1
|
Liu Q, Yang S, Li S, Zhang H, Zhang J, Fan H. The optimal applications of scPDSI and SPEI in characterizing meteorological drought, agricultural drought and terrestrial water availability on a global scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175933. [PMID: 39218106 DOI: 10.1016/j.scitotenv.2024.175933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/19/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
The Palmer Drought Severity Index (scPDSI) and the Standardized Precipitation Evapotranspiration Index (SPEI) are two of the most commonly used drought indices. However, scPDSI and SPEI at a specific scale are often used interchangeably to characterize meteorological drought, agricultural drought, or terrestrial water availability, leading to potential inaccuracies in research outcomes. This study thus presents a global-scale assessment of the applications of scPDSI and SPEI at various timescales (SPEIs) in these contexts. Our findings indicate that scPDSI is more suitable for monitoring agricultural drought than meteorological drought, and highlight the effectiveness of SPEI at one month scale (SPEI01) for meteorological drought. Additionally, SPEI at nine months scale (SPEI09) is more appropriate for agricultural drought. Regarding their relationship with vegetation water stress, scPDSI and SPEI09 are more closely associated with root-zone soil moisture, while SPEI01 is most closely linked to vapor pressure deficit. Furthermore, we evaluate the capability of scPDSI and SPEI in representing terrestrial water availability by analyzing the responses of diverse vegetation indicators to them, including the Normalized Difference Vegetation Index (NDVI), Leaf Area Index (LAI), Solar-Induced Chlorophyll Fluorescence (SIF), and Gross Primary Productivity (GPP). All four vegetation indicators show the highest sensitivity of negative response to SPEI01 in cold climate regions, suggesting SPEI01 is most applicable in these regions. In drylands, vegetation indicators exhibit higher sensitivity of positive responses to SPEI at six months scale (SPEI06) and SPEI09, indicating SPEI06 and SPEI09 effectively characterize water availability in such areas. These findings enhance the understanding of scPDSI and SPEI, providing clearer guidelines for their global-scale applications in meteorological drought, agricultural drought, and terrestrial water availability.
Collapse
Affiliation(s)
- Qi Liu
- School of Computer Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Shanshan Yang
- Research Center for Remote Sensing Information and Digital Earth, College of Computer Science and Technology, Qingdao University, Qingdao 266071, China
| | - Shijie Li
- Department of Civil and Environmental Engineering, University of Florence, Firenze 50139, Italy
| | - Hairu Zhang
- Institute of Economics, Jiangsu Academy of Social Sciences, Nanjing 210004, China
| | - Jiahua Zhang
- Research Center for Remote Sensing Information and Digital Earth, College of Computer Science and Technology, Qingdao University, Qingdao 266071, China
| | - Honghui Fan
- School of Computer Engineering, Jiangsu University of Technology, Changzhou 213001, China.
| |
Collapse
|
2
|
Gao L, Guan K, He L, Jiang C, Wu X, Lu X, Ainsworth EA. Tropospheric ozone pollution increases the sensitivity of plant production to vapor pressure deficit across diverse ecosystems in the Northern Hemisphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175748. [PMID: 39182770 DOI: 10.1016/j.scitotenv.2024.175748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/16/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Tropospheric ozone (O3) pollution often accompanies droughts and heatwaves, which could collectively reduce plant productivity. Previous research suggested that O3 pollution can alter plant responses to drought by interfering with stomatal closure while drought can reduce stomatal conductance and provide protection against O3 stress. However, the interactions between O3 pollution and drought stress remain poorly understood at ecosystem scales with diverse plant functional types. To address this research gap, we used 10-year (2012-2021) satellite near-infrared reflectance of vegetation (NIRv) observations, reanalysis data of vapor pressure deficit (VPD), soil moisture (SM), and air temperature (Ta), along with O3 measurements and reanalysis data across the Northern Hemisphere to statistically disentangle the interconnections between NIRv, VPD, SM, and Ta under varying O3 levels. We found that high O3 concentrations significantly exacerbate the sensitivity of NIRv to VPD while have no notable impacts on the sensitivity of NIRv to Ta or SM for all plant functional types, indicating an enhanced combined impact of VPD and O3 on plants. Specifically, the sensitivity of NIRv to VPD increased by >75 % when O3 anomalies increased from the lowest 10 to the highest 10 percentiles across diverse plant functional types. This is likely because long-term exposure to high O3 concentrations can inhibit stomatal closure and photosynthetic enzyme activities, resulting in reduced water use efficiency and photosynthetic efficiency. This study highlights the need to consider O3 in understanding plant responses to climate factors and that O3 can alter plant responses to VPD independently of Ta and SM.
Collapse
Affiliation(s)
- Lun Gao
- Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Natural Resources and Environmental Sciences, College of Agricultural, Consumers, and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| | - Kaiyu Guan
- Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Natural Resources and Environmental Sciences, College of Agricultural, Consumers, and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA; National Center for Supercomputing Applications, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| | - Liyin He
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, USA
| | - Chongya Jiang
- Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Natural Resources and Environmental Sciences, College of Agricultural, Consumers, and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Xiaocui Wu
- Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Natural Resources and Environmental Sciences, College of Agricultural, Consumers, and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Xiaoman Lu
- Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Natural Resources and Environmental Sciences, College of Agricultural, Consumers, and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Elizabeth A Ainsworth
- Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA; USDA-ARS, Global Change and Photosynthesis Research Unit, Urbana, IL 61801, USA.
| |
Collapse
|
3
|
Wang C, Chen J, Xiong L, Tong S, Xu CY. Trigger thresholds and their dynamics of vegetation production loss under different atmospheric and soil drought conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175116. [PMID: 39084387 DOI: 10.1016/j.scitotenv.2024.175116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/23/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Many evidences have shown that both atmospheric and soil droughts can constrain vegetation growth and further threaten its ability to sequester carbon. However, the trigger thresholds of vegetation production loss under different atmospheric and soil drought conditions are still unknown. In this study, we proposed a Copula and Bayesian equations-based framework to investigate trigger thresholds of various vegetation production losses under different atmospheric and soil drought conditions. The trigger thresholds dynamics and their possible causes were also investigated. To achieve this goal, we first simulated the gross primary production, soil moisture, and vapor pressure deficit over China during 1961-2018 using an individual-based, spatially explicit dynamic global vegetation model. The main drivers of the dynamic change in trigger thresholds were then explored by Random Forest model. We found that soil drought caused greater stress on gross primary production loss than atmospheric drought, with a larger impact area and higher probability of damage. In terms of spatial distribution, the risk probability of gross primary production loss was higher in eastern China than in western China, and the drought trigger threshold was also smaller in eastern China. In addition, the trigger thresholds for atmospheric and soil drought in most regions exhibited a decreasing trend from 1961 to 2018, while the CO2 fertilization enhanced the drought tolerance of vegetation. The reduction in CO2 fertilization effect slowed down the downward trend of trigger threshold for soil drought, while the increase in temperature exacerbated the downward trend of trigger threshold for atmospheric drought. This study highlighted the larger effect of soil drought on vegetation production loss than atmospheric drought and implied that climate change can modulate the trigger threshold of vegetation production losses under drought conditions. These findings provide scientific guidance for managing the increasing risk of drought on vegetation and optimizing watershed water allocation.
Collapse
Affiliation(s)
- Chengyun Wang
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Jie Chen
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei 430072, PR China.
| | - Lihua Xiong
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Shanlin Tong
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Chong-Yu Xu
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei 430072, PR China; Department of Geosciences, University of Oslo, Oslo N-0316, Norway
| |
Collapse
|
4
|
Zhang Y, Zhao Y, Sun Q, Chen S, Sun S, Liu L. Reduced actual vapor pressure exerts a significant influence on maize yield through vapor pressure deficit amid climate warming. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:2041-2048. [PMID: 38963429 DOI: 10.1007/s00484-024-02727-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 06/06/2024] [Accepted: 06/19/2024] [Indexed: 07/05/2024]
Abstract
Understanding the impact of climate warming on crop yield and its associated mechanisms is paramount for ensuring food security. Here, we conduct a thorough analysis of the impact of vapor pressure deficit (VPD) on maize yield, leveraging a rich dataset comprising temporal and spatial observations spanning 40 years across 31 maize-growing locations in Northeast and North China. Our investigation extends to the influencing meteorological factors that drive changes in VPD during the maize growing phase. Regression analysis reveals a linear negative relationship between VPD and maize yield, demonstrating diverse spatiotemporal characteristics. Spatially, maize yield exhibits higher sensitivity to VPD in Northeast China (NEC), despite the higher VPD levels in North China Plain (NCP). The opposite patterns reveal that high VPD not invariably lead to detrimental yield impacts. Temporal analysis sheds light on an upward trend in VPD, with values of 0.05 and 0.02 kPa/10yr, accompanied by significant abrupt changes around 1996 in NEC and 2006 in NCP, respectively. These temporal shifts contribute to the heightened sensitivity of maize yield in both regions. Importantly, we emphasize the need to pay closer attention to the substantial the impact of actual vapor pressure on abrupt VPD changes during the maize growing phase, particularly in the context of ongoing climate warming.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China
| | - Yanxia Zhao
- State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China.
| | - Qing Sun
- State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China
| | - Sining Chen
- State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China
| | - Shao Sun
- State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China
| | - Li Liu
- State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China
| |
Collapse
|
5
|
González de Andrés E, Gazol A, Querejeta JI, Colangelo M, Camarero JJ. Mistletoe-induced carbon, water and nutrient imbalances are imprinted on tree rings. TREE PHYSIOLOGY 2024; 44:tpae106. [PMID: 39163491 PMCID: PMC11404520 DOI: 10.1093/treephys/tpae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/15/2024] [Accepted: 08/19/2024] [Indexed: 08/22/2024]
Abstract
Mistletoes are xylem-tapping hemiparasites that rely on their hosts for water and nutrient uptake. Thus, they impair tree performance in the face of environmental stress via altering the carbon and water relations and nutritional status of trees. To improve our understanding of physiological responses to mistletoe and ongoing climate change, we investigated radial growth, stable carbon and oxygen isotopic signals, and elemental composition of tree rings in silver fir (Abies alba Mill.) and Scots pine (Pinus sylvestris L.) forests infested with Viscum album L. We compared temporal series (1990-2020) of basal area increment (BAI), intrinsic water-use efficiency (iWUE), oxygen isotope composition (δ18O), nutrient concentrations and stoichiometric ratios between non-infested (NI) and severely infested (SI) fir and pine trees from populations located close to the xeric distribution limit of the species in north-eastern Spain. The SI trees showed historically higher growth, but the BAI trend was negative for more than three decades before 2020 and their growth rates became significantly lower than those of NI trees by the mid-2010s. Mistletoe infestation was related to an enhanced sensitivity of radial growth to vapour pressure deficit (atmospheric drought). The SI trees showed less pronounced iWUE increases (fir) and lower iWUE values (pine) than NI trees. The lower tree-ring δ18O values of SI trees may be the result of several superimposed effects operating simultaneously, including leaf-level evaporative enrichment, source water isotopic signals, and anatomical and phenological differences. We observed a deterioration of potassium (K) nutrition in tree-ring wood of both species in SI trees, along with accumulation of manganese (Mn). We suggest that such nutritional patterns are driven by the indirect effect of mistletoe-induced drought stress, particularly in pine. The combined analyses of different physiological indicators imprinted on tree rings provided evidence of the progressive onset of carbon, water and nutrient imbalances in mistletoe-infested conifers inhabiting seasonally dry regions.
Collapse
Affiliation(s)
- Ester González de Andrés
- Conservación de Ecosistemas, Instituto Pirenaico de Ecología (IPE-CSIC), Avda Montañana 1005, 50059 Zaragoza, Spain
| | - Antonio Gazol
- Conservación de Ecosistemas, Instituto Pirenaico de Ecología (IPE-CSIC), Avda Montañana 1005, 50059 Zaragoza, Spain
| | - José Ignacio Querejeta
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus de Espinardo, 30100 Murcia, Spain
| | - Michele Colangelo
- Conservación de Ecosistemas, Instituto Pirenaico de Ecología (IPE-CSIC), Avda Montañana 1005, 50059 Zaragoza, Spain
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali, Università della Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - J Julio Camarero
- Conservación de Ecosistemas, Instituto Pirenaico de Ecología (IPE-CSIC), Avda Montañana 1005, 50059 Zaragoza, Spain
| |
Collapse
|
6
|
Novick KA, Ficklin DL, Grossiord C, Konings AG, Martínez-Vilalta J, Sadok W, Trugman AT, Williams AP, Wright AJ, Abatzoglou JT, Dannenberg MP, Gentine P, Guan K, Johnston MR, Lowman LEL, Moore DJP, McDowell NG. The impacts of rising vapour pressure deficit in natural and managed ecosystems. PLANT, CELL & ENVIRONMENT 2024; 47:3561-3589. [PMID: 38348610 DOI: 10.1111/pce.14846] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 08/16/2024]
Abstract
An exponential rise in the atmospheric vapour pressure deficit (VPD) is among the most consequential impacts of climate change in terrestrial ecosystems. Rising VPD has negative and cascading effects on nearly all aspects of plant function including photosynthesis, water status, growth and survival. These responses are exacerbated by land-atmosphere interactions that couple VPD to soil water and govern the evolution of drought, affecting a range of ecosystem services including carbon uptake, biodiversity, the provisioning of water resources and crop yields. However, despite the global nature of this phenomenon, research on how to incorporate these impacts into resilient management regimes is largely in its infancy, due in part to the entanglement of VPD trends with those of other co-evolving climate drivers. Here, we review the mechanistic bases of VPD impacts at a range of spatial scales, paying particular attention to the independent and interactive influence of VPD in the context of other environmental changes. We then evaluate the consequences of these impacts within key management contexts, including water resources, croplands, wildfire risk mitigation and management of natural grasslands and forests. We conclude with recommendations describing how management regimes could be altered to mitigate the otherwise highly deleterious consequences of rising VPD.
Collapse
Affiliation(s)
- Kimberly A Novick
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana, USA
| | - Darren L Ficklin
- Department of Geography, Indiana University, Bloomington, Indiana, USA
| | - Charlotte Grossiord
- Plant Ecology Research Laboratory (PERL), School of Architecture, Civil and Environmental Engineering (EPFL), Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, Lausanne, Switzerland
| | - Alexandra G Konings
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Jordi Martínez-Vilalta
- CREAF, Bellaterra, Catalonia, Spain
- Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Walid Sadok
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota, USA
| | - Anna T Trugman
- Department of Geography, University of California, Santa Barbara, California, USA
| | - A Park Williams
- Department of Geography, University of California, Los Angeles, California, USA
| | - Alexandra J Wright
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, USA
| | - John T Abatzoglou
- Management of Complex Systems Department, University of California, Merced, California, USA
| | - Matthew P Dannenberg
- Department of Geographical and Sustainability Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Pierre Gentine
- Department of Earth and Environmental Engineering, Columbia University, New York, New York, USA
- Center for Learning the Earth with Artificial Intelligence and Physics (LEAP), Columbia University, New York, New York, USA
| | - Kaiyu Guan
- Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Natural Resources and Environmental Sciences, College of Agricultural, Consumers, and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- National Center for Supercomputing Applications, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Miriam R Johnston
- Department of Geographical and Sustainability Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Lauren E L Lowman
- Department of Engineering, Wake Forest University, Winston-Salem, North Carolina, USA
| | - David J P Moore
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, USA
| | - Nate G McDowell
- Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, Washington, USA
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
7
|
Berauer BJ, Steppuhn A, Schweiger AH. The multidimensionality of plant drought stress: The relative importance of edaphic and atmospheric drought. PLANT, CELL & ENVIRONMENT 2024; 47:3528-3540. [PMID: 38940730 DOI: 10.1111/pce.15012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 05/02/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024]
Abstract
Drought threatens plant growth and related ecosystem services. The emergence of plant drought stress under edaphic drought is well studied, whilst the importance of atmospheric drought only recently gained momentum. Yet, little is known about the interaction and relative contribution of edaphic and atmospheric drought on the emergence of plant drought stress. We conducted a gradient experiment, fully crossing gravimetric water content (GWC: maximum water holding capacity-permanent wilting point) and vapour pressure deficit (VPD: 1-2.25 kPa) using five wheat varieties from three species (Triticum monococcum, T. durum & T. aestivum). We quantified the occurrence of plant drought stress on molecular (abscisic acid), cellular (stomatal conductance), organ (leaf water potential) and stand level (evapotranspiration). Plant drought stress increased with decreasing GWC across all organizational levels. This effect was magnified nonlinearly by VPD after passing a critical threshold of soil water availability. At around 20%GWC (soil matric potential 0.012 MPa), plants lost their ability to regulate leaf water potential via stomata regulation, followed by the emergence of hydraulic dysfunction. The emergence of plant drought stress is characterized by changing relative contributions of soil versus atmosphere and their non-linear interaction. This highly non-linear response is likely to abruptly alter plant-related ecosystem services in a drying world.
Collapse
Affiliation(s)
- Bernd J Berauer
- Department of Plant Ecology, Institute of Landscape and Plant Ecology, University of Hohenheim, Stuttgart, Germany
| | - Anke Steppuhn
- Department of Molecular Botany, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Andreas H Schweiger
- Department of Plant Ecology, Institute of Landscape and Plant Ecology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
8
|
Li X, Huntingford C, Wang K, Cui J, Xu H, Kan F, Anniwaer N, Yang H, Peñuelas J, Piao S. Increased crossing of thermal stress thresholds of vegetation under global warming. GLOBAL CHANGE BIOLOGY 2024; 30:e17406. [PMID: 38982862 DOI: 10.1111/gcb.17406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/27/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024]
Abstract
Temperature extremes exert a significant influence on terrestrial ecosystems, but the precise levels at which these extremes trigger adverse shifts in vegetation productivity have remained elusive. In this study, we have derived two critical thresholds, using standard deviations (SDs) of growing-season temperature and satellite-based vegetation productivity as key indicators. Our findings reveal that, on average, vegetation productivity experiences rapid suppression when confronted with temperature anomalies exceeding 1.45 SD above the mean temperature during 2001-2018. Furthermore, at temperatures exceeding 2.98 SD above the mean, we observe the maximum level of suppression, particularly in response to the most extreme high-temperature events. When Earth System Models are driven by a future medium emission scenario, they project that mean temperatures will routinely surpass both of these critical thresholds by approximately the years 2050 and 2070, respectively. However, it is important to note that the timing of these threshold crossings exhibits spatial variation and will appear much earlier in tropical regions. Our finding highlights that restricting global warming to just 1.5°C can increase safe areas for vegetation growth by 13% compared to allowing warming to reach 2°C above preindustrial levels. This mitigation strategy helps avoid exposure to detrimental extreme temperatures that breach these thresholds. Our study underscores the pivotal role of climate mitigation policies in fostering the sustainable development of terrestrial ecosystems in a warming world.
Collapse
Affiliation(s)
- Xiangyi Li
- Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | | | - Kai Wang
- Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Jiangpeng Cui
- Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
- Key Laboratory of Alpine Ecology and Biodiversity, Center for Excellence in Tibetan Earth Science, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Hao Xu
- Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Fei Kan
- Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Nazhakaiti Anniwaer
- Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Hui Yang
- Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
- Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Catalonia, Spain
- CREAF, Barcelona, Catalonia, Spain
| | - Shilong Piao
- Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
- Key Laboratory of Alpine Ecology and Biodiversity, Center for Excellence in Tibetan Earth Science, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Dali MH, Abidnejad R, Salim MH, Bhattarai M, Imani M, Rojas OJ, Greca LG, Tardy BL. Benchmarking the Humidity-Dependent Mechanical Response of (Nano)fibrillated Cellulose and Dissolved Polysaccharides as Sustainable Sand Amendments. Biomacromolecules 2024; 25:2367-2377. [PMID: 38456841 PMCID: PMC11005006 DOI: 10.1021/acs.biomac.3c01294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/09/2024]
Abstract
Soil quality is one of the main limiting factor in the development of the food sector in arid areas, mainly due to its poor mechanics and lack of water retention. Soil's organic carbon is nearly absent in arid soils, though it is important for water and nutrient transport, to soil mechanics, to prevent erosion, and as a long-term carbon sink. In this study, we evaluate the potential benefits that are brought to inert sand by the incorporation of a range of, mainly, cellulosic networks in their polymeric or structured (fiber) forms, analogously to those found in healthy soils. We explore the impact of a wide range of nonfood polysaccharide-based amendments, including pulp fibers, nanocellulose, cellulose derivatives, and other readily available polysaccharide structures derived from arthropods (chitosan) or fruit peels (pectin) residues. A practical methodology is presented to form sand-polymer composites, which are evaluated for their soil mechanics as a function of humidity and the dynamics of their response to water. The mechanics are correlated to the network of polymers formed within the pores of the sandy soil, as observed by electron microscopy. The response to water is correlated to both the features of the network and the individual polysaccharides' physicochemical features. We expect this work to provide a rapid and reproducible methodology to benchmark sustainable organic amendments for arid soils.
Collapse
Affiliation(s)
- M-Haidar
A. Dali
- Department
of Chemical Engineering, Khalifa University, Abu Dhabi, United
Arab Emirates
- Research
and Innovation Center on CO2 and Hydrogen, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Roozbeh Abidnejad
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Mohamed Hamid Salim
- Department
of Chemical Engineering, Khalifa University, Abu Dhabi, United
Arab Emirates
- Research
and Innovation Center on CO2 and Hydrogen, Khalifa University, Abu Dhabi, United Arab Emirates
- Center
for Membrane and Advanced Water Technology, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Mamata Bhattarai
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Monireh Imani
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Orlando J. Rojas
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
- Bioproducts
Institute, Department of Chemical and Biological Engineering, Department
of Chemistry and Department of Wood Science, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Luiz G. Greca
- Laboratory
for Cellulose & Wood Materials, Empa—Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Blaise L. Tardy
- Department
of Chemical Engineering, Khalifa University, Abu Dhabi, United
Arab Emirates
- Research
and Innovation Center on CO2 and Hydrogen, Khalifa University, Abu Dhabi, United Arab Emirates
- Center
for Membrane and Advanced Water Technology, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
10
|
Yao Y, Liu Y, Fu F, Song J, Wang Y, Han Y, Wu T, Fu B. Declined terrestrial ecosystem resilience. GLOBAL CHANGE BIOLOGY 2024; 30:e17291. [PMID: 38647225 DOI: 10.1111/gcb.17291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/08/2024] [Accepted: 03/29/2024] [Indexed: 04/25/2024]
Abstract
Terrestrial ecosystem resilience is crucial for maintaining the structural and functional stability of ecosystems following disturbances. However, changes in resilience over the past few decades and the risk of future resilience loss under ongoing climate change are unclear. Here, we identified resilience trends using two remotely sensed vegetation indices, analyzed the relative importance of potential driving factors to resilience changes, and finally assessed the risk of future resilience loss based on the output data of eight models from CMIP6. The results revealed that more than 60% of the ecosystems experienced a conversion from an increased trend to a declined trend in resilience. Attribution analysis showed that the most important driving factors of declined resilience varied regionally. The declined trends in resilience were associated with increased precipitation variability in the tropics, decreased vegetation cover in arid region, increased temperature variability in temperate regions, and increased average temperature in cold regions. CMIP6 reveals that terrestrial ecosystems under SPP585 are expected to experience more intense declines in resilience than those under SSP126 and SSP245, particularly in cold regions. These results highlight the risk of continued degradation of ecosystem resilience in the future and the urgency of climate mitigation actions.
Collapse
Affiliation(s)
- Ying Yao
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Yanxu Liu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Fengyu Fu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Jiaxi Song
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Yijia Wang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Yu Han
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Tianjing Wu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Bojie Fu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Shekhar A, Hörtnagl L, Paul-Limoges E, Etzold S, Zweifel R, Buchmann N, Gharun M. Contrasting impact of extreme soil and atmospheric dryness on the functioning of trees and forests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:169931. [PMID: 38199368 DOI: 10.1016/j.scitotenv.2024.169931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Recent studies indicate an increase in the frequency of extreme compound dryness days (days with both extreme soil AND air dryness) across central Europe in the future, with little information on their impact on the functioning of trees and forests. This study aims to quantify and assess the impact of extreme soil dryness, extreme air dryness, and extreme compound dryness on the functioning of trees and forests. For this, >15 years of ecosystem-level (carbon dioxide and water vapor fluxes) and 6-10 years of tree-level measurements (transpiration and growth) each from a montane mixed deciduous forest (CH-Lae) and a subalpine evergreen coniferous forest (CH-Dav) in Switzerland, is used. The results showed extreme air dryness limitation on CO2 fluxes and extreme soil dryness limitations on water vapor fluxes. Additionally, CH-Dav was mainly affected by extreme air dryness whereas CH-Lae was affected by both extreme soil dryness and extreme air dryness. The impact of extreme compound dryness on net CO2 uptake (about 75 % decrease) was more due to higher increased ecosystem respiration (40 % and 70 % increase at CH-Dav and CH-Lae, respectively) than decreased gross primary productivity (10 % and 40 % decrease at CH-Dav and CH-Lae, respectively). A significant negative impact on evapotranspiration and transpiration was only observed at CH-Lae during extreme soil and compound dryness (about 25 % decrease). Furthermore, with some differences, the tree-level impact on tree water deficit, transpiration, and growth were consistent with the ecosystem-level impact on carbon uptake and evapotranspiration. Finally, the impact of extreme dryness showed no significant relationship with tree allometry (diameter and height) but across different tree species. The projected future is likely to expose these forest areas to more extreme and frequent dryness conditions, thus compromising the functioning of trees and forests, thereby calling for management interventions to increase the adaptive capacity and resistance of these forests.
Collapse
Affiliation(s)
- Ankit Shekhar
- Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland.
| | - Lukas Hörtnagl
- Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| | - Eugénie Paul-Limoges
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Sophia Etzold
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Roman Zweifel
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Nina Buchmann
- Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| | - Mana Gharun
- Faculty of Geosciences, University of Münster, 48149 Münster, Germany
| |
Collapse
|
12
|
Krieg CP, Smith DD, Adams MA, Berger J, Layegh Nikravesh N, von Wettberg EJ. Greater ecophysiological stress tolerance in the core environment than in extreme environments of wild chickpea (Cicer reticulatum). Sci Rep 2024; 14:5744. [PMID: 38459248 PMCID: PMC10923935 DOI: 10.1038/s41598-024-56457-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/05/2024] [Indexed: 03/10/2024] Open
Abstract
Global climate change and land use change underlie a need to develop new crop breeding strategies, and crop wild relatives (CWR) have become an important potential source of new genetic material to improve breeding efforts. Many recent approaches assume adaptive trait variation increases towards the relative environmental extremes of a species range, potentially missing valuable trait variation in more moderate or typical climates. Here, we leveraged distinct genotypes of wild chickpea (Cicer reticulatum) that differ in their relative climates from moderate to more extreme and perform targeted assessments of drought and heat tolerance. We found significance variation in ecophysiological function and stress tolerance between genotypes but contrary to expectations and current paradigms, it was individuals from more moderate climates that exhibited greater capacity for stress tolerance than individuals from warmer and drier climates. These results indicate that wild germplasm collection efforts to identify adaptive variation should include the full range of environmental conditions and habitats instead of only environmental extremes, and that doing so may significantly enhance the success of breeding programs broadly.
Collapse
Affiliation(s)
| | | | - Mark A Adams
- Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Jens Berger
- CSIRO, Agriculture and Food, Perth, WA, Australia
| | | | - Eric J von Wettberg
- Department of Plant and Soil Science, University of Vermont, Burlington, VT, USA
| |
Collapse
|
13
|
Candido-Ribeiro R, Aitken SN. Weak local adaptation to drought in seedlings of a widespread conifer. THE NEW PHYTOLOGIST 2024; 241:2395-2409. [PMID: 38247230 DOI: 10.1111/nph.19543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024]
Abstract
Tree seedlings from populations native to drier regions are often assumed to be more drought tolerant than those from wetter provenances. However, intraspecific variation in drought tolerance has not been well-characterized despite being critical for developing climate change mitigation and adaptation strategies, and for predicting the effects of drought on forests. We used a large-scale common garden drought-to-death experiment to assess range-wide variation in drought tolerance, measured by decline of photosynthetic efficiency, growth, and plastic responses to extreme summer drought in seedlings of 73 natural populations of the two main varieties of Douglas-fir (Pseudotsuga menziesii var. menziesii and var. glauca). Local adaptation to drought was weak in var. glauca and nearly absent in menziesii. Var. glauca showed higher tolerance to drought but slower growth than var. menziesii. Clinal variation in drought tolerance and growth species-wide was mainly associated with temperature rather than precipitation. A higher degree of plasticity for growth was observed in var. menziesii in response to extreme drought. Genetic variation for drought tolerance in seedlings within varieties is maintained primarily within populations. Selective breeding within populations may facilitate adaptation to drought more than assisted gene flow.
Collapse
Affiliation(s)
- Rafael Candido-Ribeiro
- Department of Forest and Conservation Sciences, Centre for Forest Conservation Genetics, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Sally N Aitken
- Department of Forest and Conservation Sciences, Centre for Forest Conservation Genetics, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
14
|
He L, Guo J, Yang W, Jiang Q, Li X, Chen S, Zhang M, Li D. Changes in vegetation in China's drylands are closely related to afforestation compared with climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169121. [PMID: 38070552 DOI: 10.1016/j.scitotenv.2023.169121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/02/2023] [Accepted: 12/03/2023] [Indexed: 01/18/2024]
Abstract
The response of vegetation to climate change and human activities has attracted considerable attention. However, quantitative studies on the effects of climate change and human activities on dryland vegetation in different seasons remain unclear. This study investigated the impacts of precipitation, temperature, soil water storage (SWS) (top [0-7 cm], shallow [7-28 cm], and middle [28-100 cm] layers), vapor pressure deficit (VPD), and afforestation on vegetation as well as their relative contribution rates during the rainy season ([RS], June to September), dry season ([DS], November to April), transition season ([TS], May and October), and all year period (AY) in China's drylands from 2001 to 2020 using the first-difference method. Areas with precipitation and SWS showing significant positive correlation with dryland vegetation (p < 0.05) were found to be larger in RS than in DS and TS, and the positive effect of SWS increased with soil depth in the 0-28 cm interval. Increasing VPD induced a significant negative effect on vgetation during RS but it was not predominant in DS and TS. Afforestation showed an extremely significant positive correlated with dryland vegetation across >60 % of China's dryland areas (p < 0.01), but this improvement was found to be limited to regions with the highest afforestation area. Moreover, dryland vegetation dynamics were driven by afforestation in all seasons, with contribution rates of 64.23 %-71.46 %. The effects of SWS and VPD on vegetation driven by precipitation and temperature exceeded the direct effects of precipitation and temperature. Among climatic factors, VPD showed a major regulating effect on dryland vegetation at the top and shallow soil layers in almost all seasons, whereas the relative contribution rate of SWS increased with soil layer. The findings can provide a scientific reference for the sustainable development and protection of drylands under global warming.
Collapse
Affiliation(s)
- Liang He
- Key Laboratory of State Forestry Administration on Soil and Water Conservation, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Jianbin Guo
- Key Laboratory of State Forestry Administration on Soil and Water Conservation, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China.
| | - Wenbin Yang
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China
| | - Qunou Jiang
- Key Laboratory of State Forestry Administration on Soil and Water Conservation, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Xuebin Li
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, College of Ecology and Environmental Science, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Shenggang Chen
- Key Laboratory of State Forestry Administration on Soil and Water Conservation, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Mingliang Zhang
- Bureau of Aohan Banner Forestry and Grassland, Aohan 024300, China
| | - Donghui Li
- Xinhui forest farm of Aohan Banner, Aohan 024300, China
| |
Collapse
|
15
|
Liu X, Zhao W, Yao Y, Pereira P. The rising human footprint in the Tibetan Plateau threatens the effectiveness of ecological restoration on vegetation growth. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119963. [PMID: 38169261 DOI: 10.1016/j.jenvman.2023.119963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/13/2023] [Accepted: 12/24/2023] [Indexed: 01/05/2024]
Abstract
Ecological restoration projects in the Tibetan Plateau aimed to reverse ecosystem degradation and safeguard the fragile alpine ecological environment. However, it is still being determined if the vegetation restoration is successful on a large scale or reaches the expected magnitude, restricting our ability to adapt practices to maximise the benefit. With multiple vegetation indices (VIs: NDVI, LAI, and GPP) from satellite observations and random forest machine-learning models, we performed an attribution study on vegetation growth trends caused by climate change and human activities. Then, we further explored the relationship between vegetation growth and ecological projects and human footprint without the influence of climate. The results showed that climatic change was a relatively strong driver of vegetation growth. The positive contributions of ecological restoration occurred only in half of the plateau due to the increased human footprint. Vegetation enhancement resulting from ecological restoration occurred in 13.1%-23.1% of the plateau. Among these values, ecological restoration counteracted the negative climate effects in 4.7%-8.3% of the plateau (about half of the negative climate effect area). In forest and grassland protection areas, the ecological restoration was more successful. The study provides a better understanding of the role of ecological projects in vegetation restoration and potential threats to its effectiveness. This is essential to improve future restoration projects.
Collapse
Affiliation(s)
- Xiaoxing Liu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China; Institute of Land Surface System and Sustainable Development, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Wenwu Zhao
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China; Institute of Land Surface System and Sustainable Development, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China.
| | - Ying Yao
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China; Institute of Land Surface System and Sustainable Development, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Paulo Pereira
- Environmental Management Center, Mykolas Romeris University, Ateities g. 20, LT-08303, Vilnius, Lithuania
| |
Collapse
|
16
|
Mu Z, Asensio D, Sardans J, Ogaya R, Llusià J, Filella I, Liu L, Wang X, Peñuelas J. Chronic drought alters extractable concentrations of mineral elements in Mediterranean forest soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167062. [PMID: 37709077 DOI: 10.1016/j.scitotenv.2023.167062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Soil mineral elements play a crucial role in ecosystem productivity and pollution dynamics. Climate models project an increase in drought severity in the Mediterranean Basin in the coming decades, which could lead to changes in the composition and concentrations of mineral elements in soils. These changes can have significant impacts on the fundamental processes of plant-soil cycles. While previous studies have predominantly focused on carbon, nitrogen, and phosphorus, there is a notable lack of research on the biogeochemical responses of other mineral elements to increasing drought. In this study, we investigated the effects of chronic drought (15 years of experimental rainfall exclusion) and seasonal drought (summer period) on the extractable soil concentrations of 17 mineral elements (arsenic (As), calcium (Ca), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), mercury (Hg), potassium (K), magnesium (Mg), manganese (Mn), molybdenum (Mo), nickel (Ni), lead (Pb), sulphur (S), strontium (Sr), vanadium (V) and zinc (Zn)) in a Mediterranean holm oak forest. We also explored the potential biotic and abiotic mechanisms underlying the changes in extractable elemental concentrations under chronic drought conditions. Our findings reveal that soil elemental concentrations varied significantly due to seasonal changes and chronic drought, with soil microclimate, biological activity, and organic matter being the main drivers of this variability. Levels of soil water content primarily explained the observed variations in soil elemental concentrations. Most of the mineral elements (13 out of 17) exhibited higher concentrations during winter-spring (wet seasons) compared to summer-autumn (dry seasons). The chronic drought treatment resulted in K limitation, increasing vegetation vulnerability to drought stress. Conversely, the accumulation of S in soils due to drought may intensify the risk of S losses from the plant-soil system. Under drought conditions, certain trace elements (particularly Mn, V, and Cd) exhibited increased extractability, posing potential risks to plant health and the exportation of these elements into continental waters. Overall, our results suggest that alterations in mineral element concentrations under future drier conditions could promote ecosystem degradation and pollution dispersion in the Mediterranean Basin. Understanding and predicting these changes are essential for effective ecosystem management and mitigating the potential negative impacts on plant health and water quality.
Collapse
Affiliation(s)
- Zhaobin Mu
- CSIC, Global Ecology CREAF-CSIC-UAB, Cerdanyola del Valles, 08193 Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Valles, 08193 Barcelona, Catalonia, Spain; State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Dolores Asensio
- CSIC, Global Ecology CREAF-CSIC-UAB, Cerdanyola del Valles, 08193 Barcelona, Catalonia, Spain; Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano 39100, Italy.
| | - Jordi Sardans
- CSIC, Global Ecology CREAF-CSIC-UAB, Cerdanyola del Valles, 08193 Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Valles, 08193 Barcelona, Catalonia, Spain
| | - Romà Ogaya
- CSIC, Global Ecology CREAF-CSIC-UAB, Cerdanyola del Valles, 08193 Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Valles, 08193 Barcelona, Catalonia, Spain
| | - Joan Llusià
- CSIC, Global Ecology CREAF-CSIC-UAB, Cerdanyola del Valles, 08193 Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Valles, 08193 Barcelona, Catalonia, Spain
| | - Iolanda Filella
- CSIC, Global Ecology CREAF-CSIC-UAB, Cerdanyola del Valles, 08193 Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Valles, 08193 Barcelona, Catalonia, Spain
| | - Lei Liu
- Institute of Ecology, Jiangsu Key Laboratory of Agricultural Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Josep Peñuelas
- CSIC, Global Ecology CREAF-CSIC-UAB, Cerdanyola del Valles, 08193 Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Valles, 08193 Barcelona, Catalonia, Spain
| |
Collapse
|
17
|
Zheng C, Wang S, Chen J, Xiang N, Sun L, Chen B, Fu Z, Zhu K, He X. Divergent impacts of VPD and SWC on ecosystem carbon-water coupling under different dryness conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167007. [PMID: 37739082 DOI: 10.1016/j.scitotenv.2023.167007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/24/2023]
Abstract
Ecosystem water use efficiency (WUE) is an indicator of carbon-water interactions and is defined as the ratio of gross primary productivity (GPP) to evapotranspiration (ET). However, it is currently unclear how WUE responds to atmospheric and soil drought events in terrestrial ecosystems with different dryness conditions. Additionally, the contributions of GPP and ET to the WUE response remain poorly understood. Based on measurements from 26 flux tower sites distributed worldwide, the binning method and random forest model were employed to separate the sensitivities of daily ecosystem WUE, GPP, and ET to vapor pressure deficit (VPD) and soil water content (SWC) under different dryness conditions (dryness index = potential evapotranspiration/precipitation, DI). Results showed that the sensitivity of WUE to VPD was negative at humid sites (DI < 1), while the sensitivity of WUE to SWC was positive at arid sites (DI > 2). Furthermore, the contribution of GPP to VPD-induced WUE variability was 63 % at humid sites, and the contribution of ET to SWC-induced WUE variability was 68 % when SWC was less than the 60th percentile at arid sites. Consequently, one increasing VPD-induced decrease in GPP was generally linked to a decrease in WUE at humid sites, and one drying soil moisture-caused decrease in ET was linked to a WUE increase under low SWC conditions at arid sites. Finally, VPD had a stronger effect on WUE than SWC when VPD was less than the 90th percentile or SWC was greater than the 50th percentile. Our findings underscore the importance of considering ecosystem dryness when investigating the impacts of VPD and SWC on ecosystem carbon-water coupling.
Collapse
Affiliation(s)
- Chen Zheng
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaoqiang Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Regional Ecological Process and Environment Evolution, School of Geography and Information Engineering, Chinese University of Geosciences, Wuhan 430074, China.
| | - Jinghua Chen
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Xiang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leigang Sun
- Institute of Geographical Sciences, Hebei Academy of Sciences, Shijiazhuang 050011, China; Hebei Technology Innovation Center for Geographic Information Application, Shijiazhuang 050011, China.
| | - Bin Chen
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Fu
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Kai Zhu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinlei He
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
18
|
Chen H, Zhao J, Zhang H, Zhang Z, Guo X, Wang M. Detection and attribution of the start of the growing season changes in the Northern Hemisphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166607. [PMID: 37643705 DOI: 10.1016/j.scitotenv.2023.166607] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/10/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Global climate change has led to significant changes in land surface phenology. At present, research on the factors influencing the start of the growing season (SOS) mainly focuses on single factor effects, such as temperature and precipitation, ignoring the combined action of multiple factors. The impact of multiple factors on the spatial and temporal patterns of the SOS in the Northern Hemisphere is not clear, and it is necessary to combine multiple factors to quantify the degrees of influence of different factors on the SOS. Based on the GIMMS3g NDVI dataset, CRU climate data and other factor data, we used geographic detector model, random forest regression model, multiple linear regression, partial correlation analysis and Sen + Mann-Kendall trend analysis to explore the variation of the SOS in the Northern Hemisphere to reveal the main driving factors and impact threshold of 17 influencing factors on the SOS. The results showed that (1) during the past 34 years (1982-2015), the SOS in Europe and Asia mainly showed an advancing trend, whereas the SOS in North America mainly showed a delaying trend. (2) The SOS was mainly controlled by frost frequency, temperature and humidity. Increasing frost frequency inhibited the advancement of the SOS, and increasing temperature and humidity promoted the advancement of the SOS. (3) There were thresholds for the influences of the driving factors on the SOS. Outside the threshold ranges, the response mechanism of the SOS to driving factors changed. The results are important for understanding the response of the SOS to global climate change.
Collapse
Affiliation(s)
- Haihua Chen
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China; Urban Remote Sensing Application Innovation Center, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China
| | - Jianjun Zhao
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China; Urban Remote Sensing Application Innovation Center, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China.
| | - Hongyan Zhang
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China; Urban Remote Sensing Application Innovation Center, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China.
| | - Zhengxiang Zhang
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China; Urban Remote Sensing Application Innovation Center, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China
| | - Xiaoyi Guo
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China; Urban Remote Sensing Application Innovation Center, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China
| | - Meiyu Wang
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China; Urban Remote Sensing Application Innovation Center, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
19
|
Bai Y, Liu M, Guo Q, Wu G, Wang W, Li S. Diverse responses of gross primary production and leaf area index to drought on the Mongolian Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166507. [PMID: 37619736 DOI: 10.1016/j.scitotenv.2023.166507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/04/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Drought is a crucial factor regulating vegetation growth on the Mongolian Plateau (MP). Previous studies of drought effects on the MP have mainly concentrated on drought characterization, while the response of vegetation to drought remains unclear. To close this knowledge gap, we examined the response of MP vegetation to drought in terms of gross primary production (GPP) and leaf area index (LAI) from 1982 to 2018. Our findings show that intra-seasonally the frequency of drought occurrence in autumn had a greater impact on GPP (relative importance over 70 %), while the intensity of drought was more influential for LAI (relative importance approximately 60 %). Inter-seasonally, summer droughts had the most pronounced effect on vegetation (with median standardized anomalies of -0.72 for GPP and -0.4 for LAI, respectively). Additionally, we found that meteorological drought was more consistent with atmospheric aridity (high vapor pressure deficit) than soil drought (low soil moisture). This study advances knowledge of vegetation's susceptibility to climate extremes and improves the precision of predicting ecosystem response to climate change.
Collapse
Affiliation(s)
- Yu Bai
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100190, China
| | - Menghang Liu
- University of Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Regional Sustainable Development Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Qun Guo
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Genan Wu
- Institute of Spacecraft Application System Engineering, China Academy of Space Technology, Beijing 100094, China
| | - Weimin Wang
- Shenzhen Ecological Environmental Monitoring Center of Guangdong Province, Shenzhen 518049, China; Guangdong Greater Bay Area, Change and Comprehensive Treatment of Regional Ecology and Environment, National Observation and Research Station, Shenzhen 523722, China; State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Rapid Urbanization Region, Shenzhen 518000, China
| | - Shenggong Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
20
|
Qiu R, Han G, Li S, Tian F, Ma X, Gong W. Soil moisture dominates the variation of gross primary productivity during hot drought in drylands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165686. [PMID: 37482354 DOI: 10.1016/j.scitotenv.2023.165686] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
The frequency and severity of hot drought will increase in the future due to impact of climate change and human activities, threatening the sustainability of terrestrial ecosystems and human societies. Hot drought is a typical type of drought event, high vapor pressure deficit (VPD) and low soil moisture (SM) are its main characteristics of hot drought, with increasing water stress on vegetation and exacerbating hydrological drought and ecosystem risks. However, our understanding of the effects of high VPD and low SM on vegetation productivity is limited, because these two variables are strongly coupled and influenced by other climatic drivers. The southwestern United States experienced one of the most severe hot drought events on record in 2020. In this study, we used SM and gross primary productivity (GPP) datasets from Soil Moisture Active and Passive (SMAP), as well as VPD and other meteorological datasets from gridMET. We decoupled the effects of different meteorological factors on GPP at monthly and daily scales using partial correlation analysis, partial least squares regression, and binning methods. We found that SM anomalies contribute more to GPP anomalies than VPD anomalies at monthly and daily scales. Especially at the daily scale, as the decoupled SM anomalies increased, the GPP anomalies increased. However, there is no significant change in GPP anomalies as VPD increases. For all the vegetation types and arid zones, SM dominated the variation in GPP, followed by VPD or maximum temperature. At the flux tower scale, decoupled soil water content (SWC) also dominated changes in GPP, compared to VPD. In the next century, hot drought will occur frequently in dryland regions, where GPP is one of the highest uncertainties in terrestrial ecosystems. Our study has important implications for identifying the strong coupling of meteorological factors and their impact on vegetation under climate change.
Collapse
Affiliation(s)
- Ruonan Qiu
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
| | - Ge Han
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China; Perception and Effectiveness Assessment for Carbon-neutral Efforts, Engineering Research Center of Ministry of Education, Wuhan, China.
| | - Siwei Li
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China.
| | - Feng Tian
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
| | - Xin Ma
- State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China
| | - Wei Gong
- Electronic Information School, Wuhan University, Wuhan 430079, China; Hubei Luojia Laboratory, Wuhan, China
| |
Collapse
|
21
|
Giardina F, Gentine P, Konings AG, Seneviratne SI, Stocker BD. Diagnosing evapotranspiration responses to water deficit across biomes using deep learning. THE NEW PHYTOLOGIST 2023; 240:968-983. [PMID: 37621238 DOI: 10.1111/nph.19197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/23/2023] [Indexed: 08/26/2023]
Abstract
Accounting for water limitation is key to determining vegetation sensitivity to drought. Quantifying water limitation effects on evapotranspiration (ET) is challenged by the heterogeneity of vegetation types, climate zones and vertically along the rooting zone. Here, we train deep neural networks using flux measurements to study ET responses to progressing drought conditions. We determine a water stress factor (fET) that isolates ET reductions from effects of atmospheric aridity and other covarying drivers. We regress fET against the cumulative water deficit, which reveals the control of whole-column moisture availability. We find a variety of ET responses to water stress. Responses range from rapid declines of fET to 10% of its water-unlimited rate at several savannah and grassland sites, to mild fET reductions in most forests, despite substantial water deficits. Most sensitive responses are found at the most arid and warm sites. A combination of regulation of stomatal and hydraulic conductance and access to belowground water reservoirs, whether in groundwater or deep soil moisture, could explain the different behaviors observed across sites. This variety of responses is not captured by a standard land surface model, likely reflecting simplifications in its representation of belowground water storage.
Collapse
Affiliation(s)
- Francesco Giardina
- Institute of Agricultural Sciences, Department of Environmental Systems Science, ETH Zürich, Zürich, CH-8092, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, CH-8903, Switzerland
| | - Pierre Gentine
- Department of Earth and Environmental Engineering, Columbia University, New York, NY, 10027, USA
- Center for Learning the Earth with Artificial Intelligence and Physics (LEAP), Columbia University, New York, NY, 10027, USA
| | - Alexandra G Konings
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA
| | - Sonia I Seneviratne
- Institute for Atmospheric and Climate Science, Department of Environmental Systems Science, ETH Zurich, Zürich, CH-8092, Switzerland
| | - Benjamin D Stocker
- Institute of Agricultural Sciences, Department of Environmental Systems Science, ETH Zürich, Zürich, CH-8092, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, CH-8903, Switzerland
- Institute of Geography, University of Bern, Hallerstrasse 12, Bern, 3012, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, Falkenplatz 16, Bern, 3012, Switzerland
| |
Collapse
|
22
|
Liu Q, Peng C, Schneider R, Cyr D, Liu Z, Zhou X, Du M, Li P, Jiang Z, McDowell NG, Kneeshaw D. Vegetation browning: global drivers, impacts, and feedbacks. TRENDS IN PLANT SCIENCE 2023; 28:1014-1032. [PMID: 37087358 DOI: 10.1016/j.tplants.2023.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 03/22/2023] [Accepted: 03/30/2023] [Indexed: 05/03/2023]
Abstract
As global climate conditions continue to change, disturbance regimes and environmental drivers will continue to shift, impacting global vegetation dynamics. Following a period of vegetation greening, there has been a progressive increase in remotely sensed vegetation browning globally. Given the many societal benefits that forests provide, it is critical that we understand vegetation dynamic alterations. Here, we review associative drivers, impacts, and feedbacks, revealing the complexity of browning. Concomitant increases in browning include the weakening of ecosystem services and functions and alterations to vegetation structure and species composition, as well as the development of potential positive climate change feedbacks. Also discussed are the current challenges in browning detection and understanding associated impacts and feedbacks. Finally, we outline recommended strategies.
Collapse
Affiliation(s)
- Qiuyu Liu
- Institute of Environment Sciences, Department of Biology Sciences, University of Quebec at Montreal, Case Postale 8888, Succ. Centre-Ville, Montreal, H3C 3P8, Canada; School of Public Policy and Administration, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Changhui Peng
- Institute of Environment Sciences, Department of Biology Sciences, University of Quebec at Montreal, Case Postale 8888, Succ. Centre-Ville, Montreal, H3C 3P8, Canada; College of Geographic Science, Hunan Normal University, Changsha, 410081, China.
| | - Robert Schneider
- University of Quebec at Rimouski (UQAR), Rimouski, Quebec, G5L 3A1, Canada
| | - Dominic Cyr
- Science and Technology Branch, Environment and Climate Change Canada, 351 St-Joseph Blvd, Gatineau, Quebec, Canada
| | - Zelin Liu
- College of Geographic Science, Hunan Normal University, Changsha, 410081, China
| | - Xiaolu Zhou
- College of Geographic Science, Hunan Normal University, Changsha, 410081, China
| | - Mingxi Du
- School of Public Policy and Administration, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Peng Li
- College of Geographic Science, Hunan Normal University, Changsha, 410081, China
| | - Zihan Jiang
- Institute of Environment Sciences, Department of Biology Sciences, University of Quebec at Montreal, Case Postale 8888, Succ. Centre-Ville, Montreal, H3C 3P8, Canada; CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Nate G McDowell
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Lab, PO Box 999, Richland, WA 99352, USA; School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164-4236, USA
| | - Daniel Kneeshaw
- Institute of Environment Sciences, Department of Biology Sciences, University of Quebec at Montreal, Case Postale 8888, Succ. Centre-Ville, Montreal, H3C 3P8, Canada; Centre for Forest Research, University of Quebec at Montreal, Case Postale 8888, Succ. Centre-Ville, Montreal, H3C 3P8, Canada
| |
Collapse
|
23
|
Shekhar A, Hörtnagl L, Buchmann N, Gharun M. Long-term changes in forest response to extreme atmospheric dryness. GLOBAL CHANGE BIOLOGY 2023; 29:5379-5396. [PMID: 37381105 DOI: 10.1111/gcb.16846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/01/2023] [Indexed: 06/30/2023]
Abstract
Atmospheric dryness, as indicated by vapor pressure deficit (VPD), has a strong influence on forest greenhouse gas exchange with the atmosphere. In this study, we used long-term (10-30 years) net ecosystem productivity (NEP) measurements from 60 forest sites across the world (1003 site-years) to quantify long-term changes in forest NEP resistance and NEP recovery in response to extreme atmospheric dryness. We tested two hypotheses: first, across sites differences in NEP resistance and NEP recovery of forests will depend on both the biophysical characteristics (i.e., leaf area index [LAI] and forest type) of the forest as well as on the local meteorological conditions of the site (i.e., mean VPD of the site), and second, forests experiencing an increasing trend in frequency and intensity of extreme dryness will show an increasing trend in NEP resistance and NEP recovery over time due to emergence of long-term ecological stress memory. We used a data-driven statistical learning approach to quantify NEP resistance and NEP recovery over multiple years. Our results showed that forest types, LAI, and median local VPD conditions explained over 50% of variance in both NEP resistance and NEP recovery, with drier sites showing higher NEP resistance and NEP recovery compared to sites with less atmospheric dryness. The impact of extreme atmospheric dryness events on NEP lasted for up to 3 days following most severe extreme events in most forests, indicated by an NEP recovery of less than 100%. We rejected our second hypothesis as we found no consistent relationship between trends of extreme VPD with trends in NEP resistance and NEP recovery across different forest sites, thus an increase in atmospheric dryness as it is predicted might not increase the resistance or recovery of forests in terms of NEP.
Collapse
Affiliation(s)
- Ankit Shekhar
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Lukas Hörtnagl
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Nina Buchmann
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Mana Gharun
- Institute of Landscape Ecology, Faculty of Geosciences, University of Münster, Münster, Germany
| |
Collapse
|
24
|
Argles APK, Robertson E, Harper AB, Morison JIL, Xenakis G, Hastings A, Mccalmont J, Moore JR, Bateman IJ, Gannon K, Betts RA, Bathgate S, Thomas J, Heard M, Cox PM. Modelling the impact of forest management and CO 2-fertilisation on growth and demography in a Sitka spruce plantation. Sci Rep 2023; 13:13487. [PMID: 37596319 PMCID: PMC10439122 DOI: 10.1038/s41598-023-39810-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/31/2023] [Indexed: 08/20/2023] Open
Abstract
Afforestation and reforestation to meet 'Net Zero' emissions targets are considered a necessary policy by many countries. Their potential benefits are usually assessed through forest carbon and growth models. The implementation of vegetation demography gives scope to represent forest management and other size-dependent processes within land surface models (LSMs). In this paper, we evaluate the impact of including management within an LSM that represents demography, using both in-situ and reanalysis climate drivers at a mature, upland Sitka spruce plantation in Northumberland, UK. We compare historical simulations with fixed and variable CO2 concentrations, and with and without tree thinning implemented. Simulations are evaluated against the observed vegetation structure and carbon fluxes. Including thinning and the impact of increasing CO2 concentration ('CO2 fertilisation') gave more realistic estimates of stand-structure and physical characteristics. Historical CO2 fertilisation had a noticeable effect on the Gross Primary Productivity seasonal-diurnal cycle and contributed to approximately 7% higher stand biomass by 2018. The net effect of both processes resulted in a decrease of tree density and biomass, but an increase in tree height and leaf area index.
Collapse
Affiliation(s)
- Arthur P K Argles
- Met Office Hadley Centre, FitzRoy Road, Exeter, EX1 3PB, Devon, UK.
- Department of Mathematics and Statistics, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4QE, UK.
| | - Eddy Robertson
- Met Office Hadley Centre, FitzRoy Road, Exeter, EX1 3PB, Devon, UK
| | - Anna B Harper
- Department of Mathematics and Statistics, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4QE, UK
| | | | | | - Astley Hastings
- School of Biological Sciences, University of Aberdeen, King's College, Aberdeen, AB24 3FX, UK
| | - Jon Mccalmont
- School of Biological Sciences, University of Aberdeen, King's College, Aberdeen, AB24 3FX, UK
- Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Streatham Campus, Rennes Drive, Exeter, EX4 4RJ, UK
| | - Jon R Moore
- Department of Mathematics and Statistics, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4QE, UK
| | - Ian J Bateman
- Land, Environment, Economics and Policy Institute (LEEP), Department of Economics, University of Exeter Business School, Exeter, UK
| | - Kate Gannon
- Land, Environment, Economics and Policy Institute (LEEP), Department of Economics, University of Exeter Business School, Exeter, UK
| | - Richard A Betts
- Met Office Hadley Centre, FitzRoy Road, Exeter, EX1 3PB, Devon, UK
- University of Exeter Global Systems Institute, Exeter, EX4 4QE, UK
| | | | - Justin Thomas
- School of Biological Sciences, University of Aberdeen, King's College, Aberdeen, AB24 3FX, UK
| | - Matthew Heard
- The National Trust, Heelis, Kemble Drive, Swindon, SN2 2NA, UK
| | - Peter M Cox
- Department of Mathematics and Statistics, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4QE, UK
| |
Collapse
|
25
|
Zhong Z, He B, Wang YP, Chen HW, Chen D, Fu YH, Chen Y, Guo L, Deng Y, Huang L, Yuan W, Hao X, Tang R, Liu H, Sun L, Xie X, Zhang Y. Disentangling the effects of vapor pressure deficit on northern terrestrial vegetation productivity. SCIENCE ADVANCES 2023; 9:eadf3166. [PMID: 37556542 PMCID: PMC10411893 DOI: 10.1126/sciadv.adf3166] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 07/07/2023] [Indexed: 08/11/2023]
Abstract
The impact of atmospheric vapor pressure deficit (VPD) on plant photosynthesis has long been acknowledged, but large interactions with air temperature (T) and soil moisture (SM) still hinder a complete understanding of the influence of VPD on vegetation production across various climate zones. Here, we found a diverging response of productivity to VPD in the Northern Hemisphere by excluding interactive effects of VPD with T and SM. The interactions between VPD and T/SM not only offset the potential positive impact of warming on vegetation productivity but also amplifies the negative effect of soil drying. Notably, for high-latitude ecosystems, there occurs a pronounced shift in vegetation productivity's response to VPD during the growing season when VPD surpasses a threshold of 3.5 to 4.0 hectopascals. These results yield previously unknown insights into the role of VPD in terrestrial ecosystems and enhance our comprehension of the terrestrial carbon cycle's response to global warming.
Collapse
Affiliation(s)
- Ziqian Zhong
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, 100875 Beijing, China
| | - Bin He
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, 100875 Beijing, China
| | - Ying-Ping Wang
- CSIRO Environment, Private Bag 1, Aspendale, Victoria, Australia
| | - Hans W. Chen
- Department of Space, Earth and Environment, Division of Geoscience and Remote Sensing, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Deliang Chen
- Regional Climate Group, Department of Earth Sciences, University of Gothenburg, S-40530 Gothenburg, Sweden
| | - Yongshuo H. Fu
- College of Water Sciences, Beijing Normal University, 100875 Beijing, China
| | - Yaning Chen
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011 Urumqi, China
| | - Lanlan Guo
- School of Geography, Beijing Normal University, 100875 Beijing, China
| | - Ying Deng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, 100093 Beijing, China
| | - Ling Huang
- College of Urban and Environmental Sciences, Peking University, 100871 Beijing, China
| | - Wenping Yuan
- School of Atmospheric Sciences, Sun Yat-Sen University, 510275 Guangzhou, China
| | - Xingmin Hao
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011 Urumqi, China
| | - Rui Tang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, 100875 Beijing, China
| | - Huiming Liu
- Ministry of Ecology and Environment Center for Satellite Application on Ecology and Environment, 100094 Beijing, China
| | - Liying Sun
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101 Beijing, China
| | - Xiaoming Xie
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, 100875 Beijing, China
| | - Yafeng Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, 100875 Beijing, China
| |
Collapse
|
26
|
He P, Han Z, He M, Meng X, Ma X, Liu H, Dong T, Shi M, Sun Z. Atmospheric dryness thresholds of grassland productivity decline in China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117780. [PMID: 36965424 DOI: 10.1016/j.jenvman.2023.117780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Abstract
Atmospheric dryness events are bound to have a broad and profound impact on the functions and structures of grassland ecosystems. Current research has confirmed that atmospheric dryness is a key moisture constraint that inhibits grassland productivity, yet the risk threshold for atmospheric dryness to initiate ecosystem productivity loss has not been explored. Based on this, we used four terrestrial ecosystem models to simulate gross primary productivity (GPP) data, analyzed the role of vapor pressure deficit (VPD) in regulating interannual variability in Chinese grasslands by focusing on the dependence structure of VPD and GPP, and then constructed a bivariate linkage function to calculate the conditional probability of ecosystem GPP loss under atmospheric dryness, and further analyzed the risk threshold of ecosystem GPP loss triggered by atmospheric dryness. The main results are as follows: we found that (1) the observed and modeled VPD of Chinese grasslands increases rapidly in both historical and future periods. VPD has a strongly negative regulation on ecosystem GPP, and atmospheric dryness is an important moisture constraint that causes deficit and even death to ecosystem GPP. (2) The probability of the enhanced atmospheric dryness that induced GPP decline in Chinese grasslands in the future period increases significantly. (3) When the VPD is higher than 40.07 and 27.65 percentile of the past and future time series, respectively, the risk threshold of slight ecosystem GPP loss can be easily initiated by atmospheric dryness. (4) When the VPD is higher than 82.57 and 65.09 percentile, respectively, the threshold of moderate ecosystem GPP loss can be exceeded by the benchmark probability. (5) The risk threshold of severe ecosystem GPP loss is not initiated by atmospheric dryness in the historical period, and the threshold of severe ecosystem GPP loss can be initiated when the future VPD is higher than 91.92 percentile. In total, a slight atmospheric dryness event is required to initiate a slight ecosystem GPP loss threshold, and a stronger atmospheric dryness event is required to initiate a severe ecosystem GPP loss. Our study enhances the understandings of past and future atmospheric dryness on grassland ecosystems, and strongly suggests that more attention be invested in improving next-generation models of vegetation dynamics processes with respect to the response of mechanisms of ecosystem to atmospheric dryness.
Collapse
Affiliation(s)
- Panxing He
- Henan Normal University, Xinxiang, 453007, China; Ministry of Education Key Laboratory for Western Arid Region Grassland Resources and Ecology, Xinjiang Agricultural University, Urumqi, 830000, China.
| | - Zhiming Han
- College of Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Mingzhu He
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730020, China
| | - Xiaoyu Meng
- Key Research Institute of Yellow River Civilization and Sustainable, Development Collaborative Innovation Center on Yellow River Civilization, Henan University, Kaifeng, 475000, China.
| | - Xiaoliang Ma
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Huixia Liu
- Ministry of Education Key Laboratory for Western Arid Region Grassland Resources and Ecology, Xinjiang Agricultural University, Urumqi, 830000, China
| | - Tong Dong
- Ministry of Education Key Laboratory for Western Arid Region Grassland Resources and Ecology, Xinjiang Agricultural University, Urumqi, 830000, China
| | - Mingjie Shi
- Ministry of Education Key Laboratory for Western Arid Region Grassland Resources and Ecology, Xinjiang Agricultural University, Urumqi, 830000, China
| | - Zongjiu Sun
- Ministry of Education Key Laboratory for Western Arid Region Grassland Resources and Ecology, Xinjiang Agricultural University, Urumqi, 830000, China.
| |
Collapse
|
27
|
Liu X, Sun G, Fu Z, Ciais P, Feng X, Li J, Fu B. Compound droughts slow down the greening of the Earth. GLOBAL CHANGE BIOLOGY 2023; 29:3072-3084. [PMID: 36854491 DOI: 10.1111/gcb.16657] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/23/2023] [Accepted: 02/24/2023] [Indexed: 05/03/2023]
Abstract
Vegetation response to soil and atmospheric drought has raised extensively controversy, however, the relative contributions of soil drought, atmospheric drought, and their compound droughts on global vegetation growth remain unclear. Combining the changes in soil moisture (SM), vapor pressure deficit (VPD), and vegetation growth (normalized difference vegetation index [NDVI]) during 1982-2015, here we evaluated the trends of these three drought types and quantified their impacts on global NDVI. We found that global VPD has increased 0.22 ± 0.05 kPa·decade-1 during 1982-2015, and this trend was doubled after 1996 (0.32 ± 0.16 kPa·decade-1 ) than before 1996 (0.16 ± 0.15 kPa·decade-1 ). Regions with large increase in VPD trend generally accompanied with decreasing trend in SM, leading to a widespread increasing trend in compound droughts across 37.62% land areas. We further found compound droughts dominated the vegetation browning since late 1990s, contributing to a declined NDVI of 64.56%. Earth system models agree with the dominant role of compound droughts on vegetation growth, but their negative magnitudes are considerably underestimated, with half of the observed results (34.48%). Our results provided the evidence of compound droughts-induced global vegetation browning, highlighting the importance of correctly simulating the ecosystem-scale response to the under-appreciated exposure to compound droughts as it will increase with climate change.
Collapse
Affiliation(s)
- Xianfeng Liu
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, China
- Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, Gif-sur-Yvette, France
| | - Gaopeng Sun
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, China
| | - Zheng Fu
- Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, Gif-sur-Yvette, France
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, Gif-sur-Yvette, France
| | - Xiaoming Feng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jing Li
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, China
| | - Bojie Fu
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
28
|
Zhao L, Li X, Zhang Z, Yuan M, Sun S, Qu S, Hou M, Lu D, Zhou Y, Lin A. Developing a novel framework to re-examine half a century of compound drought and heatwave events in mainland China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162366. [PMID: 36848990 DOI: 10.1016/j.scitotenv.2023.162366] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Compound drought and heatwave events (CDHEs) are more devastating than single drought or heatwave events and have gained widespread attention. However, previous studies have not investigated the impacts of the precipitation attenuation effect (PAE) (i.e., the effect of previous precipitation on the dryness and wetness of the current system is attenuated) and event merging (EM) (i.e., merging two CDHEs with short intervals into a single event). Moreover, few studies have assessed short-term CDHEs within monthly scales and their variation characteristics under different background temperatures. Here we propose a novel framework for assessing CDHEs on a daily scale and considering the PAE and EM. We applied this framework to mainland China and investigated the spatiotemporal variation of the CDHE indicators (spatial extent (CDHEspa), frequency (CDHEfre), duration (CHHEdur), and severity (CDHEsev)) from 1968 to 2019. The results suggested that ignoring the PAE and EM led to significant changes in the spatial distribution and magnitude of the CDHE indicators. Daily-scale assessments allowed for monitoring the detailed evolution of CDHEs and facilitated the timely development of mitigation measures. Mainland China experienced frequent CDHEs from 1968 to 2019 (except for the southwestern part of Northwest China (NWC) and the western part of Southwest China (SWC)), whereas, hotspot areas of CDHEdur and CDHEsev had a patchy distribution in different geographical subregions. The CDHE indicators were higher in the warmer 1994-2019 period than in the colder 1968-1993 period, but the rate of increase of the indicators was lower or there was a downward trend. Overall, CDHEs in mainland China have been in a state of remarkable continuous strengthening over the past half a century. This study provides a new quantitative analysis approach for CDHEs.
Collapse
Affiliation(s)
- Lin Zhao
- School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Xinxin Li
- School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China.
| | - Zhijiang Zhang
- School of Geography Science and Geomatics Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Moxi Yuan
- School of Public Administration and Human Geography, Hunan University of Technology and Business, Changsha 410205, China
| | - Shao Sun
- State Key Laboratory of Severe Weather (LASW), Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Sai Qu
- School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Mengjie Hou
- School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Dan Lu
- School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Yajuan Zhou
- School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Aiwen Lin
- School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| |
Collapse
|
29
|
Xi X, Yuan X. Remote sensing of atmospheric and soil water stress on ecosystem carbon and water use during flash droughts over eastern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161715. [PMID: 36682554 DOI: 10.1016/j.scitotenv.2023.161715] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/29/2022] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Flash droughts are often accompanied by large soil and atmospheric moisture deficits, and the concurrence of flash droughts and high temperature may have a great impact on the ecosystem. However, the stress of soil and atmospheric moisture deficits on carbon and water use of the ecosystem during flash droughts, especially during the drought periods with hot conditions, are unclear over a large region. In this study, we decoupled the atmospheric and soil water stress over eastern China by using vegetation productivity data and photosynthetically active radiation data retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS). The analysis is conducted during flash droughts and their sub-periods that are accompanied by high temperature and intense radiation from 2003 to 2018. The results showed that soil moisture (SM) stress was significantly greater than the vapor pressure deficit (VPD) stress on vegetation productivity in the humid regions of eastern China during flash droughts. However, high VPD controlled the water stress on light use efficiency (LUE) of vegetation over 55 % of the regions. For the hot periods of flash droughts, the area subjected to VPD stress on vegetation productivity significantly increased in semi-arid and semi-humid regions. The concurrent hot and drought conditions also increased water use efficiency (WUE) for most areas, which suggests that the reduction percentage of vegetation productivity is larger than that of evapotranspiration. Our research emphasized the severe impact of compound hot and flash drought conditions on vegetation carbon and water use from a remote sensing perspective.
Collapse
Affiliation(s)
- Xiazhen Xi
- Key Laboratory of Hydrometeorological Disaster Mechanism and Warning of Ministry of Water Resources/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, China; School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China
| | - Xing Yuan
- Key Laboratory of Hydrometeorological Disaster Mechanism and Warning of Ministry of Water Resources/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, China; School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China.
| |
Collapse
|
30
|
Yang H, Munson SM, Huntingford C, Carvalhais N, Knapp AK, Li X, Peñuelas J, Zscheischler J, Chen A. The detection and attribution of extreme reductions in vegetation growth across the global land surface. GLOBAL CHANGE BIOLOGY 2023; 29:2351-2362. [PMID: 36630538 DOI: 10.1111/gcb.16595] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 05/28/2023]
Abstract
Negative extreme anomalies in vegetation growth (NEGs) usually indicate severely impaired ecosystem services. These NEGs can result from diverse natural and anthropogenic causes, especially climate extremes (CEs). However, the relationship between NEGs and many types of CEs remains largely unknown at regional and global scales. Here, with satellite-derived vegetation index data and supporting tree-ring chronologies, we identify periods of NEGs from 1981 to 2015 across the global land surface. We find 70% of these NEGs are attributable to five types of CEs and their combinations, with compound CEs generally more detrimental than individual ones. More importantly, we find that dominant CEs for NEGs vary by biome and region. Specifically, cold and/or wet extremes dominate NEGs in temperate mountains and high latitudes, whereas soil drought and related compound extremes are primarily responsible for NEGs in wet tropical, arid and semi-arid regions. Key characteristics (e.g., the frequency, intensity and duration of CEs, and the vulnerability of vegetation) that determine the dominance of CEs are also region- and biome-dependent. For example, in the wet tropics, dominant individual CEs have both higher intensity and longer duration than non-dominant ones. However, in the dry tropics and some temperate regions, a longer CE duration is more important than higher intensity. Our work provides the first global accounting of the attribution of NEGs to diverse climatic extremes. Our analysis has important implications for developing climate-specific disaster prevention and mitigation plans among different regions of the globe in a changing climate.
Collapse
Affiliation(s)
- Hui Yang
- Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany
- College of Urban and Environmental Sciences, Sino-French Institute for Earth System Science, Peking University, Beijing, China
| | - Seth M Munson
- Southwest Biological Science Center, U.S. Geological Survey, Arizona, Flagstaff, USA
| | | | - Nuno Carvalhais
- Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany
- Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
- ELLIS Unit Jena, Jena, Germany
| | - Alan K Knapp
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Colorado, Fort Collins, USA
| | - Xiangyi Li
- College of Urban and Environmental Sciences, Sino-French Institute for Earth System Science, Peking University, Beijing, China
| | - Josep Peñuelas
- CREAF, Catalonia, Barcelona, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Catalonia, Barcelona, Spain
| | - Jakob Zscheischler
- Department of Computational Hydrosystems, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Anping Chen
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Colorado, Fort Collins, USA
| |
Collapse
|
31
|
Skulovich O, Gentine P. A Long-term Consistent Artificial Intelligence and Remote Sensing-based Soil Moisture Dataset. Sci Data 2023; 10:154. [PMID: 36949081 PMCID: PMC10033968 DOI: 10.1038/s41597-023-02053-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/07/2023] [Indexed: 03/24/2023] Open
Abstract
The Consistent Artificial Intelligence (AI)-based Soil Moisture (CASM) dataset is a global, consistent, and long-term, remote sensing soil moisture (SM) dataset created using machine learning. It is based on the NASA Soil Moisture Active Passive (SMAP) satellite mission SM data and is aimed at extrapolating SMAP-like quality SM back in time using previous satellite microwave platforms. CASM represents SM in the top soil layer, and it is defined on a global 25 km EASE-2 grid and for 2002-2020 with a 3-day temporal resolution. The seasonal cycle is removed for the neural network training to ensure its skill is targeted at predicting SM extremes. CASM comparison to 367 global in-situ SM monitoring sites shows a SMAP-like median correlation of 0.66. Additionally, the SM product uncertainty was assessed, and both aleatoric and epistemic uncertainties were estimated and included in the dataset. CASM dataset can be used to study a wide range of hydrological, carbon cycle, and energy processes since only a consistent long-term dataset allows assessing changes in water availability and water stress.
Collapse
Affiliation(s)
- Olya Skulovich
- Columbia University, Earth and Environmental Engineering Department, New York, NY, 10027, USA.
| | - Pierre Gentine
- Columbia University, Earth and Environmental Engineering Department, New York, NY, 10027, USA
| |
Collapse
|
32
|
Zhou S, Yu B, Zhang Y. Global concurrent climate extremes exacerbated by anthropogenic climate change. SCIENCE ADVANCES 2023; 9:eabo1638. [PMID: 36897946 PMCID: PMC10005174 DOI: 10.1126/sciadv.abo1638] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/06/2023] [Indexed: 05/21/2023]
Abstract
Increases in concurrent climate extremes in different parts of the world threaten the ecosystem and our society. However, spatial patterns of these extremes and their past and future changes remain unclear. Here, we develop a statistical framework to test for spatial dependence and show widespread dependence of temperature and precipitation extremes in observations and model simulations, with more frequent than expected concurrence of extremes around the world. Historical anthropogenic forcing has strengthened the concurrence of temperature extremes over 56% of 946 global paired regions, particularly in the tropics, but has not yet significantly affected concurrent precipitation extremes during 1901-2020. The future high-emissions pathway of SSP585 will substantially amplify the concurrence strength, intensity, and spatial extent for both temperature and precipitation extremes, especially over tropical and boreal regions, while the mitigation pathway of SSP126 can ameliorate the increase in concurrent climate extremes for these high-risk regions. Our findings will inform adaptation strategies to alleviate the impact of future climate extremes.
Collapse
Affiliation(s)
- Sha Zhou
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
- Institute of Land Surface System and Sustainable Development, Faculty of Geographical Science, Beijing Normal University, Beijing, China
- Correspondence author.
| | - Bofu Yu
- School of Engineering and Built Environment, Griffith University, Nathan, Queensland, Australia
| | - Yao Zhang
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
33
|
Interaction between dry and hot extremes at a global scale using a cascade modeling framework. Nat Commun 2023; 14:277. [PMID: 36650142 PMCID: PMC9845298 DOI: 10.1038/s41467-022-35748-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023] Open
Abstract
Climate change amplifies dry and hot extremes, yet the mechanism, extent, scope, and temporal scale of causal linkages between dry and hot extremes remain underexplored. Here using the concept of system dynamics, we investigate cross-scale interactions within dry-to-hot and hot-to-dry extreme event networks and quantify the magnitude, temporal-scale, and physical drivers of cascading effects (CEs) of drying-on-heating and vice-versa, across the globe. We find that locations exhibiting exceptionally strong CE (hotspots) for dry-to-hot and hot-to-dry extremes generally coincide. However, the CEs differ strongly in their timescale of interaction, hydroclimatic drivers, and sensitivity to changes in the soil-plant-atmosphere continuum and background aridity. The CE of drying-on-heating in the hotspot locations reaches its peak immediately driven by the compounding influence of vapor pressure deficit, potential evapotranspiration, and precipitation. In contrast, the CE of heating-on-drying peaks gradually dominated by concurrent changes in potential evapotranspiration, precipitation, and net-radiation with the effect of vapor pressure deficit being strongly controlled by ecosystem isohydricity and background aridity. Our results help improve our understanding of the causal linkages and the predictability of compound extremes and related impacts.
Collapse
|
34
|
Fan D, Liu Y, Yao Y, Cai L, Wang S. Changes in the relationship between vapour pressure deficit and water use efficiency with the drought recovery time: A case study of the Yellow River Basin. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116756. [PMID: 36423408 DOI: 10.1016/j.jenvman.2022.116756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/20/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Drought is a major driver of interannual variability in the gross primary productivity (GPP) of global terrestrial ecosystems, and drought recovery time has been widely used to assess ecosystem responses to drought. However, the response of the carbon-water coupled cycle to drought, especially changes in the correlation between drought intensity and carbon-water coupling throughout the recovery time, remains unclear. In this study, the Yellow River Basin (YRB) located mostly in drylands was the study area. We assessed the correlation between the standardized water vapour pressure deficit (VPD) and the water use efficiency of ecosystems (WUEe) and water use efficiency of canopies (WUEc) every month with the drought recovery time of GPP. We found that the drought intensity in the middle reach of the YRB (MYRB) was greater and the drought recovery time was longer than those in the upper reach (UYRB) and lower reach (LYRB) during the period from 2003 to 2017. In terms of the correlation between drought intensity and carbon-water coupling, the greater the VPD was, the lower the WUEc. In addition, the correlation of WUEc with VPD was higher than that of WUEe in most areas of the YRB, especially in the LYRB. On the watershed level, the correlation between the two types of WUE and VPD increased gradually with the recovery time, while the correlation between WUEc and VPD (mostly negative) changed more than the correlation between WUEe and VPD (mostly positive). Therefore, the response of WUEc to meteorological drought should be given more attention, especially during the middle and late stages of drought, since it exhibited an opposite signal compared to that of WUEe during drought recovery.
Collapse
Affiliation(s)
- Donglin Fan
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China; School of Geography and Tourism, Qufu Normal University, Rizhao, 276800, China
| | - Yanxu Liu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China.
| | - Ying Yao
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Liping Cai
- School of Geography and Tourism, Qufu Normal University, Rizhao, 276800, China
| | - Shanshan Wang
- School of Geography and Tourism, Qufu Normal University, Rizhao, 276800, China
| |
Collapse
|
35
|
Liao J, Luo Q, Hu A, Wan W, Tian D, Ma J, Ma T, Luo H, Lu S. Soil moisture-atmosphere feedback dominates land N 2 O nitrification emissions and denitrification reduction. GLOBAL CHANGE BIOLOGY 2022; 28:6404-6418. [PMID: 35971257 DOI: 10.1111/gcb.16365] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Soil moisture (SM) is essential to microbial nitrogen (N)-cycling networks in terrestrial ecosystems. Studies have found that SM-atmosphere feedbacks dominate the changes in land carbon fluxes. However, the influence of SM-atmosphere feedbacks on the N fluxes changes, and the underlying mechanisms remain highly unsure, leading to uncertainties in climate projections. To fill this gap, we used in situ observation coupled with gridded and remote sensing data to analyze N2 O fluxes emissions globally. Here, we investigated the synergistic effects of temperature, hydroclimate on global N2 O fluxes, as the result of SM-atmosphere feedback impact on N fluxes. We found that SM-temperature feedback dominates land N2 O emissions by controlling the balance between nitrifier and denitrifier genes. The mechanism is that atmospheric water demand increases with temperature and thereby reduces SM, which increases the dominant N2 O production nitrifier (containing amoA AOB gene) and decreases the N2 O consumption denitrifier (containing the nosZ gene), consequently will potential increasing N2 O emissions. However, we find that the spatial variations of soil-water availability as a result of the nonlinear response of SM to vapor pressure deficit caused by temperature are some of the greatest challenges in predicting future N2 O emissions. Our data-driven assessment deepens the understanding of the impact of SM-atmosphere interactions on the soil N cycle, which remains uncertain in earth system models. We suggest that the model needs to account for feedback between SM and atmospheric temperature when estimating the response of the N2 O emissions to climatic change globally, as well as when conducting field-scale investigations of the response of the ecosystem to warming.
Collapse
Affiliation(s)
- Jiayuan Liao
- Key Laboratory of Soil and Water Conservation and Desertification Combating in Hunan Province, College of Forestry, Central South University of Forestry and Technology, Changsha, China
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Qiqi Luo
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Ang Hu
- College of Resources and Environment, Hunan Agricultural University, Changsha, China
| | - Wenkai Wan
- Key Laboratory of Soil and Water Conservation and Desertification Combating in Hunan Province, College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Dian Tian
- Key Laboratory of Soil and Water Conservation and Desertification Combating in Hunan Province, College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Jingwei Ma
- Key Laboratory of Soil and Water Conservation and Desertification Combating in Hunan Province, College of Forestry, Central South University of Forestry and Technology, Changsha, China
| | - Tian Ma
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Hao Luo
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Sheng Lu
- Key Laboratory of Soil and Water Conservation and Desertification Combating in Hunan Province, College of Forestry, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
36
|
Zhou S, Williams AP, Lintner BR, Findell KL, Keenan TF, Zhang Y, Gentine P. Diminishing seasonality of subtropical water availability in a warmer world dominated by soil moisture-atmosphere feedbacks. Nat Commun 2022; 13:5756. [PMID: 36180427 PMCID: PMC9525715 DOI: 10.1038/s41467-022-33473-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
Global warming is expected to cause wet seasons to get wetter and dry seasons to get drier, which would have broad social and ecological implications. However, the extent to which this seasonal paradigm holds over land remains unclear. Here we examine seasonal changes in surface water availability (precipitation minus evaporation, P–E) from CMIP5 and CMIP6 projections. While the P–E seasonal cycle does broadly intensify over much of the land surface, ~20% of land area experiences a diminished seasonal cycle, mostly over subtropical regions and the Amazon. Using land–atmosphere coupling experiments, we demonstrate that 63% of the seasonality reduction is driven by seasonally varying soil moisture (SM) feedbacks on P–E. Declining SM reduces evapotranspiration and modulates circulation to enhance moisture convergence and increase P–E in the dry season but not in the wet season. Our results underscore the importance of SM–atmosphere feedbacks for seasonal water availability changes in a warmer climate. Here, the authors find increased dry–season and decreased wet–season water availability over subtropical regions and the Amazon. This is caused by seasonally varying soil moisture–atmosphere feedbacks under global warming.
Collapse
Affiliation(s)
- Sha Zhou
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China. .,Institute of Land Surface Systems and Sustainable Development, Faculty of Geographical Science, Beijing Normal University, Beijing, China.
| | - A Park Williams
- Department of Geography, University of California, Los Angeles, CA, USA
| | - Benjamin R Lintner
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Kirsten L Findell
- Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration, Princeton, NJ, USA
| | - Trevor F Keenan
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA.,Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yao Zhang
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Pierre Gentine
- Department of Earth and Environmental Engineering, Columbia University, New York, NY, USA
| |
Collapse
|
37
|
Libonati R, Geirinhas JL, Silva PS, Monteiro Dos Santos D, Rodrigues JA, Russo A, Peres LF, Narcizo L, Gomes MER, Rodrigues AP, DaCamara CC, Pereira JMC, Trigo RM. Drought-heatwave nexus in Brazil and related impacts on health and fires: A comprehensive review. Ann N Y Acad Sci 2022; 1517:44-62. [PMID: 36052446 DOI: 10.1111/nyas.14887] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Climate change is drastically altering the frequency, duration, and severity of compound drought-heatwave (CDHW) episodes, which present a new challenge in environmental and socioeconomic sectors. These threats are of particular importance in low-income regions with growing populations, fragile infrastructure, and threatened ecosystems. This review synthesizes emerging progress in the understanding of CDHW patterns in Brazil while providing insights about the impacts on fire occurrence and public health. Evidence is mounting that heatwaves are becoming increasingly linked with droughts in northeastern and southeastern Brazil, the Amazonia, and the Pantanal. In those regions, recent studies have begun to build a better understanding of the physical mechanisms behind CDHW events, such as the soil moisture-atmosphere coupling, promoted by exceptional atmospheric blocking conditions. Results hint at a synergy between CDHW events and high fire activity in the country over the last decades, with the most recent example being the catastrophic 2020 fires in the Pantanal. Moreover, we show that HWs were responsible for increasing mortality and preterm births during record-breaking droughts in southeastern Brazil. This work paves the way for a more in-depth understanding on CDHW events and their impacts, which is crucial to enhance the adaptive capacity of different Brazilian sectors.
Collapse
Affiliation(s)
- Renata Libonati
- Departamento de Meteorologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Dom Luiz, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.,Forest Research Centre, School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - João L Geirinhas
- Instituto Dom Luiz, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Patrícia S Silva
- Instituto Dom Luiz, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | | | - Julia A Rodrigues
- Departamento de Meteorologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Russo
- Instituto Dom Luiz, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Leonardo F Peres
- Departamento de Meteorologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiza Narcizo
- Departamento de Meteorologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Monique E R Gomes
- Departamento de Meteorologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andreza P Rodrigues
- Escola de Enfermagem Anna Nery, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos C DaCamara
- Instituto Dom Luiz, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - José Miguel C Pereira
- Forest Research Centre, School of Agriculture, University of Lisbon, Lisbon, Portugal.,TERRA Associate Laboratory, Tapada da Ajuda, Portugal
| | - Ricardo M Trigo
- Departamento de Meteorologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Dom Luiz, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
38
|
Müller LM, Bahn M. Drought legacies and ecosystem responses to subsequent drought. GLOBAL CHANGE BIOLOGY 2022; 28:5086-5103. [PMID: 35607942 PMCID: PMC9542112 DOI: 10.1111/gcb.16270] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 05/19/2023]
Abstract
Climate change is expected to increase the frequency and severity of droughts. These events, which can cause significant perturbations of terrestrial ecosystems and potentially long-term impacts on ecosystem structure and functioning after the drought has subsided are often called 'drought legacies'. While the immediate effects of drought on ecosystems have been comparatively well characterized, our broader understanding of drought legacies is just emerging. Drought legacies can relate to all aspects of ecosystem structure and functioning, involving changes at the species and the community scale as well as alterations of soil properties. This has consequences for ecosystem responses to subsequent drought. Here, we synthesize current knowledge on drought legacies and the underlying mechanisms. We highlight the relevance of legacy duration to different ecosystem processes using examples of carbon cycling and community composition. We present hypotheses characterizing how intrinsic (i.e. biotic and abiotic properties and processes) and extrinsic (i.e. drought timing, severity, and frequency) factors could alter resilience trajectories under scenarios of recurrent drought events. We propose ways for improving our understanding of drought legacies and their implications for subsequent drought events, needed to assess the longer-term consequences of droughts on ecosystem structure and functioning.
Collapse
Affiliation(s)
- Lena M. Müller
- Department of EcologyUniversity of InnsbruckInnsbruckAustria
| | - Michael Bahn
- Department of EcologyUniversity of InnsbruckInnsbruckAustria
| |
Collapse
|
39
|
Dannenberg MP, Yan D, Barnes ML, Smith WK, Johnston MR, Scott RL, Biederman JA, Knowles JF, Wang X, Duman T, Litvak ME, Kimball JS, Williams AP, Zhang Y. Exceptional heat and atmospheric dryness amplified losses of primary production during the 2020 U.S. Southwest hot drought. GLOBAL CHANGE BIOLOGY 2022; 28:4794-4806. [PMID: 35452156 PMCID: PMC9545136 DOI: 10.1111/gcb.16214] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/23/2022] [Indexed: 05/28/2023]
Abstract
Earth's ecosystems are increasingly threatened by "hot drought," which occurs when hot air temperatures coincide with precipitation deficits, intensifying the hydrological, physiological, and ecological effects of drought by enhancing evaporative losses of soil moisture (SM) and increasing plant stress due to higher vapor pressure deficit (VPD). Drought-induced reductions in gross primary production (GPP) exert a major influence on the terrestrial carbon sink, but the extent to which hotter and atmospherically drier conditions will amplify the effects of precipitation deficits on Earth's carbon cycle remains largely unknown. During summer and autumn 2020, the U.S. Southwest experienced one of the most intense hot droughts on record, with record-low precipitation and record-high air temperature and VPD across the region. Here, we use this natural experiment to evaluate the effects of hot drought on GPP and further decompose those negative GPP anomalies into their constituent meteorological and hydrological drivers. We found a 122 Tg C (>25%) reduction in GPP below the 2015-2019 mean, by far the lowest regional GPP over the Soil Moisture Active Passive satellite record. Roughly half of the estimated GPP loss was attributable to low SM (likely a combination of record-low precipitation and warming-enhanced evaporative depletion), but record-breaking VPD amplified the reduction of GPP, contributing roughly 40% of the GPP anomaly. Both air temperature and VPD are very likely to continue increasing over the next century, likely leading to more frequent and intense hot droughts and substantially enhancing drought-induced GPP reductions.
Collapse
Affiliation(s)
- Matthew P. Dannenberg
- Department of Geographical and Sustainability SciencesUniversity of IowaIowa CityIowaUSA
| | - Dong Yan
- Information and Data CenterChina Renewable Energy Engineering InstituteBeijingChina
- School of Natural Resources and the EnvironmentUniversity of ArizonaTucsonArizonaUSA
| | - Mallory L. Barnes
- O'Neill School of Public and Environmental AffairsIndiana UniversityBloomingtonIndianaUSA
| | - William K. Smith
- School of Natural Resources and the EnvironmentUniversity of ArizonaTucsonArizonaUSA
| | - Miriam R. Johnston
- Department of Geographical and Sustainability SciencesUniversity of IowaIowa CityIowaUSA
| | - Russell L. Scott
- Southwest Watershed Research Center, Agricultural Research ServiceU.S. Department of AgricultureTucsonArizonaUSA
| | - Joel A. Biederman
- Southwest Watershed Research Center, Agricultural Research ServiceU.S. Department of AgricultureTucsonArizonaUSA
| | - John F. Knowles
- Department of Earth and Environmental SciencesCalifornia State UniversityChicoCaliforniaUSA
| | - Xian Wang
- School of Natural Resources and the EnvironmentUniversity of ArizonaTucsonArizonaUSA
| | - Tomer Duman
- Department of BiologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - Marcy E. Litvak
- Department of BiologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - John S. Kimball
- Numerical Terradynamic Simulation GroupUniversity of MontanaMissoulaMontanaUSA
| | - A. Park Williams
- Department of GeographyUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Yao Zhang
- Sino‐French Institute for Earth System Science, College of Urban and Environmental SciencesPeking UniversityBeijingChina
| |
Collapse
|
40
|
González de Andrés E, Gazol A, Querejeta JI, Igual JM, Colangelo M, Sánchez‐Salguero R, Linares JC, Camarero JJ. The role of nutritional impairment in carbon-water balance of silver fir drought-induced dieback. GLOBAL CHANGE BIOLOGY 2022; 28:4439-4458. [PMID: 35320604 PMCID: PMC9540818 DOI: 10.1111/gcb.16170] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/12/2022] [Indexed: 06/01/2023]
Abstract
Rear-edge populations at the xeric distribution limit of tree species are particularly vulnerable to forest dieback triggered by drought. This is the case of silver fir (Abies alba) forests located in Southwestern Europe. While silver fir drought-induced dieback patterns have been previously explored, information on the role played by nutritional impairment is lacking despite its potential interactions with tree carbon-water balances. We performed a comparative analysis of radial growth, intrinsic water-use efficiency (iWUE), oxygen isotopes (δ18 O) and nutrient concentrations in leaves of declining (DD) and non-declining (ND) trees in silver fir in four forests in the Spanish Pyrenees. We also evaluated the relationships among dieback predisposition, intraspecific trait variation (wood density and leaf traits) and rhizosphere soil physical-chemical properties. The onset of growth decline in DD trees occurred more than two decades ago, and they subsequently showed low growth resilience against droughts. The DD trees presented consistently lower foliar concentrations of nutrients such as P, K, Cu and Ni than ND trees. The strong effects of foliar nutrient status on growth resilience indices support the key role played by mineral nutrition in tree functioning and growth before, during and after drought. In contrast, variability in wood density and leaf morphological traits, as well as soil properties, showed weak relationships with tree nutritional status and drought performance. At the low elevation, warmer sites, DD trees showed stronger climate-growth relationships and lower δ18 O than ND trees. The uncoupling between iWUE and δ18 O, together with the positive correlations between P and K leaf concentrations and δ18 O, point to deeper soil/bedrock water sources and vertical decoupling between nutrient and water uptake in DD trees. This study provides novel insights into the mechanisms driving silver fir dieback and highlights the need to incorporate tree nutrition into forest dieback studies.
Collapse
Affiliation(s)
| | - Antonio Gazol
- Instituto Pirenaico de Ecología (IPE‐CSIC)ZaragozaSpain
| | | | - José M. Igual
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA‐CSIC)SalamancaSpain
| | - Michele Colangelo
- Instituto Pirenaico de Ecología (IPE‐CSIC)ZaragozaSpain
- Scuola di Scienze AgrarieForestaliAlimentarie AmbientaliUniversità della BasilicataPotenzaItaly
| | - Raúl Sánchez‐Salguero
- Instituto Pirenaico de Ecología (IPE‐CSIC)ZaragozaSpain
- Dpto. de Sistemas FísicosQuímicos y NaturalesUniversidad Pablo de OlavideSevillaSpain
| | - Juan Carlos Linares
- Dpto. de Sistemas FísicosQuímicos y NaturalesUniversidad Pablo de OlavideSevillaSpain
| | | |
Collapse
|
41
|
Wang H, Yan S, Ciais P, Wigneron JP, Liu L, Li Y, Fu Z, Ma H, Liang Z, Wei F, Wang Y, Li S. Exploring complex water stress-gross primary production relationships: Impact of climatic drivers, main effects, and interactive effects. GLOBAL CHANGE BIOLOGY 2022; 28:4110-4123. [PMID: 35429206 DOI: 10.1111/gcb.16201] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
The dominance of vapor pressure deficit (VPD) and soil water content (SWC) for plant water stress is still under debate. These two variables are strongly coupled and influenced by climatic drivers. The impacts of climatic drivers on the relationships between gross primary production (GPP) and water stress from VPD/SWC and the interaction between VPD and SWC are not fully understood. Here, applying statistical methods and extreme gradient boosting models-Shapley additive explanations framework to eddy-covariance observations from the global FLUXNET2015 data set, we found that the VPD-GPP relationship was strongly influenced by climatic interactions and that VPD was more important for plant water stress than SWC across most plant functional types when we removed the effect of main climatic drivers, e.g. air temperature, incoming shortwave radiation and wind speed. However, we found no evidence for a significant influence of elevated CO2 on stress alleviation, possibly because of the short duration of the records (approximately one decade). Additionally, the interactive effect between VPD and SWC differed from their individual effect. When SWC was high, the SHAP interaction value of SWC and VPD on GPP was decreased with increasing VPD, but when SWC was low, the trend was the opposite. Additionally, we revealed a threshold effect for VPD stress on GPP loss; above the threshold value, the stress on GPP was flattened off. Our results have important implications for independently identifying VPD and SWC limitations on plant productivity, which is meaningful for capturing the magnitude of ecosystem responses to water stress in dynamic global vegetation models.
Collapse
Affiliation(s)
- Huan Wang
- College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
- INRAE, UMR1391 ISPA, Villenave d'Ornon, France
| | - Shijie Yan
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
| | | | - Laibao Liu
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
| | - Yan Li
- State Key Laboratory of Earth Surface Processes and Resources Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
- Institute of Land Surface System and Sustainable Development, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Zheng Fu
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Hongliang Ma
- State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, Wuhan, China
| | - Ze Liang
- College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Feili Wei
- College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Yueyao Wang
- College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Shuangcheng Li
- College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| |
Collapse
|
42
|
Cao S, Zhang L, He Y, Zhang Y, Chen Y, Yao S, Yang W, Sun Q. Effects and contributions of meteorological drought on agricultural drought under different climatic zones and vegetation types in Northwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153270. [PMID: 35085634 DOI: 10.1016/j.scitotenv.2022.153270] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/15/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
Meteorological drought is one of the driving forces behind agricultural drought. The response of agricultural drought to meteorological drought remains poorly understood under different climatic zones and vegetation types in Northwest China (NWC). Furthermore, the contribution of climate factors and human activities to agricultural drought in NWC remains unclear. We combined the Standardized Precipitation Evapotranspiration Index (SPEI) and the satellite Vegetation Condition Index (VCI) to characterize meteorological and agricultural drought, respectively. Based on the trend analysis, Spearman's correlation coefficient and residual trend analysis, we studied the variation characteristics and response relationships of meteorological and agricultural drought under different climatic zones and vegetation types in NWC from 2000 to 2019 and evaluated the contributions of climate factors (SPEI and precipitation) and human activities on the agricultural drought. The results showed that under different climatic zones and vegetation types, the SPEI and VCI all showed an upward trend in NWC, indicating that meteorological and agricultural drought slowed down. It was further pointed out that the climate was humidified and the soil moisture increased in NWC. Meteorological drought has a definite effect on agricultural drought, and the effect varied non-linearly along the drought gradient with the strongest responses in the semiarid ecosystems. Drought resistance of different climatic zones and vegetation types was different, caused by the specific sensitivity and uniqueness of local arid environment. Among them, grasslands dominated the regional SPEI-VCI changes in NWC. The combined effects of climatic factors (SPEI and precipitation) and human activities promoted the variation of agricultural drought in NWC. Climatic factors were the main drivers of agricultural drought change in grasslands, with the contribution rate reaching 76.71%. However, human activities all contributed significantly to agricultural drought than climatic factors, especially in the Loess Plateau, Junggar Basin and northern Tianshan Mountains, where the positive contribution of human activities exceeded 80%. Thus, the SPEI and VCI can effectively reveal the change law of meteorological drought and agricultural drought in NWC. This study provides a theoretical basis for drought disaster relationship assessment.
Collapse
Affiliation(s)
- Shengpeng Cao
- Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China; National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Lanzhou 730070, China; Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China
| | - Lifeng Zhang
- Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China; National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Lanzhou 730070, China; Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China
| | - Yi He
- Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China; National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Lanzhou 730070, China; Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China.
| | - Yali Zhang
- Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China; National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Lanzhou 730070, China; Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China
| | - Yi Chen
- Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China; National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Lanzhou 730070, China; Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China
| | - Sheng Yao
- Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China; National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Lanzhou 730070, China; Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China
| | - Wang Yang
- Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China; National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Lanzhou 730070, China; Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China
| | - Qiang Sun
- Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China; National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Lanzhou 730070, China; Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China
| |
Collapse
|
43
|
Green JK, Ballantyne A, Abramoff R, Gentine P, Makowski D, Ciais P. Surface temperatures reveal the patterns of vegetation water stress and their environmental drivers across the tropical Americas. GLOBAL CHANGE BIOLOGY 2022; 28:2940-2955. [PMID: 35202508 DOI: 10.1111/gcb.16139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Vegetation is a key component in the global carbon cycle as it stores ~450 GtC as biomass, and removes about a third of anthropogenic CO2 emissions. However, in some regions, the rate of plant carbon uptake is beginning to slow, largely because of water stress. Here, we develop a new observation-based methodology to diagnose vegetation water stress and link it to environmental drivers. We used the ratio of remotely sensed land surface to near surface atmospheric temperatures (LST/Tair ) to represent vegetation water stress, and built regression tree models (random forests) to assess the relationship between LST/Tair and the main environmental drivers of surface energy fluxes in the tropical Americas. We further determined ecosystem traits associated with water stress and surface energy partitioning, pinpointed critical thresholds for water stress, and quantified changes in ecosystem carbon uptake associated with crossing these critical thresholds. We found that the top drivers of LST/Tair , explaining over a quarter of its local variability in the study region, are (1) radiation, in 58% of the study region; (2) water supply from precipitation, in 30% of the study region; and (3) atmospheric water demand from vapor pressure deficits (VPD), in 22% of the study region. Regions in which LST/Tair variation is driven by radiation are located in regions of high aboveground biomass or at high elevations, while regions in which LST/Tair is driven by water supply from precipitation or atmospheric demand tend to have low species richness. Carbon uptake by photosynthesis can be reduced by up to 80% in water-limited regions when critical thresholds for precipitation and air dryness are exceeded simultaneously, that is, as compound events. Our results demonstrate that vegetation structure and diversity can be important for regulating surface energy and carbon fluxes over tropical regions.
Collapse
Affiliation(s)
- Julia K Green
- Le Laboratoire des Sciences du Climat et de l'Environnement, CEA CNRS UVSQ, Gif sur Yvette, France
- The University of California, Berkeley, California, USA
| | - Ashley Ballantyne
- Le Laboratoire des Sciences du Climat et de l'Environnement, CEA CNRS UVSQ, Gif sur Yvette, France
- The University of Montana, Missoula, Montana, USA
| | - Rose Abramoff
- Le Laboratoire des Sciences du Climat et de l'Environnement, CEA CNRS UVSQ, Gif sur Yvette, France
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Pierre Gentine
- Columbia University, New York, New York, USA
- Earth Institute, Columbia University, New York, New York, USA
| | - David Makowski
- Institut National de la Recherche Agronomique, University Paris-Saclay, AgroParisTech, UMR 518 MIA, Paris, France
| | - Philippe Ciais
- Le Laboratoire des Sciences du Climat et de l'Environnement, CEA CNRS UVSQ, Gif sur Yvette, France
| |
Collapse
|
44
|
Hajek P, Link RM, Nock CA, Bauhus J, Gebauer T, Gessler A, Kovach K, Messier C, Paquette A, Saurer M, Scherer-Lorenzen M, Rose L, Schuldt B. Mutually inclusive mechanisms of drought-induced tree mortality. GLOBAL CHANGE BIOLOGY 2022; 28:3365-3378. [PMID: 35246895 DOI: 10.1101/2020.12.17.423038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/16/2021] [Indexed: 05/22/2023]
Abstract
Unprecedented tree dieback across Central Europe caused by recent global change-type drought events highlights the need for a better mechanistic understanding of drought-induced tree mortality. Although numerous physiological risk factors have been identified, the importance of two principal mechanisms, hydraulic failure and carbon starvation, is still debated. It further remains largely unresolved how the local neighborhood composition affects individual mortality risk. We studied 9435 young trees of 12 temperate species planted in a diversity experiment in 2013 to assess how hydraulic traits, carbon dynamics, pest infestation, tree height and neighborhood competition influence individual mortality risk. Following the most extreme global change-type drought since record in 2018, one third of these trees died. Across species, hydraulic safety margins (HSMs) were negatively and a shift towards a higher sugar fraction in the non-structural carbohydrate (NSC) pool positively associated with mortality risk. Moreover, trees infested by bark beetles had a higher mortality risk, and taller trees a lower mortality risk. Most neighborhood interactions were beneficial, although neighborhood effects were highly species-specific. Species that suffered more from drought, especially Larix spp. and Betula spp., tended to increase the survival probability of their neighbors and vice versa. While severe tissue dehydration marks the final stage of drought-induced tree mortality, we show that hydraulic failure is interrelated with a series of other, mutually inclusive processes. These include shifts in NSC pools driven by osmotic adjustment and/or starch depletion as well as pest infestation and are modulated by the size and species identity of a tree and its neighbors. A more holistic view that accounts for multiple causes of drought-induced tree mortality is required to improve predictions of trends in global forest dynamics and to identify mutually beneficial species combinations.
Collapse
Affiliation(s)
- Peter Hajek
- Geobotany, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Roman M Link
- Chair of Ecophysiology and Vegetation Ecology, University of Würzburg, Julius-von-Sachs-Institute of Biological Sciences, Würzburg, Germany
| | - Charles A Nock
- Geobotany, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Jürgen Bauhus
- Chair of Silviculture, University of Freiburg, Freiburg, Germany
| | - Tobias Gebauer
- Geobotany, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Arthur Gessler
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
- ETH Zurich, Institute of Terrestrial Ecosystems, Zurich, Switzerland
| | - Kyle Kovach
- Geobotany, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Christian Messier
- Center for Forest Research, Université du Québec à Montréal, Montréal, Quebec, Canada
- University of Quebec in Outaouais (UQO), Institut des Sciences de la Forêt Tempérée (ISFORT), Gatineau, Quebec, Canada
| | - Alain Paquette
- Center for Forest Research, Université du Québec à Montréal, Montréal, Quebec, Canada
| | - Matthias Saurer
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| | | | - Laura Rose
- Geobotany, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Bernhard Schuldt
- Chair of Ecophysiology and Vegetation Ecology, University of Würzburg, Julius-von-Sachs-Institute of Biological Sciences, Würzburg, Germany
| |
Collapse
|
45
|
Fu Z, Ciais P, Prentice IC, Gentine P, Makowski D, Bastos A, Luo X, Green JK, Stoy PC, Yang H, Hajima T. Atmospheric dryness reduces photosynthesis along a large range of soil water deficits. Nat Commun 2022; 13:989. [PMID: 35190562 PMCID: PMC8861027 DOI: 10.1038/s41467-022-28652-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 01/28/2022] [Indexed: 12/13/2022] Open
Abstract
Both low soil water content (SWC) and high atmospheric dryness (vapor pressure deficit, VPD) can negatively affect terrestrial gross primary production (GPP). The sensitivity of GPP to soil versus atmospheric dryness is difficult to disentangle, however, because of their covariation. Using global eddy-covariance observations, here we show that a decrease in SWC is not universally associated with GPP reduction. GPP increases in response to decreasing SWC when SWC is high and decreases only when SWC is below a threshold. By contrast, the sensitivity of GPP to an increase of VPD is always negative across the full SWC range. We further find canopy conductance decreases with increasing VPD (irrespective of SWC), and with decreasing SWC on drier soils. Maximum photosynthetic assimilation rate has negative sensitivity to VPD, and a positive sensitivity to decreasing SWC when SWC is high. Earth System Models underestimate the negative effect of VPD and the positive effect of SWC on GPP such that they should underestimate the GPP reduction due to increasing VPD in future climates.
Collapse
Affiliation(s)
- Zheng Fu
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191, Gif-sur-Yvette, France.
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - I Colin Prentice
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, 100084, China
| | - Pierre Gentine
- Department of Earth and Environmental Engineering, Columbia University, New York, NY, 10027, USA
| | - David Makowski
- Unit Applied mathematics and computer science (UMR 518) INRAE AgroParisTech Université Paris-Saclay, Paris, France
| | - Ana Bastos
- Department Biogeochemical Integration, Max Planck Institute for Biogeochemistry, D-07745, Jena, Germany
| | - Xiangzhong Luo
- Department of Geography, National University of Singapore, Singapore, Singapore
| | - Julia K Green
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Paul C Stoy
- Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Hui Yang
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Tomohiro Hajima
- Research Center for Environmental Modeling and Application, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showamachi, Kanazawaku, Yokohama, 236-0001, Japan
| |
Collapse
|
46
|
Zhang Y, Keenan TF, Zhou S. Exacerbated drought impacts on global ecosystems due to structural overshoot. Nat Ecol Evol 2021; 5:1490-1498. [PMID: 34593995 PMCID: PMC8563399 DOI: 10.1038/s41559-021-01551-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023]
Abstract
Vegetation dynamics are affected not only by the concurrent climate but also by memory-induced lagged responses. For example, favourable climate in the past could stimulate vegetation growth to surpass the ecosystem carrying capacity, leaving an ecosystem vulnerable to climate stresses. This phenomenon, known as structural overshoot, could potentially contribute to worldwide drought stress and forest mortality but the magnitude of the impact is poorly known due to the dynamic nature of overshoot and complex influencing timescales. Here, we use a dynamic statistical learning approach to identify and characterize ecosystem structural overshoot globally and quantify the associated drought impacts. We find that structural overshoot contributed to around 11% of drought events during 1981-2015 and is often associated with compound extreme drought and heat, causing faster vegetation declines and greater drought impacts compared to non-overshoot related droughts. The fraction of droughts related to overshoot is strongly related to mean annual temperature, with biodiversity, aridity and land cover as secondary factors. These results highlight the large role vegetation dynamics play in drought development and suggest that soil water depletion due to warming-induced future increases in vegetation could cause more frequent and stronger overshoot droughts.
Collapse
Affiliation(s)
- Yao Zhang
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Department of Environmental Science, Policy and Management, UC Berkeley, Berkeley, CA, USA.
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China.
| | - Trevor F Keenan
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Department of Environmental Science, Policy and Management, UC Berkeley, Berkeley, CA, USA.
| | - Sha Zhou
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Environmental Science, Policy and Management, UC Berkeley, Berkeley, CA, USA
- Department of Earth and Environmental Engineering, Columbia University, New York, NY, USA
- State Key Laboratory of Earth Surface Processes and Resources Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| |
Collapse
|
47
|
Zhang J, Guan K, Peng B, Pan M, Zhou W, Jiang C, Kimm H, Franz TE, Grant RF, Yang Y, Rudnick DR, Heeren DM, Suyker AE, Bauerle WL, Miner GL. Sustainable irrigation based on co-regulation of soil water supply and atmospheric evaporative demand. Nat Commun 2021; 12:5549. [PMID: 34545076 PMCID: PMC8452748 DOI: 10.1038/s41467-021-25254-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/13/2021] [Indexed: 11/25/2022] Open
Abstract
Irrigation is an important adaptation to reduce crop yield loss due to water stress from both soil water deficit (low soil moisture) and atmospheric aridity (high vapor pressure deficit, VPD). Traditionally, irrigation has primarily focused on soil water deficit. Observational evidence demonstrates that stomatal conductance is co-regulated by soil moisture and VPD from water supply and demand aspects. Here we use a validated hydraulically-driven ecosystem model to reproduce the co-regulation pattern. Specifically, we propose a plant-centric irrigation scheme considering water supply-demand dynamics (SDD), and compare it with soil-moisture-based irrigation scheme (management allowable depletion, MAD) for continuous maize cropping systems in Nebraska, United States. We find that, under current climate conditions, the plant-centric SDD irrigation scheme combining soil moisture and VPD, could significantly reduce irrigation water use (-24.0%) while maintaining crop yields, and increase economic profits (+11.2%) and irrigation water productivity (+25.2%) compared with MAD, thus SDD could significantly improve water sustainability.
Collapse
Affiliation(s)
- Jingwen Zhang
- Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana Champaign, Urbana, IL, USA.
- College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana Champaign, Urbana, IL, USA.
| | - Kaiyu Guan
- Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana Champaign, Urbana, IL, USA.
- College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana Champaign, Urbana, IL, USA.
- National Center for Supercomputing Applications, University of Illinois at Urbana Champaign, Urbana, IL, USA.
| | - Bin Peng
- Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana Champaign, Urbana, IL, USA.
- College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana Champaign, Urbana, IL, USA.
- National Center for Supercomputing Applications, University of Illinois at Urbana Champaign, Urbana, IL, USA.
| | - Ming Pan
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, USA
- Center for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Wang Zhou
- Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana Champaign, Urbana, IL, USA
- College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Chongya Jiang
- Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana Champaign, Urbana, IL, USA
- College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Hyungsuk Kimm
- Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana Champaign, Urbana, IL, USA
- College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Trenton E Franz
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Robert F Grant
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Yi Yang
- Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana Champaign, Urbana, IL, USA
- College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Daran R Rudnick
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Derek M Heeren
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Andrew E Suyker
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - William L Bauerle
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, USA
| | - Grace L Miner
- Soil Management and Sugarbeet Research Unit, USDA-ARS, Fort Collins, CO, USA
| |
Collapse
|
48
|
Ji G, Li B, Yin H, Liu G, Yuan Y, Cui G. Non-utilization Is Not the Best Way to Manage Lowland Meadows in Hulun Buir. FRONTIERS IN PLANT SCIENCE 2021; 12:704511. [PMID: 34335668 PMCID: PMC8322850 DOI: 10.3389/fpls.2021.704511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Carex meyeriana lowland meadow is an important component of natural grasslands in Hulun Buir. However, in Hulun Buir, fewer studies have been conducted on C. meyeriana lowland meadows than on other grassland types. To determine the most appropriate utilization mode for C. meyeriana lowland meadows, an experiment was conducted in Zhalantun city, Hulun Buir. Unused, moderately grazed, heavily grazed and mowed meadow sites were selected as the research objects. The analysis of experimental data from 4 consecutive years showed that relative to the other utilization modes, mowing and moderate grazing significantly increased C. meyeriana biomass. Compared with non-utilization, the other three utilization modes resulted in a higher plant diversity, and the moderately grazed meadow had the highest plant community stability. Moreover, principal component analysis (PCA) showed that among the meadow sites, the mowed meadow had the most stable plant community and soil physicochemical properties. Structural equation modeling (SEM) showed that grazing pressure was less than 0.25 hm2/sheep unit and that plant biomass in C. meyeriana lowland meadow increases with increasing grazing intensity, temperature and precipitation.
Collapse
Affiliation(s)
- Guoxu Ji
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bing Li
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Hang Yin
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Guofu Liu
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yuying Yuan
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Guowen Cui
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
49
|
Satellite-Observed Global Terrestrial Vegetation Production in Response to Water Availability. REMOTE SENSING 2021. [DOI: 10.3390/rs13071289] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Water stress is one of the primary environmental factors that limits terrestrial ecosystems’ productivity. Hense, the way to quantify gobal vegetation productivity’s vulnerability under water stress and reveal its seasonal dynamics in response to drought is of great significance in mitigating and adapting to global changes. Here, we estimated monthly gross primary productivity (GPP) first based on light-use efficiency (LUE) models for 1982–2015. GPP’s response time to water availability can be determined by correlating the monthly GPP series with the multiple timescale Standardized Precipitation Evapotranspiration Index (SPEI). Thereafter, we developed an optimal bivariate probabilistic model to derive the vegetation productivity loss probabilities under different drought scenarios using the copula method. The results showed that LUE models have a good fit and estimate GPP well (R2 exceeded 0.7). GPP is expected to decrease in 71.91% of the global land vegetation area because of increases in radiation and temperature and decreases in soil moisture during drought periods. Largely, we found that vegetation productivity and water availability are correlated positively globally. The vegetation productivity in arid and semiarid areas depends considerably upon water availability compared to that in humid and semi-humid areas. Weak drought resistance often characterizes the land cover types that water availability influences more. In addition, under the scenario of the same level of GPP damage with different drought degrees, as droughts increase in severity, GPP loss probabilities increase as well. Further, under the same drought severity with different levels of GPP damage, drought’s effect on GPP loss probabilities weaken gradually as the GPP damage level increaes. Similar patterns were observed in different seasons. Our results showed that arid and semiarid areas have higher conditional probabilities of vegetation productivity losses under different drought scenarios.
Collapse
|
50
|
Boëchat IG, Krüger A, Soares EM, Figueredo CC, Contin AM, Pinheiro PL, Abrantes GHP, Cardozo FS, Gücker B. Fatty acids reveal aquaculture and drought effects on a large tropical reservoir. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142660. [PMID: 33049529 DOI: 10.1016/j.scitotenv.2020.142660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Fatty acids (FAs) and their metrics have been used to detect and assess the impacts of urbanization and agriculture on aquatic ecosystems. Here, we investigated whether seston FAs are also useful to characterize and understand early-stage aquaculture impacts in a large tropical reservoir (Furnas Reservoir, SE Brazil). We tested the hypothesis that single FAs, as well as selected FA metrics in the seston fraction, are efficient markers of net-cage fish farming effects. In general, fish farming had only minor effects on standard water chemical variables, mainly small increases in ammonium, nitrate, and dissolved organic nitrogen concentrations. By increasing concentrations of several polyunsaturated FAs, early-stage fish farming improved sestonic food quality in the more oligotrophic branch of the reservoir under drought conditions. However, in general, increases in concentrations of bacterial FAs, due to fish farming, suggested organic matter (OM) subsidies from non-ingested and non-assimilated fish feed. In the more eutrophic reservoir branch, seston FA profiles suggested that fish farming caused an increase of low-quality food resources, such as cyanobacteria. Thus, background impact levels may determine the biochemical responses of tropical reservoirs to fish farming. Higher contributions of potentially sewage-derived and bacterial FAs during drought conditions, especially at reference sites of the more oligotrophic branch, suggested that drought shifted OM inputs towards anthropogenic sources, thereby overwriting land-use related differences between reservoir branches and homogenizing their environmental conditions. In conclusion, FA variables were useful to evaluate and understand environmental conditions, as well as the effects of early-stage fish farming and drought, and should be considered in impact assessments in tropical lentic ecosystems.
Collapse
Affiliation(s)
- I G Boëchat
- Department of Geosciences, Federal University of São João del-Rei, São João del-Rei, Minas Gerais, Brazil.
| | - A Krüger
- Department of Chemical Analytics and Biogeochemistry, Leibniz-Institute for Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - E M Soares
- Graduate Program in Geography, Federal University of São João del-Rei, São João del-Rei, Minas Gerais, Brazil
| | - C C Figueredo
- Department of Botany, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - A M Contin
- Graduate Program in Geography, Federal University of São João del-Rei, São João del-Rei, Minas Gerais, Brazil
| | - P L Pinheiro
- Graduate Program in Geography, Federal University of São João del-Rei, São João del-Rei, Minas Gerais, Brazil
| | - G H P Abrantes
- Department of Botany, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - F S Cardozo
- Graduate Program in Geography, Federal University of São João del-Rei, São João del-Rei, Minas Gerais, Brazil
| | - B Gücker
- Department of Geosciences, Federal University of São João del-Rei, São João del-Rei, Minas Gerais, Brazil
| |
Collapse
|