to reduce CH4 emissions, to promote sustainable development of wastewater treatment.
Collapse
Affiliation(s)
- Ke Zhang
- School of Environment, Harbin Institute of Technology, Harbin, People's Republic of China
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan, People's Republic of China
| | - Xiangling Wu
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan, People's Republic of China
| | - Wei Wang
- School of Environment, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Hongbing Luo
- School of Environment, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Wei Chen
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan, People's Republic of China
| | - Jia Chen
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan, People's Republic of China
| |
Collapse
|
16
|
Yang L, Meng F, Ma C, Hou D. Elucidating the spatial determinants of heavy metals pollution in different agricultural soils using geographically weighted regression. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158628. [PMID: 36087662 DOI: 10.1016/j.scitotenv.2022.158628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 08/22/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Intensive human activities caused massive socio-economic and land-use changes that directly or indirectly resulted in excessive accumulation of heavy metals in agricultural soils. The goal of our study was to explore the spatial determinants of heavy metals pollution for agricultural soil environment in Sunan economic region of China. We applied geographically weighted regressions (GWR) to measure the spatially varying relationship as well as conducted principal component analysis (PCA) to incorporate multiple variables. The results indicated that our GWR models performed well to identify the determinants of heavy metal pollution in different agricultural soils with relatively high values of local R2. Heavy metal pollution in Sunan economic region was crucially determined by accessibility, varying agricultural inputs as well as the composition and configuration of agricultural landscape, and such impacts exhibited significantly heterogeneity over space and farming practices. For the both agricultural soils, the major variance proportion for our determinants can be grouped into the first four factors (82.64 % for cash-crop soils and 73.065 for cereal-crop soils), indicating the incorporation and interactions between variables determining agricultural soil environment. Our findings yielded valuable insights into understanding the spatially varying 'human-land interrelationship' in rapidly developing areas. Methodologically, our study highlighted the applicability of geographically weighted regression to explore the spatial determinants associated with unwanted environmental outcomes in large areas.
Collapse
Affiliation(s)
- Lixiao Yang
- School of Public Administration and Law, Northeast Agricultural University, Harbin, China; College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China
| | - Fanhao Meng
- College of Geographical Science, Inner Mongolia Normal University, Hohhot, China
| | - Chen Ma
- School of Public Administration and Law, Northeast Agricultural University, Harbin, China
| | - Dawei Hou
- School of Public Administration and Law, Northeast Agricultural University, Harbin, China; College of Public Administration, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
17
|
Rufí-Salís M, Petit-Boix A, Leipold S, Villalba G, Rieradevall J, Moliné E, Gabarrell X, Carrera J, Suárez-Ojeda ME. Increasing resource circularity in wastewater treatment: Environmental implications of technological upgrades. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156422. [PMID: 35662600 DOI: 10.1016/j.scitotenv.2022.156422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
A paradigm shift is needed in wastewater treatment plants (WWTPs) to progress from traditional pollutant removal to resource recovery. However, whether this transformation produces overall environmental benefits will depend on the efficient and sustainable use of resources by emerging technologies. Given that many of these technologies are still being tested at the pilot scale, there is a lack of environmental assessments quantifying their impacts and benefits. In particular, an integrated approach to energy and nutrient recovery can elucidate the potential configurations for WWTPs. In this study, we conduct a life cycle assessment (LCA) of emergent wastewater treatment technologies aimed at increasing resource circularity in WWTPs. We focus on increasing energy self-sufficiency through biogas upgrades and a more radical circular approach aimed at nutrient recovery. Based on a case-study WWTP, we compare its current configuration with (1) implementing autotrophic nitrogen removal in the mainstream and deriving most of the organic matter for biogas production, which increases the quality and quantity of biogas available for energy production; (2) implementing struvite recovery through enhanced biological phosphorus removal (EBPR) as a radical approach to phosphorus management, offering an alternative to mineral fertilizer; and (3) a combination of both approaches. The results show that incremental changes in biogas production are insufficient for compensating for the environmental investment in infrastructure, although autotrophic nitrogen removal is beneficial for increasing the quality of the effluent. Combined phosphorus and energy recovery reduce the environmental impacts from the avoided use of fertilizers and phosphorus and the nitrogen release into water bodies. An integrated approach to resource management in WWTPs is thus desirable and creates new opportunities toward the implementation of circular strategies with low environmental impact in cities.
Collapse
Affiliation(s)
- Martí Rufí-Salís
- Sostenipra, Institute of Environmental Science and Technology (ICTA), Unidad de excelencia "María de Maeztu" (MDM-2015-0552), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain; Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Escola d'Enginyeria, c/de les Sitges s/n, Edifici Q, 08193 Bellaterra, Barcelona, Spain
| | - Anna Petit-Boix
- Sostenipra, Institute of Environmental Science and Technology (ICTA), Unidad de excelencia "María de Maeztu" (MDM-2015-0552), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain
| | - Sina Leipold
- Department of Environmental Politics, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318 Leipzig, Germany; Chair of Environmental Politics, University of Jena, Bachstr. 18k, 07743 Jena, Germany
| | - Gara Villalba
- Sostenipra, Institute of Environmental Science and Technology (ICTA), Unidad de excelencia "María de Maeztu" (MDM-2015-0552), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain; Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Escola d'Enginyeria, c/de les Sitges s/n, Edifici Q, 08193 Bellaterra, Barcelona, Spain
| | - Joan Rieradevall
- Sostenipra, Institute of Environmental Science and Technology (ICTA), Unidad de excelencia "María de Maeztu" (MDM-2015-0552), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain; Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Escola d'Enginyeria, c/de les Sitges s/n, Edifici Q, 08193 Bellaterra, Barcelona, Spain
| | - Eduard Moliné
- Depuración de Aguas del Mediterráneo (DAM), Guglielmo Marconi, 11 piso 2°, 10 despacho 19, Parque Tecnológico, 46980 Paterna, Valencia, Spain
| | - Xavier Gabarrell
- Sostenipra, Institute of Environmental Science and Technology (ICTA), Unidad de excelencia "María de Maeztu" (MDM-2015-0552), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain; Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Escola d'Enginyeria, c/de les Sitges s/n, Edifici Q, 08193 Bellaterra, Barcelona, Spain
| | - Julián Carrera
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Escola d'Enginyeria, c/de les Sitges s/n, Edifici Q, 08193 Bellaterra, Barcelona, Spain
| | - María Eugenia Suárez-Ojeda
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Escola d'Enginyeria, c/de les Sitges s/n, Edifici Q, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
18
|
Neth M, Mattsson A, I'Ons D, Tumlin S, Arnell M, Blom L, Wilén BM, Modin O. A collaborative planning process to develop future scenarios for wastewater systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115202. [PMID: 35550956 DOI: 10.1016/j.jenvman.2022.115202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/28/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Wastewater infrastructure has a long lifetime and is subject to changing conditions and demands. When plans are made to upgrade or build new infrastructure, transdisciplinary planning processes and a robust analysis of future conditions are needed to make sustainable choices. Here, we provide a stepwise collaborative planning process in which future scenarios are developed together with local stakeholders and expert groups. The process was implemented at one of the largest wastewater treatment plants (WWTPs) in Scandinavia. With a combination of workshops and the use of a web-based digital tool, future scenarios including flows, pollutant loads, and treatment requirements could be created. Furthermore, sustainability prioritizations affecting the WWTP, were identified. The future scenarios developed for the WWTP in the case study, predict stricter and new regulations, constant or lower future loads and ambiguous future flows. The highest ranked sustainability priority was low resource and energy consumption together with low CO2 footprint. The quantified future scenarios developed in the planning process were used as input to a process model to show the consequences they would have on the WWTP in the case study. Applying this collaborative process revealed future scenarios with many, sometimes conflicting, expectations on future WWTPs. It also highlighted needs for improvements of both the collection system and the WWTP.
Collapse
Affiliation(s)
- Maria Neth
- Gryaab AB, Box 8984, 402 74, Göteborg, Sweden; Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-41296, Göteborg, Sweden.
| | - Ann Mattsson
- Gryaab AB, Box 8984, 402 74, Göteborg, Sweden; Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-41296, Göteborg, Sweden
| | - David I'Ons
- Gryaab AB, Box 8984, 402 74, Göteborg, Sweden
| | | | - Magnus Arnell
- Unit of Urban Water Management, RISE Research Institutes of Sweden, Gjuterigatan 1D, SE-58273, Linköping, Sweden; Division of Industrial Electrical Engineering and Automation (IEA), Department of Biomedical Engineering, Lund University, PO Box 118, SE-22100, Lund, Sweden
| | - Lena Blom
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-41296, Göteborg, Sweden; City of Gothenburg, Department of Sustainable Waste and Water, Box 123, SE-424 23, Angered, Sweden
| | - Britt-Marie Wilén
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-41296, Göteborg, Sweden
| | - Oskar Modin
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-41296, Göteborg, Sweden
| |
Collapse
|
19
|
Xiao H, Yan W, Zhao Z, Tang Y, Li Y, Yang Q, Luo S, Jiang B. Chlorate induced false reduction in chemical oxygen demand (COD) based on standard dichromate method: Countermeasure and mechanism. WATER RESEARCH 2022; 221:118732. [PMID: 35716411 DOI: 10.1016/j.watres.2022.118732] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/30/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Deliberate addition of mildly oxidative chlorate (ClO3-), so-called "chemical oxygen demand (COD) remover", into wastewater in China or electrochemical production of ClO3- from Cl- induces the false COD reduction, which would bring about false appearance of effluents meeting the COD discharge standards. In this study, an easy sulfite-based reduction method was developed for the first time to remove ClO3- from the water samples before COD determination to eliminate this interference of ClO3-. In this reaction system, keeping the reaction temperature of sulfite reducing ClO3- at 60 °C was crucial for fast ClO3- removal rate, fixed molar [sulfite]ini/[chlorate]ini ratio value and the synchronous exhaustion of sulfite and ClO3-, which were of great significance for the real application of this improved COD determination method. The ClO3- interference on COD determination could be successfully eliminated after 20 min reduction of ClO3- by sulfite at pHini 4.0∼6.0 with the molar [sulfite]ini/[chlorate]ini ratio value in the range of 5∼6 when concentration of ClO3- was below 5 mM. Despite of the involvement of SO4·- in the sulfite reducing ClO3- system, the degradation of organic matters by SO4·- could be greatly impeded due to the lessened dissolved oxygen for SO4·- production at high reaction temperature and the scavenging of SO4·- by sulfite. In this reaction system, ClO2, ClO2- and ClO- were also generated and could be further reduced by sulfite stoichiometrically via oxygen transfer process with Cl- as the final product. In general, this study pioneered an effective, fast and convenient method for COD determination of the ClO3--laden wastewaters and evaluating the real electrochemical wastewater treatment performance in terms of COD removal.
Collapse
Affiliation(s)
- Huiji Xiao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Wei Yan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Zekun Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Yizhen Tang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Yifan Li
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Qipeng Yang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Siyi Luo
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Bo Jiang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China.
| |
Collapse
|
20
|
Recent Advances and Future Perspectives of Polymer-Based Magnetic Nanomaterials for Detection and Removal of Radionuclides: A review. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Cyanophycin Granule Polypeptide: a Neglected High Value-Added Biopolymer, Synthesized in Activated Sludge on a Large Scale. Appl Environ Microbiol 2022; 88:e0074222. [PMID: 35862662 PMCID: PMC9317870 DOI: 10.1128/aem.00742-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recovery of microbial synthetic polymers with high economic value and market demand in activated sludge has attracted extensive attention. This work analyzed the synthesis of cyanophycin granule peptide (CGP) in activated sludge and its adsorption capacity for heavy metals and dyes. The distribution and expression of synthetic genes for eight biopolymers in two wastewater treatment plants (WWTPs) were analyzed by metagenomics and metatranscriptomics. The results indicate that the abundance and expression level of CGP synthase (cphA) are similar to those of polyhydroxyalkanoate polymerase, implying high synthesis of CGP in activated sludges. CGP in activated sludge is mainly polymerized from aspartic acid and arginine, and its secondary structure is mainly β-sheet. The crude yields of CGP are as high as 104 ± 26 and 76 ± 13 mg/g dry sludge in winter and in summer, respectively, comparable to those of polyhydroxyalkanoate and alginate. CGP has a stronger adsorption capacity for anionic pollutants (Cr (VI) and methyl orange) than for cationic pollutants because it is rich in guanidine groups. This study highlights prospects for recovery and application of CGP from WWTPs. IMPORTANCE The conversion of organic pollutants into bioresources by activated sludge can reduce the carbon dioxide emission of wastewater treatment plants. Identification of new high value-added biopolymers produced by activated sludge is beneficial to recover bioresources. Cyanophycin granule polypeptide (CGP), first discovered in cyanobacteria, has unique chemical and material properties suitable for industrial food, medicine, cosmetics, water treatment, and agriculture applications. Here, we revealed for the first time that activated sludge has a remarkable ability to produce CGP. These findings could further facilitate the conversion of wastewater treatment plants into resource recycling plants.
Collapse
|
22
|
Büttner O, Jawitz JW, Birk S, Borchardt D. Why wastewater treatment fails to protect stream ecosystems in Europe. WATER RESEARCH 2022; 217:118382. [PMID: 35413560 DOI: 10.1016/j.watres.2022.118382] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/16/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
There is significant debate about why less than half of European rivers and streams are in good ecological status, despite decades of intense regulatory efforts. Of the multiple stressors that are recognized as potential contributors to stream degradation, we focus on discharge from 26,500 European wastewater treatment plants (WWTPs). We tested the hypothesis that stream ecological status degradation across Europe is related to the local intensity of wastewater discharge, with an expected stream-order (ω) dependence based on the scaling laws that govern receiving stream networks. We found that ecological status in streams (ω≤3) declined consistently with increasing urban wastewater discharge fraction of stream flow (UDF) across river types and basins. In contrast, ecological status in larger rivers (ω≥4) was not related to UDF. From a continental-scale logistic regression model (accuracy 86%) we identified an ecologically critical threshold UDF = 6.5% ± 0.5. This is exceeded by more than one third of WWTPs in Europe, mostly discharging into smaller streams. Our results suggest that new receiving water-specific strategies for wastewater management are needed to achieve good ecological status in smaller streams.
Collapse
Affiliation(s)
- Olaf Büttner
- Department Aquatic Ecosystems Analysis and Management, Helmholtz Centre for Environmental Research-UFZ, Germany.
| | - James W Jawitz
- Soil and Water Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Sebastian Birk
- Facultyof Biology, Aquatic Ecology, University of Duisburg-Essen, Essen, Germany
| | - Dietrich Borchardt
- Department Aquatic Ecosystems Analysis and Management, Helmholtz Centre for Environmental Research-UFZ, Germany
| |
Collapse
|
23
|
Huang K, Dai L, Yu L, Fan Y, Huang G, Xiao Y, Wu Q. Planning regional-scale water-energy-food nexus system management under uncertainty: An inexact fractional programming method. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 247:103985. [PMID: 35286951 DOI: 10.1016/j.jconhyd.2022.103985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 02/20/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
In this study, an inexact fractional programming method is employed for planning the regional-scale water-energy-food nexus (WEFN) system. The IFP cannot only deal with uncertainties expressed as interval parameters, but also handle conflicts among multiple decision stakeholders. The IFP approach is then applied to planning the WEFN system of Henan Province, China. An IFP-WEFN model has been established under consideration of various restrictions related to water and energy availability, as well as food demand. Solutions of the planting areas for different crops in different periods have been generated. The results suggested that there would be a significant increase for vegetable cultivation with an increasing rate of 24.4% and 30% respectively for the conservative and advantageous conditions, followed by the fruit cultivation. In comparison, the planting area of cotton would be decreased with a decreasing rate of 21.2%, and there would also be an explicit decrease for rice cultivation. These results can help generate a desired planting scheme in order to achieve a maximized unit benefit with respect to the water utilization. Comparison between the IFP-WEFN model and the ILP-WEFN model indicates that, even though a slightly lower benefit is obtained from IFP-WENF model, it can result in a higher unit benefit than the planting scheme from ILP-WEFN model. Consequently, the IFP-WEFN model can help decision-makers identify the sustainable agricultural water resources management schemes with a priority of water utilization efficiency.
Collapse
Affiliation(s)
- Kai Huang
- Faculty of Engineering and Applied Science, University of Regina, Regina S4S0A2, SK, Canada
| | - Liming Dai
- Faculty of Engineering and Applied Science, University of Regina, Regina S4S0A2, SK, Canada.
| | - Lei Yu
- School of Water Conservancy Science & Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yurui Fan
- Department of Civil and Environmental Engineering, Brunel University London, Uxbridge UB8 3PH, United Kingdom.
| | - Guohe Huang
- Center for Energy, Environment and Ecology Research, UR-BNU, Beijing Normal University, Beijing, China
| | - Yao Xiao
- School of Water Conservancy Science & Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Qingsong Wu
- School of Water Conservancy Science & Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
24
|
An Analysis of Agricultural Systems Modelling Approaches and Examples to Support Future Policy Development under Disruptive Changes in New Zealand. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Agricultural systems have entered a period of significant disruption due to impacts from change drivers, increasingly stringent environmental regulations and the need to reduce unwanted discharges, and emerging technologies and biotechnologies. Governments and industries are developing strategies to respond to the risks and opportunities associated with these disruptors. Modelling is a useful tool for system conceptualisation, understanding, and scenario testing. Today, New Zealand and other nations need integrated modelling tools at the national scale to help industries and stakeholders plan for future disruptive changes. In this paper, following a scoping review process, we analyse modelling approaches and available agricultural systems’ model examples per thematic applications at the regional to national scale to define the best options for the national policy development. Each modelling approach has specificities, such as stakeholder engagement capacity, complex systems reproduction, predictive or prospective scenario testing, and users should consider coupling approaches for greater added value. The efficiency of spatial decision support tools working with a system dynamics approach can help holistically in stakeholders’ participation and understanding, and for improving land planning and policy. This model combination appears to be the most appropriate for the New Zealand national context.
Collapse
|
25
|
Bryant C, Coats ER. Integrating dairy manure for enhanced resource recovery at a WRRF: Environmental life cycle and pilot-scale analyses. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2034-2050. [PMID: 33877720 DOI: 10.1002/wer.1574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
The Twin Falls, Idaho wastewater treatment plant (WWTP), currently operates solely to achieve regulatory permit compliance. Research was conducted to evaluate conversion of the WWTP to a water resource recovery facility (WRRF) and to assess the WRRF environmental sustainability; process configurations were evaluated to produce five resources-reclaimed water, biosolids, struvite, biogas, and bioplastics (polyhydroxyalkanoates, PHA). PHA production occurred using fermented dairy manure. State-of-the-art biokinetic modeling, performed using Dynamita's SUMO process model, was coupled with environmental life cycle assessment to quantify environmental sustainability. Results indicate that electricity production via combined heat and power (CHP) was most important in achieving environmental sustainability; energy offset ranged from 43% to 60%, thereby reducing demand for external fossil fuel-based energy. While struvite production helps maintain a resilient enhanced biological phosphorus removal (EBPR) process, MgO2 production exhibits negative environmental impacts; integration with CHP negates the adverse consequences. Integrating dairy manure to produce bioplastics diversifies the resource recovery portfolio while maintaining WRRF environmental sustainability; pilot-scale evaluations demonstrated that WRRF effluent quality was not affected by the addition of effluent from PHA production. Collectively, results show that a WRRF integrating dairy manure can yield a diverse portfolio of products while operating in an environmentally sustainable manner. PRACTITIONER POINTS: Wastewater carbon recovery via anaerobic digestion with combined heat/power production significantly reduces water resource recovery facility (WRRF) environmental emissions. Wastewater phosphorus recovery is of value; however, struvite production exhibits negative environmental impacts due to MgO2 production emissions. Bioplastics production on imported organic-rich agri-food waste can diversify the WRRF portfolio. Dairy manure can be successfully integrated into a WRRF for bioplastics production without compromising WRRF performance. Diversifying the WRRF products portfolio is a strategy to maximize resource recovery from wastewater while concurrently achieving environmental sustainability.
Collapse
Affiliation(s)
| | - Erik R Coats
- Department of Civil and Environmental Engineering, University of Idaho, Moscow, ID, USA
| |
Collapse
|
26
|
Application of constructed wetlands in treating rural sewage from source separation with high-influent nitrogen load: a review. World J Microbiol Biotechnol 2021; 37:138. [PMID: 34278536 DOI: 10.1007/s11274-021-03105-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
Constructed wetlands (CWs) are characterized by low construction cost, convenient maintenance and management, and environmentally friendly features. They have emerged as promising technologies for decentralized sewage treatment across rural areas. Source separation of black water and gray water can facilitate sewage recycling and reuse of reclaimed water, reduce the size of treatment facilities, and lower infrastructure investment and operating cost. This is consistent with the concept of sustainable development. However, black water contains high concentrations of ammonia nitrogen, and the denitrification capacity of CWs is not excellent due to insufficient carbon source. Therefore, application of CWs for black water treatment faces challenges. This article provides a review on the progress in CWs for treatment of the sewage with high-influent nitrogen load, with emphasis on the commonly used strengthening means and the role of plants in nitrogen removal via CWs. The current issues of rural sewage treatment with high-influent nitrogen load by CWs are also assessed. Finally, the challenges and perspectives are discussed for the optimization of CWs-enhanced denitrification strategies.
Collapse
|
27
|
Fan Z, Zhou S, Mao H, Li M, Xue A, Zhao Y, Xing W. A novel ceramic microfiltration membrane fabricated by anthurium andraeanum-like attapulgite nanofibers for high-efficiency oil-in-water emulsions separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119291] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Zyoud SH, Zyoud AH. Mapping environmental impact assessment research landscapes in the Arab world using visualization and bibliometric techniques. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:22179-22202. [PMID: 33813693 DOI: 10.1007/s11356-021-13696-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 03/24/2021] [Indexed: 01/10/2023]
Abstract
Interests and concerns on environmental issues have attracted much attention over the past few decades. This is in harmony with the growing understanding of environmental impacts associated with human activities and their role in degrading ecosystems. In line with these concerns, considerable advances in science and technology to assess, mitigate, or lessen these adverse impacts have emerged (i.e., environmental impact assessment (EIA) methodologies). The involvement of EIA in sustainable development has become a prevalent topic in research in either developed and developing countries. The present work investigated the research status, development trends, and hotspots of EIA in a region with massive environmental challenges; the Arab world. Bibliometric analysis and visualization mapping were utilized with an objective of revealing and evaluating the developments in knowledge on EIA from the Arab world. A sum of 595 documents was the productivity of the Arab world on EIA (2.1% of total global productivity). Most of the studies were performed by scholars in Egypt (143 documents; 24.0%), followed by Saudi Arabia (96 documents; 16.1%), and Tunisia (68 documents; 11.4%). France, the USA, and the UK were, respectively, the most collaborated countries with the Arab world on EIA. Most of the publications on EIA were in prestigious journals in relation to environmental sciences. King Abdulaziz University, Saudi Arabia and University of Kuwait were the most productive institutions (24 documents/institution). Topics in relation to assessing different environmental impacts on the quality and quantity of water will continue to be vital themes of research. While, the utilization of remote sensing, geographic information systems, risk assessment, life cycle assessment, bioaccumulation, and biomarkers techniques in assessing environmental impacts will continue to be dominant as efficient tools in conducting EIA related research. The outcomes displayed, in general, a rapidly and steadily rising interests on EIA. However, the development of regional experience, increasing of funds and advancing of competencies will further promote research activities on EIA.
Collapse
Affiliation(s)
- Shaher H Zyoud
- Department of Building Engineering and Environment, Palestine Technical University (Kadoorie), Tulkarem, Palestine.
| | - Ahed H Zyoud
- Department of Chemistry, College of Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
29
|
Zou M, Yin M, Yuan Y, Wang D, Xiong W, Yang X, Zhou Y, Chen H. Triclosan facilitates the recovery of volatile fatty acids from waste activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142336. [PMID: 33254905 DOI: 10.1016/j.scitotenv.2020.142336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 06/12/2023]
Abstract
The emergence of triclosan (TCS) in the environment has caused extensive concern, but its role in waste activated sludge (WAS) anaerobic fermentation (AF) is still uncertain. This work investigated the impact of TCS on volatile fatty acids (VFAs) recycling from WAS. The results showed that TCS of 200 mg/kg TSS increased the maximum VFA accumulation from 7284 to 15,083 mg COD/L. The increase in total VFA production is attributed to the massive increase in acetic acid. Mechanism exploration showed that TCS promotes WAS solubilization by facilitating cell breakage and extracellular polymeric substances disruption, and stimulates AF by enhancing the activity of key enzymes among all stages. TCS promotes acidification stronger than methanogenesis, which makes VFA production faster than consumption, leading to increased VFA accumulation. These findings provide novel insights for revealing the role of TCS in WAS resource recovery, and offer thoughts for the selective production of final recycling products of TCS-containing WAS.
Collapse
Affiliation(s)
- Mei Zou
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Mengyu Yin
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Yayi Yuan
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Weiping Xiong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Xiao Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Hongbo Chen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
30
|
Ye X, Chen M, Wang W, Shen J, Wu J, Huang W, Xiao L, Lin X, Ye ZL, Chen S. Dissolving the high-cost with acidity: A happy encounter between fluidized struvite crystallization and wastewater from activated carbon manufacture. WATER RESEARCH 2021; 188:116521. [PMID: 33099265 DOI: 10.1016/j.watres.2020.116521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Production of wood-based activated carbon (WAC) generates large volume of highly acidic and phosphate-rich wastewater. Currently, the routine treatment (i.e. lime precipitation) creates significant secondary pollution, leading to extra economic and environmental burdens. Here, by exploiting the strong acidity of WAC wastewater, we successfully demonstrate fluidized struvite crystallization as a low-cost treatment alternative. Based on a 12 m3/d on-site pilot-scale system, four different fluidized struvite crystallization scenarios are evaluated from technical, economic, and environmental perspectives. The results show that using MgO with MgCl2 supplement saves 42.8% of the reagent cost when treating phosphate-rich wastewater (i.e. P = 3125.2 mg/L), and also maintains ideal P removal rate and struvite product purity. Meanwhile, the internal circulation mode exhibits higher P recovery (99.2%) than the external mode (55.3%-89.3%), while also demonstrates superior economic and environmental benefit because of less chemical consumption. In addition, the struvite morphology can be turned between pellets with strong crushing strength (external mode) to powder (internal mode). By Life cycle cost (LCC) analysis, we find that, on a treatment scale of 500 m3/d, struvite-based technology saves up to 31.33 million Chinese Yuan (CYN) during a 20-year lifespan, with relative payback period of 2.60 year. The technical, economic, and environmental assessments confirm that the struvite technology is a promising alternative in solving the bottleneck of WAC wastewater treatment.
Collapse
Affiliation(s)
- Xin Ye
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Minquan Chen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Wei Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, China; Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Science, Xiamen 361021, China.
| | - Junhuang Shen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Junbin Wu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Wei Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Lishan Xiao
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xiangyu Lin
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zhi-Long Ye
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Shaohua Chen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
31
|
Hu Y, Zang Y, Yang Y, Duan A, Wang XC, Ngo HH, Li YY, Du R. Zero-valent iron addition in anaerobic dynamic membrane bioreactors for preconcentrated wastewater treatment: Performance and impact. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140687. [PMID: 32721758 DOI: 10.1016/j.scitotenv.2020.140687] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Wastewater preconcentration to capture abundant organics is promising for facilitating subsequent anaerobic digestion (AD) to recover bioenergy, however research efforts are still needed to verify the effectiveness of such an emerging strategy as carbon capture plus AD. Therefore, lab-scale anaerobic dynamic membrane bioreactors (AnDMBRs) without and with the addition of zero-valent iron (ZVI) (i.e., AnDMBR1 versus AnDMBR2) were developed for preconcentrated domestic wastewater (PDW) treatment, and the impact of ZVI addition on process performance and associated mechanisms were investigated. The stepwise addition of ZVI from 2 to 4 to 6 g/L improved the treatment performance as COD removal slightly increased and TP removal and methane production were enhanced by 53.3%-62.9% and 22.6%-31.3%, respectively, in consecutive operational phases. However, the average increasing rate of the transmembrane pressure (TMP) in AnDMBR2 (0.18 kPa/d) was obviously higher than that in AnDMBR1 (0.05 kPa/d), indicating an unfavorable impact of dosing ZVI on the dynamic membrane (DM) filtration performance. ZVI that has transformed to iron ions (mainly Fe2+) can behave as a coagulant, electron donor or inorganic foulant, thus enabling the excellent removal of dissolved phosphorous, enhancing the enrichment and activities of specific methanogens and causing the formation of a compact DM layer. Morphological, componential, and microbial community analyses provided new insights into the functional mechanisms of ZVI added to membrane-assisted anaerobic digesters, indicating that ZVI has the potential to improve bioenergy production and resource recovery, while optimizing the ZVI dosage should be considered to alleviate membrane fouling.
Collapse
Affiliation(s)
- Yisong Hu
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Department of Civil and Environmental Engineering, Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| | - Ying Zang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Yuan Yang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Ao Duan
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Xiaochang C Wang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, PR China
| | - Huu Hao Ngo
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, PR China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Runda Du
- Department of Civil and Environmental Engineering, Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| |
Collapse
|
32
|
Trimmer JT, Miller DC, Byrne DM, Lohman HAC, Banadda N, Baylis K, Cook SM, Cusick RD, Jjuuko F, Margenot AJ, Zerai A, Guest JS. Re-Envisioning Sanitation As a Human-Derived Resource System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10446-10459. [PMID: 32867485 DOI: 10.1021/acs.est.0c03318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Sanitation remains a global challenge, both in terms of access to toilet facilities and resource intensity (e.g., energy consumption) of waste treatment. Overcoming barriers to universal sanitation coverage and sustainable resource management requires approaches that manage bodily excreta within coupled human and natural systems. In recent years, numerous analytical methods have been developed to understand cross-disciplinary constraints, opportunities, and trade-offs around sanitation and resource recovery. However, without a shared language or conceptual framework, efforts from individual disciplines or geographic contexts may remain isolated, preventing the accumulation of generalized knowledge. Here, we develop a version of the social-ecological systems framework modified for the specific characteristics of bodily excreta. This framework offers a shared vision for sanitation as a human-derived resource system, where people are part of the resource cycle. Through sanitation technologies and management strategies, resources including water, organics, and nutrients accumulate, transform, and impact human experiences and natural environments. Within the framework, we establish a multitiered lexicon of variables, characterized by breadth and depth, to support harmonized understanding and development of models and analytical approaches. This framework's refinement and use will guide interdisciplinary study around sanitation to identify guiding principles for sanitation that advance sustainable development at the nature-society interface.
Collapse
Affiliation(s)
- John T Trimmer
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 N. Mathews Ave., Urbana, Illinois 61801, United States
| | - Daniel C Miller
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, 1102 S. Goodwin Ave., Urbana, Illinois 61801, United States
| | - Diana M Byrne
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 N. Mathews Ave., Urbana, Illinois 61801, United States
| | - Hannah A C Lohman
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 N. Mathews Ave., Urbana, Illinois 61801, United States
| | - Noble Banadda
- Department of Agricultural & Biosystems Engineering, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Katherine Baylis
- Department of Agricultural & Consumer Economics, University of Illinois at Urbana-Champaign, 1301 W. Gregory Dr., Urbana, Illinois 61801, United States
| | - Sherri M Cook
- Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, UCB 428, Boulder, Colorado 80309, United States
| | - Roland D Cusick
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 N. Mathews Ave., Urbana, Illinois 61801, United States
| | - Fulgensio Jjuuko
- Community Integrated Development Initiatives, P.O. Box 692, Kampala, Uganda
| | - Andrew J Margenot
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 S. Dorner Dr., Urbana, Illinois 61801, United States
| | - Assata Zerai
- Department of Sociology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Jeremy S Guest
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 N. Mathews Ave., Urbana, Illinois 61801, United States
| |
Collapse
|
33
|
Chrispim MC, Scholz M, Nolasco MA. A framework for resource recovery from wastewater treatment plants in megacities of developing countries. ENVIRONMENTAL RESEARCH 2020; 188:109745. [PMID: 32521307 DOI: 10.1016/j.envres.2020.109745] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/25/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
In developing countries, there is often a lack of a comprehensive data set that supports the development of coherent policies on resource recovery from wastewater treatment. This paper aims to contribute to the elaboration of resource recovery projects by providing accurate and updated data from wastewater treatment plants such as those located in the region of the Macrometropolis of Sao Paulo. The authors discuss possibilities of improvement of resource recovery for this illustrative example. Comprehensive analyses were performed based on data from 143 municipal wastewater treatment plants to understand the situation regarding resource recovery implementation in this region. The results show that just 26% of the plants perform at least one resource recovery practice. The predominant resource recovery practice is internal water reuse, and recovery is concentrated more in large plants than in medium and small ones. The sludge is disposed in landfills except for three plants, which perform sludge recycling for compost. Some plant managers reported interest in recovering energy from biogas, in expanding water reuse and in recovering sludge for fertilizer production or for building materials. Several aspects that have been regarded as relevant to the implementation of resource recovery processes in previous literature are discussed, such as the size of the plant, related legislation as well as treatment technologies and configurations. Finally, the authors propose a generic framework with several steps that can help to achieve resource recovery implementation. Therefore, the results can provide support for planning of resource recovery projects for large cities in developing countries.
Collapse
Affiliation(s)
- Mariana Cardoso Chrispim
- Division of Water Resources Engineering, Faculty of Engineering, Lund University, John Ericssons Väg 1, P.O. Box 118, 22100, Lund, Sweden; School of Arts, Sciences and Humanities, University of Sao Paulo, Arlindo Bettio Avenue 1000, Sao Paulo, Brazil.
| | - Miklas Scholz
- Division of Water Resources Engineering, Faculty of Engineering, Lund University, John Ericssons Väg 1, P.O. Box 118, 22100, Lund, Sweden; Department of Civil Engineering Science, School of Civil Engineering and the Built Environment, University of Johannesburg, Kingsway Campus, PO Box 524, Aukland Park, 2006, Johannesburg, South Africa; Civil Engineering Research Group, School of Science, Engineering and Environment, The University of Salford, Newton Building, Peel Park Campus, Salford, M5 4WT, UK.
| | - Marcelo Antunes Nolasco
- School of Arts, Sciences and Humanities, University of Sao Paulo, Arlindo Bettio Avenue 1000, Sao Paulo, Brazil.
| |
Collapse
|
34
|
Zang Y, Yang Y, Hu Y, Ngo HH, Wang XC, Li YY. Zero-valent iron enhanced anaerobic digestion of pre-concentrated domestic wastewater for bioenergy recovery: Characteristics and mechanisms. BIORESOURCE TECHNOLOGY 2020; 310:123441. [PMID: 32361204 DOI: 10.1016/j.biortech.2020.123441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Pre-concentrated domestic wastewater (PDWW) rich in organic matters can be a suitable substrate for anaerobic digestion (AD) towards holistic resource and bioenergy recovery. Micron zero-valent iron (ZVI) was applied in designed batch experiments during anaerobic treatment of PDWW to verify its roles in performance enhancement and associated mechanisms. In the selected range of food to microorganism (F/M) ratio, 0.5 gCOD/gMLVSS was most appropriate as biomethane production potential (BMP) of 0.275 L CH4/gCOD was obtained. The optimal ZVI dosage at fixed F/M of 0.5 was 6 g/L, further enhancing the BMP by 15.2%. Furthermore, ZVI improved the hydrolysis process (producing more soluble organics) and regulated acidification process (affecting volatile fatty acids distribution). No obvious impact on acetoclastic and hydrogenotrophic methanogenesis processes was noted with ZVI addition. ZVI based AD of the PDWW is promising for promoting the practical application of advanced domestic wastewater treatment strategy (pre-concentration plus anaerobic digestion).
Collapse
Affiliation(s)
- Ying Zang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Yuan Yang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Yisong Hu
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, PR China; Department of Civil and Environmental Engineering, Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| | - Huu Hao Ngo
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, PR China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Xiaochang C Wang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, PR China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| |
Collapse
|
35
|
Ji B, Zhang M, Gu J, Ma Y, Liu Y. A self-sustaining synergetic microalgal-bacterial granular sludge process towards energy-efficient and environmentally sustainable municipal wastewater treatment. WATER RESEARCH 2020; 179:115884. [PMID: 32388049 DOI: 10.1016/j.watres.2020.115884] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/11/2020] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
Globally increasing concerns have been raised on the high energy consumption and greenhouse gas emissions in conventional municipal wastewater treatment processes over the past decades. In this study, a self-sustaining synergetic microalgal-bacterial granular sludge process was thus developed to address these challenges. The results showed that the microalgal-bacterial granular sludge process was capable of removing 92.69%, 96.84% and 87.16% of influent organics, ammonia and phosphorus under non-aeration conditions over a short time of 6 h. The effluent could meet the increasingly stringent discharge standards in many countries worldwide. A tight synergetic interrelationship effect between microalgae and bacteria in granules was essential for such excellent process performance. The stoichiometric and functional genes analyses further revealed that most of organic matter and nutrients were removed through microalgal and bacterial assimilations. Moreover, it was found that there existed a desirable distribution of functional species of microalgae and bacteria in microalgal-bacterial granules, which appeared to be essential for the self-sustaining synergetic reactions and stability of microalgal-bacterial granules. Consequently, this work may offer a promising engineering alternative with great potential to achieve energy-efficient and environmentally sustainable municipal wastewater treatment.
Collapse
Affiliation(s)
- Bin Ji
- Department of Water and Wastewater Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China; Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Meng Zhang
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Jun Gu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Yingqun Ma
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Yu Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| |
Collapse
|
36
|
Jiang LM, Chen L, Zhou Z, Sun D, Li Y, Zhang M, Liu Y, Du S, Chen G, Yao J. Fouling characterization and aeration performance recovery of fine-pore diffusers operated for 10 years in a full-scale wastewater treatment plant. BIORESOURCE TECHNOLOGY 2020; 307:123197. [PMID: 32208343 DOI: 10.1016/j.biortech.2020.123197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/12/2020] [Accepted: 03/15/2020] [Indexed: 06/10/2023]
Abstract
Fouling characterization and aeration performance recovery of fine-pore diffusers operated for 10 years in a full-scale wastewater treatment plant were investigated to elucidate fouling mechanisms and develop cleaning strategy. The performance decline of diffusers was observed with dynamic wet pressure increased by 3.2 times and standard oxygen transfer efficiency dropped to 73%, which contributed to 15.0% increase in total energy consumption. Oxygen-affinity, filamentous and extracellular polymeric substances secreting bacteria tended to accumulate on the diffuser surface. External (mainly biofilm growth), internal (organic and inorganic matters) and irrecoverable (mainly material aging) foulants accounted for 34.1%, 45.4% and 20.1% of total fouling, respectively. HCl cleaning failed to restore aeration efficiency because it eliminated structural support formed by inorganics, leaving organic foulants broken into smaller fragments and distributed more dispersed. NaClO showed better cleaning efficiency by effectively removing organic foulants. Sequential cleaning by NaClO and HCl, which achieved the best recovery, was recommended.
Collapse
Affiliation(s)
- Lu-Man Jiang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Liuyu Chen
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhen Zhou
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Dongqi Sun
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yunhui Li
- Shanghai Chengtou Wastewater Treatment Co., Ltd, Shanghai 201203, China
| | - Ming Zhang
- Shanghai Chengtou Wastewater Treatment Co., Ltd, Shanghai 201203, China
| | - Yuan Liu
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Silu Du
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Guang Chen
- Shanghai Chengtou Wastewater Treatment Co., Ltd, Shanghai 201203, China
| | - Jie Yao
- Shanghai Chengtou Wastewater Treatment Co., Ltd, Shanghai 201203, China
| |
Collapse
|
37
|
Improvement in municipal wastewater treatment alters lake nitrogen to phosphorus ratios in populated regions. Proc Natl Acad Sci U S A 2020; 117:11566-11572. [PMID: 32385161 DOI: 10.1073/pnas.1920759117] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Large-scale and rapid improvement in wastewater treatment is common practice in developing countries, yet this influence on nutrient regimes in receiving waterbodies is rarely examined at broad spatial and temporal scales. Here, we present a study linking decadal nutrient monitoring data in lakes with the corresponding estimates of five major anthropogenic nutrient discharges in their surrounding watersheds over time. Within a continuous monitoring dataset covering the period 2008 to 2017, we find that due to different rates of change in TN and TP concentrations, 24 of 46 lakes, mostly located in China's populated regions, showed increasing TN/TP mass ratios; only 3 lakes showed a decrease. Quantitative relationships between in-lake nutrient concentrations (and their ratios) and anthropogenic nutrient discharges in the surrounding watersheds indicate that increase of lake TN/TP ratios is associated with the rapid improvement in municipal wastewater treatment. Due to the higher removal efficiency of TP compared with TN, TN/TP mass ratios in total municipal wastewater discharge have continued to increase from a median of 10.7 (95% confidence interval, 7.6 to 15.1) in 2008 to 17.7 (95% confidence interval, 13.2 to 27.2) in 2017. Improving municipal wastewater collection and treatment worldwide is an important target within the 17 sustainable development goals set by the United Nations. Given potential ecological impacts on biodiversity and ecosystem function of altered nutrient ratios in wastewater discharge, our results suggest that long-term strategies for domestic wastewater management should not merely focus on total reductions of nutrient discharges but also consider their stoichiometric balance.
Collapse
|
38
|
Ponomarev AV, Ershov BG. The Green Method in Water Management: Electron Beam Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5331-5344. [PMID: 32267147 DOI: 10.1021/acs.est.0c00545] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
During the prebiotic era, radiolytic transformations in the oceans played a key role in purifying water from toxic impurities and, thus, played a role in the formation of the aquatic environment of our planet, making it suitable for the emergence of life. Today, the planet again faces the challenge of how to provide people with clean water. Therefore, it is reasonable to look back at past historical stages and again consider the possibility of neutralizing pollutants in water by means of radiolysis, which has already been tested by time. Modern radiolytic treatments can be much faster and safer thanks to the advent of powerful electron accelerators and high-rate electron beam treatment (ELT) of water and wastewater. Radiolytic treatment of water using accelerated electrons corresponds to the essence of advanced oxidative technologies and green chemistry. The ELT of water instantly generates a high concentration of short-lived radicals that can quickly neutralize and decompose chemical and bacterial pollutants. Due to the ability of accelerated electrons to penetrate into a substance, ELT provides the decomposition of both dissolved and suspended pollutants. The cleaning effect of ELT is due to the ability to inactivate toxic and chromophore functional groups, transform impurities into an easily removable form, damage the DNA of microorganisms and their spore forms, and increase the biodegradability of organic impurities. The use of ELT in water treatment provides significant savings in chemical reagents, thereby improving quality and reducing the number of cleaning steps. The compactness, high degree of automation of the equipment used, energy efficiency, high productivity, and excellent compatibility with traditional water treatment methods are important advantages of ELT. Unlike conventional chemicals, the excess radicals generated in the ELT process are converted back to water and hydrogen; thus, the chemical and corrosive activity of water does not increase. Equipping research institutes with electron accelerators, developing cheaper accelerators, and granting government support for pilot projects are key conditions for introducing ELT into water treatment practice.
Collapse
Affiliation(s)
- Alexander V Ponomarev
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Prospect, 31, Moscow 119071, Russia
| | - Boris G Ershov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Prospect, 31, Moscow 119071, Russia
| |
Collapse
|
39
|
Hoffmann S, Feldmann U, Bach PM, Binz C, Farrelly M, Frantzeskaki N, Hiessl H, Inauen J, Larsen TA, Lienert J, Londong J, Lüthi C, Maurer M, Mitchell C, Morgenroth E, Nelson KL, Scholten L, Truffer B, Udert KM. A Research Agenda for the Future of Urban Water Management: Exploring the Potential of Nongrid, Small-Grid, and Hybrid Solutions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5312-5322. [PMID: 32233462 DOI: 10.1021/acs.est.9b05222] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recent developments in high- and middle-income countries have exhibited a shift from conventional urban water systems to alternative solutions that are more diverse in source separation, decentralization, and modularization. These solutions include nongrid, small-grid, and hybrid systems to address such pressing global challenges as climate change, eutrophication, and rapid urbanization. They close loops, recover valuable resources, and adapt quickly to changing boundary conditions such as population size. Moving to such alternative solutions requires both technical and social innovations to coevolve over time into integrated socio-technical urban water systems. Current implementations of alternative systems in high- and middle-income countries are promising, but they also underline the need for research questions to be addressed from technical, social, and transformative perspectives. Future research should pursue a transdisciplinary research approach to generating evidence through socio-technical "lighthouse" projects that apply alternative urban water systems at scale. Such research should leverage experiences from these projects in diverse socio-economic contexts, identify their potentials and limitations from an integrated perspective, and share their successes and failures across the urban water sector.
Collapse
Affiliation(s)
- Sabine Hoffmann
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Ulrike Feldmann
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Peter M Bach
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- ETH Zürich, Institute of Environmental Engineering, 8093 Zürich, Switzerland
- Monash Water for Liveability, Department of Civil Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Christian Binz
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Circle, Centre for Innovation, Research and Competence in the Learning Economy, Lund University, 221 00 Lund, Sweden
| | - Megan Farrelly
- School of Social Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Niki Frantzeskaki
- Centre for Urban Transitions, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Drift, Dutch Research Institute For Transitions, Erasmus University PA Rotterdam, 3062, The Netherlands
| | - Harald Hiessl
- Fraunhofer Institute for Systems and Innovation Research ISI, 76139 Karlsruhe, Germany
| | - Jennifer Inauen
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute for Psychology, University of Berne, 3012 Berne, Switzerland
| | - Tove A Larsen
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Judit Lienert
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Jörg Londong
- Faculty of Civil Engineering, Bauhaus University, 99421 Weimar, Germany
| | - Christoph Lüthi
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Max Maurer
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- ETH Zürich, Institute of Environmental Engineering, 8093 Zürich, Switzerland
| | - Cynthia Mitchell
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute for Sustainable Futures, University of Technology Sydney, Ultimo New South Wales 2007, Australia
| | - Eberhard Morgenroth
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- ETH Zürich, Institute of Environmental Engineering, 8093 Zürich, Switzerland
| | - Kara L Nelson
- Department of Civil & Environmental Engineering, University of California at Berkeley, Berkeley, California 94720, United States
| | - Lisa Scholten
- Delft University of Technology, 2628 CN Delft, The Netherlands
| | - Bernhard Truffer
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Faculty of Geosciences, University of Utrecht, 3584 CS Utrecht, The Netherlands
| | - Kai M Udert
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- ETH Zürich, Institute of Environmental Engineering, 8093 Zürich, Switzerland
| |
Collapse
|
40
|
Lam KL, Zlatanović L, van der Hoek JP. Life cycle assessment of nutrient recycling from wastewater: A critical review. WATER RESEARCH 2020; 173:115519. [PMID: 32006809 DOI: 10.1016/j.watres.2020.115519] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 05/09/2023]
Abstract
Recovering resources from wastewater systems is increasingly being emphasised. Many technologies exist or are under development for recycling nutrients such as nitrogen and phosphorus from wastewater to agriculture. Planning and design methodologies are needed to identify and deploy the most sustainable solutions in given contexts. For the environmental sustainability dimension, life cycle assessment (LCA) can be used to assess environmental impact potentials of wastewater-based nutrient recycling alternatives, especially nitrogen and phosphorus recycling. This review aims to evaluate how well the LCA methodology has been adapted and applied for assessing opportunities of wastewater-based nutrient recycling in the form of monomineral, multimineral, nutrient solution and organic solid. We reviewed 65 LCA studies that considered nutrient recycling from wastewater for agricultural land application. We synthesised some of their insights and methodological practices, and discussed the future outlook of using LCA for wastewater-based nutrient recycling. In general, more studies suggested positive environmental outcomes from wastewater-based nutrient recycling, especially when chemical inputs are minimised, and source separation of human excreta is achieved. The review shows the need to improve methodological consistency (e.g., multifunctionality, fertiliser offset accounting, contaminant accounting), ensure transparency of inventory and methods, consider uncertainty in comparative LCA context, integrate up-to-date cross-disciplinary knowledge (e.g., agriculture science, soil science) into LCA models, and consider the localised impacts of recycled nutrient products. Many opportunities exist for applying LCA at various scales to support decisions on wastewater-based nutrient recycling - for instance, performing "product perspective" LCA on recycled nutrient products, integrating "process perspective" LCA with other systems approaches for selecting and optimising individual recovery processes, assessing emerging nutrient recovery technologies and integrated resource recovery systems, and conducting systems analysis at city, national and global level.
Collapse
Affiliation(s)
- Ka Leung Lam
- Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, the Netherlands.
| | - Ljiljana Zlatanović
- Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, the Netherlands; Amsterdam Institute for Advanced Metropolitan Solutions, Kattenburgerstraat 5, 1018 JA, Amsterdam, the Netherlands
| | - Jan Peter van der Hoek
- Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, the Netherlands; Amsterdam Institute for Advanced Metropolitan Solutions, Kattenburgerstraat 5, 1018 JA, Amsterdam, the Netherlands; Waternet, Korte Ouderkerkerdijk 7, 1096 AC, Amsterdam, the Netherlands
| |
Collapse
|
41
|
Meng F, Fu G, Butler D. Regulatory Implications of Integrated Real-Time Control Technology under Environmental Uncertainty. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1314-1325. [PMID: 31916757 PMCID: PMC7145344 DOI: 10.1021/acs.est.9b05106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
Integrated real-time control (RTC) of urban wastewater systems, which can automatically adjust system operation to environmental changes, has been found in previous studies to be a cost-effective strategy to strike a balance between good surface water quality and low greenhouse gas emissions. However, its regulatory implications have not been examined. To investigate the effective regulation of wastewater systems with this technology, two permitting approaches are developed and assessed in this work: upstream-based permitting (i.e., environmental outcomes as a function of upstream conditions) and means-based permitting (i.e., prescription of an optimal RTC strategy). An analytical framework is proposed for permit development and assessment using a diverse set of high performing integrated RTC strategies and environmental scenarios (rainfall, river flow rate, and water quality). Results from a case study show that by applying means-based permitting, the best achievable, locally suitable environmental outcomes (subject to 10% deviation) are obtained in over 80% of testing scenarios (or all testing scenarios if 19% of performance deviation is allowed) regardless of the uncertain upstream conditions. Upstream-based permitting is less effective as it is difficult to set reasonable performance targets for a highly complex and stochastic environment.
Collapse
Affiliation(s)
- Fanlin Meng
- Centre
for Water Systems, College of Engineering, Mathematics and Physical
Sciences, University of Exeter, Exeter EX4 4QF, United Kingdom
| | - Guangtao Fu
- Centre
for Water Systems, College of Engineering, Mathematics and Physical
Sciences, University of Exeter, Exeter EX4 4QF, United Kingdom
| | - David Butler
- Centre
for Water Systems, College of Engineering, Mathematics and Physical
Sciences, University of Exeter, Exeter EX4 4QF, United Kingdom
| |
Collapse
|
42
|
Yuan J, Ma Y, Yu F, Sun Y, Dai X, Ma J. Simultaneous in situ nutrient recovery and sustainable wastewater purification based on metal anion- and cation-targeted selective adsorbents. JOURNAL OF HAZARDOUS MATERIALS 2020; 382:121039. [PMID: 31499369 DOI: 10.1016/j.jhazmat.2019.121039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/16/2019] [Accepted: 08/18/2019] [Indexed: 06/10/2023]
Abstract
The recovery of nitrogen (N) and phosphorus (P) from wastewater is of great importance in addressing the global nutrient crisis. The limitations of existing methods require the development of effective technology. Here, two different hydrogel adsorbents were fabricated with good separation ability for metal cation (M+) and metal anion (M-) but showed little removal of nutrients. Based on the materials, a novel three-stage operation system combining adsorption and capacitive deionization (CDI) technology was presented for nutrient recovery and wastewater treatment. In the first two stages, mixed metals in wastewater were successfully separated (Cu2+: 144.6 mg/g; Cr2O72-: 167.0 mg/g), and nutrients were retained (N and P < 1 mg/g). In the third stage, the residual trace metal ions in the solution were removed (2.0 mg/L to N/A), and the nutrients were enriched through electroadsorption and desorption processes by CDI. Plants using recovered liquid fertilizers revealed similar values for height, root length, and chlorophyll compared with those obtained using actual fertilizers. The results indicated that this novel three-stage operation system (3S A-C system) combining adsorption and CDI is efficient in recovering liquid fertilizers from wastewater and is a promising technology for simultaneously addressing nutrient crises and environmental pollution.
Collapse
Affiliation(s)
- Jianhua Yuan
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China
| | - Yao Ma
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Fei Yu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, PR China
| | - Yiran Sun
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Jie Ma
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
43
|
Pan YR, Wang X, Ren ZJ, Hu C, Liu J, Butler D. Characterization of implementation limits and identification of optimization strategies for sustainable water resource recovery through life cycle impact analysis. ENVIRONMENT INTERNATIONAL 2019; 133:105266. [PMID: 31655277 DOI: 10.1016/j.envint.2019.105266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/02/2019] [Accepted: 10/13/2019] [Indexed: 06/10/2023]
Abstract
How we manage alternative freshwater resources to close the gap between water supply and demand is pivotal to the future of the environment and human well-being. Increased scarcity of water for agricultural irrigation in semi-arid and arid regions has resulted in a growing interest in water reuse practices. However, insight into the life cycle impacts and potential trade-offs of these emerging practices are still limited by the paucity of systematic evaluations of different water reuse implementations. In this study, a host of environmental and human health impacts at three implementation levels of allowing water reclamation for crop irrigation was comparatively evaluated across the operational landscape via a combination of scenario modelling, life-cycle impact analyses and Monte Carlo simulations. Net harvesting of reclaimed water for irrigation was found to be dependent upon the sophistication of the treatment processes, since multistage and complex configurations can cause greater direct water consumption during processing. Further, the direct benefits of water resource recovery can be essentially offset by indirect adverse impacts, such as mineral depletion, global warming, ozone depletion, ecotoxicity, and human health risks, which are associated with increased usage of energy and chemicals for rigorous removal of contaminants, such as heavy metals and contaminants of emerging concern. Nonetheless, expanded simulations suggest the significance of concurrently implementing energy recovery, nutrient recycling, and/or nature-based, chemical-free water technologies to reduce the magnitude of negative impacts from engineered water reclamation processes.
Collapse
Affiliation(s)
- Yi-Rong Pan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Yangtze River Delta Branch, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Yiwu 322000, China
| | - Xu Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Yangtze River Delta Branch, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Yiwu 322000, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Centre for Water Systems, Department of Engineering, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, United Kingdom.
| | - Zhiyong Jason Ren
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, United States
| | - Chengzhi Hu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Junxin Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - David Butler
- Centre for Water Systems, Department of Engineering, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, United Kingdom
| |
Collapse
|
44
|
Yang Z, Xing Z, Chi D, Li Z, Sun D, Du X, Yin J, Zhou W. Promoted spatial charge separation of plasmon Ag and co-catalyst Co x P decorated mesoporous g-C 3N 4 nanosheet assembly for unexpected solar-driven photocatalytic performance. NANOTECHNOLOGY 2019; 30:485401. [PMID: 31532759 DOI: 10.1088/1361-6528/ab3dd9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Plasmon Ag and co-catalyst Co x P decorated mesoporous graphite carbon nitride nanosheet assemblies have been synthesized via a template-calcination and ball milling strategy combined with photoreduction. The obtained composites are characterized by x-ray diffraction, Fourier transmission infrared spectroscopy, x-ray photoelectron spectroscopy, transmission electron microscopy, and UV-vis diffuse reflectance spectroscopy. The results show that the sample assembly with mesoporous structure has specific surface area of 50.4 m2 g-1, pore size of 11.3 nm and pore volume of 0.21 cm3 g-1. The Ag and Co x P nanoparticles are decorated on the surface of graphite carbon nitride uniformly. Under solar light irradiation, the photocatalytic degradation rate of ceftazidime for the prepared sample assembly is up to ∼92%, and the photocatalytic reaction rate constant is about 10 times higher than that of bare graphite carbon nitride. Moreover, the sample assembly also exhibits a solar-driven photocatalytic hydrogen production rate of 96.66 μmol g-1 h-1. It can attributed to the surface plasmon resonance effect of Ag nanoparticles and Co x P co-catalyst promoting the spatial charge separation and the mesoporous structure providing more surface active sites and favoring mass transfer. This special structure offers new insights for fabricating other high-performance photocatalysts with high spatial charge separation.
Collapse
Affiliation(s)
- Zekang Yang
- Department of Environmental Science, School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Chrispim MC, Scholz M, Nolasco MA. Phosphorus recovery from municipal wastewater treatment: Critical review of challenges and opportunities for developing countries. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 248:109268. [PMID: 31325790 DOI: 10.1016/j.jenvman.2019.109268] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/11/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
The aim of this paper is to provide guidance in selecting phosphorus recovery options within the municipal wastewater treatment sector regarding developing countries. This critical review includes a brief contextualization of the resource-oriented sanitation paradigm, the discussion of processes for phosphorus recovery based on methods at full-scale, pilot-scale and laboratory-scale, and a concise discussion of the environmental impacts and benefits associated with phosphorus recovery strategies. Finally, the main challenges related to the implementation of resource recovery strategies, especially for phosphorous, were identified and discussed. According to the results, some of the main drivers for phosphorus recovery are the limited availability of phosphorus, increasing cost of phosphate fertilizers and reduction of maintenance costs. Currently, most of the operational processes are based on crystallization or precipitation from the digester supernatant. Struvite is the most common recovered product. The recovery rate of phosphorus from the liquid phase is lower (10-60% from wastewater treatment plant influent), than from sludge (35-70%) and from sludge ashes (70-98%). Phosphorus recovery remains challenging, and some barriers identified were the integration between stakeholders and institutions, public policies and regulations as well as public acceptance and economic feasibility. In developing countries, the implementation of nutrient recovery systems is challenging, because the main concern is on the expansion of sanitation coverage. Resource recovery approaches can provide benefits beyond the wastewater treatment sector, not only improving the sustainability of wastewater treatment operations, but generating revenue for the utility provider.
Collapse
Affiliation(s)
- Mariana Cardoso Chrispim
- Division of Water Resources Engineering, Faculty of Engineering, Lund University, P.O. Box 118, 22100, Lund, Sweden; Sustainability Graduate Program, School of Arts, Sciences and Humanities of University of Sao Paulo, Sao Paulo, Brazil.
| | - Miklas Scholz
- Division of Water Resources Engineering, Faculty of Engineering, Lund University, P.O. Box 118, 22100, Lund, Sweden; Department of Civil Engineering Science, School of Civil Engineering and the Built Environment, University of Johannesburg, Kingsway Campus, PO Box 524, Aukland Park, 2006, Johannesburg, South Africa; Civil Engineering Research Group, School of Science, Engineering and Environment, The University of Salford, Newton Building, Peel Park Campus, Salford, M5 4WT, UK.
| | - Marcelo Antunes Nolasco
- Sustainability Graduate Program, School of Arts, Sciences and Humanities of University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
46
|
Du X, Zhao T, Xiu Z, Yang Z, Xing Z, Li Z, Yang S, Zhou W. Nano-zero-valent iron and MnO x selective deposition on BiVO 4 decahedron superstructures for promoted spatial charge separation and exceptional catalytic activity in visible-light-driven photocatalysis-Fenton coupling system. JOURNAL OF HAZARDOUS MATERIALS 2019; 377:330-340. [PMID: 31173983 DOI: 10.1016/j.jhazmat.2019.05.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 05/15/2023]
Abstract
Novel nano-zero-valent iron (Fe0)/MnOx/BiVO4 ternary magnetic assemblies are fabricated through hydrothermal and photo-deposition strategy. The assemblies are characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, photoluminescence, X-ray photoelectron spectroscopy, and UV-vis diffuse reflectance spectroscopy. Fe0 as a reduction cocatalyst are deposited on surface of monoclinic BiVO4 decahedron supersturcture. Meanwhile, MnOx as an oxidation cocatalyst is selectively anchored on oxidative {110} facet of BiVO4 by photodeposition. The photogenerated electrons and holes can be transmitted to Fe0 and MnOx, respectively, which favors the spatial charge separation. The adjunction of Fe0 significantly enhances light absorption, and forms a photocatalysis-Fenton coupling system simultaneously. The assemblies with narrow band gap of 2.10 eV display an exceptional photocatalytic activity, and the visible-light-driven photocatalytic degradation ratio of 2,4-dichlorophenol and Bisphenol A are up to 95.4 and 91.4%, respectively, which are several times higher than that of pristine BiVO4. This is ascribed to the selective decoration of Fe0 and MnOx favoring the spatial charge separation, and the photocatalysis-Fenton coupling system enhancing degradation. Moreover, the superior magnetic property due to Fe0 decoration realizes magnetic separation of catalysts, which is favorable in practical applications.
Collapse
Affiliation(s)
- Xin Du
- Department of Environmental Science, School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, PR China
| | - Tianyu Zhao
- Department of Environmental Science, School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, PR China
| | - Ziyuan Xiu
- Department of Environmental Science, School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, PR China
| | - Zekang Yang
- Department of Environmental Science, School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, PR China
| | - Zipeng Xing
- Department of Environmental Science, School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, PR China.
| | - Zhenzi Li
- Department of Epidemiology and Biostatistics, Harbin Medical University, Harbin, 150086, PR China
| | - Shilin Yang
- Department of Environmental Science, School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, PR China.
| | - Wei Zhou
- Department of Environmental Science, School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, PR China.
| |
Collapse
|
47
|
Wang X, Daigger G, de Vries W, Kroeze C, Yang M, Ren NQ, Liu J, Butler D. Impact hotspots of reduced nutrient discharge shift across the globe with population and dietary changes. Nat Commun 2019; 10:2627. [PMID: 31201305 PMCID: PMC6570658 DOI: 10.1038/s41467-019-10445-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/09/2019] [Indexed: 12/02/2022] Open
Abstract
Reducing nutrient discharge from wastewater is essential to mitigating aquatic eutrophication; however, energy- and chemicals-intensive nutrient removal processes, accompanied with the emissions of airborne contaminants, can create other, unexpected, environmental consequences. Implementing mitigation strategies requires a complete understanding of the effects of nutrient control practices, given spatial and temporal variations. Here we simulate the environmental impacts of reducing nutrient discharge from domestic wastewater in 173 countries during 1990-2050. We find that improvements in wastewater infrastructure achieve a large-scale decline in nutrient input to surface waters, but this is causing detrimental effects on the atmosphere and the broader environment. Population size and dietary protein intake have the most significant effects over all the impacts arising from reduction of wastewater nutrients. Wastewater-related impact hotspots are also shifting from Asia to Africa, suggesting a need for interventions in such countries, mostly with growing populations, rising dietary intake, rapid urbanisation, and inadequate sanitation.
Collapse
Affiliation(s)
- Xu Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China.
- Centre for Water Systems, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, United Kingdom.
| | - Glen Daigger
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Wim de Vries
- Wageningen Environmental Research, Wageningen University & Research, 6700 AA, Wageningen, Netherlands
- Environmental Systems Analysis Group, Wageningen University & Research, 6700 AA, Wageningen, Netherlands
| | - Carolien Kroeze
- Water Systems and Global Change Group, Wageningen University & Research, 6700 AA, Wageningen, Netherlands
| | - Min Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 150090, Harbin, China
| | - Junxin Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - David Butler
- Centre for Water Systems, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, United Kingdom
| |
Collapse
|
48
|
Guo X, Li Y, Zhong H, Li P, Zhao T, Zhang C. A wastewater treatment system combining Myriophyllum aquaticum and activated sludge: Optimization of construction conditions and evaluation of wastewater treatment performance. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 235:105-111. [PMID: 30677654 DOI: 10.1016/j.jenvman.2019.01.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/25/2018] [Accepted: 01/12/2019] [Indexed: 06/09/2023]
Abstract
Although Myriophyllum aquaticum exhibits efficient nitrogen and phosphorus removal from wastewater, it has poor performance on organic matter removal. Here, a wastewater treatment system combining M. aquaticum and activated sludge was developed to improve its removal of organic matter. The Box-Behnken response surface methodology was used to optimize the construction conditions of the system, and the effects of time, temperature, illumination intensity, pollutant load, and dissolved oxygen (DO) on plant mass increment (PMI) and microbial biomass (MB) of the system were investigated. The wastewater remediation potential of the system was then evaluated. The results show that temperature and illumination intensity significantly affected PMI (p < 0.01), and that time, pollutant load, and DO were the most significant factors affecting MB (p < 0.01). The optimal construction conditions were 18.77 days in length, a temperature of 20.42 °C, an illumination intensity of 5827.61 Lx, a pollutant load of 120.61 mg/g plant, and a DO of 3.21 mg/L. The inoculation of activated sludge caused MB of the system to increase by four times relative to the non-inoculated system, suggesting successful formation of biofilms on M. aquaticum. Additionally, the removal of chemical oxygen demand (COD) from wastewater was significantly enhanced by the combined approach compared with a system relying solely on M. aquaticum. This study provides a new method for improving the remediation efficiency of M. aquaticum by combining the use of this species and activated sludge.
Collapse
Affiliation(s)
- Xuan Guo
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Yanmei Li
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Hua Zhong
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Peng Li
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Tongke Zhao
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Chengjun Zhang
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|