1
|
Holvey RS, Erlanson DA, de Esch IJP, Farkaš B, Jahnke W, Nishiyama T, Woodhead AJ. Fragment-to-Lead Medicinal Chemistry Publications in 2023. J Med Chem 2025; 68:986-1001. [PMID: 39761118 DOI: 10.1021/acs.jmedchem.4c02593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
This Perspective summarizes successful fragment-to-lead (F2L) studies that were published in 2023 and is the ninth installment in an annual series. A tabulated summary of the relevant articles published in 2023 is provided (17 entries from 16 articles), and a comparison of the target classes, screening methods, and overall fragment or lead property trends for 2023 examples and for the combined entries over the years 2015-2023 is discussed. In addition, we identify several trends and innovations in the 2023 literature that promise to further increase the success of fragment-based drug discovery (FBDD), particularly in the areas of NMR and virtual screening, fragment library design, and fragment linking.
Collapse
Affiliation(s)
- Rhian S Holvey
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Daniel A Erlanson
- Frontier Medicines, 151 Oyster Point Blvd., South San Francisco, California 94080, United States of America
| | - Iwan J P de Esch
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Barbara Farkaš
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Wolfgang Jahnke
- Novartis Biomedical Research, Discovery Sciences, 4002 Basel, Switzerland
| | - Tsuyoshi Nishiyama
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Andrew J Woodhead
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| |
Collapse
|
2
|
Li M, Dalton K, Hekstra D. SFCalculator: connecting deep generative models and crystallography. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.12.632630. [PMID: 39868231 PMCID: PMC11760793 DOI: 10.1101/2025.01.12.632630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Proteins drive biochemical transformations by transitioning through distinct conformational states. Understanding these states is essential for modulating protein function. Although X-ray crystallography has enabled revolutionary advances in protein structure prediction by machine learning, this connection was made at the level of atomic models, not the underlying data. This lack of connection to crystallographic data limits the potential for further advances in both the accuracy of protein structure prediction and the application of machine learning to experimental structure determination. Here, we present SFCalculator, a differentiable pipeline that generates crystallographic observables from atomistic molecular structures with bulk solvent correction, bridging crystallographic data and neural network-based molecular modeling. We validate SFCalculator against conventional methods and demonstrate its utility by establishing three important proof-of-concept applications. First, SFCalculator enables accurate placement of molecular models relative to crystal lattices (known as phasing). Second, SFCalculator enables the search of the latent space of generative models for conformations that fit crystallographic data and are, therefore, also implicitly constrained by the information encoded by the model. Finally, SFCalculator enables the use of crystallographic data during training of generative models, enabling these models to generate an ensemble of conformations consistent with crystallographic data. SFCalculator, therefore, enables a new generation of analytical paradigms integrating crystallographic data and machine learning.
Collapse
Affiliation(s)
- Minhuan Li
- John A. Paulson School of Engineering & Applied Sciences, Harvard University
| | - Kevin Dalton
- Department of Molecular & Cellular Biology, Harvard University
- LCLS Data Systems, SLAC National Accelerator Laboratory
| | - Doeke Hekstra
- John A. Paulson School of Engineering & Applied Sciences, Harvard University
- Department of Molecular & Cellular Biology, Harvard University
| |
Collapse
|
3
|
Ferla MP, Sánchez-García R, Skyner RE, Gahbauer S, Taylor JC, von Delft F, Marsden BD, Deane CM. Fragmenstein: predicting protein-ligand structures of compounds derived from known crystallographic fragment hits using a strict conserved-binding-based methodology. J Cheminform 2025; 17:4. [PMID: 39806443 PMCID: PMC11731148 DOI: 10.1186/s13321-025-00946-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/01/2025] [Indexed: 01/16/2025] Open
Abstract
Current strategies centred on either merging or linking initial hits from fragment-based drug design (FBDD) crystallographic screens generally do not fully leaverage 3D structural information. We show that an algorithmic approach (Fragmenstein) that 'stitches' the ligand atoms from this structural information together can provide more accurate and reliable predictions for protein-ligand complex conformation than general methods such as pharmacophore-constrained docking. This approach works under the assumption of conserved binding: when a larger molecule is designed containing the initial fragment hit, the common substructure between the two will adopt the same binding mode. Fragmenstein either takes the atomic coordinates of ligands from a experimental fragment screen and combines the atoms together to produce a novel merged virtual compound, or uses them to predict the bound complex for a provided molecule. The molecule is then energy minimised under strong constraints to obtain a structurally plausible conformer. The code is available at https://github.com/oxpig/Fragmenstein .Scientific contributionThis work shows the importance of using the coordinates of known binders when predicting the conformation of derivative molecules through a retrospective analysis of the COVID Moonshot data. This method has had a prior real-world application in hit-to-lead screening, yielding a sub-micromolar merger from parent hits in a single round. It is therefore likely to further benefit future drug design campaigns and be integrated in future pipelines.
Collapse
Affiliation(s)
- Matteo P Ferla
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, UK.
- Centre for Medicine Discoveries, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Wellcome Centre for Human Genetics, NIHR Oxford BRC Genomic Medicine, University of Oxford, Oxford, UK.
| | - Rubén Sánchez-García
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, UK
| | - Rachael E Skyner
- Diamond Light Source, Science and Technology Facilities Council, Oxford, UK
- OMass Therapeutics, ARC Oxford, Oxford, UK
| | - Stefan Gahbauer
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, USA
| | - Jenny C Taylor
- Wellcome Centre for Human Genetics, NIHR Oxford BRC Genomic Medicine, University of Oxford, Oxford, UK
| | - Frank von Delft
- Centre for Medicine Discoveries, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Diamond Light Source, Science and Technology Facilities Council, Oxford, UK
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Brian D Marsden
- Centre for Medicine Discoveries, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Diamond Light Source, Science and Technology Facilities Council, Oxford, UK
| | - Charlotte M Deane
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Joshi R, Gaikwad H, Soge B, Alshammari A, Albekairi NA, Kabra A, Yashwante U, Kolte B, Lokhande P, Meshram RJ. Exploring pyrazolines as potential inhibitors of NSP3-macrodomain of SARS-CoV-2: synthesis and in silico analysis. Sci Rep 2025; 15:767. [PMID: 39755743 DOI: 10.1038/s41598-024-81711-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 11/28/2024] [Indexed: 01/06/2025] Open
Abstract
COVID-19 has proved to be a global health crisis during the pandemic, and the emerging JN.1 variant is a potential threat. Therefore, finding alternative antivirals is of utmost priority. In the current report, we present the synthesis of new and potential anti-viral pyrazoline compounds. Here we report a chemical scheme where β-aryl β-anilino ketones react with phenyl hydrazine in potassium hydroxide to give the corresponding 3,5-diarylpyrazoline. The protocol is applicable to a variety of β-amino ketones and tolerates several functional groups. This method is efficient and proceeds regioselectivity since the β-Anilino group acts as a protecting group for alkenes of chalcones. We identified the NSP3-microdomain (Mac-1) of SARS-CoV-2 as a putative target for newly synthesized triaryl-2-pyrazoline compounds. The molecular dynamics simulation-based free energy estimation suggests compounds 7a, 7d, 7 g, 7i, 7k, and 7 L as promising Mac-1 inhibitors. The detailed structural inspection of MD simulation trajectories sheds light on the structural and functional dynamics involved in the SARS-CoV-2 Mac-1. The data presented here is expected to guide the design and development of better anti-SARS-CoV-2 therapies.
Collapse
Affiliation(s)
- Rekha Joshi
- Department of Chemistry, Savitribai Phule Pune University, Pune, Pune, Maharashtra, 411007, India
| | - Harsh Gaikwad
- Department of Chemistry, Savitribai Phule Pune University, Pune, Pune, Maharashtra, 411007, India
| | - Bhavana Soge
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh, 11451, Saudi Arabia
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh, 11451, Saudi Arabia
| | - Atul Kabra
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| | - Usha Yashwante
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| | - Baban Kolte
- Department of Microbial Genome Research, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, 38124, Braunschweig, Germany
- Institute of Microbiology, Technical University of Braunschweig, 38106, Braunschweig, Germany
| | - Pradip Lokhande
- Department of Chemistry, Savitribai Phule Pune University, Pune, Pune, Maharashtra, 411007, India.
| | - Rohan J Meshram
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India.
| |
Collapse
|
5
|
Wu T, Yu JC, Suresh A, Gale-Day ZJ, Alteen MG, Woo AS, Millbern Z, Johnson OT, Carroll EC, Partch CL, Fourches D, Vinueza NR, Vocadlo DJ, Gestwicki JE. Protein-adaptive differential scanning fluorimetry using conformationally responsive dyes. Nat Biotechnol 2025; 43:106-113. [PMID: 38744946 DOI: 10.1038/s41587-024-02158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 01/31/2024] [Indexed: 05/16/2024]
Abstract
Differential scanning fluorimetry (DSF) is a technique that reports protein thermal stability via the selective recognition of unfolded states by fluorogenic dyes. However, DSF applications remain limited by protein incompatibilities with existing DSF dyes. Here we overcome this obstacle with the development of a protein-adaptive DSF platform (paDSF) that combines a dye library 'Aurora' with a streamlined procedure to identify protein-dye pairs on demand. paDSF was successfully applied to 94% (66 of 70) of proteins, tripling the previous compatibility and delivering assays for 66 functionally and biochemically diverse proteins, including 10 from severe acute respiratory syndrome coronavirus 2. We find that paDSF can be used to monitor biological processes that were previously inaccessible, demonstrated for the interdomain allostery of O-GlcNAc transferase. The chemical diversity and varied selectivities of Aurora dyes suggest that paDSF functionality may be readily extended. paDSF is a generalizable tool to interrogate protein stability, dynamics and ligand binding.
Collapse
Affiliation(s)
- Taiasean Wu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
| | - Joshua C Yu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Arundhati Suresh
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Zachary J Gale-Day
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Matthew G Alteen
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Amanda S Woo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Zoe Millbern
- Department of Textile Engineering, North Carolina State University, Raleigh, NC, USA
| | - Oleta T Johnson
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
| | - Emma C Carroll
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
| | - Carrie L Partch
- Department of Chemistry, University of California, Santa Cruz, CA, USA
| | - Denis Fourches
- Department of Textile Engineering, North Carolina State University, Raleigh, NC, USA
| | - Nelson R Vinueza
- Department of Textile Engineering, North Carolina State University, Raleigh, NC, USA
| | - David J Vocadlo
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA.
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA.
| |
Collapse
|
6
|
Schneuing A, Harris C, Du Y, Didi K, Jamasb A, Igashov I, Du W, Gomes C, Blundell TL, Lio P, Welling M, Bronstein M, Correia B. Structure-based drug design with equivariant diffusion models. NATURE COMPUTATIONAL SCIENCE 2024; 4:899-909. [PMID: 39653846 DOI: 10.1038/s43588-024-00737-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/04/2024] [Indexed: 12/21/2024]
Abstract
Structure-based drug design (SBDD) aims to design small-molecule ligands that bind with high affinity and specificity to pre-determined protein targets. Generative SBDD methods leverage structural data of drugs with their protein targets to propose new drug candidates. However, most existing methods focus exclusively on bottom-up de novo design of compounds or tackle other drug development challenges with task-specific models. The latter requires curation of suitable datasets, careful engineering of the models and retraining from scratch for each task. Here we show how a single pretrained diffusion model can be applied to a broader range of problems, such as off-the-shelf property optimization, explicit negative design and partial molecular design with inpainting. We formulate SBDD as a three-dimensional conditional generation problem and present DiffSBDD, an SE(3)-equivariant diffusion model that generates novel ligands conditioned on protein pockets. Furthermore, we show how additional constraints can be used to improve the generated drug candidates according to a variety of computational metrics.
Collapse
Affiliation(s)
- Arne Schneuing
- École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | | | | | | | - Arian Jamasb
- University of Cambridge, Cambridge, UK
- Prescient Design, Genentech, Basel, Switzerland
| | - Ilia Igashov
- École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Weitao Du
- Chinese Academy of Mathematics and System Science, Beijing, China
| | | | - Tom L Blundell
- University of Cambridge, Cambridge, UK
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Pietro Lio
- University of Cambridge, Cambridge, UK
- University of Rome 'La Sapienza', Rome, Italy
| | - Max Welling
- Microsoft Research AI4Science, Amsterdam, Netherlands
- University of Amsterdam, Amsterdam, Netherlands
| | | | - Bruno Correia
- École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
7
|
Kerr CM, Pfannenstiel JJ, Alhammad YM, O'Connor JJ, Ghimire R, Shrestha R, Khattabi R, Saenjamsai P, Parthasarathy S, McDonald PR, Gao P, Johnson DK, More S, Roy A, Channappanavar R, Fehr AR. Mutation of a highly conserved isoleucine residue in loop 2 of several β-coronavirus macrodomains indicates that enhanced ADP-ribose binding is detrimental for replication. J Virol 2024; 98:e0131324. [PMID: 39387584 PMCID: PMC11575489 DOI: 10.1128/jvi.01313-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/18/2024] [Indexed: 10/13/2024] Open
Abstract
All coronaviruses (CoVs) encode for a conserved macrodomain (Mac1) located in non-structural protein 3. Mac1 is an ADP-ribosylhydrolase that binds and hydrolyzes mono-ADP-ribose from target proteins. Previous work has shown that Mac1 is important for virus replication and pathogenesis. Within Mac1, there are several regions that are highly conserved across CoVs, including the glycine-isoleucine-phenylalanine motif. While we previously demonstrated the importance of the glycine residue for CoV replication and pathogenesis, the impact of the isoleucine and phenylalanine residues remains unknown. To determine how the biochemical activities of these residues impact CoV replication, the isoleucine and the phenylalanine residues were mutated to alanine (I-A/F-A) in both recombinant Mac1 proteins and recombinant CoVs, including murine hepatitis virus, Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The F-A mutant proteins had ADP-ribose binding and/or hydrolysis defects that correlated with attenuated replication and pathogenesis of F-A mutant MERS-CoV and SARS-CoV-2 viruses in cell culture and mice. In contrast, the I-A mutant proteins had normal enzyme activity and enhanced ADP-ribose binding. Despite only demonstrating increased ADP-ribose binding, I-A mutant MERS-CoV and SARS-CoV-2 viruses were highly attenuated in both cell culture and mice, indicating that this isoleucine residue acts as a gate that controls ADP-ribose binding for efficient virus replication. These results highlight the function of this highly conserved residue and provide unique insight into how macrodomains control ADP-ribose binding and hydrolysis to promote viral replication. IMPORTANCE The conserved coronavirus (CoV) macrodomain (Mac1) counters the activity of host ADP-ribosyltransferases and is critical for CoV replication and pathogenesis. As such, Mac1 is a potential therapeutic target for CoV-induced disease. However, we lack a basic knowledge of how several residues in its ADP-ribose binding pocket contribute to its biochemical and virological functions. We engineered mutations into two highly conserved residues in the ADP-ribose binding pocket of Mac1, both as recombinant proteins and viruses for Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Interestingly, a Mac1 isoleucine-to-alanine mutant protein had enhanced ADP-ribose binding which proved to be detrimental for virus replication, indicating that this isoleucine controls ADP-ribose binding and is beneficial for virus replication and pathogenesis. These results provide unique insight into how macrodomains control ADP-ribose binding and will be critical for the development of novel inhibitors targeting Mac1 that could be used to treat CoV-induced disease.
Collapse
Affiliation(s)
- Catherine M Kerr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | | | - Yousef M Alhammad
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Joseph J O'Connor
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Roshan Ghimire
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Rakshya Shrestha
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Reem Khattabi
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Pradtahna Saenjamsai
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | | | - Peter R McDonald
- High Throughput Screening Laboratory, University of Kansas, Lawrence, Kansas, USA
| | - Philip Gao
- Protein Production Group, University of Kansas, Lawrence, Kansas, USA
| | - David K Johnson
- Molecular Graphics and Modeling Laboratory and the Computational Chemical Biology Core, University of Kansas, Lawrence, Kansas, USA
| | - Sunil More
- High Throughput Screening Laboratory, University of Kansas, Lawrence, Kansas, USA
- Oklahoma Center for Respiratory and Infectious Diseases, College of Veterinary Medicine, Stillwater, Oklahoma, USA
| | - Anuradha Roy
- High Throughput Screening Laboratory, University of Kansas, Lawrence, Kansas, USA
| | - Rudragouda Channappanavar
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, Oklahoma, USA
- Oklahoma Center for Respiratory and Infectious Diseases, College of Veterinary Medicine, Stillwater, Oklahoma, USA
| | - Anthony R Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
8
|
Schwalbe H, Audergon P, Haley N, Amaro CA, Agirre J, Baldus M, Banci L, Baumeister W, Blackledge M, Carazo JM, Carugo KD, Celie P, Felli I, Hart DJ, Hauß T, Lehtiö L, Lindorff-Larsen K, Márquez J, Matagne A, Pierattelli R, Rosato A, Sobott F, Sreeramulu S, Steyaert J, Sussman JL, Trantirek L, Weiss MS, Wilmanns M. The future of integrated structural biology. Structure 2024; 32:1563-1580. [PMID: 39293444 DOI: 10.1016/j.str.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/21/2024] [Accepted: 08/22/2024] [Indexed: 09/20/2024]
Abstract
Instruct-ERIC, "the European Research Infrastructure Consortium for Structural biology research," is a pan-European distributed research infrastructure making high-end technologies and methods in structural biology available to users. Here, we describe the current state-of-the-art of integrated structural biology and discuss potential future scientific developments as an impulse for the scientific community, many of which are located in Europe and are associated with Instruct. We reflect on where to focus scientific and technological initiatives within the distributed Instruct research infrastructure. This review does not intend to make recommendations on funding requirements or initiatives directly, neither at the national nor the European level. However, it addresses future challenges and opportunities for the field, and foresees the need for a stronger coordination within the European and international research field of integrated structural biology to be able to respond timely to thematic topics that are often prioritized by calls for funding addressing societal needs.
Collapse
Affiliation(s)
- Harald Schwalbe
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry, Max-von-Laue-Str. 7, 60438 Frankfurt/M., Germany; Instruct-ERIC, Oxford House, Parkway Court, John Smith Drive, Oxford OX4 2JY, UK.
| | - Pauline Audergon
- Instruct-ERIC, Oxford House, Parkway Court, John Smith Drive, Oxford OX4 2JY, UK
| | - Natalie Haley
- Instruct-ERIC, Oxford House, Parkway Court, John Smith Drive, Oxford OX4 2JY, UK
| | - Claudia Alen Amaro
- Instruct-ERIC, Oxford House, Parkway Court, John Smith Drive, Oxford OX4 2JY, UK
| | - Jon Agirre
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 3BG, UK
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Lucia Banci
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine-CIRMMP, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Martin Blackledge
- Institut de Biologie Structurale, Université Grenoble Alpes-CEA-CNRS UMR5075, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Jose Maria Carazo
- Biocomputing Unit, National Centre for Biotechnology (CNB CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | | | - Patrick Celie
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Isabella Felli
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine-CIRMMP, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Darren J Hart
- Institut de Biologie Structurale, Université Grenoble Alpes-CEA-CNRS UMR5075, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Thomas Hauß
- Macromolecular Crystallography, Helmholtz-Zentrum, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Lari Lehtiö
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - José Márquez
- European Molecular Biology Laboratory (EMBL) Grenoble, Grenoble, France
| | - André Matagne
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS Research Unit, University of Liège, Building B6C, Quartier Agora, Allée du 6 Août, 13, 4000 Liège (Sart-Tilman), Belgium
| | - Roberta Pierattelli
- Department of Chemistry "Ugo Schiff", University of Florence and Magnetic Resonance Center, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Antonio Rosato
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine-CIRMMP, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Frank Sobott
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sridhar Sreeramulu
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry, Max-von-Laue-Str. 7, 60438 Frankfurt/M., Germany
| | - Jan Steyaert
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, Brussels, Belgium
| | - Joel L Sussman
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Lukas Trantirek
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Manfred S Weiss
- Macromolecular Crystallography, Helmholtz-Zentrum, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Matthias Wilmanns
- European Molecular Biology Laboratory (EMBL) Hamburg, Hamburg, Germany
| |
Collapse
|
9
|
Flowers J, Echols N, Correy G, Jaishankar P, Togo T, Renslo AR, van den Bedem H, Fraser JS, Wankowicz SA. Expanding Automated Multiconformer Ligand Modeling to Macrocycles and Fragments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.613996. [PMID: 39386683 PMCID: PMC11463535 DOI: 10.1101/2024.09.20.613996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Small molecule ligands exhibit a diverse range of conformations in solution. Upon binding to a target protein, this conformational diversity is generally reduced. However, ligands can retain some degree of conformational flexibility even when bound to a receptor. In the Protein Data Bank (PDB), a small number of ligands have been modeled with distinct alternative conformations that are supported by X-ray crystallography density maps. However, the vast majority of structural models are fit to a single ligand conformation, potentially ignoring the underlying conformational heterogeneity present in the sample. We previously developed qFit-ligand to sample diverse ligand conformations and to select a parsimonious ensemble consistent with the density. While this approach indicated that many ligands populate alternative conformations, limitations in our sampling procedures often resulted in non-physical conformations and could not model complex ligands like macrocycles. Here, we introduce several improvements to qFit-ligand, including the use of routines within RDKit for stochastic conformational sampling. This new sampling method greatly enriches low energy conformations of small molecules and macrocycles. We further extended qFit-ligand to identify alternative conformations in PanDDA-modified density maps from high throughput X-ray fragment screening experiments. The new version of qFit-ligand improves fit to electron density and reduces torsional strain relative to deposited single conformer models and our previous version of qFit-ligand. These advances enhance the analysis of residual conformational heterogeneity present in ligand-bound structures, which can provide important insights for the rational design of therapeutic agents.
Collapse
Affiliation(s)
- Jessica Flowers
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
| | - Nathaniel Echols
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
| | - Galen Correy
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
| | - Priya Jaishankar
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
| | - Takaya Togo
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
| | - Adam R. Renslo
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
| | - Henry van den Bedem
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
- Atomwise Inc, San Francisco, CA
| | - James S. Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
| | - Stephanie A. Wankowicz
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
- Current Address: Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| |
Collapse
|
10
|
Suryawanshi RK, Jaishankar P, Correy GJ, Rachman MM, O’Leary PC, Taha TY, Zapatero-Belinchón FJ, McCavittMalvido M, Doruk YU, Stevens MGV, Diolaiti ME, Jogalekar MP, Richards AL, Montano M, Rosecrans J, Matthay M, Togo T, Gonciarz RL, Gopalkrishnan S, Neitz RJ, Krogan NJ, Swaney DL, Shoichet BK, Ott M, Renslo AR, Ashworth A, Fraser JS. The Mac1 ADP-ribosylhydrolase is a Therapeutic Target for SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.606661. [PMID: 39149230 PMCID: PMC11326214 DOI: 10.1101/2024.08.08.606661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
SARS-CoV-2 continues to pose a threat to public health. Current therapeutics remain limited to direct acting antivirals that lack distinct mechanisms of action and are already showing signs of viral resistance. The virus encodes an ADP-ribosylhydrolase macrodomain (Mac1) that plays an important role in the coronaviral lifecycle by suppressing host innate immune responses. Genetic inactivation of Mac1 abrogates viral replication in vivo by potentiating host innate immune responses. However, it is unknown whether this can be achieved by pharmacologic inhibition and can therefore be exploited therapeutically. Here we report a potent and selective lead small molecule, AVI-4206, that is effective in an in vivo model of SARS-CoV-2 infection. Cellular models indicate that AVI-4206 has high target engagement and can weakly inhibit viral replication in a gamma interferon- and Mac1 catalytic activity-dependent manner; a stronger antiviral effect for AVI-4206 is observed in human airway organoids. In an animal model of severe SARS-CoV-2 infection, AVI-4206 reduces viral replication, potentiates innate immune responses, and leads to a survival benefit. Our results provide pharmacological proof of concept that Mac1 is a valid therapeutic target via a novel immune-restoring mechanism that could potentially synergize with existing therapies targeting distinct, essential aspects of the coronaviral life cycle. This approach could be more widely used to target other viral macrodomains to develop antiviral therapeutics beyond COVID-19.
Collapse
Affiliation(s)
| | - Priyadarshini Jaishankar
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
| | - Galen J. Correy
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
| | - Moira M. Rachman
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
| | - Patrick C. O’Leary
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - Taha Y. Taha
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA
| | | | | | - Yagmur U. Doruk
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - Maisie G. V. Stevens
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - Morgan E. Diolaiti
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - Manasi P. Jogalekar
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - Alicia L. Richards
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA
- Data Science and Biotechnology Institute, Gladstone Institutes, San Francisco, CA
| | - Mauricio Montano
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA
| | - Julia Rosecrans
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA
| | - Michael Matthay
- Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Takaya Togo
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
| | - Ryan L. Gonciarz
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
| | - Saumya Gopalkrishnan
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA
| | - R. Jeffrey Neitz
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
- Small Molecule Discovery Center, University of California San Francisco, San Francisco, CA
| | - Nevan J. Krogan
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA
- Data Science and Biotechnology Institute, Gladstone Institutes, San Francisco, CA
| | - Danielle L. Swaney
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA
- Data Science and Biotechnology Institute, Gladstone Institutes, San Francisco, CA
| | - Brian K. Shoichet
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
| | - Melanie Ott
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA
- Department of Medicine, University of California San Francisco, San Francisco, CA
- Chan Zuckerberg Biohub- San Francisco, San Francisco, CA
| | - Adam R. Renslo
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
| | - Alan Ashworth
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - James S. Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
| |
Collapse
|
11
|
Correy GJ, Rachman M, Togo T, Gahbauer S, Doruk YU, Stevens M, Jaishankar P, Kelley B, Goldman B, Schmidt M, Kramer T, Ashworth A, Riley P, Shoichet BK, Renslo AR, Walters WP, Fraser JS. Extensive exploration of structure activity relationships for the SARS-CoV-2 macrodomain from shape-based fragment merging and active learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.25.609621. [PMID: 39253507 PMCID: PMC11383323 DOI: 10.1101/2024.08.25.609621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The macrodomain contained in the SARS-CoV-2 non-structural protein 3 (NSP3) is required for viral pathogenesis and lethality. Inhibitors that block the macrodomain could be a new therapeutic strategy for viral suppression. We previously performed a large-scale X-ray crystallography-based fragment screen and discovered a sub-micromolar inhibitor by fragment linking. However, this carboxylic acid-containing lead had poor membrane permeability and other liabilities that made optimization difficult. Here, we developed a shape-based virtual screening pipeline - FrankenROCS - to identify new macrodomain inhibitors using fragment X-ray crystal structures. We used FrankenROCS to exhaustively screen the Enamine high-throughput screening (HTS) collection of 2.1 million compounds and selected 39 compounds for testing, with the most potent compound having an IC50 value equal to 130 μM. We then paired FrankenROCS with an active learning algorithm (Thompson sampling) to efficiently search the Enamine REAL database of 22 billion molecules, testing 32 compounds with the most potent having an IC50 equal to 220 μM. Further optimization led to analogs with IC50 values better than 10 μM, with X-ray crystal structures revealing diverse binding modes despite conserved chemical features. These analogs represent a new lead series with improved membrane permeability that is poised for optimization. In addition, the collection of 137 X-ray crystal structures with associated binding data will serve as a resource for the development of structure-based drug discovery methods. FrankenROCS may be a scalable method for fragment linking to exploit ever-growing synthesis-on-demand libraries.
Collapse
Affiliation(s)
- Galen J. Correy
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158
| | - Moira Rachman
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158
| | - Takaya Togo
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158
| | - Stefan Gahbauer
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158
| | - Yagmur U. Doruk
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158
| | - Maisie Stevens
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158
| | - Priyadarshini Jaishankar
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158
| | | | | | | | | | - Alan Ashworth
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158
| | | | - Brian K. Shoichet
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158
| | - Adam R. Renslo
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158
| | | | - James S. Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158
| |
Collapse
|
12
|
Chen DF, Roe LT, Li Y, Borges AL, Zhang JY, Babbar P, Maji S, Stevens MG, Correy GJ, Diolaiti ME, Smith DH, Ashworth A, Stroud RM, Kelly MJ, Bondy-Denomy J, Fraser JS. AcrIF11 is a potent CRISPR-specific ADP-ribosyltransferase encoded by phage and plasmid. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609590. [PMID: 39253479 PMCID: PMC11383003 DOI: 10.1101/2024.08.26.609590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Phage-encoded anti-CRISPR (Acr) proteins inhibit CRISPR-Cas systems to allow phage replication and lysogeny maintenance. Most of the Acrs characterized to date are stable stoichiometric inhibitors, and while enzymatic Acrs have been characterized biochemically, little is known about their potency, specificity, and reversibility. Here, we examine AcrIF11, a widespread phage and plasmid-encoded ADP-ribosyltransferase (ART) that inhibits the Type I-F CRISPR-Cas system. We present an NMR structure of an AcrIF11 homolog that reveals chemical shift perturbations consistent with NAD (cofactor) binding. In experiments that model both lytic phage replication and MGE/lysogen stability under high targeting pressure, AcrIF11 is a highly potent CRISPR-Cas inhibitor and more robust to Cas protein level fluctuations than stoichiometric inhibitors. Furthermore, we demonstrate that AcrIF11 is remarkably specific, predominantly ADP-ribosylating Csy1 when expressed in P. aeruginosa. Given the reversible nature of ADP-ribosylation, we hypothesized that ADPr eraser enzymes (macrodomains) could remove ADPr from Csy1, a potential limitation of PTM-based CRISPR inhibition. We demonstrate that diverse macrodomains can indeed remove the modification from Csy1 in P. aeruginosa lysate. Together, these experiments connect the in vitro observations of AcrIF11's enzymatic activity to its potent and specific effects in vivo, clarifying the advantages and drawbacks of enzymatic Acrs in the evolutionary arms race between phages and bacteria.
Collapse
Affiliation(s)
- Daphne F. Chen
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
| | - Leah T. Roe
- Department of Chemistry, University of California, Berkeley, CA
| | - Yuping Li
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA
| | | | - Jenny Y. Zhang
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA
| | - Palak Babbar
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA
| | - Sourobh Maji
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA
| | - Maisie G.V. Stevens
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - Galen J. Correy
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
| | - Morgan E. Diolaiti
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - Dominique H. Smith
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - Alan Ashworth
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - Robert M. Stroud
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA
| | - Mark J.S. Kelly
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA
| | - Joseph Bondy-Denomy
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA
- Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA
- Innovative Genomics Institute, Berkeley, CA, USA
| | - James S. Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
- Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA
| |
Collapse
|
13
|
Aschenbrenner JC, de Godoy AS, Fairhead M, Tomlinson CW, Winokan M, Balcomb BH, Capkin E, Chandran AV, Golding M, Koekemoer L, Lithgo RM, Marples PG, Ni X, Thompson W, Wild C, Xavier MAE, Fearon D, von Delft F. Identifying novel chemical matter against the Chikungunya virus nsP3 macrodomain through crystallographic fragment screening. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609196. [PMID: 39229067 PMCID: PMC11370605 DOI: 10.1101/2024.08.23.609196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Chikungunya virus (CHIKV) causes severe fever, rash and debilitating joint pain that can last for months1,2or even years. Millions of people have been infected with CHIKV, mostly in low and middle-income countries, and the virus continues to spread into new areas due to the geographical expansion of its mosquito hosts. Its genome encodes a macrodomain, which functions as an ADP-ribosyl hydrolase, removing ADPr from viral and host-cell proteins interfering with the innate immune response. Mutational studies have shown that the CHIKV nsP3 macrodomain is necessary for viral replication, making it a potential target for the development of antiviral therapeutics. We, therefore, performed a high-throughput crystallographic fragment screen against the CHIKV nsP3 macrodomain, yielding 109 fragment hits covering the ADPr-binding site and two adjacent subsites that are absent in the homologous macrodomain of SARS-CoV-2 but may be present in other alphaviruses, such as Venezuelan equine encephalitis virus (VEEV) and eastern equine encephalitis virus (EEEV). Finally, a subset of overlapping fragments was used to manually design three fragment merges covering the adenine and oxyanion subsites. The rich dataset of chemical matter and structural information discovered from this fragment screen is publicly available and can be used as a starting point for developing a CHIKV nsP3 macrodomain inhibitor.
Collapse
Affiliation(s)
- Jasmin C. Aschenbrenner
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, United Kingdom
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, United Kingdom
| | | | - Michael Fairhead
- Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom
| | - Charles W.E. Tomlinson
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, United Kingdom
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, United Kingdom
| | - Max Winokan
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, United Kingdom
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, United Kingdom
| | - Blake H. Balcomb
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, United Kingdom
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, United Kingdom
| | - Eda Capkin
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, United Kingdom
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, United Kingdom
| | - Anu V. Chandran
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, United Kingdom
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, United Kingdom
| | - Mathew Golding
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, United Kingdom
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, United Kingdom
| | - Lizbe Koekemoer
- Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom
| | - Ryan M. Lithgo
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, United Kingdom
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, United Kingdom
| | - Peter G. Marples
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, United Kingdom
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, United Kingdom
| | - Xiaomin Ni
- Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom
| | - Warren Thompson
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, United Kingdom
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, United Kingdom
| | - Conor Wild
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, United Kingdom
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, United Kingdom
| | - Mary-Ann E. Xavier
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, United Kingdom
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, United Kingdom
| | - Daren Fearon
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, United Kingdom
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, United Kingdom
| | - Frank von Delft
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, United Kingdom
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, United Kingdom
- Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom
- Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| |
Collapse
|
14
|
Lee AA, Amick I, Aschenbrenner JC, Barr HM, Benjamin J, Brandis A, Cohen G, Diaz-Tapia R, Duberstein S, Dixon J, Cousins D, Fairhead M, Fearon D, Frick J, Gayvert J, Godoy AS, Griffin EJ, Huber K, Koekemoer L, Lahav N, Marples PG, McGovern BL, Mehlman T, Robinson MC, Singh U, Szommer T, Tomlinson CWE, Vargo T, von Delft F, Wang S, White K, Williams E, Winokan M. Discovery of potent SARS-CoV-2 nsp3 macrodomain inhibitors uncovers lack of translation to cellular antiviral response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608619. [PMID: 39229055 PMCID: PMC11370477 DOI: 10.1101/2024.08.19.608619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
A strategy for pandemic preparedness is the development of antivirals against a wide set of viral targets with complementary mechanisms of action. SARS-CoV-2 nsp3-mac1 is a viral macrodomain with ADP-ribosylhydrolase activity, which counteracts host immune response. Targeting the virus' immunomodulatory functionality offers a differentiated strategy to inhibit SARS-CoV-2 compared to approved therapeutics, which target viral replication directly. Here we report a fragment-based lead generation campaign guided by computational approaches. We discover tool compounds which inhibit nsp3-mac1 activity at low nanomolar concentrations, and with responsive structure-activity relationships, high selectivity, and drug-like properties. Using our inhibitors, we show that inhibition of nsp3-mac1 increases ADP-ribosylation, but surprisingly does not translate to demonstrable antiviral activity in cell culture and iPSC-derived pneumocyte models. Further, no synergistic activity is observed in combination with interferon gamma, a main protease inhibitor, nor a papain-like protease inhibitor. Our results question the extent to which targeting modulation of innate immunity-driven ADP-ribosylation can influence SARS-CoV-2 replication. Moreover, these findings suggest that nsp3-mac1 might not be a suitable target for antiviral therapeutics development.
Collapse
Affiliation(s)
- Alpha A Lee
- ASAP Discovery Consortium
- PostEra Inc, 1 Broadway, Cambridge MA 02142
| | - Isabelle Amick
- ASAP Discovery Consortium
- PostEra Inc, 1 Broadway, Cambridge MA 02142
| | - Jasmin C Aschenbrenner
- ASAP Discovery Consortium
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
- Research Centre at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
| | - Haim M Barr
- ASAP Discovery Consortium
- The Wohl Drug Discovery Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jared Benjamin
- ASAP Discovery Consortium
- Icahn School of Medicine, Mount Sinai, New York, New York, United States of America
| | - Alexander Brandis
- ASAP Discovery Consortium
- Life Sciences Core Facilities, The Weizmann Institute of Science Rehovot 7610001, Israel
| | - Galit Cohen
- The Wohl Drug Discovery Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Randy Diaz-Tapia
- ASAP Discovery Consortium
- Icahn School of Medicine, Mount Sinai, New York, New York, United States of America
| | - Shirly Duberstein
- ASAP Discovery Consortium
- The Wohl Drug Discovery Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jessica Dixon
- ASAP Discovery Consortium
- Centre for Medicines Discovery, University of Oxford, Oxford OX3 7FZ, UK
| | - David Cousins
- ASAP Discovery Consortium
- MedChemica Consultancy Ltd, Macclesfield, Cheshire, SK11 6DU, UK
| | - Michael Fairhead
- ASAP Discovery Consortium
- Centre for Medicines Discovery, University of Oxford, Oxford OX3 7FZ, UK
| | - Daren Fearon
- ASAP Discovery Consortium
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
- Research Centre at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
| | - James Frick
- ASAP Discovery Consortium
- PostEra Inc, 1 Broadway, Cambridge MA 02142
| | - James Gayvert
- ASAP Discovery Consortium
- PostEra Inc, 1 Broadway, Cambridge MA 02142
| | - Andre S Godoy
- ASAP Discovery Consortium
- São Carlos Institute of Physics, University of São Paulo, Av. Joao Dagnone, 1100 - Jardim Santa Angelina, Sao Carlos, 13563-120, Brazil
| | - Ed J Griffin
- ASAP Discovery Consortium
- MedChemica Consultancy Ltd, Macclesfield, Cheshire, SK11 6DU, UK
| | - Kilian Huber
- ASAP Discovery Consortium
- Centre for Medicines Discovery, University of Oxford, Oxford OX3 7FZ, UK
| | - Lizbé Koekemoer
- ASAP Discovery Consortium
- Centre for Medicines Discovery, University of Oxford, Oxford OX3 7FZ, UK
| | - Noa Lahav
- ASAP Discovery Consortium
- The Wohl Drug Discovery Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Peter G Marples
- ASAP Discovery Consortium
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
- Research Centre at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
| | - Briana L McGovern
- ASAP Discovery Consortium
- Icahn School of Medicine, Mount Sinai, New York, New York, United States of America
| | - Tevie Mehlman
- ASAP Discovery Consortium
- Life Sciences Core Facilities, The Weizmann Institute of Science Rehovot 7610001, Israel
| | | | - Usha Singh
- ASAP Discovery Consortium
- Centre for Medicines Discovery, University of Oxford, Oxford OX3 7FZ, UK
| | - Tamas Szommer
- ASAP Discovery Consortium
- Centre for Medicines Discovery, University of Oxford, Oxford OX3 7FZ, UK
| | - Charles W E Tomlinson
- ASAP Discovery Consortium
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
- Research Centre at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
| | - Thomas Vargo
- ASAP Discovery Consortium
- PostEra Inc, 1 Broadway, Cambridge MA 02142
| | - Frank von Delft
- ASAP Discovery Consortium
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
- Centre for Medicines Discovery, University of Oxford, Oxford OX3 7FZ, UK
- Research Centre at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
| | - SiYi Wang
- ASAP Discovery Consortium
- Centre for Medicines Discovery, University of Oxford, Oxford OX3 7FZ, UK
| | - Kris White
- ASAP Discovery Consortium
- Icahn School of Medicine, Mount Sinai, New York, New York, United States of America
| | - Eleanor Williams
- ASAP Discovery Consortium
- Centre for Medicines Discovery, University of Oxford, Oxford OX3 7FZ, UK
| | - Max Winokan
- ASAP Discovery Consortium
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
- Research Centre at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
| |
Collapse
|
15
|
Mehlman T, Ginn HM, Keedy DA. An expanded trove of fragment-bound structures for the allosteric enzyme PTP1B from computational reanalysis of large-scale crystallographic data. Structure 2024; 32:1231-1238.e4. [PMID: 38861991 PMCID: PMC11316629 DOI: 10.1016/j.str.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/15/2024] [Accepted: 05/15/2024] [Indexed: 06/13/2024]
Abstract
Due to their low binding affinities, detecting small-molecule fragments bound to protein structures from crystallographic datasets has been a challenge. Here, we report a trove of 65 new fragment hits for PTP1B, an "undruggable" therapeutic target enzyme for diabetes and cancer. These structures were obtained from computational analysis of data from a large crystallographic screen, demonstrating the power of this approach to elucidate many (∼50% more) "hidden" ligand-bound states of proteins. Our new structures include a fragment hit found in a novel binding site in PTP1B with a unique location relative to the active site, one that links adjacent allosteric sites, and, perhaps most strikingly, a fragment that induces long-range allosteric protein conformational responses. Altogether, our research highlights the utility of computational analysis of crystallographic data, makes publicly available dozens of new ligand-bound structures of a high-value drug target, and identifies novel aspects of ligandability and allostery in PTP1B.
Collapse
Affiliation(s)
- Tamar Mehlman
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031, USA; PhD Program in Biochemistry, CUNY Graduate Center, New York, NY 10016, USA
| | - Helen M Ginn
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany; Institute for Nanostructure and Solid State Physics, Universität Hamburg, Hamburg, Germany; Division of Life Sciences, Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, UK
| | - Daniel A Keedy
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031, USA; Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031, USA; PhD Programs in Biochemistry, Biology, & Chemistry, CUNY Graduate Center, New York, NY 10016, USA.
| |
Collapse
|
16
|
Carlsson J, Luttens A. Structure-based virtual screening of vast chemical space as a starting point for drug discovery. Curr Opin Struct Biol 2024; 87:102829. [PMID: 38848655 DOI: 10.1016/j.sbi.2024.102829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 06/09/2024]
Abstract
Structure-based virtual screening aims to find molecules forming favorable interactions with a biological macromolecule using computational models of complexes. The recent surge of commercially available chemical space provides the opportunity to search for ligands of therapeutic targets among billions of compounds. This review offers a compact overview of structure-based virtual screens of vast chemical spaces, highlighting successful applications in early drug discovery for therapeutically important targets such as G protein-coupled receptors and viral enzymes. Emphasis is placed on strategies to explore ultra-large chemical libraries and synergies with emerging machine learning techniques. The current opportunities and future challenges of virtual screening are discussed, indicating that this approach will play an important role in the next-generation drug discovery pipeline.
Collapse
Affiliation(s)
- Jens Carlsson
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596, SE-751 24 Uppsala, Sweden.
| | - Andreas Luttens
- Institute for Medical Engineering & Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
17
|
Henkel A, Oberthür D. A snapshot love story: what serial crystallography has done and will do for us. Acta Crystallogr D Struct Biol 2024; 80:563-579. [PMID: 38984902 PMCID: PMC11301758 DOI: 10.1107/s2059798324005588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/11/2024] [Indexed: 07/11/2024] Open
Abstract
Serial crystallography, born from groundbreaking experiments at the Linac Coherent Light Source in 2009, has evolved into a pivotal technique in structural biology. Initially pioneered at X-ray free-electron laser facilities, it has now expanded to synchrotron-radiation facilities globally, with dedicated experimental stations enhancing its accessibility. This review gives an overview of current developments in serial crystallography, emphasizing recent results in time-resolved crystallography, and discussing challenges and shortcomings.
Collapse
Affiliation(s)
- Alessandra Henkel
- Center for Free-Electron Laser Science CFELDeutsches Elektronen-Synchrotron DESYNotkestr. 8522607HamburgGermany
| | - Dominik Oberthür
- Center for Free-Electron Laser Science CFELDeutsches Elektronen-Synchrotron DESYNotkestr. 8522607HamburgGermany
| |
Collapse
|
18
|
Hekstra DR, Wang HK, Klureza MA, Greisman JB, Dalton KM. Sensitive Detection of Structural Differences using a Statistical Framework for Comparative Crystallography. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.22.604476. [PMID: 39091831 PMCID: PMC11291090 DOI: 10.1101/2024.07.22.604476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Chemical and conformational changes underlie the functional cycles of proteins. Comparative crystallography can reveal these changes over time, over ligands, and over chemical and physical perturbations in atomic detail. A key difficulty, however, is that the resulting observations must be placed on the same scale by correcting for experimental factors. We recently introduced a Bayesian framework for correcting (scaling) X-ray diffraction data by combining deep learning with statistical priors informed by crystallographic theory. To scale comparative crystallography data, we here combine this framework with a multivariate statistical theory of comparative crystallography. By doing so, we find strong improvements in the detection of protein dynamics, element-specific anomalous signal, and the binding of drug fragments.
Collapse
Affiliation(s)
- Doeke R. Hekstra
- Department of Molecular and Cellular Biology
- School of Engineering and Applied Sciences
| | - Harrison K. Wang
- Department of Molecular and Cellular Biology
- Graduate Program in Biophysics, Harvard University, Boston, MA 02115, USA
| | - Margaret A. Klureza
- Department of Molecular and Cellular Biology
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jack B. Greisman
- Department of Molecular and Cellular Biology
- Current address: D. E. Shaw Research New York, NY 10036, USA
| | - Kevin M. Dalton
- Department of Molecular and Cellular Biology
- New York University, New York, NY 10003, USA
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| |
Collapse
|
19
|
Ildefeld N, Steinhilber D, Proschak E, Heering J. HTRF-based assay for detection of mono-ADP-ribosyl hydrolyzing macrodomains and inhibitor screening. iScience 2024; 27:110333. [PMID: 39055912 PMCID: PMC11269945 DOI: 10.1016/j.isci.2024.110333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/08/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
The COVID-19 pandemic has highlighted the lack of effective, ready-to-use antivirals for the treatment of viruses with pandemic potential. The development of a diverse drug portfolio is therefore crucial for pandemic preparedness. Viral macrodomains are attractive therapeutic targets as they are suggested to play an important role in evading the innate host immune response, making them critical for viral pathogenesis. Macrodomains function as erasers of mono-ADP-ribosylation (deMARylation), a post-translational modification that is involved in interferon signaling. Herein, we report the development of a modular HTRF-based assay, that can be used to screen for inhibitors of various viral and human macrodomains. We characterized the five most promising small molecule SARS-CoV-2 Mac1 inhibitors recently reported in the literature for potency and selectivity and conducted a pilot screen demonstrating HTS suitability. The ability to directly detect enzymatic activity makes the DeMAR assay a valuable addition to the existing tools for macrodomain drug discovery.
Collapse
Affiliation(s)
- Niklas Ildefeld
- Institute of Pharmaceutical Chemistry, Goethe-University of Frankfurt, Biocenter, Max-von-Laue-Str. 9, 60438 Frankfurt/Main, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe-University of Frankfurt, Biocenter, Max-von-Laue-Str. 9, 60438 Frankfurt/Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt/Main, Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe-University of Frankfurt, Biocenter, Max-von-Laue-Str. 9, 60438 Frankfurt/Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt/Main, Germany
| | - Jan Heering
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt/Main, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596 Frankfurt/Main, Germany
| |
Collapse
|
20
|
Kerr CM, Pfannenstiel JJ, Alhammad YM, O’Connor JJ, Ghimire R, Shrestha R, Khattabi R, Saenjamsai P, Parthasarathy S, McDonald PR, Gao P, Johnson DK, More S, Roy A, Channappanavar R, Fehr AR. Mutation of a highly conserved isoleucine residue in loop 2 of several β-coronavirus macrodomains indicates that enhanced ADP-ribose binding is detrimental to infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.574082. [PMID: 38260573 PMCID: PMC10802294 DOI: 10.1101/2024.01.03.574082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
All coronaviruses (CoVs) encode for a conserved macrodomain (Mac1) located in nonstructural protein 3 (nsp3). Mac1 is an ADP-ribosylhydrolase that binds and hydrolyzes mono-ADP-ribose from target proteins. Previous work has shown that Mac1 is important for virus replication and pathogenesis. Within Mac1, there are several regions that are highly conserved across CoVs, including the GIF (glycine-isoleucine-phenylalanine) motif. To determine how the biochemical activities of these residues impact CoV replication, the isoleucine and the phenylalanine residues were mutated to alanine (I-A/F-A) in both recombinant Mac1 proteins and recombinant CoVs, including murine hepatitis virus (MHV), Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The F-A mutant proteins had ADP-ribose binding and/or hydrolysis defects that led to attenuated replication and pathogenesis in cell culture and mice. In contrast, the I-A mutations had normal enzyme activity and enhanced ADP-ribose binding. Despite increased ADP-ribose binding, I-A mutant MERS-CoV and SARS-CoV-2 were highly attenuated in both cell culture and mice, indicating that this isoleucine residue acts as a gate that controls ADP-ribose binding for efficient virus replication. These results highlight the function of this highly conserved residue and provide unique insight into how macrodomains control ADP-ribose binding and hydrolysis to promote viral replication.
Collapse
Affiliation(s)
- Catherine M. Kerr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | | | - Yousef M. Alhammad
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | - Joseph J. O’Connor
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | - Roshan Ghimire
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | - Rakshya Shrestha
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | - Reem Khattabi
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | - Pradtahna Saenjamsai
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | | | - Peter R. McDonald
- High Throughput Screening Laboratory, University of Kansas, Lawrence, Kansas 66047, USA
| | - Philip Gao
- Protein Production Group, University of Kansas, Lawrence, Kansas 66047, USA
| | - David K. Johnson
- Molecular Graphics and Modeling Laboratory and the Computational Chemical Biology Core, University of Kansas, Lawrence, Kansas 66047, USA
| | - Sunil More
- High Throughput Screening Laboratory, University of Kansas, Lawrence, Kansas 66047, USA
- Oklahoma Center for Respiratory and Infectious Diseases, College of Veterinary Medicine, Stillwater, Oklahoma 74078, USA
| | - Anuradha Roy
- High Throughput Screening Laboratory, University of Kansas, Lawrence, Kansas 66047, USA
| | - Rudragouda Channappanavar
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, Oklahoma 74078, USA
- Oklahoma Center for Respiratory and Infectious Diseases, College of Veterinary Medicine, Stillwater, Oklahoma 74078, USA
| | - Anthony R. Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| |
Collapse
|
21
|
Rijpkema KJ, Schuller M, van der Veer MS, Rieken S, Chang DLR, Balić P, Todorov A, Minnee H, Wijngaarden S, Matos IA, Hoch NC, Codée JDC, Ahel I, Filippov DV. Synthesis of Structural ADP-Ribose Analogues as Inhibitors for SARS-CoV-2 Macrodomain 1. Org Lett 2024; 26:5700-5704. [PMID: 38935522 PMCID: PMC11249776 DOI: 10.1021/acs.orglett.4c01792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
Protein adenosine diphosphate (ADP)-ribosylation is crucial for a proper immune response. Accordingly, viruses have evolved ADP-ribosyl hydrolases to remove these modifications, a prominent example being the SARS-CoV-2 NSP3 macrodomain, "Mac1". Consequently, inhibitors are developed by testing large libraries of small molecule candidates, with considerable success. However, a relatively underexplored angle in design pertains to the synthesis of structural substrate mimics. Here, we present the synthesis and biophysical activity of novel adenosine diphosphate ribose (ADPr) analogues as SARS-CoV-2 NSP3 Mac1 inhibitors.
Collapse
Affiliation(s)
- Koen J. Rijpkema
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Marion Schuller
- Sir
William Dunn School of Pathology, University
of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
| | - Miriam S. van der Veer
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Sjoerd Rieken
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Diego L. R. Chang
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Pascal Balić
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Alex Todorov
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Hugo Minnee
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Sven Wijngaarden
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Isaac A. Matos
- Sir
William Dunn School of Pathology, University
of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
- Departamento
de Bioquímica, Instituto de Química, Universidade de Sao Paulo, Av. Prof. Lineu Prestes, 748,
Cidade Universitária, Sao Paulo 055800-000, Brasil
| | - Nicolas C. Hoch
- Departamento
de Bioquímica, Instituto de Química, Universidade de Sao Paulo, Av. Prof. Lineu Prestes, 748,
Cidade Universitária, Sao Paulo 055800-000, Brasil
| | - Jeroen D. C. Codée
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Ivan Ahel
- Sir
William Dunn School of Pathology, University
of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
| | - Dmitri V. Filippov
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
22
|
Xie S, Cao S, Wu J, Xie Z, Liu YT, Fu W, Zhao Q, Liu L, Yang L, Li J. In silico-based screening of natural products as potential inhibitors of SARS-CoV-2 macrodomain 1. J Biomol Struct Dyn 2024; 42:5229-5237. [PMID: 37349935 DOI: 10.1080/07391102.2023.2226745] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) worldwide has led to over 600 million cases of coronavirus disease 2019 (COVID-19). Identifying effective molecules that can counteract the virus is imperative. SARS-CoV-2 macrodomain 1 (Mac1) represents a promising antiviral drug target. In this study, we predicted potential inhibitors of SARS-CoV-2 Mac1 from natural products using in silico-based screening. Based on the high-resolution crystal structure of Mac1 bound to its endogenous ligand ADP-ribose (ADPr), we first performed a docking-based virtual screening of Mac1 inhibitors against a natural product library and obtained five representative compounds (MC1-MC5) by clustering analysis. All five compounds were stably bound to Mac1 during 500 ns long molecular dynamics simulations. The binding free energy of these compounds to Mac1 was calculated using molecular mechanics generalized Born surface area and further refined with localized volume-based metadynamics. The results demonstrated that both MC1 (-9.8 ± 0.3 kcal/mol) and MC5 (-9.6 ± 0.3 kcal/mol) displayed more favorable affinities to Mac1 with respect to ADPr (-8.9 ± 0.3 kcal/mol), highlighting their potential as potent SARS-CoV-2 Mac1 inhibitors. Overall, this study provides potential SARS-CoV-2 Mac1 inhibitors, which may pave the way for developing effective therapeutics for COVID-19.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Song Xie
- College of Chemistry, Fuzhou University, Fuzhou, China
| | - Shoujing Cao
- College of Chemistry, Fuzhou University, Fuzhou, China
| | - Juhong Wu
- College of Chemistry, Fuzhou University, Fuzhou, China
| | - Zhinuo Xie
- College of Chemistry, Fuzhou University, Fuzhou, China
| | | | - Wei Fu
- College of Chemistry, Fuzhou University, Fuzhou, China
| | - Qianqian Zhao
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Lin Liu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lin Yang
- Department of Pharmacy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Jinyu Li
- College of Chemistry, Fuzhou University, Fuzhou, China
| |
Collapse
|
23
|
Ribeiro VC, Russo LC, Hoch NC. PARP14 is regulated by the PARP9/DTX3L complex and promotes interferon γ-induced ADP-ribosylation. EMBO J 2024; 43:2908-2928. [PMID: 38834852 PMCID: PMC11251048 DOI: 10.1038/s44318-024-00125-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 06/06/2024] Open
Abstract
Protein ADP-ribosylation plays important but ill-defined roles in antiviral signalling cascades such as the interferon response. Several viruses of clinical interest, including coronaviruses, express hydrolases that reverse ADP-ribosylation catalysed by host enzymes, suggesting an important role for this modification in host-pathogen interactions. However, which ADP-ribosyltransferases mediate host ADP-ribosylation, what proteins and pathways they target and how these modifications affect viral infection and pathogenesis is currently unclear. Here we show that host ADP-ribosyltransferase activity induced by IFNγ signalling depends on PARP14 catalytic activity and that the PARP9/DTX3L complex is required to uphold PARP14 protein levels via post-translational mechanisms. Both the PARP9/DTX3L complex and PARP14 localise to IFNγ-induced cytoplasmic inclusions containing ADP-ribosylated proteins, and both PARP14 itself and DTX3L are likely targets of PARP14 ADP-ribosylation. We provide evidence that these modifications are hydrolysed by the SARS-CoV-2 Nsp3 macrodomain, shedding light on the intricate cross-regulation between IFN-induced ADP-ribosyltransferases and the potential roles of the coronavirus macrodomain in counteracting their activity.
Collapse
Affiliation(s)
| | | | - Nícolas Carlos Hoch
- Department of Biochemistry, University of São Paulo, São Paulo, 05508-000, Brazil.
| |
Collapse
|
24
|
Wankowicz SA, Ravikumar A, Sharma S, Riley B, Raju A, Hogan DW, Flowers J, van den Bedem H, Keedy DA, Fraser JS. Automated multiconformer model building for X-ray crystallography and cryo-EM. eLife 2024; 12:RP90606. [PMID: 38904665 PMCID: PMC11192534 DOI: 10.7554/elife.90606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024] Open
Abstract
In their folded state, biomolecules exchange between multiple conformational states that are crucial for their function. Traditional structural biology methods, such as X-ray crystallography and cryogenic electron microscopy (cryo-EM), produce density maps that are ensemble averages, reflecting molecules in various conformations. Yet, most models derived from these maps explicitly represent only a single conformation, overlooking the complexity of biomolecular structures. To accurately reflect the diversity of biomolecular forms, there is a pressing need to shift toward modeling structural ensembles that mirror the experimental data. However, the challenge of distinguishing signal from noise complicates manual efforts to create these models. In response, we introduce the latest enhancements to qFit, an automated computational strategy designed to incorporate protein conformational heterogeneity into models built into density maps. These algorithmic improvements in qFit are substantiated by superior Rfree and geometry metrics across a wide range of proteins. Importantly, unlike more complex multicopy ensemble models, the multiconformer models produced by qFit can be manually modified in most major model building software (e.g., Coot) and fit can be further improved by refinement using standard pipelines (e.g., Phenix, Refmac, Buster). By reducing the barrier of creating multiconformer models, qFit can foster the development of new hypotheses about the relationship between macromolecular conformational dynamics and function.
Collapse
Affiliation(s)
- Stephanie A Wankowicz
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
| | - Ashraya Ravikumar
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
| | - Shivani Sharma
- Structural Biology Initiative, CUNY Advanced Science Research CenterNew YorkUnited States
- Ph.D. Program in Biology, The Graduate Center, City University of New YorkNew YorkUnited States
| | - Blake Riley
- Structural Biology Initiative, CUNY Advanced Science Research CenterNew YorkUnited States
| | - Akshay Raju
- Structural Biology Initiative, CUNY Advanced Science Research CenterNew YorkUnited States
| | - Daniel W Hogan
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
| | - Jessica Flowers
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
| | - Henry van den Bedem
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
- Atomwise IncSan FranciscoUnited States
| | - Daniel A Keedy
- Structural Biology Initiative, CUNY Advanced Science Research CenterNew YorkUnited States
- Department of Chemistry and Biochemistry, City College of New YorkNew YorkUnited States
- Ph.D. Programs in Biochemistry, Biology and Chemistry, The Graduate Center, City University of New YorkNew YorkUnited States
| | - James S Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
25
|
Wu T, Gale‐Day ZJ, Gestwicki JE. DSFworld: A flexible and precise tool to analyze differential scanning fluorimetry data. Protein Sci 2024; 33:e5022. [PMID: 38747440 PMCID: PMC11095082 DOI: 10.1002/pro.5022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/22/2024] [Accepted: 04/27/2024] [Indexed: 05/19/2024]
Abstract
Differential scanning fluorimetry (DSF) is a method to determine the apparent melting temperature (Tma) of a purified protein. In DSF, the raw unfolding curves from which Tma is calculated vary widely in shape and complexity. However, the tools available for calculating Tma are only compatible with the simplest of DSF curves, hindering many otherwise straightforward applications of the technology. To overcome this limitation, we designed new mathematical models for Tma calculation that accommodate common forms of variation in DSF curves, including the number of transitions, the presence of high initial signal, and temperature-dependent signal decay. When tested these models against DSFbase, an open-source database of 6235 raw, real-life DSF curves, these models outperformed the existing standard approaches of sigmoid fitting and maximum of the first derivative. To make these models accessible, we created an open-source software and website, DSFworld (https://gestwickilab.shinyapps.io/dsfworld/). In addition to these improved fitting capabilities, DSFworld also includes features that overcome the practical limitations of many analysis workflows, including automatic reformatting of raw data exported from common qPCR instruments, labeling of data based on experimental variables, and flexible interactive plotting. We hope that DSFworld will enable more streamlined and accurate calculation of Tma values for DSF experiments.
Collapse
Affiliation(s)
- Taiasean Wu
- Department of Pharmaceutical Chemistry, Chemistry & Chemical Biology Program and the Institute for Neurodegenerative DiseasesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Zachary J. Gale‐Day
- Department of Pharmaceutical Chemistry, Chemistry & Chemical Biology Program and the Institute for Neurodegenerative DiseasesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Jason E. Gestwicki
- Department of Pharmaceutical Chemistry, Chemistry & Chemical Biology Program and the Institute for Neurodegenerative DiseasesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
26
|
Xiao YQ, Long J, Zhang SS, Zhu YY, Gu SX. Non-peptidic inhibitors targeting SARS-CoV-2 main protease: A review. Bioorg Chem 2024; 147:107380. [PMID: 38636432 DOI: 10.1016/j.bioorg.2024.107380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
The COVID-19 pandemic continues to pose a threat to global health, and sounds the alarm for research & development of effective anti-coronavirus drugs, which are crucial for the patients and urgently needed for the current epidemic and future crisis. The main protease (Mpro) stands as an essential enzyme in the maturation process of SARS-CoV-2, playing an irreplaceable role in regulating viral RNA replication and transcription. It has emerged as an ideal target for developing antiviral agents against SARS-CoV-2 due to its high conservation and the absence of homologous proteases in the human body. Among the SARS-CoV-2 Mpro inhibitors, non-peptidic compounds hold promising prospects owing to their excellent antiviral activity and improved metabolic stability. In this review, we offer an overview of research progress concerning non-peptidic SARS-CoV-2 Mpro inhibitors since 2020. The efforts delved into molecular structures, structure-activity relationships (SARs), biological activity, and binding modes of these inhibitors with Mpro. This review aims to provide valuable clues and insights for the development of anti-SARS-CoV-2 agents as well as broad-spectrum coronavirus Mpro inhibitors.
Collapse
Affiliation(s)
- Ya-Qi Xiao
- School of Chemical Engineering and Pharmacy, Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jiao Long
- School of Chemical Engineering and Pharmacy, Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China
| | - Shuang-Shuang Zhang
- School of Chemical Engineering and Pharmacy, Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Yuan-Yuan Zhu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Shuang-Xi Gu
- School of Chemical Engineering and Pharmacy, Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China.
| |
Collapse
|
27
|
Peng K, Wallace SD, Bagde SR, Shang J, Anmangandla A, Jana S, Fromme JC, Lin H. GS-441524-Diphosphate-Ribose Derivatives as Nanomolar Binders and Fluorescence Polarization Tracers for SARS-CoV-2 and Other Viral Macrodomains. ACS Chem Biol 2024; 19:1093-1105. [PMID: 38646883 PMCID: PMC11106745 DOI: 10.1021/acschembio.4c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/28/2024] [Accepted: 04/09/2024] [Indexed: 04/23/2024]
Abstract
Viral macrodomains that can bind to or hydrolyze protein adenosine diphosphate ribosylation (ADP-ribosylation) have emerged as promising targets for antiviral drug development. Many inhibitor development efforts have been directed against the severe acute respiratory syndrome coronavirus 2 macrodomain 1 (SARS-CoV-2 Mac1). However, potent inhibitors for viral macrodomains are still lacking, with the best inhibitors still in the micromolar range. Based on GS-441524, a remdesivir precursor, and our previous studies, we have designed and synthesized potent binders of SARS-CoV-2 Mac1 and other viral macrodomains including those of Middle East respiratory syndrome coronavirus (MERS-CoV), Venezuelan equine encephalitis virus (VEEV), and Chikungunya virus (CHIKV). We show that the 1'-CN group of GS-441524 promotes binding to all four viral macrodomains tested while capping the 1″-OH of GS-441524-diphosphate-ribose with a simple phenyl ring further contributes to binding. Incorporating these two structural features, the best binders show 20- to 6000-fold increases in binding affinity over ADP-ribose for SARS-CoV-2, MERS-CoV, VEEV, and CHIKV macrodomains. Moreover, building on these potent binders, we have developed two highly sensitive fluorescence polarization tracers that only require nanomolar proteins and can effectively resolve the binding affinities of nanomolar inhibitors. Our findings and probes described here will facilitate future development of more potent viral macrodomain inhibitors.
Collapse
Affiliation(s)
- Kewen Peng
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Shamar D. Wallace
- Department
of Molecular Biology and Genetics, Weill Institute for Cell and Molecular
Biology, Cornell University, Ithaca, New York 14853, United States
| | - Saket R. Bagde
- Department
of Molecular Biology and Genetics, Weill Institute for Cell and Molecular
Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jialin Shang
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Ananya Anmangandla
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Sadhan Jana
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - J. Christopher Fromme
- Department
of Molecular Biology and Genetics, Weill Institute for Cell and Molecular
Biology, Cornell University, Ithaca, New York 14853, United States
| | - Hening Lin
- Howard
Hughes Medical Institute, Department of Chemistry and Chemical Biology,
Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
28
|
Wazir S, Parviainen TAO, Pfannenstiel JJ, Duong MTH, Cluff D, Sowa ST, Galera-Prat A, Ferraris D, Maksimainen MM, Fehr AR, Heiskanen JP, Lehtiö L. Discovery of 2-Amide-3-methylester Thiophenes that Target SARS-CoV-2 Mac1 and Repress Coronavirus Replication, Validating Mac1 as an Antiviral Target. J Med Chem 2024; 67:6519-6536. [PMID: 38592023 PMCID: PMC11144470 DOI: 10.1021/acs.jmedchem.3c02451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has made it clear that further development of antiviral therapies will be needed. Here, we describe small-molecule inhibitors for SARS-CoV-2 Mac1, which counters ADP-ribosylation-mediated innate immune responses. Three high-throughput screening hits had the same 2-amide-3-methylester thiophene scaffold. We studied the compound binding mode using X-ray crystallography, allowing us to design analogues. Compound 27 (MDOLL-0229) had an IC50 of 2.1 μM and was selective for CoV Mac1 proteins after profiling for activity against a panel of viral and human proteins. The improved potency allowed testing of its effect on virus replication, and indeed, 27 inhibited replication of both murine hepatitis virus (MHV) prototypes CoV and SARS-CoV-2. Sequencing of a drug-resistant MHV identified mutations in Mac1, further demonstrating the specificity of 27. Compound 27 is the first Mac1-targeted small molecule demonstrated to inhibit coronavirus replication in a cell model.
Collapse
Affiliation(s)
- Sarah Wazir
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Tomi A. O. Parviainen
- Research Unit of Sustainable Chemistry, University of Oulu, P.O. Box 4300, 90014 Oulu, Finland
| | - Jessica J. Pfannenstiel
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States of America
| | - Men Thi Hoai Duong
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Daniel Cluff
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States of America
| | - Sven T. Sowa
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Albert Galera-Prat
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Dana Ferraris
- McDaniel College Department of Chemistry, 2 College Hill, Westminster, MD 21157, USA
| | - Mirko M. Maksimainen
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Anthony R. Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States of America
| | - Juha P. Heiskanen
- Research Unit of Sustainable Chemistry, University of Oulu, P.O. Box 4300, 90014 Oulu, Finland
| | - Lari Lehtiö
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| |
Collapse
|
29
|
Jalencas X, Berg H, Espeland LO, Sreeramulu S, Kinnen F, Richter C, Georgiou C, Yadrykhinsky V, Specker E, Jaudzems K, Miletić T, Harmel R, Gribbon P, Schwalbe H, Brenk R, Jirgensons A, Zaliani A, Mestres J. Design, quality and validation of the EU-OPENSCREEN fragment library poised to a high-throughput screening collection. RSC Med Chem 2024; 15:1176-1188. [PMID: 38665834 PMCID: PMC11042166 DOI: 10.1039/d3md00724c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/08/2024] [Indexed: 04/28/2024] Open
Abstract
The EU-OPENSCREEN (EU-OS) European Research Infrastructure Consortium (ERIC) is a multinational, not-for-profit initiative that integrates high-capacity screening platforms and chemistry groups across Europe to facilitate research in chemical biology and early drug discovery. Over the years, the EU-OS has assembled a high-throughput screening compound collection, the European Chemical Biology Library (ECBL), that contains approximately 100 000 commercially available small molecules and a growing number of thousands of academic compounds crowdsourced through our network of European and non-European chemists. As an extension of the ECBL, here we describe the computational design, quality control and use case screenings of the European Fragment Screening Library (EFSL) composed of 1056 mini and small chemical fragments selected from a substructure analysis of the ECBL. Access to the EFSL is open to researchers from both academia and industry. Using EFSL, eight fragment screening campaigns using different structural and biophysical methods have successfully identified fragment hits in the last two years. As one of the highlighted projects for antibiotics, we describe the screening by Bio-Layer Interferometry (BLI) of the EFSL, the identification of a 35 μM fragment hit targeting the beta-ketoacyl-ACP synthase 2 (FabF), its binding confirmation to the protein by X-ray crystallography (PDB 8PJ0), its subsequent rapid exploration of its surrounding chemical space through hit-picking of ECBL compounds that contain the fragment hit as a core substructure, and the final binding confirmation of two follow-up hits by X-ray crystallography (PDB 8R0I and 8R1V).
Collapse
Affiliation(s)
- Xavier Jalencas
- Research Group on Systems Pharmacology, Research Program on Biomedical Informatics (GRIB), IMIM Hospital del Mar Medical Research Institute Parc de Recerca Biomèdica (PRBB), Doctor Aiguader 88 08003 Barcelona Spain
| | - Hannes Berg
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry Max-von-Laue-Str. 7 60438 Frankfurt/M Germany
- Chemical Biology, Goethe University Max-von-Laue-Str. 7 60438 Frankfurt/M Germany
| | - Ludvik Olai Espeland
- Department of Biomedicine, University of Bergen Jonas Lies Vei 91 5020 Bergen Norway
- Department of Chemistry, University of Bergen Allégaten 41 5007 Bergen Norway
| | - Sridhar Sreeramulu
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry Max-von-Laue-Str. 7 60438 Frankfurt/M Germany
- Chemical Biology, Goethe University Max-von-Laue-Str. 7 60438 Frankfurt/M Germany
| | - Franziska Kinnen
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry Max-von-Laue-Str. 7 60438 Frankfurt/M Germany
- Chemical Biology, Goethe University Max-von-Laue-Str. 7 60438 Frankfurt/M Germany
| | - Christian Richter
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry Max-von-Laue-Str. 7 60438 Frankfurt/M Germany
- Chemical Biology, Goethe University Max-von-Laue-Str. 7 60438 Frankfurt/M Germany
| | - Charis Georgiou
- Department of Biomedicine, University of Bergen Jonas Lies Vei 91 5020 Bergen Norway
| | | | - Edgar Specker
- EU-OPENSCREEN ERIC Robert-Rössle Straße 10 13125 Berlin Germany
| | - Kristaps Jaudzems
- Latvian Institute of Organic Synthesis Aizkraules 21 Riga LV-1006 Latvia
| | - Tanja Miletić
- EU-OPENSCREEN ERIC Robert-Rössle Straße 10 13125 Berlin Germany
| | - Robert Harmel
- EU-OPENSCREEN ERIC Robert-Rössle Straße 10 13125 Berlin Germany
| | - Phil Gribbon
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP) Schnackenburgallee 114 22525 Hamburg Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD) Theodor Stern Kai 7 60590 Frankfurt Germany
| | - Harald Schwalbe
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry Max-von-Laue-Str. 7 60438 Frankfurt/M Germany
- Chemical Biology, Goethe University Max-von-Laue-Str. 7 60438 Frankfurt/M Germany
- Instruct-ERIC Oxford House, Parkway Court, John Smith Drive Oxford OX4 2JY UK
| | - Ruth Brenk
- Department of Biomedicine, University of Bergen Jonas Lies Vei 91 5020 Bergen Norway
- Computational Biology Unit, University of Bergen Thormøhlensgate 55 5008 Bergen Norway
| | - Aigars Jirgensons
- Latvian Institute of Organic Synthesis Aizkraules 21 Riga LV-1006 Latvia
| | - Andrea Zaliani
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP) Schnackenburgallee 114 22525 Hamburg Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD) Theodor Stern Kai 7 60590 Frankfurt Germany
| | - Jordi Mestres
- Research Group on Systems Pharmacology, Research Program on Biomedical Informatics (GRIB), IMIM Hospital del Mar Medical Research Institute Parc de Recerca Biomèdica (PRBB), Doctor Aiguader 88 08003 Barcelona Spain
- Institut de Quimica Computacional i Catalisi, Facultat de Ciencies, Universitat de Girona Maria Aurelia Capmany 69 17003 Girona Catalonia Spain
| |
Collapse
|
30
|
Khan O, Jones G, Lazou M, Joseph-McCarthy D, Kozakov D, Beglov D, Vajda S. Expanding FTMap for Fragment-Based Identification of Pharmacophore Regions in Ligand Binding Sites. J Chem Inf Model 2024; 64:2084-2100. [PMID: 38456842 PMCID: PMC11694573 DOI: 10.1021/acs.jcim.3c01969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
The knowledge of ligand binding hot spots and of the important interactions within such hot spots is crucial for the design of lead compounds in the early stages of structure-based drug discovery. The computational solvent mapping server FTMap can reliably identify binding hot spots as consensus clusters, free energy minima that bind a variety of organic probe molecules. However, in its current implementation, FTMap provides limited information on regions within the hot spots that tend to interact with specific pharmacophoric features of potential ligands. E-FTMap is a new server that expands on the original FTMap protocol. E-FTMap uses 119 organic probes, rather than the 16 in the original FTMap, to exhaustively map binding sites, and identifies pharmacophore features as atomic consensus sites where similar chemical groups bind. We validate E-FTMap against a set of 109 experimentally derived structures of fragment-lead pairs, finding that highly ranked pharmacophore features overlap with the corresponding atoms in both fragments and lead compounds. Additionally, comparisons of mapping results to ensembles of bound ligands reveal that pharmacophores generated with E-FTMap tend to sample highly conserved protein-ligand interactions. E-FTMap is available as a web server at https://eftmap.bu.edu.
Collapse
Affiliation(s)
- Omeir Khan
- Department of Chemistry, Boston University, Boston, MA 02215
| | - George Jones
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794
| | - Maria Lazou
- Department of Biomedical Engineering, Boston University, Boston, MA 02215
| | | | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794
| | - Dmitri Beglov
- Department of Biomedical Engineering, Boston University, Boston, MA 02215
- Acpharis Inc, Holliston, MA 01746
| | - Sandor Vajda
- Department of Chemistry, Boston University, Boston, MA 02215
- Department of Biomedical Engineering, Boston University, Boston, MA 02215
| |
Collapse
|
31
|
Huang CY, Metz A, Lange R, Artico N, Potot C, Hazemann J, Müller M, Dos Santos M, Chambovey A, Ritz D, Eris D, Meyer S, Bourquin G, Sharpe M, Mac Sweeney A. Fragment-based screening targeting an open form of the SARS-CoV-2 main protease binding pocket. Acta Crystallogr D Struct Biol 2024; 80:123-136. [PMID: 38289714 PMCID: PMC10836397 DOI: 10.1107/s2059798324000329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
To identify starting points for therapeutics targeting SARS-CoV-2, the Paul Scherrer Institute and Idorsia decided to collaboratively perform an X-ray crystallographic fragment screen against its main protease. Fragment-based screening was carried out using crystals with a pronounced open conformation of the substrate-binding pocket. Of 631 soaked fragments, a total of 29 hits bound either in the active site (24 hits), a remote binding pocket (three hits) or at crystal-packing interfaces (two hits). Notably, two fragments with a pose that was sterically incompatible with a more occluded crystal form were identified. Two isatin-based electrophilic fragments bound covalently to the catalytic cysteine residue. The structures also revealed a surprisingly strong influence of the crystal form on the binding pose of three published fragments used as positive controls, with implications for fragment screening by crystallography.
Collapse
Affiliation(s)
- Chia-Ying Huang
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Alexander Metz
- Idorsia Pharmaceuticals Ltd, 4123 Allschwil, Switzerland
| | - Roland Lange
- Idorsia Pharmaceuticals Ltd, 4123 Allschwil, Switzerland
| | - Nadia Artico
- Idorsia Pharmaceuticals Ltd, 4123 Allschwil, Switzerland
| | - Céline Potot
- Idorsia Pharmaceuticals Ltd, 4123 Allschwil, Switzerland
| | | | - Manon Müller
- Idorsia Pharmaceuticals Ltd, 4123 Allschwil, Switzerland
| | | | | | - Daniel Ritz
- Idorsia Pharmaceuticals Ltd, 4123 Allschwil, Switzerland
| | - Deniz Eris
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Solange Meyer
- Idorsia Pharmaceuticals Ltd, 4123 Allschwil, Switzerland
| | | | - May Sharpe
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | | |
Collapse
|
32
|
Song L, Gao S, Ye B, Yang M, Cheng Y, Kang D, Yi F, Sun JP, Menéndez-Arias L, Neyts J, Liu X, Zhan P. Medicinal chemistry strategies towards the development of non-covalent SARS-CoV-2 M pro inhibitors. Acta Pharm Sin B 2024; 14:87-109. [PMID: 38239241 PMCID: PMC10792984 DOI: 10.1016/j.apsb.2023.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/10/2023] [Accepted: 08/02/2023] [Indexed: 01/22/2024] Open
Abstract
The main protease (Mpro) of SARS-CoV-2 is an attractive target in anti-COVID-19 therapy for its high conservation and major role in the virus life cycle. The covalent Mpro inhibitor nirmatrelvir (in combination with ritonavir, a pharmacokinetic enhancer) and the non-covalent inhibitor ensitrelvir have shown efficacy in clinical trials and have been approved for therapeutic use. Effective antiviral drugs are needed to fight the pandemic, while non-covalent Mpro inhibitors could be promising alternatives due to their high selectivity and favorable druggability. Numerous non-covalent Mpro inhibitors with desirable properties have been developed based on available crystal structures of Mpro. In this article, we describe medicinal chemistry strategies applied for the discovery and optimization of non-covalent Mpro inhibitors, followed by a general overview and critical analysis of the available information. Prospective viewpoints and insights into current strategies for the development of non-covalent Mpro inhibitors are also discussed.
Collapse
Affiliation(s)
- Letian Song
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Shenghua Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| | - Bing Ye
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Mianling Yang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yusen Cheng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Fan Yi
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Luis Menéndez-Arias
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas & Autonomous University of Madrid), Madrid 28049, Spain
| | - Johan Neyts
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven 3000, Belgium
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
33
|
Li X, Song Y. Targeting SARS-CoV-2 nonstructural protein 3: Function, structure, inhibition, and perspective in drug discovery. Drug Discov Today 2024; 29:103832. [PMID: 37977285 PMCID: PMC10872262 DOI: 10.1016/j.drudis.2023.103832] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
As a highly contagious human pathogen, severe acute respiratory syndrome-associated coronavirus-2 (SARS-CoV-2) has infected billions of people worldwide with more than 6 million deaths. With several effective vaccines and antiviral drugs now available, the SARS-CoV-2 pandemic been brought under control. However, a new pathogenic coronavirus could emerge in the future, given the zoonotic nature of this virus. Natural evolution and drug-induced mutations of SARS-CoV-2 also require continued efforts for new anti-coronavirus drugs. Nonstructural protein (nsp) 3 of CoVs is a large, multifunctional protein, containing a papain-like protease (PLpro) and a macrodomain (Mac1), which are essential for viral replication. Here, we provide a comprehensive review of the function, structure, and inhibition of SARS-CoV/-CoV-2 PLpro and Mac1. We also discuss advances in, and challenges to, the discovery of drugs against these targets.
Collapse
Affiliation(s)
- Xin Li
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA.
| | - Yongcheng Song
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
34
|
Wazir S, Parviainen TAO, Pfannenstiel JJ, Duong MTH, Cluff D, Sowa ST, Galera-Prat A, Ferraris D, Maksimainen MM, Fehr AR, Heiskanen JP, Lehtiö L. Discovery of 2-amide-3-methylester thiophenes that target SARS-CoV-2 Mac1 and repress coronavirus replication, validating Mac1 as an anti-viral target. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555062. [PMID: 38234730 PMCID: PMC10793406 DOI: 10.1101/2023.08.28.555062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has made it clear that further development of antiviral therapies will be needed to combat additional SARS-CoV-2 variants or novel CoVs. Here, we describe small molecule inhibitors for SARS-CoV-2 Mac1, which counters ADP-ribosylation mediated innate immune responses. The compounds inhibiting Mac1 were discovered through high-throughput screening (HTS) using a protein FRET-based competition assay and the best hit compound had an IC50 of 14 μM. Three validated HTS hits have the same 2-amide-3-methylester thiophene scaffold and the scaffold was selected for structure-activity relationship (SAR) studies through commercial and synthesized analogs. We studied the compound binding mode in detail using X-ray crystallography and this allowed us to focus on specific features of the compound and design analogs. Compound 27 (MDOLL-0229) had an IC50 of 2.1 μM and was generally selective for CoV Mac1 proteins after profiling for activity against a panel of viral and human ADP-ribose binding proteins. The improved potency allowed testing of its effect on virus replication and indeed, 27 inhibited replication of both MHVa prototype CoV, and SARS-CoV-2. Furthermore, sequencing of a drug-resistant MHV identified mutations in Mac1, further demonstrating the specificity of 27. Compound 27 is the first Mac1 targeted small molecule demonstrated to inhibit coronavirus replication in a cell model. This, together with its well-defined binding mode, makes 27 a good candidate for further hit/lead-optimization efforts.
Collapse
Affiliation(s)
- Sarah Wazir
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| | - Tomi A. O. Parviainen
- Research Unit of Sustainable Chemistry, University of Oulu, P.O. Box 4300, FI-90014 Oulu, Finland
| | - Jessica J. Pfannenstiel
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Men Thi Hoai Duong
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| | - Daniel Cluff
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Sven T. Sowa
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| | - Albert Galera-Prat
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| | - Dana Ferraris
- McDaniel College Department of Chemistry, 2 College Hill, Westminster, MD, USA
| | - Mirko M. Maksimainen
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| | - Anthony R. Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Juha P. Heiskanen
- Research Unit of Sustainable Chemistry, University of Oulu, P.O. Box 4300, FI-90014 Oulu, Finland
| | - Lari Lehtiö
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| |
Collapse
|
35
|
Wu T, Hornsby M, Zhu L, Yu JC, Shokat KM, Gestwicki JE. Protocol for performing and optimizing differential scanning fluorimetry experiments. STAR Protoc 2023; 4:102688. [PMID: 37943662 PMCID: PMC10663957 DOI: 10.1016/j.xpro.2023.102688] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/21/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023] Open
Abstract
Differential scanning fluorimetry (DSF) is a widely used technique for determining the apparent melting temperature (Tma) of a purified protein. Here, we present a protocol for performing and optimizing DSF experiments. We describe steps for designing and performing the experiment, analyzing data, and optimization. We provide benchmarks for typical Tmas and ΔTmas, standard assay conditions, and upper and lower limits of commonly altered experimental variables. We also detail common pitfalls of DSF and ways to avoid, identify, and overcome them.
Collapse
Affiliation(s)
- Taiasean Wu
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Michael Hornsby
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 941583, USA
| | - Lawrence Zhu
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Joshua C Yu
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 941583, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
36
|
Gahbauer S, DeLeon C, Braz JM, Craik V, Kang HJ, Wan X, Huang XP, Billesbølle CB, Liu Y, Che T, Deshpande I, Jewell M, Fink EA, Kondratov IS, Moroz YS, Irwin JJ, Basbaum AI, Roth BL, Shoichet BK. Docking for EP4R antagonists active against inflammatory pain. Nat Commun 2023; 14:8067. [PMID: 38057319 PMCID: PMC10700596 DOI: 10.1038/s41467-023-43506-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 11/12/2023] [Indexed: 12/08/2023] Open
Abstract
The lipid prostaglandin E2 (PGE2) mediates inflammatory pain by activating G protein-coupled receptors, including the prostaglandin E2 receptor 4 (EP4R). Nonsteroidal anti-inflammatory drugs (NSAIDs) reduce nociception by inhibiting prostaglandin synthesis, however, the disruption of upstream prostanoid biosynthesis can lead to pleiotropic effects including gastrointestinal bleeding and cardiac complications. In contrast, by acting downstream, EP4R antagonists may act specifically as anti-inflammatory agents and, to date, no selective EP4R antagonists have been approved for human use. In this work, seeking to diversify EP4R antagonist scaffolds, we computationally dock over 400 million compounds against an EP4R crystal structure and experimentally validate 71 highly ranked, de novo synthesized molecules. Further, we show how structure-based optimization of initial docking hits identifies a potent and selective antagonist with 16 nanomolar potency. Finally, we demonstrate favorable pharmacokinetics for the discovered compound as well as anti-allodynic and anti-inflammatory activity in several preclinical pain models in mice.
Collapse
Affiliation(s)
- Stefan Gahbauer
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Chelsea DeLeon
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27514, USA
| | - Joao M Braz
- Department of Anatomy, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Veronica Craik
- Department of Anatomy, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Hye Jin Kang
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27514, USA
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Xiaobo Wan
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Xi-Ping Huang
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27514, USA
| | - Christian B Billesbølle
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Yongfeng Liu
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27514, USA
| | - Tao Che
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27514, USA
- Center of Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ishan Deshpande
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Madison Jewell
- Department of Anatomy, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Elissa A Fink
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Ivan S Kondratov
- Enamine Ltd., Kyiv, Ukraine
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Yurii S Moroz
- Chemspace LLC, Kyiv, Ukraine
- National Taras Shevchenko University of Kyiv, Kyiv, Ukraine
| | - John J Irwin
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Allan I Basbaum
- Department of Anatomy, University of California San Francisco, San Francisco, CA, 94158, USA.
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27514, USA.
- National Institute of Mental Health Psychoactive Drug Screening Program, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27514, USA.
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill Eshelman School of Pharmacy, Chapel Hill, NC, 27514, USA.
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
37
|
Yazdani B, Sirous H, Brogi S, Calderone V. Structure-Based High-Throughput Virtual Screening and Molecular Dynamics Simulation for the Discovery of Novel SARS-CoV-2 NSP3 Mac1 Domain Inhibitors. Viruses 2023; 15:2291. [PMID: 38140532 PMCID: PMC10747130 DOI: 10.3390/v15122291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Since the emergence of SARS-CoV-2, many genetic variations within its genome have been identified, but only a few mutations have been found in nonstructural proteins (NSPs). Among this class of viral proteins, NSP3 is a multidomain protein with 16 different domains, and its largest domain is known as the macrodomain or Mac1 domain. In this study, we present a virtual screening campaign in which we computationally evaluated the NCI anticancer library against the NSP3 Mac1 domain, using Molegro Virtual Docker. The top hits with the best MolDock and Re-Rank scores were selected. The physicochemical analysis and drug-like potential of the top hits were analyzed using the SwissADME data server. The binding stability and affinity of the top NSC compounds against the NSP3 Mac1 domain were analyzed using molecular dynamics (MD) simulation, using Desmond software, and their interaction energies were analyzed using the MM/GBSA method. In particular, by applying subsequent computational filters, we identified 10 compounds as possible NSP3 Mac1 domain inhibitors. Among them, after the assessment of binding energies (ΔGbind) on the whole MD trajectories, we identified the four most interesting compounds that acted as strong binders of the NSP3 Mac1 domain (NSC-358078, NSC-287067, NSC-123472, and NSC-142843), and, remarkably, it could be further characterized for developing innovative antivirals against SARS-CoV-2.
Collapse
Affiliation(s)
- Behnaz Yazdani
- Bioscience Department, Faculty of Science and Technology (FCT), Universitat de Vic—Universitat Central de Catalunya (Uvic-UCC), 08500 Vic, Spain;
| | - Hajar Sirous
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Simone Brogi
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy;
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy;
| |
Collapse
|
38
|
Calderón-Osorno M, Cordero-Laurent E, Duarte-Martínez F. CoVEx: SARS-CoV-2 Mutation Explorer for genomic surveillance. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 116:105521. [PMID: 39492419 DOI: 10.1016/j.meegid.2023.105521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
Effective management of emerging diseases relies on timely pathogen identification and monitoring. The emergence of COVID-19 in December 2019, rapidly evolved into a global pandemic, with millions of cases and deaths reported worldwide. The accumulation of SARS-CoV-2 genomes provided unprecedented opportunities for studying the virus's evolutionary dynamics, understanding the impact of mutations, and identifying emerging Variants of Interest (VOIs) and Variants of Concern (VOCs). During the COVID-19 pandemic, health systems faced challenges in promptly detecting such variants and timely notifying. To facilitate the continuous monitoring of mutations, various initiatives and open-source pipelines have been established. However, these platforms often lack integration for conducting user sequence analysis and comparing it with publicly reported data on platforms like GISAID. Here, we present CoVEx, an easy-to-use tool for analyzing and visualizing SARS-CoV-2 variant sequences obtained using Illumina sequencing technology. CoVEx integrates quality control, alignment, genome annotation, lineage designation, and mutation analysis tools. Implemented in Python, CoVEx also has a mutation explorer feature that generates interactive graphs summarising identified mutations in an intuitive manner. Similarly, it leverages the Outbreak.info package to create heatmaps highlighting the mutations associated with designated Pangolin lineages. Furthermore, by comparing mutation profiles against GISAID data, CoVEx offers valuable insights into the prevalence and distribution of mutations worldwide. We validated CoVEx using raw sequence data (n = 108) and demonstrated its accuracy in assembling sequences and predicting Pangolin and Nextclade Pango lineages. Notably, the tool revealed the emergence of a previously unreported mutation, ORF1a:I2501T, within the Costa Rica GN.1 lineage. This finding highlights CoVEx's capability to identify novel mutations in the different lineages, providing valuable information to researchers and public health decision makers. CoVEx and documentation are freely available on GitLab: https://gitlab.com/CNCA_CeNAT/covex.
Collapse
Affiliation(s)
| | - Estela Cordero-Laurent
- Costa Rican Institute for Research and Education in Nutrition and Health (INCIENSA), Tres Rios, 30301 Cartago, Costa Rica
| | - Francisco Duarte-Martínez
- Costa Rican Institute for Research and Education in Nutrition and Health (INCIENSA), Tres Rios, 30301 Cartago, Costa Rica
| |
Collapse
|
39
|
O’Connor JJ, Ferraris D, Fehr AR. An Update on the Current State of SARS-CoV-2 Mac1 Inhibitors. Pathogens 2023; 12:1221. [PMID: 37887737 PMCID: PMC10610136 DOI: 10.3390/pathogens12101221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
Non-structural protein 3 (nsp3) from all coronaviruses (CoVs) contains a conserved macrodomain, known as Mac1, that has been proposed as a potential therapeutic target for CoVs due to its critical role in viral pathogenesis. Mac1 is an ADP-ribose binding protein and ADP-ribosylhydrolase that promotes replication and blocks IFN responses, though the precise mechanisms it uses to carry out these functions remain unknown. Over the past 3 years following the onset of COVID-19, several groups have used high-throughput screening with multiple assays and chemical modifications to create unique chemical inhibitors of the SARS-CoV-2 Mac1 protein. Here, we summarize the current efforts to identify selective and potent inhibitors of SARS-CoV-2 Mac1.
Collapse
Affiliation(s)
- Joseph J. O’Connor
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA;
| | - Dana Ferraris
- Department of Chemistry, McDaniel College, 2 College Hill, Westminster, MD 21157, USA;
| | - Anthony R. Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA;
| |
Collapse
|
40
|
Ortega Granda O, Alvarez K, Mate-Perez MJ, Canard B, Ferron F, Rabah N. Macro1 domain residue F156: A hallmark of SARS-CoV-2 de-MARylation specificity. Virology 2023; 587:109845. [PMID: 37517331 DOI: 10.1016/j.virol.2023.109845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023]
Abstract
SARS-CoV-2 is a large, enveloped and positive sense single stranded RNA virus. Its genome codes for 16 non-structural proteins. The largest protein of this complex is nsp3, that contains a well conserved Macro1 domain. Viral Macro domains were shown to bind to mono-ADP-ribose (MAR) and poly-ADP-ribose (PAR) in their free form or conjugated to protein substrates. They carry ADP-ribose hydrolase activities implicated in the regulation of innate immunity. SARS-CoV-2 and SARS-CoV show widely different induction and handling of the host interferon response. Herein, we have conducted a mutational study on the key amino-acid residue F156 in SARS-CoV-2, pinpointed by bioinformatic and structural studies, and its cognate residue N157 in SARS-CoV. Our data suggest that the exchange of these residues slightly modifies ADP-ribose binding, but drastically impacts de-MARylation activity. Alanine substitutions at this position hampers PAR binding, abolishes MAR hydrolysis of SARS-CoV-2, and reduces by 70% this activity in the case of SARS-CoV.
Collapse
Affiliation(s)
| | - Karine Alvarez
- Aix Marseille Université, CNRS, AFMB UMR 7257, Marseille, France
| | | | - Bruno Canard
- Aix Marseille Université, CNRS, AFMB UMR 7257, Marseille, France
| | - François Ferron
- Aix Marseille Université, CNRS, AFMB UMR 7257, Marseille, France
| | - Nadia Rabah
- Aix Marseille Université, CNRS, AFMB UMR 7257, Marseille, France; Previous Affiliation: Université de Toulon, 83130, La Garde, France.
| |
Collapse
|
41
|
Mohammad A, Alshawaf E, Arefanian H, Marafie SK, Khan A, Wei DQ, Al-Mulla F, Abubaker J. Targeting SARS-CoV-2 Macrodomain-1 to Restore the Innate Immune Response Using In Silico Screening of Medicinal Compounds and Free Energy Calculation Approaches. Viruses 2023; 15:1907. [PMID: 37766313 PMCID: PMC10538035 DOI: 10.3390/v15091907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Among the different drug targets of SARS-CoV-2, a multi-domain protein known as NSP3 is a critical element of the translational and replication machinery. The macrodomain-I, in particular, has been reported to have an essential role in the viral attack on the innate immune response. In this study, we explore natural medicinal compounds and identify potential inhibitors to target the SARS-CoV-2-NSP3 macrodomain-I. Computational modeling and simulation tools were utilized to investigate the structural-dynamic properties using triplicates of 100 ns MD simulations. In addition, the MM/GBSA method was used to calculate the total binding free energy of each inhibitor bound to macrodomain-I. Two significant hits were identified: 3,5,7,4'-tetrahydroxyflavanone 3'-(4-hydroxybenzoic acid) and 2-hydroxy-3-O-beta-glucopyranosyl-benzoic acid. The structural-dynamic investigation of both compounds with macrodomain-I revealed stable dynamics and compact behavior. In addition, the total binding free energy for each complex demonstrated a robust binding affinity, of ΔG -61.98 ± 0.9 kcal/mol for Compound A, while for Compound B, the ΔG was -45.125 ± 2.8 kcal/mol, indicating the inhibitory potential of these compounds. In silico bioactivity and dissociation constant (KD) determination for both complexes further validated the inhibitory potency of each compound. In conclusion, the aforementioned natural products have the potential to inhibit NSP3, to directly rescue the host immune response. The current study provides the basis for novel drug development against SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Anwar Mohammad
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (E.A.); (S.K.M.); (J.A.)
| | - Eman Alshawaf
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (E.A.); (S.K.M.); (J.A.)
| | - Hossein Arefanian
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Dasman 15462, Kuwait;
| | - Sulaiman K. Marafie
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (E.A.); (S.K.M.); (J.A.)
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (A.K.); (D.-Q.W.)
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (A.K.); (D.-Q.W.)
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait;
- Translational Research Department, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Jehad Abubaker
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (E.A.); (S.K.M.); (J.A.)
| |
Collapse
|
42
|
Torretta A, Chatzicharalampous C, Ebenwaldner C, Schüler H. PARP14 is a writer, reader, and eraser of mono-ADP-ribosylation. J Biol Chem 2023; 299:105096. [PMID: 37507011 PMCID: PMC10470015 DOI: 10.1016/j.jbc.2023.105096] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
PARP14/BAL2 is a large multidomain enzyme involved in signaling pathways with relevance to cancer, inflammation, and infection. Inhibition of its mono-ADP-ribosylating PARP homology domain and its three ADP-ribosyl binding macro domains has been regarded as a potential means of therapeutic intervention. Macrodomains-2 and -3 are known to stably bind to ADP-ribosylated target proteins, but the function of macrodomain-1 has remained somewhat elusive. Here, we used biochemical assays of ADP-ribosylation levels to characterize PARP14 macrodomain-1 and the homologous macrodomain-1 of PARP9. Our results show that both macrodomains display an ADP-ribosyl glycohydrolase activity that is not directed toward specific protein side chains. PARP14 macrodomain-1 is unable to degrade poly(ADP-ribose), the enzymatic product of PARP1. The F926A mutation of PARP14 and the F244A mutation of PARP9 strongly reduced ADP-ribosyl glycohydrolase activity of the respective macrodomains, suggesting mechanistic homology to the Mac1 domain of the SARS-CoV-2 Nsp3 protein. This study adds two new enzymes to the previously known six human ADP-ribosyl glycohydrolases. Our results have key implications for how PARP14 and PARP9 will be studied and how their functions will be understood.
Collapse
Affiliation(s)
- Archimede Torretta
- Department of Chemistry, Center for Molecular Protein Science (CMPS), Lund University, Lund, Sweden
| | | | - Carmen Ebenwaldner
- Department of Chemistry, Center for Molecular Protein Science (CMPS), Lund University, Lund, Sweden
| | - Herwig Schüler
- Department of Chemistry, Center for Molecular Protein Science (CMPS), Lund University, Lund, Sweden.
| |
Collapse
|
43
|
Alhammad YM, Parthasarathy S, Ghimire R, Kerr CM, O’Connor JJ, Pfannenstiel JJ, Chanda D, Miller CA, Baumlin N, Salathe M, Unckless RL, Zuñiga S, Enjuanes L, More S, Channappanavar R, Fehr AR. SARS-CoV-2 Mac1 is required for IFN antagonism and efficient virus replication in cell culture and in mice. Proc Natl Acad Sci U S A 2023; 120:e2302083120. [PMID: 37607224 PMCID: PMC10468617 DOI: 10.1073/pnas.2302083120] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/30/2023] [Indexed: 08/24/2023] Open
Abstract
Several coronavirus (CoV) encoded proteins are being evaluated as targets for antiviral therapies for COVID-19. Included in these drug targets is the conserved macrodomain, or Mac1, an ADP-ribosylhydrolase and ADP-ribose binding protein encoded as a small domain at the N terminus of nonstructural protein 3. Utilizing point mutant recombinant viruses, Mac1 was shown to be critical for both murine hepatitis virus (MHV) and severe acute respiratory syndrome (SARS)-CoV virulence. However, as a potential drug target, it is imperative to understand how a complete Mac1 deletion impacts the replication and pathogenesis of different CoVs. To this end, we created recombinant bacterial artificial chromosomes (BACs) containing complete Mac1 deletions (ΔMac1) in MHV, MERS-CoV, and SARS-CoV-2. While we were unable to recover infectious virus from MHV or MERS-CoV ΔMac1 BACs, SARS-CoV-2 ΔMac1 was readily recovered from BAC transfection, indicating a stark difference in the requirement for Mac1 between different CoVs. Furthermore, SARS-CoV-2 ΔMac1 replicated at or near wild-type levels in multiple cell lines susceptible to infection. However, in a mouse model of severe infection, ΔMac1 was quickly cleared causing minimal pathology without any morbidity. ΔMac1 SARS-CoV-2 induced increased levels of interferon (IFN) and IFN-stimulated gene expression in cell culture and mice, indicating that Mac1 blocks IFN responses which may contribute to its attenuation. ΔMac1 infection also led to a stark reduction in inflammatory monocytes and neutrophils. These results demonstrate that Mac1 only minimally impacts SARS-CoV-2 replication, unlike MHV and MERS-CoV, but is required for SARS-CoV-2 pathogenesis and is a unique antiviral drug target.
Collapse
Affiliation(s)
- Yousef M. Alhammad
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS66047
| | | | - Roshan Ghimire
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK74078
| | - Catherine M. Kerr
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS66047
| | - Joseph J. O’Connor
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS66047
| | | | - Debarati Chanda
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK74078
| | - Caden A. Miller
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK74078
| | - Nathalie Baumlin
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS66160
| | - Matthias Salathe
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS66160
| | - Robert L. Unckless
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS66047
| | - Sonia Zuñiga
- Department of Molecular and Cell Biology, National Center of Biotechnology, Madrid28049, Spain
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, National Center of Biotechnology, Madrid28049, Spain
| | - Sunil More
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK74078
| | | | - Anthony R. Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS66047
| |
Collapse
|
44
|
Ginex T, Madruga E, Martinez A, Gil C. MBC and ECBL libraries: outstanding tools for drug discovery. Front Pharmacol 2023; 14:1244317. [PMID: 37637414 PMCID: PMC10457160 DOI: 10.3389/fphar.2023.1244317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/04/2023] [Indexed: 08/29/2023] Open
Abstract
Chemical libraries have become of utmost importance to boost drug discovery processes. It is widely accepted that the quality of a chemical library depends, among others, on its availability and chemical diversity which help in rising the chances of finding good hits. In this regard, our group has developed a source for useful chemicals named Medicinal and Biological Chemistry (MBC) library. It originates from more than 30 years of experience in drug design and discovery of our research group and has successfully provided effective hits for neurological, neurodegenerative and infectious diseases. Moreover, in the last years, the European research infrastructure for chemical biology EU-OPENSCREEN has generated the European Chemical Biology library (ECBL) to be used as a source of hits for drug discovery. Here we present and discuss the updated version of the MBC library (MBC v.2022), enriched with new scaffolds and containing more than 2,500 compounds together with ECBL that collects about 100,000 small molecules. To properly address the improved potentialities of the new version of our MBC library in drug discovery, up to 44 among physicochemical and pharmaceutical properties have been calculated and compared with those of other well-known publicly available libraries. For comparison, we have used ZINC20, DrugBank, ChEMBL library, ECBL and NuBBE along with an approved drug library. Final results allowed to confirm the competitive chemical space covered by MBC v.2022 and ECBL together with suitable drug-like properties. In all, we can affirm that these two libraries represent an interesting source of new hits for drug discovery.
Collapse
Affiliation(s)
- Tiziana Ginex
- Centro de Investigaciones Biológicas “Margarita Salas” (CIB-CSIC), Madrid, Spain
| | - Enrique Madruga
- Centro de Investigaciones Biológicas “Margarita Salas” (CIB-CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Martinez
- Centro de Investigaciones Biológicas “Margarita Salas” (CIB-CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Gil
- Centro de Investigaciones Biológicas “Margarita Salas” (CIB-CSIC), Madrid, Spain
| |
Collapse
|
45
|
Taha TY, Suryawanshi RK, Chen IP, Correy GJ, McCavitt-Malvido M, O’Leary PC, Jogalekar MP, Diolaiti ME, Kimmerly GR, Tsou CL, Gascon R, Montano M, Martinez-Sobrido L, Krogan NJ, Ashworth A, Fraser JS, Ott M. A single inactivating amino acid change in the SARS-CoV-2 NSP3 Mac1 domain attenuates viral replication in vivo. PLoS Pathog 2023; 19:e1011614. [PMID: 37651466 PMCID: PMC10499221 DOI: 10.1371/journal.ppat.1011614] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/13/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023] Open
Abstract
Despite unprecedented efforts, our therapeutic arsenal against SARS-CoV-2 remains limited. The conserved macrodomain 1 (Mac1) in NSP3 is an enzyme exhibiting ADP-ribosylhydrolase activity and a possible drug target. To determine the role of Mac1 catalytic activity in viral replication, we generated recombinant viruses and replicons encoding a catalytically inactive NSP3 Mac1 domain by mutating a critical asparagine in the active site. While substitution to alanine (N40A) reduced catalytic activity by ~10-fold, mutations to aspartic acid (N40D) reduced activity by ~100-fold relative to wild-type. Importantly, the N40A mutation rendered Mac1 unstable in vitro and lowered expression levels in bacterial and mammalian cells. When incorporated into SARS-CoV-2 molecular clones, the N40D mutant only modestly affected viral fitness in immortalized cell lines, but reduced viral replication in human airway organoids by 10-fold. In mice, the N40D mutant replicated at >1000-fold lower levels compared to the wild-type virus while inducing a robust interferon response; all animals infected with the mutant virus survived infection. Our data validate the critical role of SARS-CoV-2 NSP3 Mac1 catalytic activity in viral replication and as a promising therapeutic target to develop antivirals.
Collapse
Affiliation(s)
- Taha Y. Taha
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, California, United States of America
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
| | - Rahul K. Suryawanshi
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, California, United States of America
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
| | - Irene P. Chen
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, California, United States of America
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
- Department of Medicine, University of California, San Francisco, California, United States of America
| | - Galen J. Correy
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, United States of America
| | - Maria McCavitt-Malvido
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, California, United States of America
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
| | - Patrick C. O’Leary
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California, United States of America
| | - Manasi P. Jogalekar
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California, United States of America
| | - Morgan E. Diolaiti
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California, United States of America
| | - Gabriella R. Kimmerly
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, California, United States of America
| | - Chia-Lin Tsou
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, California, United States of America
| | - Ronnie Gascon
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, California, United States of America
| | - Mauricio Montano
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, California, United States of America
| | - Luis Martinez-Sobrido
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Nevan J. Krogan
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, California, United States of America
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, United States of America
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
| | - Alan Ashworth
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California, United States of America
| | - James S. Fraser
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, United States of America
| | - Melanie Ott
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, California, United States of America
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, United States of America
- Department of Medicine, University of California, San Francisco, California, United States of America
- Chan Zuckerberg Biohub–San Francisco, San Francisco, California, United States of America
| |
Collapse
|
46
|
Fink EA, Bardine C, Gahbauer S, Singh I, Detomasi TC, White K, Gu S, Wan X, Chen J, Ary B, Glenn I, O'Connell J, O'Donnell H, Fajtová P, Lyu J, Vigneron S, Young NJ, Kondratov IS, Alisoltani A, Simons LM, Lorenzo‐Redondo R, Ozer EA, Hultquist JF, O'Donoghue AJ, Moroz YS, Taunton J, Renslo AR, Irwin JJ, García‐Sastre A, Shoichet BK, Craik CS. Large library docking for novel SARS-CoV-2 main protease non-covalent and covalent inhibitors. Protein Sci 2023; 32:e4712. [PMID: 37354015 PMCID: PMC10364469 DOI: 10.1002/pro.4712] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/29/2023] [Accepted: 06/21/2023] [Indexed: 06/25/2023]
Abstract
Antiviral therapeutics to treat SARS-CoV-2 are needed to diminish the morbidity of the ongoing COVID-19 pandemic. A well-precedented drug target is the main viral protease (MPro ), which is targeted by an approved drug and by several investigational drugs. Emerging viral resistance has made new inhibitor chemotypes more pressing. Adopting a structure-based approach, we docked 1.2 billion non-covalent lead-like molecules and a new library of 6.5 million electrophiles against the enzyme structure. From these, 29 non-covalent and 11 covalent inhibitors were identified in 37 series, the most potent having an IC50 of 29 and 20 μM, respectively. Several series were optimized, resulting in low micromolar inhibitors. Subsequent crystallography confirmed the docking predicted binding modes and may template further optimization. While the new chemotypes may aid further optimization of MPro inhibitors for SARS-CoV-2, the modest success rate also reveals weaknesses in our approach for challenging targets like MPro versus other targets where it has been more successful, and versus other structure-based techniques against MPro itself.
Collapse
Affiliation(s)
- Elissa A. Fink
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
- Graduate Program in BiophysicsUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Conner Bardine
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
- Graduate Program in Chemistry and Chemical BiologyUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Stefan Gahbauer
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Isha Singh
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Tyler C. Detomasi
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Kris White
- Department of MicrobiologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Global Health and Emerging Pathogens InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Shuo Gu
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Xiaobo Wan
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Jun Chen
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Beatrice Ary
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Isabella Glenn
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Joseph O'Connell
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Henry O'Donnell
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Pavla Fajtová
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California‐San DiegoSan DiegoCaliforniaUSA
| | - Jiankun Lyu
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Seth Vigneron
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Nicholas J. Young
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Ivan S. Kondratov
- Enamine Ltd.KyïvUkraine
- V.P. Kukhar Institute of Bioorganic Chemistry and PetrochemistryNational Academy of Sciences of UkraineKyïvUkraine
| | - Arghavan Alisoltani
- Division of Infectious Diseases, Center for Pathogen Genomics and Microbial Evolution, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Lacy M. Simons
- Division of Infectious Diseases, Center for Pathogen Genomics and Microbial Evolution, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Ramon Lorenzo‐Redondo
- Division of Infectious Diseases, Center for Pathogen Genomics and Microbial Evolution, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Egon A. Ozer
- Division of Infectious Diseases, Center for Pathogen Genomics and Microbial Evolution, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Judd F. Hultquist
- Division of Infectious Diseases, Center for Pathogen Genomics and Microbial Evolution, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Anthony J. O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California‐San DiegoSan DiegoCaliforniaUSA
| | - Yurii S. Moroz
- National Taras Shevchenko University of KyïvKyïvUkraine
- Chemspace LLCKyïvUkraine
| | - Jack Taunton
- Department of Cellular and Molecular PharmacologyUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Adam R. Renslo
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - John J. Irwin
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Adolfo García‐Sastre
- Department of MicrobiologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Global Health and Emerging Pathogens InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Medicine, Division of Infectious DiseasesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Pathology, Molecular and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- QBI COVID‐19 Research Group (QCRG)San FranciscoCaliforniaUSA
| | - Brian K. Shoichet
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
- QBI COVID‐19 Research Group (QCRG)San FranciscoCaliforniaUSA
| | - Charles S. Craik
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
- QBI COVID‐19 Research Group (QCRG)San FranciscoCaliforniaUSA
| |
Collapse
|
47
|
Santinelli-Pestana DV, Aikawa E, Singh SA, Aikawa M. PARPs and ADP-Ribosylation in Chronic Inflammation: A Focus on Macrophages. Pathogens 2023; 12:964. [PMID: 37513811 PMCID: PMC10386340 DOI: 10.3390/pathogens12070964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/25/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Aberrant adenosine diphosphate-ribose (ADP)-ribosylation of proteins and nucleic acids is associated with multiple disease processes such as infections and chronic inflammatory diseases. The poly(ADP-ribose) polymerase (PARP)/ADP-ribosyltransferase (ART) family members promote mono- or poly-ADP-ribosylation. Although evidence has linked PARPs/ARTs and macrophages in the context of chronic inflammation, the underlying mechanisms remain incompletely understood. This review provides an overview of literature focusing on the roles of PARP1/ARTD1, PARP7/ARTD14, PARP9/ARTD9, and PARP14/ARTD8 in macrophages. PARPs/ARTs regulate changes in macrophages during chronic inflammatory processes not only via catalytic modifications but also via non-catalytic mechanisms. Untangling complex mechanisms, by which PARPs/ARTs modulate macrophage phenotype, and providing molecular bases for the development of new therapeutics require the development and implementation of innovative technologies.
Collapse
Affiliation(s)
- Diego V. Santinelli-Pestana
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (D.V.S.-P.); (E.A.); (S.A.S.)
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (D.V.S.-P.); (E.A.); (S.A.S.)
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sasha A. Singh
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (D.V.S.-P.); (E.A.); (S.A.S.)
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (D.V.S.-P.); (E.A.); (S.A.S.)
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
48
|
Kragelund BB, Loland CJ, Montoya G, Hatzakis N, Martinez KL, Gajhede M, Christensen CE, Holt L. Realizing integration in structural biology: The 2022 ISBUC Annual Meeting. Structure 2023; 31:747-754. [PMID: 37419096 DOI: 10.1016/j.str.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/24/2023] [Accepted: 05/10/2023] [Indexed: 07/09/2023]
Abstract
This meeting report presents the 2022 Annual Meeting of the cluster for Integrative Structural Biology at the University of Copenhagen (ISBUC) and discusses the cluster approach to interdisciplinary research management. This approach successfully facilitates cross-faculty and inter-departmental collaboration. Innovative integrative research collaborations ignited by ISBUC, as well as research presented at the meeting, are showcased.
Collapse
Affiliation(s)
- Birthe B Kragelund
- University of Copenhagen, Department of Biology, Structural Biology and NMR Laboratory, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Claus Juul Loland
- Laboratory for Membrane Protein Dynamics, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Guillermo Montoya
- Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3-B, 2200 Copenhagen, Denmark
| | - Nikos Hatzakis
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Karen L Martinez
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Michael Gajhede
- Peptides and Proteins, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| | - Caspar Elo Christensen
- University of Copenhagen, Department of Biology, Structural Biology and NMR Laboratory, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Lucy Holt
- University of Copenhagen, 2200 Copenhagen N, Denmark.
| |
Collapse
|
49
|
von Delft A, Hall MD, Kwong AD, Purcell LA, Saikatendu KS, Schmitz U, Tallarico JA, Lee AA. Accelerating antiviral drug discovery: lessons from COVID-19. Nat Rev Drug Discov 2023; 22:585-603. [PMID: 37173515 PMCID: PMC10176316 DOI: 10.1038/s41573-023-00692-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2023] [Indexed: 05/15/2023]
Abstract
During the coronavirus disease 2019 (COVID-19) pandemic, a wave of rapid and collaborative drug discovery efforts took place in academia and industry, culminating in several therapeutics being discovered, approved and deployed in a 2-year time frame. This article summarizes the collective experience of several pharmaceutical companies and academic collaborations that were active in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antiviral discovery. We outline our opinions and experiences on key stages in the small-molecule drug discovery process: target selection, medicinal chemistry, antiviral assays, animal efficacy and attempts to pre-empt resistance. We propose strategies that could accelerate future efforts and argue that a key bottleneck is the lack of quality chemical probes around understudied viral targets, which would serve as a starting point for drug discovery. Considering the small size of the viral proteome, comprehensively building an arsenal of probes for proteins in viruses of pandemic concern is a worthwhile and tractable challenge for the community.
Collapse
Affiliation(s)
- Annette von Delft
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Oxford Biomedical Research Centre, National Institute for Health Research, University of Oxford, Oxford, UK.
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | | | | | | | | | | | - Alpha A Lee
- PostEra, Inc., Cambridge, MA, USA.
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| |
Collapse
|
50
|
Singh I, Li F, Fink EA, Chau I, Li A, Rodriguez-Hernández A, Glenn I, Zapatero-Belinchón FJ, Rodriguez ML, Devkota K, Deng Z, White K, Wan X, Tolmachova NA, Moroz YS, Kaniskan HÜ, Ott M, García-Sastre A, Jin J, Fujimori DG, Irwin JJ, Vedadi M, Shoichet BK. Structure-Based Discovery of Inhibitors of the SARS-CoV-2 Nsp14 N7-Methyltransferase. J Med Chem 2023; 66:7785-7803. [PMID: 37294077 PMCID: PMC10374283 DOI: 10.1021/acs.jmedchem.2c02120] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An under-explored target for SARS-CoV-2 is the S-adenosyl methionine (SAM)-dependent methyltransferase Nsp14, which methylates the N7-guanosine of viral RNA at the 5'-end, allowing the virus to evade host immune response. We sought new Nsp14 inhibitors with three large library docking strategies. First, up to 1.1 billion lead-like molecules were docked against the enzyme's SAM site, leading to three inhibitors with IC50 values from 6 to 50 μM. Second, docking a library of 16 million fragments revealed 9 new inhibitors with IC50 values from 12 to 341 μM. Third, docking a library of 25 million electrophiles to covalently modify Cys387 revealed 7 inhibitors with IC50 values from 3.5 to 39 μM. Overall, 32 inhibitors encompassing 11 chemotypes had IC50 values < 50 μM and 5 inhibitors in 4 chemotypes had IC50 values < 10 μM. These molecules are among the first non-SAM-like inhibitors of Nsp14, providing starting points for future optimization.
Collapse
Affiliation(s)
- Isha Singh
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143, United States
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Elissa A Fink
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143, United States
- Graduate Program in Biophysics, University of California San Francisco, San Francisco, California 94143, United States
| | - Irene Chau
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Alice Li
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | - Annía Rodriguez-Hernández
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, United States
| | - Isabella Glenn
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143, United States
| | | | - M Luis Rodriguez
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Kanchan Devkota
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Zhijie Deng
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Kris White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Xiaobo Wan
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143, United States
| | - Nataliya A Tolmachova
- Enamine Ltd, Kyïv 02094, Ukraine
- Institute of Bioorganic Chemistry and Petrochemistry, National Ukrainian Academy of Science, Kyïv 02660, Ukraine
| | - Yurii S Moroz
- National Taras Shevchenko University of Kyïv, Kyïv 01601, Ukraine
- Chemspace, Riga LV-1082, Latvia
| | - H Ümit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Melanie Ott
- Gladstone Institutes, San Francisco, California 94158, United States
- QBI COVID-19 Research Group (QCRG), San Francisco, California 94158, United States
- Department of Medicine, University of California, San Francisco, San Francisco, California 94158, United States
- Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- QBI COVID-19 Research Group (QCRG), San Francisco, California 94158, United States
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- QBI COVID-19 Research Group (QCRG), San Francisco, California 94158, United States
| | - Danica Galonić Fujimori
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143, United States
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, United States
- QBI COVID-19 Research Group (QCRG), San Francisco, California 94158, United States
| | - John J Irwin
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143, United States
- QBI COVID-19 Research Group (QCRG), San Francisco, California 94158, United States
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- QBI COVID-19 Research Group (QCRG), San Francisco, California 94158, United States
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143, United States
- QBI COVID-19 Research Group (QCRG), San Francisco, California 94158, United States
| |
Collapse
|