1
|
Cheng Y, Wang T, Zhu H, Hu X, Mi J, Li L, Zhang Y, Yang J, Dong L, Li Y, Sun W, Lu X, Wang W, Cao Y, Xue B. Molecular Engineering of Amino Acid Crystals with Enhanced Piezoelectric Performance for Biodegradable Sensors. Angew Chem Int Ed Engl 2025:e202500334. [PMID: 39868665 DOI: 10.1002/anie.202500334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 01/28/2025]
Abstract
Amino acid crystals have emerged as promising piezoelectric materials for biodegradable and biocompatible sensors; however, their relatively low piezoelectric coefficients constrain practical applications. Here, we introduce a fluoro-substitution strategy to overcome this limitation and enhance the piezoelectric performance of amino acid crystals. Specifically, we substituted hydrogen atoms on the aromatic rings of L-tryptophan, L-phenylalanine, and N-Cbz-L-phenylalanine with fluorine, resulting in significantly elevated piezoelectric coefficients. Density functional theory calculations further indicate that fluorination strengthens polarization by modifying molecular dipole moments. Consequently, these fluoro-substituted crystals achieve piezoelectric coefficients of up to 50.36 pm/V, surpassing those of other organic piezoelectric materials such as polyvinylidene fluoride (PVDF), poly(L-lactic acid) (PLLA), and gelatin. When integrated into flexible, biodegradable force sensors, the fluoro-substituted crystals exhibit a broad sensing range, high sensitivity, and stable in vivo operation over extended periods. This work establishes a versatile route for boosting piezoelectricity in biomaterials, thereby broadening their scope in biomedical applications.
Collapse
Affiliation(s)
- Yuanqi Cheng
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250000, China
| | - Tianjian Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
| | - Haoqi Zhu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
| | - Xueli Hu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
| | - Jing Mi
- Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Lan Li
- Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yu Zhang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
| | - Jiapeng Yang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250000, China
| | - Liang Dong
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
| | - Ying Li
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Wenxu Sun
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
- School of Physics and Technology, Nantong University, Nantong, 226019, China
| | - Xiaomei Lu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
- Institute for Brain Sciences, Nanjing University, Nanjing, 210093, China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250000, China
- Institute for Brain Sciences, Nanjing University, Nanjing, 210093, China
| | - Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250000, China
| |
Collapse
|
2
|
Chen SC, Yang YT, Tseng YC, Chiou KD, Huang PW, Chih JH, Liu HY, Chou TT, Jhang YY, Chen CW, Kuan CH, Ho EM, Chien CH, Kuo CN, Cheng YT, Lien DH. HfO 2 Memristor-Based Flexible Radio Frequency Switches. ACS NANO 2025; 19:704-711. [PMID: 39704722 PMCID: PMC11752509 DOI: 10.1021/acsnano.4c11846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
Flexible and wearable electronics are experiencing rapid growth due to the increasing demand for multifunctional, lightweight, and portable devices. However, the growing demands of interactive applications driven by the rise of AI reveal the inadequate connectivity of current connection technologies. In this work, we successfully leverage memristive technology to develop a flexible radio frequency (RF) switch, optimized for 6G-compatible communication systems and adaptable to flexible applications. The flexible RF switch demonstrates a low insertion loss (2 dB) and a cutoff frequency exceeding 840 GHz, and performance metrics are maintained after 106 switching cycles and 2500 mechanical bending cycles, showing excellent reliability and robustness. Furthermore, the RF switch is fully integrable with a photolithography-processable polyimide (PSPI) substrate, enabling efficient 2.5D integration with other RF components, such as RF antennas and interconnects. This technology holds significant promise to advance 6G communications in flexible electronics, offering a scalable solution for high-speed data transmission in next-generation wearable devices.
Collapse
Affiliation(s)
- Shih-Chieh Chen
- Institute
of Electronics, National Yang Ming Chiao
Tung University, Hsinchu 300, Taiwan
- Institute
of Pioneer Semiconductor Innovation, National
Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Yu-Tao Yang
- Strategic
Technology Exploration Platform, MediaTek, San Jose, California 92054-5116, United
States
| | - Yun-Chien Tseng
- Institute
of Electronics, National Yang Ming Chiao
Tung University, Hsinchu 300, Taiwan
| | - Kun-Dong Chiou
- Institute
of Electronics, National Yang Ming Chiao
Tung University, Hsinchu 300, Taiwan
| | - Po-Wei Huang
- Institute
of Electronics, National Yang Ming Chiao
Tung University, Hsinchu 300, Taiwan
| | - Jia-Hao Chih
- Institute
of Electronics, National Yang Ming Chiao
Tung University, Hsinchu 300, Taiwan
| | - Hsien-Yang Liu
- Institute
of Electronics, National Yang Ming Chiao
Tung University, Hsinchu 300, Taiwan
| | - Tsung-Te Chou
- Taiwan
Instrument Research Institute, National
Applied Research Laboratories, Hsinchu 302, Taiwan
| | - Yang-Yu Jhang
- Taiwan
Instrument Research Institute, National
Applied Research Laboratories, Hsinchu 302, Taiwan
| | - Chien-Wei Chen
- Taiwan
Instrument Research Institute, National
Applied Research Laboratories, Hsinchu 302, Taiwan
| | - Chun-Hsiao Kuan
- Department
of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - E Ming Ho
- Chang Chun
Plastics Co., Ltd. Hsinchu Factory, Hsinchu 303, Taiwan
| | - Chao-Hsin Chien
- Institute
of Electronics, National Yang Ming Chiao
Tung University, Hsinchu 300, Taiwan
| | - Chien-Nan Kuo
- Institute
of Electronics, National Yang Ming Chiao
Tung University, Hsinchu 300, Taiwan
| | - Yu-Ting Cheng
- Institute
of Electronics, National Yang Ming Chiao
Tung University, Hsinchu 300, Taiwan
| | - Der-Hsien Lien
- Institute
of Electronics, National Yang Ming Chiao
Tung University, Hsinchu 300, Taiwan
- Institute
of Pioneer Semiconductor Innovation, National
Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
3
|
Liu T, Mao Y, Dou H, Zhang W, Yang J, Wu P, Li D, Mu X. Emerging Wearable Acoustic Sensing Technologies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2408653. [PMID: 39749384 DOI: 10.1002/advs.202408653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/08/2024] [Indexed: 01/04/2025]
Abstract
Sound signals not only serve as the primary communication medium but also find application in fields such as medical diagnosis and fault detection. With public healthcare resources increasingly under pressure, and challenges faced by disabled individuals on a daily basis, solutions that facilitate low-cost private healthcare hold considerable promise. Acoustic methods have been widely studied because of their lower technical complexity compared to other medical solutions, as well as the high safety threshold of the human body to acoustic energy. Furthermore, with the recent development of artificial intelligence technology applied to speech recognition, speech recognition devices, and systems capable of assisting disabled individuals in interacting with scenes are constantly being updated. This review meticulously summarizes the sensing mechanisms, materials, structural design, and multidisciplinary applications of wearable acoustic devices applied to human health and human-computer interaction. Further, the advantages and disadvantages of the different approaches used in flexible acoustic devices in various fields are examined. Finally, the current challenges and a roadmap for future research are analyzed based on existing research progress to achieve more comprehensive and personalized healthcare.
Collapse
Affiliation(s)
- Tao Liu
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R&D Center of Micro-Nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China
| | - Yuchen Mao
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R&D Center of Micro-Nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China
| | - Hanjie Dou
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R&D Center of Micro-Nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China
| | - Wangyang Zhang
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R&D Center of Micro-Nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China
| | - Jiaqian Yang
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R&D Center of Micro-Nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China
| | - Pengfan Wu
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R&D Center of Micro-Nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China
| | - Dongxiao Li
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R&D Center of Micro-Nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China
| | - Xiaojing Mu
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R&D Center of Micro-Nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
4
|
Dong E, Zhang T, Zhang J, Su X, Qu S, Ye X, Gao Z, Gao C, Hui J, Wang Z, Fang NX, Zhang Y. Soft Metalens for Broadband Ultrasonic Focusing through Aberration Layers. Nat Commun 2025; 16:308. [PMID: 39746952 PMCID: PMC11697215 DOI: 10.1038/s41467-024-55022-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/25/2024] [Indexed: 01/04/2025] Open
Abstract
Aberration layers (AL) often present significant energy transmission barriers in microwave engineering, electromagnetic waves, and medical ultrasound. However, achieving broadband ultrasonic focusing through aberration layers like the human skull using conventional materials such as metals and elastomers has proven challenging. In this study, we introduce an inverse phase encoding method employing tunable soft metalens to penetrate heterogeneous aberration layers. Through the application of effective-medium theory, we determined the refractive index of micro-tungsten particles in silicone elastomer, closely aligning with experimental findings. The soft metalens allows for transmission across broadband frequencies (50 kHz to 0.4 MHz) through 3D-printed human skull models mimicking aberration layers. In ex vivo transcranial ultrasound tests, we observed a 9.3 dB intensity enhancement at the focal point compared to results obtained using an unfocused transducer. By integrating soft materials, metamaterials, and gradient refractive index, the soft metalens presents future opportunities for advancing next-generation soft devices in deep-brain stimulation, non-destructive evaluation, and high-resolution ultrasound imaging.
Collapse
Affiliation(s)
- Erqian Dong
- Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Department of Mechanical Engineering, University of Hong Kong, Hong Kong, China
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen, China
| | - Tianye Zhang
- Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Jinhu Zhang
- Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Xiaochun Su
- Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Sichao Qu
- Department of Mechanical Engineering, University of Hong Kong, Hong Kong, China
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen, China
| | - Xin Ye
- Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Zhanyuan Gao
- Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Chengtian Gao
- Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jiangang Hui
- Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Zhanxiang Wang
- Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Nicholas X Fang
- Department of Mechanical Engineering, University of Hong Kong, Hong Kong, China.
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen, China.
| | - Yu Zhang
- Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
5
|
Tripathi P, Dubey AK. Role of Piezoelectricity in Disease Diagnosis and Treatment: A Review. ACS Biomater Sci Eng 2024; 10:6061-6077. [PMID: 39353103 DOI: 10.1021/acsbiomaterials.4c01346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Because of their unique electromechanical coupling response, piezoelectric smart biomaterials demonstrated distinctive capability toward effective, efficient, and quick diagnosis and treatment of a wide range of diseases. Such materials have potentiality to be utilized as wireless therapeutic methods with ultrasonic stimulation, which can be used as self-powered biomedical devices. An emerging advancement in the realm of personalized healthcare involves the utilization of piezoelectric biosensors for a range of therapeutic diagnosis such as diverse physiological signals in the human body, viruses, pathogens, and diseases like neurodegenerative ones, cancer, etc. The combination of piezoelectric nanoparticles with ultrasound has been established as a promising approach in sonodynamic therapy and piezocatalytic therapeutics and provides appealing alternatives for noninvasive treatments for cancer, chronic wounds, neurological diseases, etc. Innovations in implantable medical devices (IMDs), such as implantable piezoelectric energy generator (iPEG), offer significant advantages in improving physiological functioning and ability to power a cardiac pacemaker and restore the heart function. This comprehensive review critically evaluates the role of piezoelectricity in disease diagnosis and treatment, highlighting the implication of piezoelectric smart biomaterials for biomedical devices. It also discusses the potential of piezoelectric materials in healthcare monitoring, tissue engineering, and other medical applications while emphasizing future trends and challenges in the field.
Collapse
Affiliation(s)
- Pratishtha Tripathi
- Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Ashutosh Kumar Dubey
- Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| |
Collapse
|
6
|
Cao B, Huang Y, Chen L, Jia W, Li D, Jiang Y. Soft bioelectronics for diagnostic and therapeutic applications in neurological diseases. Biosens Bioelectron 2024; 259:116378. [PMID: 38759308 DOI: 10.1016/j.bios.2024.116378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/13/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
Physical and chemical signals in the central nervous system yield crucial information that is clinically relevant under both physiological and pathological conditions. The emerging field of bioelectronics focuses on the monitoring and manipulation of neurophysiological signals with high spatiotemporal resolution and minimal invasiveness. Significant advances have been realized through innovations in materials and structural design, which have markedly enhanced mechanical and electrical properties, biocompatibility, and overall device performance. The diagnostic and therapeutic potential of soft bioelectronics has been corroborated across a diverse array of pre-clinical settings. This review summarizes recent studies that underscore the developments and applications of soft bioelectronics in neurological disorders, including neuromonitoring, neuromodulation, tumor treatment, and biosensing. Limitations and outlooks of soft devices are also discussed in terms of power supply, wireless control, biocompatibility, and the integration of artificial intelligence. This review highlights the potential of soft bioelectronics as a future platform to promote deciphering brain functions and clinical outcomes of neurological diseases.
Collapse
Affiliation(s)
- Bowen Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China; Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, United States
| | - Yewei Huang
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, United States
| | - Liangpeng Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Wang Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China; Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China.
| | - Deling Li
- Department of Neurosurgery, Beijing Tiantan Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China; Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China.
| | - Yuanwen Jiang
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, United States.
| |
Collapse
|
7
|
De Marchi L. The Blossoming of Ultrasonic Metatransducers. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:1097-1105. [PMID: 38935472 DOI: 10.1109/tuffc.2024.3420158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Key requirements to boost the applicability of ultrasonic systems for in situ, real-time operations are low hardware complexity and low power consumption. These features are not available in present-day systems due to the fact that US inspections are typically achieved through phased arrays featuring a large number of individually controlled piezoelectric transducers and generating huge quantities of data. To minimize the energy and computational requirements, novel devices that feature enhanced functionalities beyond the mere conversion (i.e., metatransducers) can be conceived. This article reviews the potential of recent research breakthroughs in the transducer technology, which allow them to efficiently perform tasks, such as focusing, energy harvesting, beamforming, data communication, or mode filtering, and discusses the challenges for the widespread adoption of these solutions.
Collapse
|
8
|
Jia L, Yan Y, Xu J, Gao Y. A Unique Time-Reversal Algorithm-Enabled Flexible Ultrasound Transducer with a Controllable Acoustic Field. SENSORS (BASEL, SWITZERLAND) 2024; 24:5635. [PMID: 39275546 PMCID: PMC11398051 DOI: 10.3390/s24175635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/15/2024] [Accepted: 08/28/2024] [Indexed: 09/16/2024]
Abstract
Flexible ultrasonic devices represent a feasible technology for providing timely signal detection and even a non-invasive disease treatment for the human brain. However, the deformation of the devices is always accompanied by a change in the acoustic field, making it hard for accurate focusing. Herein, we report a stable and flexible transducer. This device can generate a high-intensity acoustic signal with a controllable acoustic field even when the device is bent. The key is to use a low-impedance piezoelectric material and an island-bridge device structure, as well as to design a unique time-reversal algorithm to correct the deviation of signals after transcranial propagation. To provide an in-depth study of the acoustic field of flexible devices, we also analyze the effects of mechanical deformation and structural parameters on the corresponding acoustic response.
Collapse
Affiliation(s)
- Lu Jia
- Information Science Academy, China Electronics Technology Group Corporation, Beijing 100142, China
- National Key Laboratory of Integrated Circuits and Microsystems, Beijing 100142, China
| | - Yingzhan Yan
- Information Science Academy, China Electronics Technology Group Corporation, Beijing 100142, China
- National Key Laboratory of Integrated Circuits and Microsystems, Beijing 100142, China
| | - Jing Xu
- Information Science Academy, China Electronics Technology Group Corporation, Beijing 100142, China
- National Key Laboratory of Integrated Circuits and Microsystems, Beijing 100142, China
| | - Yuan Gao
- Information Science Academy, China Electronics Technology Group Corporation, Beijing 100142, China
- National Key Laboratory of Integrated Circuits and Microsystems, Beijing 100142, China
| |
Collapse
|
9
|
Li Y, Veronica A, Ma J, Nyein HYY. Materials, Structure, and Interface of Stretchable Interconnects for Wearable Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2408456. [PMID: 39139019 DOI: 10.1002/adma.202408456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/24/2024] [Indexed: 08/15/2024]
Abstract
Since wearable technologies for telemedicine have emerged to tackle global health concerns, the demand for well-attested wearable healthcare devices with high user comfort also arises. Skin-wearables for health monitoring require mechanical flexibility and stretchability for not only high compatibility with the skin's dynamic nature but also a robust collection of fine health signals from within. Stretchable electrical interconnects, which determine the device's overall integrity, are one of the fundamental units being understated in wearable bioelectronics. In this review, a broad class of materials and engineering methodologies recently researched and developed are presented, and their respective attributes, limitations, and opportunities in designing stretchable interconnects for wearable bioelectronics are offered. Specifically, the electrical and mechanical characteristics of various materials (metals, polymers, carbons, and their composites) are highlighted, along with their compatibility with diverse geometric configurations. Detailed insights into fabrication techniques that are compatible with soft substrates are also provided. Importantly, successful examples of establishing reliable interfacial connections between soft and rigid elements using novel interconnects are reviewed. Lastly, some perspectives and prospects of remaining research challenges and potential pathways for practical utilization of interconnects in wearables are laid out.
Collapse
Affiliation(s)
- Yue Li
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, 00000, China
| | - Asmita Veronica
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, 00000, China
| | - Jiahao Ma
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, 00000, China
| | - Hnin Yin Yin Nyein
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, 00000, China
| |
Collapse
|
10
|
Shi J, Zhao Z, Gao Y, Yuan W, Ma W, Zhang J, Zhang B, Liu D, Wang J. A High-Voltage-Specialized Direct-Current Triboelectric Nanogenerator for Air Purification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311930. [PMID: 38433391 DOI: 10.1002/smll.202311930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/20/2024] [Indexed: 03/05/2024]
Abstract
Human health and the environment face significant challenges of air pollution, which is predominantly caused by PM2.5 or PM10 particles. Existing control methods often require elevated energy consumption or bulky high-voltage electrical equipment. To overcome these limitations, a self-powered, convenient, and compact direct current high-voltage triboelectric nanogenerator based on triboelectrification and electrostatic breakdown effects is proposed. By optimizing the structure-design of the direct current triboelectric nanogenerator and corresponding output voltage, it can easily achieve an output voltage of over 3 kV with a high charge density of 320 µC m-2. A power management circuit is designed to overcome the influence of third domain self-breakdown, optimize 92.5% amplitude of voltage shake, and raise 5% charge utilization ratio. With a device size as tiny as 2.25 cm3, it can continuously drive carbon nanowires to generate negative ions that settle dust within 300 s. This compact, simple, efficient, and safe high-voltage direct current triboelectric nanogenerator represents a promising sustainable solution. It offers efficient dust mitigation, fostering cleaner environments, and enhancing overall health.
Collapse
Affiliation(s)
- Jianxun Shi
- Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, School of Physical Science & Technology, Guangxi University, Nanning, 530004, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Zhihao Zhao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Yikui Gao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Wei Yuan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Wenlong Ma
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, P. R. China
| | - Jiayue Zhang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Baofeng Zhang
- Hubei Key Laboratory of Automotive Power Train and Electronic control, School of Automotive Engineering, Hubei University of Automotive Technology, Shiyan, 442002, P. R. China
| | - Dongyang Liu
- Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, School of Physical Science & Technology, Guangxi University, Nanning, 530004, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Jie Wang
- Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, School of Physical Science & Technology, Guangxi University, Nanning, 530004, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| |
Collapse
|
11
|
Hu H, Hu C, Guo W, Zhu B, Wang S. Wearable ultrasound devices: An emerging era for biomedicine and clinical translation. ULTRASONICS 2024; 142:107401. [PMID: 39004039 DOI: 10.1016/j.ultras.2024.107401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
In recent years, personalized diagnosis and treatment have gained significant recognition and rapid development in the biomedicine and healthcare. Due to the flexibility, portability and excellent compatibility, wearable ultrasound (WUS) devices have become emerging personalized medical devices with great potential for development. Currently, with the development of the ongoing advancements in materials and structural design of the ultrasound transducers, WUS devices have improved performance and are increasingly applied in the medical field. In this review, we provide an overview of the design and structure of WUS devices, focusing on their application for diagnosis and treatment of various diseases from a clinical application perspective, and then explore the issues that need to be addressed before clinical translation. Finally, we summarize the progress made in the development of WUS devices, and discuss the current challenges and the future direction of their development. In conclusion, WUS devices usher an emerging era for biomedicine with great clinical promise.
Collapse
Affiliation(s)
- Haoyuan Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Cardiovascular Research Institute, Wuhan University, China; Hubei Key Laboratory of Cardiology, China
| | - Changhao Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Cardiovascular Research Institute, Wuhan University, China; Hubei Key Laboratory of Cardiology, China
| | - Wei Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Cardiovascular Research Institute, Wuhan University, China; Hubei Key Laboratory of Cardiology, China
| | - Benpeng Zhu
- School of Optical and Electronic Information, Huazhong University of Science and Technology, China.
| | - Songyun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, China; Cardiac Autonomic Nervous System Research Center of Wuhan University, China; Cardiovascular Research Institute, Wuhan University, China; Hubei Key Laboratory of Cardiology, China.
| |
Collapse
|
12
|
Zheng Y, Zhang Z, Zhang Y, Pan Q, Yan X, Li X, Yang Z. Enhancing Ultrasound Power Transfer: Efficiency, Acoustics, and Future Directions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2407395. [PMID: 39044603 DOI: 10.1002/adma.202407395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/01/2024] [Indexed: 07/25/2024]
Abstract
Implantable medical devices (IMDs), like pacemakers regulating heart rhythm or deep brain stimulators treating neurological disorders, revolutionize healthcare. However, limited battery life necessitates frequent surgeries for replacements. Ultrasound power transfer (UPT) emerges as a promising solution for sustainable IMD operation. Current research prioritizes implantable materials, with less emphasis on sound field analysis and maximizing energy transfer during wireless power delivery. This review addresses this gap. A comprehensive analysis of UPT technology, examining cutting-edge system designs, particularly in power supply and efficiency is provided. The review critically examines existing efficiency models, summarizing the key parameters influencing energy transmission in UPT systems. For the first time, an energy flow diagram of a general UPT system is proposed to offer insights into the overall functioning. Additionally, the review explores the development stages of UPT technology, showcasing representative designs and applications. The remaining challenges, future directions, and exciting opportunities associated with UPT are discussed. By highlighting the importance of sustainable IMDs with advanced functions like biosensing and closed-loop drug delivery, as well as UPT's potential, this review aims to inspire further research and advancements in this promising field.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR, 999077, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Zhuomin Zhang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR, 999077, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Yanhu Zhang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, China
- School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Qiqi Pan
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR, 999077, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Xiaodong Yan
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR, 999077, China
| | - Xuemu Li
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR, 999077, China
| | - Zhengbao Yang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR, 999077, China
| |
Collapse
|
13
|
Huang H, Wu RS, Lin M, Xu S. Emerging Wearable Ultrasound Technology. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:713-729. [PMID: 37878424 PMCID: PMC11263711 DOI: 10.1109/tuffc.2023.3327143] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
This perspective article provides a brief overview on materials, fabrications, beamforming, and applications for wearable ultrasound devices, a rapidly growing field with versatile implications. Recent developments in miniaturization and soft electronics have significantly advanced wearable ultrasound devices. Such devices offer distinctive advantages over traditional ultrasound probes, including prolonged usability and operator independence, and have demonstrated their effectiveness in continuous monitoring, noninvasive therapies, and advanced human-machine interfaces. Wearable ultrasound devices can be classified into three main categories: rigid, flexible, and stretchable, each having distinctive properties and fabrication strategies. Key unique strategies in device design, packaging, and beamforming for each type of wearable ultrasound devices are reviewed. Furthermore, we highlight the latest applications enabled by wearable ultrasound technology in various areas. This article concludes by discussing the outstanding challenges within the field and outlines potential pathways for future advancements.
Collapse
|
14
|
Xue X, Wu H, Cai Q, Chen M, Moon S, Huang Z, Kim T, Peng C, Feng W, Sharma N, Jiang X. Flexible Ultrasonic Transducers for Wearable Biomedical Applications: A Review on Advanced Materials, Structural Designs, and Future Prospects. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:786-810. [PMID: 37971905 PMCID: PMC11292608 DOI: 10.1109/tuffc.2023.3333318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Due to the rapid developments in materials science and fabrication techniques, wearable devices have recently received increased attention for biomedical applications, particularly in medical ultrasound (US) imaging, sensing, and therapy. US is ubiquitous in biomedical applications because of its noninvasive nature, nonionic radiating, high precision, and real-time capabilities. While conventional US transducers are rigid and bulky, flexible transducers can be conformed to curved body areas for continuous sensing without restricting tissue movement or transducer shifting. This article comprehensively reviews the application of flexible US transducers in the field of biomedical imaging, sensing, and therapy. First, we review the background of flexible US transducers. Following that, we discuss advanced materials and fabrication techniques for flexible US transducers and their enabling technology status. Finally, we highlight and summarize some promising preliminary data with recent applications of flexible US transducers in biomedical imaging, sensing, and therapy. We also provide technical barriers, challenges, and future perspectives for further research and development.
Collapse
|
15
|
Tang H, Yang Y, Liu Z, Li W, Zhang Y, Huang Y, Kang T, Yu Y, Li N, Tian Y, Liu X, Cheng Y, Yin Z, Jiang X, Chen X, Zang J. Injectable ultrasonic sensor for wireless monitoring of intracranial signals. Nature 2024; 630:84-90. [PMID: 38840015 DOI: 10.1038/s41586-024-07334-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/19/2024] [Indexed: 06/07/2024]
Abstract
Direct and precise monitoring of intracranial physiology holds immense importance in delineating injuries, prognostication and averting disease1. Wired clinical instruments that use percutaneous leads are accurate but are susceptible to infection, patient mobility constraints and potential surgical complications during removal2. Wireless implantable devices provide greater operational freedom but include issues such as limited detection range, poor degradation and difficulty in size reduction in the human body3. Here we present an injectable, bioresorbable and wireless metastructured hydrogel (metagel) sensor for ultrasonic monitoring of intracranial signals. The metagel sensors are cubes 2 × 2 × 2 mm3 in size that encompass both biodegradable and stimulus-responsive hydrogels and periodically aligned air columns with a specific acoustic reflection spectrum. Implanted into intracranial space with a puncture needle, the metagel deforms in response to physiological environmental changes, causing peak frequency shifts of reflected ultrasound waves that can be wirelessly measured by an external ultrasound probe. The metagel sensor can independently detect intracranial pressure, temperature, pH and flow rate, realize a detection depth of 10 cm and almost fully degrade within 18 weeks. Animal experiments on rats and pigs indicate promising multiparametric sensing performances on a par with conventional non-resorbable wired clinical benchmarks.
Collapse
Affiliation(s)
- Hanchuan Tang
- School of Integrated Circuits and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, Singapore, Republic of Singapore
| | - Yueying Yang
- School of Integrated Circuits and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen Liu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenlong Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Yipeng Zhang
- School of Integrated Circuits and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Yizhou Huang
- School of Integrated Circuits and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Tianyu Kang
- School of Integrated Circuits and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Yu
- School of Integrated Circuits and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Na Li
- School of Integrated Circuits and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Ye Tian
- School of Integrated Circuits and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Xurui Liu
- School of Integrated Circuits and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Yifan Cheng
- School of Integrated Circuits and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Zhouping Yin
- Flexible Electronics Research Center, The State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiaodong Chen
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, Singapore, Republic of Singapore.
| | - Jianfeng Zang
- School of Integrated Circuits and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.
- The State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
16
|
Wang Q, Zhang Y, Xue H, Zeng Y, Lu G, Fan H, Jiang L, Wu J. Lead-free dual-frequency ultrasound implants for wireless, biphasic deep brain stimulation. Nat Commun 2024; 15:4017. [PMID: 38740759 DOI: 10.1038/s41467-024-48250-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/25/2024] [Indexed: 05/16/2024] Open
Abstract
Ultrasound-driven bioelectronics could offer a wireless scheme with sustainable power supply; however, current ultrasound implantable systems present critical challenges in biocompatibility and harvesting performance related to lead/lead-free piezoelectric materials and devices. Here, we report a lead-free dual-frequency ultrasound implants for wireless, biphasic deep brain stimulation, which integrates two developed lead-free sandwich porous 1-3-type piezoelectric composite elements with enhanced harvesting performance in a flexible printed circuit board. The implant is ultrasonically powered through a portable external dual-frequency transducer and generates programmable biphasic stimulus pulses in clinically relevant frequencies. Furthermore, we demonstrate ultrasound-driven implants for long-term biosafety therapy in deep brain stimulation through an epileptic rodent model. With biocompatibility and improved electrical performance, the lead-free materials and devices presented here could provide a promising platform for developing implantable ultrasonic electronics in the future.
Collapse
Affiliation(s)
- Qian Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu, China
| | - Yusheng Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Haoyue Xue
- College of Materials Science and Engineering, Sichuan University, Chengdu, China
| | - Yushun Zeng
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Gengxi Lu
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China.
| | - Laiming Jiang
- College of Materials Science and Engineering, Sichuan University, Chengdu, China.
| | - Jiagang Wu
- College of Materials Science and Engineering, Sichuan University, Chengdu, China.
| |
Collapse
|
17
|
Zhou K, Ding R, Ma X, Lin Y. Printable and flexible integrated sensing systems for wireless healthcare. NANOSCALE 2024; 16:7264-7286. [PMID: 38470428 DOI: 10.1039/d3nr06099c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The rapid development of wearable sensing devices and artificial intelligence has enabled portable and wireless tracking of human health, fulfilling the promise of digitalized healthcare applications. To achieve versatile design and integration of multi-functional modules including sensors and data transmission units onto various flexible platforms, printable technologies emerged as some of the most promising strategies. This review first introduces the commonly utilized printing technologies, followed by discussion of the printable ink formulations and flexible substrates to ensure reliable device fabrication and system integration. The advances of printable sensors for body status monitoring are then discussed. Moreover, the integration of wireless data transmission via printable approaches is also presented. Finally, the challenges in achieving printable sensing devices and wireless integrated systems with competitive performances are considered, so as to realize their practical applications for personalized healthcare.
Collapse
Affiliation(s)
- Kemeng Zhou
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Ruochen Ding
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Xiaohao Ma
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Yuanjing Lin
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
18
|
Hou S, Chen C, Bai L, Yu J, Cheng Y, Huang W. Stretchable Electronics with Strain-Resistive Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306749. [PMID: 38078789 DOI: 10.1002/smll.202306749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/15/2023] [Indexed: 03/16/2024]
Abstract
Stretchable electronics have attracted tremendous attention amongst academic and industrial communities due to their prospective applications in personal healthcare, human-activity monitoring, artificial skins, wearable displays, human-machine interfaces, etc. Other than mechanical robustness, stable performances under complex strains in these devices that are not for strain sensing are equally important for practical applications. Here, a comprehensive summarization of recent advances in stretchable electronics with strain-resistive performance is presented. First, detailed overviews of intrinsically strain-resistive stretchable materials, including conductors, semiconductors, and insulators, are given. Then, systematic representations of advanced structures, including helical, serpentine, meshy, wrinkled, and kirigami-based structures, for strain-resistive performance are summarized. Next, stretchable arrays and circuits with strain-resistive performance, that integrate multiple functionalities and enable complex behaviors, are introduced. This review presents a detailed overview of recent progress in stretchable electronics with strain-resistive performances and provides a guideline for the future development of stretchable electronics.
Collapse
Affiliation(s)
- Sihui Hou
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Cong Chen
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Libing Bai
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Junsheng Yu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yuhua Cheng
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Wei Huang
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| |
Collapse
|
19
|
Lin Z, Duan S, Liu M, Dang C, Qian S, Zhang L, Wang H, Yan W, Zhu M. Insights into Materials, Physics, and Applications in Flexible and Wearable Acoustic Sensing Technology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306880. [PMID: 38015990 DOI: 10.1002/adma.202306880] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/22/2023] [Indexed: 11/30/2023]
Abstract
Sound plays a crucial role in the perception of the world. It allows to communicate, learn, and detect potential dangers, diagnose diseases, and much more. However, traditional acoustic sensors are limited in their form factors, being rigid and cumbersome, which restricts their potential applications. Recently, acoustic sensors have made significant advancements, transitioning from rudimentary forms to wearable devices and smart everyday clothing that can conform to soft, curved, and deformable surfaces or surroundings. In this review, the latest scientific and technological breakthroughs with insightful analysis in materials, physics, design principles, fabrication strategies, functions, and applications of flexible and wearable acoustic sensing technology are comprehensively explored. The new generation of acoustic sensors that can recognize voice, interact with machines, control robots, enable marine positioning and localization, monitor structural health, diagnose human vital signs in deep tissues, and perform organ imaging is highlighted. These innovations offer unique solutions to significant challenges in fields such as healthcare, biomedicine, wearables, robotics, and metaverse. Finally, the existing challenges and future opportunities in the field are addressed, providing strategies to advance acoustic sensing technologies for intriguing real-world applications and inspire new research directions.
Collapse
Affiliation(s)
- Zhiwei Lin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
- School of Electrical and Electronic Engineering, Nanyang Technological University (NTU), Singapore, 639798, Singapore
| | - Shengshun Duan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
- School of Electrical and Electronic Engineering, Nanyang Technological University (NTU), Singapore, 639798, Singapore
| | - Mingyang Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University (NTU), Singapore, 639798, Singapore
| | - Chao Dang
- School of Electrical and Electronic Engineering, Nanyang Technological University (NTU), Singapore, 639798, Singapore
| | - Shengtai Qian
- School of Electrical and Electronic Engineering, Nanyang Technological University (NTU), Singapore, 639798, Singapore
| | - Luxue Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Hailiang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Wei Yan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
20
|
Zhang L, Du W, Kim JH, Yu CC, Dagdeviren C. An Emerging Era: Conformable Ultrasound Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307664. [PMID: 37792426 DOI: 10.1002/adma.202307664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/19/2023] [Indexed: 10/05/2023]
Abstract
Conformable electronics are regarded as the next generation of personal healthcare monitoring and remote diagnosis devices. In recent years, piezoelectric-based conformable ultrasound electronics (cUSE) have been intensively studied due to their unique capabilities, including nonradiative monitoring, soft tissue imaging, deep signal decoding, wireless power transfer, portability, and compatibility. This review provides a comprehensive understanding of cUSE for use in biomedical and healthcare monitoring systems and a summary of their recent advancements. Following an introduction to the fundamentals of piezoelectrics and ultrasound transducers, the critical parameters for transducer design are discussed. Next, five types of cUSE with their advantages and limitations are highlighted, and the fabrication of cUSE using advanced technologies is discussed. In addition, the working function, acoustic performance, and accomplishments in various applications are thoroughly summarized. It is noted that application considerations must be given to the tradeoffs between material selection, manufacturing processes, acoustic performance, mechanical integrity, and the entire integrated system. Finally, current challenges and directions for the development of cUSE are highlighted, and research flow is provided as the roadmap for future research. In conclusion, these advances in the fields of piezoelectric materials, ultrasound transducers, and conformable electronics spark an emerging era of biomedicine and personal healthcare.
Collapse
Affiliation(s)
- Lin Zhang
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Wenya Du
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jin-Hoon Kim
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Chia-Chen Yu
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Canan Dagdeviren
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
21
|
Zhou Y, Wang S, Yin J, Wang J, Manshaii F, Xiao X, Zhang T, Bao H, Jiang S, Chen J. Flexible Metasurfaces for Multifunctional Interfaces. ACS NANO 2024; 18:2685-2707. [PMID: 38241491 DOI: 10.1021/acsnano.3c09310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Optical metasurfaces, capable of manipulating the properties of light with a thickness at the subwavelength scale, have been the subject of extensive investigation in recent decades. This research has been mainly driven by their potential to overcome the limitations of traditional, bulky optical devices. However, most existing optical metasurfaces are confined to planar and rigid designs, functions, and technologies, which greatly impede their evolution toward practical applications that often involve complex surfaces. The disconnect between two-dimensional (2D) planar structures and three-dimensional (3D) curved surfaces is becoming increasingly pronounced. In the past two decades, the emergence of flexible electronics has ushered in an emerging era for metasurfaces. This review delves into this cutting-edge field, with a focus on both flexible and conformal design and fabrication techniques. Initially, we reflect on the milestones and trajectories in modern research of optical metasurfaces, complemented by a brief overview of their theoretical underpinnings and primary classifications. We then showcase four advanced applications of optical metasurfaces, emphasizing their promising prospects and relevance in areas such as imaging, biosensing, cloaking, and multifunctionality. Subsequently, we explore three key trends in optical metasurfaces, including mechanically reconfigurable metasurfaces, digitally controlled metasurfaces, and conformal metasurfaces. Finally, we summarize our insights on the ongoing challenges and opportunities in this field.
Collapse
Affiliation(s)
- Yunlei Zhou
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Shaolei Wang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Junyi Yin
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jianjun Wang
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Farid Manshaii
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Xiao Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Tianqi Zhang
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Hong Bao
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Shan Jiang
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
22
|
Yu A, Zhu M, Chen C, Li Y, Cui H, Liu S, Zhao Q. Implantable Flexible Sensors for Health Monitoring. Adv Healthc Mater 2024; 13:e2302460. [PMID: 37816513 DOI: 10.1002/adhm.202302460] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/05/2023] [Indexed: 10/12/2023]
Abstract
Flexible sensors, as a significant component of flexible electronics, have attracted great interest the realms of human-computer interaction and health monitoring due to their high conformability, adjustable sensitivity, and excellent durability. In comparison to wearable sensor-based in vitro health monitoring, the use of implantable flexible sensors (IFSs) for in vivo health monitoring offers more accurate and reliable vital sign information due to their ability to adapt and directly integrate with human tissue. IFSs show tremendous promise in the field of health monitoring, with unique advantages such as robust signal reading capabilities, lightweight design, flexibility, and biocompatibility. Herein, a review of IFSs for vital signs monitoring is detailly provided, highlighting the essential conditions for in vivo applications. As the prerequisites of IFSs, the stretchability and wireless self-powered properties of the sensor are discussed, with a special attention paid to the sensing materials which can maintain prominent biosafety (i.e., biocompatibility, biodegradability, bioresorbability). Furthermore, the applications of IFSs monitoring various parts of the body are described in detail, with a summary in brain monitoring, eye monitoring, and blood monitoring. Finally, the challenges as well as opportunities in the development of next-generation IFSs are presented.
Collapse
Affiliation(s)
- Aoxi Yu
- College of Electronic and Optical Engineering, and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan, Nanjing, 210023, P. R. China
| | - Mingye Zhu
- State Key Laboratory of Organic Electronics and Information Displays, and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Congkai Chen
- State Key Laboratory of Organic Electronics and Information Displays, and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Yang Li
- College of Electronic and Optical Engineering, and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan, Nanjing, 210023, P. R. China
| | - Haixia Cui
- State Key Laboratory of Organic Electronics and Information Displays, and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Shujuan Liu
- State Key Laboratory of Organic Electronics and Information Displays, and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Qiang Zhao
- College of Electronic and Optical Engineering, and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan, Nanjing, 210023, P. R. China
- State Key Laboratory of Organic Electronics and Information Displays, and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| |
Collapse
|
23
|
Chen P, Cheng C, Yang X, Sha TT, Zou X, Zhang F, Jiang W, Xu Y, Cao X, You YM, Luo Z. Wireless Deep Brain Stimulation by Ultrasound-Responsive Molecular Piezoelectric Nanogenerators. ACS NANO 2023; 17:25625-25637. [PMID: 38096441 DOI: 10.1021/acsnano.3c10227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Implantable neural stimulation devices are becoming prevalent in bioelectronic medicine for the precise treatment of various clinical diseases. Nevertheless, the limited lifespan and buckling size of the implanted devices remain significant obstacles for chronic clinical application. In this study, we developed an ultrasound-driven battery-free neurostimulator based on a high-performance mini-sized nanogenerator and demonstrated its successful application for the deep-brain-stimulation (DBS) therapy of Parkinson's disease in a rat model. This soft piezoelectric-triboelectric hybrid nanogenerators (PTNG) are made of porous thin-films of molecular piezoelectric materials, which have great advantages of facile, scalable, low-temperature, and flexible processing. Without any bucky accessory control circuits, the subcutaneously implanted soft PTNG can function as a wirelessly powered neurostimulator, allowing for the adjustment of stimulation parameters through external programmable ultrasound pulses. This DBS electroceutical application of energy-harvesting thin-film devices based on molecular piezoelectric materials provides valuable insight into the development of a soft high-performance bioelectronic device.
Collapse
Affiliation(s)
- Ping Chen
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chi Cheng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaomei Yang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tai-Ting Sha
- Ordered Matter Science Research Center, Southeast University, Nanjing, Jiangsu 211189, China
| | - Xianghui Zou
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fuchi Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Jiang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xuebing Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu-Meng You
- Ordered Matter Science Research Center, Southeast University, Nanjing, Jiangsu 211189, China
| | - Zhiqiang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
24
|
Hall TAG, Theodoridis K, Kechagias S, Kohli N, Denonville C, Rørvik PM, Cegla F, van Arkel RJ. Electromechanical and biological evaluations of 0.94Bi 0.5Na 0.5TiO 3-0.06BaTiO 3 as a lead-free piezoceramic for implantable bioelectronics. BIOMATERIALS ADVANCES 2023; 154:213590. [PMID: 37598437 DOI: 10.1016/j.bioadv.2023.213590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/01/2023] [Accepted: 08/13/2023] [Indexed: 08/22/2023]
Abstract
Smart implantable electronic medical devices are being developed to deliver healthcare that is more connected, personalised, and precise. Many of these implantables rely on piezoceramics for sensing, communication, energy autonomy, and biological stimulation, but the piezoceramics with the strongest piezoelectric coefficients are almost exclusively lead-based. In this article, we evaluate the electromechanical and biological characteristics of a lead-free alternative, 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 (BNT-6BT), manufactured via two synthesis routes: the conventional solid-state method (PIC700) and tape casting (TC-BNT-6BT). The BNT-6BT materials exhibited soft piezoelectric properties, with d33 piezoelectric coefficients that were inferior to commonly used PZT (PIC700: 116 pC/N; TC-BNT-6BT: 121 pC/N; PZT-5A: 400 pC/N). The material may be viable as a lead-free substitute for soft PZT where moderate performance losses up to 10 dB are tolerable, such as pressure sensing and pulse-echo measurement. No short-term harmful biological effects of BNT-6BT were detected and the material was conducive to the proliferation of MC3T3-E1 murine preosteoblasts. BNT-6BT could therefore be a viable material for electroactive implants and implantable electronics without the need for hermetic sealing.
Collapse
Affiliation(s)
- Thomas A G Hall
- Biomechanics Group, Department of Mechanical Engineering, Imperial College London, UK
| | | | - Stylianos Kechagias
- Biomechanics Group, Department of Mechanical Engineering, Imperial College London, UK
| | - Nupur Kohli
- Biomechanics Group, Department of Mechanical Engineering, Imperial College London, UK; Biomedical Engineering Department, Khalifa University, United Arab Emirates
| | - Christelle Denonville
- Thin Film and Membrane Technology, Sustainable Energy Technology, SINTEF Industry, Norway
| | - Per Martin Rørvik
- Thin Film and Membrane Technology, Sustainable Energy Technology, SINTEF Industry, Norway
| | - Frederic Cegla
- Non-Destructive Evaluation Group, Department of Mechanical Engineering, Imperial College London, UK
| | - Richard J van Arkel
- Biomechanics Group, Department of Mechanical Engineering, Imperial College London, UK.
| |
Collapse
|
25
|
Han J, Dong X, Yin Z, Zhang S, Li M, Zheng Z, Ugurlu MC, Jiang W, Liu H, Sitti M. Actuation-enhanced multifunctional sensing and information recognition by magnetic artificial cilia arrays. Proc Natl Acad Sci U S A 2023; 120:e2308301120. [PMID: 37792517 PMCID: PMC10589697 DOI: 10.1073/pnas.2308301120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
Artificial cilia integrating both actuation and sensing functions allow simultaneously sensing environmental properties and manipulating fluids in situ, which are promising for environment monitoring and fluidic applications. However, existing artificial cilia have limited ability to sense environmental cues in fluid flows that have versatile information encoded. This limits their potential to work in complex and dynamic fluid-filled environments. Here, we propose a generic actuation-enhanced sensing mechanism to sense complex environmental cues through the active interaction between artificial cilia and the surrounding fluidic environments. The proposed mechanism is based on fluid-cilia interaction by integrating soft robotic artificial cilia with flexible sensors. With a machine learning-based approach, complex environmental cues such as liquid viscosity, environment boundaries, and distributed fluid flows of a wide range of velocities can be sensed, which is beyond the capability of existing artificial cilia. As a proof of concept, we implement this mechanism on magnetically actuated cilia with integrated laser-induced graphene-based sensors and demonstrate sensing fluid apparent viscosity, environment boundaries, and fluid flow speed with a reconfigurable sensitivity and range. The same principle could be potentially applied to other soft robotic systems integrating other actuation and sensing modalities for diverse environmental and fluidic applications.
Collapse
Affiliation(s)
- Jie Han
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569Stuttgart, Germany
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, 710054Xi’an, China
- School of Mechanical Engineering, Xi’an Jiaotong University, 710054Xi’an, China
| | - Xiaoguang Dong
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN37212
| | - Zhen Yin
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569Stuttgart, Germany
- Department of Control Science and Engineering, Tongji University, Shanghai201800, China
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai200120, China
| | - Shuaizhong Zhang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569Stuttgart, Germany
- School of Mechanical Engineering, Yanshan University, Qinhuangdao066004, China
- National Key Laboratory of Hoisting Machinery Key Technology, Yanshan University, Qinhuangdao066004, China
- Hebei Key Laboratory of Heavy Machinery Fluid Power Transmission and Control, Yanshan University, Qinhuangdao066004, China
| | - Meng Li
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569Stuttgart, Germany
| | - Zhiqiang Zheng
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569Stuttgart, Germany
| | - Musab Cagri Ugurlu
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569Stuttgart, Germany
| | - Weitao Jiang
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, 710054Xi’an, China
- School of Mechanical Engineering, Xi’an Jiaotong University, 710054Xi’an, China
| | - Hongzhong Liu
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, 710054Xi’an, China
- School of Mechanical Engineering, Xi’an Jiaotong University, 710054Xi’an, China
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zürich, 8092Zürich, Switzerland
- School of Medicine and College of Engineering, Koç University, 34450Istanbul, Turkey
| |
Collapse
|
26
|
Lyu S, He Y, Li X, Wang H, Yao Y, Peng Z, Ding Y, Wang Y. Skin Thermal Management for Subcutaneous Photoelectric Conversion Reaching 500 mW. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306903. [PMID: 37535425 DOI: 10.1002/adma.202306903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Indexed: 08/05/2023]
Abstract
Despite possessing higher tissue transmittance and maximum permissible exposure power density for skin relative to other electromagnetic waves, second near-infrared light (1000-1350 nm) is scarcely applicable to subcutaneous photoelectric conversion, owing to the companion photothermal effect. Here, skin thermal management is conceived to utmostly utilize the photothermal effect of a photovoltaic cell, which not only improves the photoelectric conversion efficiency but also eliminates skin hyperthermia. In vivo, the output power can be higher than 500 mW with a photoelectric conversion efficiency of 9.4%. This output power is promising to recharge all the clinically applied implantable devices via wireless power transmission, that is, clinical pacemakers (6-200 µW), drug pumps (0.5-2 mW), cochlear (5-40 mW), and wireless endo-photo cameras (≈100 mW).
Collapse
Affiliation(s)
- Shanzhi Lyu
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
- Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, China
| | - Yonglin He
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Xinlei Li
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - HaoYi Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Yuge Yao
- Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhimin Peng
- Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, China
| | - Yanjun Ding
- Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, China
| | - Yapei Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| |
Collapse
|
27
|
Song Z, Wang B, Zhang Z, Yu Y, Lin D. A Highly Flexible Piezoelectric Ultrasonic Sensor for Wearable Bone Density Testing. MICROMACHINES 2023; 14:1798. [PMID: 37763961 PMCID: PMC10535184 DOI: 10.3390/mi14091798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
Driven by the loss of bone calcium, the elderly are prone to osteoporosis, and regular routine checks on bone status are necessary, which mainly rely on bone testing equipment. Therefore, wearable real-time healthcare devices have become a research hotspot. Herein, we designed a high-performance flexible ultrasonic bone testing system using axial transmission technology based on quantitative ultrasound theory. First, a new rare-earth-element-doped PMN-PZT piezoelectric ceramic was synthesized using a solid-state reaction, and characterized by X-ray diffraction and SEM. Both a high piezoelectric coefficient d33 = 525 pC/N and electromechanical coupling factors of k33 = 0.77, kt = 0.58 and kp = 0.63 were achieved in 1%La/Sm-doped 0.17 PMN-0.47 PZ-0.36 PT ceramics. Combining a flexible PDMS substrate with an ultrasonic array, a flexible hardware circuit was designed which includes a pulse excitation module, ultrasound array module, amplification module, filter module, digital-to-analog conversion module and wireless transmission module, showing high power transfer efficiency and power intensity with values of 35% and 55.4 mW/cm2, respectively. Finally, the humerus, femur and fibula were examined by the flexible device attached to the skin, and the bone condition was displayed in real time on the mobile client, which indicates the potential clinical application of this device in the field of wearable healthcare.
Collapse
Affiliation(s)
- Zhiqiang Song
- Department of Automation and Robotics Engineering, School of Automation, Wuxi University, Wuxi 214105, China;
| | - Bozhi Wang
- School of Optoelectronic Engineering, Xi’an Technological University, Xi’an 710032, China; (B.W.); (Z.Z.)
| | - Zhuo Zhang
- School of Optoelectronic Engineering, Xi’an Technological University, Xi’an 710032, China; (B.W.); (Z.Z.)
| | - Yirong Yu
- School of Optoelectronic Engineering, Xi’an Technological University, Xi’an 710032, China; (B.W.); (Z.Z.)
| | - Dabin Lin
- School of Optoelectronic Engineering, Xi’an Technological University, Xi’an 710032, China; (B.W.); (Z.Z.)
| |
Collapse
|
28
|
Wang Y, Zhou Z, Li R, Wang J, Sha B, Li S, Su Y. A Hierarchical Theory for the Tensile Stiffness of Non-Buckling Fractal-Inspired Interconnects. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2542. [PMID: 37764571 PMCID: PMC10536892 DOI: 10.3390/nano13182542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/21/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023]
Abstract
The design of non-buckling interconnects with thick sections has gained important applications in stretchable inorganic electronics due to their simultaneous achievement of high stretchability, low resistance, and low heat generation. However, at the same time, such a design sharply increased the tensile stiffness, which is detrimental to the conformal fit and skin comfort. Introducing the fractal design into the non-buckling interconnects is a promising approach to greatly reduce the tensile stiffness while maintaining other excellent performances. Here, a hierarchical theory is proposed for the tensile stiffness of the non-buckling fractal-inspired interconnects with an arbitrary shape at each order, which is verified by the finite element analysis. The results show that the tensile stiffness of the non-buckling fractal-inspired interconnects decreases with the increase in either the height/span ratio or the number of fractal orders but is not highly correlated with the ratio of the two adjacent dimensions. When the ratio of the two adjacent dimensions and height/span ratio are fixed, the tensile stiffness of the serpentine fractal-inspired interconnect is smaller than that of sinusoidal and zigzag fractal-inspired interconnects. These findings are of great significance for the design of non-buckling fractal-inspired interconnects of stretchable inorganic electronics.
Collapse
Affiliation(s)
- Yongkang Wang
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zanxin Zhou
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Li
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Jianru Wang
- Xi’an Aerospace Propulsion Technology Institute, Xi’an 710025, China
| | - Baolin Sha
- The 41st Institute of the Fourth Academy of CASC, Xi’an 710025, China
| | - Shuang Li
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yewang Su
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
29
|
Wang P, Fu J, Jin P, Zeng J, Miao X, Wang H, Ma Y, Feng X. A soft, bioinspired artificial lymphatic system for interactive ascites transfer. Bioeng Transl Med 2023; 8:e10567. [PMID: 37693063 PMCID: PMC10486333 DOI: 10.1002/btm2.10567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 06/02/2023] [Accepted: 06/10/2023] [Indexed: 09/12/2023] Open
Abstract
Low-flow removal of refractory ascites is critical to treating cirrhosis and digestive system tumor, and thus, commercial ascites pump emerged lately. The rigid structure of clinically available pumps rises complication rate and lack of flow rate monitoring hinders early warning of abnormalities. Herein, a soft artificial system was proposed inspired by lymph for interactive ascites transfer with great biocompatibility. The implantable system is composed of pump cavity, valves and tubes, which are soft and flexible made by silica gel. Therefore, the system possesses similar modulus to tissues and can naturally fit surrounding tissues. The cavity with magnetic tablet embedded is driven by extracorporeal magnetic field. Subsequently, the system can drain ascites with a top speed of 23 mL min-1, much higher than that of natural lymphatic system and state-of-art devices. Moreover, integrated flexible sensors enable wireless, real-time flow rate monitoring, serving as proof of treatment adjustment, detection and locating of malfunction at early stage. The liver function of experimental objects was improved, and no severe complications occurred for 4 weeks, which proved its safety and benefit to treatment. This artificial lymphatic system can serve as a bridge to recovery and pave the way for further clinical research.
Collapse
Affiliation(s)
- Peng Wang
- AML, Department of Engineering MechanicsTsinghua UniversityBeijingChina
- Laboratory of Flexible Electronics TechnologyTsinghua UniversityBeijingChina
| | - Ji Fu
- Institute of Flexible Electronics Technology of THU JiaxingZhejiangChina
| | - Peng Jin
- AML, Department of Engineering MechanicsTsinghua UniversityBeijingChina
- Laboratory of Flexible Electronics TechnologyTsinghua UniversityBeijingChina
| | - Jin Zeng
- Institute of Flexible Electronics Technology of THU JiaxingZhejiangChina
| | - Xiaohui Miao
- Institute of Flexible Electronics Technology of THU JiaxingZhejiangChina
| | - Heling Wang
- Laboratory of Flexible Electronics TechnologyTsinghua UniversityBeijingChina
- Institute of Flexible Electronics Technology of THU JiaxingZhejiangChina
| | - Yinji Ma
- AML, Department of Engineering MechanicsTsinghua UniversityBeijingChina
- Laboratory of Flexible Electronics TechnologyTsinghua UniversityBeijingChina
| | - Xue Feng
- AML, Department of Engineering MechanicsTsinghua UniversityBeijingChina
- Laboratory of Flexible Electronics TechnologyTsinghua UniversityBeijingChina
| |
Collapse
|
30
|
Zhao Y, Chen G, Zhao Y, Li M, Zhang N, Wen J, Zhou N, Li S, Mao H, Huang C. Wafer-Level, High-Performance, Flexible Sensors Based on Organic Nanoforests for Human-Machine Interactions. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37307295 DOI: 10.1021/acsami.3c04953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
High-performance flexible sensors are essential for real-time information analysis and constructing noncontact communication modules for emerging human-machine interactions. In these applications, batch fabrication of sensors that exhibit high performance at the wafer level is in high demand. Here, we present organic nanoforest-based humidity sensor (NFHS) arrays on a 6 in. flexible substrate prepared via a facile, cost-effective manufacturing approach. Such an NFHS achieves state-of-the-art overall performance: high sensitivity and fast recovery time; the best properties are at a small device footprint. The high sensitivity (8.84 pF/% RH) and fast response time (5 s) of the as-fabricated organic nanoforests are attributed to the abundant hydrophilic groups, the ultra-large surface area with a huge number of nanopores, and the vertically distributed structures beneficial to the transfer of molecules up and down. The NFHS also exhibits excellent long-term stability (90 days), superior mechanical flexibility, and good performance repeatability after bending. With these superiorities, the NFHS is further applied as a smart noncontact switch, and the NFHS array is used as the motion trajectory tracker. The wafer-level batch fabrication capability of our NFHS provides a potential strategy for developing practical applications of such humidity sensors.
Collapse
Affiliation(s)
- Yuefang Zhao
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guidong Chen
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yaqian Zhao
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Mao Li
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Nan Zhang
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- State Key Laboratory of Applied Optics, Changchun Institute of Optics Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, P. R. China
| | - Jing Wen
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Na Zhou
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shaojuan Li
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- State Key Laboratory of Applied Optics, Changchun Institute of Optics Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, P. R. China
| | - Haiyang Mao
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chengjun Huang
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
31
|
Liu L, Abdulla W. Improving APT Systems' Performance in Air via Impedance Matching and 3D-Printed Clamp. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23115347. [PMID: 37300074 DOI: 10.3390/s23115347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
This paper presents a study on improving the performance of the acoustic piezoelectric transducer system in air, as the low acoustic impedance of air leads to suboptimal system performance. Impedance matching techniques can enhance the acoustic power transfer (APT) system's performance in air. This study integrates an impedance matching circuit into the Mason circuit and investigates the impact of fixed constraints on the piezoelectric transducer's sound pressure and output voltage. Additionally, this paper proposes a novel equilateral triangular peripheral clamp that is entirely 3D-printable and cost-effective. This study analyses the peripheral clamp's impedance and distance characteristics and confirms its effectiveness through consistent experimental and simulation results. The findings of this study can aid researchers and practitioners in various fields that employ APT systems to improve their performance in air.
Collapse
Affiliation(s)
- Liu Liu
- Department of Electrical, Computer and Software Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Waleed Abdulla
- Department of Electrical, Computer and Software Engineering, The University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
32
|
Tian H, Gu W, Li XS, Ren TL. Stretchable Ink Printed Graphene Device with Weft-Knitted Fabric Substrate Based on Thermal-Acoustic Effect. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20334-20345. [PMID: 37040205 DOI: 10.1021/acsami.3c00072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Thermal-acoustic devices have great potential as flexible ultrathin sound sources. However, stretchable sound sources based on a thermal-acoustic mechanism remain elusive, as realizing stable resistance in a reasonable range is challenging. In this study, a stretchable thermal-acoustic device based on graphene ink is fabricated on a weft-knitted fabric. After optimization of the graphene ink concentration, the device resistance changes by 8.94% during 4000 cycles of operation in the unstretchable state. After multiple cycles of bending, folding, prodding, and washing, the sound pressure level (SPL) change of the device is within 10%. Moreover, the SPL has an increase with the strain in a specific range, showing a phenomenon similar to the negative differential resistance (NDR) effect. This study sheds light on the use of stretchable thermal-acoustic devices for e-skin and wearable electronics.
Collapse
Affiliation(s)
- He Tian
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Wen Gu
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Xiao-Shi Li
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Tian-Ling Ren
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| |
Collapse
|
33
|
Deng Y, Guo X, Lin Y, Huang Z, Li Y. Dual-Phase Inspired Soft Electronic Sensors with Programmable and Tunable Mechanical Properties. ACS NANO 2023; 17:6423-6434. [PMID: 36861640 DOI: 10.1021/acsnano.2c11245] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Wearable and stretchable sensors are important components to strictly monitor the behavior and health of humans and attract extensive attention. However, traditional sensors are designed with pure horseshoes or chiral metamaterials, which restrict the biological tissue engineer applications due to their narrow regulation ranges of the elastic modulus and the poorly adjustable Poisson's ratio. Inspired by the biological spiral microstructure, a dual-phase metamaterial (chiral-horseshoes) is designed and fabricated in this work, which possesses wide and programmable mechanical properties by tailoring the geometrical parameters. Experimental, numerical, and theoretical studies are conducted, which reveal that the designed microstructures can reproduce mechanical properties of most natural animals such as frogs, snakes, and rabbits skin. Furthermore, a flexible strain sensor with the gauge factor reaching 2 under 35% strain is fabricated, which indicates that the dual-phase metamaterials have a stable monitoring ability and can be potentially applied in the electronic skin. Finally, the flexible strain sensor is attached on the human skin, and it can successfully monitor the physiological behavior signals under various actions. In addition, the dual-phase metamaterial could combine with artificial intelligence algorithms to fabricate a flexible stretchable display. The dual-phase metamaterial with negative Poisson's ratio could decrease the lateral shrinkage and image distortion during the stretching process. This study offers a strategy for designing the flexible strain sensors with programmable, tunable mechanical properties, and the fabricated soft and high-precision wearable strain sensor can accurately monitor the skin signals under different human motions and potentially be applied for flexible display.
Collapse
|
34
|
Liu G, Lv Z, Batool S, Li MZ, Zhao P, Guo L, Wang Y, Zhou Y, Han ST. Biocompatible Material-Based Flexible Biosensors: From Materials Design to Wearable/Implantable Devices and Integrated Sensing Systems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207879. [PMID: 37009995 DOI: 10.1002/smll.202207879] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/28/2023] [Indexed: 06/19/2023]
Abstract
Human beings have a greater need to pursue life and manage personal or family health in the context of the rapid growth of artificial intelligence, big data, the Internet of Things, and 5G/6G technologies. The application of micro biosensing devices is crucial in connecting technology and personalized medicine. Here, the progress and current status from biocompatible inorganic materials to organic materials and composites are reviewed and the material-to-device processing is described. Next, the operating principles of pressure, chemical, optical, and temperature sensors are dissected and the application of these flexible biosensors in wearable/implantable devices is discussed. Different biosensing systems acting in vivo and in vitro, including signal communication and energy supply are then illustrated. The potential of in-sensor computing for applications in sensing systems is also discussed. Finally, some essential needs for commercial translation are highlighted and future opportunities for flexible biosensors are considered.
Collapse
Affiliation(s)
- Gang Liu
- Institute of Microscale Optoelectronics and College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ziyu Lv
- Institute of Microscale Optoelectronics and College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Saima Batool
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | | | - Pengfei Zhao
- Institute of Microscale Optoelectronics and College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Liangchao Guo
- College of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, P. R. China
| | - Yan Wang
- School of Microelectronics, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Su-Ting Han
- Institute of Microscale Optoelectronics and College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
35
|
Wang Y, Hong M, Venezuela J, Liu T, Dargusch M. Expedient secondary functions of flexible piezoelectrics for biomedical energy harvesting. Bioact Mater 2023; 22:291-311. [PMID: 36263099 PMCID: PMC9556936 DOI: 10.1016/j.bioactmat.2022.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 11/22/2022] Open
Abstract
Flexible piezoelectrics realise the conversion between mechanical movements and electrical power by conformally attaching onto curvilinear surfaces, which are promising for energy harvesting of biomedical devices due to their sustainable body movements and/or deformations. Developing secondary functions of flexible piezoelectric energy harvesters is becoming increasingly significant in recent years via aiming at issues that cannot be addressed or mitigated by merely increasing piezoelectric efficiencies. These issues include loose interfacial contact and pucker generation by stretching, power shortage or instability induced by inadequate mechanical energy, and premature function degeneration or failure caused by fatigue fracture after cyclic deformations. Herein, the expedient secondary functions of flexible piezoelectrics to mitigate above issues are reviewed, including stretchability, hybrid energy harvesting, and self-healing. Efforts have been devoted to understanding the state-of-the-art strategies and their mechanisms of achieving secondary functions based on piezoelectric fundamentals. The link between structural characteristic and function performance is unravelled by providing insights into carefully selected progresses. The remaining challenges of developing secondary functions are proposed in the end with corresponding outlooks. The current work hopes to help and inspire future research in this promising field focusing on developing the secondary functions of flexible piezoelectric energy harvesters.
Collapse
Affiliation(s)
- Yuan Wang
- Centre for Advanced Materials Processing and Manufacturing (AMPAM), The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Min Hong
- Centre for Future Materials, University of Southern Queensland, Springfield, Queensland, 4300, Australia
| | - Jeffrey Venezuela
- Centre for Advanced Materials Processing and Manufacturing (AMPAM), The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Ting Liu
- Centre for Advanced Materials Processing and Manufacturing (AMPAM), The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Matthew Dargusch
- Centre for Advanced Materials Processing and Manufacturing (AMPAM), The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
36
|
Cheng Y, Xu J, Li L, Cai P, Li Y, Jiang Q, Wang W, Cao Y, Xue B. Boosting the Piezoelectric Sensitivity of Amino Acid Crystals by Mechanical Annealing for the Engineering of Fully Degradable Force Sensors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207269. [PMID: 36775849 PMCID: PMC10104669 DOI: 10.1002/advs.202207269] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Biodegradable piezoelectric force sensors can be used as implantable medical devices for monitoring physiological pressures of impaired organs or providing essential stimuli for drug delivery and tissue regeneration without the need of additional invasive removal surgery or battery power. However, traditional piezoelectric materials, such as inorganic ceramics and organic polymers, show unsatisfactory degradability, and cytotoxicity. Amino acid crystals are biocompatible and exhibit outstanding piezoelectric properties, but their small crystal size makes it difficult to align the crystals for practical applications. Here, a mechanical-annealing strategy is reported for engineering all-organic biodegradable piezoelectric force sensors using natural amino acid crystals as piezoelectric materials. It is shown that the piezoelectric constant of the mechanical-annealed crystals can reach 12 times that of the single crystal powders. Moreover, mechanical annealing results in flat and smooth surfaces, thus improving the contact of the crystal films with the electrodes and leading to high output voltages of the devices. The packaged force sensors can be used to monitor dynamic motions, including muscle contraction and lung respiration, in vivo for 4 weeks and then gradually degrade without causing obvious inflammation or systemic toxicity. This work provides a way to engineer all-organic and biodegradable force sensors for potential clinical applications.
Collapse
Affiliation(s)
- Yuanqi Cheng
- Collaborative Innovation Center of Advanced MicrostructuresNational Laboratory of Solid State MicrostructureDepartment of PhysicsNanjing UniversityNanjing210093P. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinan250021P. R. China
| | - Juan Xu
- Key Laboratory of Pharmaceutical BiotechnologyDivision of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryDrum Tower Hospital Affiliated to Medical School of Nanjing UniversityNanjing210008P. R. China
| | - Lan Li
- Key Laboratory of Pharmaceutical BiotechnologyDivision of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryDrum Tower Hospital Affiliated to Medical School of Nanjing UniversityNanjing210008P. R. China
| | - Pingqiang Cai
- Key Laboratory of Pharmaceutical BiotechnologyDivision of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryDrum Tower Hospital Affiliated to Medical School of Nanjing UniversityNanjing210008P. R. China
| | - Ying Li
- Institute of Advanced Materials and Flexible Electronics (IAMFE)School of Chemistry and Materials ScienceNanjing University of Information Science & TechnologyNanjing210044P. R. China
| | - Qing Jiang
- Key Laboratory of Pharmaceutical BiotechnologyDivision of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryDrum Tower Hospital Affiliated to Medical School of Nanjing UniversityNanjing210008P. R. China
| | - Wei Wang
- Collaborative Innovation Center of Advanced MicrostructuresNational Laboratory of Solid State MicrostructureDepartment of PhysicsNanjing UniversityNanjing210093P. R. China
| | - Yi Cao
- Collaborative Innovation Center of Advanced MicrostructuresNational Laboratory of Solid State MicrostructureDepartment of PhysicsNanjing UniversityNanjing210093P. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinan250021P. R. China
| | - Bin Xue
- Collaborative Innovation Center of Advanced MicrostructuresNational Laboratory of Solid State MicrostructureDepartment of PhysicsNanjing UniversityNanjing210093P. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinan250021P. R. China
| |
Collapse
|
37
|
Luo Y, Abidian MR, Ahn JH, Akinwande D, Andrews AM, Antonietti M, Bao Z, Berggren M, Berkey CA, Bettinger CJ, Chen J, Chen P, Cheng W, Cheng X, Choi SJ, Chortos A, Dagdeviren C, Dauskardt RH, Di CA, Dickey MD, Duan X, Facchetti A, Fan Z, Fang Y, Feng J, Feng X, Gao H, Gao W, Gong X, Guo CF, Guo X, Hartel MC, He Z, Ho JS, Hu Y, Huang Q, Huang Y, Huo F, Hussain MM, Javey A, Jeong U, Jiang C, Jiang X, Kang J, Karnaushenko D, Khademhosseini A, Kim DH, Kim ID, Kireev D, Kong L, Lee C, Lee NE, Lee PS, Lee TW, Li F, Li J, Liang C, Lim CT, Lin Y, Lipomi DJ, Liu J, Liu K, Liu N, Liu R, Liu Y, Liu Y, Liu Z, Liu Z, Loh XJ, Lu N, Lv Z, Magdassi S, Malliaras GG, Matsuhisa N, Nathan A, Niu S, Pan J, Pang C, Pei Q, Peng H, Qi D, Ren H, Rogers JA, Rowe A, Schmidt OG, Sekitani T, Seo DG, Shen G, Sheng X, Shi Q, Someya T, Song Y, Stavrinidou E, Su M, Sun X, Takei K, Tao XM, Tee BCK, Thean AVY, Trung TQ, Wan C, Wang H, Wang J, Wang M, Wang S, Wang T, Wang ZL, Weiss PS, Wen H, Xu S, Xu T, Yan H, Yan X, Yang H, Yang L, Yang S, Yin L, Yu C, Yu G, Yu J, Yu SH, Yu X, Zamburg E, Zhang H, Zhang X, Zhang X, Zhang X, Zhang Y, Zhang Y, Zhao S, Zhao X, Zheng Y, Zheng YQ, Zheng Z, Zhou T, Zhu B, Zhu M, Zhu R, Zhu Y, Zhu Y, Zou G, Chen X. Technology Roadmap for Flexible Sensors. ACS NANO 2023; 17:5211-5295. [PMID: 36892156 PMCID: PMC11223676 DOI: 10.1021/acsnano.2c12606] [Citation(s) in RCA: 249] [Impact Index Per Article: 124.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Humans rely increasingly on sensors to address grand challenges and to improve quality of life in the era of digitalization and big data. For ubiquitous sensing, flexible sensors are developed to overcome the limitations of conventional rigid counterparts. Despite rapid advancement in bench-side research over the last decade, the market adoption of flexible sensors remains limited. To ease and to expedite their deployment, here, we identify bottlenecks hindering the maturation of flexible sensors and propose promising solutions. We first analyze challenges in achieving satisfactory sensing performance for real-world applications and then summarize issues in compatible sensor-biology interfaces, followed by brief discussions on powering and connecting sensor networks. Issues en route to commercialization and for sustainable growth of the sector are also analyzed, highlighting environmental concerns and emphasizing nontechnical issues such as business, regulatory, and ethical considerations. Additionally, we look at future intelligent flexible sensors. In proposing a comprehensive roadmap, we hope to steer research efforts towards common goals and to guide coordinated development strategies from disparate communities. Through such collaborative efforts, scientific breakthroughs can be made sooner and capitalized for the betterment of humanity.
Collapse
Affiliation(s)
- Yifei Luo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Mohammad Reza Abidian
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77024, United States
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Deji Akinwande
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Anne M Andrews
- Department of Chemistry and Biochemistry, California NanoSystems Institute, and Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Markus Antonietti
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Campus Norrköping, Linköping University, 83 Linköping, Sweden
- Wallenberg Initiative Materials Science for Sustainability (WISE) and Wallenberg Wood Science Center (WWSC), SE-100 44 Stockholm, Sweden
| | - Christopher A Berkey
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94301, United States
| | - Christopher John Bettinger
- Department of Biomedical Engineering and Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Peng Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Wenlong Cheng
- Nanobionics Group, Department of Chemical and Biological Engineering, Monash University, Clayton, Australia, 3800
- Monash Institute of Medical Engineering, Monash University, Clayton, Australia3800
| | - Xu Cheng
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, PR China
| | - Seon-Jin Choi
- Division of Materials of Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Alex Chortos
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Canan Dagdeviren
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Reinhold H Dauskardt
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94301, United States
| | - Chong-An Di
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Zhiyong Fan
- Department of Electronic and Computer Engineering and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yin Fang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Jianyou Feng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, PR China
| | - Xue Feng
- Laboratory of Flexible Electronics Technology, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Huajian Gao
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, California, 91125, United States
| | - Xiwen Gong
- Department of Chemical Engineering, Department of Materials Science and Engineering, Department of Electrical Engineering and Computer Science, Applied Physics Program, and Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan, 48109 United States
| | - Chuan Fei Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaojun Guo
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Martin C Hartel
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Zihan He
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - John S Ho
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
| | - Youfan Hu
- School of Electronics and Center for Carbon-Based Electronics, Peking University, Beijing 100871, China
| | - Qiyao Huang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Yu Huang
- Department of Materials Science and Engineering, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, PR China
| | - Muhammad M Hussain
- mmh Labs, Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Ali Javey
- Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Unyong Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Engineering (POSTECH), Pohang, Gyeong-buk 37673, Korea
| | - Chen Jiang
- Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
| | - Xingyu Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, PR China
| | - Jiheong Kang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Daniil Karnaushenko
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz 09126, Germany
| | | | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dmitry Kireev
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Lingxuan Kong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
- NUS Graduate School-Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
| | - Nae-Eung Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Kyunggi-do 16419, Republic of Korea
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Engineering Research, Research Institute of Advanced Materials, Seoul National University, Soft Foundry, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Fengyu Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jinxing Li
- Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Neuroscience Program, BioMolecular Science Program, and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48823, United States
| | - Cuiyuan Liang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 119276, Singapore
| | - Yuanjing Lin
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Darren J Lipomi
- Department of Nano and Chemical Engineering, University of California, San Diego, La Jolla, California 92093-0448, United States
| | - Jia Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts, 02134, United States
| | - Kai Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Nan Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Ren Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts, 02134, United States
| | - Yuxin Liu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Department of Biomedical Engineering, N.1 Institute for Health, Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore 119077, Singapore
| | - Yuxuan Liu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Zhiyuan Liu
- Neural Engineering Centre, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China 518055
| | - Zhuangjian Liu
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Nanshu Lu
- Department of Aerospace Engineering and Engineering Mechanics, Department of Electrical and Computer Engineering, Department of Mechanical Engineering, Department of Biomedical Engineering, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhisheng Lv
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Shlomo Magdassi
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - George G Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge CB3 0FA, Cambridge United Kingdom
| | - Naoji Matsuhisa
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Arokia Nathan
- Darwin College, University of Cambridge, Cambridge CB3 9EU, United Kingdom
| | - Simiao Niu
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Jieming Pan
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Changhyun Pang
- School of Chemical Engineering and Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Qibing Pei
- Department of Materials Science and Engineering, Department of Mechanical and Aerospace Engineering, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, PR China
| | - Dianpeng Qi
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Huaying Ren
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, 90095, United States
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Department of Mechanical Engineering, Department of Biomedical Engineering, Departments of Electrical and Computer Engineering and Chemistry, and Department of Neurological Surgery, Northwestern University, Evanston, Illinois 60208, United States
| | - Aaron Rowe
- Becton, Dickinson and Company, 1268 N. Lakeview Avenue, Anaheim, California 92807, United States
- Ready, Set, Food! 15821 Ventura Blvd #450, Encino, California 91436, United States
| | - Oliver G Schmidt
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz 09126, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, Chemnitz 09107, Germany
- Nanophysics, Faculty of Physics, TU Dresden, Dresden 01062, Germany
| | - Tsuyoshi Sekitani
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Osaka, Japan 5670047
| | - Dae-Gyo Seo
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Guozhen Shen
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, and IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Qiongfeng Shi
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
| | - Takao Someya
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, Beijing 100190, China
| | - Eleni Stavrinidou
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74 Norrkoping, Sweden
| | - Meng Su
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, Beijing 100190, China
| | - Xuemei Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, PR China
| | - Kuniharu Takei
- Department of Physics and Electronics, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
| | - Xiao-Ming Tao
- Research Institute for Intelligent Wearable Systems, School of Fashion and Textiles, Hong Kong Polytechnic University, Hong Kong, China
| | - Benjamin C K Tee
- Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- iHealthtech, National University of Singapore, Singapore 119276, Singapore
| | - Aaron Voon-Yew Thean
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Tran Quang Trung
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Kyunggi-do 16419, Republic of Korea
| | - Changjin Wan
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Huiliang Wang
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Joseph Wang
- Department of Nanoengineering, University of California, San Diego, California 92093, United States
| | - Ming Wang
- Frontier Institute of Chip and System, State Key Laboratory of Integrated Chip and Systems, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China
- the Shanghai Qi Zhi Institute, 41th Floor, AI Tower, No.701 Yunjin Road, Xuhui District, Shanghai 200232, China
| | - Sihong Wang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, 60637, United States
| | - Ting Wang
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Paul S Weiss
- California NanoSystems Institute, Department of Chemistry and Biochemistry, Department of Bioengineering, and Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Hanqi Wen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
- Institute of Flexible Electronics Technology of THU, Jiaxing, Zhejiang, China 314000
| | - Sheng Xu
- Department of Nanoengineering, Department of Electrical and Computer Engineering, Materials Science and Engineering Program, and Department of Bioengineering, University of California San Diego, La Jolla, California, 92093, United States
| | - Tailin Xu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Hongping Yan
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Hui Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, China, 300072
| | - Le Yang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, #03-09 EA, Singapore 117575, Singapore
| | - Shuaijian Yang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, and Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Cunjiang Yu
- Department of Engineering Science and Mechanics, Department of Biomedical Engineering, Department of Material Science and Engineering, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania, 16802, United States
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas, 78712, United States
| | - Jing Yu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Shu-Hong Yu
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Hefei National Research Center for Physical Science at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Evgeny Zamburg
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Haixia Zhang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication; Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Xiangyu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Xiaosheng Zhang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| | - Yihui Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics; Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, PR China
| | - Yu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Siyuan Zhao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts, 02134, United States
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
| | - Yuanjin Zheng
- Center for Integrated Circuits and Systems, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yu-Qing Zheng
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication; School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Zijian Zheng
- Department of Applied Biology and Chemical Technology, Faculty of Science, Research Institute for Intelligent Wearable Systems, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Tao Zhou
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Huck Institutes of the Life Sciences, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Bowen Zhu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Ming Zhu
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Rong Zhu
- Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, 90064, United States
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, Department of Materials Science and Engineering, and Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Guijin Zou
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Xiaodong Chen
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Laboratory for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
38
|
Ma J, Quhe R, Zhang W, Yan Y, Tang H, Qu Z, Cheng Y, Schmidt OG, Zhu M. Zn Microbatteries Explore Ways for Integrations in Intelligent Systems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300230. [PMID: 36938705 DOI: 10.1002/smll.202300230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/20/2023] [Indexed: 06/18/2023]
Abstract
As intelligent microsystems develop, many revolutionary applications, such as the swallowing surgeon proposed by Richard Feynman, are about to evolve. Nonetheless, integrable energy storage satisfying the demand for autonomous operations has emerged as a major obstacle to the deployment of intelligent microsystems. A reason for the lagging development of integrable batteries is the challenge of miniaturization through microfabrication procedures. Lithium batteries, generated by the most successful battery chemistry, are not stable in the air, thus creating major manufacturing challenges. Other cations (Na+ , Mg2+ , Al3+ , K+ ) are still in the early stages of development. In contrast, the superior stability of zinc batteries in the air brings high compatibility to microfabrication protocols and has already demonstrated excellent practicability in full-sized devices. To obtain energy-dense and high-power zinc microbatteries within square-millimeter or smaller footprints, sandwich, pillar, and Swiss-roll configurations are developed. Thin interdigital and fiber microbatteries find their applications being integrated into wearable devices and electronic skin. It is foreseeable that zinc microbatteries will find their way into highly integrated microsystems unlocking their full potential for autonomous operation. This review summarizes the material development, configuration innovation, and application-oriented integration of zinc microbatteries.
Collapse
Affiliation(s)
- Jiachen Ma
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- State Key Laboratory of Information Photonics and Optical Communications and School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, P. R. China
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09107, Chemnitz, Germany
| | - Ruge Quhe
- State Key Laboratory of Information Photonics and Optical Communications and School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, P. R. China
| | - Wenlan Zhang
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09107, Chemnitz, Germany
| | - Yaping Yan
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09107, Chemnitz, Germany
| | - Hongmei Tang
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09107, Chemnitz, Germany
| | - Zhe Qu
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09107, Chemnitz, Germany
| | - Yapeng Cheng
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09107, Chemnitz, Germany
| | - Oliver G Schmidt
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09107, Chemnitz, Germany
- School of Science, Dresden University of Technology, 01062, Dresden, Germany
| | - Minshen Zhu
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09107, Chemnitz, Germany
| |
Collapse
|
39
|
Shi Q, Sun Z, Le X, Xie J, Lee C. Soft Robotic Perception System with Ultrasonic Auto-Positioning and Multimodal Sensory Intelligence. ACS NANO 2023; 17:4985-4998. [PMID: 36867760 DOI: 10.1021/acsnano.2c12592] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Flexible electronics such as tactile cognitive sensors have been broadly adopted in soft robotic manipulators to enable human-skin-mimetic perception. To achieve appropriate positioning for randomly distributed objects, an integrated guiding system is inevitable. Yet the conventional guiding system based on cameras or optical sensors exhibits limited environment adaptability, high data complexity, and low cost effectiveness. Herein, a soft robotic perception system with remote object positioning and a multimodal cognition capability is developed by integrating an ultrasonic sensor with flexible triboelectric sensors. The ultrasonic sensor is able to detect the object shape and distance by reflected ultrasound. Thereby the robotic manipulator can be positioned to an appropriate position to perform object grasping, during which the ultrasonic and triboelectric sensors can capture multimodal sensory information such as object top profile, size, shape, hardness, material, etc. These multimodal data are then fused for deep-learning analytics, leading to a highly enhanced accuracy in object identification (∼100%). The proposed perception system presents a facile, low-cost, and effective methodology to integrate positioning capability with multimodal cognitive intelligence in soft robotics, significantly expanding the functionalities and adaptabilities of current soft robotic systems in industrial, commercial, and consumer applications.
Collapse
Affiliation(s)
- Qiongfeng Shi
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
| | - Zhongda Sun
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
| | - Xianhao Le
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
| | - Jin Xie
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
- NUS Graduate School - Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|
40
|
Jiang S, Liu X, Liu J, Ye D, Duan Y, Li K, Yin Z, Huang Y. Flexible Metamaterial Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200070. [PMID: 35325478 DOI: 10.1002/adma.202200070] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Over the last decade, extensive efforts have been made on utilizing advanced materials and structures to improve the properties and functionalities of flexible electronics. While the conventional ways are approaching their natural limits, a revolutionary strategy, namely metamaterials, is emerging toward engineering structural materials to break the existing fetters. Metamaterials exhibit supernatural physical behaviors, in aspects of mechanical, optical, thermal, acoustic, and electronic properties that are inaccessible in natural materials, such as tunable stiffness or Poisson's ratio, manipulating electromagnetic or elastic waves, and topological and programmable morphability. These salient merits motivate metamaterials as a brand-new research direction and have inspired extensive innovative applications in flexible electronics. Here, such a groundbreaking interdisciplinary field is first coined as "flexible metamaterial electronics," focusing on enhancing and innovating functionalities of flexible electronics via the design of metamaterials. Herein, the latest progress and trends in this infant field are reviewed while highlighting their potential value. First, a brief overview starts with introducing the combination of metamaterials and flexible electronics. Then, the developed applications are discussed, such as self-adaptive deformability, ultrahigh sensitivity, and multidisciplinary functionality, followed by the discussion of potential prospects. Finally, the challenges and opportunities facing flexible metamaterial electronics to advance this cutting-edge field are summarized.
Collapse
Affiliation(s)
- Shan Jiang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xuejun Liu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jianpeng Liu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Dong Ye
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yongqing Duan
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Kan Li
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhouping Yin
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - YongAn Huang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
41
|
Wang H, Zhu C, Jin W, Tang J, Wu Z, Chen K, Hong H. A Linear-Power-Regulated Wireless Power Transfer Method for Decreasing the Heat Dissipation of Fully Implantable Microsystems. SENSORS (BASEL, SWITZERLAND) 2022; 22:8765. [PMID: 36433362 PMCID: PMC9697315 DOI: 10.3390/s22228765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/01/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Magnetic coupling resonance wireless power transfer can efficiently provide energy to intracranial implants under safety constraints, and is the main way to power fully implantable brain-computer interface systems. However, the existing maximum efficiency tracking wireless power transfer system is aimed at optimizing the overall system efficiency, but the efficiency of the secondary side is not optimized. Moreover, the parameters of the transmitter and the receiver change nonlinearly in the power control process, and the efficiency tracking mainly depends on wireless communication. The heat dissipation caused by the unoptimized receiver efficiency and the wireless communication delay in power control will inevitably affect neural activity and even cause damage, thus affecting the results of neuroscience research. Here, a linear-power-regulated wireless power transfer method is proposed to realize the linear change of the received power regulation and optimize the receiver efficiency, and a miniaturized linear-power-regulated wireless power transfer system is developed. With the received power control, the efficiency of the receiver is increased to more than 80%, which can significantly reduce the heating of fully implantable microsystems. The linear change of the received power regulation makes the reflected impedance in the transmitter change linearly, which will help to reduce the dependence on wireless communication and improve biological safety in received power control applications.
Collapse
|
42
|
Lyu S, He Y, Tao X, Yao Y, Huang X, Ma Y, Peng Z, Ding Y, Wang Y. Subcutaneous power supply by NIR-II light. Nat Commun 2022; 13:6596. [PMID: 36329024 PMCID: PMC9633840 DOI: 10.1038/s41467-022-34047-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
Implantable medical devices are wished to be recharged via contactless power transfer technologies without interventional operations. Superior to subcutaneous power supply by visible light or electromagnetic wave, second near-infrared (NIR-II) light is predicted to possess 60 times subcutaneous power transmission but hard to be utilized. Here we report a photo-thermal-electric converter via the combination of photothermal conversion and thermoelectric conversion. It is able to generate an output power as high as 195 mW under the coverage of excised tissues, presenting advantages of non-invasion, high output power, negligible biological damage, and deep tissue penetration. As an in vivo demonstration, the output power of a packaged converter in the abdominal cavity of a rabbit reaches 20 mW under NIR-II light irradiation through the rabbit skin with a thickness of 8.5 mm. This value is high enough to recharge an implanted high-power-consumption wireless camera and transfer video signal out of body in real-time.
Collapse
Affiliation(s)
- Shanzhi Lyu
- grid.24539.390000 0004 0368 8103Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, 100872 Beijing, China ,grid.12527.330000 0001 0662 3178Department of Energy and Power Engineering, Tsinghua University, 100082 Beijing, China
| | - Yonglin He
- grid.24539.390000 0004 0368 8103Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, 100872 Beijing, China
| | - Xinglei Tao
- grid.24539.390000 0004 0368 8103Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, 100872 Beijing, China
| | - Yuge Yao
- grid.12527.330000 0001 0662 3178Department of Energy and Power Engineering, Tsinghua University, 100082 Beijing, China
| | - Xiangyi Huang
- grid.24539.390000 0004 0368 8103Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, 100872 Beijing, China
| | - Yingchao Ma
- grid.24539.390000 0004 0368 8103Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, 100872 Beijing, China
| | - Zhimin Peng
- grid.12527.330000 0001 0662 3178Department of Energy and Power Engineering, Tsinghua University, 100082 Beijing, China
| | - Yanjun Ding
- grid.12527.330000 0001 0662 3178Department of Energy and Power Engineering, Tsinghua University, 100082 Beijing, China
| | - Yapei Wang
- grid.24539.390000 0004 0368 8103Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, 100872 Beijing, China
| |
Collapse
|
43
|
Rong G, Zheng Y, Yang X, Bao K, Xia F, Ren H, Bian S, Li L, Zhu B, Sawan M. A Closed-Loop Approach to Fight Coronavirus: Early Detection and Subsequent Treatment. BIOSENSORS 2022; 12:900. [PMID: 36291037 PMCID: PMC9599914 DOI: 10.3390/bios12100900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
The recent COVID-19 pandemic has caused tremendous damage to the social economy and people's health. Some major issues fighting COVID-19 include early and accurate diagnosis and the shortage of ventilator machines for critical patients. In this manuscript, we describe a novel solution to deal with COVID-19: portable biosensing and wearable photoacoustic imaging for early and accurate diagnosis of infection and magnetic neuromodulation or minimally invasive electrical stimulation to replace traditional ventilation. The solution is a closed-loop system in that the three modules are integrated together and form a loop to cover all-phase strategies for fighting COVID-19. The proposed technique can guarantee ubiquitous and onsite detection, and an electrical hypoglossal stimulator can be more effective in helping severe patients and reducing complications caused by ventilators.
Collapse
Affiliation(s)
- Guoguang Rong
- CenBRAIN Neurotech, School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou 310030, China
- School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou 310030, China
- Institute of Advanced Study, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Yuqiao Zheng
- CenBRAIN Neurotech, School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou 310030, China
- School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou 310030, China
- Institute of Advanced Study, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Xi Yang
- CenBRAIN Neurotech, School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou 310030, China
- School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou 310030, China
- Institute of Advanced Study, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Kangjian Bao
- School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou 310030, China
- Institute of Advanced Study, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Fen Xia
- CenBRAIN Neurotech, School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou 310030, China
- School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou 310030, China
- Institute of Advanced Study, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Huihui Ren
- School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou 310030, China
- Institute of Advanced Study, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Sumin Bian
- CenBRAIN Neurotech, School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou 310030, China
- School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou 310030, China
- Institute of Advanced Study, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Lan Li
- School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou 310030, China
- Institute of Advanced Study, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Bowen Zhu
- School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou 310030, China
- Institute of Advanced Study, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Mohamad Sawan
- CenBRAIN Neurotech, School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou 310030, China
- School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou 310030, China
- Institute of Advanced Study, Westlake Institute for Advanced Study, Hangzhou 310024, China
| |
Collapse
|
44
|
Ling W, Wang Y, Lu B, Shang X, Wu Z, Chen Z, Li X, Zou C, Yan J, Zhou Y, Liu J, Li H, Que K, Huang X. Continuously Quantifying Oral Chemicals Based on Flexible Hybrid Electronics for Clinical Diagnosis and Pathogenetic Study. Research (Wash D C) 2022; 2022:9810129. [PMID: 36072268 PMCID: PMC9414179 DOI: 10.34133/2022/9810129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/19/2022] [Indexed: 11/06/2022] Open
Abstract
Simultaneous monitoring of diverse salivary parameters can reveal underlying mechanisms of intraoral biological processes and offer profound insights into the evolution of oral diseases. However, conventional analytical devices with bulky volumes, rigid formats, and discrete sensing mechanisms deviate from the requirements of continuous biophysiological quantification, resulting in huge difficulty in precise clinical diagnosis and pathogenetic study. Here, we present a flexible hybrid electronic system integrated with functional nanomaterials to continuously sense Ca2+, pH, and temperature for wireless real-time oral health monitoring. The miniaturized system with an island-bridge structure that is designed specifically to fit the teeth is only 0.4 g in weight and 31.5×8.5×1.35 mm3 in dimension, allowing effective integration with customized dental braces and comfort attachment on teeth. Characterization results indicate high sensitivities of 30.3 and 60.6 mV/decade for Ca2+ and pH with low potential drifts. The system has been applied in clinical studies to conduct Ca2+ and pH mappings on carious teeth, biophysiological monitoring for up to 12 h, and outcome evaluation of dental restoration, providing quantitative data to assist in the diagnosis and understanding of oral diseases. Notably, caries risk assessment of 10 human subjects using the flexible system validates the important role of saliva buffering capacity in caries pathogenesis. The proposed flexible system may offer an open platform to carry diverse components to support both clinical diagnosis and treatment as well as fundamental research for oral diseases and induced systemic diseases.
Collapse
Affiliation(s)
- Wei Ling
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
- Center of Flexible Wearable Technology, Institute of Flexible Electronic Technology of Tsinghua, Jiaxing 314006, China
| | - Yinghui Wang
- School of Stomatology, Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin 300070, China
| | - Bingyu Lu
- School of Stomatology, Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin 300070, China
| | - Xue Shang
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Ziyue Wu
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
- Center of Flexible Wearable Technology, Institute of Flexible Electronic Technology of Tsinghua, Jiaxing 314006, China
| | - Zhaorun Chen
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Xueting Li
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Chenchen Zou
- School of Stomatology, Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin 300070, China
| | - Jinjie Yan
- School of Stomatology, Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin 300070, China
| | - Yunjie Zhou
- School of Stomatology, Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin 300070, China
| | - Jie Liu
- School of Stomatology, Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin 300070, China
| | - Hongjie Li
- School of Stomatology, Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin 300070, China
| | - Kehua Que
- School of Stomatology, Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin 300070, China
| | - Xian Huang
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
- Center of Flexible Wearable Technology, Institute of Flexible Electronic Technology of Tsinghua, Jiaxing 314006, China
| |
Collapse
|
45
|
Jiang L, Wu B, Wei X, Lv X, Xue H, Lu G, Zeng Y, Xing J, Wu W, Wu J. Flexible lead-free piezoelectric arrays for high-efficiency wireless ultrasonic energy transfer and communication. MATERIALS HORIZONS 2022; 9:2180-2190. [PMID: 35686946 DOI: 10.1039/d2mh00437b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Implantable medical electronics (IMEs) are now becoming increasingly prevalent for diagnostic and therapeutic purposes. Despite extensive efforts, a primary challenge for IMEs is reliable wireless power and communication to provide well-controlled, therapeutically relevant effects. Ultrasonic energy transfer and communication (UETC) employing traveling ultrasound waves to transmit energy has emerged as a promising wireless strategy for IMEs. Nevertheless, conventional UETC systems are rigid, bulky, and based on toxic lead-based piezoelectric materials, raising efficiency and safety concerns. Here, we present a novel transcutaneous UETC system based on a two-dimensional flexible lead-free piezoelectric array (f-LFPA) that hybridizes high-performance (piezoelectric coefficient d33 ≈ 503 pC N-1) (K,Na)NbO3-based eco-friendly piezo-units with soft structural components. The newly developed lead-free piezo-unit exhibits submicron ferroelectric domains and superior energy harvesting figures of merit (d33g33 ≈ 20 000 × 10-15 m2 N-1), resulting in the prepared f-LFPA demonstrating a high output voltage of 22.4 V, a power density of 0.145 W cm-2, and a signal-to-noise ratio of more than 30 dB within the FDA safety limits, while maintaining the flexibility for wide-angle receiving. Further ex vivo experiment demonstrates the adequate power supply capabilities of the f-LFPA and its possible application in future implantable eco-friendly bioelectronics for diagnostics, therapy, and real-time monitoring.
Collapse
Affiliation(s)
- Laiming Jiang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China.
| | - Bo Wu
- Sichuan Province Key Laboratory of Information Materials, Southwest Minzu University, Chengdu, 610041, P. R. China.
| | - Xiaowei Wei
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China.
| | - Xiang Lv
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China.
| | - Haoyue Xue
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China.
| | - Gengxi Lu
- Department of Biomedical Engineering Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Yushun Zeng
- Department of Biomedical Engineering Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Jie Xing
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China.
| | - Wenjuan Wu
- Sichuan Province Key Laboratory of Information Materials and Devices Application, Chengdu University of Information Technology, Chengdu 610225, P. R. China
| | - Jiagang Wu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
46
|
Sheng F, Zhang B, Zhang Y, Li Y, Cheng R, Wei C, Ning C, Dong K, Wang ZL. Ultrastretchable Organogel/Silicone Fiber-Helical Sensors for Self-Powered Implantable Ligament Strain Monitoring. ACS NANO 2022; 16:10958-10967. [PMID: 35775629 DOI: 10.1021/acsnano.2c03365] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Implantable sensors with the abilities of real-time healthcare monitoring and auxiliary training are important for exercise-induced or disease-induced muscle and ligament injuries. However, some of these implantable sensors have some shortcomings, such as requiring an external power supply or poor flexibility and stability. Herein, an organogel/silicone fiber-helical sensor based on a triboelectric nanogenerator (OFS-TENG) is developed for power-free and sutureable implantation ligament strain monitoring. The OFS-TENG with high stability and ultrastretchability is composed of an organogel fiber and a silicone fiber intertwined with a double helix structure. The organogel fiber possesses the merits of rapid preparation (15 s), good transparency (>95%), high stretchability (600%), and favorable stability (over 6 months). The OFS-TENG is successfully implanted on the patellar ligament of the rabbit knee for the real-time monitoring of knee ligament stretch and muscle stress, which is expected to provide a solution for real-time diagnosis of muscle and ligament injuries. The prepared self-powered OFS-TENG can monitor data on human muscles and ligaments in real-time.
Collapse
Affiliation(s)
- Feifan Sheng
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Chemistry and Chemical Engineering, Center on Nanoenergy Research, School of Physical Science & Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Bo Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Yihan Zhang
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences Beijing, 100049, P. R. China
| | - Yanyan Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Renwei Cheng
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences Beijing, 100049, P. R. China
| | - Chuanhui Wei
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences Beijing, 100049, P. R. China
| | - Chuan Ning
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences Beijing, 100049, P. R. China
| | - Kai Dong
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences Beijing, 100049, P. R. China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences Beijing, 100049, P. R. China
- School of Material Science and Engineering, Georgia Institute of Technology Atlanta, Georgia 30332, United States
| |
Collapse
|
47
|
Jiang L, Chen H, Zeng Y, Tan Z, Wu J, Xing J, Zhu J. Potassium Sodium Niobate-Based Lead-Free High-Frequency Ultrasonic Transducers for Multifunctional Acoustic Tweezers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30979-30990. [PMID: 35767379 DOI: 10.1021/acsami.2c05687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ultrasonic transducers may need to operate in direct contact with the human body, especially with the skin or closer to blood vessels. Eco-friendly lead-free materials and devices are therefore being vigorously developed for biosafety considerations. This work presents high-performance potassium sodium niobate [(K,Na)NbO3, KNN]-based lead-free ceramics with composition-driven multiphase coexistence and their application on high-frequency ultrasonic transducers for multifunctional acoustic tweezers. A high piezoelectric constant d33 value of 332 pC/N, a good Curie temperature TC value of 348 °C, and improved in situ temperature stability were obtained in the piezoceramics via the construction multiple phases near room temperature and domain engineering. One to three piezocomposites were further fabricated based on the synthesized ceramics for higher electromechanical coupling properties. Lead-free high-frequency transducers as multifunctional acoustic tweezers for precise and selective manipulation of microparticles were designed and manufactured with a high center frequency of 23.4 MHz and a broad -6 dB bandwidth of 75.4%. Additionally, a stable transducer performance was obtained over a test temperature range of 23-60 °C, indicating good thermal stability in environments with fluctuating temperatures. Research on lead-free high-frequency transducers for ultrasound imaging and precise and selective manipulation of microparticles demonstrates their broad potential in fields such as medical therapy and diagnosis.
Collapse
Affiliation(s)
- Laiming Jiang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064 , China
| | - Hao Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064 , China
| | - Yushun Zeng
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Zhi Tan
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064 , China
| | - Jiagang Wu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064 , China
| | - Jie Xing
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064 , China
| | - Jianguo Zhu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064 , China
| |
Collapse
|
48
|
Gao X, Liu P, Yin Q, Wang H, Fu J, Hu F, Jiang Y, Zhu H, Wang Y. Wireless light energy harvesting and communication in a waterproof GaN optoelectronic system. COMMUNICATIONS ENGINEERING 2022; 1:16. [PMCID: PMC10956059 DOI: 10.1038/s44172-022-00016-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/27/2022] [Indexed: 10/20/2024]
Abstract
Wireless technologies can be used to track and observe freely moving animals. InGaN/GaN light-emitting diodes (LEDs) allow for underwater optical wireless communication due to the small water attenuation in the blue-green spectrum region. GaN-based quantum well diodes can also harvest and detect light. Here, we report a monolithic GaN optoelectronic system (MGOS) that integrates an energy harvester, LED and SiO2/TiO2 distributed Bragg reflector (DBR) into a single chip. The DBR serves as waterproof layer as well as optical filter. The waterproof MGOS can operate in boiling water and ice without external interconnect circuits. The units transform coded information from an external light source into electrical energy and directly activate the LEDs for illumination and relaying light information. We demonstrate that our MGOS chips, when attached to Carassius auratus fish freely swimming in a water tank, simultaneously conduct wireless energy harvesting and light communication. Our devices could be useful for tracking, observation and interacting with aquatic animals. Xumin Gao and colleagues report a robust and waterproof monolithic GaN optoelectronic chip that integrates an energy harvester, light emitting diode and Bragg reflector. The units transform external light into electrical energy and directly activate the integrated LEDs even when attached to freely swimming Carassius auratus fish.
Collapse
Affiliation(s)
- Xumin Gao
- Grünberg Research Centre, Nanjing University of Posts and Telecommunications, Nanjing, 210003 China
| | - Pengzhan Liu
- Grünberg Research Centre, Nanjing University of Posts and Telecommunications, Nanjing, 210003 China
| | - Qingxi Yin
- Grünberg Research Centre, Nanjing University of Posts and Telecommunications, Nanjing, 210003 China
| | - Hao Wang
- Grünberg Research Centre, Nanjing University of Posts and Telecommunications, Nanjing, 210003 China
| | - Jianwei Fu
- Grünberg Research Centre, Nanjing University of Posts and Telecommunications, Nanjing, 210003 China
| | - Fangren Hu
- Grünberg Research Centre, Nanjing University of Posts and Telecommunications, Nanjing, 210003 China
| | - Yuan Jiang
- Grünberg Research Centre, Nanjing University of Posts and Telecommunications, Nanjing, 210003 China
| | - Hongbo Zhu
- Grünberg Research Centre, Nanjing University of Posts and Telecommunications, Nanjing, 210003 China
| | - Yongjin Wang
- Grünberg Research Centre, Nanjing University of Posts and Telecommunications, Nanjing, 210003 China
| |
Collapse
|
49
|
Flexible ultrasound-induced retinal stimulating piezo-arrays for biomimetic visual prostheses. Nat Commun 2022; 13:3853. [PMID: 35788594 PMCID: PMC9253314 DOI: 10.1038/s41467-022-31599-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 06/22/2022] [Indexed: 12/29/2022] Open
Abstract
Electronic visual prostheses, or biomimetic eyes, have shown the feasibility of restoring functional vision in the blind through electrical pulses to initiate neural responses artificially. However, existing visual prostheses predominantly use wired connections or electromagnetic waves for powering and data telemetry, which raises safety concerns or couples inefficiently to miniaturized implant units. Here, we present a flexible ultrasound-induced retinal stimulating piezo-array that can offer an alternative wireless artificial retinal prosthesis approach for evoking visual percepts in blind individuals. The device integrates a two-dimensional piezo-array with 32-pixel stimulating electrodes in a flexible printed circuit board. Each piezo-element can be ultrasonically and individually activated, thus, spatially reconfigurable electronic patterns can be dynamically applied via programmable ultrasound beamlines. As a proof of concept, we demonstrate the ultrasound-induced pattern reconstruction in ex vivo murine retinal tissue, showing the potential of this approach to restore functional, life-enhancing vision in people living with blindness.
Collapse
|
50
|
Zhao Z, Spyropoulos GD, Cea C, Gelinas JN, Khodagholy D. Ionic communication for implantable bioelectronics. SCIENCE ADVANCES 2022; 8:eabm7851. [PMID: 35385298 PMCID: PMC8985921 DOI: 10.1126/sciadv.abm7851] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/14/2022] [Indexed: 05/22/2023]
Abstract
Implanted bioelectronic devices require data transmission through tissue, but ionic conductivity and inhomogeneity of this medium complicate conventional communication approaches. Here, we introduce ionic communication (IC) that uses ions to effectively propagate megahertz-range signals. We demonstrate that IC operates by generating and sensing electrical potential energy within polarizable media. IC was tuned to transmit across a range of biologically relevant tissue depths. The radius of propagation was controlled to enable multiline parallel communication, and it did not interfere with concurrent use of other bioelectronics. We created a fully implantable IC-based neural interface device that acquired and noninvasively transmitted neurophysiologic data from freely moving rodents over a period of weeks with stability sufficient for isolation of action potentials from individual neurons. IC is a biologically based data communication that establishes long-term, high-fidelity interactions across intact tissue.
Collapse
Affiliation(s)
- Zifang Zhao
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| | | | - Claudia Cea
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| | - Jennifer N. Gelinas
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Dion Khodagholy
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| |
Collapse
|