1
|
Filippidi E, Dhiman AK, Li B, Athanasiou T, Vlassopoulos D, Fytas G. Multiscale Elasticity of Epoxy Networks by Rheology and Brillouin Light Spectroscopy. J Phys Chem B 2024; 128:12628-12637. [PMID: 39630480 DOI: 10.1021/acs.jpcb.4c06492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The response of soft materials to an imposed oscillatory stress is typically frequency dependent, with the most utilized frequency range falling in the range of 10-2-102 rad/s. In contrast to most conventional contact techniques for measuring material elasticity, like tensile or shear rheology and atomic force microscopy, or invasive techniques using probes, such as microrheology, Brillouin light spectroscopy (BLS) offers an optical, noncontact, label-free, submicron resolution and three-dimensional (3D) mapping approach to access the mechanical moduli at GHz frequencies. Currently, the correlation between the experimental viscoelastic (at lower frequencies) and elastic (at higher frequencies) moduli has fundamental and practical relevance, but remains unclear. We utilize a series of solvent-free epoxy polymer networks with variable cross-link density as models to compare the storage modulus, G', (in the MPa range) obtained from shear rheology and the longitudinal modulus, M', (in the GPa range) extracted from BLS. Our results show that G' exhibits a much stronger increase with increasing cross-link density than M' (by a factor of about 3.5). This finding is discussed in the context of the phantom network model for G' and Wood's inverse rule of mixtures for M'. The epoxy polymer network displays an unexpectedly fast hypersonic dispersion compared to its uncross-linked precursor. These results testify the importance of obtaining reliable information about the elasticity of networks and will hopefully trigger further investigations in the direction of bridging the elasticity of soft materials at different scales.
Collapse
Affiliation(s)
- Emmanouela Filippidi
- Department of Materials Science and Engineering, University of Crete, Heraklion 70013, Greece
- Institute of Electronic Structure and Laser, FORTH, Heraklion 70013, Greece
| | - Anuj K Dhiman
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, Poznan 61614, Poland
| | - Benke Li
- Institute of Electronic Structure and Laser, FORTH, Heraklion 70013, Greece
| | | | - Dimitris Vlassopoulos
- Department of Materials Science and Engineering, University of Crete, Heraklion 70013, Greece
- Institute of Electronic Structure and Laser, FORTH, Heraklion 70013, Greece
| | - George Fytas
- Institute of Electronic Structure and Laser, FORTH, Heraklion 70013, Greece
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| |
Collapse
|
2
|
Alunni Cardinali M, Govoni M, Stefani S, Maso A, Storni E, Valenti F, Maglio M, Morresi A, Fioretto D, Dallari D, Sassi P. Combining Multiple Spectroscopic Techniques to Reveal the Effects of Staphylococcus aureus Infection on Human Bone Tissues. APPLIED SPECTROSCOPY 2024; 78:1295-1306. [PMID: 39344289 DOI: 10.1177/00037028241278903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Osteomyelitis (OM) and periprosthetic joint infections (PJIs) are major public health concerns in Western countries due to increased life expectancy. Infections usually occur due to bacterial spread through fractures, implants, or blood-borne transmission. The pathogens trigger an inflammatory response that hinders bone tissue regeneration. Treatment requires surgical intervention, which involves the precise removal of infected tissue, wound cleansing, and local and systemic antibiotic administration. Staphylococcus aureus (SA) is one of the most common pathogens causing infection-induced OM and PJIs. It forms antimicrobial-resistant biofilms and is frequently found in healthcare settings. In this proof-of-concept, we present an approach based on multiple spectroscopic techniques aimed at investigating the effects of SA infection on bone tissue, as well as identifying specific markers useful to detect early bacterial colonization on the tissue surface. A cross-section of a human femoral diaphysis, with negative-culture results, was divided into three parts, and the cortical and trabecular regions were separated from each other. Two portions of each bone tissue type were infected with SA for one and seven days, respectively. Multiple techniques were used to investigate the impact of the infection on bone tissue, Brillouin-Raman microspectroscopy and attenuated total reflection Fourier transform infrared spectroscopy were employed to assess and develop a new noninvasive diagnostic method to detect SA by targeting the bone of the host. The results indicate that exposure to SA infection significantly alters the bone structure, especially in the case of the trabecular type, even after just one day. Moreover, Raman spectral markers of the tissue damage were identified, indicating that this technique can detect the effect of the pathogens' presence in bone biopsies and pave the way for potential application during surgery, due to its nondestructive and contactless nature.
Collapse
Affiliation(s)
| | - Marco Govoni
- Reconstructive Orthopaedic Surgery and Innovative Techniques - Musculoskeletal Tissue Bank, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Sara Stefani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Alessandra Maso
- Laboratory of Microbiology and GMP Quality Control, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Elisa Storni
- Laboratory of Microbiology and GMP Quality Control, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Francesca Valenti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Melania Maglio
- Surgical Science and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Assunta Morresi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Daniele Fioretto
- Department of Physics and Geology, University of Perugia, Perugia, Italy
- CEMIN-Center of Excellence for Innovative Nanostructured Material, Perugia, Italy
| | - Dante Dallari
- Reconstructive Orthopaedic Surgery and Innovative Techniques - Musculoskeletal Tissue Bank, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Paola Sassi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| |
Collapse
|
3
|
Bouvet P, Bevilacqua C, Ambekar Y, Antonacci G, Au J, Caponi S, Chagnon-Lessard S, Czarske J, Dehoux T, Fioretto D, Fu Y, Guck J, Hamann T, Heinemann D, Jähnke T, Jean-Ruel H, Kabakova I, Koski K, Koukourakis N, Krause D, La Cavera S, Landes T, Li J, Margueritat J, Mattarelli M, Monaghan M, Overby DR, Perez-Cota F, Pontecorvo E, Prevedel R, Ruocco G, Sandercock J, Scarcelli G, Scarponi F, Testi C, Török P, Vovard L, Weninger W, Yakovlev V, Yun SH, Zhang J, Palombo F, Bilenca A, Elsayad K. Consensus Statement on Brillouin Light Scattering Microscopy of Biological Materials. ARXIV 2024:arXiv:2411.11712v1. [PMID: 39606723 PMCID: PMC11601801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Brillouin Light Scattering (BLS) spectroscopy is a non-invasive, non-contact, label-free optical technique that can provide information on the mechanical properties of a material on the sub-micron scale. Over the last decade it has seen increased applications in the life sciences, driven by the observed significance of mechanical properties in biological processes, the realization of more sensitive BLS spectrometers and its extension to an imaging modality. As with other spectroscopic techniques, BLS measurements not only detect signals characteristic of the investigated sample, but also of the experimental apparatus, and can be significantly affected by measurement conditions. The aim of this consensus statement is to improve the comparability of BLS studies by providing reporting recommendations for the measured parameters and detailing common artifacts. Given that most BLS studies of biological matter are still at proof-of-concept stages and use different--often self-built--spectrometers, a consensus statement is particularly timely to assure unified advancement.
Collapse
Affiliation(s)
- Pierre Bouvet
- Center for Anatomy and Cell Biology, Medical University of Vienna, Austria
| | - Carlo Bevilacqua
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Germany
| | | | | | - Joshua Au
- Fischell Department of Bioengineering, University of Maryland, USA
| | - Silvia Caponi
- CNR - Istituto Officina dei Materiali (IOM), Unità di Perugia, Italy
| | | | - Juergen Czarske
- Laboratory of Measurement and Sensor System Technique (MST), TU Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, Germany
- Competence Center for Biomedical Computational Laser Systems, TU Dresden, Germany
| | - Thomas Dehoux
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, France
| | | | - Yujian Fu
- Center for Anatomy and Cell Biology, Medical University of Vienna, Austria
| | - Jochen Guck
- Max Planck Institute for the Science of Light, Erlangen, Germany
| | - Thorsten Hamann
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Dag Heinemann
- Hannover Centre for Optical Technologies, Leibniz University Hannover, Germany
| | | | | | - Irina Kabakova
- School of Mathematical and Physical Sciences, University of Technology Sydney, Australia
| | - Kristie Koski
- Department of Chemistry, University of California Davis, USA
| | - Nektarios Koukourakis
- Laboratory of Measurement and Sensor System Technique (MST), TU Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, Germany
| | - David Krause
- Laboratory of Measurement and Sensor System Technique (MST), TU Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, Germany
| | - Salvatore La Cavera
- Optics & Photonics Group, Faculty of Engineering, University of Nottingham, United Kingdom
| | - Timm Landes
- Hannover Centre for Optical Technologies, Leibniz University Hannover, Germany
| | - Jinhao Li
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Germany
| | - Jeremie Margueritat
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, France
| | | | - Michael Monaghan
- Discipline of Mechanical, Manufacturing & Biomedical Engineering, Trinity College Dublin, Ireland
| | - Darryl R Overby
- Department of Bioengineering, Imperial College London, United Kingdom
| | - Fernando Perez-Cota
- Optics & Photonics Group, Faculty of Engineering, University of Nottingham, United Kingdom
| | | | - Robert Prevedel
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Germany
- German Center for Lung Research (DZL), Heidelberg, Germany
| | - Giancarlo Ruocco
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
| | | | | | | | - Claudia Testi
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
| | - Peter Török
- School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore
- Lee Kong Chian School of Medicine, Singapore Centre of Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore
- Institute for Digital Molecular Analytics & Sciences, Nanyang Technological University, Singapore
| | - Lucie Vovard
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, France
| | - Wolfgang Weninger
- Center for Anatomy and Cell Biology, Medical University of Vienna, Austria
| | - Vladislav Yakovlev
- Department of Biomedical Engineering, Texas A&M University, USA
- Department of Electrical and Computer Engineering, Texas A&M University, USA
- Department of Physics and Astronomy, Texas A&M University, USA
| | - Seok-Hyun Yun
- Harvard Medical School and Massachusetts General Hospital, USA
| | - Jitao Zhang
- Department of Biomedical Engineering, Wayne State University, USA
| | - Francesca Palombo
- Department of Physics and Astronomy, University of Exeter, Exeter, United Kingdom
| | - Alberto Bilenca
- Biomedical Engineering Department, Ben-Gurion University of the Negev, Israel
| | - Kareem Elsayad
- Center for Anatomy and Cell Biology, Medical University of Vienna, Austria
| |
Collapse
|
4
|
Dobrynina EA, Zykova VA, Zhuravleva IY, Kuznetsova EV, Surovtsev NV. Brillouin spectroscopy of medically relevant samples of bovine jugular vein and pericardium. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124692. [PMID: 38908361 DOI: 10.1016/j.saa.2024.124692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
There is the rapid growth in application of Brillouin scattering spectroscopy to biomedical objects in order to characterize their mechanoelastic properties in this way. However, the possibilities and limitations of the method when applied to tissues have not yet been clarified. Here, applicability of Brillouin spectroscopy for testing the elastic response of medically relevant tissues of bovine jugular vein and pericardium was considered. Parameters of the Brillouin peak were studied for samples untreated, diepoxide-fixed, and preserved after treatment in alcohol solutions. It was found that diepoxide cross-linking resulted to a slight tendency to increase the Brillouin position for hydrated tissues. The variations in the position and width of the Brillouin peaks, associated with local fluctuations in water concentration, were reduced after diepoxide treatment in the case of the pericardium, but not in the case of the vein wall. To obtain more information about the elastic response of the protein scaffold without the participation of water, dried samples were also studied. Brillouin spectra of the dried pericardium and vein wall revealed a significant increase in the Brillouin peak position (elastic modulus) after conservation in alcohol. In the case of the vein wall, this effect was found for both collagen and elastin-related peaks, which were identified in the Brillouin spectrum. This result corresponds to a denser packing of fibrous proteins after preservation in alcohol solutions. The ability of Brillouin spectroscopy to independently characterize the effect of treatment on the instantaneous elastic modulus of various tissue components is also attractive for its application in the development of new materials for bioimplants. A comparison of the Brillouin longitudinal and Young's elastic moduli determined for the hydrated samples of the vein and pericardium showed that there is no clear correspondence between these material parameters. The usefulness of using both experimental methods to obtain new information about the elastic response of the material is discussed.
Collapse
Affiliation(s)
- E A Dobrynina
- Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - V A Zykova
- Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - I Yu Zhuravleva
- E. Meshalkin National Medical Research Center of the RF Ministry of Health, Novosibirsk 630055, Russia
| | - E V Kuznetsova
- E. Meshalkin National Medical Research Center of the RF Ministry of Health, Novosibirsk 630055, Russia
| | - N V Surovtsev
- Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk 630090, Russia.
| |
Collapse
|
5
|
Beck T, van der Linden LM, Borcherds WM, Kim K, Schlüßler R, Müller P, Franzmann T, Möckel C, Goswami R, Leaver M, Mittag T, Alberti S, Guck J. Optical characterization of molecular interaction strength in protein condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585750. [PMID: 39484615 PMCID: PMC11526858 DOI: 10.1101/2024.03.19.585750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Biomolecular condensates have been identified as a ubiquitous means of intracellular organization, exhibiting very diverse material properties. However, techniques to characterize these material properties and their underlying molecular interactions are scarce. Here, we introduce two optical techniques - Brillouin microscopy and quantitative phase imaging (QPI) - to address this scarcity. We establish Brillouin shift and linewidth as measures for average molecular interaction and dissipation strength, respectively, and we used QPI to obtain the protein concentration within the condensates. We monitored the response of condensates formed by FUS and by the low-complexity domain of hnRNPA1 (A1-LCD) to altering temperature and ion concentration. Conditions favoring phase separation increased Brillouin shift, linewidth, and protein concentration. In comparison to solidification by chemical crosslinking, the ion-dependent aging of FUS condensates had a small effect on the molecular interaction strength inside. Finally, we investigated how sequence variations of A1-LCD, that change the driving force for phase separation, alter the physical properties of the respective condensates. Our results provide a new experimental perspective on the material properties of protein condensates. Robust and quantitative experimental approaches such as the presented ones will be crucial for understanding how the physical properties of biological condensates determine their function and dysfunction.
Collapse
Affiliation(s)
- Timon Beck
- Max Planck Institute for the Science of Light, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Biotec, TU Dresden, Dresden, Germany
| | | | - Wade M. Borcherds
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Kyoohyun Kim
- Max Planck Institute for the Science of Light, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | | | - Paul Müller
- Max Planck Institute for the Science of Light, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | | | - Conrad Möckel
- Max Planck Institute for the Science of Light, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Ruchi Goswami
- Max Planck Institute for the Science of Light, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Mark Leaver
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Tanja Mittag
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | | | - Jochen Guck
- Max Planck Institute for the Science of Light, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Department of Physics, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
6
|
Koruk H, Rajagopal S. A Comprehensive Review on the Viscoelastic Parameters Used for Engineering Materials, Including Soft Materials, and the Relationships between Different Damping Parameters. SENSORS (BASEL, SWITZERLAND) 2024; 24:6137. [PMID: 39338881 PMCID: PMC11435754 DOI: 10.3390/s24186137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
Although the physical properties of a structure, such as stiffness, can be determined using some statical tests, the identification of damping parameters requires a dynamic test. In general, both theoretical prediction and experimental identification of damping are quite difficult. There are many different techniques available for damping identification, and each method gives a different damping parameter. The dynamic indentation method, rheometry, atomic force microscopy, and resonant vibration tests are commonly used to identify the damping of materials, including soft materials. While the viscous damping ratio, loss factor, complex modulus, and viscosity are quite common to describe the damping of materials, there are also other parameters, such as the specific damping capacity, loss angle, half-power bandwidth, and logarithmic decrement, to describe the damping of various materials. Often, one of these parameters is measured, and the measured parameter needs to be converted into another damping parameter for comparison purposes. In this review, the theoretical derivations of different parameters for the description and quantification of damping and their relationships are presented. The expressions for both high damping and low damping are included and evaluated. This study is considered as the first comprehensive review article presenting the theoretical derivations of a large number of damping parameters and the relationships among many damping parameters, with a quantitative evaluation of accurate and approximate formulas. This paper could be a primary resource for damping research and teaching.
Collapse
Affiliation(s)
- Hasan Koruk
- Ultrasound and Underwater Acoustics Group, Department of Medical, Marine and Nuclear, National Physical Laboratory, Teddington, Middlesex TW11 0LW, UK;
| | | |
Collapse
|
7
|
Johnson A. Mechanistic divergences of endocytic clathrin-coated vesicle formation in mammals, yeasts and plants. J Cell Sci 2024; 137:jcs261847. [PMID: 39161994 PMCID: PMC11361644 DOI: 10.1242/jcs.261847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
Clathrin-coated vesicles (CCVs), generated by clathrin-mediated endocytosis (CME), are essential eukaryotic trafficking organelles that transport extracellular and plasma membrane-bound materials into the cell. In this Review, we explore mechanisms of CME in mammals, yeasts and plants, and highlight recent advances in the characterization of endocytosis in plants. Plants separated from mammals and yeast over 1.5 billion years ago, and plant cells have distinct biophysical parameters that can influence CME, such as extreme turgor pressure. Plants can therefore provide a wider perspective on fundamental processes in eukaryotic cells. We compare key mechanisms that drive CCV formation and explore what these mechanisms might reveal about the core principles of endocytosis across the tree of life. Fascinatingly, CME in plants appears to more closely resemble that in mammalian cells than that in yeasts, despite plants being evolutionarily further from mammals than yeast. Endocytic initiation appears to be highly conserved across these three systems, requiring similar protein domains and regulatory processes. Clathrin coat proteins and their honeycomb lattice structures are also highly conserved. However, major differences are found in membrane-bending mechanisms. Unlike in mammals or yeast, plant endocytosis occurs independently of actin, highlighting that mechanistic assumptions about CME across different systems should be made with caution.
Collapse
Affiliation(s)
- Alexander Johnson
- Division of Anatomy, Center for Anatomy & Cell Biology, Medical University of Vienna, Vienna 1090, Austria
- Medical Imaging Cluster (MIC), Medical University of Vienna, Vienna 1090, Austria
- Biosciences, University of Exeter, Exeter EX4 4QD, UK
| |
Collapse
|
8
|
Illibauer J, Clodi-Seitz T, Zoufaly A, Aberle JH, Weninger WJ, Foedinger M, Elsayad K. Diagnostic potential of blood plasma longitudinal viscosity measured using Brillouin light scattering. Proc Natl Acad Sci U S A 2024; 121:e2323016121. [PMID: 39088388 PMCID: PMC11331083 DOI: 10.1073/pnas.2323016121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 07/01/2024] [Indexed: 08/03/2024] Open
Abstract
Blood plasma viscosity (PV) is an established biomarker for numerous diseases. Measurement of the shear PV using conventional rheological techniques is, however, time consuming and requires significant plasma volumes. Here, we show that Brillouin light scattering (BLS) and angle-resolved spectroscopy measurements of the longitudinal PV from microliter-sized plasma volumes can serve as a proxy for the shear PV measured using conventional viscometers. This is not trivial given the distinct frequency regime probed and the longitudinal viscosity, a combination of the shear and bulk viscosity, representing a unique material property on account of the latter. We demonstrate this for plasma from healthy persons and patients suffering from different severities of COVID-19 (CoV), which has been associated with an increased shear PV. We further show that the additional information contained in the BLS-measured effective longitudinal PV and its temperature scaling can provide unique insight into the chemical constituents and physical properties of plasma that can be of diagnostic value. In particular, we find that changes in the effective longitudinal viscosity are consistent with an increased suspension concentration in CoV patient samples at elevated temperatures that is correlated with disease severity and progression. This is supported by results from rapid BLS spatial-mapping, angle-resolved BLS measurements, changes in the elastic scattering, and anomalies in the temperature scaling of the shear viscosity. Finally, we introduce a compact BLS probe to rapidly perform measurements in plastic transport tubes. Our results open a broad avenue for PV diagnostics based on the high-frequency effective longitudinal PV and show that BLS can provide a means for its implementation.
Collapse
Affiliation(s)
- Jennifer Illibauer
- Division of Anatomy, Center for Anatomy & Cell Biology, Medical University of Vienna, ViennaA-1090, Austria
- Medical Imaging Cluster, Medical University of Vienna, ViennaA-1090, Austria
| | | | - Alexander Zoufaly
- Department of Medicine, Klinik Favoriten, ViennaA-1100, Austria
- Sigmund Freud Private University, ViennaA-1020, Austria
| | - Judith H. Aberle
- Center for Virology, Medical University of Vienna, ViennaA-1090, Austria
| | - Wolfgang J. Weninger
- Division of Anatomy, Center for Anatomy & Cell Biology, Medical University of Vienna, ViennaA-1090, Austria
- Medical Imaging Cluster, Medical University of Vienna, ViennaA-1090, Austria
| | - Manuela Foedinger
- Sigmund Freud Private University, ViennaA-1020, Austria
- Institute of Laboratory Diagnostics, Klinik Favoriten, ViennaA-1100, Austria
| | - Kareem Elsayad
- Division of Anatomy, Center for Anatomy & Cell Biology, Medical University of Vienna, ViennaA-1090, Austria
- Medical Imaging Cluster, Medical University of Vienna, ViennaA-1090, Austria
- Advanced Microscopy, Vienna Biocenter Core Facilities, ViennaA-1030, Austria
| |
Collapse
|
9
|
Gorman BR, McNeil LE. Effect of polymerization on free water in polyacrylamide hydrogels observed with Brillouin spectroscopy. SOFT MATTER 2024; 20:5164-5173. [PMID: 38895797 DOI: 10.1039/d4sm00250d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Brillouin spectroscopy is used to determine the effects of polymer concentration, crosslinking density, and polymerization on the longitudinal storage and loss moduli of polyacrylamide hydrogels. The model established by Chiarelli et al. is implemented to calculate the speed of sound in the free water [Chiarelli et al., The Journal of the Acoustical Society of America, 2010, 127(3), 1197-1207]. The polymer concentration has the greatest effect on the moduli of the polymer matrix. We determined that the crosslink density has no measurable effect on the logitudinal storage or loss modulus of polyacrylamide hydrogels when measurements are made at GHz frequencies, in contrast to measurements made at kHz frequencies as documented by other studies. However, the moduli are independent of monomer concentration if the acrylamide is not polymerized. We show at the GHz frequency that the incorporation of acrylamide polymer chains affects the mechanical properties of the free water. The speed of sound in the free water is reduced by the introduction of polymerized acrylamide. The long polymer chains and their interactions with the bounded water disrupt the bonding organization of the unbound water, causing a reduction of the average hydrogen bond strength between free water molecules. This results in a decreased speed of sound in the free water and an increase in the longitudinal storage modulus of the hydrogel.
Collapse
Affiliation(s)
- Britta R Gorman
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | - L E McNeil
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| |
Collapse
|
10
|
Spencer SJ, Ranganathan VT, Yethiraj A, Andrews GT. Concentration Dependence of Elastic and Viscoelastic Properties of Aqueous Solutions of Ficoll and Bovine Serum Albumin by Brillouin Light Scattering Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4615-4622. [PMID: 38387073 DOI: 10.1021/acs.langmuir.3c02967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The cellular environment is crowded with macromolecules of different shapes and sizes. The effect of this macromolecular crowding has been studied in a variety of synthetic crowding environments: two popular examples are the compact colloid-like Ficoll macromolecule and the globular protein bovine serum albumin (BSA). Recent studies have indicated that a significant component of bound or surface-associated water in these crowders reduces the available free volume. In this work, Brillouin light scattering experiments were performed on aqueous solutions of Ficoll 70 and Ficoll 400 with concentrations ranging from 1 to 35 wt % and BSA with concentrations of 1 to 27 wt %. From the dependence of spectral peak parameters on polymer concentration, we determined fundamental solution properties: hypersound velocity, adiabatic bulk modulus and compressibility, apparent viscosity, and hypersound attenuation. The existing theory that ignores intermolecular interactions can capture only the observed linear trends in the frequency shift up to a threshold concentration, beyond which a quadratic term accounting for intermolecular interactions is necessary. This likely indicates a transition from the dilute to semidilute regime. In the Ficoll solutions (but not BSA), we see evidence for a central mode, which is indicative of relaxation in the hydration shell of Ficoll.
Collapse
Affiliation(s)
- Stephen J Spencer
- Department of Physics and Physical Oceanography, Memorial University, St. John's, Newfoundland A1B 3X7, Canada
| | | | - Anand Yethiraj
- Department of Physics and Physical Oceanography, Memorial University, St. John's, Newfoundland A1B 3X7, Canada
| | - G Todd Andrews
- Department of Physics and Physical Oceanography, Memorial University, St. John's, Newfoundland A1B 3X7, Canada
| |
Collapse
|
11
|
Abalymov AA, Anisimov RA, Demina PA, Kildisheva VA, Kalinova AE, Serdobintsev AA, Novikova NG, Petrenko DB, Sadovnikov AV, Voronin DV, Lomova MV. Time-Delayed Anticancer Effect of an Extremely Low Frequency Alternating Magnetic Field and Multimodal Protein-Tannin-Mitoxantrone Carriers with Brillouin Microspectroscopy Visualization In Vitro. Biomedicines 2024; 12:443. [PMID: 38398045 PMCID: PMC10887239 DOI: 10.3390/biomedicines12020443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
The effect of an extremely low frequency alternating magnetic field (ELF AMF) at frequencies of 17, 48, and 95 Hz at 100 mT on free and internalized 4T1 breast cancer cell submicron magnetic mineral carriers with an anticancer drug, mitoxantrone, was shown. The alternating magnetic field (100 mT; 17, 48, 95 Hz; time of treatment-10.5 min with a 30 s delay) does not lead to the significant destruction of carrier shells and release of mitoxantrone or bovine serum albumin from them according to the data of spectrophotometry, or the heating of carriers in the process of exposure to magnetic fields. The most optimal set of factors that would lead to the suppression of proliferation and survival of cells with anticancer drug carriers on the third day (in comparison with the control and first day) is exposure to an alternating magnetic field of 100 mT in a pulsed mode with a frequency of 95 Hz. The presence of magnetic nanocarriers in cell lines was carried out by a direct label-free method, space-resolved Brillouin light scattering (BLS) spectrometry, which was realized for the first time. The analysis of the series of integrated BLS spectra showed an increase in the magnetic phase in cells with a growth in the number of particles per cell (from 10 to 100) after their internalization. The safety of magnetic carriers in the release of their constituent ions has been evaluated using atomic absorption spectrometry.
Collapse
Affiliation(s)
- Anatolii A. Abalymov
- Science Medical Centre, Saratov State University, 83 Astrakhanskayast, Saratov 410012, Russia
| | - Roman A. Anisimov
- Science Medical Centre, Saratov State University, 83 Astrakhanskayast, Saratov 410012, Russia
| | - Polina A. Demina
- Science Medical Centre, Saratov State University, 83 Astrakhanskayast, Saratov 410012, Russia
- Institute of Chemistry, Saratov State University, 83 Astrakhanskayast, Saratov 410012, Russia
| | - Veronika A. Kildisheva
- Science Medical Centre, Saratov State University, 83 Astrakhanskayast, Saratov 410012, Russia
| | - Alexandra E. Kalinova
- Institute of Physics, Saratov State University, 83 Astrakhanskayast, Saratov 410012, Russia
| | - Alexey A. Serdobintsev
- Institute of Physics, Saratov State University, 83 Astrakhanskayast, Saratov 410012, Russia
| | - Nadezhda G. Novikova
- Institute of Comprehensive Exploitation, Mineral Resources Russian Academy of Sciences, Moscow 111020, Russia
- The Core Shared Research Facility “Industrial Biotechnologies”, Aleksei Nikolayevich Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow 119071, Russia
| | - Dmitry B. Petrenko
- Geological Institute, Russian Academy of Sciences, Moscow 119017, Russia
- Faculty of Natural Sciences, Department of Theoretical and Applied Chemistry, Federal State University of Education, Mytischi 141014, Russia
| | - Alexandr V. Sadovnikov
- Institute of Physics, Saratov State University, 83 Astrakhanskayast, Saratov 410012, Russia
| | - Denis V. Voronin
- Department of Physical and Colloid Chemistry, National University of Oil and Gas “Gubkin University”, Moscow 119991, Russia
| | - Maria V. Lomova
- Science Medical Centre, Saratov State University, 83 Astrakhanskayast, Saratov 410012, Russia
| |
Collapse
|
12
|
Rodríguez-López R, Wang Z, Oda H, Erdi M, Kofinas P, Fytas G, Scarcelli G. Network Viscoelasticity from Brillouin Spectroscopy. Biomacromolecules 2024; 25:955-963. [PMID: 38156622 PMCID: PMC10865340 DOI: 10.1021/acs.biomac.3c01073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024]
Abstract
Even though the physical nature of shear and longitudinal moduli are different, empirical correlations between them have been reported in several biological systems. This correlation is of fundamental interest and immense practical value in biomedicine due to the importance of the shear modulus and the possibility to map the longitudinal modulus at high-resolution with all-optical spectroscopy. We investigate the origin of such a correlation in hydrogels. We hypothesize that both moduli are influenced in the same direction by underlying physicochemical properties, which leads to the observed material-dependent correlation. Matching theoretical models with experimental data, we quantify the scenarios in which the correlation holds. For polymerized hydrogels, a correlation was found across different hydrogels through a common dependence on the effective polymer volume fraction. For hydrogels swollen to equilibrium, the correlation is valid only within a given hydrogel system, as the moduli are found to have different scalings on the swelling ratio. The observed correlation allows one to extract one modulus from another in relevant scenarios.
Collapse
Affiliation(s)
- Raymundo Rodríguez-López
- Fischell
Department of Bioengineering, University
of Maryland, College
Park, Maryland 20742, United States
| | - Zuyuan Wang
- School
of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Haruka Oda
- School
of Information Science and Technology, The
University of Tokyo, Tokyo 113-8656,Japan
| | - Metecan Erdi
- Department
of Chemical and Biomolecular Engineering, University of Maryland, College
Park, Maryland 20742, United States
| | - Peter Kofinas
- Department
of Chemical and Biomolecular Engineering, University of Maryland, College
Park, Maryland 20742, United States
| | - George Fytas
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute
of Electronic Structure and Laser, FO.R.T.H, N. Plastira 10, Heraklion, 70013, Greece
| | - Giuliano Scarcelli
- Fischell
Department of Bioengineering, University
of Maryland, College
Park, Maryland 20742, United States
| |
Collapse
|
13
|
Kabakova I, Zhang J, Xiang Y, Caponi S, Bilenca A, Guck J, Scarcelli G. Brillouin microscopy. NATURE REVIEWS. METHODS PRIMERS 2024; 4:8. [PMID: 39391288 PMCID: PMC11465583 DOI: 10.1038/s43586-023-00286-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/30/2023] [Indexed: 10/12/2024]
Abstract
The field of Brillouin microscopy and imaging was established approximately 20 years ago, thanks to the development of non-scanning high-resolution optical spectrometers. Since then, the field has experienced rapid expansion, incorporating technologies from telecommunications, astrophotonics, multiplexed microscopy, quantum optics and machine learning. Consequently, these advancements have led to much-needed improvements in imaging speed, spectral resolution and sensitivity. The progress in Brillouin microscopy is driven by a strong demand for label-free and contact-free methods to characterize the mechanical properties of biomaterials at the cellular and subcellular scales. Understanding the local biomechanics of cells and tissues has become crucial in predicting cellular fate and tissue pathogenesis. This Primer aims to provide a comprehensive overview of the methods and applications of Brillouin microscopy. It includes key demonstrations of Brillouin microscopy and imaging that can serve as a reference for the existing research community and new adopters of this technology. The article concludes with an outlook, presenting the authors' vision for future developments in this vibrant field. The Primer also highlights specific examples where Brillouin microscopy can have a transformative impact on biology and biomedicine.
Collapse
Affiliation(s)
- Irina Kabakova
- School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Jitao Zhang
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Yuchen Xiang
- Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - Silvia Caponi
- Istituto Officina dei Materiali–National Research Council (IOM-CNR)–Research Unit in Perugia, c/o Department of Physics and Geology, University of Perugia, Perugia, Italy
| | - Alberto Bilenca
- Biomedical Engineering Department, Ben-Gurion University of the Negev, Be’er-Sheva, Israel
| | - Jochen Guck
- Max Planck Institute for the Science of Light, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Maryland Biophysics Program, University of Maryland, College Park, MD, USA
| |
Collapse
|
14
|
Martinez-Vidal L, Testi C, Pontecorvo E, Pederzoli F, Alchera E, Locatelli I, Venegoni C, Spinelli A, Lucianò R, Salonia A, Podestà A, Ruocco G, Alfano M. Progressive alteration of murine bladder elasticity in actinic cystitis detected by Brillouin microscopy. Sci Rep 2024; 14:484. [PMID: 38177637 PMCID: PMC10766652 DOI: 10.1038/s41598-023-51006-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024] Open
Abstract
Bladder mechanical properties are critical for organ function and tissue homeostasis. Therefore, alterations of tissue mechanics are linked to disease onset and progression. This study aims to characterize the tissue elasticity of the murine bladder wall considering its different anatomical components, both in healthy conditions and in actinic cystitis, a state characterized by tissue fibrosis. Here, we exploit Brillouin microscopy, an emerging technique in the mechanobiology field that allows mapping tissue mechanics at the microscale, in non-contact mode and free of labeling. We show that Brillouin imaging of bladder tissues is able to recognize the different anatomical components of the bladder wall, confirmed by histopathological analysis, showing different tissue mechanical properties of the physiological bladder, as well as a significant alteration in the presence of tissue fibrosis. Our results point out the potential use of Brillouin imaging on clinically relevant samples as a complementary technique to histopathological analysis, deciphering complex mechanical alteration of each tissue layer of an organ that strongly relies on mechanical properties to perform its function.
Collapse
Affiliation(s)
- Laura Martinez-Vidal
- Division of Experimental Oncology/Unit of Urology, IRCCS Ospedale San Raffaele, 20132, Milan, Italy.
- Università Vita-Salute San Raffaele, Via Olgettina, 60, 20132, Milan, Italy.
| | - Claudia Testi
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Roma, Italy.
| | - Emanuele Pontecorvo
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Roma, Italy
- CrestOptics S.p.A., Via Di Torre Rossa, 66, 00165, Roma, Italy
| | - Filippo Pederzoli
- Division of Experimental Oncology/Unit of Urology, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
- Università Vita-Salute San Raffaele, Via Olgettina, 60, 20132, Milan, Italy
| | - Elisa Alchera
- Division of Experimental Oncology/Unit of Urology, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
| | - Irene Locatelli
- Division of Experimental Oncology/Unit of Urology, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
| | - Chiara Venegoni
- Division of Experimental Oncology/Unit of Urology, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
| | - Antonello Spinelli
- Experimental Imaging Centre, San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Roberta Lucianò
- Pathology Unit, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
| | - Andrea Salonia
- Division of Experimental Oncology/Unit of Urology, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
- Università Vita-Salute San Raffaele, Via Olgettina, 60, 20132, Milan, Italy
| | - Alessandro Podestà
- Dipartimento Di Fisica "Aldo Pontremoli" and CIMAINA, Università Degli Studi Di Milano, 20133, Milan, Italy
| | - Giancarlo Ruocco
- Center for Life Nano- and Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Roma, Italy
- Dipartimento Di Fisica, Universitá Di Roma "La Sapienza", Piazzale Aldo Moro, 5, 00185, Roma, Italy
| | - Massimo Alfano
- Division of Experimental Oncology/Unit of Urology, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
| |
Collapse
|
15
|
Wu KY, Akbar D, Giunta M, Kalevar A, Tran SD. Hydrogels in Ophthalmology: Novel Strategies for Overcoming Therapeutic Challenges. MATERIALS (BASEL, SWITZERLAND) 2023; 17:86. [PMID: 38203940 PMCID: PMC10780040 DOI: 10.3390/ma17010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
The human eye's intricate anatomical and physiological design necessitates tailored approaches for managing ocular diseases. Recent advancements in ophthalmology underscore the potential of hydrogels as a versatile therapeutic tool, owing to their biocompatibility, adaptability, and customizability. This review offers an exploration of hydrogel applications in ophthalmology over the past five years. Emphasis is placed on their role in optimized drug delivery for the posterior segment and advancements in intraocular lens technology. Hydrogels demonstrate the capacity for targeted, controlled, and sustained drug release in the posterior segment of the eye, potentially minimizing invasive interventions and enhancing patient outcomes. Furthermore, in intraocular lens domains, hydrogels showcase potential in post-operative drug delivery, disease sensing, and improved biocompatibility. However, while their promise is immense, most hydrogel-based studies remain preclinical, necessitating rigorous clinical evaluations. Patient-specific factors, potential complications, and the current nascent stage of research should inform their clinical application. In essence, the incorporation of hydrogels into ocular therapeutics represents a seminal convergence of material science and medicine, heralding advancements in patient-centric care within ophthalmology.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Dania Akbar
- Department of Human Biology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Michel Giunta
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Ananda Kalevar
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
16
|
Hanlon DF, Clouter MJ, Andrews GT. Temperature dependence of the viscoelastic properties of a natural gastropod mucus by Brillouin light scattering spectroscopy. SOFT MATTER 2023; 19:8101-8111. [PMID: 37846603 DOI: 10.1039/d3sm00762f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Brillouin spectroscopy was used to probe the viscoelastic properties of a natural gastropod mucus at GHz frequencies over the range -11 °C ≤ T ≤ 52 °C. Anomalies in the temperature dependence of mucus longitudinal acoustic mode peak parameters and associated viscoelastic properties at T = -2.5 °C, together with the appearance of a peak due to ice at this temperature, suggest that the mucus undergoes a phase transition from a viscous liquid state to one in which liquid mucus and solid ice phases coexist. Failure of this transition to proceed to completion even at -11 °C is attributed to glycoprotein-water interaction. The temperature dependence of the viscoelastic properties and the phase behaviour suggest that water molecules bind to glycoprotein at a temperature above the onset of freezing and that the reduced ability of this bound water to take on a configuration that facilitates freezing is responsible for the observed freezing point depression and gradual nature of the liquid-solid transition.
Collapse
Affiliation(s)
- Dillon F Hanlon
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland and Labrador, St. John's, NL, A1B 3X7, Canada.
| | - Maynard J Clouter
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland and Labrador, St. John's, NL, A1B 3X7, Canada.
| | - G Todd Andrews
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland and Labrador, St. John's, NL, A1B 3X7, Canada.
| |
Collapse
|
17
|
Yang F, Ding W, Fu X, Chen W, Tang J. Photoacoustic elasto-viscography and optical coherence microscopy for multi-parametric ex vivo brain imaging. BIOMEDICAL OPTICS EXPRESS 2023; 14:5615-5628. [PMID: 38021134 PMCID: PMC10659785 DOI: 10.1364/boe.503847] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 12/01/2023]
Abstract
Optical coherence microscopy (OCM) has shown the importance of imaging ex vivo brain slices at the microscopic level for a better understanding of the disease pathology and mechanism. However, the current OCM-based techniques are mainly limited to providing the tissue's optical properties, such as the attenuation coefficient, scattering coefficient, and cell architecture. Imaging the tissue's mechanical properties, including the elasticity and viscosity, in addition to the optical properties, to provide a comprehensive multi-parametric assessment of the sample has remained a challenge. Here, we present an integrated photoacoustic elasto-viscography (PAEV) and OCM imaging system to measure the sample's optical absorption coefficient, attenuation coefficient, and mechanical properties, including elasticity and viscosity. The obtained mechanical and optical properties were consistent with anatomical features observed in the PAEV and OCM images. The elasticity and viscosity maps showed rich variations of microstructural mechanical properties of mice brain. In the reconstructed elasto-viscogram of brain slices, greater elasticity, and lower viscosity were observed in white matter than in gray matter. With the ability to provide multi-parametric properties of the sample, the PAEV-OCM system holds the potential for a more comprehensive study of brain disease pathology.
Collapse
Affiliation(s)
- Fen Yang
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Wenguo Ding
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xinlei Fu
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Wei Chen
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jianbo Tang
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
18
|
Kittel Y, Guerzoni LPB, Itzin C, Rommel D, Mork M, Bastard C, Häßel B, Omidinia-Anarkoli A, Centeno SP, Haraszti T, Kim K, Guck J, Kuehne AJC, De Laporte L. Varying the Stiffness and Diffusivity of Rod-Shaped Microgels Independently through Their Molecular Building Blocks. Angew Chem Int Ed Engl 2023; 62:e202309779. [PMID: 37712344 DOI: 10.1002/anie.202309779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
Microgels are water-swollen, crosslinked polymers that are widely used as colloidal building blocks in scaffold materials for tissue engineering and regenerative medicine. Microgels can be controlled in their stiffness, degree of swelling, and mesh size depending on their polymer architecture, crosslink density, and fabrication method-all of which influence their function and interaction with the environment. Currently, there is a lack of understanding of how the polymer composition influences the internal structure of soft microgels and how this morphology affects specific biomedical applications. In this report, we systematically vary the architecture and molar mass of polyethylene glycol-acrylate (PEG-Ac) precursors, as well as their concentration and combination, to gain insight in the different parameters that affect the internal structure of rod-shaped microgels. We characterize the mechanical properties and diffusivity, as well as the conversion of acrylate groups during photopolymerization, in both bulk hydrogels and microgels produced from the PEG-Ac precursors. Furthermore, we investigate cell-microgel interaction, and we observe improved cell spreading on microgels with more accessible RGD peptide and with a stiffness in a range of 20 kPa to 50 kPa lead to better cell growth.
Collapse
Affiliation(s)
- Yonca Kittel
- DWI-Leibniz Institute for Interactive Materials e. V., Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, 52074, Aachen, Germany
- Institute of Organic and Macromolecular Chemistry, Ulm University, Albert-Einstein Allee 11, 89081, Ulm, Germany
| | - Luis P B Guerzoni
- DWI-Leibniz Institute for Interactive Materials e. V., Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, 52074, Aachen, Germany
| | - Carolina Itzin
- DWI-Leibniz Institute for Interactive Materials e. V., Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, 52074, Aachen, Germany
| | - Dirk Rommel
- DWI-Leibniz Institute for Interactive Materials e. V., Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, 52074, Aachen, Germany
| | - Matthias Mork
- DWI-Leibniz Institute for Interactive Materials e. V., Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, 52074, Aachen, Germany
| | - Céline Bastard
- DWI-Leibniz Institute for Interactive Materials e. V., Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, 52074, Aachen, Germany
- Center for Biohybrid Medical Systems (CBMS), Advanced Materials for Biomedicine (AMB), Institute of Applied Medical Engineering (AME), Forckenbeckstraße 55, 52074, Aachen, Germany
| | - Bernhard Häßel
- DWI-Leibniz Institute for Interactive Materials e. V., Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, 52074, Aachen, Germany
| | - Abdolrahman Omidinia-Anarkoli
- DWI-Leibniz Institute for Interactive Materials e. V., Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, 52074, Aachen, Germany
| | - Silvia P Centeno
- DWI-Leibniz Institute for Interactive Materials e. V., Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Tamás Haraszti
- DWI-Leibniz Institute for Interactive Materials e. V., Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, 52074, Aachen, Germany
| | - Kyoohyun Kim
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und Medizin, Staudtstraße 2, 91058, Erlangen, Germany
| | - Jochen Guck
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und Medizin, Staudtstraße 2, 91058, Erlangen, Germany
| | - Alexander J C Kuehne
- Institute of Organic and Macromolecular Chemistry, Ulm University, Albert-Einstein Allee 11, 89081, Ulm, Germany
| | - Laura De Laporte
- DWI-Leibniz Institute for Interactive Materials e. V., Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, 52074, Aachen, Germany
- Center for Biohybrid Medical Systems (CBMS), Advanced Materials for Biomedicine (AMB), Institute of Applied Medical Engineering (AME), Forckenbeckstraße 55, 52074, Aachen, Germany
| |
Collapse
|
19
|
Dobrynina EA, Zykova VA, Surovtsev NV. In-plane and out-of-plane gigahertz sound velocities of saturated and unsaturated phospholipid bilayers from cryogenic to room temperatures. Chem Phys Lipids 2023; 256:105335. [PMID: 37579988 DOI: 10.1016/j.chemphyslip.2023.105335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/23/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Here, we examined the gigahertz sound velocities of hydrated multibilayers of saturated (1,2-dimyristoyl-sn-glycero-3-phosphocholine, DMPC) and unsaturated (1,2-dioleoyl-sn-glycero-3-phosphocholine, DOPC) phospholipids by Brillouin spectroscopy. Out-of-plane and in-plane (lateral) phonons were studied independently of each other. Similar strong temperature dependences of the sound velocities were found for phonons of both types. The sound velocities in the low-temperature limit were two-fold higher than that at physiological temperatures; a significant part of the changes in sound velocity occurs in the solid-like gel phase. The factors that may be involved in the peculiar behavior of sound velocity include changes in the chain conformational state, relaxation susceptibility, changes in the elastic modulus at infinite frequencies, and lateral packing of molecules.
Collapse
Affiliation(s)
- E A Dobrynina
- Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - V A Zykova
- Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - N V Surovtsev
- Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk 630090, Russia.
| |
Collapse
|
20
|
Varela-Feijoo A, Djemia P, Narita T, Pignon F, Baeza-Squiban A, Sirri V, Ponton A. Multiscale investigation of viscoelastic properties of aqueous solutions of sodium alginate and evaluation of their biocompatibility. SOFT MATTER 2023; 19:5942-5955. [PMID: 37490024 DOI: 10.1039/d3sm00159h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
In order to get better knowledge of mechanical properties from microscopic to macroscopic scale of biopolymers, viscoelastic bulk properties of aqueous solutions of sodium alginate were studied at different scales by combining macroscopic shear rheology (Hz), diffusing-wave spectroscopy microrheology (kHz-MHz) and Brillouin spectroscopy (GHz). Structural properties were also directly probed by small-angle X-ray scattering (SAXS). The results demonstrate a change from polyelectrolyte behavior to neutral polymer behavior by increasing polymer concentration with the determination of characteristic sizes (persistence length, correlation length). The viscoelastic properties probed at the phonon wavelength much higher than the ones obtained at low frequency reflect the variation of microscopic viscosity. First experiments obtained by metabolic activity assays with mouse embryonic fibroblasts showed biocompatibility of sodium alginate aqueous solutions in the studied range of concentrations (2.5-10 g L-1) and consequently their potential biomedical applications.
Collapse
Affiliation(s)
- Alberto Varela-Feijoo
- Laboratoire Matière et systèmes complexes (MSC), Université Paris Cité et CNRS, UMR 7057, 10 rue A. Domon et L. Duquet, 75013 Paris, France.
- Université Paris Saclay, INRAE, AgroParisTech, UMR SayFood, 91120 Palaiseau, France
| | - Philippe Djemia
- Laboratoire des Sciences des procédés et des matériaux (LSPM), UPR-CNRS 3407, 99 Avenue Jean-Baptiste Clément, 93530 Villetaneuse, France
| | - Tetsuharu Narita
- École supérieure de physique et de chimie industrielles de la ville de Paris (ESPCI), 10 Rue Vauquelin, 75005 Paris, France
| | - Frédéric Pignon
- Laboratoire rhéologie et procédés (LPG) Université Grenoble Alpes, CNRS, UMR 5520, Domaine Universitaire, BP 53, 38041 Grenoble Cedex 9, France
| | - Armelle Baeza-Squiban
- Unité de Biologie fonctionnelle et adaptative (BFA), Université Paris Cité et CNRS, UMR 8251, 4 rue Marie-Andrée Lagroua Weill-Hallé, 75013 Paris, France
| | - Valentina Sirri
- Unité de Biologie fonctionnelle et adaptative (BFA), Université Paris Cité et CNRS, UMR 8251, 4 rue Marie-Andrée Lagroua Weill-Hallé, 75013 Paris, France
| | - Alain Ponton
- Laboratoire Matière et systèmes complexes (MSC), Université Paris Cité et CNRS, UMR 7057, 10 rue A. Domon et L. Duquet, 75013 Paris, France.
| |
Collapse
|
21
|
Shi C, Yan Y, Mehrmohammadi M, Zhang J. Versatile multimodal modality based on Brillouin light scattering and the photoacoustic effect. OPTICS LETTERS 2023; 48:3427-3430. [PMID: 37390147 PMCID: PMC11426331 DOI: 10.1364/ol.495361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/02/2023] [Indexed: 07/02/2023]
Abstract
Multimodal optical techniques are useful for the comprehensive characterization of material properties. In this work, we developed a new, to the best of our knowledge, multimodal technology that can simultaneously measure a subset of mechanical, optical, and acoustical properties of the sample and is based on the integration of Brillouin (Br) and photoacoustic (PA) microscopy. The proposed technique can acquire co-registered Br and PA signals from the sample. Importantly, using synergistic measurements of the speed of sound and Brillouin shift, the modality offers a new approach to quantifying the optical refractive index, which is a fundamental property of a material and is not accessible by either technique individually. As a proof of concept, we demonstrated the feasibility of integrating the two modalities and acquired the colocalized Br and time-resolved PA signals in a synthetic phantom made out of kerosene and CuSO4 aqueous solution. In addition, we measured the refractive index values of saline solutions and validated the result. Comparison with previously reported data showed a relative error of 0.3%. This further allowed us to directly quantify the longitudinal modulus of the sample with the colocalized Brillouin shift. While the scope of the current work is limited to introducing the combined Br-PA setup for the first time, we envision that this multimodal modality could open a new path for the multi-parametric analysis of material properties.
Collapse
Affiliation(s)
- Chenjun Shi
- Department of Biomedical Engineering, College of Engineering, Wayne State University, Detroit, MI 48202, USA
| | - Yan Yan
- Department of Imaging Science, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Mohammad Mehrmohammadi
- Department of Imaging Science, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Department of Biomedical Engineering, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, NY, 14642, USA
| | - Jitao Zhang
- Department of Biomedical Engineering, College of Engineering, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
22
|
Chow DM, Yun SH. Pulsed stimulated Brillouin microscopy. OPTICS EXPRESS 2023; 31:19818-19827. [PMID: 37381389 PMCID: PMC10316751 DOI: 10.1364/oe.489158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/24/2023] [Accepted: 05/10/2023] [Indexed: 06/30/2023]
Abstract
Stimulated Brillouin scattering is an emerging technique for probing the mechanical properties of biological samples. However, the nonlinear process requires high optical intensities to generate sufficient signal-to-noise ratio (SNR). Here, we show that the SNR of stimulated Brillouin scattering can exceed that of spontaneous Brillouin scattering with the same average power levels suitable for biological samples. We verify the theoretical prediction by developing a novel scheme using low duty cycle, nanosecond pulses for the pump and probe. A shot noise-limited SNR over 1000 was measured with a total average power of 10 mW for 2 ms or 50 mW for 200 µs integration on water samples. High-resolution maps of Brillouin frequency shift, linewidth, and gain amplitude from cells in vitro are obtained with a spectral acquisition time of 20 ms. Our results demonstrate the superior SNR of pulsed stimulated Brillouin over spontaneous Brillouin microscopy.
Collapse
Affiliation(s)
- Desmond M. Chow
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Seok-Hyun Yun
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
23
|
Yu K, Jiang Y, Chen Y, Hu X, Chang J, Hartland GV, Wang GP. Compressible viscoelasticity of cell membranes determined by gigahertz-frequency acoustic vibrations. PHOTOACOUSTICS 2023; 31:100494. [PMID: 37131996 PMCID: PMC10149280 DOI: 10.1016/j.pacs.2023.100494] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 05/04/2023]
Abstract
Membrane viscosity is an important property of cell biology, which determines cellular function, development and disease progression. Various experimental and computational methods have been developed to investigate the mechanics of cells. However, there have been no experimental measurements of the membrane viscosity at high-frequencies in live cells. High frequency measurements are important because they can probe viscoelastic effects. Here, we investigate the membrane viscosity at gigahertz-frequencies through the damping of the acoustic vibrations of gold nanoplates. The experiments are modeled using a continuum mechanics theory which reveals that the membranes display viscoelasticity, with an estimated relaxation time of ca. 5.7 + 2.4 / - 2.7 ps. We further demonstrate that membrane viscoelasticity can be used to differentiate a cancerous cell line (the human glioblastoma cells LN-18) from a normal cell line (the mouse brain microvascular endothelial cells bEnd.3). The viscosity of cancerous cells LN-18 is lower than that of healthy cells bEnd.3 by a factor of three. The results indicate promising applications of characterizing membrane viscoelasticity at gigahertz-frequency in cell diagnosis.
Collapse
Affiliation(s)
- Kuai Yu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yiqi Jiang
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Yungao Chen
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Xiaoyan Hu
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Junlei Chang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Gregory V. Hartland
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Guo Ping Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
- Corresponding author.
| |
Collapse
|
24
|
Bin M, Reiser M, Filianina M, Berkowicz S, Das S, Timmermann S, Roseker W, Bauer R, Öström J, Karina A, Amann-Winkel K, Ladd-Parada M, Westermeier F, Sprung M, Möller J, Lehmkühler F, Gutt C, Perakis F. Coherent X-ray Scattering Reveals Nanoscale Fluctuations in Hydrated Proteins. J Phys Chem B 2023. [PMID: 37209106 DOI: 10.1021/acs.jpcb.3c02492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Hydrated proteins undergo a transition in the deeply supercooled regime, which is attributed to rapid changes in hydration water and protein structural dynamics. Here, we investigate the nanoscale stress-relaxation in hydrated lysozyme proteins stimulated and probed by X-ray Photon Correlation Spectroscopy (XPCS). This approach allows us to access the nanoscale dynamics in the deeply supercooled regime (T = 180 K), which is typically not accessible through equilibrium methods. The observed stimulated dynamic response is attributed to collective stress-relaxation as the system transitions from a jammed granular state to an elastically driven regime. The relaxation time constants exhibit Arrhenius temperature dependence upon cooling with a minimum in the Kohlrausch-Williams-Watts exponent at T = 227 K. The observed minimum is attributed to an increase in dynamical heterogeneity, which coincides with enhanced fluctuations observed in the two-time correlation functions and a maximum in the dynamic susceptibility quantified by the normalized variance χT. The amplification of fluctuations is consistent with previous studies of hydrated proteins, which indicate the key role of density and enthalpy fluctuations in hydration water. Our study provides new insights into X-ray stimulated stress-relaxation and the underlying mechanisms behind spatiotemporal fluctuations in biological granular materials.
Collapse
Affiliation(s)
- Maddalena Bin
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
| | - Mario Reiser
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
| | - Mariia Filianina
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
| | - Sharon Berkowicz
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
| | - Sudipta Das
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
| | - Sonja Timmermann
- Department Physik, Universität Siegen, Walter-Flex-Strasse 3, 57072 Siegen, Germany
| | - Wojciech Roseker
- Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany
| | - Robert Bauer
- Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany
- Freiberg Water Research Center, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Jonatan Öström
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
| | - Aigerim Karina
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
| | - Katrin Amann-Winkel
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute of Physics, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Marjorie Ladd-Parada
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
| | - Fabian Westermeier
- Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany
| | - Johannes Möller
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Felix Lehmkühler
- Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Christian Gutt
- Department Physik, Universität Siegen, Walter-Flex-Strasse 3, 57072 Siegen, Germany
| | - Fivos Perakis
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
25
|
Kharmyssov C, Sekerbayev K, Nurekeyev Z, Gaipov A, Utegulov ZN. Mechano-Chemistry across Phase Transitions in Heated Albumin Protein Solutions. Polymers (Basel) 2023; 15:polym15092039. [PMID: 37177189 PMCID: PMC10180835 DOI: 10.3390/polym15092039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/02/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023] Open
Abstract
The presence of certain proteins in biofluids such as synovial fluid, blood plasma, and saliva gives these fluids non-Newtonian viscoelastic properties. The amount of these protein macromolecules in biofluids is an important biomarker for the diagnosis of various health conditions, including Alzheimer's disease, cardiovascular disorders, and joint quality. However, existing technologies for measuring the behavior of macromolecules in biofluids have limitations, such as long turnaround times, complex protocols, and insufficient sensitivity. To address these issues, we propose non-contact, optical Brillouin and Raman spectroscopy to assess the viscoelasticity and chemistry of non-Newtonian solutions, respectively, at different temperatures in several minutes. In this work, bovine and human serum albumin solution-based biopolymers were studied to obtain both their collective dynamics and molecular chemical evolution across heat-driven phase transitions at various protein concentrations. The observed phase transitions at elevated temperatures could be fully delayed in heated biopolymers by appropriately raising the level of protein concentration. The non-contact optical monitoring of viscoelastic and chemical property evolution could represent novel potential mechano-chemical biomarkers for disease diagnosis and subsequent treatment applications, including hyperthermia.
Collapse
Affiliation(s)
- Chingis Kharmyssov
- Department of Physics, School of Sciences and Humanities, Nazarbayev University, 010000 Astana, Kazakhstan
- Science Department, Astana IT University, 010000 Astana, Kazakhstan
| | - Kairolla Sekerbayev
- Department of Physics, School of Sciences and Humanities, Nazarbayev University, 010000 Astana, Kazakhstan
| | - Zhangatay Nurekeyev
- Department of Physics, School of Sciences and Humanities, Nazarbayev University, 010000 Astana, Kazakhstan
- Institute for Experimental Physics, Hamburg University, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Abduzhappar Gaipov
- Department of Medicine, School of Medicine, Nazarbayev University, 010000 Astana, Kazakhstan
| | - Zhandos N Utegulov
- Department of Physics, School of Sciences and Humanities, Nazarbayev University, 010000 Astana, Kazakhstan
| |
Collapse
|
26
|
Passeri AA, Di Michele A, Neri I, Cottone F, Fioretto D, Mattarelli M, Caponi S. Size and environment: The effect of phonon localization on micro-Brillouin imaging. BIOMATERIALS ADVANCES 2023; 147:213341. [PMID: 36827851 DOI: 10.1016/j.bioadv.2023.213341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/19/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Specifically designed samples have been analyzed to test the ability of Brillouin spectroscopy to provide reliable mechanical characterization of micro and nano-objects. The selected samples are polymeric films, whose transversal sizes from hundreds of nano- to some micro-meters cover the entire range of length-scales relevant in Brillouin scattering process. The experimental data highlight how, the size of the extended collective oscillation (acoustic phonons, in brief) is the lowest spatial resolution reachable in Brillouin mechanical characterization. Conversely, in the limit condition of phonon confinement, the technique provides the mechanical properties of nano-objects whose characteristic size is comparable with the phonon wavelength (⁓300 nm). Investigating acoustically heterogeneous materials, both size of heterogeneity and acoustic mismatch between adjacent regions are shown to be relevant in shaping the Brillouin response. In particular, a transition from a confined to a non-confined condition is obtained modulating the acoustic mismatch between the micro-objects and their local environment. The provided results and the derived analytic models for the data analysis will guide the interpretation of Brillouin spectra acquired in complex nano-structured samples such as cells, tissues or biomimetic materials. Our analysis can therefore generate new insights to tackle fundamental problems in mechanobiology or to characterize new bioengineered materials.
Collapse
Affiliation(s)
- A A Passeri
- Dipartimento di Fisica e Geologia, Università di Perugia, Via A. Pascoli, I-06100 Perugia, Italy
| | - A Di Michele
- Dipartimento di Fisica e Geologia, Università di Perugia, Via A. Pascoli, I-06100 Perugia, Italy
| | - I Neri
- Dipartimento di Fisica e Geologia, Università di Perugia, Via A. Pascoli, I-06100 Perugia, Italy
| | - F Cottone
- Dipartimento di Fisica e Geologia, Università di Perugia, Via A. Pascoli, I-06100 Perugia, Italy
| | - D Fioretto
- Dipartimento di Fisica e Geologia, Università di Perugia, Via A. Pascoli, I-06100 Perugia, Italy; CEMIN, Centre of Excellence on Nanostructured Innovative Materials, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - M Mattarelli
- Dipartimento di Fisica e Geologia, Università di Perugia, Via A. Pascoli, I-06100 Perugia, Italy.
| | - S Caponi
- Istituto Officina dei Materiali, National Research Council (IOM-CNR), Unit of Perugia, c/o Department of Physics and Geology, University of Perugia, Via A. Pascoli, I-06123 Perugia, Italy.
| |
Collapse
|
27
|
Shi C, Yan Y, Mehrmohammadi M, Zhang J. A versatile multimodal optical modality based on Brillouin light scattering and photoacoustic effect. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.10.532144. [PMID: 36945550 PMCID: PMC10028970 DOI: 10.1101/2023.03.10.532144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Multimodal optical imaging techniques are useful for various applications, including imaging biological samples for providing comprehensive material properties. In this work, we developed a new modality that can measure a set of mechanical, optical, and acoustical properties of a sample at microscopic resolution, which is based on the integration of Brillouin (Br) and photoacoustic (PA) microscopy. The proposed multimodal imaging technique not only can acquire co-registered Br and PA signals but also allows us to utilize the sound speed measured by PA to quantify the sample’s refractive index, which is a fundamental property of the material and cannot be measured by either technique individually. We demonstrated the colocalization of Br and time-resolved PA signals in a synthetic phantom made of kerosene and CuSO 4 aqueous solution. In addition, we measured the refractive index of saline solutions and validated the result against published data with a relative error of 0.3 %. This multimodal Br-PA modality could open a new way for characterizing biological samples in physiological and pathological conditions.
Collapse
|
28
|
Abstract
OBJECTIVE Hydrogel scaffolds have attracted attention to develop cellular therapy and tissue engineering platforms for regenerative medicine applications. Among factors, local mechanical properties of scaffolds drive the functionalities of cell niche. Dynamic mechanical analysis (DMA), the standard method to characterize mechanical properties of hydrogels, restricts development in tissue engineering because the measurement provides a single elasticity value for the sample, requires direct contact, and represents a destructive evaluation preventing longitudinal studies on the same sample. We propose a novel technique, acoustic force elastography microscopy (AFEM), to evaluate elastic properties of tissue engineering scaffolds. RESULTS AFEM can resolve localized and two-dimensional (2D) elastic properties of both transparent and opaque materials with advantages of being non-contact and non-destructive. Gelatin hydrogels, neat synthetic oligo[poly(ethylene glycol)fumarate] (OPF) scaffolds, OPF hydroxyapatite nanocomposite scaffolds and ex vivo biological tissue were examined with AFEM to evaluate the elastic modulus. These measurements of Young's modulus range from approximately 2 kPa to over 100 kPa were evaluated and are in good agreement with finite element simulations, surface wave measurements, and DMA tests. CONCLUSION The AFEM can resolve localized and 2D elastic properties of hydrogels, scaffolds and thin biological tissues. These materials can either be transparent or non-transparent and their evaluation can be done in a non-contact and non-destructive manner, thereby facilitating longitudinal evaluation. SIGNIFICANCE AFEM is a promising technique to quantify elastic properties of scaffolds for tissue engineering and will be applied to provide new insights for exploring elastic changes of cell-laden scaffolds for tissue engineering and material science.
Collapse
|
29
|
Alunni Cardinali M, Govoni M, Tschon M, Brogini S, Vivarelli L, Morresi A, Fioretto D, Rocchi M, Stagni C, Fini M, Dallari D. Brillouin-Raman micro-spectroscopy and machine learning techniques to classify osteoarthritic lesions in the human articular cartilage. Sci Rep 2023; 13:1690. [PMID: 36717645 PMCID: PMC9886972 DOI: 10.1038/s41598-023-28735-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
In this study, Brillouin and Raman micro-Spectroscopy (BRamS) and Machine Learning were used to set-up a new diagnostic tool for Osteoarthritis (OA), potentially extendible to other musculoskeletal diseases. OA is a degenerative pathology, causing the onset of chronic pain due to cartilage disruption. Despite this, it is often diagnosed late and the radiological assessment during the routine examination may fail to recognize the threshold beyond which pharmacological treatment is no longer sufficient and prosthetic replacement is required. Here, femoral head resections of OA-affected patients were analyzed by BRamS, looking for distinctive mechanical and chemical markers of the progressive degeneration degree, and the result was compared to standard assignment via histological staining. The procedure was optimized for diagnostic prediction by using a machine learning algorithm and reducing the time required for measurements, paving the way for possible future in vivo characterization of the articular surface through endoscopic probes during arthroscopy.
Collapse
Affiliation(s)
- Martina Alunni Cardinali
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy
| | - Marco Govoni
- Reconstructive Orthopaedic Surgery and Innovative Techniques-Musculoskeletal Tissue Bank, IRCCS Istituto Ortopedico Rizzoli, Via G.C. Pupilli 1, 40136, Bologna, Italy.
| | - Matilde Tschon
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136, Bologna, Italy
| | - Silvia Brogini
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136, Bologna, Italy
| | - Leonardo Vivarelli
- Reconstructive Orthopaedic Surgery and Innovative Techniques-Musculoskeletal Tissue Bank, IRCCS Istituto Ortopedico Rizzoli, Via G.C. Pupilli 1, 40136, Bologna, Italy
| | - Assunta Morresi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy
| | - Daniele Fioretto
- Department of Physics and Geology, University of Perugia, Via A. Pascoli, 06123, Perugia, Italy.,CEMIN-Center of Excellence for Innovative Nanostructured Material, 06123, Perugia, Italy
| | - Martina Rocchi
- Reconstructive Orthopaedic Surgery and Innovative Techniques-Musculoskeletal Tissue Bank, IRCCS Istituto Ortopedico Rizzoli, Via G.C. Pupilli 1, 40136, Bologna, Italy
| | - Cesare Stagni
- Reconstructive Orthopaedic Surgery and Innovative Techniques-Musculoskeletal Tissue Bank, IRCCS Istituto Ortopedico Rizzoli, Via G.C. Pupilli 1, 40136, Bologna, Italy
| | - Milena Fini
- Scientific Director, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136, Bologna, Italy
| | - Dante Dallari
- Reconstructive Orthopaedic Surgery and Innovative Techniques-Musculoskeletal Tissue Bank, IRCCS Istituto Ortopedico Rizzoli, Via G.C. Pupilli 1, 40136, Bologna, Italy
| |
Collapse
|
30
|
Dobrynina EA, Zykova VA, Adichtchev SV, Surovtsev NV. Gigahertz elastic modulus and OH stretching frequency correlate with Jones-Dole's B-coefficient in aqueous solutions of the Hofmeister series. J Chem Phys 2023; 158:034504. [PMID: 36681647 DOI: 10.1063/5.0130490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The ability of salts to change the macroscopic viscosity of their aqueous solutions is described by the Jones-Dole equation with B-coefficient for the linear concentration term. The sign and value of this coefficient are often considered as a measure of the salt's structure-making/breaking ability, while the validity of this assignment is still under discussion. Here, by applying Raman and Brillouin scattering spectroscopy to various salts from the Hofmeister series, we studied a possible relation between macroscopic Jones-Dole's B-coefficient and the microscopic dynamic response. Raman spectroscopy provides information about molecular vibrations and Brillouin spectroscopy about acoustic phonons with wavelengths of hundreds of nanometers. It has been found that Jones-Dole's B-coefficient correlates linearly with the coefficients, describing the concentration dependences of the average OH stretching frequency, real and imaginary parts of gigahertz elastic modulus. These relationships have been interpreted to mean that the OH stretching frequency is a measure of the ion-induced changes in the water network that cause changes in both viscosity and gigahertz relaxation. Depolarized inelastic light scattering revealed that the addition of structure-making ions not only changes the frequency of the relaxation peak but also increases the low-frequency part of the relaxation susceptibility. It was shown that the ion-induced increase in the gigahertz elastic modulus can be described by changes in the relaxational susceptibility without a noticeable change in the instantaneous elastic modulus. The isotropic Raman contribution associated with the tetrahedral-like environment of H2O molecule does not correlate with Jones-Dole's B-coefficient, suggesting a minor influence of these tetrahedral-like configurations on viscosity.
Collapse
Affiliation(s)
- E A Dobrynina
- Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - V A Zykova
- Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - S V Adichtchev
- Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - N V Surovtsev
- Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
31
|
Leartprapun N, Adie SG. Recent advances in optical elastography and emerging opportunities in the basic sciences and translational medicine [Invited]. BIOMEDICAL OPTICS EXPRESS 2023; 14:208-248. [PMID: 36698669 PMCID: PMC9842001 DOI: 10.1364/boe.468932] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 05/28/2023]
Abstract
Optical elastography offers a rich body of imaging capabilities that can serve as a bridge between organ-level medical elastography and single-molecule biophysics. We review the methodologies and recent developments in optical coherence elastography, Brillouin microscopy, optical microrheology, and photoacoustic elastography. With an outlook toward maximizing the basic science and translational clinical impact of optical elastography technologies, we discuss potential ways that these techniques can integrate not only with each other, but also with supporting technologies and capabilities in other biomedical fields. By embracing cross-modality and cross-disciplinary interactions with these parallel fields, optical elastography can greatly increase its potential to drive new discoveries in the biomedical sciences as well as the development of novel biomechanics-based clinical diagnostics and therapeutics.
Collapse
Affiliation(s)
- Nichaluk Leartprapun
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
- Present affiliation: Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Steven G. Adie
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
32
|
Zykova VA, Surovtsev NV. Brillouin Spectroscopy of Binary Phospholipid-Cholesterol Bilayers. APPLIED SPECTROSCOPY 2022; 76:1206-1215. [PMID: 35712869 DOI: 10.1177/00037028221111147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Multicomponent lipid bilayers are used as models for searching the origin of spatial heterogeneities in biomembranes called lipid rafts, implying the coexistence of domains of different phases and compositions within the lipid bilayer. The spatial organization of multicomponent lipid bilayers on a scale of a hundred nanometers remains unknown. Brillouin spectroscopy providing information about the acoustic phonons with the wavelength of several hundred nanometers has an unexplored potential for this problem. Here, we applied Brillouin spectroscopy for three binary bilayers composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-palmitoyl-sn-glycero-3-phosphocholine (DPPC), and cholesterol. The Brillouin experiment for the oriented planar multibilayers was realized for two scattering geometries involving phonons for the lateral and normal directions of the propagation. The DPPC-DOPC mixtures known for the coexistence of the solid-ordered and liquid-disordered phases had bimodal Brillouin peaks, revealing the phase domains with sizes more than a hundred nanometers. Analysis of the Brillouin data for the binary mixtures concluded that the lateral phonons are preferable for testing the lateral homogeneity of the bilayers, while the phonons spreading across the bilayers are sensitive to the layered packing at the mesoscopic scale.
Collapse
Affiliation(s)
- Valeria A Zykova
- 104673Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk, Russia
| | - Nikolay V Surovtsev
- 104673Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
33
|
Cang Y, Liu J, Ryu M, Graczykowski B, Morikawa J, Yang S, Fytas G. On the origin of elasticity and heat conduction anisotropy of liquid crystal elastomers at gigahertz frequencies. Nat Commun 2022; 13:5248. [PMID: 36068238 PMCID: PMC9448779 DOI: 10.1038/s41467-022-32865-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 08/18/2022] [Indexed: 11/09/2022] Open
Abstract
Liquid crystal elastomers that offer exceptional load-deformation response at low frequencies often require consideration of the mechanical anisotropy only along the two symmetry directions. However, emerging applications operating at high frequencies require all five true elastic constants. Here, we utilize Brillouin light spectroscopy to obtain the engineering moduli and probe the strain dependence of the elasticity anisotropy at gigahertz frequencies. The Young's modulus anisotropy, E||/E⊥~2.6, is unexpectedly lower than that measured by tensile testing, suggesting disparity between the local mesogenic orientation and the larger scale orientation of the network strands. Unprecedented is the robustness of E||/E⊥ to uniaxial load that it does not comply with continuously transformable director orientation observed in the tensile testing. Likewise, the heat conductivity is directional, κ||/κ⊥~3.0 with κ⊥ = 0.16 Wm-1K-1. Conceptually, this work reveals the different length scales involved in the thermoelastic anisotropy and provides insights for programming liquid crystal elastomers on-demand for high-frequency applications.
Collapse
Affiliation(s)
- Yu Cang
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Zhangwu Road 100, Shanghai, 200092, China.,Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| | - Jiaqi Liu
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
| | - Meguya Ryu
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.,National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Umezono, Tsukuba, 305-8563, Japan
| | - Bartlomiej Graczykowski
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany.,Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, Poznan, 61-614, Poland
| | - Junko Morikawa
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Shu Yang
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA.
| | - George Fytas
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany.
| |
Collapse
|
34
|
Hauck N, Beck T, Cojoc G, Schlüßler R, Ahmed S, Raguzin I, Mayer M, Schubert J, Müller P, Guck J, Thiele J. PNIPAAm microgels with defined network architecture as temperature sensors in optical stretchers. MATERIALS ADVANCES 2022; 3:6179-6190. [PMID: 35979502 PMCID: PMC9342673 DOI: 10.1039/d2ma00296e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Stretching individual living cells with light is a standard method to assess their mechanical properties. Yet, heat introduced by the laser light of optical stretchers may unwittingly change the mechanical properties of cells therein. To estimate the temperature induced by an optical trap, we introduce cell-sized, elastic poly(N-isopropylacrylamide) (PNIPAAm) microgels that relate temperature changes to hydrogel swelling. For their usage as a standardized calibration tool, we analyze the effect of free-radical chain-growth gelation (FCG) and polymer-analogous photogelation (PAG) on hydrogel network heterogeneity, micromechanics, and temperature response by Brillouin microscopy and optical diffraction tomography. Using a combination of tailor-made PNIPAAm macromers, PAG, and microfluidic processing, we obtain microgels with homogeneous network architecture. With that, we expand the capability of standardized microgels in calibrating and validating cell mechanics analysis, not only considering cell and microgel elasticity but also providing stimuli-responsiveness to consider dynamic changes that cells may undergo during characterization.
Collapse
Affiliation(s)
- Nicolas Hauck
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics D-01069 Dresden Germany
| | - Timon Beck
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden D-01307 Dresden Germany
- Max Planck Institute for the Science of Light Staudtstraße 2 D-91058 Erlangen Germany
| | - Gheorghe Cojoc
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden D-01307 Dresden Germany
| | - Raimund Schlüßler
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden D-01307 Dresden Germany
| | - Saeed Ahmed
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden D-01307 Dresden Germany
| | - Ivan Raguzin
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics D-01069 Dresden Germany
| | - Martin Mayer
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics D-01069 Dresden Germany
| | - Jonas Schubert
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics D-01069 Dresden Germany
| | - Paul Müller
- Max Planck Institute for the Science of Light Staudtstraße 2 D-91058 Erlangen Germany
| | - Jochen Guck
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden D-01307 Dresden Germany
- Max Planck Institute for the Science of Light Staudtstraße 2 D-91058 Erlangen Germany
| | - Julian Thiele
- Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics D-01069 Dresden Germany
| |
Collapse
|
35
|
Alunni Cardinali M, Cartechini L, Paolantoni M, Miliani C, Fioretto D, Pensabene Buemi L, Comez L, Rosi F. Microscale mechanochemical characterization of drying oil films by in situ correlative Brillouin and Raman spectroscopy. SCIENCE ADVANCES 2022; 8:eabo4221. [PMID: 35767625 PMCID: PMC9242584 DOI: 10.1126/sciadv.abo4221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Correlative Brillouin and Raman microspectroscopy (BRaMS) is applied for the in situ monitoring of the chemical and physical changes of linseed oil during polymerization. The viscoelastic properties of the drying oil throughout the phase transition were determined by Brillouin light scattering (BLS) and joined to the Raman spectroscopic information about the chemical process responsible for the oil hardening. A comparative study was then performed on an oil mock-up containing ZnO, one of the most common white pigments used in cultural heritage. The intriguing outcomes open new research perspectives for a deeper comprehension of the processes leading to the conversion of a fluid binder into a dry adhering film. The description of both chemical and structural properties of the polymeric network and their evolution are the basis for a better understanding of oil painting degradation. Last, as a feasibility test, BRaMS was applied to study a precious microfragment from J. Pollock's masterpiece Alchemy.
Collapse
Affiliation(s)
- Martina Alunni Cardinali
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto, 6 06123 Perugia, Italy
| | - Laura Cartechini
- Institute of Chemical Sciences and Technologies-SCITEC, National Research Council-CNR, Via Elce di Sotto, Perugia I-06123, Italy
| | - Marco Paolantoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto, 6 06123 Perugia, Italy
| | - Costanza Miliani
- Institute of Heritage Science-ISPC, National Research Council-CNR, Via Cardinale Guglielmo Sanfelice 8, 80134 Napoli (NA), Italy
| | - Daniele Fioretto
- Department of Physics and Geology, University of Perugia, Via Pascoli, Perugia I-06123, Italy
- Istituto Officina dei Materiali-IOM, National Research Council-CNR, Via Pascoli, Perugia I-06123, Italy
| | | | - Lucia Comez
- Istituto Officina dei Materiali-IOM, National Research Council-CNR, Via Pascoli, Perugia I-06123, Italy
| | - Francesca Rosi
- Institute of Chemical Sciences and Technologies-SCITEC, National Research Council-CNR, Via Elce di Sotto, Perugia I-06123, Italy
| |
Collapse
|
36
|
Pahapale GJ, Tao J, Nikolic M, Gao S, Scarcelli G, Sun SX, Romer LH, Gracias DH. Directing Multicellular Organization by Varying the Aspect Ratio of Soft Hydrogel Microwells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104649. [PMID: 35434926 PMCID: PMC9189654 DOI: 10.1002/advs.202104649] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/08/2022] [Indexed: 06/03/2023]
Abstract
Multicellular organization with precise spatial definition is essential to various biological processes, including morphogenesis, development, and healing in vascular and other tissues. Gradients and patterns of chemoattractants are well-described guides of multicellular organization, but the influences of 3D geometry of soft hydrogels are less well defined. Here, the discovery of a new mode of endothelial cell self-organization guided by combinatorial effects of stiffness and geometry, independent of protein or chemical patterning, is described. Endothelial cells in 2 kPa microwells are found to be ≈30 times more likely to migrate to the edge to organize in ring-like patterns than in stiff 35 kPa microwells. This organization is independent of curvature and significantly more pronounced in 2 kPa microwells with aspect ratio (perimeter/depth) < 25. Physical factors of cells and substrates that drive this behavior are systematically investigated and a mathematical model that explains the organization by balancing the dynamic interaction between tangential cytoskeletal tension, cell-cell, and cell-substrate adhesion is presented. These findings demonstrate the importance of combinatorial effects of geometry and stiffness in complex cellular organization that can be leveraged to facilitate the engineering of bionics and integrated model organoid systems with customized nutrient vascular networks.
Collapse
Affiliation(s)
- Gayatri J. Pahapale
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Jiaxiang Tao
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Milos Nikolic
- Maryland Biophysics ProgramInstitute for Physical Science and TechnologyUniversity of MarylandCollege ParkMD20742USA
| | - Sammy Gao
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Giuliano Scarcelli
- Maryland Biophysics ProgramInstitute for Physical Science and Technology and Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
| | - Sean X. Sun
- Department of Mechanical EngineeringCell Biologyand Institute of NanoBioTechnology (INBT)Johns Hopkins UniversityBaltimoreMD21218USA
| | - Lewis H. Romer
- Department of Cell BiologyAnesthesiology and Critical Care MedicineBiomedical EngineeringPediatricsand Center for Cell DynamicsJohns Hopkins School of MedicineBaltimoreMD21205USA
| | - David H. Gracias
- Department of Chemical and Biomolecular EngineeringMaterials Science and EngineeringChemistry and Laboratory for Computational Sensing and Robotics (LCSR)Johns Hopkins UniversityBaltimoreMD21218USA
- Department of Oncology and Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins School of MedicineBaltimoreMD21205USA
| |
Collapse
|
37
|
Yang F, Gyger F, Godet A, Chrétien J, Zhang L, Pang M, Beugnot JC, Thévenaz L. Large evanescently-induced Brillouin scattering at the surrounding of a nanofibre. Nat Commun 2022; 13:1432. [PMID: 35301307 PMCID: PMC8931049 DOI: 10.1038/s41467-022-29051-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 01/24/2022] [Indexed: 11/08/2022] Open
Abstract
Brillouin scattering has been widely exploited for advanced photonics functionalities such as microwave photonics, signal processing, sensing, lasing, and more recently in micro- and nano-photonic waveguides. Most of the works have focused on the opto-acoustic interaction driven from the core region of micro- and nano-waveguides. Here we observe, for the first time, an efficient Brillouin scattering generated by an evanescent field nearby a single-pass sub-wavelength waveguide embedded in a pressurised gas cell, with a maximum gain coefficient of 18.90 ± 0.17 m-1W-1. This gain is 11 times larger than the highest Brillouin gain obtained in a hollow-core fibre and 79 times larger than in a standard single-mode fibre. The realisation of strong free-space Brillouin scattering from a waveguide benefits from the flexibility of confined light while providing a direct access to the opto-acoustic interaction, as required in free-space optoacoustics such as Brillouin spectroscopy and microscopy. Therefore, our work creates an important bridge between Brillouin scattering in waveguides, Brillouin spectroscopy and microscopy, and opens new avenues in light-sound interactions, optomechanics, sensing, lasing and imaging.
Collapse
Affiliation(s)
- Fan Yang
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Group for Fibre Optics, CH-1015, Lausanne, Switzerland.
- European Molecular Biology Laboratory, Heidelberg, Germany.
| | - Flavien Gyger
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Group for Fibre Optics, CH-1015, Lausanne, Switzerland
- Max Planck Institute of Quantum Optics, Garching, Germany
| | - Adrien Godet
- FEMTO-ST Institute, UMR 6174, Université Bourgogne Franche-Comté, 25030, Besançon, France
| | - Jacques Chrétien
- FEMTO-ST Institute, UMR 6174, Université Bourgogne Franche-Comté, 25030, Besançon, France
| | - Li Zhang
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Group for Fibre Optics, CH-1015, Lausanne, Switzerland
| | - Meng Pang
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, CAS, Shanghai, 201800, China
| | - Jean-Charles Beugnot
- FEMTO-ST Institute, UMR 6174, Université Bourgogne Franche-Comté, 25030, Besançon, France.
| | - Luc Thévenaz
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Group for Fibre Optics, CH-1015, Lausanne, Switzerland
| |
Collapse
|
38
|
Krug B, Koukourakis N, Guck J, Czarske J. Nonlinear microscopy using impulsive stimulated Brillouin scattering for high-speed elastography. OPTICS EXPRESS 2022; 30:4748-4758. [PMID: 35209449 DOI: 10.1364/oe.449980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
The impulsive stimulated Brillouin microscopy promises fast, non-contact measurements of the elastic properties of biological samples. The used pump-probe approach employs an ultra-short pulse laser and a cw laser to generate Brillouin signals. Modeling of the microscopy technique has already been carried out partially, but not for biomedical applications. The nonlinear relationship between pulse energy and Brillouin signal amplitude is proven with both simulations and experiments. Tayloring of the excitation parameters on the biologically relevant polyacrylamide hydrogels outline sub-ms temporal resolutions at a relative precision of <1%. Brillouin microscopy using the impulsive stimulated scattering therefore exhibits high potential for the measurements of viscoelastic properties of cells and tissues.
Collapse
|
39
|
Alunni Cardinali M, Di Michele A, Mattarelli M, Caponi S, Govoni M, Dallari D, Brogini S, Masia F, Borri P, Langbein W, Palombo F, Morresi A, Fioretto D. Brillouin-Raman microspectroscopy for the morpho-mechanical imaging of human lamellar bone. J R Soc Interface 2022; 19:20210642. [PMID: 35104431 PMCID: PMC8807060 DOI: 10.1098/rsif.2021.0642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Bone has a sophisticated architecture characterized by a hierarchical organization, starting at the sub-micrometre level. Thus, the analysis of the mechanical and structural properties of bone at this scale is essential to understand the relationship between its physiology, physical properties and chemical composition. Here, we unveil the potential of Brillouin-Raman microspectroscopy (BRaMS), an emerging correlative optical approach that can simultaneously assess bone mechanics and chemistry with micrometric resolution. Correlative hyperspectral imaging, performed on a human diaphyseal ring, reveals a complex microarchitecture that is reflected in extremely rich and informative spectra. An innovative method for mechanical properties analysis is proposed, mapping the intermixing of soft and hard tissue areas and revealing the coexistence of regions involved in remodelling processes, nutrient transportation and structural support. The mineralized regions appear elastically inhomogeneous, resembling the pattern of the osteons' lamellae, while Raman and energy-dispersive X-ray images through scanning electron microscopy show an overall uniform distribution of the mineral content, suggesting that other structural factors are responsible for lamellar micromechanical heterogeneity. These results, besides giving an important insight into cortical bone tissue properties, highlight the potential of BRaMS to access the origin of anisotropic mechanical properties, which are almost ubiquitous in other biological tissues.
Collapse
Affiliation(s)
- M. Alunni Cardinali
- Department of Physics and Geology, University of Perugia, Via A. Pascoli, Perugia 06123, Italy
| | - A. Di Michele
- Department of Physics and Geology, University of Perugia, Via A. Pascoli, Perugia 06123, Italy
| | - M. Mattarelli
- Department of Physics and Geology, University of Perugia, Via A. Pascoli, Perugia 06123, Italy
| | - S. Caponi
- Istituto Officina Dei Materiali, National Research Council (IOM-CNR), Unit of Perugia, c/o Department of Physics and Geology, University of Perugia, Via A. Pascoli, Perugia 06123, Italy
| | - M. Govoni
- Reconstructive Orthopaedic Surgery and Innovative Techniques – Musculoskeletal Tissue Bank, IRCCS Istituto Ortopedico Rizzoli, Via G.C. Pupilli 1, Bologna 40136, Italy
| | - D. Dallari
- Reconstructive Orthopaedic Surgery and Innovative Techniques – Musculoskeletal Tissue Bank, IRCCS Istituto Ortopedico Rizzoli, Via G.C. Pupilli 1, Bologna 40136, Italy
| | - S. Brogini
- Complex Structure of Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, Bologna 40136, Italy
| | - F. Masia
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - P. Borri
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - W. Langbein
- School of Physics and Astronomy, Cardiff University, The Parade, Cardiff CF24 3AA, UK
| | - F. Palombo
- School of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, UK
| | - A. Morresi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, Perugia 06123, Italy
| | - D. Fioretto
- Department of Physics and Geology, University of Perugia, Via A. Pascoli, Perugia 06123, Italy
- CEMIN - Center of Excellence for Innovative Nanostructured Material, Via Elce di Sotto 8, Perugia 06123, Italy
| |
Collapse
|
40
|
Schlüßler R, Kim K, Nötzel M, Taubenberger A, Abuhattum S, Beck T, Müller P, Maharana S, Cojoc G, Girardo S, Hermann A, Alberti S, Guck J. Correlative all-optical quantification of mass density and mechanics of subcellular compartments with fluorescence specificity. eLife 2022; 11:e68490. [PMID: 35001870 PMCID: PMC8816383 DOI: 10.7554/elife.68490] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 01/08/2022] [Indexed: 01/06/2023] Open
Abstract
Quantitative measurements of physical parameters become increasingly important for understanding biological processes. Brillouin microscopy (BM) has recently emerged as one technique providing the 3D distribution of viscoelastic properties inside biological samples - so far relying on the implicit assumption that refractive index (RI) and density can be neglected. Here, we present a novel method (FOB microscopy) combining BM with optical diffraction tomography and epifluorescence imaging for explicitly measuring the Brillouin shift, RI, and absolute density with specificity to fluorescently labeled structures. We show that neglecting the RI and density might lead to erroneous conclusions. Investigating the nucleoplasm of wild-type HeLa cells, we find that it has lower density but higher longitudinal modulus than the cytoplasm. Thus, the longitudinal modulus is not merely sensitive to the water content of the sample - a postulate vividly discussed in the field. We demonstrate the further utility of FOB on various biological systems including adipocytes and intracellular membraneless compartments. FOB microscopy can provide unexpected scientific discoveries and shed quantitative light on processes such as phase separation and transition inside living cells.
Collapse
Affiliation(s)
- Raimund Schlüßler
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische UniversitätDresdenGermany
| | - Kyoohyun Kim
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische UniversitätDresdenGermany
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und MedizinErlangenGermany
| | - Martin Nötzel
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische UniversitätDresdenGermany
| | - Anna Taubenberger
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische UniversitätDresdenGermany
| | - Shada Abuhattum
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische UniversitätDresdenGermany
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und MedizinErlangenGermany
| | - Timon Beck
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische UniversitätDresdenGermany
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und MedizinErlangenGermany
| | - Paul Müller
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische UniversitätDresdenGermany
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und MedizinErlangenGermany
| | - Shovamaye Maharana
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische UniversitätDresdenGermany
- Department of Microbiology and Cell Biology, Indian Institute of ScienceBengaluruIndia
| | - Gheorghe Cojoc
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische UniversitätDresdenGermany
| | - Salvatore Girardo
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische UniversitätDresdenGermany
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und MedizinErlangenGermany
| | - Andreas Hermann
- Translational Neurodegeneration Section "Albrecht Kossel", University Rostock, and German Center for Neurodegenerative Diseases (DZNE)Rostock/GreifswaldGermany
| | - Simon Alberti
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische UniversitätDresdenGermany
- Physics of Life, Technische Universität DresdenDresdenGermany
| | - Jochen Guck
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische UniversitätDresdenGermany
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und MedizinErlangenGermany
- Physics of Life, Technische Universität DresdenDresdenGermany
| |
Collapse
|
41
|
Alunni Cardinali M, Morresi A, Fioretto D, Vivarelli L, Dallari D, Govoni M. Brillouin and Raman Micro-Spectroscopy: A Tool for Micro-Mechanical and Structural Characterization of Cortical and Trabecular Bone Tissues. MATERIALS 2021; 14:ma14226869. [PMID: 34832271 PMCID: PMC8618195 DOI: 10.3390/ma14226869] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/04/2021] [Accepted: 11/12/2021] [Indexed: 02/03/2023]
Abstract
Human bone is a specialized tissue with unique material properties, providing mechanical support and resistance to the skeleton and simultaneously assuring capability of adaptation and remodelling. Knowing the properties of such a structure down to the micro-scale is of utmost importance, not only for the design of effective biomimetic materials but also to be able to detect pathological alterations in material properties, such as micro-fractures or abnormal tissue remodelling. The Brillouin and Raman micro-spectroscopic (BRmS) approach has the potential to become a first-choice technique, as it is capable of simultaneously investigating samples’ mechanical and structural properties in a non-destructive and label-free way. Here, we perform a mapping of cortical and trabecular bone sections of a femoral epiphysis, demonstrating the capability of the technique for discovering the morpho-mechanics of cells, the extracellular matrix, and marrow constituents. Moreover, the interpretation of Brillouin and Raman spectra merged with an approach of data mining is used to compare the mechanical alterations in specimens excised from distinct anatomical areas and subjected to different sample processing. The results disclose in both cases specific alterations in the morphology and/or in the tissue chemical make-up, which strongly affects bone mechanical properties, providing a method potentially extendable to other important biomedical issues.
Collapse
Affiliation(s)
- Martina Alunni Cardinali
- Department of Physics and Geology, University of Perugia, Via A. Pascoli, I-06123 Perugia, Italy;
- Correspondence:
| | - Assunta Morresi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, I-06123 Perugia, Italy;
| | - Daniele Fioretto
- Department of Physics and Geology, University of Perugia, Via A. Pascoli, I-06123 Perugia, Italy;
- CEMIN—Center of Excellence for Innovative Nanostructured Material, I-06123 Perugia, Italy
| | - Leonardo Vivarelli
- Reconstructive Orthopaedic Surgery and Innovative Techniques—Musculoskeletal Tissue Bank, IRCCS Istituto Ortopedico Rizzoli, Via G.C. Pupilli 1, 40136 Bologna, Italy; (L.V.); (D.D.); (M.G.)
| | - Dante Dallari
- Reconstructive Orthopaedic Surgery and Innovative Techniques—Musculoskeletal Tissue Bank, IRCCS Istituto Ortopedico Rizzoli, Via G.C. Pupilli 1, 40136 Bologna, Italy; (L.V.); (D.D.); (M.G.)
| | - Marco Govoni
- Reconstructive Orthopaedic Surgery and Innovative Techniques—Musculoskeletal Tissue Bank, IRCCS Istituto Ortopedico Rizzoli, Via G.C. Pupilli 1, 40136 Bologna, Italy; (L.V.); (D.D.); (M.G.)
| |
Collapse
|
42
|
Taylor MA, Kijas AW, Wang Z, Lauko J, Rowan AE. Heterodyne Brillouin microscopy for biomechanical imaging. BIOMEDICAL OPTICS EXPRESS 2021; 12:6259-6268. [PMID: 34745734 PMCID: PMC8548004 DOI: 10.1364/boe.435869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Microscopic variations in material stiffness play a vital role in cellular scale biomechanics, but are difficult to measure in a natural 3D environment. Brillouin microscopy is a promising technology for such applications, providing non-contact label-free measurement of longitudinal modulus at microscopic resolution. Here we develop heterodyne detection to measure Brillouin scattering signals in a confocal microscope setup, providing sensitive detection with excellent frequency resolution and robust operation in the presence of stray light. The functionality of the microscope is characterized and validated, and the imaging capability demonstrated by imaging structure within both a fibrin fiber network and live cells.
Collapse
|
43
|
Adichtchev SV, Surovtsev NV. Temperature dependence of elastic properties of the phospholipid vesicles in aqueous suspension probed by Brillouin spectroscopy. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:495102. [PMID: 34521080 DOI: 10.1088/1361-648x/ac2690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
The aqueous suspension of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) vesicles with different hydration levelsα(water-to-lipid mass ratio) have been studied by Brillouin spectroscopy in the temperature range from -190 °C to 70 °C. The samples with different hydration levels demonstrate similar temperature behavior of their sound velocity in the temperature range from -190 °C to -25 °C. There is a strong correlation between the hydration level of the sample and the character of the sound velocity temperature dependence at higher temperatures. Nevertheless, all hydrated samples demonstrate a jump in the sound velocity at the gel-fluid phase transition temperature. The amplitude of this jump depends on the hydration levelαof the sample. It has a maximum value in the sample with minimalαnecessary for the phospholipid membrane's full hydration. To evaluate the sound velocity in the phospholipid membrane, we applied the two-component model to analyze the experimental data obtained in the sample withα= 0.25 (close to the minimal necessary value for the full DPPC membrane hydration). It was found that for temperatures higher than 0 °C, the two-component model works well if we consider that sound velocity in water between vesicle layers is approximately a factor of two higher than in bulk water.
Collapse
Affiliation(s)
- S V Adichtchev
- Institute Automation and Electrometry, Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - N V Surovtsev
- Institute Automation and Electrometry, Russian Academy of Sciences, Novosibirsk, 630090, Russia
| |
Collapse
|
44
|
Mechanical mapping of mammalian follicle development using Brillouin microscopy. Commun Biol 2021; 4:1133. [PMID: 34580426 PMCID: PMC8476509 DOI: 10.1038/s42003-021-02662-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023] Open
Abstract
In early mammalian development, the maturation of follicles containing the immature oocytes is an important biological process as the functional oocytes provide the bulk genetic and cytoplasmic materials for successful reproduction. Despite recent work demonstrating the regulatory role of mechanical stress in oocyte growth, quantitative studies of ovarian mechanical properties remain lacking both in vivo and ex vivo. In this work, we quantify the material properties of ooplasm, follicles and connective tissues in intact mouse ovaries at distinct stages of follicle development using Brillouin microscopy, a non-invasive tool to probe mechanics in three-dimensional (3D) tissues. We find that the ovarian cortex and its interior stroma have distinct material properties associated with extracellular matrix deposition, and that intra-follicular mechanical compartments emerge during follicle maturation. Our work provides an alternative approach to study the role of mechanics in follicle morphogenesis and might pave the way for future understanding of mechanotransduction in reproductive biology, with potential implications for infertility diagnosis and treatment.
Collapse
|
45
|
Non-contact elastography methods in mechanobiology: a point of view. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 51:99-104. [PMID: 34463775 PMCID: PMC8964566 DOI: 10.1007/s00249-021-01567-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023]
Abstract
In recent decades, mechanobiology has emerged as a novel perspective in the context of basic biomedical research. It is now widely recognized that living cells respond not only to chemical stimuli (for example drugs), but they are also able to decipher mechanical cues, such as the rigidity of the underlying matrix or the presence of shear forces. Probing the viscoelastic properties of cells and their local microenvironment with sub-micrometer resolution is required to study this complex interplay and dig deeper into the mechanobiology of single cells. Current approaches to measure mechanical properties of adherent cells mainly rely on the exploitation of miniaturized indenters, to poke single cells while measuring the corresponding deformation. This method provides a neat implementation of the everyday approach to measure mechanical properties of a material, but it typically results in a very low throughput and invasive experimental protocol, poorly translatable towards three-dimensional living tissues and biological constructs. To overcome the main limitations of nanoindentation experiments, a radical paradigm change is foreseen, adopting next generation contact-less methods to measure mechanical properties of biological samples with sub-cell resolution. Here we briefly introduce the field of single cell mechanical characterization, and we concentrate on a promising high resolution optical elastography technique, Brillouin spectroscopy. This non-contact technique is rapidly emerging as a potential breakthrough innovation in biomechanics, but the application to single cells is still in its infancy.
Collapse
|
46
|
Correa N, Alunni Cardinali M, Bailey M, Fioretto D, Pudney PDA, Palombo F. Brillouin microscopy for the evaluation of hair micromechanics and effect of bleaching. JOURNAL OF BIOPHOTONICS 2021; 14:e202000483. [PMID: 33768666 DOI: 10.1002/jbio.202000483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/19/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Brillouin microscopy is a new form of optical elastography and an emerging technique in mechanobiology and biomedical physics. It was applied here to map the viscoelastic properties of human hair and to determine the effect of bleaching on hair properties. For hair samples, longitudinal measurements (i.e. along the fibre axis) revealed peaks at 18.7 and 20.7 GHz at the location of the cuticle and cortex, respectively. For hair treated with a bleaching agent, the frequency shifts for the cuticle and cortex were 19.7 and 21.0 GHz, respectively, suggesting that bleaching increases the cuticle modulus and-to a minor extent-the cortex modulus. These results demonstrate the capability of Brillouin spectroscopy to address questions on micromechanical properties of hair and to validate the effect of applied treatments.
Collapse
Affiliation(s)
- Noemi Correa
- School of Physics, University of Exeter, Exeter, UK
| | | | | | - Daniele Fioretto
- Department of Physics and Geology, University of Perugia, Perugia, Italy
| | | | | |
Collapse
|
47
|
Bailey M, Gardner B, Alunni-Cardinali M, Caponi S, Fioretto D, Stone N, Palombo F. Predicting the Refractive Index of Tissue Models Using Light Scattering Spectroscopy. APPLIED SPECTROSCOPY 2021; 75:574-580. [PMID: 33319606 PMCID: PMC8114435 DOI: 10.1177/0003702820984482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
In this work, we report the application of Raman microspectroscopy for analysis of the refractive index of a range of tissue phantoms. Using both a custom-developed setup with visible laser source and a commercial microspectrometer with near infrared laser, we measured the Raman spectra of gelatin hydrogels at various concentrations. By building a calibration curve from measured refractometry data and Raman scattering intensity for different vibrational modes of the hydrogel, we were able to predict the refractive indices of the gels from their Raman spectra. This work highlights the importance of a correlative approach through Brillouin-Raman microspectroscopy for the mechano-chemical analysis of biologically relevant samples.
Collapse
Affiliation(s)
- Michelle Bailey
- School of Physics and Astronomy, University of Exeter, Exeter, UK
| | - Benjamin Gardner
- School of Physics and Astronomy, University of Exeter, Exeter, UK
| | | | - Silvia Caponi
- CNR-IOM – Istituto Officina dei Materiali – Research Unit in Perugia, c/o Department of Physics and Geology, University of Perugia, Perugia, Italy
| | - Daniele Fioretto
- Department of Physics and Geology, University of Perugia, Perugia, Italy
| | - Nick Stone
- School of Physics and Astronomy, University of Exeter, Exeter, UK
| | | |
Collapse
|
48
|
Yu K, Yang Y, Wang J, Hartland GV, Wang GP. Nanoparticle-Fluid Interactions at Ultrahigh Acoustic Vibration Frequencies Studied by Femtosecond Time-Resolved Microscopy. ACS NANO 2021; 15:1833-1840. [PMID: 33448792 DOI: 10.1021/acsnano.0c09840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Liquid viscous and viscoelastic properties are very important parameters in determining rheological phenomena. Mechanical resonators with extremely high vibrational frequencies interacting with simple liquids present a wide range of applications from mass sensing to biomechanics. However, a lack of understanding of fluid viscoelasticity greatly hinders the utilization of mechanical resonators. In this paper, the high frequency acoustic vibrations of Au nanoplates with large quality factors were used to probe fluid properties (water, glycerol, and their mixtures) through time-resolved pump-probe microscopy experiments. For water, viscous damping was clearly observed, where an inviscid effect was only detected previously. Adding glycerol to the water increases the fluid viscosity and leads to a bulk viscoelastic response in the system. The experimental results are in excellent agreement with a continuum mechanics model for the damping of nanoplate breathing modes in liquids, confirming the experimental observation of viscoelastic effects. In addition to the breathing modes of the nanoplates, Brillouin oscillations are observed in the experiments. Analysis of the frequency of the Brillouin oscillations also shows the presence of viscoelastic effects in the high-viscosity solvents. The detection and analysis of viscous damping in liquids is important not only for understanding the energy dissipation mechanisms and providing the mechanical relaxation times of the liquids but also for developing applications of nanomechanical resonators for fluid environments.
Collapse
Affiliation(s)
- Kuai Yu
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Yang Yang
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Junzhong Wang
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Gregory V Hartland
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Guo Ping Wang
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|