1
|
Guth C, Limjunyawong N, Pundir P. The evolving role of mast cells in wound healing: insights from recent research and diverse models. Immunol Cell Biol 2024. [PMID: 39377394 DOI: 10.1111/imcb.12824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/09/2024]
Abstract
Chronic wounds significantly burden health care systems worldwide, requiring novel strategies to ease their impact. Many physiological processes underlying wound healing are well studied but the role of mast cells remains controversial. Mast cells are innate immune cells and play an essential role in barrier function by inducing inflammation to defend the host against chemical irritants and infections, among others. Many mast cell-derived mediators have proposed roles in wound healing; however, in vivo evidence using mouse models has produced conflicting results. Recently, studies involving more complex wound models such as infected wounds, diabetic wounds and wounds healing under psychological stress suggest that mast cells play critical roles in these processes. This review briefly summarizes the existing literature regarding mast cells in normal wounds and the potential reasons for the contradictory results. Focus will be placed on examining more recent work emerging in the last 5 years that explores mast cells in more complex systems of wound healing, including infection, psychological stress and diabetes, with a discussion of how these discoveries may inspire future work in the field.
Collapse
Affiliation(s)
- Colin Guth
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON, Canada
| | - Nathachit Limjunyawong
- Research Department, Center of Research Excellence in Allergy and Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Priyanka Pundir
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
2
|
Kumari P, Panigrahi AR, Yadav P, Beura SK, Singh SK. Platelets and inter-cellular communication in immune responses: Dialogue with both professional and non-professional immune cells. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 140:347-379. [PMID: 38762274 DOI: 10.1016/bs.apcsb.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Platelets, derived from bone marrow megakaryocytes, are essential for vascular integrity and play multifaceted roles in both physiological and pathological processes within the vasculature. Despite their small size and absence of a nucleus, platelets are increasingly recognized for their diverse immune functions. Recent research highlights their pivotal role in interactions with various immune cells, including professional cells like macrophages, dendritic cells, natural killer cells, T cells, and B cells, influencing host immune responses. Platelets also engage with non-professional immune cells, contributing to immune responses and structural maintenance, particularly in conditions like inflammation and atherosclerosis. This review underscores the emerging significance of platelets as potent immune cells, elucidating their interactions with the immune system. We explore the mechanisms of platelet activation, leading to diverse functions, such as aggregation, immunity, activation of other immune cells, and pathogen clearance. Platelets have become the predominant immune cells in circulation, involved in chronic inflammation, responses to infections, and autoimmune disorders. Their immunological attributes, including bioactive granule molecules and immune receptors, contribute to their role in immune responses. Unlike professional antigen-presenting cells, platelets process and present antigens through an MHC-I-dependent pathway, initiating T-cell immune responses. This review illuminates the unique features of platelets and their central role in modulating host immune responses in health and disease.
Collapse
Affiliation(s)
- Puja Kumari
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | | | - Pooja Yadav
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Samir Kumar Beura
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Sunil Kumar Singh
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India; Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
3
|
Parker WAE, Storey RF. The role of platelet P2Y 12 receptors in inflammation. Br J Pharmacol 2024; 181:515-531. [PMID: 37771103 DOI: 10.1111/bph.16256] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/15/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023] Open
Abstract
Inflammation is a complex pathophysiological process underlying many clinical conditions. Platelets contribute to the thrombo-inflammatory response. Platelet P2Y12 receptors amplify platelet activation, potentiating platelet aggregation, degranulation and shape change. The contents of platelet alpha granules, in particular, act directly on leucocytes, including mediating platelet-leucocyte aggregation and activation via platelet P-selectin. Much evidence for the role of platelet P2Y12 receptors in inflammation comes from studies using antagonists of these receptors, such as the thienopyridines clopidogrel and prasugrel, and the cyclopentyltriazolopyrimidine ticagrelor, in animal and human experimental models. These suggest that antagonism of P2Y12 receptors decreases markers of inflammation with some evidence that this reduces incidence of adverse clinical sequelae during inflammatory conditions. Interpretation is complicated by pleiotropic effects such as those of the thienopyridines on circulating leucocyte numbers and of ticagrelor on adenosine reuptake. The available evidence suggests that P2Y12 receptors are prominent mediators of inflammation and P2Y12 receptor antagonism as a potentially powerful strategy in a broad range of inflammatory conditions. LINKED ARTICLES: This article is part of a themed issue on Platelet purinergic receptor and non-thrombotic disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.4/issuetoc.
Collapse
Affiliation(s)
- William A E Parker
- Cardiovascular Research Unit, Division of Clinical Medicine, University of Sheffield, Sheffield, UK
- NIHR Sheffield Biomedical Research Centre, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Robert F Storey
- Cardiovascular Research Unit, Division of Clinical Medicine, University of Sheffield, Sheffield, UK
- NIHR Sheffield Biomedical Research Centre, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| |
Collapse
|
4
|
Asero R. Mechanisms of histamine release from mast cells beyond the high affinity IgE receptor in severe chronic spontaneous urticaria. Immunol Lett 2024; 265:1-4. [PMID: 38042500 DOI: 10.1016/j.imlet.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023]
Abstract
There is growing evidence suggesting that in a subset of patients with severe chronic urticaria [CSU] mast cells are activated via mechanisms that bypass the high affinity IgE receptor. This might explain why some patients do not respond at all to anti-IgE therapy [omalizumab]. The present article reviews the pathogenic mechanisms able to lead to histamine release from mast cells described so far in patients with CSU. These include the activation of the coagulation cascade, the activation of the complement system, the activation of the MRGPRX2 receptor, and the platelet activating factor vicious circle. The article suggests some possible interpretations for the clinical events occurring in this specific subset of patients.
Collapse
Affiliation(s)
- Riccardo Asero
- Ambulatorio di Allergologia, Clinica San Carlo, Via Ospedale 21, 20037 Paderno Dugnano (MI), Italy.
| |
Collapse
|
5
|
De Giovanni M, Chen H, Li X, Cyster JG. GPR35 and mediators from platelets and mast cells in neutrophil migration and inflammation. Immunol Rev 2023; 317:187-202. [PMID: 36928841 PMCID: PMC10504419 DOI: 10.1111/imr.13194] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Neutrophil recruitment from circulation to sites of inflammation is guided by multiple chemoattractant cues emanating from tissue cells, immune cells, and platelets. Here, we focus on the function of one G-protein coupled receptor, GPR35, in neutrophil recruitment. GPR35 has been challenging to study due the description of multiple ligands and G-protein couplings. Recently, we found that GPR35-expressing hematopoietic cells respond to the serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA). We discuss distinct response profiles of GPR35 to 5-HIAA compared to other ligands. To place the functions of 5-HIAA in context, we summarize the actions of serotonin in vascular biology and leukocyte recruitment. Important sources of serotonin and 5-HIAA are platelets and mast cells. We discuss the dynamics of cell migration into inflamed tissues and how multiple platelet and mast cell-derived mediators, including 5-HIAA, cooperate to promote neutrophil recruitment. Additional actions of GPR35 in tissue physiology are reviewed. Finally, we discuss how clinically approved drugs that modulate serotonin uptake and metabolism may influence 5-HIAA-GPR35 function, and we speculate about broader influences of the GPR35 ligand-receptor system in immunity and disease.
Collapse
Affiliation(s)
- Marco De Giovanni
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hongwen Chen
- Departments of Molecular Genetics and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaochun Li
- Departments of Molecular Genetics and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jason G. Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
6
|
De Giovanni M, Dang EV, Chen KY, An J, Madhani HD, Cyster JG. Platelets and mast cells promote pathogenic eosinophil recruitment during invasive fungal infection via the 5-HIAA-GPR35 ligand-receptor system. Immunity 2023; 56:1548-1560.e5. [PMID: 37279752 PMCID: PMC10360074 DOI: 10.1016/j.immuni.2023.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/03/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023]
Abstract
Cryptococcus neoformans is the leading cause of fungal meningitis and is characterized by pathogenic eosinophil accumulation in the context of type-2 inflammation. The chemoattractant receptor GPR35 is expressed by granulocytes and promotes their migration to the inflammatory mediator 5-hydroxyindoleacetic acid (5-HIAA), a serotonin metabolite. Given the inflammatory nature of cryptococcal infection, we examined the role of GPR35 in the circuitry underlying cell recruitment to the lung. GPR35 deficiency dampened eosinophil recruitment and fungal growth, whereas overexpression promoted eosinophil homing to airways and fungal replication. Activated platelets and mast cells were the sources of GPR35 ligand activity and pharmacological inhibition of serotonin conversion to 5-HIAA, or genetic deficiency in 5-HIAA production by platelets and mast cells resulted in more efficient clearance of Cryptococcus. Thus, the 5-HIAA-GPR35 axis is an eosinophil chemoattractant receptor system that modulates the clearance of a lethal fungal pathogen, with implications for the use of serotonin metabolism inhibitors in the treatment of fungal infections.
Collapse
Affiliation(s)
- Marco De Giovanni
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Eric V Dang
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kevin Y Chen
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jinping An
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hiten D Madhani
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jason G Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
7
|
Zhang P, Jiang H, Yang M, Bi C, Zhang K, Liu D, Wei M, Jiang Z, Lv K, Fang C, Liu J, Zhang T, Xu Y, Zhang J. AGK Potentiates Arterial Thrombosis by Affecting Talin-1 and αIIbβ3-Mediated Bidirectional Signaling Pathway. Arterioscler Thromb Vasc Biol 2023; 43:1015-1030. [PMID: 37051931 DOI: 10.1161/atvbaha.122.318647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/22/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND AGK (acylglycerol kinase) was first identified as a mitochondrial transmembrane protein that exhibits a lipid kinase function. Recent studies have established that AGK promotes cancer growth and metastasis, enhances glycolytic metabolism and function fitness of CD8+ T cells, or regulates megakaryocyte differentiation. However, the role of AGK in platelet activation and arterial thrombosis remains to be elaborated. METHODS We performed hematologic analysis using automated hematology analyzer and investigated platelets morphology by transmission electron microscope. We explored the role of AGK in platelet activation and arterial thrombosis utilizing transgenic mice, platelet functional experiments in vitro, and thrombosis models in vivo. We revealed the regulation effect of AGK on Talin-1 by coimmunoprecipitation, mass spectrometry, immunofluorescence, and Western blot. We tested the role of AGK on lipid synthesis of phosphatidic acid/lysophosphatidic acid and thrombin generation by specific Elisa kits. RESULTS In this study, we found that AGK depletion or AGK mutation had no effect on the platelet average volumes, the platelet microstructures, or the expression levels of the major platelet membrane receptors. However, AGK deficiency or AGK mutation conspicuously decreased multiple aspects of platelet activation, including agonists-induced platelet aggregation, granules secretion, JON/A binding, spreading on Fg (fibrinogen), and clot retraction. AGK deficiency or AGK mutation also obviously delayed arterial thrombus formation but had no effect on tail bleeding time and platelet procoagulant function. Mechanistic investigation revealed that AGK may promote Talin-1Ser425 phosphorylation and affect the αIIbβ3-mediated bidirectional signaling pathway. However, AGK does not affect lipid synthesis of phosphatidic acid/lysophosphatidic acid in platelets. CONCLUSIONS AGK, through its kinase activity, potentiates platelet activation and arterial thrombosis by promoting Talin-1 Ser425 phosphorylation and affecting the αIIbβ3-mediated bidirectional signaling pathway.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China (P.Z., C.B., K.Z., D.L., M.W., Z.J., T.Z., J.Z.)
| | - Haojie Jiang
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, China (H.J., M.Y., J.L., Y.X.)
| | - Mina Yang
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, China (H.J., M.Y., J.L., Y.X.)
| | - Changlong Bi
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China (P.Z., C.B., K.Z., D.L., M.W., Z.J., T.Z., J.Z.)
| | - Kandi Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China (P.Z., C.B., K.Z., D.L., M.W., Z.J., T.Z., J.Z.)
| | - Dongsheng Liu
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China (P.Z., C.B., K.Z., D.L., M.W., Z.J., T.Z., J.Z.)
| | - Meng Wei
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China (P.Z., C.B., K.Z., D.L., M.W., Z.J., T.Z., J.Z.)
| | - Zheyi Jiang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China (P.Z., C.B., K.Z., D.L., M.W., Z.J., T.Z., J.Z.)
| | - Keyu Lv
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China (K.L., C.F.)
| | - Chao Fang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China (K.L., C.F.)
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, China (H.J., M.Y., J.L., Y.X.)
| | - Tiantian Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China (P.Z., C.B., K.Z., D.L., M.W., Z.J., T.Z., J.Z.)
| | - Yanyan Xu
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, China (H.J., M.Y., J.L., Y.X.)
| | - Junfeng Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China (P.Z., C.B., K.Z., D.L., M.W., Z.J., T.Z., J.Z.)
| |
Collapse
|
8
|
Tacquard C, Mertes P. Réactions d’hypersensibilité peropératoire : du phénotype à l’endotype. REVUE FRANÇAISE D'ALLERGOLOGIE 2023. [DOI: 10.1016/j.reval.2023.103325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
9
|
Wismans LV, Lopuhaä B, de Koning W, Moeniralam H, van Oosterhout M, Ambarus C, Hofman FN, Kuiken T, Endeman H, Mustafa DAM, von der Thüsen JH. Increase of mast cells in COVID-19 pneumonia may contribute to pulmonary fibrosis and thrombosis. Histopathology 2023; 82:407-419. [PMID: 36366933 PMCID: PMC9877713 DOI: 10.1111/his.14838] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/10/2022] [Accepted: 11/05/2022] [Indexed: 11/13/2022]
Abstract
AIMS Lung tissue from COVID-19 patients shares similar histomorphological features with chronic lung allograft disease, also suggesting activation of autoimmune-related pathways in COVID-19. To more clearly understand the underlying spectrum of pathophysiology in COVID-19 pneumonia, we analysed mRNA expression of autoimmune-related genes in post-mortem lung tissue from COVID-19 patients. METHODS AND RESULTS Formalin-fixed, paraffin-embedded lung tissue samples of 18 COVID-19 patients and eight influenza patients were used for targeted gene expression profiling using NanoString technology. Multiplex immunofluorescence for tryptase and chymase was applied for validation. Genes related to mast cells were significantly increased in COVID-19. This finding was strengthened by multiplex immunofluorescence also showing a significant increase of tryptase- and chymase-positive cells in COVID-19. Furthermore, receptors for advanced glycation end-products (RAGE) and pro-platelet basic protein (PPBP) were up-regulated in COVID-19 compared to influenza. Genes associated with Type I interferon signalling showed a significant correlation to detected SARS-CoV2 pathway-related genes. The comparison of lung tissue samples from both groups based on the presence of histomorphological features indicative of acute respiratory distress syndrome did not result in finding any specific gene or pathways. CONCLUSION Two separate means of measuring show a significant increase of mast cells in SARS-CoV-2-infected lung tissue compared to influenza. Additionally, several genes involved in fibrosis and thrombosis, among which are RAGE and PPBP, are up-regulated in COVID-19. As mast cells are able to induce thrombosis and fibrosis, they may play an important role in the pathogenesis of COVID-19.
Collapse
Affiliation(s)
- Leonoor V Wismans
- Present address:
Department of SurgeryErasmus Medical CenterRotterdamthe Netherlands,The Tumor Immuno‐Pathology Laboratory, Department of PathologyJosephine Nefkens Institute, Erasmus Medical CenterRotterdamthe Netherlands
| | - Boaz Lopuhaä
- Present address:
Department of SurgeryErasmus Medical CenterRotterdamthe Netherlands,Department of PathologyJosephine Nefkens Institute, Erasmus Medical CenterRotterdamthe Netherlands
| | - Willem de Koning
- The Tumor Immuno‐Pathology Laboratory, Department of PathologyJosephine Nefkens Institute, Erasmus Medical CenterRotterdamthe Netherlands,Clinical Bioinformatics Unit, Department of PathologyErasmus Medical CenterRotterdamthe Netherlands
| | - Hazra Moeniralam
- Department of Internal Medicine and Intensive CareSt. Antonius HospitalNieuwegeinthe Netherlands
| | | | - Carmen Ambarus
- Department of Pathology DNASt. Antonius HospitalNieuwegeinthe Netherlands
| | - Frederik N Hofman
- Department of Cardiothoracic SurgerySt. Antonius HospitalNieuwegeinthe Netherlands
| | - Thijs Kuiken
- Department of ViroscienceErasmus Medical CenterRotterdamthe Netherlands
| | - Henrik Endeman
- Department of Adult Intensive CareErasmus Medical CenterRotterdamthe Netherlands
| | - Dana A M Mustafa
- The Tumor Immuno‐Pathology Laboratory, Department of PathologyJosephine Nefkens Institute, Erasmus Medical CenterRotterdamthe Netherlands,Department of PathologyJosephine Nefkens Institute, Erasmus Medical CenterRotterdamthe Netherlands
| | - Jan H von der Thüsen
- Department of PathologyJosephine Nefkens Institute, Erasmus Medical CenterRotterdamthe Netherlands
| |
Collapse
|
10
|
St John AL, Rathore APS, Ginhoux F. New perspectives on the origins and heterogeneity of mast cells. Nat Rev Immunol 2023; 23:55-68. [PMID: 35610312 DOI: 10.1038/s41577-022-00731-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 01/06/2023]
Abstract
Mast cells are immune cells of the haematopoietic lineage that are now thought to have multifaceted functions during homeostasis and in various disease states. Furthermore, while mast cells have been known for a long time to contribute to allergic disease in adults, recent studies, mainly in mice, have highlighted their early origins during fetal development and potential for immune functions, including allergic responses, in early life. Our understanding of the imprinting of mast cells by particular tissues of residence and their potential for regulatory interactions with organ systems such as the peripheral immune, nervous and vascular systems is also rapidly evolving. Here, we discuss the origins of mast cells and their diverse and plastic phenotypes that are influenced by tissue residence. We explore how divergent phenotypes and functions might result from both their hard-wired 'nature' defined by their ontogeny and the 'nurture' they receive within specialized tissue microenvironments.
Collapse
Affiliation(s)
- Ashley L St John
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
- Department of Pathology, Duke University Medical Center, Durham, NC, USA.
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- SingHealth Duke-NUS Global Health Institute, Singapore, Singapore.
| | - Abhay P S Rathore
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Florent Ginhoux
- Singapore Immunology Network, A*STAR, Singapore, Singapore.
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.
| |
Collapse
|
11
|
Krysko O, Bourne JH, Kondakova E, Galova EA, Whitworth K, Newby ML, Bachert C, Hill H, Crispin M, Stamataki Z, Cunningham AF, Pugh M, Khan AO, Rayes J, Vedunova M, Krysko DV, Brill A. Severity of SARS-CoV-2 infection is associated with high numbers of alveolar mast cells and their degranulation. Front Immunol 2022; 13:968981. [PMID: 36225927 PMCID: PMC9548604 DOI: 10.3389/fimmu.2022.968981] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022] Open
Abstract
Background The systemic inflammatory response post-SARS-CoV-2 infection increases pro-inflammatory cytokine production, multi-organ damage, and mortality rates. Mast cells (MC) modulate thrombo-inflammatory disease progression (e.g., deep vein thrombosis) and the inflammatory response post-infection. Objective To enhance our understanding of the contribution of MC and their proteases in SARS-CoV-2 infection and the pathogenesis of the disease, which might help to identify novel therapeutic targets. Methods MC proteases chymase (CMA1), carboxypeptidase A3 (CPA3), and tryptase beta 2 (TPSB2), as well as cytokine levels, were measured in the serum of 60 patients with SARS-CoV-2 infection (30 moderate and 30 severe; severity of the disease assessed by chest CT) and 17 healthy controls by ELISA. MC number and degranulation were quantified by immunofluorescent staining for tryptase in lung autopsies of patients deceased from either SARS-CoV-2 infection or unrelated reasons (control). Immortalized human FcεR1+c-Kit+ LUVA MC were infected with SARS-CoV-2, or treated with its viral proteins, to assess direct MC activation by flow cytometry. Results The levels of all three proteases were increased in the serum of patients with COVID-19, and strongly correlated with clinical severity. The density of degranulated MC in COVID-19 lung autopsies was increased compared to control lungs. The total number of released granules and the number of granules per each MC were elevated and positively correlated with von Willebrand factor levels in the lung. SARS-CoV-2 or its viral proteins spike and nucleocapsid did not induce activation or degranulation of LUVA MC in vitro. Conclusion In this study, we demonstrate that SARS-CoV-2 is strongly associated with activation of MC, which likely occurs indirectly, driven by the inflammatory response. The results suggest that plasma MC protease levels could predict the disease course, and that severe COVID-19 patients might benefit from including MC-stabilizing drugs in the treatment scheme.
Collapse
Affiliation(s)
- Olga Krysko
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Joshua H. Bourne
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Elena Kondakova
- Institute of Biology and Biomedicine, Department of Basic and Medical Genetics, National Research Lobachevsky State University of Nizhniy Novgorod, Nizhniy Novgorod, Russia
| | - Elena A. Galova
- University Clinic of Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Katharine Whitworth
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Maddy L. Newby
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Claus Bachert
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Harriet Hill
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Zania Stamataki
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Adam F. Cunningham
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Matthew Pugh
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Abdullah O. Khan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Maria Vedunova
- Institute of Biology and Biomedicine, Department of Basic and Medical Genetics, National Research Lobachevsky State University of Nizhniy Novgorod, Nizhniy Novgorod, Russia
| | - Dmitri V. Krysko
- Institute of Biology and Biomedicine, Department of Basic and Medical Genetics, National Research Lobachevsky State University of Nizhniy Novgorod, Nizhniy Novgorod, Russia
- Department of Pathophysiology, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Ghent University and Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Alexander Brill
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
12
|
Nie YZ, Yan ZQ, Yin H, Shan LH, Wang JH, Wu QH. Osteosarcopenic obesity and its components-osteoporosis, sarcopenia, and obesity-are associated with blood cell count-derived inflammation indices in older Chinese people. BMC Geriatr 2022; 22:532. [PMID: 35764967 PMCID: PMC9238016 DOI: 10.1186/s12877-022-03225-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 06/16/2022] [Indexed: 11/21/2022] Open
Abstract
Background The aim of this study was to investigate the associations of osteosarcopenic obesity (OSO) and its components with complete blood cell count-derived inflammation indices. Methods In this cross-sectional study, data of 648 participants aged ≥60 years (men/women: 232/416, mean age: 67.21 ± 6.40 years) were collected from January 2018 to December 2020. Areal bone mineral density and body fat percentage were used to define osteopenia/osteoporosis and obesity, respectively. The criteria of the 2019 Asian Working Group for Sarcopenia were used to diagnose sarcopenia. Based on the number of these conditions, participants were divided into four groups: OSO/0, OSO/1, OSO/2, and OSO/3. Logistic regression analysis was conducted to identify associations between blood cell count-derived inflammation indices and the number of disorders with abnormal body composition. Results Systemic inflammation response index (SIRI), white blood cells, neutrophil-to-lymphocyte ratio (NLR), aggregate inflammation systemic index (AISI), platelet-to-lymphocyte ratio (PLR), and lymphocyte-to-monocyte ratio (LMR) showed statistically significant differences among the four groups (P < 0.05). Unlike in the OSO/0 group, in all other groups, AISI, SIRI, PLR, and NLR were significantly associated with increased likelihood of having multiple disorders with abnormal body composition after adjustment for confounders (P < 0.0001 for all). However, LMR showed an inverse correlation with the number of these conditions (P < 0.05). Conclusion Higher SIRI, AISI, NLR, and PLR values and lower LMR values are closely associated with OSO and its individual components—osteoporosis, sarcopenia, and obesity—in older adults, suggesting that the value of these indices in the evaluation of OSO warrants further investigation.
Collapse
Affiliation(s)
- Yi-Zhen Nie
- Physical Examination Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Zhao-Qi Yan
- Physical Examination Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Hui Yin
- Department of Health Education, School of Health Management, Harbin Medical University, Harbin, 150086, China
| | - Ling-Han Shan
- School of Health Management, Harbin Medical University, Harbin, 150086, China
| | - Jia-Hui Wang
- Centre for Health Policy & Management, Health Management College, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150086, Heilongjiang Province, People's Republic of China
| | - Qun-Hong Wu
- Centre for Health Policy & Management, Health Management College, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150086, Heilongjiang Province, People's Republic of China.
| |
Collapse
|
13
|
Cocchi M, Mondo E, Romeo M, Traina G. The Inflammatory Conspiracy in Multiple Sclerosis: A Crossroads of Clues and Insights through Mast Cells, Platelets, Inflammation, Gut Microbiota, Mood Disorders and Stem Cells. Int J Mol Sci 2022; 23:ijms23063253. [PMID: 35328673 PMCID: PMC8950240 DOI: 10.3390/ijms23063253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/28/2022] [Accepted: 03/14/2022] [Indexed: 01/27/2023] Open
Abstract
Multiple Sclerosis is a chronic neurological disease characterized by demyelination and axonal loss. This pathology, still largely of unknown etiology, carries within it a complex series of etiopathogenetic components of which it is difficult to trace the origin. An inflammatory state is likely to be the basis of the pathology. Crucial elements of the inflammatory process are the interactions between platelets and mast cells as well as the bacterial component of the intestinal microbiota. In addition, the involvement of mast cells in autoimmune demyelinating diseases has been shown. The present work tries to hang up on that Ariadne’s thread which, in the molecular complexity of the interactions between mast cells, platelets, microbiota and inflammation, characterizes Multiple Sclerosis and attempts to bring the pathology back to the causal determinism of psychopathological phenomenology. Therefore, we consider the possibility that the original error of Multiple Sclerosis can be investigated in the genetic origin of the depressive pathology.
Collapse
Affiliation(s)
- Massimo Cocchi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (M.C.); (E.M.)
| | - Elisabetta Mondo
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (M.C.); (E.M.)
| | - Marcello Romeo
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy;
| | - Giovanna Traina
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
- Correspondence:
| |
Collapse
|
14
|
De Giovanni M, Tam H, Valet C, Xu Y, Looney MR, Cyster JG. GPR35 promotes neutrophil recruitment in response to serotonin metabolite 5-HIAA. Cell 2022; 185:815-830.e19. [PMID: 35148838 PMCID: PMC9037118 DOI: 10.1016/j.cell.2022.01.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/02/2022] [Accepted: 01/14/2022] [Indexed: 02/06/2023]
Abstract
Rapid neutrophil recruitment to sites of inflammation is crucial for innate immune responses. Here, we reveal that the G-protein-coupled receptor GPR35 is upregulated in activated neutrophils, and it promotes their migration. GPR35-deficient neutrophils are less recruited from blood vessels into inflamed tissue, and the mice are less efficient in clearing peritoneal bacteria. Using a bioassay, we find that serum and activated platelet supernatant stimulate GPR35, and we identify the platelet-derived serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA) as a GPR35 ligand. GPR35 function in neutrophil recruitment is strongly dependent on platelets, with the receptor promoting transmigration across platelet-coated endothelium. Mast cells also attract GPR35+ cells via 5-HIAA. Mice deficient in 5-HIAA show a loss of GPR35-mediated neutrophil recruitment to inflamed tissue. These findings identify 5-HIAA as a GPR35 ligand and neutrophil chemoattractant and establish a role for platelet- and mast cell-produced 5-HIAA in cell recruitment to the sites of inflammation and bacterial clearance.
Collapse
Affiliation(s)
- Marco De Giovanni
- Howard Hughes Medical Institute, Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Hanson Tam
- Howard Hughes Medical Institute, Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Colin Valet
- Departments of Medicine and Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ying Xu
- Howard Hughes Medical Institute, Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mark R Looney
- Departments of Medicine and Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jason G Cyster
- Howard Hughes Medical Institute, Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
15
|
Squiccimarro E, Stasi A, Lorusso R, Paparella D. Narrative review of the systemic inflammatory reaction to cardiac surgery and cardiopulmonary bypass. Artif Organs 2022; 46:568-577. [PMID: 35061922 PMCID: PMC9303696 DOI: 10.1111/aor.14171] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/14/2021] [Accepted: 12/29/2021] [Indexed: 12/11/2022]
Abstract
Background Data from large cardiac surgery registries have been depicting a downward trend of mortality and morbidities in the last 20 years. However, despite decades of medical evolution, cardiac surgery and cardiopulmonary bypass still provoke a systemic inflammatory response, which occasionally leads to worsened outcome. This article seeks to outline the mechanism of the phenomenon. Methods A thorough review of the literature has been performed. Criteria for considering studies for this non‐systematic review were as follows: observational and interventional studies investigating the systemic inflammatory response to cardiac surgery, experimental studies describing relevant molecular mechanisms, and essential review studies pertinent to the topic. Results The intrinsic variability of the inflammatory response to cardiac surgery, together with its heterogenous perception among clinicians, as well as the arduousness to early discriminate high‐responder patients from those who will not develop a clinically relevant reaction, concurred to hitherto unconclusive randomized controlled trials. Furthermore, peremptory knowledge about the pathophysiology of maladaptive inflammation following heart surgery is still lacking. Conclusions Systemic inflammation following cardiac surgery is a frequent entity that occasionally becomes clinically relevant. Specific genomic differences, age, and other preoperative factors influence the magnitude of the response, which elements display extreme redundancy and pleiotropism that the target of a single pathway cannot represent a silver bullet.
Collapse
Affiliation(s)
- Enrico Squiccimarro
- Division of Cardiac Surgery Department of Medical and Surgical Sciences University of Foggia Foggia Italy
- Cardio‐Thoracic Surgery Department, Heart & Vascular Centre Maastricht University Medical Centre Maastricht The Netherlands
| | - Alessandra Stasi
- Department of Emergency and Organ Transplantation University of Bari Bari Italy
| | - Roberto Lorusso
- Cardio‐Thoracic Surgery Department, Heart & Vascular Centre Maastricht University Medical Centre Maastricht The Netherlands
- Cardiovascular Research Institute Maastricht Maastricht The Netherlands
| | - Domenico Paparella
- Division of Cardiac Surgery Department of Medical and Surgical Sciences University of Foggia Foggia Italy
- Division of Cardiac Surgery Santa Maria Hospital, GVM Care & Research Bari Italy
| |
Collapse
|
16
|
Ozpinar EW, Frey AL, Cruse G, Freytes DO. Mast Cell-Biomaterial Interactions and Tissue Repair. TISSUE ENGINEERING. PART B, REVIEWS 2021; 27:590-603. [PMID: 33164714 PMCID: PMC8739845 DOI: 10.1089/ten.teb.2020.0275] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
Tissue engineers often use biomaterials to provide structural support along with mechanical and chemical signals to modulate the wound healing process. Biomaterials that are implanted into the body interact with a heterogeneous and dynamic inflammatory environment that is present at the site of injury. Whether synthetically derived, naturally derived, or a combination of both, it is important to assess biomaterials for their ability to modulate inflammation to understand their potential clinical use. One important, but underexplored cell in the context of biomaterials is the mast cell (MC). MCs are granulocytic leukocytes that engage in a variety of events in both the innate and adaptive immune systems. Although highly recognized for their roles in allergic reactions, MCs play an important role in wound healing by recognizing antigens through pattern recognition receptors and the high-affinity immunoglobulin E receptor (FceRI) and releasing granules that affect cell recruitment, fibrosis, extracellular matrix deposition, angiogenesis, and vasculogenesis. MCs also mediate the foreign body response, contributing to the incorporation or rejection of implants. Studies of MC-biomaterial interactions can aid in the elucidation of MC roles during the host tissue response and tissue repair. This review is designed for those in the tissue engineering and biomaterial fields who are interested in exploring the role MCs may play in wound-biomaterial interactions and wound healing. With this review, we hope to inspire more research in the MC-biomaterial space to accelerate the design and construction of optimized implants. Impact statement Mast cells (MCs) are highly specialized inflammatory cells that have crucial, but not fully understood, roles in wound healing and tissue repair. Upon stimulation, they recognize foreign antigens and release granules that help orchestrate the inflammatory response after tissue damage or biomaterial implantation. This review summarizes the current use of MCs in biomaterial research along with literature from the past decade focusing on MC interactions with materials used for tissue repair and regeneration. Studying MC-biomaterial interactions will help (i) further understand the process of inflammation and (ii) design biomaterials and tissue-engineered constructs for optimal repair and regeneration.
Collapse
Affiliation(s)
- Emily W Ozpinar
- The Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina-Chapel Hill, Raleigh, North Carolina, USA
- The Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Ariana L Frey
- The Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina-Chapel Hill, Raleigh, North Carolina, USA
| | - Glenn Cruse
- The Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Donald O Freytes
- The Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina-Chapel Hill, Raleigh, North Carolina, USA
- The Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
17
|
Lin A, Forsyth JK, Hoftman GD, Kushan-Wells L, Jalbrzikowski M, Dokuru D, Coppola G, Fiksinski A, Zinkstok J, Vorstman J, Nachun D, Bearden CE. Transcriptomic profiling of whole blood in 22q11.2 reciprocal copy number variants reveals that cell proportion highly impacts gene expression. Brain Behav Immun Health 2021; 18:100386. [PMID: 34841284 PMCID: PMC8607166 DOI: 10.1016/j.bbih.2021.100386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 10/31/2021] [Indexed: 11/24/2022] Open
Abstract
22q11.2 reciprocal copy number variants (CNVs) offer a powerful quasi-experimental "reverse-genetics" paradigm to elucidate how gene dosage (i.e., deletions and duplications) disrupts the transcriptome to cause further downstream effects. Clinical profiles of 22q11.2 CNV carriers indicate that disrupted gene expression causes alterations in neuroanatomy, cognitive function, and psychiatric disease risk. However, interpreting transcriptomic signal in bulk tissue requires careful consideration of potential changes in cell composition. We first characterized transcriptomic dysregulation in peripheral blood from reciprocal 22q11.2 CNV carriers using differential expression analysis and weighted gene co-expression network analysis (WGCNA) to identify modules of co-expressed genes. We also assessed for group differences in cell composition and re-characterized transcriptomic differences after accounting for cell type proportions and medication usage. Finally, to explore whether CNV-related transcriptomic changes relate to downstream phenotypes associated with 22q11.2 CNVs, we tested for associations of gene expression with neuroimaging measures and behavioral traits, including IQ and psychosis or ASD diagnosis. 22q11.2 deletion carriers (22qDel) showed widespread expression changes at the individual gene as well as module eigengene level compared to 22q11.2 duplication carriers (22qDup) and controls. 22qDup showed increased expression of 5 genes within the 22q11.2 locus, and CDH6 located outside of the locus. Downregulated modules in 22qDel implicated altered immune and inflammatory processes. Celltype deconvolution analyses revealed significant differences between CNV and control groups in T-cell, mast cell, and macrophage proportions; differential expression of individual genes between groups was substantially attenuated after adjusting for cell composition. Individual gene, module eigengene, and cell proportions were not significantly associated with psychiatric or neuroanatomic traits. Our findings suggest broad immune-related dysfunction in 22qDel and highlight the importance of understanding differences in cell composition when interpreting transcriptomic changes in clinical populations. Results also suggest novel directions for future investigation to test whether 22q11.2 CNV effects on macrophages have implications for brain-related microglial function that may contribute to psychiatric phenotypes in 22q11.2 CNV carriers.
Collapse
Affiliation(s)
- Amy Lin
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Neuroscience Interdepartmental Program, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jennifer K. Forsyth
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychology, University of Washington, WA, USA
| | - Gil D. Hoftman
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Leila Kushan-Wells
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Deepika Dokuru
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Giovanni Coppola
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ania Fiksinski
- Wilhelmina Children's Hospital & University Medical Center Utrecht, Brain Center, the Netherlands
- Maastricht University, Department of Psychiatry and Neuropsychology, Division of Mental Health, MHeNS, the Netherlands
| | - Janneke Zinkstok
- Department of Psychiatry and Brain Center, University Medical Center Utrecht, the Netherlands
| | - Jacob Vorstman
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Daniel Nachun
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Carrie E. Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
18
|
Önal H, Arslan B, Üçüncü Ergun N, Topuz Ş, Yilmaz Semerci S, Kurnaz ME, Molu YM, Bozkurt MA, Süner N, Kocataş A. Treatment of COVID-19 patients with quercetin: a prospective, single center, randomized, controlled trial. Turk J Biol 2021; 45:518-529. [PMID: 34803451 PMCID: PMC8573830 DOI: 10.3906/biy-2104-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/02/2021] [Indexed: 12/15/2022] Open
Abstract
Scientific research continues on new preventive and therapeutic strategies against severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2). So far, there is no proven curative treatment, and a valid alternative therapeutic approach needs to be developed. This study is designed to evaluate the effect of quercetin in COVID-19 treatment. This was a single-centre, prospective randomized controlled cohort study. Routine care versus QCB (quercetin, vitamin C, bromelain) supplementation was compared between 429 patients with at least one chronic disease and moderate-to-severe respiratory symptoms. Demographic features, signs, laboratory results and drug administration data of patients were recorded. The endpoint was that QCB supplementation was continued throughout the follow-up period from study baseline to discharge, intubation, or death. The most common complaints at the time of hospital admission were fatigue (62.4%), cough (61.1%), anorexia (57%), thirst (53.7%), respiratory distress (51%) and chills (48.3%). The decrease in CRP and ferritin levels was higher in the QCB group (all Ps were < 0.05). In the QCB group, the increase in platelet and lymphocyte counts was higher (all Ps were < 0.05). QCB did not reduce the risk of events during follow-up. Adjustments for statistically significant parameters, including the lung stage, use of favipiravir and presence of comorbidity did not change the results. While there was no difference between the groups in terms of event frequency, the QCB group had more advanced pulmonary findings. QCB supplement is shown to have a positive effect on laboratory recovery. While there was no difference between the groups in terms of event frequency, QCB supplement group had more advanced pulmonar findings, and QCB supplement is shown to have a positive effect on laboratory recovery/results. Therefore, we conclude that further studies involving different doses and plasma level measurements are required to reveal the dose/response relationship and bioavailability of QCB for a better understanding of the role of QCB in the treatment of SARS CoV-2.
Collapse
Affiliation(s)
- Hasan Önal
- Department of Pediatric Nutrition and Metabolism Clinics, İstanbul Kanuni Sultan Süleyman Training and Research Hospital, İstanbul Turkey
| | - Bengü Arslan
- Department of Pediatric Nutrition and Metabolism Clinics, İstanbul Kanuni Sultan Süleyman Training and Research Hospital, İstanbul Turkey
| | - Nurcan Üçüncü Ergun
- Department of Pediatric Nutrition and Metabolism Clinics, İstanbul Kanuni Sultan Süleyman Training and Research Hospital, İstanbul Turkey
| | - Şeyma Topuz
- Department of Pediatric Nutrition and Metabolism Clinics, İstanbul Kanuni Sultan Süleyman Training and Research Hospital, İstanbul Turkey
| | - Seda Yilmaz Semerci
- Department of Neonatology, İstanbul Kanuni Sultan Süleyman Training and Research Hospital, İstanbul Turkey
| | - Mehmet Eren Kurnaz
- Department of Pediatric Nutrition and Metabolism Clinics, İstanbul Kanuni Sultan Süleyman Training and Research Hospital, İstanbul Turkey
| | - Yulet Miray Molu
- Department of Pediatric Nutrition and Metabolism Clinics, İstanbul Kanuni Sultan Süleyman Training and Research Hospital, İstanbul Turkey
| | - Mehmet Abdussamet Bozkurt
- Department of General Surgery, İstanbul Kanuni Sultan Süleyman Training and Research Hospital, İstanbul Turkey
| | - Nurettin Süner
- Department of General Medicine, İstanbul Kanuni Sultan Süleyman Training and Research Hospital, İstanbul Turkey
| | - Ali Kocataş
- Department of General Surgery, İstanbul Kanuni Sultan Süleyman Training and Research Hospital, İstanbul Turkey
| |
Collapse
|
19
|
Chebbo M, Duez C, Alessi MC, Chanez P, Gras D. Platelets: a potential role in chronic respiratory diseases? Eur Respir Rev 2021; 30:30/161/210062. [PMID: 34526315 PMCID: PMC9488457 DOI: 10.1183/16000617.0062-2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/05/2021] [Indexed: 12/21/2022] Open
Abstract
Platelets are small anucleate cells known for their role in haemostasis and thrombosis. In recent years, an increasing number of observations have suggested that platelets are also immune cells and key modulators of immunity. They express different receptors and molecules that allow them to respond to pathogens, and to interact with other immune cells. Platelets were linked to the pathogenesis of some inflammatory disorders including respiratory diseases such as asthma and idiopathic pulmonary fibrosis. Here, we discuss the involvement of platelets in different immune responses, and we focus on their potential role in various chronic lung diseases. In addition to their essential role in haemostasis and thrombosis, platelets are strong modulators of different immune responses, and could be involved in the physiopathology of several chronic airway diseaseshttps://bit.ly/3cB6Xnj
Collapse
Affiliation(s)
| | | | - Marie C Alessi
- Aix-Marseille Univ, INSERM, INRAE, Marseille, France.,APHM, CHU de la Timone, Laboratoire d'hématologie, Marseille, France
| | - Pascal Chanez
- Aix-Marseille Univ, INSERM, INRAE, Marseille, France.,APHM, Hôpital NORD, Clinique des Bronches, Allergie et Sommeil, Marseille, France
| | - Delphine Gras
- Aix-Marseille Univ, INSERM, INRAE, Marseille, France
| |
Collapse
|
20
|
Nielsen VG, Kazui T, Horn EA, Dotson VE. Thrombocytosis and neutrophilia associated with oxygenator failure and protamine reaction after cardiopulmonary bypass: a case report and literature review. J Thromb Thrombolysis 2021; 52:1220-1226. [PMID: 34581944 DOI: 10.1007/s11239-021-02574-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/12/2021] [Indexed: 11/24/2022]
Abstract
Thrombocytosis has been feared as a source of thrombotic complications during the conduct of cardiopulmonary bypass (CPB) for patients undergoing cardiac procedures. We present a patient urgently requiring repair/replacement of three heart valves that had preexisting myelofibrosis with thrombocytosis (platelet count of 800,000 per µl) and neutrophilia (40,000 per µl). Despite achieving an activated clotting time > 500 s with heparin and antithrombin concentrate administration prior to CPB, the pump oxygenator and reservoir demonstrated significant clot just prior to restoration of the patient's circulation. The patient subsequently suffered a severe protamine reaction that was successfully managed. A review of the literature of similar patients and the relevant cellular and biochemical mechanisms in this setting are presented, with potential therapeutic approaches to prevent such complications noted.
Collapse
Affiliation(s)
- Vance G Nielsen
- Department of Anesthesiology, The University of Arizona College of Medicine, 1501 North Campbell Avenue, P.O. Box 245114, Tucson, AZ, 85724-5114, USA.
| | - Toshinobu Kazui
- Departments of Anesthesiology and Surgery, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Evan A Horn
- Department of Anesthesiology, The University of Arizona College of Medicine, 1501 North Campbell Avenue, P.O. Box 245114, Tucson, AZ, 85724-5114, USA
| | - Victoria E Dotson
- Perfusion Department, Banner University Medical Center Tucson, Tucson, AZ, USA
| |
Collapse
|
21
|
Seidel H, Hertfelder HJ, Oldenburg J, Kruppenbacher JP, Afrin LB, Molderings GJ. Effects of Primary Mast Cell Disease on Hemostasis and Erythropoiesis. Int J Mol Sci 2021; 22:ijms22168960. [PMID: 34445665 PMCID: PMC8396658 DOI: 10.3390/ijms22168960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 01/21/2023] Open
Abstract
Mast cell disease is an epigenetically and genetically determined disease entity with very diverse clinical manifestations in potentially every system and tissue due to inap pro priate release of variable subsets of mast cell mediators together with accumulation of either morphologically normal or altered mast cells. Easy bruising, excessive bleeding, and aberrancies of erythropoiesis can frequently be observed in patients with mast cell disease. A thorough history, including a family history, will guide the appropriate work-up, and laboratory evaluations may provide clues to diagnosis. In recent years, our understanding of the involvement of coagulation and anticoagulant pathways, the fibrinolytic system, and erythropoiesis in the pathophysiology of mast cell disease has increased considerably. This review summarizes current knowledge of the impact of the disturbed hemostatic and erythropoietic balance in patients with mast cell disease and describes options of treatment.
Collapse
Affiliation(s)
- Holger Seidel
- Center for Bleeding Disorders and Transfusion Medicine (CBT), Am Propsthof 3, D-53121 Bonn, Germany; (H.S.); (H.-J.H.); (J.P.K.)
| | - Hans-Jörg Hertfelder
- Center for Bleeding Disorders and Transfusion Medicine (CBT), Am Propsthof 3, D-53121 Bonn, Germany; (H.S.); (H.-J.H.); (J.P.K.)
- Institute of Experimental Haematology and Transfusion Medicine, University Hospital Bonn, Venusberg-Campus 1, D-53127 Bonn, Germany;
| | - Johannes Oldenburg
- Institute of Experimental Haematology and Transfusion Medicine, University Hospital Bonn, Venusberg-Campus 1, D-53127 Bonn, Germany;
| | - Johannes P. Kruppenbacher
- Center for Bleeding Disorders and Transfusion Medicine (CBT), Am Propsthof 3, D-53121 Bonn, Germany; (H.S.); (H.-J.H.); (J.P.K.)
| | - Lawrence B. Afrin
- Department of Mast Cell Studies, AIM Center for Personalized Medicine, 3010 Westchester Ave Suite 404, Purchase, NY 10577, USA;
| | - Gerhard J. Molderings
- Institute of Human Genetics, University Hospital of Bonn, Venusberg-Campus 1, D-53127 Bonn, Germany
- Correspondence: ; Tel.: +49-228-287-51000
| |
Collapse
|
22
|
Platelet and Erythrocyte Extravasation across Inflamed Corneal Venules Depend on CD18, Neutrophils, and Mast Cell Degranulation. Int J Mol Sci 2021; 22:ijms22147360. [PMID: 34298979 PMCID: PMC8329926 DOI: 10.3390/ijms22147360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/28/2021] [Accepted: 07/04/2021] [Indexed: 01/26/2023] Open
Abstract
Platelet extravasation during inflammation is under-appreciated. In wild-type (WT) mice, a central corneal epithelial abrasion initiates neutrophil (PMN) and platelet extravasation from peripheral limbal venules. The same injury in mice expressing low levels of the β2-integrin, CD18 (CD18hypo mice) shows reduced platelet extravasation with PMN extravasation apparently unaffected. To better define the role of CD18 on platelet extravasation, we focused on two relevant cell types expressing CD18: PMNs and mast cells. Following corneal abrasion in WT mice, we observed not only extravasated PMNs and platelets but also extravasated erythrocytes (RBCs). Ultrastructural observations of engorged limbal venules showed platelets and RBCs passing through endothelial pores. In contrast, injured CD18hypo mice showed significantly less venule engorgement and markedly reduced platelet and RBC extravasation; mast cell degranulation was also reduced compared to WT mice. Corneal abrasion in mast cell-deficient (KitW-sh/W-sh) mice showed less venule engorgement, delayed PMN extravasation, reduced platelet and RBC extravasation and delayed wound healing compared to WT mice. Finally, antibody-induced depletion of circulating PMNs prior to corneal abrasion reduced mast cell degranulation, venule engorgement, and extravasation of PMNs, platelets, and RBCs. In summary, in the injured cornea, platelet and RBC extravasation depends on CD18, PMNs, and mast cell degranulation.
Collapse
|
23
|
Crawford L, Wyatt M, Bryers J, Ratner B. Biocompatibility Evolves: Phenomenology to Toxicology to Regeneration. Adv Healthc Mater 2021; 10:e2002153. [PMID: 33829678 PMCID: PMC8221530 DOI: 10.1002/adhm.202002153] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/26/2021] [Indexed: 12/20/2022]
Abstract
The word "biocompatibility," is inconsistent with the observations of healing for so-called biocompatible biomaterials. The vast majority of the millions of medical implants in humans today, presumably "biocompatible," are walled off by a dense, avascular, crosslinked collagen capsule, hardly suggestive of life or compatibility. In contrast, one is now seeing examples of implant biomaterials that lead to a vascularized reconstruction of localized tissue, a biological reaction different from traditional biocompatible materials that generate a foreign body capsule. Both the encapsulated biomaterials and the reconstructive biomaterials qualify as "biocompatible" by present day measurements of biocompatibility. Yet, this new generation of materials would seem to heal "compatibly" with the living organism, where older biomaterials are isolated from the living organism by the dense capsule. This review/perspective article will explore this biocompatibility etymological conundrum by reviewing the history of the concepts around biocompatibility, today's standard methods for assessing biocompatibility, a contemporary view of the foreign body reaction and finally, a compendium of new biomaterials that heal without the foreign body capsule. A new definition of biocompatibility is offered here to address advances in biomaterials design leading to biomaterials that heal into the body in a facile manner.
Collapse
Affiliation(s)
- Lars Crawford
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Meghan Wyatt
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - James Bryers
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Buddy Ratner
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
24
|
Squiccimarro E, Jiritano F, Serraino GF, ten Cate H, Paparella D, Lorusso R. Quantitative and Qualitative Platelet Derangements in Cardiac Surgery and Extracorporeal Life Support. J Clin Med 2021; 10:jcm10040615. [PMID: 33561947 PMCID: PMC7914426 DOI: 10.3390/jcm10040615] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/30/2021] [Accepted: 02/03/2021] [Indexed: 01/19/2023] Open
Abstract
Thrombocytopenia and impaired platelet function are known as intrinsic drawbacks of cardiac surgery and extracorporeal life supports (ECLS). A number of different factors influence platelet count and function including the inflammatory response to a cardiopulmonary bypass (CPB) or to ECLS, hemodilution, hypothermia, mechanical damage and preoperative treatment with platelet-inhibiting agents. Moreover, although underestimated, heparin-induced thrombocytopenia is still a hiccup in the perioperative management of cardiac surgical and, above all, ECLS patients. Moreover, recent investigations have highlighted how platelet disorders also affect patients undergoing biological prosthesis implantation. Though many hypotheses have been suggested, the mechanism underlying thrombocytopenia and platelet disorders is still to be cleared. This narrative review aims to offer clinicians a summary of their major causes in the cardiac surgery setting.
Collapse
Affiliation(s)
- Enrico Squiccimarro
- Department of Cardiac Surgery, Mater Dei Hospital, 70125 Bari, Italy;
- Department of Emergency and Organ Transplant (DETO), University of Bari, 70125 Bari, Italy
- Cardio-Thoracic Surgery Department, Heart & Vascular Centre, Maastricht University Medical Centre (MUMC), 6229HX Maastricht, The Netherlands;
| | - Federica Jiritano
- Cardio-Thoracic Surgery Department, Heart & Vascular Centre, Maastricht University Medical Centre (MUMC), 6229HX Maastricht, The Netherlands;
- Cardiac Surgery Unit, Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy;
- Correspondence:
| | - Giuseppe Filiberto Serraino
- Cardiac Surgery Unit, Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Hugo ten Cate
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany;
- Thrombosis Center Maastricht, Maastricht University Medical Center (MUMC), 6229HX Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), 6229HX Maastricht, The Netherlands
| | - Domenico Paparella
- Division of Cardiac Surgery, Santa Maria Hospital, GVM Care & Research, 70125 Bari, Italy;
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Roberto Lorusso
- Cardio-Thoracic Surgery Department, Heart & Vascular Centre, Maastricht University Medical Centre (MUMC), 6229HX Maastricht, The Netherlands;
- Cardiovascular Research Institute Maastricht (CARIM), 6229HX Maastricht, The Netherlands
| |
Collapse
|
25
|
The role of IgG subclasses and platelets in experimental anaphylaxis. J Allergy Clin Immunol 2021; 147:1209-1211. [PMID: 33493556 DOI: 10.1016/j.jaci.2021.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 11/23/2022]
|
26
|
Qian H, Chen R, Wang B, Yuan X, Chen S, Liu Y, Shi G. Associations of Platelet Count with Inflammation and Response to Anti-TNF-α Therapy in Patients with Ankylosing Spondylitis. Front Pharmacol 2020; 11:559593. [PMID: 33343345 PMCID: PMC7741170 DOI: 10.3389/fphar.2020.559593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/23/2020] [Indexed: 12/25/2022] Open
Abstract
Background: Increased platelet count has been reported in ankylosing spondylitis (AS) patients, but its clinical significance is still largely elusive. The objective of this study was to evaluate the clinical role of platelet count in AS patients, especially its impact on treatment outcomes. Methods: A case-control study containing 35 AS patients receiving anti-tumor necrosis factor-α (anti-TNF-α) therapy and 45 healthy controls was performed, and AS patients were followed at least 6 months after anti-TNF-α therapy. A systematic review and meta-analysis of studies containing relevant data on outcomes of interest was also performed. Results: AS patients had significantly higher platelet count than controls (p = 0.0001), and the significantly increased platelet count in AS patients was confirmed in a meta-analysis of 14 studies involving 1,223 AS patients and 913 controls (mean difference = 39.61, 95% CI 27.89–51.34, p < 0.001). Besides, platelet count was significantly correlated with ESR (p < 0.001) and was moderately correlated with ASDAS-CRP score (p = 0.002). Moreover, anti-TNF-α therapy could reduce platelet count in AS patients at the first month and the effect was maintained through the treatment duration. In the prospective follow-up study of those 35 AS patients, those responders to anti-TNF-α therapy had significantly lower platelet count than nonresponders (p = 0.015). Logistic regression analysis suggested that lower platelet count was associated with higher possibility of achieving good response to anti-TNF-α therapy in AS patients (odds ratio = 2.26; 95% CI = 1.06–4.82; p = 0.035). Conclusion: This study suggested that platelet count was associated with inflammation severity and treatment outcomes in AS patients, and elevated platelet count was a promising biomarker of poorer response to anti-TNF-α therapy. The findings above need to be validated in more future studies.
Collapse
Affiliation(s)
- Hongyan Qian
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, China.,School of Medicine, Xiamen University, Xiamen, China
| | - Rongjuan Chen
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, China.,School of Medicine, Xiamen University, Xiamen, China
| | - Bin Wang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Xiaoqing Yuan
- Ningbo City Medical Treatment Center Lihuili Hospital, Ningbo, China
| | - Shiju Chen
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, China.,School of Medicine, Xiamen University, Xiamen, China
| | - Yuan Liu
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, China.,School of Medicine, Xiamen University, Xiamen, China
| | - Guixiu Shi
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, China.,School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
27
|
Demopoulos C, Antonopoulou S, Theoharides TC. COVID-19, microthromboses, inflammation, and platelet activating factor. Biofactors 2020; 46:927-933. [PMID: 33296106 DOI: 10.1002/biof.1696] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023]
Abstract
Recent articles report elevated markers of coagulation, endothelial injury, and microthromboses in lungs from deceased COVID-19 patients. However, there has been no discussion of what may induce intravascular coagulation. Platelets are critical in the formation of thrombi and their most potent trigger is platelet activating factor (PAF), first characterized by Demopoulos and colleagues in 1979. PAF is produced by cells involved in host defense and its biological actions bear similarities with COVID-19 disease manifestations. PAF can also stimulate perivascular mast cell activation, leading to inflammation implicated in severe acute respiratory syndrome (SARS). Mast cells are plentiful in the lungs and are a rich source of PAF and of inflammatory cytokines, such as IL-1β and IL-6, which may contribute to COVID-19 and especially SARS. The histamine-1 receptor antagonist rupatadine was developed to have anti-PAF activity, and also inhibits activation of human mast cells in response to PAF. Rupatadine could be repurposed for COVID-19 prophylaxis alone or together with other PAF-inhibitors of natural origin such as the flavonoids quercetin and luteolin, which have antiviral, anti-inflammatory, and anti-PAF actions.
Collapse
Affiliation(s)
- Constantinos Demopoulos
- Laboratory of Biochemistry, Faculty of Chemistry, National & Kapodistrian University, Athens, Greece
| | - Smaragdi Antonopoulou
- Laboratory of Biology, Biochemistry and Microbiology, Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Theoharis C Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, USA
- School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
- Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
28
|
Theoharides TC, Antonopoulou S, Demopoulos CA. Coronavirus 2019, Microthromboses, and Platelet Activating Factor. Clin Ther 2020; 42:1850-1852. [PMID: 32883529 PMCID: PMC7430296 DOI: 10.1016/j.clinthera.2020.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022]
Abstract
Recent articles have reported elevated markers of coagulation, endothelial injury, and microthromboses in lungs from deceased patients with coronavirus 2019 (COVID-19). Platelets are critical in the formation of thrombi, and their most potent trigger is platelet activating factor (PAF). PAF is produced by cells involved in host defense, and its biological actions bear similarities with COVID-19 disease manifestations, including pulmonary microthromboses and inflammation, possibly via activation of mast cells. The histamine1 receptor antagonist rupatadine was developed to have anti-PAF activity and inhibits activation of human mast cells in response to PAF. Rupatadine could be repurposed for COVID-19 prophylaxis.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA, USA; School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA; Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA.
| | - Smaragdi Antonopoulou
- Laboratory of Biology, Biochemistry and Microbiology, Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Constantinos A Demopoulos
- Laboratory of Biochemistry, Faculty of Chemistry, National & Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
29
|
Zinellu A, Paliogiannis P, Sotgiu E, Mellino S, Mangoni AA, Zinellu E, Negri S, Collu C, Pintus G, Serra A, Pistuddi AM, Carru C, Pirina P, Fois AG. Blood Cell Count Derived Inflammation Indexes in Patients with Idiopathic Pulmonary Fibrosis. Lung 2020; 198:821-827. [PMID: 32844257 PMCID: PMC7502432 DOI: 10.1007/s00408-020-00386-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022]
Abstract
Purpose Inflammation and immunity play a pivotal but yet unclear role in idiopathic pulmonary fibrosis (IPF), a chronic disorder characterized by progressive damage of lung parenchyma and severe loss of lung function despite optimal treatment. However, the pathophysiological and predictive role of combined blood cell count indexes of inflammation in IPF is uncertain. Methods Seventy-three patients with IPF and 62 healthy subjects matched for age, gender and smoking status were included in this cross-sectional study. Results We found significant differences in neutrophil to lymphocyte ratio (NLR), derived neutrophil to lymphocyte ratio (dNLR), monocyte to lymphocyte ratio (MLR), platelet to lymphocyte ratio (PLR), systemic inflammation response index (SIRI) and aggregate index of systemic inflammation (AISI) between IPF patients and healthy controls. In logistic regression, all combined blood inflammation indexes, barring PLR, were independently associated with the presence of IPF after adjusting for age, gender, body mass index and smoking status. Furthermore, significant associations between FVC% and NLR, LMR, SIRI and AISI, and between DLCO% and NLR, dNLR, LMR, SIRI and AISI, were observed. Conclusions In conclusion, our data indicate significant alterations of combined blood cell count indexes of inflammation in IPF.
Collapse
Affiliation(s)
- Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Panagiotis Paliogiannis
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy.
| | - Elisabetta Sotgiu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Sabrina Mellino
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Arduino A Mangoni
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Adelaide, Australia
| | - Elisabetta Zinellu
- Unit of Respiratory Diseases, University Hospital Sassari (AOU), Sassari, Italy
| | - Silvia Negri
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy.,Unit of Respiratory Diseases, University Hospital Sassari (AOU), Sassari, Italy
| | - Claudia Collu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy.,Unit of Respiratory Diseases, University Hospital Sassari (AOU), Sassari, Italy
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.,Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, P.O. Box: 27272, Sharjah, United Arab Emirates
| | - Antonello Serra
- Unit of Occupational Medicine, University Hospital Sassari (AOU), Sassari, Italy
| | | | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Pietro Pirina
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy.,Unit of Respiratory Diseases, University Hospital Sassari (AOU), Sassari, Italy
| | - Alessandro G Fois
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy.,Unit of Respiratory Diseases, University Hospital Sassari (AOU), Sassari, Italy
| |
Collapse
|
30
|
Schrottmaier WC, Mussbacher M, Salzmann M, Assinger A. Platelet-leukocyte interplay during vascular disease. Atherosclerosis 2020; 307:109-120. [DOI: 10.1016/j.atherosclerosis.2020.04.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/08/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023]
|
31
|
Paul DS, Bergmeier W. Novel Mouse Model for Studying Hemostatic Function of Human Platelets. Arterioscler Thromb Vasc Biol 2020; 40:1891-1904. [PMID: 32493172 DOI: 10.1161/atvbaha.120.314304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Platelets are critical to the formation of a hemostatic plug and the pathogenesis of atherothrombosis. Preclinical animal models, especially the mouse, provide an important platform to assess the efficacy and safety of antiplatelet drugs. However, these studies are limited by inherent differences between human and mouse platelets and the species-selectivity of many drugs. To circumvent these limitations, we developed a new protocol for the adoptive transfer of human platelets into thrombocytopenic nonobese diabetic/severe combined immune deficiency mice, that is, a model where all endogenous platelets are replaced by human platelets in mice accepting xenogeneic tissues. Approach and Results: To demonstrate the power of this new model, we visualized and quantified hemostatic plug formation and stability by intravital spinning disk confocal microscopy following laser ablation injury to the saphenous vein. Integrin αIIbβ3-dependent hemostatic platelet plug formation was achieved within ≈30 seconds after laser ablation injury in humanized platelet mice. Pretreatment of mice with standard dual antiplatelet therapy (Aspirin+Ticagrelor) or PAR1 inhibitor, L-003959712 (an analog of vorapaxar), mildly prolonged the bleeding time and significantly reduced platelet adhesion to the site of injury. Consistent with findings from clinical trials, inhibition of PAR1 in combination with dual antiplatelet therapy markedly prolonged bleeding time in humanized platelet mice. CONCLUSIONS We propose that this novel mouse model will provide a robust platform to test and predict the safety and efficacy of experimental antiplatelet drugs and to characterize the hemostatic function of synthetic, stored and patient platelets.
Collapse
Affiliation(s)
- David S Paul
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill (D.S.P., W.B.).,UNC Blood Research Center, University of North Carolina, Chapel Hill (D.S.P., W.B.)
| | - Wolfgang Bergmeier
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill (D.S.P., W.B.).,UNC Blood Research Center, University of North Carolina, Chapel Hill (D.S.P., W.B.)
| |
Collapse
|