1
|
Chesters RA, Zhu J, Coull BM, Baidoe-Ansah D, Baumer L, Palm L, Klinghammer N, Chen S, Hahm A, Yagoub S, Cantacorps L, Bernardi D, Ritter K, Lippert RN. Fasting-induced activity changes in MC3R neurons of the paraventricular nucleus of the thalamus. Life Sci Alliance 2024; 7:e202402754. [PMID: 39107065 PMCID: PMC11303869 DOI: 10.26508/lsa.202402754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/09/2024] Open
Abstract
The brain controls energy homeostasis by regulating food intake through signaling within the melanocortin system. Whilst we understand the role of the hypothalamus within this system, how extra-hypothalamic brain regions are involved in controlling energy balance remains unclear. Here we show that the melanocortin 3 receptor (MC3R) is expressed in the paraventricular nucleus of the thalamus (PVT). We tested whether fasting would change the activity of MC3R neurons in this region by assessing the levels of c-Fos and pCREB as neuronal activity markers. We determined that overnight fasting causes a significant reduction in pCREB levels within PVT-MC3R neurons. We then questioned whether perturbation of MC3R signaling, during fasting, would result in altered refeeding. Using chemogenetic approaches, we show that modulation of MC3R activity, during the fasting period, does not impact body weight regain or total food intake in the refeeding period. However, we did observe significant differences in the pattern of feeding-related behavior. These findings suggest that the PVT is a region where MC3R neurons respond to energy deprivation and modulate refeeding behavior.
Collapse
Affiliation(s)
- Robert A Chesters
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition https://ror.org/05xdczy51, Nuthetal, Germany
| | - Jiajie Zhu
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition https://ror.org/05xdczy51, Nuthetal, Germany
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin, Berlin, Germany
| | - Bethany M Coull
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition https://ror.org/05xdczy51, Nuthetal, Germany
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin, Berlin, Germany
| | - David Baidoe-Ansah
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition https://ror.org/05xdczy51, Nuthetal, Germany
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin, Berlin, Germany
| | - Lea Baumer
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition https://ror.org/05xdczy51, Nuthetal, Germany
| | - Lydia Palm
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition https://ror.org/05xdczy51, Nuthetal, Germany
| | - Niklas Klinghammer
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition https://ror.org/05xdczy51, Nuthetal, Germany
| | - Seve Chen
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition https://ror.org/05xdczy51, Nuthetal, Germany
| | - Anneke Hahm
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition https://ror.org/05xdczy51, Nuthetal, Germany
| | - Selma Yagoub
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition https://ror.org/05xdczy51, Nuthetal, Germany
| | - Lídia Cantacorps
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition https://ror.org/05xdczy51, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Daniel Bernardi
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition https://ror.org/05xdczy51, Nuthetal, Germany
| | - Katrin Ritter
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition https://ror.org/05xdczy51, Nuthetal, Germany
| | - Rachel N Lippert
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition https://ror.org/05xdczy51, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin, Berlin, Germany
| |
Collapse
|
2
|
Mirasierra M, Fernández-Pérez A, Lizarbe B, Keiran N, Ruiz-Cañas L, Casarejos MJ, Cerdán S, Vendrell J, Fernández-Veledo S, Vallejo M. Alx3 deficiency disrupts energy homeostasis, alters body composition, and impairs hypothalamic regulation of food intake. Cell Mol Life Sci 2024; 81:343. [PMID: 39129011 PMCID: PMC11335267 DOI: 10.1007/s00018-024-05384-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/03/2024] [Accepted: 07/27/2024] [Indexed: 08/13/2024]
Abstract
The coordination of food intake, energy storage, and expenditure involves complex interactions between hypothalamic neurons and peripheral tissues including pancreatic islets, adipocytes, muscle, and liver. Previous research shows that deficiency of the transcription factor Alx3 alters pancreatic islet-dependent glucose homeostasis. In this study we carried out a comprehensive assessment of metabolic alterations in Alx3 deficiency. We report that Alx3-deficient mice exhibit decreased food intake without changes in body weight, along with reduced energy expenditure and altered respiratory exchange ratio. Magnetic resonance imaging reveals increased adiposity and decreased muscle mass, which was associated with markers of motor and sympathetic denervation. By contrast, Alx3-deficient mice on a high-fat diet show attenuated weight gain and improved insulin sensitivity, compared to control mice. Gene expression analysis demonstrates altered lipogenic and lipolytic gene profiles. In wild type mice Alx3 is expressed in hypothalamic arcuate nucleus neurons, but not in major peripheral metabolic organs. Functional diffusion-weighted magnetic resonance imaging reveals selective hypothalamic responses to fasting in the arcuate nucleus of Alx3-deficient mice. Additionally, altered expression of proopiomelanocortin and melanocortin-3 receptor mRNA in the hypothalamus suggests impaired regulation of feeding behavior. This study highlights the crucial role for Alx3 in governing food intake, energy homeostasis, and metabolic nutrient partitioning, thereby influencing body mass composition.
Collapse
Affiliation(s)
- Mercedes Mirasierra
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Fernández-Pérez
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
- Centro para el Desarrollo Tecnológico e Industrial (CDTI), Madrid, Spain
| | - Blanca Lizarbe
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid, Madrid, Spain
- Department of Biochemistry, Universidad Autónoma de Madrid, Madrid, Spain
| | - Noelia Keiran
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV) - Hospital Universitari de Tarragona Joan XXIII, Universitat Rovira i Virgili, Tarragona, Spain
| | - Laura Ruiz-Cañas
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid, Madrid, Spain
- Chronic Diseases and Cancer Area 3, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain
| | - María José Casarejos
- Neuropharmacology Laboratory, Neurobiology Department, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain
| | - Sebastián Cerdán
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid, Madrid, Spain
| | - Joan Vendrell
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV) - Hospital Universitari de Tarragona Joan XXIII, Universitat Rovira i Virgili, Tarragona, Spain
| | - Sonia Fernández-Veledo
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV) - Hospital Universitari de Tarragona Joan XXIII, Universitat Rovira i Virgili, Tarragona, Spain
| | - Mario Vallejo
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
3
|
Dahir NS, Gui Y, Wu Y, Sweeney PR, Rouault AA, Williams SY, Gimenez LE, Sawyer TK, Joy ST, Mapp AK, Cone RD. Subthreshold activation of the melanocortin system causes generalized sensitization to anorectic agents in mice. J Clin Invest 2024; 134:e178250. [PMID: 39007271 PMCID: PMC11245150 DOI: 10.1172/jci178250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/15/2024] [Indexed: 07/16/2024] Open
Abstract
The melanocortin-3 receptor (MC3R) regulates GABA release from agouti-related protein (AgRP) nerve terminals and thus tonically suppresses multiple circuits involved in feeding behavior and energy homeostasis. Here, we examined the role of the MC3R and the melanocortin system in regulating the response to various anorexigenic agents. The genetic deletion or pharmacological inhibition of the MC3R, or subthreshold doses of an MC4R agonist, improved the dose responsiveness to glucagon-like peptide 1 (GLP1) agonists, as assayed by inhibition of food intake and weight loss. An enhanced anorectic response to the acute satiety factors peptide YY (PYY3-36) and cholecystokinin (CCK) and the long-term adipostatic factor leptin demonstrated that increased sensitivity to anorectic agents was a generalized result of MC3R antagonism. We observed enhanced neuronal activation in multiple hypothalamic nuclei using Fos IHC following low-dose liraglutide in MC3R-KO mice (Mc3r-/-), supporting the hypothesis that the MC3R is a negative regulator of circuits that control multiple aspects of feeding behavior. The enhanced anorectic response in Mc3r-/- mice after administration of GLP1 analogs was also independent of the incretin effects and malaise induced by GLP1 receptor (GLP1R) analogs, suggesting that MC3R antagonists or MC4R agonists may have value in enhancing the dose-response range of obesity therapeutics.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Appetite Depressants/pharmacology
- Cholecystokinin/metabolism
- Eating/drug effects
- Glucagon-Like Peptide 1/metabolism
- Hypothalamus/metabolism
- Leptin/metabolism
- Liraglutide/pharmacology
- Mice, Inbred C57BL
- Mice, Knockout
- Peptide YY/metabolism
- Peptide YY/genetics
- Receptor, Melanocortin, Type 3/genetics
- Receptor, Melanocortin, Type 3/metabolism
- Receptor, Melanocortin, Type 3/agonists
- Receptor, Melanocortin, Type 4/metabolism
- Receptor, Melanocortin, Type 4/genetics
- Receptor, Melanocortin, Type 4/agonists
Collapse
Affiliation(s)
- Naima S. Dahir
- Life Sciences Institute
- Department of Molecular and Integrative Physiology, and
| | - Yijun Gui
- Life Sciences Institute
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Yanan Wu
- Life Sciences Institute
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Patrick R. Sweeney
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana-Champaign, Illinois, USA
| | - Alix A.J. Rouault
- Life Sciences Institute
- Department of Molecular and Integrative Physiology, and
| | | | | | | | | | - Anna K. Mapp
- Life Sciences Institute
- Department of Chemistry, School of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan, USA
| | - Roger D. Cone
- Life Sciences Institute
- Department of Molecular and Integrative Physiology, and
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Possa-Paranhos IC, Butts J, Pyszka E, Nelson C, Cho D, Sweeney P. Neuroanatomical dissection of the MC3R circuitry regulating energy rheostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590573. [PMID: 38712101 PMCID: PMC11071362 DOI: 10.1101/2024.04.22.590573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Although mammals resist both acute weight loss and weight gain, the neural circuitry mediating bi-directional defense against weight change is incompletely understood. Global constitutive deletion of the melanocortin-3-receptor (MC3R) impairs the behavioral response to both anorexic and orexigenic stimuli, with MC3R knockout mice demonstrating increased weight gain following anabolic challenges and increased weight loss following anorexic challenges (i.e. impaired energy rheostasis). However, the brain regions mediating this phenotype remain incompletely understood. Here, we utilized MC3R floxed mice and viral injections of Cre-recombinase to selectively delete MC3R from medial hypothalamus (MH) in adult mice. Behavioral assays were performed on these animals to test the role of MC3R in MH in the acute response to orexigenic and anorexic challenges. Complementary chemogenetic approaches were used in MC3R-Cre mice to localize and characterize the specific medial hypothalamic brain regions mediating the role of MC3R in energy homeostasis. Finally, we performed RNAscope in situ hybridization to map changes in the mRNA expression of MC3R, POMC, and AgRP following energy rheostatic challenges. Our results demonstrate that MC3R deletion in MH increased feeding and weight gain following acute high fat diet feeding in males, and enhanced the anorexic effects of semaglutide, in a sexually dimorphic manner. Additionally, activation of DMH MC3R neurons increased energy expenditure and locomotion. Together, these results demonstrate that MC3R mediated effects on energy rheostasis result from the loss of MC3R signaling in the medial hypothalamus of adult animals and suggest an important role for DMH MC3R signaling in energy rheostasis.
Collapse
Affiliation(s)
| | - Jared Butts
- University of Illinois Urbana-Champaign, Department of Molecular and Integrative Physiology
- University of Illinois Urbana-Champaign Neuroscience Program
| | - Emma Pyszka
- University of Illinois Urbana-Champaign, Department of Molecular and Integrative Physiology
| | - Christina Nelson
- University of Illinois Urbana-Champaign, Department of Molecular and Integrative Physiology
| | - Dajin Cho
- University of Illinois Urbana-Champaign, Department of Molecular and Integrative Physiology
- University of Illinois Urbana-Champaign Neuroscience Program
| | - Patrick Sweeney
- University of Illinois Urbana-Champaign, Department of Molecular and Integrative Physiology
- University of Illinois Urbana-Champaign Neuroscience Program
| |
Collapse
|
5
|
Gimenez LE, Martin C, Yu J, Hollanders C, Hernandez CC, Wu Y, Yao D, Han GW, Dahir NS, Wu L, Van der Poorten O, Lamouroux A, Mannes M, Zhao S, Tourwé D, Stevens RC, Cone RD, Ballet S. Novel Cocrystal Structures of Peptide Antagonists Bound to the Human Melanocortin Receptor 4 Unveil Unexplored Grounds for Structure-Based Drug Design. J Med Chem 2024; 67:2690-2711. [PMID: 38345933 DOI: 10.1021/acs.jmedchem.3c01822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Melanocortin 4 receptor (MC4-R) antagonists are actively sought for treating cancer cachexia. We determined the structures of complexes with PG-934 and SBL-MC-31. These peptides differ from SHU9119 by substituting His6 with Pro6 and inserting Gly10 or Arg10. The structures revealed two subpockets at the TM7-TM1-TM2 domains, separated by N2857.36. Two peptide series based on the complexed peptides led to an antagonist activity and selectivity SAR study. Most ligands retained the SHU9119 potency, but several SBL-MC-31-derived peptides significantly enhanced MC4-R selectivity over MC1-R by 60- to 132-fold. We also investigated MC4-R coupling to the K+ channel, Kir7.1. Some peptides activated the channel, whereas others induced channel closure independently of G protein coupling. In cell culture studies, channel activation correlated with increased feeding, while a peptide with Kir7.1 inhibitory activity reduced eating. These results highlight the potential for targeting the MC4-R:Kir7.1 complex for treating positive and restrictive eating disorders.
Collapse
Affiliation(s)
- Luis E Gimenez
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Charlotte Martin
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Jing Yu
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Charlie Hollanders
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Ciria C Hernandez
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yiran Wu
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Deqiang Yao
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Gye Won Han
- Departments of Biological Sciences and Chemistry, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, United States
| | - Naima S Dahir
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Molecular and Integrative Physiology, School of Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lijie Wu
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Olivier Van der Poorten
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Arthur Lamouroux
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Morgane Mannes
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Dirk Tourwé
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Raymond C Stevens
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Roger D Cone
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Molecular and Integrative Physiology, School of Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Steven Ballet
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| |
Collapse
|
6
|
Lund C, Ranea-Robles P, Falk S, Rausch DM, Skovbjerg G, Vibe-Petersen VK, Krauth N, Skytte JL, Vana V, Roostalu U, Pers TH, Lund J, Clemmensen C. Protection against overfeeding-induced weight gain is preserved in obesity but does not require FGF21 or MC4R. Nat Commun 2024; 15:1192. [PMID: 38331907 PMCID: PMC10853283 DOI: 10.1038/s41467-024-45223-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
Overfeeding triggers homeostatic compensatory mechanisms that counteract weight gain. Here, we show that both lean and diet-induced obese (DIO) male mice exhibit a potent and prolonged inhibition of voluntary food intake following overfeeding-induced weight gain. We reveal that FGF21 is dispensable for this defense against weight gain. Targeted proteomics unveiled novel circulating factors linked to overfeeding, including the protease legumain (LGMN). Administration of recombinant LGMN lowers body weight and food intake in DIO mice. The protection against weight gain is also associated with reduced vascularization in the hypothalamus and sustained reductions in the expression of the orexigenic neuropeptide genes, Npy and Agrp, suggesting a role for hypothalamic signaling in this homeostatic recovery from overfeeding. Overfeeding of melanocortin 4 receptor (MC4R) KO mice shows that these mice can suppress voluntary food intake and counteract the enforced weight gain, although their rate of weight recovery is impaired. Collectively, these findings demonstrate that the defense against overfeeding-induced weight gain remains intact in obesity and involves mechanisms independent of both FGF21 and MC4R.
Collapse
Affiliation(s)
- Camilla Lund
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Pablo Ranea-Robles
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Sarah Falk
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Dylan M Rausch
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Grethe Skovbjerg
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Gubra ApS, Hørsholm, Denmark
| | | | - Nathalie Krauth
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | | | - Vasiliki Vana
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | | | - Tune H Pers
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jens Lund
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
7
|
Dahir NS, Gui Y, Wu Y, Sweeney PR, Williams SY, Gimenez LE, Sawyer TK, Joy ST, Mapp AK, Cone RD. Inhibition of the melanocortin-3 receptor (MC3R) causes generalized sensitization to anorectic agents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570114. [PMID: 38106197 PMCID: PMC10723368 DOI: 10.1101/2023.12.05.570114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The melanocortin-3 receptor (MC3R) acts presynaptically to regulate GABA release from agouti-related protein (AgRP) nerve terminals and thus may be a negative regulator of multiple circuits involved in feeding behavior and energy homeostasis. Here, we examined the role of MC3R in regulating the response to various anorexigenic agents. Our findings reveal that genetic deletion or pharmacological inhibition of MC3R improves the dose responsiveness to Glucagon-like peptide 1 (GLP1) agonists, as assayed by inhibition of food intake and weight loss. An enhanced anorectic response to other agents, including the acute satiety factors peptide YY (PYY3-36) and cholecystokinin (CCK) and the long-term adipostatic factor, leptin, demonstrated that increased sensitivity to anorectic agents is a generalized result of MC3R antagonism. Enhanced neuronal activation in multiple nuclei, including ARH, VMH, and DMH, was observed using Fos immunohistochemistry following low-dose liraglutide in MC3R knockout mice (Mc3r-/-), supporting the hypothesis that the MC3R is a negative regulator of circuits regulating multiple aspects of feeding behavior. The enhanced anorectic response in Mc3r -/- mice after administration of GLP1 analogs was also independent of the incretin effects and malaise induced by GLP1R analogs, suggesting that MC3R antagonists may have value in enhancing the dose-response range of obesity therapeutics.
Collapse
Affiliation(s)
- Naima S. Dahir
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI
| | - Yijun Gui
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Yanan Wu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Patrick R. Sweeney
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana-Champaign, IL
| | | | - Luis E. Gimenez
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | - Tomi K. Sawyer
- Courage Therapeutics, 64 Homer Street, Newton, Massachusetts 02459, United States
| | - Stephen T. Joy
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | - Anna K. Mapp
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
- Department of Chemistry, School of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | - Roger D. Cone
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI
- Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
8
|
Gui Y, Dahir NS, Wu Y, Downing G, Sweeney P, Cone RD. Melanocortin-3 receptor expression in AgRP neurons is required for normal activation of the neurons in response to energy deficiency. Cell Rep 2023; 42:113188. [PMID: 37792535 PMCID: PMC10728878 DOI: 10.1016/j.celrep.2023.113188] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/14/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023] Open
Abstract
The melanocortin-3 receptor (MC3R) is a negative regulator of the central melanocortin circuitry via presynaptic expression on agouti-related protein (AgRP) nerve terminals, from where it regulates GABA release onto secondary MC4R-expressing neurons. However, MC3R knockout (KO) mice also exhibit defective behavioral and neuroendocrine responses to fasting. Here, we demonstrate that MC3R KO mice exhibit defective activation of AgRP neurons in response to fasting, cold exposure, or ghrelin while exhibiting normal inhibition of AgRP neurons by sensory detection of food in the ad libitum-fed state. Using a conditional MC3R KO model, we show that the control of AgRP neuron activation by fasting and ghrelin requires the specific presence of MC3R within AgRP neurons. Thus, MC3R is a crucial player in the responsiveness of the AgRP soma to both hormonal and neuronal signals of energy need.
Collapse
Affiliation(s)
- Yijun Gui
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | - Naima S Dahir
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | - Yanan Wu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | - Griffin Downing
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | - Patrick Sweeney
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana-Champaign, IL 61801-3633, USA
| | - Roger D Cone
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-2216, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109-2216, USA.
| |
Collapse
|
9
|
Cho D, O'Berry K, Possa-Paranhos IC, Butts J, Palanikumar N, Sweeney P. Paraventricular Thalamic MC3R Circuits Link Energy Homeostasis with Anxiety-Related Behavior. J Neurosci 2023; 43:6280-6296. [PMID: 37591737 PMCID: PMC10490510 DOI: 10.1523/jneurosci.0704-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023] Open
Abstract
The hypothalamic melanocortin system is critically involved in sensing stored energy and communicating this information throughout the brain, including to brain regions controlling motivation and emotion. This system consists of first-order agouti-related peptide (AgRP) and pro-opiomelanocortin (POMC) neurons located in the hypothalamic arcuate nucleus and downstream neurons containing the melanocortin-3 (MC3R) and melanocortin-4 receptor (MC4R). Although extensive work has characterized the function of downstream MC4R neurons, the identity and function of MC3R-containing neurons are poorly understood. Here, we used neuroanatomical and circuit manipulation approaches in mice to identify a novel pathway linking hypothalamic melanocortin neurons to melanocortin-3 receptor neurons located in the paraventricular thalamus (PVT) in male and female mice. MC3R neurons in PVT are innervated by hypothalamic AgRP and POMC neurons and are activated by anorexigenic and aversive stimuli. Consistently, chemogenetic activation of PVT MC3R neurons increases anxiety-related behavior and reduces feeding in hungry mice, whereas inhibition of PVT MC3R neurons reduces anxiety-related behavior. These studies position PVT MC3R neurons as important cellular substrates linking energy status with neural circuitry regulating anxiety-related behavior and represent a promising potential target for diseases at the intersection of metabolism and anxiety-related behavior such as anorexia nervosa.SIGNIFICANCE STATEMENT Animals must constantly adapt their behavior to changing internal and external challenges, and impairments in appropriately responding to these challenges are a hallmark of many neuropsychiatric disorders. Here, we demonstrate that paraventricular thalamic neurons containing the melanocortin-3 receptor respond to energy-state-related information and external challenges to regulate anxiety-related behavior in mice. Thus, these neurons represent a potential target for understanding the neurobiology of disorders at the intersection of metabolism and psychiatry such as anorexia nervosa.
Collapse
Affiliation(s)
- Dajin Cho
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| | - Kyle O'Berry
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| | - Ingrid Camila Possa-Paranhos
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| | - Jared Butts
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| | - Naraen Palanikumar
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| | - Patrick Sweeney
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
10
|
Sweeney P, Gimenez LE, Hernandez CC, Cone RD. Targeting the central melanocortin system for the treatment of metabolic disorders. Nat Rev Endocrinol 2023; 19:507-519. [PMID: 37365323 DOI: 10.1038/s41574-023-00855-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 06/28/2023]
Abstract
A large body of preclinical and clinical data shows that the central melanocortin system is a promising therapeutic target for treating various metabolic disorders such as obesity and cachexia, as well as anorexia nervosa. Setmelanotide, which functions by engaging the central melanocortin circuitry, was approved by the FDA in 2020 for use in certain forms of syndromic obesity. Furthermore, the FDA approvals in 2019 of two peptide drugs targeting melanocortin receptors for the treatment of generalized hypoactive sexual desire disorder (bremelanotide) and erythropoietic protoporphyria-associated phototoxicity (afamelanotide) demonstrate the safety of this class of peptides. These approvals have also renewed excitement in the development of therapeutics targeting the melanocortin system. Here, we review the anatomy and function of the melanocortin system, discuss progress and challenges in developing melanocortin receptor-based therapeutics, and outline potential metabolic and behavioural disorders that could be addressed using pharmacological agents targeting these receptors.
Collapse
Affiliation(s)
- Patrick Sweeney
- School of Molecular and Cellular Biology, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Luis E Gimenez
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | | | - Roger D Cone
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Molecular and Integrative Physiology, School of Medicine, University of Michigan, Ann Arbor, MI, USA.
- Department of Molecular, Cellular, and Developmental Biology, College of Literature Science and the Arts, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
11
|
Feng W, Zhou Q, Chen X, Dai A, Cai X, Liu X, Zhao F, Chen Y, Ye C, Xu Y, Cong Z, Li H, Lin S, Yang D, Wang MW. Structural insights into ligand recognition and subtype selectivity of the human melanocortin-3 and melanocortin-5 receptors. Cell Discov 2023; 9:81. [PMID: 37524700 PMCID: PMC10390531 DOI: 10.1038/s41421-023-00586-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/10/2023] [Indexed: 08/02/2023] Open
Abstract
Members of the melanocortin receptor (MCR) family that recognize different melanocortin peptides mediate a broad spectrum of cellular processes including energy homeostasis, inflammation and skin pigmentation through five MCR subtypes (MC1R-MC5R). The structural basis of subtype selectivity of the endogenous agonist γ-MSH and non-selectivity of agonist α-MSH remains elusive, as the two agonists are highly similar with a conserved HFRW motif. Here, we report three cryo-electron microscopy structures of MC3R-Gs in complex with γ-MSH and MC5R-Gs in the presence of α-MSH or a potent synthetic agonist PG-901. The structures reveal that α-MSH and γ-MSH adopt a "U-shape" conformation, penetrate into the wide-open orthosteric pocket and form massive common contacts with MCRs via the HFRW motif. The C-terminus of γ-MSH occupies an MC3R-specific complementary binding groove likely conferring subtype selectivity, whereas that of α-MSH distances itself from the receptor with neglectable contacts. PG-901 achieves the same potency as α-MSH with a shorter length by rebalancing the recognition site and mimicking the intra-peptide salt bridge in α-MSH by cyclization. Solid density confirmed the calcium ion binding in MC3R and MC5R, and the distinct modulation effects of divalent ions were demonstrated. Our results provide insights into ligand recognition and subtype selectivity among MCRs, and expand the knowledge of signal transduction among MCR family members.
Collapse
Affiliation(s)
- Wenbo Feng
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qingtong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xianyue Chen
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
| | - Antao Dai
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoqing Cai
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiao Liu
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Fenghui Zhao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yan Chen
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chenyu Ye
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yingna Xu
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhaotong Cong
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hao Li
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
| | - Shi Lin
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
| | - Dehua Yang
- Research Center for Deepsea Bioresources, Sanya, Hainan, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Ming-Wei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
- Research Center for Deepsea Bioresources, Sanya, Hainan, China.
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo, Japan.
- School of Pharmacy, Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
12
|
Gui Y, Dahir NS, Downing G, Sweeney P, Cone RD. Cell autonomous regulation of the activation of AgRP neurons by the melanocortin-3 receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.546874. [PMID: 37425887 PMCID: PMC10327035 DOI: 10.1101/2023.06.28.546874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The melanocortin-3 receptor (MC3R) is a negative regulator of the central melanocortin circuitry via presynaptic expression on AgRP nerve terminals, from where it regulates GABA release onto secondary MC4R-expressing neurons. Hence, animals lacking MC3R (MC3R KO) exhibit hypersensitivity to MC4R agonists. However, MC3R KO mice also exhibit defective behavioral and neuroendocrine responses to fasting. Here, we demonstrate that MC3R KO mice exhibit defective activation of AgRP neurons in response to fasting and cold exposure, while exhibiting normal inhibition of AgRP neurons by sensory detection of food. Further, using an AgRP-specific MC3R knockout model, we show that the control of AgRP neuron activation by MC3R is cell-autonomous. One mechanism underlying this involves the response to ghrelin, which is also blunted in mice with AgRP-specific deletion of the MC3R. Thus, MC3R is a crucial player in the control of energy homeostasis by the central melanocortin system, not only acting presynaptically on AgRP neurons, but via AgRP cell-autonomous regulation of fasting- and cold-induced neuronal activation as well.
Collapse
|
13
|
Jamaluddin A, Gorvin CM. RISING STARS: Targeting G protein-coupled receptors to regulate energy homeostasis. J Mol Endocrinol 2023; 70:e230014. [PMID: 36943057 PMCID: PMC10160555 DOI: 10.1530/jme-23-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/21/2023] [Indexed: 03/23/2023]
Abstract
G protein-coupled receptors (GPCRs) have a critical role in energy homeostasis, contributing to food intake, energy expenditure and glycaemic control. Dysregulation of energy expenditure can lead to metabolic syndrome (abdominal obesity, elevated plasma triglyceride, LDL cholesterol and glucose, and high blood pressure), which is associated with an increased risk of developing obesity, diabetes mellitus, non-alcoholic fatty liver disease and cardiovascular complications. As the prevalence of these chronic diseases continues to rise worldwide, there is an increased need to understand the molecular mechanisms by which energy expenditure is regulated to facilitate the development of effective therapeutic strategies to treat and prevent these conditions. In recent years, drugs targeting GPCRs have been the focus of efforts to improve treatments for type-2 diabetes and obesity, with GLP-1R agonists a particular success. In this review, we focus on nine GPCRs with roles in energy homeostasis that are current and emerging targets to treat obesity and diabetes. We discuss findings from pre-clinical models and clinical trials of drugs targeting these receptors and challenges that must be overcome before these drugs can be routinely used in clinics. We also describe new insights into how these receptors signal, including how accessory proteins, biased signalling, and complex spatial signalling could provide unique opportunities to develop more efficacious therapies with fewer side effects. Finally, we describe how combined therapies, in which multiple GPCRs are targeted, may improve clinical outcomes and reduce off-target effects.
Collapse
Affiliation(s)
- Aqfan Jamaluddin
- Institute of Metabolism and Systems Research (IMSR) and Centre for Diabetes, Endocrinology and Metabolism (CEDAM), University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
| | - Caroline M Gorvin
- Institute of Metabolism and Systems Research (IMSR) and Centre for Diabetes, Endocrinology and Metabolism (CEDAM), University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
| |
Collapse
|
14
|
Yanik T, Durhan ST. Specific Functions of Melanocortin 3 Receptor (MC3R). J Clin Res Pediatr Endocrinol 2023; 15:1-6. [PMID: 36053086 PMCID: PMC9976164 DOI: 10.4274/jcrpe.galenos.2022.2022-5-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Melanocortin 3 receptor (MC3R) is a G-protein coupled receptor which has been defined mostly as a regulator of the appetite/hunger balance mechanisms to date. In addition to its function regarding the weight gain and appetite control mechanisms of MC3R, recent studies have shown that MC3R controls growth, puberty, and circadian rhythms as well. Despite the drastic effects of MC3R deficiency in humans and other mammals, its cellular mechanisms are still under investigation. In this review paper, we aimed to point out the importance of MC3R regulations in three main areas: 1) its impact on weight and appetite control, 2) its role in the control of growth, puberty, and the circadian rhythm, and, 3) its protein-protein interactions and cellular mechanisms.
Collapse
Affiliation(s)
- Tulin Yanik
- Middle East Technical University, Department of Biological Sciences, Ankara, Turkey,* Address for Correspondence: Middle East Technical University, Department of Biological Sciences, Ankara, Turkey Phone: +90 312 210 64 65 E-mail:
| | - Seyda Tugce Durhan
- Middle East Technical University, Department of Biochemistry, Ankara, Turkey
| |
Collapse
|
15
|
Hall MAL, Kohut-Jackson AL, Peyla AC, Friedman GD, Simco NJ, Borland JM, Meisel RL. Melanocortin receptor 3 and 4 mRNA expression in the adult female Syrian hamster brain. Front Mol Neurosci 2023; 16:1038341. [PMID: 36910260 PMCID: PMC9995703 DOI: 10.3389/fnmol.2023.1038341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Melanocortin 3 receptors (MC3R) and melanocortin 4 receptors (MC4R) are vital in regulating a variety of functions across many species. For example, the dysregulation of these receptors results in obesity and dysfunction in sexual behaviors. Only a handful of studies have mapped the expression of MC3R and MC4R mRNA across the central nervous system, with the primary focus on mice and rats. Because Syrian hamsters are valuable models for functions regulated by melanocortin receptors, our current study maps the distribution of MC3R and MC4R mRNA in the Syrian hamster telencephalon, diencephalon, and midbrain using RNAscope. We found that the expression of MC3R mRNA was lowest in the telencephalon and greatest in the diencephalon, whereas the expression of MC4R mRNA was greatest in the midbrain. A comparison of these findings to previous studies found that MC3R and MC4R expression is similar in some brain regions across species and divergent in others. In addition, our study identifies novel brain regions for the expression of MC3Rs and MC4Rs, and identifies cells that co-express bothMC3 and MC4 receptors within certain brain regions.
Collapse
Affiliation(s)
- Megan A. L. Hall
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | | | | | | | | | | | | |
Collapse
|
16
|
Zhu R, Tian P, Zhang H, Wang G, Chen W. Gut microbiome-brain interactions in anorexia nervosa: Potential mechanisms and regulatory strategies. Neuropharmacology 2023; 224:109315. [PMID: 36356938 DOI: 10.1016/j.neuropharm.2022.109315] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/29/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022]
Abstract
Anorexia nervosa (AN) is a psychiatric disorder characterised by malnutrition, fear of weight gain, and body image disturbances. The aetiology of AN is complex, and may involve environmental factors, genetic factors, and biochemical factors, with the latter meaning that AN may be closely associated with neurons, neurotransmitters, and hormones related to appetite and emotional regulation. In addition, an increasing number of studies have shown there is a link between the intestinal microbiota and psychiatric disorders, such as depression. However, few studies and reviews have focused on AN and gut microbes. Accordingly, in this review, we examine the potential pathogenesis of AN in terms of changes in the gut microbiota and its metabolites, and their effects on AN. The neurobiological function of the nervous system in relation to AN are also been mentioned. Furthermore, we suggest future research directions for this field, and note that probiotics may be developed for use as dietary supplements to help alleviate AN in patients.
Collapse
Affiliation(s)
- Ran Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Peijun Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, 225004, China; Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, Jiangsu, 214122, China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, 225004, China.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
17
|
Mo H, Yu H, Li Y, Ezeorba TPC, Zhang Z, Yao M, Yu J, Xiong D, Liu H, Wang L. Molecular cloning and functional characterization of melanocortin-3 receptor in grass carp (Ctenopharyngodon idella). FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:155-167. [PMID: 36547499 DOI: 10.1007/s10695-022-01164-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
The melanocortin-3-receptor (MC3R) plays an important role in mammals' food intake and energy homeostasis. However, its physiological role in bony fishes, such as grass carp, has not been well understood. This study reports the molecular cloning, tissue distribution, and pharmacological characterization of grass carp melanocortin-3-receptor (ciMC3R). Phylogenetic and chromosomal synteny analyses indicated that ciMC3R was closest to cyprinid fishes in evolution. Quantitative PCR experiments revealed that the mRNA of ciMC3R was highly expressed in the brain of grass carp. The cytological function of ciMC3R was investigated by the co-transfection of pcDNA3.1-ciMC3R and the signal-pathway-specific luciferase into the HEK293T cells. Results revealed that the four agonists, α-MSH, β-MSH, ACTH, and NDP-MSH, potentiate the activation of ciMC3R and further increase the production of cAMP and upregulate the MAPK/ERK signaling, respectively. Our study will provide basic data for exploring the physiological functions of grass carp MC3R, especially in energy homeostasis and food intake.
Collapse
Affiliation(s)
- Haolin Mo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Huixia Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Yang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China.
| | - Timothy P C Ezeorba
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Ihe Nsukka, Nsukka, 41001, Nigeria
| | - Zhihao Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Mingxin Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Jiajia Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Dongmei Xiong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Haixia Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Lixin Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China.
| |
Collapse
|
18
|
Brain fractalkine-CX3CR1 signalling is anti-obesity system as anorexigenic and anti-inflammatory actions in diet-induced obese mice. Sci Rep 2022; 12:12604. [PMID: 35871167 PMCID: PMC9308795 DOI: 10.1038/s41598-022-16944-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/18/2022] [Indexed: 12/02/2022] Open
Abstract
Fractalkine is one of the CX3C chemokine family, and it is widely expressed in the brain including the hypothalamus. In the brain, fractalkine is expressed in neurons and binds to a CX3C chemokine receptor 1 (CX3CR1) in microglia. The hypothalamus regulates energy homeostasis of which dysregulation is associated with obesity. Therefore, we examined whether fractalkine-CX3CR1 signalling involved in regulating food intake and hypothalamic inflammation associated with obesity pathogenesis. In the present study, fractalkine significantly reduced food intake induced by several experimental stimuli and significantly increased brain-derived neurotrophic factor (BDNF) mRNA expression in the hypothalamus. Moreover, tyrosine receptor kinase B (TrkB) antagonist impaired fractalkine-induced anorexigenic actions. In addition, compared with wild-type mice, CX3CR1-deficient mice showed a significant increase in food intake and a significant decrease in BDNF mRNA expression in the hypothalamus. Mice fed a high-fat diet (HFD) for 16 weeks showed hypothalamic inflammation and reduced fractalkine mRNA expression in the hypothalamus. Intracerebroventricular administration of fractalkine significantly suppressed HFD-induced hypothalamic inflammation in mice. HFD intake for 4 weeks caused hypothalamic inflammation in CX3CR1-deficient mice, but not in wild-type mice. These findings suggest that fractalkine-CX3CR1 signalling induces anorexigenic actions via activation of the BDNF-TrkB pathway and suppresses HFD-induced hypothalamic inflammation in mice.
Collapse
|
19
|
Wang X, Cui X, Li Y, Li F, Li Y, Dai J, Hu H, Wang X, Sun J, Yang Y, Zhang S. MC4R Deficiency Causes Dysregulation of Postsynaptic Excitatory Synaptic Transmission as a Crucial Culprit for Obesity. Diabetes 2022; 71:2331-2343. [PMID: 35926095 DOI: 10.2337/db22-0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/30/2022] [Indexed: 11/13/2022]
Abstract
Melanocortin 4 receptor (MC4R) in the paraventricular nucleus of the hypothalamus (PVH) shows bidirectional characterization in modulating food intake and energy homeostasis. We demonstrate that MC4R knockdown (KD) in the PVH can attenuate AMPA receptor (AMPAR)-mediated postsynaptic responses by altering the phosphorylation of AMPAR GluA1 subunit through the protein kinase A (PKA)-dependent signaling cascade and simultaneously lead to rapid body weight gain. Furthermore, PKA KD in the PVH engendered similar electrophysiological and behavioral phenotypes as in MC4R KD mice. Importantly, we observed that the reduction of AMPAR GluA1 expression not only led to attenuated synaptic responses but also caused body weight gain, suggesting that the aberration of synaptic responses may be one of the crucial pathogeny of obesity. Our study provides the synaptic and molecular explanations of how body weight is regulated by MC4R in the PVH.
Collapse
Affiliation(s)
- Xiaohui Wang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaoli Cui
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yang Li
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yue Li
- Guangwai Community Health Service Center of Xicheng District, Beijing, China
| | - Jinye Dai
- Howard Hughes Medical Institute and Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA
| | - Han Hu
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuefeng Wang
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianyuan Sun
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Beijing, China
| | - Yan Yang
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuli Zhang
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
Bedenbaugh MN, Brener SC, Maldonado J, Lippert RN, Sweeney P, Cone RD, Simerly RB. Organization of neural systems expressing melanocortin-3 receptors in the mouse brain: Evidence for sexual dimorphism. J Comp Neurol 2022; 530:2835-2851. [PMID: 35770983 PMCID: PMC9724692 DOI: 10.1002/cne.25379] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 01/13/2023]
Abstract
The central melanocortin system is fundamentally important for controlling food intake and energy homeostasis. Melanocortin-3 receptor (MC3R) is one of two major receptors of the melanocortin system found in the brain. In contrast to the well-characterized melanocortin-4 receptor (MC4R), little is known regarding the organization of MC3R-expressing neural circuits. To increase our understanding of the intrinsic organization of MC3R neural circuits, identify specific differences between males and females, and gain a neural systems level perspective of this circuitry, we conducted a brain-wide mapping of neurons labeled for MC3R and characterized the distribution of their projections. Analysis revealed MC3R neuronal and terminal labeling in multiple brain regions that control a diverse range of physiological functions and behavioral processes. Notably, dense labeling was observed in the hypothalamus, as well as areas that share considerable connections with the hypothalamus, including the cortex, amygdala, thalamus, and brainstem. Additionally, MC3R neuronal labeling was sexually dimorphic in several areas, including the anteroventral periventricular area, arcuate nucleus, principal nucleus of the bed nucleus of the stria terminalis, and ventral premammillary region. Altogether, anatomical evidence reported here suggests that MC3R has the potential to influence several different classes of motivated behavior that are essential for survival, including ingestive, reproductive, defensive, and arousal behaviors, and is likely to modulate these behaviors differently in males and females.
Collapse
Affiliation(s)
- Michelle N. Bedenbaugh
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Samantha C. Brener
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Jose Maldonado
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Rachel N. Lippert
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition Potsdam-Rehbruecke, Potsdam, Germany
| | - Patrick Sweeney
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular and Integrative Physiology, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Roger D. Cone
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular and Integrative Physiology, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Richard B. Simerly
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
21
|
Ranea-Robles P, Lund J, Clemmensen C. The physiology of experimental overfeeding in animals. Mol Metab 2022; 64:101573. [PMID: 35970448 PMCID: PMC9440064 DOI: 10.1016/j.molmet.2022.101573] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/04/2022] [Accepted: 08/07/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Body weight is defended by strong homeostatic forces. Several of the key biological mechanisms that counteract weight loss have been unraveled over the last decades. In contrast, the mechanisms that protect body weight and fat mass from becoming too high remain largely unknown. Understanding this aspect of energy balance regulation holds great promise for curbing the obesity epidemic. Decoding the physiological and molecular pathways that defend against weight gain can be achieved by an intervention referred to as 'experimental overfeeding'. SCOPE OF THE REVIEW In this review, we define experimental overfeeding and summarize the studies that have been conducted on animals. This field of research shows that experimental overfeeding induces a potent and prolonged hypophagic response that seems to be conserved across species and mediated by unidentified endocrine factors. In addition, the literature shows that experimental overfeeding can be used to model the development of non-alcoholic steatohepatitis and that forced intragastric infusion of surplus calories lowers survival from infections. Finally, we highlight studies indicating that experimental overfeeding can be employed to study the transgenerational effects of a positive energy balance and how dietary composition and macronutrient content might impact energy homeostasis and obesity development in animals. MAJOR CONCLUSIONS Experimental overfeeding of animals is a powerful yet underappreciated method to investigate the defense mechanisms against weight gain. This intervention also represents an alternative approach for studying the pathophysiology of metabolic liver diseases and the links between energy balance and infection biology. Future research in this field could help uncover why humans respond differently to an obesogenic environment and reveal novel pathways with therapeutic potential against obesity and cardiometabolic disorders.
Collapse
Affiliation(s)
- Pablo Ranea-Robles
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Jens Lund
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
22
|
Kwok-Shing Wong M, Dores RM. Analyzing the Hypothalamus/Pituitary/Interrenal axis of the neopterygian fish, Lepisosteus oculatus: Co-localization of MC2R, MC5R, MRAP1, and MRAP2 in interrenal cells. Gen Comp Endocrinol 2022; 323-324:114043. [PMID: 35447133 DOI: 10.1016/j.ygcen.2022.114043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/10/2022] [Accepted: 04/14/2022] [Indexed: 11/19/2022]
Abstract
RT-PCR analysis indicated that steroidogenic tissues are located along the length of the kidney of the neopterygian fish, Lepisosteus oculatus (spotted gar; g). However, RT-PCR analysis of the distribution of mc2r mRNA and mrap1 mRNA, critical components of the gar hypothalamus/pituitary/interrenal (HPI) axis, was only associated with the anterior and medial regions of the kidney. Steroidogenic cells were designated as interrenal cells that possess star mRNA (in situ hybridization) and lipid vesicles (histological analysis) within the kidney. RT-PCR also detected mc5r mRNA along the length of the tissues associated with the kidney. In situ hybridization analysis of the putative interrenal cells revealed co-expression of mc2r, and mc5r mRNAs in the same steroidogenic cells. Co-expression of gar Mc2r (gMc2r) and Mrap1 (gMrap1) in Chinese Hamster Ovary (CHO) cells stimulated with ACTH(1-24) resulted in activation with an EC50 value of 1.0 × 10-11M +/- 4.6 × 10-11); whereas stimulation of CHO cells co-expressed with gar Mc5r (gMc5r) and gMrap1 and stimulated with ACTH(1-24) resulted in an EC50 value that was 3 orders of magnitude lower (2.1 × 10-8 M +/- 3.5 × 10-9). Interesting, when CHO cells were co-transfected with gMc2r, gMc5r, and gMrap1 there was a decline in activation as measured by the Vmax values for CHO cells stimulated with either ACTH(1-24) or α-MSH. These results suggest that some interaction may occur between gMc2r and gMc5r when both receptors are expressed in the same cells. Phylogenetic and selection pressure analyses of vertebrate mc2r and mc5r genes concluded that the two genes are evolving at different rates after duplication from a proposed common ancestral gene.
Collapse
Affiliation(s)
| | - Robert M Dores
- Department of Biological Sciences, University of Denver, USA.
| |
Collapse
|
23
|
Copperi F, Kim JD, Diano S. Melanocortin Signaling Connecting Systemic Metabolism With Mood Disorders. Biol Psychiatry 2022; 91:879-887. [PMID: 34344535 PMCID: PMC8643363 DOI: 10.1016/j.biopsych.2021.05.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/11/2021] [Accepted: 05/29/2021] [Indexed: 11/02/2022]
Abstract
Obesity and mood disorders are often overlapping pathologies that are prevalent public health concerns. Many studies have indicated a positive correlation between depression and obesity, although weight loss and decreased appetite are also recognized as features of depression. Accordingly, DSM-5 defines two subtypes of depression associated with changes in feeding: melancholic depression, characterized by anhedonia and associated with decreased feeding and appetite; and atypical depression, characterized by fatigue, sleepiness, hyperphagia, and weight gain. The central nervous system plays a key role in the regulation of feeding and mood, thus suggesting that overlapping neuronal circuits may be involved in their modulation. However, these circuits have yet to be completely characterized. The central melanocortin system, a circuitry characterized by the expression of specific peptides (pro-opiomelanocortins, agouti-related protein, and neuropeptide Y) and their melanocortin receptors, has been shown to be a key player in the regulation of feeding. In addition, the melanocortin system has also been shown to affect anxiety and depressive-like behavior, thus suggesting a possible role of the melanocortin system as a biological substrate linking feeding and depression. However, more studies are needed to fully understand this complex system and its role in regulating metabolic and mood disorders. In this review, we will discuss the current literature on the role of the melanocortin system in human and animal models in feeding and mood regulation, providing evidence of the biological interplay between anxiety, major depressive disorders, appetite, and body weight regulation.
Collapse
Affiliation(s)
- Francesca Copperi
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, 10032
| | - Jung Dae Kim
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, 10032
| | - Sabrina Diano
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, New York; Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York; Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, New York.
| |
Collapse
|
24
|
Goit RK, Taylor AW, Yin Lo AC. The central melanocortin system as a treatment target for obesity and diabetes: A brief overview. Eur J Pharmacol 2022; 924:174956. [DOI: 10.1016/j.ejphar.2022.174956] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022]
|
25
|
Hou ZS, Wen HS. Neuropeptide Y and melanocortin receptors in fish: regulators of energy homeostasis. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:42-51. [PMID: 37073356 PMCID: PMC10077275 DOI: 10.1007/s42995-021-00106-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 04/19/2021] [Indexed: 05/03/2023]
Abstract
Energy homeostasis, which refers to the physiological processes that the energy intake is exquisitely coordinated with energy expenditure, is critical for survival. Therefore, multiple and complex mechanisms have been involved in the regulation of energy homeostasis. The central melanocortin system plays an important role in modulating energy homeostasis. This system includes the orexigenic neurons, expressing neuropeptide Y/Agouti-related protein (NPY/AgRP), and the anorexigenic neurons expressing proopiomelanocortin (POMC). The downstream receptors of NPY, AgRP and post-translational products of POMC are G protein-coupled receptors (GPCRs). This review summarizes the compelling evidence demonstrating that NPY and melanocortin receptors are involved in energy homeostasis. Subsequently, the comparative studies on physiology and pharmacology of NPY and melanocortin receptors in humans, rodents and teleosts are summarized. Also, we provide a strategy demonstrating the potential application of the new ligands and/or specific variants of melanocortin system in aquaculture.
Collapse
Affiliation(s)
- Zhi-Shuai Hou
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao, 266003 China
| | - Hai-Shen Wen
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao, 266003 China
| |
Collapse
|
26
|
Lu Y, Shi C, Jin X, He J, Yin Z. Domestication of farmed fish via the attenuation of stress responses mediated by the hypothalamus-pituitary-inter-renal endocrine axis. Front Endocrinol (Lausanne) 2022; 13:923475. [PMID: 35937837 PMCID: PMC9353172 DOI: 10.3389/fendo.2022.923475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/29/2022] [Indexed: 12/13/2022] Open
Abstract
Human-directed domestication of terrestrial animals traditionally requires thousands of years for breeding. The most prominent behavioral features of domesticated animals include reduced aggression and enhanced tameness relative to their wild forebears, and such behaviors improve the social tolerance of domestic animals toward both humans and crowds of their own species. These behavioral responses are primarily mediated by the hypothalamic-pituitary-adrenal (inter-renal in fish) (HPA/I) endocrine axis, which is involved in the rapid conversion of neuronal-derived perceptual information into hormonal signals. Over recent decades, growing evidence implicating the attenuation of the HPA/I axis during the domestication of animals have been identified through comprehensive genomic analyses of the paleogenomic datasets of wild progenitors and their domestic congeners. Compared with that of terrestrial animals, domestication of most farmed fish species remains at early stages. The present review focuses on the application of HPI signaling attenuation to accelerate the domestication and genetic breeding of farmed fish. We anticipate that deeper understanding of HPI signaling and its implementation in the domestication of farmed fish will benefit genetic breeding to meet the global demands of the aquaculture industry.
Collapse
Affiliation(s)
- Yao Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Chuang Shi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Xia Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jiangyan He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhan Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
- *Correspondence: Zhan Yin,
| |
Collapse
|
27
|
Price ML, Ley CD, Gorvin CM. The emerging role of heterodimerisation and interacting proteins in ghrelin receptor function. J Endocrinol 2021; 252:R23-R39. [PMID: 34663757 PMCID: PMC8630777 DOI: 10.1530/joe-21-0206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/18/2021] [Indexed: 11/14/2022]
Abstract
Ghrelin is a peptide hormone secreted primarily by the stomach that acts upon the growth hormone secretagogue receptor (GHSR1), a G protein-coupled receptor whose functions include growth hormone secretion, appetite regulation, energy expenditure, regulation of adiposity, and insulin release. Following the discovery that GHSR1a stimulates food intake, receptor antagonists were developed as potential therapies to regulate appetite. However, despite reductions in signalling, the desired effects on appetite were absent. Studies in the past 15 years have demonstrated GHSR1a can interact with other transmembrane proteins, either by direct binding (i.e. heteromerisation) or via signalling cross-talk. These interactions have various effects on GHSR1a signalling including preferential coupling to one pathway (i.e. biased signalling), coupling to a unique G protein (G protein switching), suppression of GHSR1a signalling, and enhancement of signalling by both receptors. While many of these interactions have been shown in cells overexpressing the proteins of interest and remain to be verified in tissues, substantial evidence exists showing that GHSR1a and the dopamine receptor D1 (DRD1) form heteromers, which promote synaptic plasticity and formation of hippocampal memory. Additionally, a reduction in GHSR1a-DRD1 complexes in favour of establishment of GHSR1a-Aβ complexes correlates with Alzheimer's disease, indicating that GHSR1a heteromers may have pathological functions. Herein, we summarise the evidence published to date describing interactions between GHSR1a and transmembrane proteins, discuss the experimental strengths and limitations of these studies, describe the physiological evidence for each interaction, and address their potential as novel drug targets for appetite regulation, Alzheimer's disease, insulin secretion, and inflammation.
Collapse
Affiliation(s)
- Maria L Price
- Institute of Metabolism and Systems Research and Centre for Endocrinology, Diabetes and Metabolism, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
| | - Cameron D Ley
- Institute of Metabolism and Systems Research and Centre for Endocrinology, Diabetes and Metabolism, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
| | - Caroline M Gorvin
- Institute of Metabolism and Systems Research and Centre for Endocrinology, Diabetes and Metabolism, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
- Correspondence should be addressed to C M Gorvin:
| |
Collapse
|
28
|
Ji RL, Huang L, Wang Y, Liu T, Fan SY, Tao M, Tao YX. Topmouth culter melanocortin-3 receptor: regulation by two isoforms of melanocortin-2 receptor accessory protein 2. Endocr Connect 2021; 10:1489-1501. [PMID: 34678761 PMCID: PMC8630771 DOI: 10.1530/ec-21-0459] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/22/2021] [Indexed: 12/11/2022]
Abstract
Melanocortin-3 receptor (MC3R) is a regulator of energy homeostasis, and interaction of MC3R and melanocortin-2 receptor accessory protein 2 (MRAP2) plays a critical role in MC3R signaling of mammals. However, the physiological roles of MC3R in teleosts are not well understood. In this study, qRT-PCR was used to measure gene expression. Radioligand binding assay was used to study the binding properties of topmouth culter MC3R (caMC3R). Intracellular cAMP generation was determined by RIA, and caMC3R expression was quantified with flow cytometry. We showed that culter mc3r had higher expression in the CNS. All agonists could bind and stimulate caMC3R to increase dose dependently intracellular cAMP accumulation. Compared to human MC3R, culter MC3R showed higher constitutive activity, higher efficacies, and Rmax to alpha-melanocyte-stimulating hormone (α-MSH), des-α-MSH, and adrenocorticotrophic hormone. Both caMRAP2a and caMRAP2b markedly decreased caMC3R basal cAMP production. However, only caMRAP2a significantly decreased cell surface expression, Bmax, and Rmax of caMC3R. Expression analysis suggested that MRAP2a and MRAP2b might be more important in regulating MC3R/MC4R signaling during larval period, and reduced mc3r, mc4r, and pomc expression might be primarily involved in modulation of MC3R/MC4R in adults. These data indicated that the cloned caMC3R was a functional receptor. MRAP2a and MRAP2b had different effects on expression and signaling of caMC3R. In addition, expression analysis suggested that MRAP2s, receptors, and hormones might play different roles in regulating culter development and growth.
Collapse
Affiliation(s)
- Ren-Lei Ji
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Lu Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, People’s Republic of China
| | - Yin Wang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Ting Liu
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Si-Yu Fan
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, People’s Republic of China
| | - Min Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, People’s Republic of China
- Correspondence should be addressed to M Tao or Y-X Tao: or
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
- Correspondence should be addressed to M Tao or Y-X Tao: or
| |
Collapse
|
29
|
Zhang H, Chen LN, Yang D, Mao C, Shen Q, Feng W, Shen DD, Dai A, Xie S, Zhou Y, Qin J, Sun JP, Scharf DH, Hou T, Zhou T, Wang MW, Zhang Y. Structural insights into ligand recognition and activation of the melanocortin-4 receptor. Cell Res 2021; 31:1163-1175. [PMID: 34433901 DOI: 10.1038/s41422-021-00552-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
Melanocortin-4 receptor (MC4R) plays a central role in the regulation of energy homeostasis. Its high sequence similarity to other MC receptor family members, low agonist selectivity and the lack of structural information concerning MC4R-specific activation have hampered the development of MC4R-seletive therapeutics to treat obesity. Here, we report four high-resolution structures of full-length MC4R in complex with the heterotrimeric Gs protein stimulated by the endogenous peptide ligand α-MSH, FDA-approved drugs afamelanotide (Scenesse™) and bremelanotide (Vyleesi™), and a selective small-molecule ligand THIQ, respectively. Together with pharmacological studies, our results reveal the conserved binding mode of peptidic agonists, the distinctive molecular details of small-molecule agonist recognition underlying receptor subtype selectivity, and a distinct activation mechanism for MC4R, thereby offering new insights into G protein coupling. Our work may facilitate the discovery of selective therapeutic agents targeting MC4R.
Collapse
Affiliation(s)
- Huibing Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China.,MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Li-Nan Chen
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China.,MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Dehua Yang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chunyou Mao
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China.,MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Qingya Shen
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China.,MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Wenbo Feng
- School of Pharmacy, Fudan University, Shanghai, China
| | - Dan-Dan Shen
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China.,MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Antao Dai
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shanshan Xie
- Department of Cell Biology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Institute of Gastroenterology, Zhejiang University, Hangzhou, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Yan Zhou
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jiao Qin
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China.,MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jin-Peng Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.,Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Daniel H Scharf
- Department of Microbiology and The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tingjun Hou
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tianhua Zhou
- Department of Cell Biology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Institute of Gastroenterology, Zhejiang University, Hangzhou, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Ming-Wei Wang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China. .,The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China. .,University of Chinese Academy of Sciences, Beijing, China. .,School of Pharmacy, Fudan University, Shanghai, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, China. .,Department of Pharmacology, Fudan University, Shanghai, China.
| | - Yan Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. .,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China. .,MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. .,Key Laboratory of Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
30
|
VTA MC3R neurons control feeding in an activity- and sex-dependent manner in mice. Neuropharmacology 2021; 197:108746. [PMID: 34371079 DOI: 10.1016/j.neuropharm.2021.108746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 01/25/2023]
Abstract
Increasing evidence indicates that the melanocortin and mesolimbic dopamine (DA) systems interact to regulate feeding and body weight. Because melanocortin-3 receptors (MC3R) are highly expressed in the ventral tegmental area (VTA), we tested whether VTA neurons expressing these receptors (VTA MC3R neurons) control feeding and body weight in vivo. We also tested whether there were sex differences in the ability of VTA MC3R neurons to control feeding, as MC3R -/- mice show sex-dependent alterations in reward feeding and DA levels, and there are clear sex differences in multiple DA-dependent behaviors and disorders. Designer receptors exclusively activated by designer drugs (DREADD) were used to acutely activate and inhibit VTA MC3R neurons and changes in food intake and body weight were measured. Acutely altering the activity of VTA MC3R neurons decreased feeding in an activity- and sex-dependent manner, with acute activation decreasing feeding, but only in females, and acute inhibition decreasing feeding, but only in males. These differences did not appear to be due to sex differences in the number of VTA MC3R neurons, the ability of hM3Dq to activate VTA MC3R neurons, or the proportion of VTA MC3R neurons expressing tyrosine hydroxylase (TH). These studies demonstrate an important role for VTA MC3R neurons in the control of feeding and reveal important sex differences in behavior, whereby opposing changes in neuronal activity in male and female mice cause similar changes in behavior.
Collapse
|
31
|
Sweeney P, Bedenbaugh MN, Maldonado J, Pan P, Fowler K, Williams SY, Gimenez LE, Ghamari-Langroudi M, Downing G, Gui Y, Hadley CK, Joy ST, Mapp AK, Simerly RB, Cone RD. The melanocortin-3 receptor is a pharmacological target for the regulation of anorexia. Sci Transl Med 2021; 13:13/590/eabd6434. [PMID: 33883274 DOI: 10.1126/scitranslmed.abd6434] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/19/2020] [Accepted: 03/25/2021] [Indexed: 12/14/2022]
Abstract
Ablation of hypothalamic AgRP (Agouti-related protein) neurons is known to lead to fatal anorexia, whereas their activation stimulates voracious feeding and suppresses other motivational states including fear and anxiety. Despite the critical role of AgRP neurons in bidirectionally controlling feeding, there are currently no therapeutics available specifically targeting this circuitry. The melanocortin-3 receptor (MC3R) is expressed in multiple brain regions and exhibits sexual dimorphism of expression in some of those regions in both mice and humans. MC3R deletion produced multiple forms of sexually dimorphic anorexia that resembled aspects of human anorexia nervosa. However, there was no sexual dimorphism in the expression of MC3R in AgRP neurons, 97% of which expressed MC3R. Chemogenetic manipulation of arcuate MC3R neurons and pharmacologic manipulation of MC3R each exerted potent bidirectional regulation over feeding behavior in male and female mice, whereas global ablation of MC3R-expressing cells produced fatal anorexia. Pharmacological effects of MC3R compounds on feeding were dependent on intact AgRP circuitry in the mice. Thus, the dominant effect of MC3R appears to be the regulation of the AgRP circuitry in both male and female mice, with sexually dimorphic sites playing specialized and subordinate roles in feeding behavior. Therefore, MC3R is a potential therapeutic target for disorders characterized by anorexia, as well as a potential target for weight loss therapeutics.
Collapse
Affiliation(s)
- Patrick Sweeney
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michelle N Bedenbaugh
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN 37240, USA
| | - Jose Maldonado
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN 37240, USA
| | - Pauline Pan
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Katelyn Fowler
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Luis E Gimenez
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Masoud Ghamari-Langroudi
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN 37240, USA
| | - Griffin Downing
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Molecular, Cellular, and Developmental Biology, School of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yijun Gui
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Molecular, Cellular, and Developmental Biology, School of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | - Colleen K Hadley
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stephen T Joy
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anna K Mapp
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Chemistry, School of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | - Richard B Simerly
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN 37240, USA.
| | - Roger D Cone
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA. .,Department of Molecular, Cellular, and Developmental Biology, School of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Molecular and Integrative Physiology, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
32
|
Yeo GSH, Chao DHM, Siegert AM, Koerperich ZM, Ericson MD, Simonds SE, Larson CM, Luquet S, Clarke I, Sharma S, Clément K, Cowley MA, Haskell-Luevano C, Van Der Ploeg L, Adan RAH. The melanocortin pathway and energy homeostasis: From discovery to obesity therapy. Mol Metab 2021; 48:101206. [PMID: 33684608 PMCID: PMC8050006 DOI: 10.1016/j.molmet.2021.101206] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Over the past 20 years, insights from human and mouse genetics have illuminated the central role of the brain leptin-melanocortin pathway in controlling mammalian food intake, with genetic disruption resulting in extreme obesity, and more subtle polymorphic variations influencing the population distribution of body weight. At the end of 2020, the U.S. Food and Drug Administration (FDA) approved setmelanotide, a melanocortin 4 receptor agonist, for use in individuals with severe obesity due to either pro-opiomelanocortin (POMC), proprotein convertase subtilisin/kexin type 1 (PCSK1), or leptin receptor (LEPR) deficiency. SCOPE OF REVIEW Herein, we chart the melanocortin pathway's history, explore its pharmacology, genetics, and physiology, and describe how a neuropeptidergic circuit became an important druggable obesity target. MAJOR CONCLUSIONS Unravelling the genetics of the subset of severe obesity has revealed the importance of the melanocortin pathway in appetitive control; coupling this with studying the molecular pharmacology of compounds that bind melanocortin receptors has brought a new obesity drug to the market. This process provides a drug discovery template for complex disorders, which for setmelanotide took 25 years to transform from a single gene into an approved drug.
Collapse
Affiliation(s)
- Giles S H Yeo
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.
| | | | - Anna-Maria Siegert
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.
| | - Zoe M Koerperich
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA 55455.
| | - Mark D Ericson
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA 55455.
| | - Stephanie E Simonds
- Metabolism, Diabetes, and Obesity Programme, Monash Biomedicine Discovery Institute, and Department of Physiology, Monash University, Clayton, Victoria, Australia.
| | - Courtney M Larson
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA 55455.
| | - Serge Luquet
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France.
| | - Iain Clarke
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia.
| | | | - Karine Clément
- Assistance Publique Hôpitaux de Paris, Nutrition Department, Pitié-Salpêtrière Hospital, Paris, France, Sorbonne Université, INSERM, Nutrition and Obesity: Systemic Approaches (NutriOmics) Research Unit, Paris, France.
| | - Michael A Cowley
- Metabolism, Diabetes, and Obesity Programme, Monash Biomedicine Discovery Institute, and Department of Physiology, Monash University, Clayton, Victoria, Australia.
| | - Carrie Haskell-Luevano
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA 55455.
| | | | - Roger A H Adan
- Department of Translational Neuroscience, UMCU Brain Centre, University Medical Centre Utrecht, Utrecht University, the Netherlands; Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Sweden.
| |
Collapse
|
33
|
Abstract
Paraventricular nucleus (PVN) neurons expressing the melanocortin 4 receptor (MC4R) integrate hormonal and neuronal information concerning energy availability and engage neural circuitry controlling feeding, metabolism, and neuroendocrine function in response to changes in body weight and stored energy. Thereby, the dynamic activity of PVN MC4R neurons may serve as a neural representation of body weight “set point.” Here, we demonstrate that PVN MC4R neuronal activity is bidirectionally regulated by changes in energy state, as neuronal activity is gradually suppressed during fasting and increased in response to refeeding. Together, these findings provide a framework for understanding how hunger and satiety are controlled within critical neurons involved in energy homeostasis. Mutations in the melanocortin 4 receptor (MC4R) result in hyperphagia and obesity and are the most common cause of monogenic obesity in humans. Preclinical rodent studies have determined that the critical role of the MC4R in controlling feeding can be mapped in part to its expression in the paraventricular nucleus of the hypothalamus (paraventricular nucleus [PVN]), where it regulates the activity of anorexic neural circuits. Despite the critical role of PVN MC4R neurons in regulating feeding, the in vivo neuronal activity of these cells remains largely unstudied, and the network activity of PVN MC4R neurons has not been determined. Here, we utilize in vivo single-cell endomicroscopic and mathematical approaches to determine the activity and network dynamics of PVN MC4R neurons in response to changes in energy state and pharmacological manipulation of central melanocortin receptors. We determine that PVN MC4R neurons exhibit both quantitative and qualitative changes in response to fasting and refeeding. Pharmacological stimulation of MC4R with the therapeutic MC4R agonist setmelanotide rapidly increases basal PVN MC4R activity, while stimulation of melanocortin 3 receptor (MC3R) inhibits PVN MC4R activity. Finally, we find that distinct PVN MC4R neuronal ensembles encode energy deficit and energy surfeit and that energy surfeit is associated with enhanced network connections within PVN MC4R neurons. These findings provide valuable insight into the neural dynamics underlying hunger and energy surfeit.
Collapse
|
34
|
Chang M, Chen B, Shaffner J, Dworkin LD, Gong R. Melanocortin System in Kidney Homeostasis and Disease: Novel Therapeutic Opportunities. Front Physiol 2021; 12:651236. [PMID: 33716796 PMCID: PMC7943476 DOI: 10.3389/fphys.2021.651236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/03/2021] [Indexed: 12/30/2022] Open
Abstract
Melanocortin peptides, melanocortin receptors, melanocortin receptor accessory proteins, and endogenous antagonists of melanocortin receptors are the key components constituting the melanocortin hormone system, one of the most complex and important hormonal systems in our body. A plethora of evidence suggests that melanocortins possess a protective activity in a variety of kidney diseases in both rodent models and human patients. In particular, the steroidogenic melanocortin peptide adrenocorticotropic hormone (ACTH), has been shown to exert a beneficial effect in a number of kidney diseases, possibly via a mechanism independent of its steroidogenic activity. In patients with steroid-resistant nephrotic glomerulopathy, ACTH monotherapy is still effective in inducing proteinuria remission. This has inspired research on potential implications of the melanocortin system in glomerular diseases. However, our understanding of the role of the melanocortinergic pathway in kidney disease is very limited, and there are still huge unknowns to be explored. The most controversial among these is the identification of effector cells in the kidney as well as the melanocortin receptors responsible for conveying the renoprotective action. This review article introduces the melanocortin hormone system, summarizes the existing evidence for the expression of melanocortin receptors in the kidney, and evaluates the potential strategy of melanocortin therapy for kidney disease.
Collapse
Affiliation(s)
- Mingyang Chang
- Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, OH, United States
| | - Bohan Chen
- Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, OH, United States
| | - James Shaffner
- Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, OH, United States
| | - Lance D Dworkin
- Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, OH, United States
| | - Rujun Gong
- Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, OH, United States
| |
Collapse
|
35
|
Wallis N, Raffan E. The Genetic Basis of Obesity and Related Metabolic Diseases in Humans and Companion Animals. Genes (Basel) 2020; 11:E1378. [PMID: 33233816 PMCID: PMC7699880 DOI: 10.3390/genes11111378] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022] Open
Abstract
Obesity is one of the most prevalent health conditions in humans and companion animals globally. It is associated with premature mortality, metabolic dysfunction, and multiple health conditions across species. Obesity is, therefore, of importance in the fields of medicine and veterinary medicine. The regulation of adiposity is a homeostatic process vulnerable to disruption by a multitude of genetic and environmental factors. It is well established that the heritability of obesity is high in humans and laboratory animals, with ample evidence that the same is true in companion animals. In this review, we provide an overview of how genes link to obesity in humans, drawing on a wealth of information from laboratory animal models, and summarise the mechanisms by which obesity causes related disease. Throughout, we focus on how large-scale human studies and niche investigations of rare mutations in severely affected patients have improved our understanding of obesity biology and can inform our ability to interpret results of animal studies. For dogs, cats, and horses, we compare the similarities in obesity pathophysiology to humans and review the genetic studies that have been previously reported in those species. Finally, we discuss how veterinary genetics may learn from humans about studying precise, nuanced phenotypes and implementing large-scale studies, but also how veterinary studies may be able to look past clinical findings to mechanistic ones and demonstrate translational benefits to human research.
Collapse
Affiliation(s)
- Natalie Wallis
- Anatomy Building, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Eleanor Raffan
- Anatomy Building, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
36
|
Parween S, Rihs S, Flück CE. Metformin inhibits the activation of melanocortin receptors 2 and 3 in vitro: A possible mechanism for its anti-androgenic and weight balancing effects in vivo? J Steroid Biochem Mol Biol 2020; 200:105684. [PMID: 32360359 DOI: 10.1016/j.jsbmb.2020.105684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022]
Abstract
Metformin is recommended as one of the first-line drugs for the treatment of type 2 diabetes and the metabolic syndrome. In addition to its insulin sensitizing effects, it has been shown to attenuate androgen excess in women with polycystic ovary syndrome (PCOS) or congenital adrenal hyperplasia (CAH), as well as to ameliorate obesity. The mechanisms of metformin action seem manifold. Preclinical studies suggest that it inhibits the cellular stress response at the level of the mitochondrial OXPHOS system and through AMPK dependent and independent mechanisms. Recent studies have shown that metformin decreases ACTH secretion from pituitary and reduces ACTH-stimulated adrenal secretion. In this study we investigated its specific effect through the melanocortin receptor 2 (MC2R) on signaling targeting adrenal steroidogenesis. To assess this effect, we used mouse adrenal OS3 cells, which do not express the MC2R. Cells were transfected with the MC2R and stimulated by ACTH. Downstream cyclic AMP production was then assessed by a co-transfected cAMP-responsive vector producing luciferase that was measured by a dual luciferase assay. The amount of luciferase produced in this assay corresponds to the amount of receptor activation with varying amount of ACTH. The effect of metformin was then tested in this system. We found a significant inhibition of ACTH induced MC2R activation and signaling with 10 mM metformin. The ACTH concentration response curve (CRC) was half-log shifted and a ∼30 % reduction in maximum receptor response (Rmax) to ACTH in presence of metformin was observed. This effect was dose dependent with an IC50 of 4.2 mM. qRT-PCR analyses showed that metformin decreased ACTH induced MC2R expression. Metformin did not affect cell viability and basal cAMP levels. We also tested the effect of metformin on homologous melanocortin receptors (MCRs). No significant effect was found on MC1R and MC4R activity. However, a log shift of EC50 of ACTH stimulation on MC3R was observed with metformin treatment. Metformin also inhibited melanocortin stimulating hormone (αMSH) induced MC3R activity. In conclusion, we show that metformin acts on MC2R and MC3R signaling directly. The role of MC2R for steroidogenesis is well established. MC3R is involved in energy balance and seems to act as a rheostat when the metabolism is challenged. Our study may explain how metformin helps in weight loss and attenuates the excess response to ACTH in androgen excess disorders such as PCOS and CAH.
Collapse
MESH Headings
- Adrenocorticotropic Hormone/pharmacology
- Androgen Antagonists/pharmacology
- Animals
- Cell Line
- Cell Survival/drug effects
- Hypoglycemic Agents/pharmacology
- Metformin/pharmacology
- Mice
- Receptor, Melanocortin, Type 2/antagonists & inhibitors
- Receptor, Melanocortin, Type 2/genetics
- Receptor, Melanocortin, Type 2/metabolism
- Receptor, Melanocortin, Type 3/antagonists & inhibitors
- Receptor, Melanocortin, Type 3/metabolism
- Weight Loss
Collapse
Affiliation(s)
- Shaheena Parween
- Pediatric Endocrinology, Diabetology, and Metabolism, Department of Pediatrics, University Children's Hospital Bern, 3010, Bern, Switzerland; Department of Biomedical Research, University of Bern, 3010, Bern, Switzerland
| | - Silvia Rihs
- Pediatric Endocrinology, Diabetology, and Metabolism, Department of Pediatrics, University Children's Hospital Bern, 3010, Bern, Switzerland; Department of Biomedical Research, University of Bern, 3010, Bern, Switzerland
| | - Christa E Flück
- Pediatric Endocrinology, Diabetology, and Metabolism, Department of Pediatrics, University Children's Hospital Bern, 3010, Bern, Switzerland; Department of Biomedical Research, University of Bern, 3010, Bern, Switzerland.
| |
Collapse
|
37
|
Yang LK, Zhang ZR, Wen HS, Tao YX. Characterization of channel catfish (Ictalurus punctatus) melanocortin-3 receptor reveals a potential network in regulation of energy homeostasis. Gen Comp Endocrinol 2019; 277:90-103. [PMID: 30905760 DOI: 10.1016/j.ygcen.2019.03.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/12/2019] [Accepted: 03/18/2019] [Indexed: 11/19/2022]
Abstract
The melanocortin-3 receptor (MC3R) is known to be involved in regulation of energy homeostasis, regulating feed efficiency and nutrient partitioning in mammals. Its physiological roles in non-mammalian vertebrates, especially economically important aquaculture species, are not well understood. Channel catfish (Ictalurus punctatus) is the main freshwater aquaculture species in North America. In this study, we characterized the channel catfish MC3R. The mc3r of channel catfish encoded a putative protein (ipMC3R) of 367 amino acids. We transfected HEK293T cells with ipMC3R plasmid for functional studies. Five agonists, including adrenocorticotropin, α-melanocyte stimulating hormone (α-MSH), β-MSH, [Nle4, D-Phe7]-α-MSH, and D-Trp8-γ-MSH, were used in the pharmacological studies. Our results showed that ipMC3R bound β-MSH with higher affinity and D-Trp8-γ-MSH with lower affinity compared with human MC3R. All agonists could stimulate ipMC3R and increase intracellular cAMP production with sub-nanomolar potencies. The extracellular signal-regulated kinases 1 and 2 (ERK1/2) activation could also be triggered by ipMC3R. The ipMC3R exhibited constitutive activities in both cAMP and ERK1/2 pathways, and Agouti-related protein served as an inverse agonist at ipMC3R, potently inhibiting the high basal cAMP level. Moreover, we showed that melanocortin receptor accessory protein 2 (MRAP2) preferentially modulated ipMC3R in cAMP production rather than ERK1/2 activation. Our study will assist further investigation of the physiological roles of the ipMC3R, especially in energy homeostasis, in channel catfish.
Collapse
Affiliation(s)
- Li-Kun Yang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Zheng-Rui Zhang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States; Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Hai-Shen Wen
- College of Fisheries, Ocean University of China, Qingdao, China
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
38
|
Baldini G, Phelan KD. The melanocortin pathway and control of appetite-progress and therapeutic implications. J Endocrinol 2019; 241:R1-R33. [PMID: 30812013 PMCID: PMC6500576 DOI: 10.1530/joe-18-0596] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/22/2019] [Indexed: 12/19/2022]
Abstract
The initial discovery that ob/ob mice become obese because of a recessive mutation of the leptin gene has been crucial to discover the melanocortin pathway to control appetite. In the melanocortin pathway, the fed state is signaled by abundance of circulating hormones such as leptin and insulin, which bind to receptors expressed at the surface of pro-opiomelanocortin (POMC) neurons to promote processing of POMC to the mature hormone α-melanocyte-stimulating hormone (α-MSH). The α-MSH released by POMC neurons then signals to decrease energy intake by binding to melanocortin-4 receptor (MC4R) expressed by MC4R neurons to the paraventricular nucleus (PVN). Conversely, in the 'starved state' activity of agouti-related neuropeptide (AgRP) and of neuropeptide Y (NPY)-expressing neurons is increased by decreased levels of circulating leptin and insulin and by the orexigenic hormone ghrelin to promote food intake. This initial understanding of the melanocortin pathway has recently been implemented by the description of the complex neuronal circuit that controls the activity of POMC, AgRP/NPY and MC4R neurons and downstream signaling by these neurons. This review summarizes the progress done on the melanocortin pathway and describes how obesity alters this pathway to disrupt energy homeostasis. We also describe progress on how leptin and insulin receptors signal in POMC neurons, how MC4R signals and how altered expression and traffic of MC4R change the acute signaling and desensitization properties of the receptor. We also describe how the discovery of the melanocortin pathway has led to the use of melanocortin agonists to treat obesity derived from genetic disorders.
Collapse
Affiliation(s)
- Giulia Baldini
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Kevin D. Phelan
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
39
|
Serra-Juhé C, Martos-Moreno GÁ, Bou de Pieri F, Flores R, Chowen JA, Pérez-Jurado LA, Argente J. Heterozygous rare genetic variants in non-syndromic early-onset obesity. Int J Obes (Lond) 2019; 44:830-841. [PMID: 30926952 PMCID: PMC7101277 DOI: 10.1038/s41366-019-0357-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/07/2019] [Accepted: 02/07/2019] [Indexed: 11/09/2022]
Abstract
BACKGROUND Obesity is a very heterogeneous disorder at both the clinical and molecular levels and with high heritability. Several monogenic forms and genes with strong effects have been identified for non-syndromic severe obesity. Novel therapeutic interventions are in development for some genetic forms, emphasizing the importance of determining genetic contributions. OBJECTIVE We aimed to define the contribution of rare single-nucleotide genetic variants (RSVs) in candidate genes to non-syndromic severe early-onset obesity (EOO; body mass index (BMI) >+3 standard deviation score, <3 years). METHODS Using a pooled DNA-sequencing approach, we screened for RSVs in 15 obesity candidate genes in a series of 463 EOO patients and 480 controls. We also analysed exome data from 293 EOO patients from the "Viva la Familia" (VLF) study as a replication dataset. RESULTS Likely or known pathogenic RSVs were identified in 23 patients (5.0%), with 7 of the 15 genes (BDNF, FTO, MC3R, MC4R, NEGR1, PPARG and SIM1) harbouring RSVs only in cases (3.67%) and none in controls. All were heterozygous changes, either de novo (one in BDNF) or inherited from obese parents (seven maternal, three paternal), and no individual carried more than one variant. Results were replicated in the VLF study, where 4.10% of probands carried RSVs in the overrepresented genes. RSVs in five genes were either absent (LEP) or more common in controls than in cases (ADRB3, LEPR, PCSK1 and PCSK2) in both obese datasets. CONCLUSIONS Heterozygous RSVs in several candidate genes of the melanocortin pathway are found in ~5.0% patients with EOO. These results support the clinical utility of genetic testing to identify patients who might benefit from targeted therapeutic intervention.
Collapse
Affiliation(s)
- Clara Serra-Juhé
- Genetics Unit, Universitat Pompeu Fabra, Hospital del Mar Research Institute (IMIM), C/Doctor Aiguader, 8, 08003, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, C/Sinesio Delgado, 4, 28029, Madrid, Spain
| | - Gabriel Á Martos-Moreno
- Hospital Infantil Universitario Niño Jesús, Department of Endocrinology, Instituto de Investigación La Princesa, Universidad Autónoma de Madrid, Department of Pediatrics, Avenida Menéndez Pelayo, 65, 28009, Madrid, Spain.,CIBER de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, C/Sinesio Delgado, 4, 28029, Madrid, Spain
| | - Francesc Bou de Pieri
- Genetics Unit, Universitat Pompeu Fabra, Hospital del Mar Research Institute (IMIM), C/Doctor Aiguader, 8, 08003, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, C/Sinesio Delgado, 4, 28029, Madrid, Spain
| | - Raquel Flores
- Genetics Unit, Universitat Pompeu Fabra, Hospital del Mar Research Institute (IMIM), C/Doctor Aiguader, 8, 08003, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, C/Sinesio Delgado, 4, 28029, Madrid, Spain
| | - Julie A Chowen
- Hospital Infantil Universitario Niño Jesús, Department of Endocrinology, Instituto de Investigación La Princesa, Universidad Autónoma de Madrid, Department of Pediatrics, Avenida Menéndez Pelayo, 65, 28009, Madrid, Spain.,CIBER de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, C/Sinesio Delgado, 4, 28029, Madrid, Spain
| | - Luis A Pérez-Jurado
- Genetics Unit, Universitat Pompeu Fabra, Hospital del Mar Research Institute (IMIM), C/Doctor Aiguader, 8, 08003, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, C/Sinesio Delgado, 4, 28029, Madrid, Spain.,Women's and Children's Hospital, South Australia Medical and Health Research Institute (SAMHRI) and University of Adelaide, 72 King William Road, North Adelaide, SA, 5006, Australia
| | - Jesús Argente
- Hospital Infantil Universitario Niño Jesús, Department of Endocrinology, Instituto de Investigación La Princesa, Universidad Autónoma de Madrid, Department of Pediatrics, Avenida Menéndez Pelayo, 65, 28009, Madrid, Spain. .,CIBER de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, C/Sinesio Delgado, 4, 28029, Madrid, Spain. .,IMDEA Food Institute, CEIUAM + CSI, Crta. de Cantoblanco, 8, 28049, Madrid, Spain.
| |
Collapse
|