1
|
Yang Z, Liu Y, Xiang Y, Chen R, Chen L, Wang S, Lv L, Zang M, Zhou N, Li S, Shi B, Li Y. ILC2-derived CGRP triggers acute inflammation and nociceptive responses in bacterial cystitis. Cell Rep 2024; 43:114859. [PMID: 39412984 DOI: 10.1016/j.celrep.2024.114859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/03/2024] [Accepted: 09/25/2024] [Indexed: 10/18/2024] Open
Abstract
Calcitonin gene-related peptide (CGRP), a neuropeptide involved in nociceptor neuronal function, plays a critical role in mediating neuroinflammation and pain. In this study, we find that bladder group 2 innate lymphoid cells (ILC2s) function as primary producers of CGRP in the early phase of bacterial cystitis, contributing to increased inflammation, altered voiding behavior, and heightened pelvic allodynia. Furthermore, we demonstrate that interleukin (IL)-33, a cytokine secreted by urothelial cells, upregulates CGRP production by ILC2s in the bladder during uropathogenic Escherichia coli (UPEC) infection. Moreover, our research reveals that monocytes expressing high levels of receptor activity-modifying protein 1 (RAMP1), a CGRP receptor, mediate the pro-inflammatory effects of CGRP-producing ILC2s. In summary, our results underscore the significance of the immune cell-derived neuropeptides in the pathology of UPEC infection, suggesting a promising therapeutic approach targeting the IL-33-ILC2-CGRP axis for managing lower urinary tract symptoms in bacterial cystitis.
Collapse
Affiliation(s)
- Zizhuo Yang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, China
| | - Yaxiao Liu
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, China; Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yinrui Xiang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, China
| | - Rui Chen
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, China
| | - Lipeng Chen
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, China
| | - Shuai Wang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, China
| | - Linchen Lv
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, China
| | - Maolin Zang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, China
| | - Nan Zhou
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, China
| | - Shiyang Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China.
| | - Benkang Shi
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, China; Shenzhen Research Institute of Shandong University, Shenzhen, China.
| | - Yan Li
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, China; Shenzhen Research Institute of Shandong University, Shenzhen, China.
| |
Collapse
|
2
|
Lee SH, Sacks DL. Resilience of dermis resident macrophages to inflammatory challenges. Exp Mol Med 2024; 56:2105-2112. [PMID: 39349826 PMCID: PMC11542019 DOI: 10.1038/s12276-024-01313-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/24/2024] [Accepted: 07/04/2024] [Indexed: 10/03/2024] Open
Abstract
The skin serves as a complex barrier organ populated by tissue-resident macrophages (TRMs), which play critical roles in defense, homeostasis, and tissue repair. This review examines the functions of dermis resident TRMs in different inflammatory settings, their embryonic origins, and their long-term self-renewal capabilities. We highlight the M2-like phenotype of dermal TRMs and their specialized functions in perivascular and perineuronal niches. Their interactions with type 2 immune cells, autocrine cytokines such as IL-10, and their phagocytic clearance of apoptotic cells have been explored as mechanisms for M2-like dermal TRM self-maintenance and function. In conclusion, we address the need to bridge murine models with human studies, with the possibility of targeting TRMs to promote skin immunity or restrain cutaneous pathology.
Collapse
Affiliation(s)
- Sang Hun Lee
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David L Sacks
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Collins CA, Waller C, Batourina E, Kumar L, Mendelsohn CL, Gilbert NM. Nur77 protects the bladder urothelium from intracellular bacterial infection. Nat Commun 2024; 15:8308. [PMID: 39333075 PMCID: PMC11436794 DOI: 10.1038/s41467-024-52454-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 09/06/2024] [Indexed: 09/29/2024] Open
Abstract
Intracellular infections by Gram-negative bacteria are a significant global health threat. The nuclear receptor Nur77 (also called TR3, NGFI-B, or NR4A1) was recently shown to sense cytosolic bacterial lipopolysaccharide (LPS). However, the potential role for Nur77 in controlling intracellular bacterial infection has not been examined. Here we show that Nur77 protects against intracellular infection in the bladder by uropathogenic Escherichia coli (UPEC), the leading cause of urinary tract infections (UTI). Nur77 deficiency in mice promotes the formation of UPEC intracellular bacterial communities (IBCs) in the cells lining the bladder lumen, leading to persistent infection in bladder tissue. Conversely, treatment with a small-molecule Nur77 agonist, cytosporone B, inhibits invasion and enhances the expulsion of UPEC from human urothelial cells in vitro, and significantly reduces UPEC IBC formation and bladder infection in mice. Our findings reveal a new role for Nur77 in control of bacterial infection and suggest that pharmacologic agonism of Nur77 function may represent a promising antibiotic-sparing therapeutic approach for UTI.
Collapse
Affiliation(s)
- Christina A Collins
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Chevaughn Waller
- Department of Urology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ekaterina Batourina
- Department of Urology, Columbia University Irving Medical Center, New York, NY, USA
| | - Lokesh Kumar
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Cathy L Mendelsohn
- Department of Urology, Columbia University Irving Medical Center, New York, NY, USA
| | - Nicole M Gilbert
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA.
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
4
|
Naskar M, Choi HW. A Dynamic Interplay of Innate Immune Responses During Urinary Tract Infection. Immune Netw 2024; 24:e31. [PMID: 39246616 PMCID: PMC11377947 DOI: 10.4110/in.2024.24.e31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 09/10/2024] Open
Abstract
Urinary tract infections (UTIs) represent one of the most prevalent bacterial infections globally, manifesting in diverse clinical phenotypes with varying degrees of severity and complications. The mechanisms underlying UTIs are gradually being elucidated, leading to an enhanced understanding of the immune responses involved. Innate immune cells play a crucial defensive role against uropathogenic bacteria through various mechanisms. Despite their significant contributions to host defense, these cells often fail to achieve complete clearance of uropathogens, necessitating the frequent prescription of antibiotics for UTI patients. However, the persistence of infections and related pathological symptoms in the absence of innate immune cells in animal models underscore the importance of innate immunity in UTIs. Therefore, the host protective functions of innate immune cells, including neutrophils, macrophages, mast cells, NK cells, innate lymphoid cells, and γδ T cells, are delicately coordinated and timely regulated by a variety of cytokines to ensure successful pathogen clearance.
Collapse
Affiliation(s)
- Manisha Naskar
- Division of Life Sciences, Korea University, Seoul 02841, Korea
| | - Hae Woong Choi
- Division of Life Sciences, Korea University, Seoul 02841, Korea
| |
Collapse
|
5
|
Tantibhadrasapa A, Li S, Buddhasiri S, Sukjoi C, Mongkolkarvin P, Boonpan P, Wongpalee SP, Paenkaew P, Sutheeworapong S, Nakphaichit M, Nitisinprasert S, Hsieh MH, Thiennimitr P. Probiotic Limosilactobacillus reuteri KUB-AC5 decreases urothelial cell invasion and enhances macrophage killing of uropathogenic Escherichia coli in vitro study. Front Cell Infect Microbiol 2024; 14:1401462. [PMID: 39091675 PMCID: PMC11291381 DOI: 10.3389/fcimb.2024.1401462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Introduction Bacterial urinary tract infections (UTI) are among the most common infectious diseases worldwide. The rise of multidrug-resistant (MDR) uropathogenic Escherichia coli (UPEC) UTI cases is a significant threat to healthcare systems. Several probiotic bacteria have been proposed as an alternative to combat MDR UTI. Lactic acid bacteria in the genus Limosilactobacillus are some of the most studied and used probiotics. However, strain-specific effects play a critical role in probiotic properties. L. reuteri KUB-AC5 (AC5), isolated from the chicken gut, confers antimicrobial and immunobiotic effects against some human pathogens. However, the antibacterial and immune modulatory effects of AC5 on UPEC have never been explored. Methods Here, we investigated both the direct and indirect effects of AC5 against UPEC isolates (UTI89, CFT073, and clinical MDR UPEC AT31) in vitro. Using a spot-on lawn, agar-well diffusion, and competitive growth assays, we found that viable AC5 cells and cell-free components of this probiotic significantly reduced the UPEC growth of all strains tested. The human bladder epithelial cell line UM-UC-3 was used to assess the adhesion and pathogen-attachment inhibition properties of AC5 on UPEC. Results and discussion Our data showed that AC5 can attach to UM-UC-3 and decrease UPEC attachment in a dose-dependent manner. Pretreatment of UPEC-infected murine macrophage RAW264.7 cells with viable AC5 (multiplicity of infection, MOI = 1) for 24 hours enhanced macrophage-killing activity and increased proinflammatory (Nos2, Il6, and Tnfa) and anti-inflammatory (Il10) gene expression. These findings indicate the gut-derived AC5 probiotic could be a potential urogenital probiotic against MDR UTI.
Collapse
Affiliation(s)
| | - Songbo Li
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Key Laboratory of Tumor Immunopathology, Youjiang Medical University for Nationalities, Baise, China
| | - Songphon Buddhasiri
- Research Center for Veterinary Biosciences and Veterinary Public Health, Chiang Mai University, Chiang Mai, Thailand
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chutikarn Sukjoi
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Panupon Mongkolkarvin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pattarapon Boonpan
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Somsakul Pop Wongpalee
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Prasobsook Paenkaew
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sawannee Sutheeworapong
- Pilot Plant Development and Training Institute (PDTI), King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, Thailand
| | - Massalin Nakphaichit
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
- Specialized Research Unit: Probiotics and Prebiotics for Health, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| | - Sunee Nitisinprasert
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
- Specialized Research Unit: Probiotics and Prebiotics for Health, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| | - Michael H. Hsieh
- Department of Urology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
- Department of Pediatrics, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
- Department of Microbiology, Immunology, and Tropical Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Parameth Thiennimitr
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
- Center of Multidisciplinary Technology for Advanced Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
6
|
Atallah A, Grossman A, Nauman RW, Paré JF, Khan A, Siemens DR, Cotechini T, Graham CH. Systemic versus localized Bacillus Calmette Guérin immunotherapy of bladder cancer promotes an anti-tumoral microenvironment: Novel role of trained immunity. Int J Cancer 2024; 155:352-364. [PMID: 38483404 DOI: 10.1002/ijc.34897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/19/2024] [Accepted: 01/31/2024] [Indexed: 05/16/2024]
Abstract
Treatment for higher-risk non-muscle invasive bladder cancer (NMIBC) involves intravesical immunotherapy with Bacillus Calmette Guérin (BCG); however, disease recurrence and progression occur frequently. Systemic immunity is critical for successful cancer immunotherapy; thus, recurrence of NMIBC may be due to suboptimal systemic activation of anti-tumor immunity after local immunotherapy. We previously reported that systemically acquired trained immunity (a form of innate immune memory) in circulating monocytes is associated with increased time-to-recurrence in patients with NMIBC treated with BCG. Herein, we used a mouse model of NMIBC to compare the effects of intravesical versus intravenous (systemic) BCG immunotherapy on the local and peripheral immune microenvironments. We also assessed whether BCG-induced trained immunity modulates anti-tumor immune responses. Compared with intravesical BCG, which led to a tumor-promoting immune microenvironment, intravenous BCG resulted in an anti-tumoral bladder microenvironment characterized by increased proportions of cytotoxic T lymphocytes (CTLs), and decreased proportions of myeloid-derived suppressor cells. Polarization toward anti-tumoral immunity occurred in draining lymph nodes, spleen, and bone marrow following intravenous versus intravesical BCG treatment. Pre-treatment with intravesical BCG was associated with increased rate of tumor growth compared with intravenous BCG pre-treatment. Trained immunity contributed to remodeling of the tumor immune microenvironment, as co-instillation of BCG-trained macrophages with ovalbumin-expressing bladder tumor cells increased the proportion of tumor-specific CTLs. Furthermore, BCG-trained dendritic cells exhibited enhanced antigen uptake and presentation and promoted CTL proliferation. Our data support the concept that systemic immune activation promotes anti-tumor responses, and that BCG-induced trained immunity is important in driving anti-tumor adaptive immunity.
Collapse
Affiliation(s)
- Aline Atallah
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Arielle Grossman
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Richard W Nauman
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Jean-François Paré
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Adam Khan
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - D Robert Siemens
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- Department of Urology, Queen's University, Kingston, Ontario, Canada
| | - Tiziana Cotechini
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Charles H Graham
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- Department of Urology, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
7
|
Ruiz-Rosado JDD, Cortado H, Kercsmar M, Li B, Ballash G, Cotzomi-Ortega I, Sanchez-Zamora YI, Gupta S, Ching C, Boix E, Jackson AR, Spencer JD, Becknell B. Human Ribonuclease 6 Has a Protective Role during Experimental Urinary Tract Infection. J Innate Immun 2023; 15:865-875. [PMID: 37980892 PMCID: PMC10699853 DOI: 10.1159/000534736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/18/2023] [Indexed: 11/21/2023] Open
Abstract
Mounting evidence suggests that antimicrobial peptides and proteins (AMPs) belonging to the RNase A superfamily have a critical role in defending the bladder and kidney from bacterial infection. RNase 6 has been identified as a potent, leukocyte-derived AMP, but its impact on urinary tract infection (UTI) in vivo has not been demonstrated. To test the functional role of human RNase 6, we generated RNASE6 transgenic mice and studied their susceptibility to experimental UTI. In addition, we generated bone marrow-derived macrophages to study the impact of RNase 6 on antimicrobial activity within a cellular context. When subjected to experimental UTI, RNASE6 transgenic mice developed reduced uropathogenic Escherichia coli (UPEC) burden, mucosal injury, and inflammation compared to non-transgenic controls. Monocytes and macrophages were the predominant cellular sources of RNase 6 during UTI, and RNASE6 transgenic macrophages were more proficient at intracellular UPEC killing than non-transgenic controls. Altogether, our findings indicate a protective role for human RNase 6 during experimental UTI.
Collapse
Affiliation(s)
- Juan de Dios Ruiz-Rosado
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH, USA
- Division of Nephrology and Hypertension, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Hanna Cortado
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH, USA
| | - Macie Kercsmar
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH, USA
| | - Birong Li
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH, USA
| | - Gregory Ballash
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH, USA
| | - Israel Cotzomi-Ortega
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH, USA
| | - Yuriko I. Sanchez-Zamora
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH, USA
| | - Sudipti Gupta
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH, USA
| | - Christina Ching
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH, USA
- Department of Urology, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Ester Boix
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma De Barcelona, Barcelona, Spain
| | - Ashley R. Jackson
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH, USA
- Division of Nephrology and Hypertension, Nationwide Children’s Hospital, Columbus, OH, USA
| | - John David Spencer
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH, USA
- Division of Nephrology and Hypertension, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Brian Becknell
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH, USA
- Division of Nephrology and Hypertension, Nationwide Children’s Hospital, Columbus, OH, USA
| |
Collapse
|
8
|
McKendrick JG, Jones GR, Elder SS, Watson E, T'Jonck W, Mercer E, Magalhaes MS, Rocchi C, Hegarty LM, Johnson AL, Schneider C, Becher B, Pridans C, Mabbott N, Liu Z, Ginhoux F, Bajenoff M, Gentek R, Bain CC, Emmerson E. CSF1R-dependent macrophages in the salivary gland are essential for epithelial regeneration after radiation-induced injury. Sci Immunol 2023; 8:eadd4374. [PMID: 37922341 DOI: 10.1126/sciimmunol.add4374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/03/2023] [Indexed: 11/05/2023]
Abstract
The salivary glands often become damaged in individuals receiving radiotherapy for head and neck cancer, resulting in chronic dry mouth. This leads to detrimental effects on their health and quality of life, for which there is no regenerative therapy. Macrophages are the predominant immune cell in the salivary glands and are attractive therapeutic targets due to their unrivaled capacity to drive tissue repair. Yet, the nature and role of macrophages in salivary gland homeostasis and how they may contribute to tissue repair after injury are not well understood. Here, we show that at least two phenotypically and transcriptionally distinct CX3CR1+ macrophage populations are present in the adult salivary gland, which occupy anatomically distinct niches. CD11c+CD206-CD163- macrophages typically associate with gland epithelium, whereas CD11c-CD206+CD163+ macrophages associate with blood vessels and nerves. Using a suite of complementary fate mapping systems, we show that there are highly dynamic changes in the ontogeny and composition of salivary gland macrophages with age. Using an in vivo model of radiation-induced salivary gland injury combined with genetic or antibody-mediated depletion of macrophages, we demonstrate an essential role for macrophages in clearance of cells with DNA damage. Furthermore, we show that epithelial-associated macrophages are indispensable for effective tissue repair and gland function after radiation-induced injury, with their depletion resulting in reduced saliva production. Our data, therefore, provide a strong case for exploring the therapeutic potential of manipulating macrophages to promote tissue repair and thus minimize salivary gland dysfunction after radiotherapy.
Collapse
Affiliation(s)
- John G McKendrick
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Gareth-Rhys Jones
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Sonia S Elder
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Erin Watson
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Wouter T'Jonck
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Ella Mercer
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Marlene S Magalhaes
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Cecilia Rocchi
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Lizi M Hegarty
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Amanda L Johnson
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | | | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Clare Pridans
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Neil Mabbott
- Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Florent Ginhoux
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Marc Bajenoff
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, INSERM, U1104, CNRS UMR7280, Marseille 13288, France
| | - Rebecca Gentek
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Calum C Bain
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Elaine Emmerson
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| |
Collapse
|
9
|
Lavery TC, Spiegelhoff A, Wang K, Kennedy CL, Ridlon M, Keil Stietz KP. Polychlorinated biphenyl (PCB) exposure in adult female mice can influence bladder contractility. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2023; 11:367-384. [PMID: 37941647 PMCID: PMC10628623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/21/2023] [Indexed: 11/10/2023]
Abstract
Lower urinary tract symptoms (LUTS) greatly reduce quality of life. While LUTS etiology is not completely understood, it is plausible that environmental contaminants could play a role. Polychlorinated biphenyls (PCBs), are a group of persistent environmental toxicants frequently documented in animal and human tissues. PCBs are capable of influencing voiding function in mouse offspring exposed developmentally, however whether PCB exposure during adulthood can also influence voiding dynamics is unknown. Therefore, the purpose of this study was to determine whether PCB exposure in adult female mice can impact voiding function. As part of a larger study to generate developmentally exposed offspring, adult female C57Bl/6J mice were dosed orally with the MARBLES PCB mixture (0.1, 1, or 6 mg/kg/day) or vehicle control beginning two weeks before mating and throughout gestation and lactation (9 weeks). Adult dosed female dams then underwent void spot assay, uroflowmetry, and anesthetized cystometry to assess voiding function. Bladder contractility was assessed in ex vivo bladder bath assays, and bladders were collected for morphology and histology assessments. While voiding behavior endpoints were minimally impacted, alterations to bladder contractility dynamics were more pronounced. Adult female mice dosed with 1 mg/kg/d PCB showed an increase in urine spots 2-3 cm2 in size, increased bladder contractility in response to electrical field stimulation, and decreased bladder wall thickness compared to vehicle control. PCBs also altered contractile response to cholinergic agonist in a dose-dependent manner. Overall, these results indicate that exposure to PCBs in adult female mice is sufficient to produce changes in bladder physiology. These results also highlight the critical role of timing of exposure in influencing voiding function.
Collapse
Affiliation(s)
- Thomas Cm Lavery
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison Madison, Wisconsin 53706, USA
| | - Audrey Spiegelhoff
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison Madison, Wisconsin 53706, USA
| | - Kathy Wang
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison Madison, Wisconsin 53706, USA
| | - Conner L Kennedy
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison Madison, Wisconsin 53706, USA
| | - Monica Ridlon
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison Madison, Wisconsin 53706, USA
| | - Kimberly P Keil Stietz
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison Madison, Wisconsin 53706, USA
| |
Collapse
|
10
|
Nguyen TTH, Starkey MR. Shining the spotlight on urinary tract immunology. Mucosal Immunol 2023; 16:563-566. [PMID: 37597761 DOI: 10.1016/j.mucimm.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/21/2023]
Affiliation(s)
- Theresa T H Nguyen
- Bladder and Kidney Health Discovery Program, Department of Immunology, Central Clinical School, Monash University, Melbourne, Australia
| | - Malcolm R Starkey
- Bladder and Kidney Health Discovery Program, Department of Immunology, Central Clinical School, Monash University, Melbourne, Australia.
| |
Collapse
|
11
|
Mohanty S, Lindelauf C, White JK, Scheffschick A, Ehrenborg E, Demirel I, Brauner H, Brauner A. Inhibition of COX-2 signaling favors E. coli during urinary tract infection. J Inflamm (Lond) 2023; 20:30. [PMID: 37697284 PMCID: PMC10496388 DOI: 10.1186/s12950-023-00356-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/21/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND To avoid the overuse of antibiotics, non-steroidal anti-inflammatory drugs (NSAIDs), acting via cyclooxygenase (COX) inhibition, have been used to reduce pain and as an alternative treatment for uncomplicated urinary tract infections (UTIs). However, clinical studies evaluating NSAIDs versus antibiotics have reported an increased risk of acute pyelonephritis. Therefore, we hypothesized that COX inhibition could compromise the innate immune response and contribute to complications in patients with uncomplicated UTI. RESULTS We here demonstrate that in particular COX-2 inhibition led to decreased expression of the antimicrobial peptides psoriasin and human β-defensin-2 in human uroepithelial cells. Psoriasin expression was altered in neutrophils and macrophages. COX-2 inhibition also had impact on the inflammasome mediated IL-1β expression in response to uroepithelial E. coli infection. Further, COX-2 inhibition downregulated free radicals and the epithelial barrier protein claudin 1, favoring infectivity. In addition, conditioned media from COX-2 inhibited uroepithelial cells infected with E. coli failed to activate macrophages. CONCLUSIONS Taken together, our data suggests an adverse innate immune effect of COX-2 inhibition on uroepithelial cells during UTI.
Collapse
Affiliation(s)
- Soumitra Mohanty
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Division of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Ciska Lindelauf
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Division of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - John Kerr White
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Division of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Andrea Scheffschick
- Department of Medicine, Solna, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Ewa Ehrenborg
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine at BioClinicum, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Isak Demirel
- iRiSC - Inflammatory Response and Infection Susceptibility Centre, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Hanna Brauner
- Department of Medicine, Solna, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Annelie Brauner
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
- Division of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
12
|
Kuhn HW, Hreha TN, Hunstad DA. Immune defenses in the urinary tract. Trends Immunol 2023; 44:701-711. [PMID: 37591712 PMCID: PMC10528756 DOI: 10.1016/j.it.2023.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 08/19/2023]
Abstract
Recent advances in preclinical modeling of urinary tract infections (UTIs) have enabled the identification of key facets of the host response that influence pathogen clearance and tissue damage. Here, we review new insights into the functions of neutrophils, macrophages, and antimicrobial peptides in innate control of uropathogens and in mammalian infection-related tissue injury and repair. We also discuss novel functions for renal epithelial cells in innate antimicrobial defense. In addition, epigenetic modifications during bacterial cystitis have been implicated in bladder remodeling, conveying susceptibility to recurrent UTI. In total, contemporary work in this arena has better defined host processes that shape UTI susceptibility and severity and might inform the development of novel preventive and therapeutic approaches for acute and recurrent UTI.
Collapse
Affiliation(s)
- Hunter W Kuhn
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Teri N Hreha
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - David A Hunstad
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
13
|
Koti M, Bivalacqua T, Black PC, Cathomen T, Galsky MD, Gulley JL, Ingersoll MA, Kamat AM, Kassouf W, Siemens DR, Gao J. Adaptive Immunity in Genitourinary Cancers. Eur Urol Oncol 2023; 6:263-272. [PMID: 37069029 DOI: 10.1016/j.euo.2023.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/21/2023] [Accepted: 03/09/2023] [Indexed: 04/19/2023]
Abstract
CONTEXT While urothelial and renal cell cancers have exhibited modest responses to novel immune checkpoint inhibitors targeting the programmed death ligand 1 and its receptor, response rates in patients with prostate cancer have remained poor. The factors underlying suboptimal outcomes observed in patients treated with novel immunotherapies are still to be resolved. OBJECTIVE To review the literature and describe the key adaptive immune physiological events associated with cancer progression and therapeutic response in genitourinary (GU) cancers. EVIDENCE ACQUISITION We performed a nonsystematic, collaborative narrative review to highlight recent advancements leading to the current state of knowledge on the critical mediators of antitumor adaptive immunity to GU cancers. Further, we discuss the findings on the pre- and post-treatment immunological events that either are unique to each of the three cancer types or exhibit overlapping clinical associations. EVIDENCE SYNTHESIS Aging-associated immune function decline is a major factor underlying poor outcomes observed in patients treated with both conventional and novel immunotherapies. Other cancer immunobiological aspects associated with suboptimal responses in GU cancers include the overall tumor mutational burden, mutations in specific tumor suppressor/DNA damage repair genes (KDM6A, PTEN, STAG2, TP53, ATM, and BRCA2), and abundance of multiple functional states of adaptive immune cells and their spatiotemporal localization within the tumor immune microenvironment. Understanding these mechanisms may potentially lead to the development of prognostic and predictive biomarkers such as immune cell infiltration profiles and tertiary lymphoid structures (TLSs) that associate with variable clinical outcomes depending on the nature of the novel immunotherapeutic approach. Implementation of newer immune-monitoring technologies and improved preclinical modeling systems will augment our understanding of the host and tumor intrinsic factors contributing to the variability of responses to immunotherapies. CONCLUSIONS Despite the tremendous progress made in the understanding of dynamic and static adaptive immune elements within the tumor immune landscape, several knowledge gaps remain. A comprehensive knowledge thus gained will lead to precision immunotherapy, improved drug sequencing, and a therapeutic response. PATIENT SUMMARY We performed a collaborative review by a diverse group of experts in the field to examine our understanding of the events and crosstalk between cancer cells and the patient's immune system that are associated with responses to novel immunotherapies. An evolving understanding of tumor-intrinsic and host-related immune alterations, both before and after therapy, will aid in the discovery of promising markers of responses to immunotherapy as well as the development of unique therapeutic approaches for the management of genitourinary cancers.
Collapse
Affiliation(s)
- Madhuri Koti
- Department of Biomedical and Molecular Sciences, Cancer Research Institute, Queen's University, Kingston, ON, Canada.
| | - Trinity Bivalacqua
- Department of Urology, Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter C Black
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Faculty of Medicine & Medical Center - University of Freiburg, Freiburg, Germany
| | - Matthew D Galsky
- Division of Hematology/Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James L Gulley
- Center for Immuno-Oncology, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Molly A Ingersoll
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, 75014, France; Mucosal Inflammation and Immunity, Department of Immunology, Institut Pasteur, 75015 Paris, France
| | - Ashish M Kamat
- Department of Urology, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wassim Kassouf
- Division of Urology, McGill University Health Center, Montreal, QC, Canada
| | - D Robert Siemens
- Department of Urology, Queen's University School of Medicine, Kingston, ON, Canada
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
14
|
Rousseau M, Lacerda Mariano L, Canton T, Ingersoll MA. Tissue-resident memory T cells mediate mucosal immunity to recurrent urinary tract infection. Sci Immunol 2023; 8:eabn4332. [PMID: 37235683 DOI: 10.1126/sciimmunol.abn4332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 05/03/2023] [Indexed: 05/28/2023]
Abstract
Urinary tract infection (UTI) is one of the most prevalent human bacterial infections. New therapeutic approaches, including vaccination and immunotherapy, are urgently needed to combat the rapid global dissemination of multidrug-resistant uropathogens. Development of therapies is impeded by an incomplete understanding of memory development during UTI. Here, we found that reducing bacterial load early in infection, by reducing the inoculum or with antibiotics after infection, completely abrogated the protective memory response. We observed a mixed T helper (TH) cell polarization, composed of TH1, TH2, and TH17 T cells, among T cells infiltrating the bladder during primary infection. Thus, we hypothesized that reducing antigen load altered TH cell polarization, leading to poor memory. Unexpectedly, however, TH cell polarization was unchanged in these scenarios. Instead, we uncovered a population of tissue-resident memory (TRM) T cells that was significantly reduced in the absence of sufficient antigen. Demonstrating that TRM cells are necessary for immune memory, transfer of lymph node- or spleen-derived infection-experienced T cells to naïve animals did not confer protection against infection. Supporting that TRM cells are sufficient to protect against recurrent UTI, animals depleted of systemic T cells, or treated with FTY720 to block memory lymphocyte migration from lymph nodes to infected tissue, were equally protected compared with unmanipulated mice against a second UTI. Thus, we uncovered an unappreciated key role for TRM cells in the memory response to bacterial infection in the bladder mucosa, providing a target for non-antibiotic-based immunotherapy and/or new vaccine strategies to prevent recurrent UTI.
Collapse
Affiliation(s)
- Matthieu Rousseau
- Mucosal Inflammation and Immunity, Department of Immunology, Institut Pasteur, Inserm U1223, Paris 75015, France
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris 75014, France
| | - Livia Lacerda Mariano
- Mucosal Inflammation and Immunity, Department of Immunology, Institut Pasteur, Inserm U1223, Paris 75015, France
| | - Tracy Canton
- Mucosal Inflammation and Immunity, Department of Immunology, Institut Pasteur, Inserm U1223, Paris 75015, France
| | - Molly A Ingersoll
- Mucosal Inflammation and Immunity, Department of Immunology, Institut Pasteur, Inserm U1223, Paris 75015, France
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris 75014, France
| |
Collapse
|
15
|
Goldspink A, Schmitz J, Babyak O, Brauns N, Milleck J, Breloh AM, Fleig SV, Jobin K, Schwarz L, Haller H, Wagenlehner F, Bräsen JH, Kurts C, von Vietinghoff S. Kidney medullary sodium chloride concentrations induce neutrophil and monocyte extracellular DNA traps that defend against pyelonephritis in vivo. Kidney Int 2023:S0085-2538(23)00265-X. [PMID: 37098380 DOI: 10.1016/j.kint.2023.03.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 04/27/2023]
Abstract
Urinary tract infections are common. Here, we delineate a role of extracellular DNA trap (ET) formation in kidney antibacterial defense and determine mechanisms of their formation in the hyperosmotic environment of the kidney medulla. ET of granulocytic and monocytic origin were present in the kidneys of patients with pyelonephritis along with systemically elevated citrullinated histone levels. Inhibition of the transcription coregulatory, peptidylarginine deaminase 4 (PAD4), required for ET formation, prevented kidney ET formation and promoted pyelonephritis in mice. ETs predominantly accumulated in the kidney medulla. The role of medullary sodium chloride and urea concentrations in ET formation was then investigated. Medullary-range sodium chloride, but not urea, dose-, time- and PAD4-dependently induced ET formation even in the absence of other stimuli. Moderately elevated sodium chloride promoted myeloid cell apoptosis. Sodium gluconate also promoted cell death, proposing a role for sodium ions in this process. Sodium chloride induced myeloid cell calcium influx. Calcium ion-free media or -chelation reduced sodium chloride-induced apoptosis and ET formation while bacterial lipopolysaccharide amplified it. Autologous serum improved bacterial killing in the presence of sodium chloride-induced ET. Depletion of the kidney sodium chloride gradient by loop diuretic therapy diminished kidney medullary ET formation and increased pyelonephritis severity. Thus, our data demonstrate that ETs may protect the kidney against ascending uropathogenic E. coli and delineate kidney medullary range sodium chloride concentrations as novel inducers of programmed myeloid cell death.
Collapse
Affiliation(s)
| | | | - Olena Babyak
- Institute of Experimental Immunology, University Clinic and Rheinische Friedrich-Wilhelms Universität Bonn, Bonn
| | - Nicolas Brauns
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover
| | | | - Anne M Breloh
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover
| | - Susanne V Fleig
- Nephrology Section, First Medical Clinic; Department of Geriatrics, University Hospital RWTH Aachen, Aachen
| | - Katarzyna Jobin
- Institute of Experimental Immunology, University Clinic and Rheinische Friedrich-Wilhelms Universität Bonn, Bonn; Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität, Würzburg
| | - Lisa Schwarz
- Department of Urology, Pediatric Urology and Andrology, Justus Liebig University Giessen, Giessen, Germany
| | - Hermann Haller
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover
| | - Florian Wagenlehner
- Department of Urology, Pediatric Urology and Andrology, Justus Liebig University Giessen, Giessen, Germany
| | | | - Christian Kurts
- Institute of Experimental Immunology, University Clinic and Rheinische Friedrich-Wilhelms Universität Bonn, Bonn
| | - Sibylle von Vietinghoff
- Nephrology Section, First Medical Clinic; Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover.
| |
Collapse
|
16
|
Wang W, Xiao D, Lin L, Gao X, Peng L, Chen J, Xiao K, Zhu S, Chen J, Zhang F, Xiong Y, Chen H, Liao B, Zhou L, Lin Y. Antifibrotic Effects of Tetrahedral Framework Nucleic Acids by Inhibiting Macrophage Polarization and Macrophage-Myofibroblast Transition in Bladder Remodeling. Adv Healthc Mater 2023; 12:e2203076. [PMID: 36603196 DOI: 10.1002/adhm.202203076] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/20/2022] [Indexed: 01/07/2023]
Abstract
Bladder outlet obstruction (BOO) is a prevalent condition arising from urethral stricture, posterior urethral valves, and benign prostatic hyperplasia. Long-term obstruction can lead to bladder remodeling, which is characterized by inflammatory cell infiltration, detrusor hypertrophy, and fibrosis. Until now, there are no efficacious therapeutic options for BOO-induced remodeling. Tetrahedral framework nucleic acids (tFNAs) are a type of novel 3D DNA nanomaterials that possess excellent antifibrotic effects. Here, to determine the treatment effects of tFNAs on BOO-induced remodeling is aimed. Four single-strand DNAs are self-assembled to form tetrahedral framework DNA nanostructures, and the antifibrotic effects of tFNAs are investigated in an in vivo BOO animal model and an in vitro transforming growth factor beta1 (TGF-β1)-induced fibrosis model. The results demonstrated that tFNAs could ameliorate BOO-induced bladder fibrosis and dysfunction by inhibiting M2 macrophage polarization and the macrophage-myofibroblast transition (MMT) process. Furthermore, tFNAs regulate M2 polarization and the MMT process by deactivating the signal transducer and activator of transcription (Stat) and TGF-β1/small mothers against decapentaplegic (Smad) pathways, respectively. This is the first study to reveal that tFNAs might be a promising nanomaterial for the treatment of BOO-induced remodeling.
Collapse
Affiliation(s)
- Wei Wang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, P. R. China
| | - Dexuan Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Lede Lin
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, P. R. China
| | - Xiaoshuai Gao
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, P. R. China
| | - Liao Peng
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, P. R. China
| | - Jiawei Chen
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, P. R. China
| | - Kaiwen Xiao
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, P. R. China
| | - Shiyu Zhu
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, P. R. China
| | - Jixiang Chen
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, P. R. China
| | - Fuxun Zhang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, P. R. China
| | - Yang Xiong
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, P. R. China
| | - Huiling Chen
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, P. R. China
| | - Banghua Liao
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, P. R. China
| | - Liang Zhou
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| |
Collapse
|
17
|
Fu SP, Chen SY, Pang QM, Zhang M, Wu XC, Wan X, Wan WH, Ao J, Zhang T. Advances in the research of the role of macrophage/microglia polarization-mediated inflammatory response in spinal cord injury. Front Immunol 2022; 13:1014013. [PMID: 36532022 PMCID: PMC9751019 DOI: 10.3389/fimmu.2022.1014013] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/18/2022] [Indexed: 12/04/2022] Open
Abstract
It is often difficult to regain neurological function following spinal cord injury (SCI). Neuroinflammation is thought to be responsible for this failure. Regulating the inflammatory response post-SCI may contribute to the recovery of neurological function. Over the past few decades, studies have found that macrophages/microglia are one of the primary effector cells in the inflammatory response following SCI. Growing evidence has documented that macrophages/microglia are plastic cells that can polarize in response to microenvironmental signals into M1 and M2 macrophages/microglia. M1 produces pro-inflammatory cytokines to induce inflammation and worsen tissue damage, while M2 has anti-inflammatory activities in wound healing and tissue regeneration. Recent studies have indicated that the transition from the M1 to the M2 phenotype of macrophage/microglia supports the regression of inflammation and tissue repair. Here, we will review the role of the inflammatory response and macrophages/microglia in SCI and repair. In addition, we will discuss potential molecular mechanisms that induce macrophage/microglia polarization, with emphasis on neuroprotective therapies that modulate macrophage/microglia polarization, which will provide new insights into therapeutic strategies for SCI.
Collapse
Affiliation(s)
- Sheng-Ping Fu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China,Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Si-Yu Chen
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Qi-Ming Pang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Meng Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiang-Chong Wu
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xue Wan
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China,Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Wei-Hong Wan
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China,Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jun Ao
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China,Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China,Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China,The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China,*Correspondence: Tao Zhang,
| |
Collapse
|
18
|
Lee YC, Lam HM, Rosser C, Theodorescu D, Parks WC, Chan KS. The dynamic roles of the bladder tumour microenvironment. Nat Rev Urol 2022; 19:515-533. [PMID: 35764795 PMCID: PMC10112172 DOI: 10.1038/s41585-022-00608-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2022] [Indexed: 02/07/2023]
Abstract
Bladder cancer is a prevalent but currently understudied cancer type and patient outcomes are poor when it progresses to the muscle-invasive stage. Current research in bladder cancer focuses on the genetic and epigenetic alterations occurring within the urothelial cell compartment; however, the stromal compartment receives less attention. Dynamic changes and intercellular communications occur in the tumour microenvironment (TME) of the bladder - a new concept and niche that we designate as the bladder TME (bTME) - during tumour evolution, metastatic progression and in the context of therapeutic response. Collagens and their cognate receptors, the discoidin domain receptors, have a role in various steps of the metastatic cascade and in immune checkpoint resistance. Furthermore, the presence of another TME niche, the metastatic TME (met-TME), is a novel concept that could support divergent progression of metastatic colonization in different organs, resulting in distant metastases with distinct characteristics and genetics from the primary tumour. The stroma has divergent roles in mediating therapeutic response to BCG immunotherapy and immune checkpoint inhibitors, as well as conventional chemotherapy or trimodality therapy (that is, maximal transurethral resection of bladder tumour, chemotherapy and radiotherapy). The local bTME and distant met-TME are currently conceptually and therapeutically unexploited niches that should be actively investigated. New biological insights from these TMEs will enable rational design of strategies that co-target the tumour and stroma, which are expected to improve the outcomes of patients with advanced bladder cancer.
Collapse
Affiliation(s)
- Yu-Cheng Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hung-Ming Lam
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Charles Rosser
- Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dan Theodorescu
- Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - William C Parks
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Keith Syson Chan
- Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Academic Pathology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
19
|
Riding AM, Loudon KW, Guo A, Ferdinand JR, Lok LS, Richoz N, Stewart A, Castro-Dopico T, Tuong ZK, Fiancette R, Bowyer GS, Fleming A, Gillman ES, Suchanek O, Mahbubani KT, Saeb-Parsy K, Withers D, Dougan G, Clare S, Clatworthy MR. Group 3 innate lymphocytes make a distinct contribution to type 17 immunity in bladder defence. iScience 2022; 25:104660. [PMID: 35845169 PMCID: PMC9283510 DOI: 10.1016/j.isci.2022.104660] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 03/08/2022] [Accepted: 06/16/2022] [Indexed: 02/02/2023] Open
Abstract
Bladder infection affects a hundred million people annually, but our understanding of bladder immunity is incomplete. We found type 17 immune response genes among the most up-regulated networks in mouse bladder following uropathogenic Escherichia coli (UPEC) challenge. Intravital imaging revealed submucosal Rorc+ cells responsive to UPEC challenge, and we found increased Il17 and IL22 transcripts in wild-type and Rag2 -/- mice, implicating group 3 innate lymphoid cells (ILC3s) as a source of these cytokines. NCR-positive and negative ILC3 subsets were identified in murine and human bladders, with local proliferation increasing IL17-producing ILC3s post infection. ILC3s made a more limited contribution to bladder IL22, with prominent early induction of IL22 evident in Th17 cells. Single-cell RNA sequencing revealed bladder NCR-negative ILC3s as the source of IL17 and identified putative ILC3-myeloid cell interactions, including via lymphotoxin-β-LTBR. Altogether, our data provide important insights into the orchestration and execution of type 17 immunity in bladder defense.
Collapse
Affiliation(s)
- Alexandra M. Riding
- Molecular Immunity Unit, University of Cambridge Department of Medicine MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Diseases (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Kevin W. Loudon
- Molecular Immunity Unit, University of Cambridge Department of Medicine MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Diseases (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Andrew Guo
- Molecular Immunity Unit, University of Cambridge Department of Medicine MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Diseases (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Puddicombe Way, Cambridge CB2 0AW, UK
- Cellular Generics, Wellcome Sanger Institute, Hinxton, UK
| | - John R. Ferdinand
- Molecular Immunity Unit, University of Cambridge Department of Medicine MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Diseases (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Laurence S.C. Lok
- Molecular Immunity Unit, University of Cambridge Department of Medicine MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Diseases (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Nathan Richoz
- Molecular Immunity Unit, University of Cambridge Department of Medicine MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Diseases (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Andrew Stewart
- Molecular Immunity Unit, University of Cambridge Department of Medicine MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Diseases (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Tomas Castro-Dopico
- Molecular Immunity Unit, University of Cambridge Department of Medicine MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Diseases (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Zewen Kelvin Tuong
- Molecular Immunity Unit, University of Cambridge Department of Medicine MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Diseases (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Puddicombe Way, Cambridge CB2 0AW, UK
- Cellular Generics, Wellcome Sanger Institute, Hinxton, UK
| | - Remi Fiancette
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Georgina S. Bowyer
- Molecular Immunity Unit, University of Cambridge Department of Medicine MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Diseases (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Aaron Fleming
- Molecular Immunity Unit, University of Cambridge Department of Medicine MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Diseases (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Eleanor S. Gillman
- Molecular Immunity Unit, University of Cambridge Department of Medicine MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Diseases (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Ondrej Suchanek
- Molecular Immunity Unit, University of Cambridge Department of Medicine MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Diseases (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Puddicombe Way, Cambridge CB2 0AW, UK
| | | | - Kourosh Saeb-Parsy
- University of Cambridge Department of Surgery, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, UK
| | - David Withers
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Gordan Dougan
- Cambridge Institute for Therapeutic Immunology and Infectious Diseases (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Simon Clare
- Cambridge Institute for Therapeutic Immunology and Infectious Diseases (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Menna R. Clatworthy
- Molecular Immunity Unit, University of Cambridge Department of Medicine MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Diseases (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Puddicombe Way, Cambridge CB2 0AW, UK
- Cellular Generics, Wellcome Sanger Institute, Hinxton, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, UK
| |
Collapse
|
20
|
Su F, Zhang W, Meng L, Zhang W, Liu X, Liu X, Chen M, Zhang Y, Xiao F. Multimodal Single-Cell Analyses Outline the Immune Microenvironment and Therapeutic Effectors of Interstitial Cystitis/Bladder Pain Syndrome. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106063. [PMID: 35470584 PMCID: PMC9218658 DOI: 10.1002/advs.202106063] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) has a significant impact on quality of life, but the etiopathogenesis remains largely unknown. The bladder microenvironment of patients with IC/BPS to obtain biological evidence supporting diagnosis and novel therapy is systematically characterized. Single-cell RNA sequencing (scRNA-seq) and image mass cytometry (IMC) are applied to bladder biopsies of the IC/BPS cohort. A total of 42 distinct cell clusters are identified from different groups. The increased hyperactivated Th1-biased response, but not Th2-biased response, and decreased immunosuppressive Treg are elucidated in the bladder microenvironment of non-Hunner-type IC (NHIC)/Hunner-type IC (HIC). M2/M2-like macrophage extends in the HIC and M1-like macrophage extends in NHIC, all of which secrete a range of chemokines with different pattern. The pro-inflammatory mediators, TNF-α, produced by tissue-resident macrophages and IL6, by the inflammatory fibroblasts are identified as key mediators of IC/BPS pathogenesis. Additionally, a regulatory network between different cell types is observed as a shift from structural cell communication in unaffected normal bladder to a Macrophage-Endothelial-dominated interactome in NHIC/HIC. The results demonstrate the high heterogeneity in NHIC/HIC, and provide an essential resource for diagnosis, and treatment of IC/BPS in the future by highlighting the importance of the microenvironment of bladder mucosa.
Collapse
Affiliation(s)
- Fei Su
- Clinical BiobankBeijing HospitalNational Center of GerontologyInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijing100730P. R. China
- The Key Laboratory of GeriatricsBeijing HospitalNational Center of GerontologyInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijing100730P. R. China
| | - Wei Zhang
- Department of PathologyBeijing HospitalNational Center of GerontologyInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijing100730P. R. China
| | - Lingfeng Meng
- Department of UrologyBeijing HospitalNational Center of GerontologyInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijing100730P. R. China
| | - Wei Zhang
- Department of UrologyBeijing HospitalNational Center of GerontologyInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijing100730P. R. China
| | - Xiaodong Liu
- Department of UrologyBeijing HospitalNational Center of GerontologyInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijing100730P. R. China
| | - Xiaorui Liu
- Shanghai Key Laboratory of Embryo Original DiseasesThe International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Meng Chen
- Key Laboratory for National Cancer Big Data Analysis and ImplementNational Cancer Data CenterNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Yaoguang Zhang
- Department of UrologyBeijing HospitalNational Center of GerontologyInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijing100730P. R. China
| | - Fei Xiao
- Clinical BiobankBeijing HospitalNational Center of GerontologyInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijing100730P. R. China
- The Key Laboratory of GeriatricsBeijing HospitalNational Center of GerontologyInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijing100730P. R. China
| |
Collapse
|
21
|
Wang AS, Steers NJ, Parab AR, Gachon F, Sweet MJ, Mysorekar IU. Timing is everything: impact of development, ageing and circadian rhythm on macrophage functions in urinary tract infections. Mucosal Immunol 2022; 15:1114-1126. [PMID: 36038769 DOI: 10.1038/s41385-022-00558-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 02/04/2023]
Abstract
The bladder supports a diversity of macrophage populations with functional roles related to homeostasis and host defense, including clearance of cell debris from tissue, immune surveillance, and inflammatory responses. This review examines these roles with particular attention given to macrophage origins, differentiation, recruitment, and engagement in host defense against urinary tract infections (UTIs), where these cells recognize uropathogens through a combination of receptor-mediated responses. Time is an important variable that is often overlooked in many clinical and biological studies, including in relation to macrophages and UTIs. Given that ageing is a significant factor in urinary tract infection pathogenesis and macrophages have been shown to harbor their own circadian system, this review also explores the influence of age on macrophage functions and the role of diurnal variations in macrophage functions in host defense and inflammation during UTIs. We provide a conceptual framework for future studies that address these key knowledge gaps.
Collapse
Affiliation(s)
- Alison S Wang
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, QLD, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, QLD, Australia
| | - Nicholas J Steers
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| | - Adwaita R Parab
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, USA
| | - Frédéric Gachon
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, QLD, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, QLD, Australia. .,Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, QLD, Australia.
| | - Indira U Mysorekar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, USA. .,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
22
|
Abstract
The bladder is a major component of the urinary tract, an organ system that expels metabolic waste and excess water, which necessitates proximity to the external environment and its pathogens. It also houses a commensal microbiome. Therefore, its tissue immunity must resist pathogen invasion while maintaining tolerance to commensals. Bacterial infection of the bladder is common, with half of women globally experiencing one or more episodes of cystitis in their lifetime. Despite this, our knowledge of bladder immunity, particularly in humans, is incomplete. Here we consider the current view of tissue immunity in the bladder, with a focus on defense against infection. The urothelium has robust immune functionality, and its defensive capabilities are supported by resident immune cells, including macrophages, dendritic cells, natural killer cells, and γδ T cells. We discuss each in turn and consider why adaptive immune responses are often ineffective in preventing recurrent infection, as well as areas of priority for future research.
Collapse
Affiliation(s)
- Georgina S Bowyer
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, United Kingdom;
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
- Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, United Kingdom
| | - Kevin W Loudon
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, United Kingdom;
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
- Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, United Kingdom
| | - Ondrej Suchanek
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, United Kingdom;
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
- Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, United Kingdom
| | - Menna R Clatworthy
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, United Kingdom;
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
- Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, United Kingdom
- Cellular Genetics, Wellcome Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
23
|
Teh YC, Chooi MY, Liu D, Kwok I, Lai GC, Ayub Ow Yong L, Ng M, Li JLY, Tan Y, Evrard M, Tan L, Liong KH, Leong K, Goh CC, Chan AYJ, Shadan NB, Mantri CK, Hwang YY, Cheng H, Cheng T, Yu W, Tey HL, Larbi A, St John A, Angeli V, Ruedl C, Lee B, Ginhoux F, Chen SL, Ng LG, Ding JL, Chong SZ. Transitional premonocytes emerge in the periphery for host defense against bacterial infections. SCIENCE ADVANCES 2022; 8:eabj4641. [PMID: 35245124 PMCID: PMC8896792 DOI: 10.1126/sciadv.abj4641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Circulating Ly6Chi monocytes often undergo cellular death upon exhaustion of their antibacterial effector functions, which limits their capacity for subsequent macrophage differentiation. This shrouds the understanding on how the host replaces the tissue-resident macrophage niche effectively during bacterial invasion to avert infection morbidity. Here, we show that proliferating transitional premonocytes (TpMos), an immediate precursor of mature Ly6Chi monocytes (MatMos), were mobilized into the periphery in response to acute bacterial infection and sepsis. TpMos were less susceptible to apoptosis and served as the main source of macrophage replenishment when MatMos were vulnerable toward bacteria-induced cellular death. Furthermore, TpMo and its derived macrophages contributed to host defense by balancing the proinflammatory cytokine response of MatMos. Consequently, adoptive transfer of TpMos improved the survival outcome of lethal sepsis. Our findings hence highlight a protective role for TpMos during bacterial infections and their contribution toward monocyte-derived macrophage heterogeneity in distinct disease outcomes.
Collapse
Affiliation(s)
- Ye Chean Teh
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
- Department of Biological Science, National University of Singapore (NUS), Singapore 117543, Singapore
| | - Ming Yao Chooi
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Dehua Liu
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Immanuel Kwok
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Ghee Chuan Lai
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Liyana Ayub Ow Yong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
- Genome Institute of Singapore, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138672, Singapore
| | - Melissa Ng
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Jackson L. Y. Li
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Yingrou Tan
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
- National Skin Centre, 1 Mandalay Road, Singapore 308205, Singapore
| | - Maximilien Evrard
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Leonard Tan
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Ka Hang Liong
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Keith Leong
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Chi Ching Goh
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Andrew Y. J. Chan
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Nurhidaya Binte Shadan
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Chinmay Kumar Mantri
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - You Yi Hwang
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Weimiao Yu
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore
| | - Hong Liang Tey
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
- National Skin Centre, 1 Mandalay Road, Singapore 308205, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Anis Larbi
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Ashley St John
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Veronique Angeli
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Christiane Ruedl
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Bernett Lee
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Swaine L. Chen
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
- Genome Institute of Singapore, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138672, Singapore
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
- State Key Laboratory of Experimental Hematology, National Clinical Research Centre for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- Corresponding author. (L.G.N.); (J.L.D.); (S.Z.C.)
| | - Jeak Ling Ding
- Department of Biological Science, National University of Singapore (NUS), Singapore 117543, Singapore
- Corresponding author. (L.G.N.); (J.L.D.); (S.Z.C.)
| | - Shu Zhen Chong
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
- Corresponding author. (L.G.N.); (J.L.D.); (S.Z.C.)
| |
Collapse
|
24
|
McKendrick JG, Emmerson E. The role of salivary gland macrophages in infection, disease and repair. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 368:1-34. [PMID: 35636925 DOI: 10.1016/bs.ircmb.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Macrophages are mononuclear innate immune cells which have become of increasing interest in the fields of disease and regeneration, as their non-classical functions have been elucidated in addition to their classical inflammatory functions. Macrophages can regulate tissue remodeling, by both mounting and reducing inflammatory responses; and exhibit direct communication with other cells to drive tissue turnover and cell replacement. Furthermore, macrophages have recently become an attractive therapeutic target to drive tissue regeneration. The major salivary glands are glandular tissues that are exposed to pathogens through their close connection with the oral cavity. Moreover, there are a number of diseases that preferentially destroy the salivary glands, causing irreversible injury, highlighting the need for a regenerative strategy. However, characterization of macrophages in the mouse and human salivary glands is sparse and has been mostly determined from studies in infection or autoimmune pathologies. In this review, we describe the current literature around salivary gland macrophages, and speculate about the niches they inhabit and how their role in development, regeneration and cancer may inform future therapeutic advances.
Collapse
Affiliation(s)
- John G McKendrick
- The Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
| | - Elaine Emmerson
- The Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
25
|
Zhang N, Kim SH, Gainullina A, Erlich EC, Onufer EJ, Kim J, Czepielewski RS, Helmink BA, Dominguez JR, Saunders BT, Ding J, Williams JW, Jiang JX, Segal BH, Zinselmeyer BH, Randolph GJ, Kim KW. LYVE1+ macrophages of murine peritoneal mesothelium promote omentum-independent ovarian tumor growth. J Exp Med 2021; 218:e20210924. [PMID: 34714329 PMCID: PMC8575007 DOI: 10.1084/jem.20210924] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/13/2021] [Accepted: 10/14/2021] [Indexed: 12/11/2022] Open
Abstract
Two resident macrophage subsets reside in peritoneal fluid. Macrophages also reside within mesothelial membranes lining the peritoneal cavity, but they remain poorly characterized. Here, we identified two macrophage populations (LYVE1hi MHC IIlo-hi CX3CR1gfplo/- and LYVE1lo/- MHC IIhi CX3CR1gfphi subsets) in the mesenteric and parietal mesothelial linings of the peritoneum. These macrophages resembled LYVE1+ macrophages within surface membranes of numerous organs. Fate-mapping approaches and analysis of newborn mice showed that LYVE1hi macrophages predominantly originated from embryonic-derived progenitors and were controlled by CSF1 made by Wt1+ stromal cells. Their gene expression profile closely overlapped with ovarian tumor-associated macrophages previously described in the omentum. Indeed, syngeneic epithelial ovarian tumor growth was strongly reduced following in vivo ablation of LYVE1hi macrophages, including in mice that received omentectomy to dissociate the role from omental macrophages. These data reveal that the peritoneal compartment contains at least four resident macrophage populations and that LYVE1hi mesothelial macrophages drive tumor growth independently of the omentum.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Seung Hyeon Kim
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL
| | - Anastasiia Gainullina
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
- Computer Technologies Department, ITMO University, St. Petersburg, Russia
| | - Emma C. Erlich
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Emily J. Onufer
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Jiseon Kim
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL
| | - Rafael S. Czepielewski
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Beth A. Helmink
- Department of Surgery, Section of Surgical Oncology, Washington University School of Medicine, St. Louis, MO
| | - Joseph R. Dominguez
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL
| | - Brian T. Saunders
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Jie Ding
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL
| | - Jesse W. Williams
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Brahm H. Segal
- Departments of Internal Medicine and Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Bernd H. Zinselmeyer
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Gwendalyn J. Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Ki-Wook Kim
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL
| |
Collapse
|
26
|
Liu X, Shi B, Suo R, Xiong S, Wang X, Liang X, Li X, Li G. Itaconate regulates macrophage function through stressful iron-sulfur cluster disrupting and iron metabolism rebalancing. FASEB J 2021; 35:e21936. [PMID: 34547129 DOI: 10.1096/fj.202100726rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 11/11/2022]
Abstract
Lipopolysaccharide (LPS)-stimulated macrophages express an aconitate decarboxylase (IRG1, also called ACOD1), leading to accumulation of the endogenous metabolite itaconate. However, the precise mechanisms by which elevated itaconate levels alter macrophage function are not clear. Our hypothesis is itaconate affects macrophage function through some uncertain mechanism. Based on this, we established a transcriptional and proteomic signature of macrophages stimulated by itaconate and identified the pathways of IL-1β secretion and altered iron metabolism. Consistently, the effect of IRG1 deficiency on IL-1β secretion and iron metabolism was confirmed in IRG1 knockout THP-1 cell lines. Several common inhibitors and other compounds were used to examine the molecular mechanisms involved. Only cysteine and antioxidants (catechin hydrate) could inhibit caspase-1 activation and IL-1β secretion in itaconate-stimulated macrophages. We further found that aconitase activity was decreased by itaconate stimulation. Our results demonstrate the counteracting effects of overexpression of mitochondrial aconitase (ACO2, a tricarboxylic acid cycle enzyme) or cytosolic aconitase (ACO1, an iron regulatory protein) on IL-1β secretion and altered iron metabolism. Both enzyme activities were inhibited by itaconate because of iron-sulfur (Fe-S) cluster destruction. Our findings indicate that the immunoregulatory functions of IRG1 and itaconate in macrophages are stressful Fe-S cluster of aconitases disrupting and iron metabolism rebalancing.
Collapse
Affiliation(s)
- Xing Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Bingshuo Shi
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Rong Suo
- Department of Cardiology, Tianjin Hospital, Tianjin, China
| | - Shenglin Xiong
- Department of Cardiology, You Country People's Hospital, Zhuzhou, China
| | - Xuewen Wang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xue Liang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xinjian Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
27
|
Kennedy CL, Spiegelhoff A, Wang K, Lavery T, Nunez A, Manuel R, Hillers-Ziemer L, Arendt LM, Stietz KPK. The Bladder Is a Novel Target of Developmental Polychlorinated Biphenyl Exposure Linked to Increased Inflammatory Cells in the Bladder of Young Mice. TOXICS 2021; 9:toxics9090214. [PMID: 34564365 PMCID: PMC8473463 DOI: 10.3390/toxics9090214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 01/28/2023]
Abstract
Bladder inflammation is associated with several lower urinary tract symptoms that greatly reduce quality of life, yet contributing factors are not completely understood. Environmental chemicals are plausible mediators of inflammatory reactions within the bladder. Here, we examine whether developmental exposure to polychlorinated biphenyls (PCBs) leads to changes in immune cells within the bladder of young mice. Female mice were exposed to an environmentally relevant mixture of PCBs through gestation and lactation, and bladders were collected from offspring at postnatal day (P) 28-31. We identify several dose- and sex-dependent PCB effects in the bladder. The lowest concentration of PCB (0.1 mg/kg/d) increased CD45+ hematolymphoid immune cells in both sexes. While PCBs had no effect on CD79b+ B cells or CD3+ T cells, PCBs (0.1 mg/kg/d) did increase F4/80+ macrophages particularly in female bladder. Collagen density was also examined to determine whether inflammatory events coincide with changes in the stromal extracellular matrix. PCBs (0.1 mg/kg/d) decreased collagen density in female bladder compared to control. PCBs also increased the number of cells undergoing cell division predominantly in male bladder. These results implicate perturbations to the immune system in relation to PCB effects on the bladder. Future study to define the underlying mechanisms could help understand how environmental factors can be risk factors for lower urinary tract symptoms.
Collapse
|
28
|
Sharma R. Perspectives on the dynamic implications of cellular senescence and immunosenescence on macrophage aging biology. Biogerontology 2021; 22:571-587. [PMID: 34490541 DOI: 10.1007/s10522-021-09936-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/30/2021] [Indexed: 01/10/2023]
Abstract
An intricate relationship between impaired immune functions and the age-related accumulation of tissue senescent cells is rapidly emerging. The immune system is unique as it undergoes mutually inclusive and deleterious processes of immunosenescence and cellular senescence with advancing age. While factors inducing immunosenescence and cellular senescence may be shared, however, both these processes are fundamentally different which holistically influence the aging immune system. Our understanding of the biological impact of immunosenescence is relatively well-understood, but such knowledge regarding cellular senescence in immune cells, especially in the innate immune cells such as macrophages, is only beginning to be elucidated. Tissue-resident macrophages are long-lived, and while functioning in tissue-specific and niche-specific microenvironments, senescence in macrophages can be directly influenced by senescent host cells which may impact organismal aging. In addition, evidence of age-associated immunometabolic changes as drivers of altered macrophage phenotype and functions such as inflamm-aging is also emerging. The present review describes the emerging impact of cellular senescence vis-à-vis immunosenescence in aging macrophages, its biological relevance with other senescent non-immune cells, and known immunometabolic regulators. Gaps in our present knowledge, as well as strategies aimed at understanding cellular senescence and its therapeutics in the context of macrophages, have been reviewed.
Collapse
Affiliation(s)
- Rohit Sharma
- Faculty of Applied Sciences & Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India.
| |
Collapse
|
29
|
Wang W, Ai J, Liao B, Xiao K, Lin L, Chen H, Zhou L. The roles of MCP-1/CCR2 mediated macrophage recruitment and polarization in bladder outlet obstruction (BOO) induced bladder remodeling. Int Immunopharmacol 2021; 99:107947. [PMID: 34311189 DOI: 10.1016/j.intimp.2021.107947] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 02/08/2023]
Abstract
Bladder outlet obstruction (BOO) can lead to alternation of bladder structure and function, known as bladder remodeling. Macrophage is a heterogeneous cell type and implicated in immunity regulating and tissue repairment. The relationship between macrophage and BOO remains unclear. We determined the pivotal role of macrophage recruitment and polarization in bladder remodeling. Sprague-Dawley rats underwent surgical operation of a BOO for either 1, 3, 6 weeks and were compared with sham-operated rats. The BOO rats in the experimental group were orally administrated with 5 mg/kg RS-504393, a C-C chemokine receptor (CCR2) antagonist, for 6 weeks, and the rats in the control group were treated with vehicle. Bladder tissues were harvested for assays of flow cytometry, quantitative reverse transcription polymerase chain reaction, histological examinations, immunohistochemistry staining and immunofluorescence. After induction of BOO, M1 macrophages were predominantly observed at inflammatory stage while M2 macrophages were mainly found during fibrosis stage. Flow cytometry analysis revealed that the ratio of M1/M2 significantly increased at 3 weeks (P = 0.0013) when compared to the sham-operated group. Interestingly, our results showed that M2 macrophages promoted BOO-induced fibrosis through indirectly secreting TGF-β and directly transforming to collagen-producing myofibroblast. Additionally, RS-504393 treatment significantly decreased the number of M1 and M2 macrophage infiltration in bladder tissue, and bladder fibrosis was attenuated by RS-504393 treatment compared with that in the vehicle-treated rats. In summary, macrophages play a pivotal role in bladder remodeling and targeting MCP-1/CCR2 signaling pathway might be a therapeutic strategy for human bladder fibrosis.
Collapse
Affiliation(s)
- Wei Wang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Jianzhong Ai
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Banghua Liao
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Kaiwen Xiao
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Lede Lin
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Huiling Chen
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Liang Zhou
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, PR China.
| |
Collapse
|
30
|
Sharma K, Thacker VV, Dhar N, Clapés Cabrer M, Dubois A, Signorino-Gelo F, Mullenders J, Knott GW, Clevers H, McKinney JD. Early invasion of the bladder wall by solitary bacteria protects UPEC from antibiotics and neutrophil swarms in an organoid model. Cell Rep 2021; 36:109351. [PMID: 34289360 DOI: 10.1016/j.celrep.2021.109351] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/26/2021] [Accepted: 06/15/2021] [Indexed: 01/24/2023] Open
Abstract
Recurrence of uropathogenic Escherichia coli (UPEC) infections has been attributed to reactivation of quiescent intracellular reservoirs (QIRs) in deep layers of the bladder wall. QIRs are thought to arise late during infection following dispersal of bacteria from intracellular bacterial communities (IBCs) in superficial umbrella cells. Here, we track the formation of QIR-like bacteria in a bladder organoid model that recapitulates the stratified uroepithelium within a volume suitable for high-resolution live-cell imaging. Bacteria injected into the organoid lumen enter umbrella-like cells and proliferate to form IBC-like bodies. In parallel, single bacteria penetrate deeper layers of the organoid wall, where they localize within or between uroepithelial cells. These "solitary" bacteria evade killing by antibiotics and neutrophils and are morphologically distinct from bacteria in IBCs. We conclude that bacteria with QIR-like properties may arise at early stages of infection, independent of IBC formation and rupture.
Collapse
Affiliation(s)
- Kunal Sharma
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Vivek V Thacker
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Neeraj Dhar
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Maria Clapés Cabrer
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Anaëlle Dubois
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - François Signorino-Gelo
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Jasper Mullenders
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Utrecht, the Netherlands
| | - Graham W Knott
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Hans Clevers
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Utrecht, the Netherlands
| | - John D McKinney
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|