1
|
Zhang W, Song H, Zeeshan A, Chen J, Liu S. Advances in hot carrier relaxation dynamics of perovskites with ultrafast time-resolved detection. Phys Chem Chem Phys 2025; 27:7485-7501. [PMID: 40135497 DOI: 10.1039/d4cp04400b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Perovskite (PVK) materials have been widely studied and widely used in photoelectric conversion devices due to their unique crystal structure, many interesting physical and chemical properties and low manufacturing cost. Despite extensive research, challenges remain in fully understanding the dynamic processes of carrier recombination, separation, transport and dynamic evolution of defect states, which are critical to device performance. Addressing these gaps is essential for the development of high-speed optoelectronic devices. The development of high-speed devices requires a full understanding of the properties of materials, especially the dynamic processes such as carrier recombination, separation, and transport, which often play a vital role in the performance of devices. Therefore, in order to better understand and control the behavior of photo-induced hot carriers (HC), ultrafast laser detection technology is applied to the study of PVK materials, which can observe and measure the generation, transmission, and recombination of photo-induced HCs in real time to reveal their dynamic behavior and photoelectric properties. This paper summarizes the latest research progress of ultrafast carrier dynamics in all-inorganic halide PVKs, double PVKs and organic-inorganic halide PVKs to fully understand their carrier relaxation, recombination, transfer, and other behaviors. Additionally, this review highlights emerging trends and unresolved issues in HC dynamics, aiming to provide a roadmap for future studies in this area. It is expected that with the help of the relevant physical mechanism of HC relaxation dynamics obtained here, breakthroughs will be made in improving and regulating the photoelectric conversion efficiency and the corresponding ultrafast light response devices in the future.
Collapse
Affiliation(s)
- Wanyun Zhang
- Strong-Field and Ultrafast Photonics Lab, School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Haiying Song
- Strong-Field and Ultrafast Photonics Lab, School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Abbas Zeeshan
- Strong-Field and Ultrafast Photonics Lab, School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Jing Chen
- School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Shibing Liu
- Strong-Field and Ultrafast Photonics Lab, School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
2
|
Wu Y, Chen D, Zou G, Liu H, Zhu Z, Rogach AL, Yip HL. Strategies for Stabilizing Metal Halide Perovskite Light-Emitting Diodes: Bulk and Surface Reconstruction of Perovskite Nanocrystals. ACS NANO 2025; 19:9740-9759. [PMID: 40053394 DOI: 10.1021/acsnano.5c00593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Light-emitting colloidal lead halide perovskite nanocrystals (PeNCs) are considered promising candidates for next-generation vivid displays. However, the operational stability of light-emitting diodes (LEDs) based on PeNCs is still lower than those based on polycrystalline perovskite films, which requires an understanding of defect formation in PeNCs, both inside the crystal lattice ("bulk") and at the surface. Meanwhile, uncontrollable ion redistribution and electrochemical reactions under LED operation can be severe, which is also related to the bulk and surface quality of PeNCs, and a well-designed device architecture can boost carrier injection and balance radiative recombination. In this review, we consider bulk and surface reconstruction of PeNCs by enhancing the crystal lattice rigidity and rationally selecting the surface ligands. Degradation pathways of PeNCs under applied voltage are discussed, and strategies are considered to avoid both undesirable ion migration and electrochemical reactions in the PeNC films. Subsequently, other critical issues hindering the commercial application of PeNC LEDs are discussed, including the toxicity of Pb in lead halide perovskites, scale-up deposition of PeNC films, and design of active-matrix prototypes for high-resolution LED modules.
Collapse
Affiliation(s)
- Ye Wu
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Desui Chen
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Guangruixing Zou
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Haochen Liu
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Zhaohua Zhu
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Andrey L Rogach
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Hin-Lap Yip
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
- School of Energy and Environmental Science, City University of Hong Kong, Kowloon, Hong Kong S.A.R. 999077, P.R. China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| |
Collapse
|
3
|
Zhou T, Guo P, Jiang X, Zhao H, Zhang Q, Wang PX. Semiconducting liquid crystalline dispersions with precisely adjustable band gaps and polarized photoluminescence. MATERIALS HORIZONS 2025. [PMID: 40040576 DOI: 10.1039/d4mh01876a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Simultaneously possessing energy conversion properties and reconfigurable anisotropic structures due to their fluidity, semiconducting liquid crystals are an emerging class of soft materials for generating and detecting polarized photons. However, band-gap engineering of liquid crystalline substances remains challenging. Herein, semiconducting liquid crystals exhibiting discotic nematic ordering, linearly polarized monochromatic photoluminescence or broadband white-light emission, and polarization-dependent light-responsiveness (generation of photons and photocurrents) were systematically developed by transforming two-dimensional organic-inorganic metal halide perovskites into mesogenic colloidal nanoparticles. The emission wavelengths of the perovskite liquid crystals could be adjusted with an accuracy of 5 nanometers over a wide range in the visible region by compositional variations, indicating the possibility of fabricating polarized light-emitting or optoelectronic devices with desired band gaps using these materials.
Collapse
Affiliation(s)
- Tingting Zhou
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
- I-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics of the Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China.
| | - Penghao Guo
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
- I-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics of the Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China.
| | - Xuelian Jiang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
- I-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics of the Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China.
| | - Hongbo Zhao
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
- I-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics of the Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China.
| | - Qing Zhang
- NANO-X Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics of the Chinese Academy of Sciences, 385 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China
| | - Pei-Xi Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
- I-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics of the Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China.
| |
Collapse
|
4
|
Kaur J, Chakraborty S. Crossover of Frenkel and Wannier-Mott Excitons Through Halide Composition Tuning in Mixed Halide Perovskites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408919. [PMID: 39887882 DOI: 10.1002/smll.202408919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/13/2025] [Indexed: 02/01/2025]
Abstract
Using first-principles G0W0 (G0 is one-electron Green's function and W0 is the dynamical screening Coloumb potential) coupled Bethe-Salpeter equation (BSE) calculations with spin-orbit coupling, exceptionally strong excitonic effects are identified in several bismuth-based vacancy-ordered mixed halide double perovskites. These perovskites are thermodynamically stable with negative formation energy. For Cs3Bi2X9 (X = Cl,Br,I) double perovskites, both the bandgap and excitonic binding energy decrease as the size of the halogen atom increases. The excitonic effects can be tuned in mixed halide perovskites such as Cs3Bi2I6Cl3, Cs3Bi2I6Br3, Cs3Bi2Br6I3, Cs3Bi2Cl6Br3, Cs3Bi2Br6Cl3, and Cs3Bi2Cl6I3. This study reports the exciton radiative lifetimes of the vacancy-ordered perovskites, revealing that these excitons exhibit long radiative lifetimes, particularly for Cs3Bi2Br6I3 with 11141μ s $\umu \mathrm{s}$ at 300 K and 24μ s $\umu \mathrm{s}$ at 5 K. The long radiative lifetimes are linked to the delocalization of the exciton (Wannier-Mott type) in real space, whereas the more localized exciton (Frenkel type) in Cs3Bi2Cl6Br3 results in shorter radiative lifetimes of 155μ s $\umu \mathrm{s}$ at 300 K and 334 ns at 5 K. Due to their long exciton lifetime, these materials present interesting opportunities for photovoltaic applications.
Collapse
Affiliation(s)
- Jagjit Kaur
- Materials Theory for Energy Scavenging (MATES) Lab, Harish-Chandra Research Institute, A CI of Homi Bhabha National Institute (HBNI), Chhatnag Road, Prayagraj, Uttar Pradesh, 211019, India
| | - Sudip Chakraborty
- Materials Theory for Energy Scavenging (MATES) Lab, Harish-Chandra Research Institute, A CI of Homi Bhabha National Institute (HBNI), Chhatnag Road, Prayagraj, Uttar Pradesh, 211019, India
| |
Collapse
|
5
|
Jang KY, Chang SE, Kim DH, Yoon E, Lee TW. Nanocrystalline Perovskites for Bright and Efficient Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2415648. [PMID: 39972651 DOI: 10.1002/adma.202415648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/31/2024] [Indexed: 02/21/2025]
Abstract
Nanocrystalline perovskites have driven significant progress in metal halide perovskite light-emitting diodes (PeLEDs) over the past decade by enabling the spatial confinement of excitons. Consequently, three primary categories of nanocrystalline perovskites have emerged: nanoscale polycrystalline perovskites, quasi-2D perovskites, and perovskite nanocrystals. Each type has been developed to address specific challenges and enhance the efficiency and stability of PeLEDs. This review explores the representative material design strategies for these nanocrystalline perovskites, correlating them with exciton recombination dynamics and optical/electrical properties. Additionally, it summarizes the trends in progress over the past decade, outlining four distinct phases of nanocrystalline perovskite development. Lastly, this review addresses the remaining challenges and proposes a potential material design to further advance PeLED technology toward commercialization.
Collapse
Affiliation(s)
- Kyung Yeon Jang
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seong Eui Chang
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Dong-Hyeok Kim
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Eojin Yoon
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Research Institute of Advanced Materials (RIAM), Institute of Engineering Research, Soft Foundry, Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- SN Display Co., Ltd., 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| |
Collapse
|
6
|
Kolokytha C, Lathiotakis NN, Kaltzoglou A, Petsalakis ID, Tzeli D. The Effect of A-Cation and X-Anion Substitutions on the Electronic and Structural Properties of A 2ZrX 6 'Defect' Perovskite Materials: A Theoretical Density Functional Theory Study. MATERIALS (BASEL, SWITZERLAND) 2025; 18:726. [PMID: 39942391 PMCID: PMC11820960 DOI: 10.3390/ma18030726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/24/2025] [Accepted: 02/02/2025] [Indexed: 02/16/2025]
Abstract
In the present work, nine 'defect' perovskites with the chemical formula A2ZrX6 have been studied, where the A-site cations are a methylammonium cation, formamidinium cation, and trimethyl-sulfonium cation and the X-site anions are halogen, X = Cl, Br, and I. We employ periodic DFT calculations using GGA-PBE, MBJ, HSEsol, and HSE06 functionals. All studied compounds exhibit a wide-bandgap energy that ranges from 5.22 eV to 2.11 eV, while for some cases, geometry optimization led to significant structural modification. It was found that the increase in the halogen size resulted in a decrease in the bandgap energy. The choice of the organic A-site cation affects the bandgap as well, which is minimal for the methylammonium cation. Such semiconductors with organic cations may be utilized in optoelectronic devices, given the substantial benefit of solution processability and thin film formation compared to purely inorganic analogs, such as Cs2ZrX6.
Collapse
Affiliation(s)
- Christina Kolokytha
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., GR-11635 Athens, Greece; (C.K.); (A.K.); (I.D.P.)
- Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, GR-15784 Zografou, Greece
| | - Nektarios N. Lathiotakis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., GR-11635 Athens, Greece; (C.K.); (A.K.); (I.D.P.)
| | - Andreas Kaltzoglou
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., GR-11635 Athens, Greece; (C.K.); (A.K.); (I.D.P.)
| | - Ioannis D. Petsalakis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., GR-11635 Athens, Greece; (C.K.); (A.K.); (I.D.P.)
| | - Demeter Tzeli
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., GR-11635 Athens, Greece; (C.K.); (A.K.); (I.D.P.)
- Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, GR-15784 Zografou, Greece
| |
Collapse
|
7
|
Liu Y, Ma Z, Zhang J, He Y, Dai J, Li X, Shi Z, Manna L. Light-Emitting Diodes Based on Metal Halide Perovskite and Perovskite Related Nanocrystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2415606. [PMID: 39887795 DOI: 10.1002/adma.202415606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/18/2024] [Indexed: 02/01/2025]
Abstract
Light-emitting diodes (LEDs) based on halide perovskite nanocrystals have attracted extensive attention due to their considerable luminescence efficiency, wide color gamut, high color purity, and facile material synthesis. Since the first demonstration of LEDs based on MAPbBr3 nanocrystals was reported in 2014, the community has witnessed a rapid development in their performances. In this review, a historical perspective of the development of LEDs based on halide perovskite nanocrystals is provided and then a comprehensive survey of current strategies for high-efficiency lead-based perovskite nanocrystals LEDs, including synthesis optimization, ion doping/alloying, and shell coating is presented. Then the basic characteristics and emission mechanisms of lead-free perovskite and perovskite-related nanocrystals emitters in environmentally friendly LEDs, from the standpoint of different emission colors are reviewed. Finally, the progress in LED applications is covered and an outlook of the opportunities and challenges for future developments in this field is provided.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhuangzhuang Ma
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, China
| | - Jibin Zhang
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, China
| | - Yanni He
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jinfei Dai
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China
| | - Xinjian Li
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhifeng Shi
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, China
| | - Liberato Manna
- Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| |
Collapse
|
8
|
Xue X, Li M, Liu Z, Wang C, Xu J, Wang S, Zhang H, Zhong H, Ji W. Quantum dots enhanced stability of in-situ fabricated perovskite nanocrystals based light-emitting diodes: Electrical field distribution effects. FUNDAMENTAL RESEARCH 2025; 5:347-353. [PMID: 40166101 PMCID: PMC11955023 DOI: 10.1016/j.fmre.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/30/2022] Open
Abstract
With the development in fabricating efficient perovskite light emitting diodes (PeLEDs), improving the operating stability becomes an urgent task. Here we report quantum dot (QD) enhanced stability of PeLEDs by introducing CdSe/ZnS core-shell QDs in toluene anti-solvent during in-situ fabrication of FAPbBr3 perovskite nanocrystals (PNCs) films. In comparison with PNC films with pristine toluene as the anti-solvent, the as-prepared FAPbBr3 PNC films with a QD monolayer on the surface exhibit improved photoluminescence quantum yield, enhanced photostability and better reproducibility. Benefiting from these advantages, the peak luminance and the maximum external quantum efficiency of the PeLED containing QD monolayer are increased from 6807 cd/m2 to 86,670 cd/m2 and 2.4% to 7.1%, respectively. The T 50 lifetime under the initial luminance of 1021 cd/m2 approaches 83 minutes. Based on electrical field simulation and transient electroluminescence measurements, the enhanced stability can be mainly attributed to the electrical field redistribution induced by the QD monolayer. This work demonstrates that the combination of QDs and perovskites provides an effective strategy to address the operational stability of PeLEDs. The insights into electrical field distribution effect will make great impact on stability improvement of other perovskite based devices.
Collapse
Affiliation(s)
- Xulan Xue
- Key Lab of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
| | - Menglin Li
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zhenjie Liu
- Key Lab of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
| | - Chenhui Wang
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jincheng Xu
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa 999078, China
| | - Shuangpeng Wang
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa 999078, China
| | - Hanzhuang Zhang
- Key Lab of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
| | - Haizheng Zhong
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Wenyu Ji
- Key Lab of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
| |
Collapse
|
9
|
Li J, Liu Y, Zeng J, He S, Zhu X, Sun X, Jin Y. Bright and Efficient CsSnBr 3 Light-Emitting Diodes Enabled by Interfacial Reaction-Assisted Crystallization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2414841. [PMID: 39703088 DOI: 10.1002/adma.202414841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/10/2024] [Indexed: 12/21/2024]
Abstract
Tin-based perovskites are more environmentally friendly than their lead-based alternatives. Perovskite light-emitting diodes (PeLEDs) using iodide-based tin perovskites have achieved considerable advancements in efficiency. However, PeLEDs using bromide-based tin perovskites have not progressed as rapidly, primarily due to challenges in controlling their crystallization processes. Here, an interfacial reaction-assisted crystallization method is introduced to achieve bright and efficient CsSnBr3 PeLEDs. It is started by forming an intermediate phase through the coordination of SnBr2 with ethylenediamine derivatives. Subsequently, a protonation reaction is designed between the intermediate phase and the acidic polyethylenedioxythiophene: poly(styrene sulfonate) hole-transport layer to generate high-quality CsSnBr3 films. Additionally, the use of potassium thiocyanate additives effectively enhances the photoluminescence efficiency of the CsSnBr3 films. These efforts result in CsSnBr3-based PeLEDs achieving a maximum luminance of 787 cd m-2 and a peak external quantum efficiency of 0.91%, demonstrating the most efficient and brightest CsSnBr3-based PeLEDs to date. This work opens an avenue to better control the crystallization of tin-based perovskite.
Collapse
Affiliation(s)
- Jinyi Li
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Yang Liu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, China
| | - Jiejun Zeng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Material Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Siyu He
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Xitong Zhu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Xiaoyue Sun
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Yizheng Jin
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
10
|
Marcato T, Kumar S, Shih CJ. Strategies for Controlling Emission Anisotropy in Lead Halide Perovskite Emitters for LED Outcoupling Enhancement. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2413622. [PMID: 39676496 DOI: 10.1002/adma.202413622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/14/2024] [Indexed: 12/17/2024]
Abstract
In the last decade, momentous progress in lead halide perovskite (LHP) light-emitting diodes (LEDs) is witnessed as their external quantum efficiency (ηext) has increased from 0.1 to more than 30%. Indeed, perovskite LEDs (PeLEDs), which can in principle reach 100% internal quantum efficiency as they are not limited by the spin-statistics, are reaching their full potential and approaching the theoretical limit in terms of device efficiency. However, ≈70% to 85% of total generated photons are trapped within the devices through the dissipation pathways of the substrate, waveguide, and evanescent modes. To this end, numerous extrinsic and intrinsic light-outcoupling strategies are studied to enhance light-outcoupling efficiency (ηout). At the outset, various external and internal light outcoupling techniques are reviewed with specific emphasis on emission anisotropy and its role on ηout. In particular, the device ηext can be enhanced by up to 50%, taking advantage of the increased probability for photons outcoupled to air by effectively inducing horizontally oriented emission transition dipole moments (TDM) in the perovskite emitters. The role of the TDM orientation in PeLED performance and the factors allowing its rational manipulation are reviewed extensively. Furthermore, this account presents an in-depth discussion about the effects of the self-assembly of LHP colloidal nanocrystals (NCs) into superlattices on the NC emission anisotropy and optical properties.
Collapse
Affiliation(s)
- Tommaso Marcato
- Institute for Chemical and Bioengineering, ETH Zürich, Zürich, 8093, Switzerland
| | - Sudhir Kumar
- Institute for Chemical and Bioengineering, ETH Zürich, Zürich, 8093, Switzerland
| | - Chih-Jen Shih
- Institute for Chemical and Bioengineering, ETH Zürich, Zürich, 8093, Switzerland
| |
Collapse
|
11
|
Tabassum N, Bloom BP, Debnath GH, Waldeck DH. Factors influencing the chiral imprinting in perovskite nanoparticles. NANOSCALE 2024; 16:22120-22127. [PMID: 39530453 DOI: 10.1039/d4nr03329a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Chiral perovskites have emerged as a new class of nanomaterials for manipulation and control of spin polarized current and circularly polarized light for applications in spintronics, chiro-optoelectronics, and chiral photonics. While significant effort has been made in discovering and optimizing strategies to synthesize different forms of chiral perovskites, the mechanism through which chirality is imbued onto the perovskites by chiral surface ligands remains unclear. In this minireview, we provide a detailed discussion of one of the proposed mechanisms, electronic imprinting from a chiral ligand.
Collapse
Affiliation(s)
- Nazifa Tabassum
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | - Brian P Bloom
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | - Gouranga H Debnath
- Centre for Nano and Material Sciences, Jain University, Bangalore, Karnataka 562112, India.
| | - David H Waldeck
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| |
Collapse
|
12
|
Wu XG, Jing Y, Zhong H. In Situ Fabricated Perovskite Quantum Dots: From Materials to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412276. [PMID: 39552009 DOI: 10.1002/adma.202412276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/16/2024] [Indexed: 11/19/2024]
Abstract
Due to the low formation enthalpy and high defect tolerance, in situ fabricated perovskite quantum dots offer advantages such as easy fabrication and superior optical properties. This paper reviews the methodologies, functional materials of in situ fabricated perovskite quantum dots, including polymer nanocomposites, quantum dots doped glasses, mesoporous nanocomposites, quantum dots-embedded single crystals, and electroluminescent films. This study further highlights the industrial breakthroughs of in situ fabricated perovskite quantum dots, especially the scale-up fabrication and stability enhancement. Finally, the fundamental challenges in developing perovskite quantum dots for industrial applications are discussed, with a focus on photoinduced degradation under high-intensity light irradiation, ion migration under electrical bias and thermal quenching at high temperature.
Collapse
Affiliation(s)
- Xian-Gang Wu
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuyu Jing
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Haizheng Zhong
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
13
|
Feng SC, Shen Y, Hu XM, Su ZH, Zhang K, Wang BF, Cao LX, Xie FM, Li HZ, Gao X, Tang JX, Li YQ. Efficient and Stable Red Perovskite Light-Emitting Diodes via Thermodynamic Crystallization Control. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410255. [PMID: 39223930 DOI: 10.1002/adma.202410255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Efficient and stable red perovskite light-emitting diodes (PeLEDs) demonstrate promising potential in high-definition displays and biomedical applications. Although significant progress has been made in device performance, meeting commercial demands remains a challenge in the aspects of long-term stability and high external quantum efficiency (EQE). Here, an in situ crystallization regulation strategy is developed for optimizing red perovskite films through ingenious vapor design. Mixed vapor containing dimethyl sulfoxide and carbon disulfide (CS2) is incorporated to conventional annealing, which contributes to thermodynamics dominated perovskite crystallization for well-aligned cascade phase arrangement. Additionally, the perovskite surface defect density is minimized by the CS2 molecule adsorption. Consequently, the target perovskite films exhibit smooth exciton energy transfer, reduced defect density, and blocked ion migration pathways. Leveraging these advantages, spectrally stable red PeLEDs are obtained featuring emission at 668, 656, and 648 nm, which yield record peak EQEs of 30.08%, 32.14%, and 29.04%, along with prolonged half-lifetimes of 47.7, 60.0, and 43.7 h at the initial luminances of 140, 250, and 270 cd m-2, respectively. This work provides a universal strategy for optimizing perovskite crystallization and represents a significant stride toward the commercialization of red PeLEDs.
Collapse
Affiliation(s)
- Shi-Chi Feng
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yang Shen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
- Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macao, 999078, China
| | - Xin-Mei Hu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhen-Huang Su
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Chinese Academy of Sciences, Shanghai, 200241, China
| | - Kai Zhang
- Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macao, 999078, China
| | - Bing-Feng Wang
- School of Physics and Electronic Science, East China Normal University, Shanghai, 200062, China
| | - Long-Xue Cao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Feng-Ming Xie
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Hao-Ze Li
- School of Physics and Electronic Science, East China Normal University, Shanghai, 200062, China
| | - Xingyu Gao
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Chinese Academy of Sciences, Shanghai, 200241, China
| | - Jian-Xin Tang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
- Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macao, 999078, China
| | - Yan-Qing Li
- School of Physics and Electronic Science, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
14
|
Miranti R, Komatsu R, Enomoto K, Inoue D, Pu YJ. Symmetry-Broken Electronic State of CsPbBr 3 Cubic Perovskite Nanocrystals. J Phys Chem Lett 2024; 15:10009-10017. [PMID: 39319585 DOI: 10.1021/acs.jpclett.4c02160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The development of densely packed, self-assembled perovskite nanocrystals (PeNCs) with a favorable transition dipole moment (TDM) orientation is crucial for their application in solution-processable electronic devices. In this study, we fabricated anisotropic CsPbBr3 PeNCs with a symmetry-broken electronic state on quartz substrates modified by 3-aminopropyltrimethoxysilane (APS). Densely packed and self-assembled monolayers of cubic PeNCs were formed on the substrates by using a dip coating technique. The angle-dependent absorption and photoluminescence (PL) spectra confirmed that the PeNC monolayer on the APS-treated substrate exhibited anisotropic electronic states in the in-plane and out-of-plane directions of the substrate. In contrast, when the quartz substrate was modified with the long alkyl silane coupling agent, octadecyltrimethoxysilane, the absorption and PL spectra exhibited no angular dependence, indicating the absence of anisotropy. Experimental and simulated results confirmed the presence of vertical TDMs in the densely packed PeNCs on the APS-treated substrate, which could be attributed to the effect of the amino groups of the APS on the facet of the cubic PeNCs facing the quartz substrate. Hence, surface chemical modifications of the substrate can aid in the precise control of the symmetry of the electronic states and TDM orientation in cubic PeNCs. These findings can promote the development of densely packed, high-coverage PeNC films with a controllable TDM orientation for applications in electronic devices such as solar cells, sensors, and light-emitting diodes.
Collapse
Affiliation(s)
- Retno Miranti
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), South Tangerang, Banten 15314, Indonesia
| | - Ryutaro Komatsu
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kazushi Enomoto
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Daishi Inoue
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yong-Jin Pu
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
15
|
Vighnesh K, Sergeev AA, Hassan MS, Portniagin AS, Sokolova AV, Zhu D, Sergeeva KA, Kershaw SV, Wong KS, Rogach AL. Red-Emitting CsPbI 3/ZnSe Colloidal Nanoheterostructures with Enhanced Optical Properties and Stability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400745. [PMID: 38804826 DOI: 10.1002/smll.202400745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/19/2024] [Indexed: 05/29/2024]
Abstract
Producing heterostructures of cesium lead halide perovskites and metal-chalcogenides in the form of colloidal nanocrystals can improve their optical features and stability, and also govern the recombination of charge carriers. Herein, the synthesis of red-emitting CsPbI3/ZnSe nanoheterostructures is reported via an in situ hot injection method, which provides the crystallization conditions for both components, subsequently leading to heteroepitaxial growth. Steady-state absorption and photoluminescence studies alongside X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy analysis evidence on a type-I band alignment for CsPbI3/ZnSe nanoheterostructures, which exhibit photoluminescence quantum yield of 96% due to the effective passivation of surface defects, and an enhancement in carrier lifetime. Furthermore, the heterostructure growth of ZnSe domains leads to significant improvement in the stability of the CsPbI3 nanocrystals under ambient conditions and against thermal and UV irradiation stress.
Collapse
Affiliation(s)
- Kunnathodi Vighnesh
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Aleksandr A Sergeev
- Department of Physics, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Md Samim Hassan
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Arsenii S Portniagin
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Anastasiia V Sokolova
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Ding Zhu
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Kseniia A Sergeeva
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Stephen V Kershaw
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Kam Sing Wong
- Department of Physics, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Andrey L Rogach
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
16
|
Zhang D, Liu L, Zhu T, Liu Y. Efficient perovskite light-emitting diodes on a flexible substrate. OPTICS LETTERS 2024; 49:5571-5574. [PMID: 39353009 DOI: 10.1364/ol.537934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024]
Abstract
The surface properties of target substrates are crucial for the in situ crystallization and growth of metal halide perovskite films fabricated by the anti-solvent method. In this work, a high-quality quasi-2D perovskite film with various-n phases is fabricated on the commonly used poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) by introducing a branched polyethylenimine (PEI) modifying layer. PEI suppresses the influence of acidic surface of the PEDOT:PSS and regulates the components of the perovskite film, increasing the proportion of large-n phases. Additionally, PEI reduces the formation of defects in perovskite films, leading to higher photoluminescence quantum efficiency and longer photoluminescence lifetime. Based on this high-quality perovskite film, a flexible light-emitting diode with an ultimate current efficiency of 63.2 cd/A is achieved, nearly twofold higher than that of the device (35.1 cd/A) without a PEI modifying layer.
Collapse
|
17
|
Zhang Q, Zhang D, Liao Z, Cao YB, Kumar M, Poddar S, Han J, Hu Y, Lv H, Mo X, Srivastava AK, Fan Z. Perovskite Light-Emitting Diodes with Quantum Wires and Nanorods. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2405418. [PMID: 39183527 DOI: 10.1002/adma.202405418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/22/2024] [Indexed: 08/27/2024]
Abstract
Perovskite materials, celebrated for their exceptional optoelectronic properties, have seen extensive application in the field of light-emitting diodes (LEDs), where research is as abundant as the proverbial "carloads of books." In this review, the research of perovskite materials is delved into from a dimensional perspective, with a focus on the exemplary performance of low-dimensional perovskite materials in LEDs. This discussion predominantly revolves around perovskite quantum wires and perovskite nanorods. Perovskite quantum wires are versatile in their growth, compatible with both solution-based and vapor-phase growth, and can be deposited over large areas-even on spherical substrates-to achieve commendable electroluminescence (EL). Perovskite nanorods, on the other hand, boast a suite of superior characteristics, such as polarization properties and tunability of the transition dipole moment, endowing them with the great potential to enhance light extraction efficiency. Furthermore, zero-dimensional (0D) perovskite materials like nanocrystals (NCs) are also the subject of widespread research and application. This review reflects on and synthesizes the unique qualities of the aforementioned materials while exploring their vital roles in the development of high-efficiency perovskite LEDs (PeLEDs).
Collapse
Affiliation(s)
- Qianpeng Zhang
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Daquan Zhang
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Zebing Liao
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Yang Bryan Cao
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Mallem Kumar
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Swapnadeep Poddar
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Junchao Han
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Ying Hu
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Hualiang Lv
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Xiaoliang Mo
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Abhishek Kumar Srivastava
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Zhiyong Fan
- Department of Electronic & Computer Engineering, State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| |
Collapse
|
18
|
Zhang X, Cui Y, Ye S, Lin Z, Li Y. Highly efficient deep-blue emitting CsPbBr 3 nanoplatelets synthesized via surface ligand-mediated strategy. J Colloid Interface Sci 2024; 668:68-76. [PMID: 38669997 DOI: 10.1016/j.jcis.2024.03.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/20/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024]
Abstract
Two-dimensional (2D) CsPbBr3 nanoplatelets (NPLs) have attracted great attention as one of promising semiconductor nanomaterials due to their large exciton binding energy and narrow emission spectra. However, the labile ionic and weakly bound surfaces of deep-blue emitting CsPbBr3 NPLs with wide bandgap result in their colloidal instability, thus degrading their optical properties. It is challenging to obtain deep-blue emitting CsPbBr3 NPLs with excellent optical properties. In this study, high-quality blue-emitting CsPbBr3 NPLs with tunable thickness were prepared adopting the DBSA-mediated confinement effect based on the hot-injection method. Thanks to the coordination interaction of - SO3- of DBSA ligand and the Pb2+ on the surface of the CsPbBr3 NPLs, as well as the effective passivation of Br vacancy defects on the surface of NPLs by OAm-Br, the obtained pure-blue CsPbBr3 NPLs and deep-blue CsPbBr3 NPLs show high photoluminescence quantum yield (PLQY) of 92 % and 81.2 %, respectively. To the best of our knowledge, this is the highest PLQY recorded for deep-blue emitting CsPbBr3 NPLs with two monolayers [PbBr6]4- octahedra. Furthermore, the agglomeration of CsPbBr3 NPLs due to ligand loss induced by moisture, oxygen, and irradiation was also suppressed by the dual passivation effect of DBSA and OAm-Br. Our work provided a new approach to developing high-performance and stable deep-blue emitting CsPbBr3 perovskite nanoplatelets.
Collapse
Affiliation(s)
- Xue Zhang
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yanyu Cui
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Siyuan Ye
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhuohan Lin
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yan Li
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
19
|
Bera S, Tripathi A, Titus T, Sethi NM, Das R, Afreen, Adarsh KV, Thomas KG, Pradhan N. CsPbBr 3 Perovskite Crack Platelet Nanocrystals and Their Biexciton Generation. J Am Chem Soc 2024; 146:20300-20311. [PMID: 39005055 DOI: 10.1021/jacs.4c05803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Lead halide perovskite nanocrystals have been extensively studied in recent years as efficient optical materials for their bright and color-tunable emissions. However, these are mostly confined to their 3D nanocrystals and limited to the anisotropic nanostructures. By exploring the Cs-sublattice-induced metal(II) ion exchange with Pb(II), crack CsPbBr3 perovskite platelet nanocrystals having polar surfaces in all three directions are reported here, which remained different than reported standard square platelets. The crack platelets are also passivated with halides to enhance their brightness. Further, as these crack and passivated crack platelets have defects and polar surfaces, the exciton and biexciton generation in these platelets is investigated using femtosecond photoluminescence and transient absorption measurement at ambient as well as cryogenic temperatures, correlated with time-resolved single-particle photoluminescence spectroscopy, and compared with standard square platelets having nonpolar facets. These investigations revealed that the crack platelets and passivated crack platelets possess enhanced biexciton emission compared to square platelets due to the presence of polar surfaces in all three directions. These results provide insights into not only the design of the anisotropic nanostructures of ionic nanocrystals but also the possibility of tuning the single exciton to biexciton generation efficiency, which has potential applications in optoelectronic systems.
Collapse
Affiliation(s)
- Suman Bera
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata, West Bengal 700032, India
| | - Akash Tripathi
- Department of Physics, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066, India
| | - Timi Titus
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Nilesh Monohar Sethi
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata, West Bengal 700032, India
| | - Rajdeep Das
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata, West Bengal 700032, India
| | - Afreen
- Department of Physics, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066, India
| | - K V Adarsh
- Department of Physics, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066, India
| | - K George Thomas
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Narayan Pradhan
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata, West Bengal 700032, India
| |
Collapse
|
20
|
Sun X, Meng W, Ngai KH, Nie Z, Luan C, Zhang W, Li S, Lu X, Wu B, Zhou G, Long M, Xu J. Regulating Surface-Passivator Binding Priority for Efficient Perovskite Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400347. [PMID: 38573812 DOI: 10.1002/adma.202400347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/18/2024] [Indexed: 04/06/2024]
Abstract
Suppressing trap-assisted nonradiative losses through passivators is a prerequisite for efficient perovskite light-emitting diodes (PeLEDs). However, the complex bonding between passivators and perovskites severely suppresses the passivation process, which still lacks comprehensive understanding. Herein, the number, category, and degree of bonds between different functional groups and the perovskite are quantitatively assessed to study the passivation dynamics. Functional groups with high electrostatic potential and large steric hindrance prioritize strong bonding with organic cations and halides on the perfect surface, leading to suppressed coordination with bulky defects. By modulating the binding priorities and coordination capacity, hindrance from the intense interaction with perfect perovskite is significantly reduced, leading to a more direct passivation process. Consequently, the near-infrared PeLED without external light out-coupling demonstrates a record external quantum efficiency of 24.3% at a current density of 42 mA cm-2. In addition, the device exhibits a record-level-cycle ON/OFF switching of 20 000 and ultralong half-lifetime of 1126.3 h under 5 mA cm-2. An in-depth understanding of the passivators can offer new insights into the development of high-performance PeLEDs.
Collapse
Affiliation(s)
- Xinwen Sun
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Weiwei Meng
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Kwan Ho Ngai
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Zhiguo Nie
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Chuhao Luan
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Wenjun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Shiang Li
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Xinhui Lu
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Bo Wu
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Guofu Zhou
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Mingzhu Long
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Jianbin Xu
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| |
Collapse
|
21
|
Chen M, Zhang T, Elsukova A, Hu Z, Zhang R, Wang Y, Liu X, Liu X, Gao F. Kinetically Controlled Synthesis of Quasi-Square CsPbI 3 Nanoplatelets with Excellent Stability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306360. [PMID: 38010121 DOI: 10.1002/smll.202306360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/17/2023] [Indexed: 11/29/2023]
Abstract
Nanoplatelets (NPLs) share excellent luminescent properties with their symmetric quantum dots counterparts and entail special characters benefiting from the shape, like the thickness-dependent bandgap and anisotropic luminescence. However, perovskite NPLs, especially those based on iodide, suffer from poor spectral and phase stability. Here, stable CsPbI3 NPLs obtained by accelerating the crystallization process in ambient-condition synthesis are reported. By this kinetic control, the rectangular NPLs into quasi-square NPLs are tuned, where enlarged width endows the NPLs with a lower surface-area-to-volume ratio (S/V ratio), leading to lower surficial energy and thus improved endurance against NPL fusion (cause for spectral shift or phase transformation). The accelerated crystallization, denoting the fast nucleation and short period of growth in this report, is enabled by preparing a precursor with complete transformation of PbI2 into intermediates (PbI3 -), through an additional iodide supplier (e.g., zinc iodide). The excellent color stability of the materials remains in the light-emitting diodes under various bias stresses.
Collapse
Affiliation(s)
- Mengyun Chen
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, 58183, Sweden
| | - Tiankai Zhang
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, 58183, Sweden
| | - Anna Elsukova
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, 58183, Sweden
| | - Zhangjun Hu
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, 58183, Sweden
| | - Rui Zhang
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, 58183, Sweden
| | - Yonghong Wang
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, 58183, Sweden
| | - Xianjie Liu
- Laboratory of Organic Electronics (LOE), Department of Science and Technology, Linköping University, Norrköping, 60174, Sweden
| | - Xiaoke Liu
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, 58183, Sweden
| | - Feng Gao
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, 58183, Sweden
| |
Collapse
|
22
|
Gong X, Hao X, Si J, Deng Y, An K, Hu Q, Cai Q, Gao Y, Ke Y, Wang N, Du Z, Cai M, Ye Z, Dai X, Liu Z. High-Performance All-Inorganic Architecture Perovskite Light-Emitting Diodes Based on Tens-of-Nanometers-Sized CsPbBr 3 Emitters in a Carrier-Confined Heterostructure. ACS NANO 2024; 18:8673-8682. [PMID: 38471123 DOI: 10.1021/acsnano.3c09004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Developing green perovskite light-emitting diodes (PeLEDs) with a high external quantum efficiency (EQE) and low efficiency roll-off at high brightness remains a critical challenge. Nanostructured emitter-based devices have shown high efficiency but restricted ascending luminance at high current densities, while devices based on large-sized crystals exhibit low efficiency roll-off but face great challenges to high efficiency. Herein, we develop an all-inorganic device architecture combined with utilizing tens-of-nanometers-sized CsPbBr3 (TNS-CsPbBr3) emitters in a carrier-confined heterostructure to realize green PeLEDs that exhibit high EQEs and low efficiency roll-off. A typical type-I heterojunction containing TNS-CsPbBr3 crystals and wide-bandgap Cs4PbBr6 within a grain is formed by carefully controlling the precursor ratio. These heterostructured TNS-CsPbBr3 emitters simultaneously enhance carrier confinement and retain low Auger recombination under a large injected carrier density. Benefiting from a simple device architecture consisting of an emissive layer and an oxide electron-transporting layer, the PeLEDs exhibit a sub-bandgap turn-on voltage of 2.0 V and steeply rising luminance. In consequence, we achieved green PeLEDs demonstrating a peak EQE of 17.0% at the brightness of 36,000 cd m-2, and the EQE remained at 15.7% and 12.6% at the brightness of 100,000 and 200,000 cd m-2, respectively. In addition, our results underscore the role of interface degradation during device operation as a factor in device failure.
Collapse
Affiliation(s)
- Xinquan Gong
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Xiaoming Hao
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Junjie Si
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Yunzhou Deng
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE U.K
| | - Kai An
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Qianqing Hu
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Qiuting Cai
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, People's Republic of China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhou Zhejiang University, Wenzhou 325006, People's Republic of China
| | - Yun Gao
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, People's Republic of China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhou Zhejiang University, Wenzhou 325006, People's Republic of China
| | - You Ke
- Shaanxi Institute of Flexible Electronics (SIFE), Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road, Xi'an 710072, People's Republic of China
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Nana Wang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Zhuopeng Du
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Muzhi Cai
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Zhizhen Ye
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, People's Republic of China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhou Zhejiang University, Wenzhou 325006, People's Republic of China
| | - Xingliang Dai
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, People's Republic of China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhou Zhejiang University, Wenzhou 325006, People's Republic of China
| | - Zugang Liu
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, People's Republic of China
| |
Collapse
|
23
|
Zhang J, Qian D, Hu H, Wang K, Cao Y, Song Q, Yao J, Su X, Zhou L, Zhang S, Wang T, Rong Y, Liu C, Mao L, Ding T, Yi J, Zhang YJ, Li JF, Wang N, Wang J, Liu X. Enhancing Light Out-coupling in Perovskite Light-Emitting Diodes through Plasmonic Nanostructures. NANO LETTERS 2024; 24:2681-2688. [PMID: 38408023 DOI: 10.1021/acs.nanolett.3c03483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Perovskite light-emitting diodes (PeLEDs) have emerged as promising candidates for lighting and display technologies owing to their high photoluminescence quantum efficiency and high carrier mobility. However, the performance of planar PeLEDs is limited by the out-coupling efficiency, predominantly governed by photonic losses at device interfaces. Most notably, the plasmonic loss at the metal electrode interfaces can account for up to 60% of the total loss. Here, we investigate the use of plasmonic nanostructures to improve the light out-coupling in PeLEDs. By integrating these nanostructures with PeLEDs, we have demonstrated an effectively reduced plasmonic loss and enhanced light out-coupling. As a result, the nanostructured PeLEDs exhibit an average 1.5-fold increase in external quantum efficiency and an ∼20-fold improvement in device lifetime. This finding offers a generic approach for enhancing light out-coupling, promising great potential to go beyond existing performance limitations.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Dongmin Qian
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), and School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Huatian Hu
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, China
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Via Barsanti 14, 73010 Arnesano, Italy
| | - Kun Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
| | - Yu Cao
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou 350117, China
| | - Qianshan Song
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Jiacheng Yao
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xi Su
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Li Zhou
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Shunping Zhang
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, P. R. China
| | - Ti Wang
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Yaoguang Rong
- School of Chemistry, Chemical Engineering and life Sciences, Wuhan University of Technology, Wuhan 430070, Hubei, P. R. China
| | - Chang Liu
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Li Mao
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Tao Ding
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Jun Yi
- School of Electronic Science and Engineering, Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen 361005, China
| | - Yue-Jiao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
| | - Nana Wang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), and School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Jianpu Wang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), and School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Xiaoze Liu
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, P. R. China
- Wuhan University Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
24
|
Niu K, Wang C, Zeng J, Wang Z, Liu Y, Wang L, Li C, Jin Y. Ion Migration in Lead-Halide Perovskites: Cation Matters. J Phys Chem Lett 2024; 15:1006-1018. [PMID: 38298156 DOI: 10.1021/acs.jpclett.3c03451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Metal halide perovskites exhibit remarkable properties for optoelectronic applications, yet their susceptibility to ion migration poses challenges for device stability. Previous research has predominantly focused on the migration of the halide ions. However, the migration of cations, which also has a significant influence on the device performance, is largely overlooked. In this Perspective, we review the migration of cations and their impacts on perovskite materials and devices. Special attention shall be devoted to recent insights into the migration of L-site organic cations in 2D/3D perovskites. We outline inspirations and directions for further research into the cation migration of perovskites, highlighting new possibilities in advancing perovskite optoelectronics.
Collapse
Affiliation(s)
- Kai Niu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Chenyang Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jiejun Zeng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Excited-State Materials of Zhejiang Province, School of Material Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zirui Wang
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Yang Liu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, China
| | - Linjun Wang
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Cheng Li
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China
- Future Display Institute of Xiamen, Xiamen 361005, P. R. China
| | - Yizheng Jin
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
25
|
Qin F, Lu M, Lu P, Sun S, Bai X, Zhang Y. Luminescence and Degeneration Mechanism of Perovskite Light-Emitting Diodes and Strategies for Improving Device Performance. SMALL METHODS 2023; 7:e2300434. [PMID: 37434048 DOI: 10.1002/smtd.202300434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/17/2023] [Indexed: 07/13/2023]
Abstract
Perovskite light-emitting diodes (PeLEDs) can be a promising technology for next-generation display and lighting applications due to their excellent optoelectronic properties. However, a systematical overview of luminescence and degradation mechanism of perovskite materials and PeLEDs is lacking. Therefore, it is crucial to fully understand these mechanisms and further improve device performances. In this work, the fundamental photophysical processes of perovskite materials, electroluminescence mechanism of PeLEDs including carrier kinetics and efficiency roll-off as well as device degradation mechanism are discussed in detail. In addition, the strategies to improve device performances are summarized, including optimization of photoluminescence quantum yield, charge injection and recombination, and light outcoupling efficiency. It is hoped that this work can provide guidance for future development of PeLEDs and ultimately realize industrial applications.
Collapse
Affiliation(s)
- Feisong Qin
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Min Lu
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Po Lu
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Siqi Sun
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Xue Bai
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Yu Zhang
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| |
Collapse
|
26
|
Bai W, Xuan T, Zhao H, Dong H, Cheng X, Wang L, Xie RJ. Perovskite Light-Emitting Diodes with an External Quantum Efficiency Exceeding 30. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302283. [PMID: 37246938 DOI: 10.1002/adma.202302283] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/03/2023] [Indexed: 05/30/2023]
Abstract
Perovskite light-emitting diodes (PeLEDs) are strong candidates for next-generation display and lighting technologies due to their high color purity and low-cost solution-processed fabrication. However, PeLEDs are not superior to commercial organic light-emitting diodes (OLEDs) in efficiency, as some key parameters affecting their efficiency, such as the charge carrier transport and light outcoupling efficiency, are usually overlooked and not well optimized. Here, ultrahigh-efficiency green PeLEDs are reported with quantum efficiencies surpassing a milestone of 30% by regulating the charge carrier transport and near-field light distribution to reduce electron leakage and achieve a high light outcoupling efficiency of 41.82%. Ni0.9 Mg0.1 Ox films are applied with a high refractive index and increased hole carrier mobility as the hole injection layer to balance the charge carrier injection and insert the polyethylene glycol layer between the hole transport layer and the perovskite emissive layer to block the electron leakage and reduce the photon loss. Therefore, with the modified structure, the state-of-the-art green PeLEDs achieve a world record external quantum efficiency of 30.84% (average = 29.05 ± 0.77%) at a luminance of 6514 cd m-2 . This study provides an interesting idea to construct super high-efficiency PeLEDs by balancing the electron-hole recombination and enhancing the light outcoupling.
Collapse
Affiliation(s)
- Wenhao Bai
- Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Tongtong Xuan
- Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518000, P. R. China
- Xiamen Key Laboratory of High Performance Metals and Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Haiyan Zhao
- Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Haorui Dong
- Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Xinru Cheng
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang, 310018, P. R. China
| | - Le Wang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang, 310018, P. R. China
| | - Rong-Jun Xie
- Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518000, P. R. China
- Xiamen Key Laboratory of High Performance Metals and Materials, Xiamen University, Xiamen, 361005, P. R. China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen, 361005, P. R. China
| |
Collapse
|
27
|
Zhao B, Vasilopoulou M, Fakharuddin A, Gao F, Mohd Yusoff ARB, Friend RH, Di D. Light management for perovskite light-emitting diodes. NATURE NANOTECHNOLOGY 2023; 18:981-992. [PMID: 37653050 DOI: 10.1038/s41565-023-01482-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 07/07/2023] [Indexed: 09/02/2023]
Abstract
Perovskite light-emitting diodes (LEDs) have reached external quantum efficiencies of over 20% for various colours, showing great potential for display and lighting applications. Despite the internal quantum efficiencies of the best-performing devices already approaching unity, around 80% of the internally generated photons are trapped in the devices and lose energy through a variety of lossy channels. Significant opportunities for improving efficiency and maximizing photon extraction lie in the effective management of light. In this Review we analyse light management strategies based on the intrinsic optical properties of the perovskite materials and the extrinsic properties related to device structures. These approaches should allow the external quantum efficiencies of perovskite LEDs to substantially exceed the conventional limits of planar organic LED devices. By revisiting lessons learned from organic LEDs and perovskite solar cells, we highlight possible directions of future research towards perovskite LEDs with ultrahigh efficiencies.
Collapse
Affiliation(s)
- Baodan Zhao
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China
| | - Maria Vasilopoulou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research 'Demokritos', Attica, Greece
| | | | - Feng Gao
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden
| | - Abd Rashid Bin Mohd Yusoff
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
| | | | - Dawei Di
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China.
| |
Collapse
|
28
|
Guo Z, Liang Y, Ni D, Li L, Liu S, Zhang Y, Chen Q, Zhang Q, Wang Q, Zhou H. Homogeneous Phase Distribution in Q-2D Perovskites via Co-Assembly of Spacer Cations for Efficient Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302711. [PMID: 37310805 DOI: 10.1002/adma.202302711] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/27/2023] [Indexed: 06/15/2023]
Abstract
Quasi-2D (Q-2D) perovskites are promising candidates to apply in light-emitting diodes (LEDs). However, delicate control on crystallization kinetics is needed to suppress severe phase segregation. Here, the crystallization kinetics of Q-2D perovskites are investigated via in situ absorbance spectroscopy and for the first time find the multiphase distribution is governed by the arrangement, rather than diffusion, of spacer cations at the nucleation stage, which associate with its assembling ability determined by molecular configuration. A "co-assembly" strategy is conceived by combining co-cations with different configuration characteristics, where bulky cations disturb the assembling between slender cations and lead-bromide sheet, contributing to homogeneous emitting phase with effective passivation. Correspondingly, in the phenylethylammonium (PEA+ )-based Q-2D perovskites ( = 3), homogeneous phase distribution is achieved by incorporating co-cation triphenylmethaneammonium (TPMA+ ), the branching terminals of which suppress cations assembling into low-n phases and afford adequate cations as passivating ligands. Therefore, the champion external quantum efficiency of the LED device reaches 23.9%, which is among the highest performance of green Q-2D perovskite LEDs. This work reveals that the arrangement of spacer cations determines the crystallization kinetics in Q-2D perovskites, providing further guidance on the molecular design and phase modulation of Q-2D perovskites.
Collapse
Affiliation(s)
- Zhenyu Guo
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yin Liang
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Dongyuan Ni
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Liang Li
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Shaocheng Liu
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yu Zhang
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Qi Chen
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Qing Zhang
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Qian Wang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Huanping Zhou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
29
|
Wei Z, Mulder JT, Dubey RK, Evers WH, Jager WF, Houtepen AJ, Grozema FC. Tuning the Driving Force for Charge Transfer in Perovskite-Chromophore Systems. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:15406-15415. [PMID: 37583440 PMCID: PMC10424230 DOI: 10.1021/acs.jpcc.3c03815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/14/2023] [Indexed: 08/17/2023]
Abstract
Understanding the interplay between the kinetics and energetics of photophysical processes in perovskite-chromophore hybrid systems is crucial for realizing their potential in optoelectronics, photocatalysis, and light-harvesting applications. By combining steady-state optical characterizations and transient absorption spectroscopy, we have investigated the mechanism of interfacial charge transfer (CT) between colloidal CsPbBr3 nanoplatelets (NPLs) and surface-anchored perylene derivatives and have explored the possibility of controlling the CT rate by tuning the driving force. The CT driving force was tuned systematically by attaching acceptors with different electron affinities and by varying the bandgap of NPLs via thickness-controlled quantum confinement. Our data show that the charge-separated state is formed by selectively exciting either the electron donors or acceptors in the same system. Upon exciting attached acceptors, hole transfer from perylene derivatives to CsPbBr3 NPLs takes place on a picosecond time scale, showing an energetic behavior in line with the Marcus normal regime. Interestingly, such energetic behavior is absent upon exciting the electron donor, suggesting that the dominant CT mechanism is energy transfer followed by ultrafast hole transfer. Our findings not only elucidate the photophysics of perovskite-molecule systems but also provide guidelines for tailoring such hybrid systems for specific applications.
Collapse
Affiliation(s)
- Zimu Wei
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jence T. Mulder
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Rajeev K. Dubey
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Wiel H. Evers
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Wolter F. Jager
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Arjan J. Houtepen
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Ferdinand C. Grozema
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
30
|
Zhang L, Mei L, Wang K, Lv Y, Zhang S, Lian Y, Liu X, Ma Z, Xiao G, Liu Q, Zhai S, Zhang S, Liu G, Yuan L, Guo B, Chen Z, Wei K, Liu A, Yue S, Niu G, Pan X, Sun J, Hua Y, Wu WQ, Di D, Zhao B, Tian J, Wang Z, Yang Y, Chu L, Yuan M, Zeng H, Yip HL, Yan K, Xu W, Zhu L, Zhang W, Xing G, Gao F, Ding L. Advances in the Application of Perovskite Materials. NANO-MICRO LETTERS 2023; 15:177. [PMID: 37428261 PMCID: PMC10333173 DOI: 10.1007/s40820-023-01140-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/29/2023] [Indexed: 07/11/2023]
Abstract
Nowadays, the soar of photovoltaic performance of perovskite solar cells has set off a fever in the study of metal halide perovskite materials. The excellent optoelectronic properties and defect tolerance feature allow metal halide perovskite to be employed in a wide variety of applications. This article provides a holistic review over the current progress and future prospects of metal halide perovskite materials in representative promising applications, including traditional optoelectronic devices (solar cells, light-emitting diodes, photodetectors, lasers), and cutting-edge technologies in terms of neuromorphic devices (artificial synapses and memristors) and pressure-induced emission. This review highlights the fundamentals, the current progress and the remaining challenges for each application, aiming to provide a comprehensive overview of the development status and a navigation of future research for metal halide perovskite materials and devices.
Collapse
Affiliation(s)
- Lixiu Zhang
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Luyao Mei
- School of Microelectronics Science and Technology, Sun Yat-sen University, Zhuhai, 519082, People's Republic of China
| | - Kaiyang Wang
- Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen, 518055, People's Republic of China
| | - Yinhua Lv
- School of Materials Science and Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Shuai Zhang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Yaxiao Lian
- College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Xiaoke Liu
- Department of Physics, Linköping University, 58183, Linköping, Sweden
| | - Zhiwei Ma
- State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012, People's Republic of China
| | - Guanjun Xiao
- State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012, People's Republic of China
| | - Qiang Liu
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300350, People's Republic of China
| | - Shuaibo Zhai
- College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210023, People's Republic of China
| | - Shengli Zhang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Gengling Liu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Ligang Yuan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510000, People's Republic of China
| | - Bingbing Guo
- College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Ziming Chen
- Department of Chemistry, Imperial College London, London, W12 0BZ, UK
| | - Keyu Wei
- College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China
| | - Aqiang Liu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Shizhong Yue
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China
| | - Guangda Niu
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Xiyan Pan
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jie Sun
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yong Hua
- School of Materials Science and Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Wu-Qiang Wu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Dawei Di
- College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Baodan Zhao
- College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Jianjun Tian
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Zhijie Wang
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China
| | - Yang Yang
- College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Liang Chu
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, People's Republic of China
| | - Mingjian Yuan
- College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China
| | - Haibo Zeng
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Hin-Lap Yip
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, People's Republic of China
| | - Keyou Yan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510000, People's Republic of China
| | - Wentao Xu
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300350, People's Republic of China.
| | - Lu Zhu
- School of Microelectronics Science and Technology, Sun Yat-sen University, Zhuhai, 519082, People's Republic of China.
| | - Wenhua Zhang
- School of Materials Science and Engineering, Yunnan University, Kunming, 650091, People's Republic of China.
| | - Guichuan Xing
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, People's Republic of China.
| | - Feng Gao
- Department of Physics, Linköping University, 58183, Linköping, Sweden.
| | - Liming Ding
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190, People's Republic of China.
| |
Collapse
|
31
|
Haghighirad AA, Klug MT, Duffy L, Liu J, Ardavan A, van der Laan G, Hesjedal T, Snaith HJ. Probing the Local Electronic Structure in Metal Halide Perovskites through Cobalt Substitution. SMALL METHODS 2023; 7:e2300095. [PMID: 36908028 DOI: 10.1002/smtd.202300095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/14/2023] [Indexed: 06/09/2023]
Abstract
Owing to the unique chemical and electronic properties arising from 3d-electrons, substitution with transition metal ions is one of the key routes for engineering new functionalities into materials. While this approach has been used extensively in complex metal oxide perovskites, metal halide perovskites have largely resisted facile isovalent substitution. In this work, it is demonstrated that the substitution of Co2+ into the lattice of methylammonium lead triiodide imparts magnetic behavior to the material while maintaining photovoltaic performance at low concentrations. In addition to comprehensively characterizing its magnetic properties, the Co2+ ions themselves are utilized as probes to sense the local electronic environment of Pb in the perovskite, thereby revealing the nature of their incorporation into the material. A comprehensive understanding of the effect of transition metal incorporation is provided, thereby opening the substitution gateway for developing novel functional perovskite materials and devices for future technologies.
Collapse
Affiliation(s)
- Amir A Haghighirad
- Department of Physics, University of Oxford, Clarendon Laboratory, Oxford, OX1 3PU, UK
- Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, 76021, Karlsruhe, Germany
| | - Matthew T Klug
- Department of Physics, University of Oxford, Clarendon Laboratory, Oxford, OX1 3PU, UK
| | - Liam Duffy
- Department of Physics, University of Oxford, Clarendon Laboratory, Oxford, OX1 3PU, UK
| | - Junjie Liu
- Department of Physics, University of Oxford, Clarendon Laboratory, Oxford, OX1 3PU, UK
| | - Arzhang Ardavan
- Department of Physics, University of Oxford, Clarendon Laboratory, Oxford, OX1 3PU, UK
| | - Gerrit van der Laan
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Thorsten Hesjedal
- Department of Physics, University of Oxford, Clarendon Laboratory, Oxford, OX1 3PU, UK
| | - Henry J Snaith
- Department of Physics, University of Oxford, Clarendon Laboratory, Oxford, OX1 3PU, UK
| |
Collapse
|
32
|
Narra S, Liao PS, Bhosale SS, Diau EWG. Effect of Acidic Strength of Surface Ligands on the Carrier Relaxation Dynamics of Hybrid Perovskite Nanocrystals. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111718. [PMID: 37299621 DOI: 10.3390/nano13111718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023]
Abstract
Perovskite nanocrystals (PeNCs) are known for their use in numerous optoelectronic applications. Surface ligands are critical for passivating surface defects to enhance the charge transport and photoluminescence quantum yields of the PeNCs. Herein, we investigated the dual functional abilities of bulky cyclic organic ammonium cations as surface-passivating agents and charge scavengers to overcome the lability and insulating nature of conventional long-chain type oleyl amine and oleic acid ligands. Here, red-emitting hybrid PeNCs of the composition CsxFA(1-x)PbBryI(3-y) are chosen as the standard (Std) sample, where cyclohexylammonium (CHA), phenylethylammonium (PEA) and (trifuluoromethyl)benzylamonium (TFB) cations were chosen as the bifunctional surface-passivating ligands. Photoluminescence decay dynamics showed that the chosen cyclic ligands could successfully eliminate the shallow defect-mediated decay process. Further, femtosecond transient absorption spectral (TAS) studies uncovered the rapidly decaying non-radiative pathways; i.e., charge extraction (trapping) by the surface ligands. The charge extraction rates of the bulky cyclic organic ammonium cations were shown to depend on their acid dissociation constant (pKa) values and actinic excitation energies. Excitation wavelength-dependent TAS studies indicate that the exciton trapping rate is slower than the carrier trapping rate of these surface ligands.
Collapse
Affiliation(s)
- Sudhakar Narra
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
- Center of Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Po-Sen Liao
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Sumit S Bhosale
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Eric Wei-Guang Diau
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
- Center of Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
33
|
Liu L, Piao J, Wang Y, Liu C, Chen J, Cao K, Chen S. Trifunctional Trichloroacetic Acid Incorporated Mixed-Halide Perovskites for Spectrally Stable Blue Light-Emitting Diodes. J Phys Chem Lett 2023; 14:4734-4741. [PMID: 37184086 DOI: 10.1021/acs.jpclett.3c01028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Metal halide perovskites have won great recognition in light-emitting diodes (LEDs). Nevertheless, the development of blue perovskite LEDs is facing a bottleneck in improving the device performance. Although mixed chloride/bromide perovskites can achieve pure-blue emission straightforwardly, higher chloride content will induce the challenges of low photoluminescence quantum yield and poor spectra stability resulting from the chloride vacancy defects and resultant halide ion migration under an electric field. In this work, we introduce a reliable trifunctional additive trichloroacetic acid into mixed-halide perovskites, which can provide additional chloride to fill halide vacancies, passivate the uncoordinated Pb2+ ion defects, and promote the crystallization effectively. Owning to the utilization of trichloroacetic acid, the ultimate pure-blue perovskite LED obtains stable electroluminescent spectra at 477 nm under various bias and demonstrates a 5-fold external quantum efficiency improvement (up to 6.6%).
Collapse
Affiliation(s)
- Lihui Liu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, China
| | - Junxian Piao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, China
| | - Yun Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, China
| | - Chenxi Liu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, China
| | - Jian Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, China
| | - Kun Cao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, China
| | - Shufen Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, China
| |
Collapse
|
34
|
Zhou X, Chang Q, Xiang G, Jiang S, Li L, Tang X, Ling F, Wang Y, Li J, Wang Z, Zhang X. A and B sites dual substitution by Na + and Cu 2+ co-doping in CsPbBr 3 quantum dots to achieve bright and stable blue light emitting diodes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 300:122773. [PMID: 37244025 DOI: 10.1016/j.saa.2023.122773] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/06/2023] [Accepted: 04/21/2023] [Indexed: 05/29/2023]
Abstract
Light-emitting perovskite quantum dots (PeQDs) are extensively investigated owing to their evident merits. However, it is still a challenge to adjust their intrinsic emissions and enhance their thermal stability to achieve full-color highly emissive QD-based light-emitting diodes (QLEDs), especially blue QLEDs. Herein, we demonstrate an effective strategy to fundamentally stabilize the crystal structure of CsPbBr3 QDs by codoping Na+ and Cu2+ ions, which are designed to substitute Cs+ (A sites) and Pb2+ (B sites), respectively. It is found out that the codoping metal ions have significantly improved the thermal stability and the optical properties of the QDs. 40% of the emission intensity can be remained after 8 thermal cycles (20-120 °C) for CsPbBr3: Na+/Cu2+ QDs, whilst less than 10% is maintained for undoped CsPbBr3 QDs. Accordingly, stable blue QLEDs are packed by CsPbBr3: Na+/Cu2+ QDs. Strong electroluminescence with the maximum luminance of 7161 cd m-2 and low turn-on voltage of 2.4 V are realized. The CIE coordinates are tuned from green (0.10, 0.74) to blue (0.17, 0.25) via Na+ and Cu2+ codoping. The maximum external quantum efficiency (EQEmax) is obtained as 4.52% for PeLEDs based on codoped QDs. The proposed metal ions A and B sites dual substitution strategy guarantees PeQDs as an extremely promising prospect in potential applications as high-resolution displays and high-quality lightings.
Collapse
Affiliation(s)
- Xianju Zhou
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China.
| | - Qianyang Chang
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China
| | - Guotao Xiang
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China
| | - Sha Jiang
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China
| | - Li Li
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China
| | - Xiao Tang
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China
| | - Faling Ling
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China
| | - Yongjie Wang
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China
| | - Jingfang Li
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China
| | - Zhen Wang
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China.
| | - Xuecong Zhang
- Jiangsu AMICC Optoelectronics Technology Co., Ltd., Changzhou 213164, PR China.
| |
Collapse
|
35
|
Saleem MI, Katware A, Amin A, Jung SH, Lee JH. YCl 3-Substituted CsPbI 3 Perovskite Nanorods for Efficient Red-Light-Emitting Diodes. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1366. [PMID: 37110951 PMCID: PMC10141025 DOI: 10.3390/nano13081366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
Cesium lead iodide (CsPbI3) perovskite nanocrystals (NCs) are a promising material for red-light-emitting diodes (LEDs) due to their excellent color purity and high luminous efficiency. However, small-sized CsPbI3 colloidal NCs, such as nanocubes, used in LEDs suffer from confinement effects, negatively impacting their photoluminescence quantum yield (PLQY) and overall efficiency. Here, we introduced YCl3 into the CsPbI3 perovskite, which formed anisotropic, one-dimensional (1D) nanorods. This was achieved by taking advantage of the difference in bond energies among iodide and chloride ions, which caused YCl3 to promote the anisotropic growth of CsPbI3 NCs. The addition of YCl3 significantly improved the PLQY by passivating nonradiative recombination rates. The resulting YCl3-substituted CsPbI3 nanorods were applied to the emissive layer in LEDs, and we achieved an external quantum efficiency of ~3.16%, which is 1.86-fold higher than the pristine CsPbI3 NCs (1.69%) based LED. Notably, the ratio of horizontal transition dipole moments (TDMs) in the anisotropic YCl3:CsPbI3 nanorods was found to be 75%, which is higher than the isotropically-oriented TDMs in CsPbI3 nanocrystals (67%). This increased the TDM ratio and led to higher light outcoupling efficiency in nanorod-based LEDs. Overall, the results suggest that YCl3-substituted CsPbI3 nanorods could be promising for achieving high-performance perovskite LEDs.
Collapse
Affiliation(s)
| | - Amarja Katware
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Al Amin
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Seo-Hee Jung
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Jeong-Hwan Lee
- 3D Convergence Center, Inha University, Incheon 22212, Republic of Korea
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
36
|
Carulli F, He M, Cova F, Erroi A, Li L, Brovelli S. Silica-Encapsulated Perovskite Nanocrystals for X-ray-Activated Singlet Oxygen Production and Radiotherapy Application. ACS ENERGY LETTERS 2023; 8:1795-1802. [PMID: 37090166 PMCID: PMC10111416 DOI: 10.1021/acsenergylett.3c00234] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/13/2023] [Indexed: 05/03/2023]
Abstract
Multicomponent systems consisting of lead halide perovskite nanocrystals (CsPbX3-NCs, X = Br, I) grown inside mesoporous silica nanospheres (NSs) with selectively sealed pores combine intense scintillation and strong interaction with ionizing radiation of CsPbX3 NCs with the chemical robustness in aqueous environment of silica particles, offering potentially promising candidates for enhanced radiotherapy and radio-imaging strategies. We demonstrate that CsPbX3 NCs boost the generation of singlet oxygen species (1O2) in water under X-ray irradiation and that the encapsulation into sealed SiO2 NSs guarantees perfect preservation of the inner NCs after prolonged storage in harsh conditions. We find that the 1O2 production is triggered by the electromagnetic shower released by the CsPbX3 NCs with a striking correlation with the halide composition (I3 > I3-x Br x > Br3). This opens the possibility of designing multifunctional radio-sensitizers able to reduce the local delivered dose and the undesired collateral effects in the surrounding healthy tissues by improving a localized cytotoxic effect of therapeutic treatments and concomitantly enabling optical diagnostics by radio imaging.
Collapse
Affiliation(s)
- Francesco Carulli
- Università
degli Studi di Milano-Bicocca, Dipartimento di Scienza dei Materiali, Via Cozzi 55, 20125 Milan, Italy
| | - Mengda He
- School
of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Francesca Cova
- Università
degli Studi di Milano-Bicocca, Dipartimento di Scienza dei Materiali, Via Cozzi 55, 20125 Milan, Italy
| | - Andrea Erroi
- Università
degli Studi di Milano-Bicocca, Dipartimento di Scienza dei Materiali, Via Cozzi 55, 20125 Milan, Italy
| | - Liang Li
- Macao
Institute of Materials Science and Engineering (MIMSE), Macau University of Science and Technology, Taipa 999078, Macao, China
| | - Sergio Brovelli
- Università
degli Studi di Milano-Bicocca, Dipartimento di Scienza dei Materiali, Via Cozzi 55, 20125 Milan, Italy
| |
Collapse
|
37
|
Rivera Medina MJ, Di Mario L, Kahmann S, Xi J, Portale G, Bongiovanni G, Mura A, Alonso Huitrón JC, Loi MA. Tuning the energy transfer in Ruddlesden-Popper perovskites phases through isopropylammonium addition - towards efficient blue emitters. NANOSCALE 2023; 15:6673-6685. [PMID: 36929178 DOI: 10.1039/d3nr00087g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Here we demonstrate blue LEDs with a peak wavelength of 481 nm, with outstanding colour purity of up to 88% (CIE coordinates (0.1092, 0.1738)), an external quantum yield of 5.2% and a luminance of 8260 cd m-2. These devices are based on quasi-2D PEA2(Cs0.75MA0.25)Pb2Br7, which is cast from solutions containing isopropylammonium (iPAm). iPAm as additive assist in supressing the formation of bulk-like phases, as pointed out by both photophysical and structural characterization. Additionally, the study of the excitation dynamics demonstrates a hindering of the energy transfer to domains of lower energy that generally undermines the performance and emission characteristics of blue-emitting LEDs based on quasi-2D perovskites. The achieved narrow distribution of quantum well sizes and the hindered energy transfer result in a thin film photoluminescence quantum yield exceeding 60%. Our work demonstrates the great potential to tailor the composition and the structure of thin films based on Ruddlesden-Popper phases to boost performance of optoelectronic devices - specifically blue perovskite LEDs.
Collapse
Affiliation(s)
- Martha Judith Rivera Medina
- Photophysics & Optoelectronics group, Zernike Institute of Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
- Departamento de Materia Condensada y Criogenia. Instituto de Investigaciones en Materiales. Universidad Nacional Autónoma de México. Ciudad Universitaria, A.P. 70-360, Coyoacán, 04510, Mexico City, Mexico
| | - Lorenzo Di Mario
- Photophysics & Optoelectronics group, Zernike Institute of Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| | - Simon Kahmann
- Photophysics & Optoelectronics group, Zernike Institute of Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| | - Jun Xi
- Photophysics & Optoelectronics group, Zernike Institute of Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| | - Giuseppe Portale
- Macromolecular Chemistry and New Polymeric Material, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Giovanni Bongiovanni
- Dipartimento di Fisica, Università degli Studi di Cagliari, cittadella universitaria 09040, Monserrato, Cagliari, Italy
| | - Andrea Mura
- Dipartimento di Fisica, Università degli Studi di Cagliari, cittadella universitaria 09040, Monserrato, Cagliari, Italy
| | - Juan Carlos Alonso Huitrón
- Departamento de Materia Condensada y Criogenia. Instituto de Investigaciones en Materiales. Universidad Nacional Autónoma de México. Ciudad Universitaria, A.P. 70-360, Coyoacán, 04510, Mexico City, Mexico
| | - Maria Antonietta Loi
- Photophysics & Optoelectronics group, Zernike Institute of Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
38
|
Peng C, He Z, Guo R, Li X, Chen H, Chen B, Sun L, Chen J, Wang L. The Synergy of the Buried Interface Surface Energy and Temperature for Thermal Evaporated Perovskite Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15768-15774. [PMID: 36924193 DOI: 10.1021/acsami.3c00376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Multisource coevaporation is such a promising method for the preparation of perovskite films. However, there is limited research about the effects of the buried interface on thermal-evaporated perovskite light-emitting diodes (PeLEDs). In this study, the effects of buried interfaces on thermal-evaporated all-inorganic perovskite films are systematically investigated. It is found that the low-surface-energy buried interface promotes the formation of columnar grain by suppressing heterogeneous nucleation, and functional groups on the high-surface-energy interface have a significant effect on the actual element ratio of the film. The substrate temperature can affect the nucleation and film-formation kinetics of the columnar grains. As a result of the synergistic strategy, a peak external quantum efficiency (EQE) of 8.6% is achieved in the green PeLEDs with a stable emission peak at 516 nm, which is among the best thermal-evaporated PeLEDs reported. This work provides an insight into the preparation of perovskites by thermal evaporation and builds the groundwork for future studies.
Collapse
Affiliation(s)
- Chencheng Peng
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhiyuan He
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Runda Guo
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xin Li
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hongting Chen
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ben Chen
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liang Sun
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiangshan Chen
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Lei Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
39
|
Wang H, Xu W, Wei Q, Peng S, Shang Y, Jiang X, Yu D, Wang K, Pu R, Zhao C, Zang Z, Li H, Zhang Y, Pan T, Peng Z, Shen X, Ling S, Liu W, Gao F, Ning Z. In-situ growth of low-dimensional perovskite-based insular nanocrystals for highly efficient light emitting diodes. LIGHT, SCIENCE & APPLICATIONS 2023; 12:62. [PMID: 36869071 PMCID: PMC9984476 DOI: 10.1038/s41377-023-01112-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Regulation of perovskite growth plays a critical role in the development of high-performance optoelectronic devices. However, judicious control of the grain growth for perovskite light emitting diodes is elusive due to its multiple requirements in terms of morphology, composition, and defect. Herein, we demonstrate a supramolecular dynamic coordination strategy to regulate perovskite crystallization. The combined use of crown ether and sodium trifluoroacetate can coordinate with A site and B site cations in ABX3 perovskite, respectively. The formation of supramolecular structure retard perovskite nucleation, while the transformation of supramolecular intermediate structure enables the release of components for slow perovskite growth. This judicious control enables a segmented growth, inducing the growth of insular nanocrystal consist of low-dimensional structure. Light emitting diode based on this perovskite film eventually brings a peak external quantum efficiency up to 23.9%, ranking among the highest efficiency achieved. The homogeneous nano-island structure also enables high-efficiency large area (1 cm2) device up to 21.6%, and a record high value of 13.6% for highly semi-transparent ones.
Collapse
Affiliation(s)
- Hao Wang
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, China
| | - Weidong Xu
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, China
| | - Qi Wei
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, China
| | - Si Peng
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, China
| | - Yuequn Shang
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, China
| | - Xianyuan Jiang
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, China
| | - Danni Yu
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, China
| | - Kai Wang
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, China
| | - Ruihua Pu
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, China
| | - Chenxi Zhao
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, China
| | - Zihao Zang
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, China
| | - Hansheng Li
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, China
| | - Yile Zhang
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, China
| | - Ting Pan
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, China
| | - Zijian Peng
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, China
| | - Xiaoqin Shen
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, China
| | - Shengjie Ling
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, China
| | - Weimin Liu
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, China
| | - Feng Gao
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden.
| | - Zhijun Ning
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
40
|
|
41
|
Tabassum N, Georgieva ZN, Debnath GH, Waldeck DH. Size-dependent chiro-optical properties of CsPbBr 3 nanoparticles. NANOSCALE 2023; 15:2143-2151. [PMID: 36633325 DOI: 10.1039/d2nr06751j] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Chiral metal halide perovskites have garnered substantial interest because of their promising properties for application in optoelectronics and spintronics. Understanding the mechanism of chiral imprinting is paramount for optimizing their utility. To elucidate the nature of the underlying chiral imprinting mechanism, we investigated how the circular dichroism (CD) intensity varies with nanoparticle size for quantum confined sizes of colloidal CsPbBr3 perovskite nanoparticles (NPs) capped by chiral β-methylphenethylammonium bromide ligands. We find that the CD intensity decreases strongly with increasing NP size, which, along with the shape of the CD spectra, points to electronic interactions between ligand and NP as the dominant mechanism of chiral imprinting in smaller NPs. We observe that as the NP size increases and crosses the quantum confinement threshold, the dominant mechanism of chirality transfer switches and is dominated by surfaces effects, e.g., structural distortions. These findings provide a benchmark for quantitative models of chiral imprinting.
Collapse
Affiliation(s)
- Nazifa Tabassum
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | - Zheni N Georgieva
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | - Gouranga H Debnath
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
- Centre for Nano and Material Science (CNMS), Jain University, Bangalore, Karnataka 562112, India
| | - David H Waldeck
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
- Petersen Institute of NanoScience and Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| |
Collapse
|
42
|
Wang K, Lin ZY, Zhang Z, Jin L, Ma K, Coffey AH, Atapattu HR, Gao Y, Park JY, Wei Z, Finkenauer BP, Zhu C, Meng X, Chowdhury SN, Chen Z, Terlier T, Do TH, Yao Y, Graham KR, Boltasseva A, Guo TF, Huang L, Gao H, Savoie BM, Dou L. Suppressing phase disproportionation in quasi-2D perovskite light-emitting diodes. Nat Commun 2023; 14:397. [PMID: 36693860 PMCID: PMC9873927 DOI: 10.1038/s41467-023-36118-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Electroluminescence efficiencies and stabilities of quasi-two-dimensional halide perovskites are restricted by the formation of multiple-quantum-well structures with broad and uncontrollable phase distributions. Here, we report a ligand design strategy to substantially suppress diffusion-limited phase disproportionation, thereby enabling better phase control. We demonstrate that extending the π-conjugation length and increasing the cross-sectional area of the ligand enables perovskite thin films with dramatically suppressed ion transport, narrowed phase distributions, reduced defect densities, and enhanced radiative recombination efficiencies. Consequently, we achieved efficient and stable deep-red light-emitting diodes with a peak external quantum efficiency of 26.3% (average 22.9% among 70 devices and cross-checked) and a half-life of ~220 and 2.8 h under a constant current density of 0.1 and 12 mA/cm2, respectively. Our devices also exhibit wide wavelength tunability and improved spectral and phase stability compared with existing perovskite light-emitting diodes. These discoveries provide critical insights into the molecular design and crystallization kinetics of low-dimensional perovskite semiconductors for light-emitting devices.
Collapse
Affiliation(s)
- Kang Wang
- grid.169077.e0000 0004 1937 2197Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN USA
| | - Zih-Yu Lin
- grid.169077.e0000 0004 1937 2197Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN USA
| | - Zihan Zhang
- grid.255986.50000 0004 0472 0419Department of Physics, Florida State University, Tallahassee, FL USA
| | - Linrui Jin
- grid.169077.e0000 0004 1937 2197Department of Chemistry, Purdue University, West Lafayette, IN USA
| | - Ke Ma
- grid.169077.e0000 0004 1937 2197Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN USA
| | - Aidan H. Coffey
- grid.169077.e0000 0004 1937 2197Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN USA
| | - Harindi R. Atapattu
- grid.266539.d0000 0004 1936 8438Department of Chemistry, University of Kentucky, Lexington, KY USA
| | - Yao Gao
- grid.169077.e0000 0004 1937 2197Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN USA
| | - Jee Yung Park
- grid.169077.e0000 0004 1937 2197Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN USA
| | - Zitang Wei
- grid.169077.e0000 0004 1937 2197Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN USA
| | - Blake P. Finkenauer
- grid.169077.e0000 0004 1937 2197Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN USA
| | - Chenhui Zhu
- grid.184769.50000 0001 2231 4551Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Xiangeng Meng
- grid.443420.50000 0000 9755 8940School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Sarah N. Chowdhury
- grid.169077.e0000 0004 1937 2197Birck Nanotechnology Center, Purdue University, West Lafayette, IN USA
| | - Zhaoyang Chen
- grid.266436.30000 0004 1569 9707Department of Electrical and Computer Engineering and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX USA
| | - Tanguy Terlier
- grid.21940.3e0000 0004 1936 8278SIMS laboratory, Shared Equipment Authority, Rice University, Houston, TX USA
| | - Thi-Hoai Do
- grid.64523.360000 0004 0532 3255Department of Photonics, National Cheng Kung University, Tainan, Taiwan
| | - Yan Yao
- grid.266436.30000 0004 1569 9707Department of Electrical and Computer Engineering and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX USA
| | - Kenneth R. Graham
- grid.266539.d0000 0004 1936 8438Department of Chemistry, University of Kentucky, Lexington, KY USA
| | - Alexandra Boltasseva
- grid.169077.e0000 0004 1937 2197Birck Nanotechnology Center, Purdue University, West Lafayette, IN USA
| | - Tzung-Fang Guo
- grid.64523.360000 0004 0532 3255Department of Photonics, National Cheng Kung University, Tainan, Taiwan
| | - Libai Huang
- grid.169077.e0000 0004 1937 2197Department of Chemistry, Purdue University, West Lafayette, IN USA
| | - Hanwei Gao
- grid.255986.50000 0004 0472 0419Department of Physics, Florida State University, Tallahassee, FL USA
| | - Brett M. Savoie
- grid.169077.e0000 0004 1937 2197Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN USA
| | - Letian Dou
- grid.169077.e0000 0004 1937 2197Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN USA ,grid.169077.e0000 0004 1937 2197Birck Nanotechnology Center, Purdue University, West Lafayette, IN USA
| |
Collapse
|
43
|
Peng C, Zhang R, Chen H, Liu Y, Zhang S, Fang T, Guo R, Zhang J, Shan Q, Jin Y, Wang L, Hou L, Zeng H. A Demulsification-Crystallization Model for High-Quality Perovskite Nanocrystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206969. [PMID: 36303520 DOI: 10.1002/adma.202206969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/19/2022] [Indexed: 06/16/2023]
Abstract
A room-temperature technique with all-nonpolar-solvent, which circumvents the sensitivity of ionic perovskite to polar solvent, has become attractive for the synthesis of metal halide perovskite nanocrystals (PNCs). However, the lack of understanding of the inner mechanism, especially for the state of the precursor and the crystallization process of the PNCs, hinders further development of this technique. Here, through systematic study of the Pb precursor and in situ characterization of the PNCs, it is revealed that the reverse micelle nature of the Pb precursor exactly creates a novel demulsification-crystallization (D-C) model, namely, a two-stage nucleation is divided by a demulsification process for the PNCs. On this basis, a top efficiency for green light-emitting diodes based on PNCs is obtained with a maximum external quantum efficiency of 22.5% through tailoring the D-C model using a multiple-acid-anion synergistic assisted strategy to obtain high-quality PNCs. Beyond the high efficiency, the work paves the way for diverse ideas in PNC synthesis.
Collapse
Affiliation(s)
- Chencheng Peng
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Rui Zhang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Hongting Chen
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Siyuan Laboratory, Department of Physics, Jinan University, Guangzhou, 510632, P. R. China
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Yang Liu
- Centre for Chemistry of High-Performance & Novel Materials, State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Shuai Zhang
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Tao Fang
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Runda Guo
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jibin Zhang
- Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Siyuan Laboratory, Department of Physics, Jinan University, Guangzhou, 510632, P. R. China
| | - Qingsong Shan
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Yizheng Jin
- Centre for Chemistry of High-Performance & Novel Materials, State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Lei Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Lintao Hou
- Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Siyuan Laboratory, Department of Physics, Jinan University, Guangzhou, 510632, P. R. China
| | - Haibo Zeng
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| |
Collapse
|
44
|
Vighnesh K, Wang S, Liu H, Rogach AL. Hot-Injection Synthesis Protocol for Green-Emitting Cesium Lead Bromide Perovskite Nanocrystals. ACS NANO 2022; 16:19618-19625. [PMID: 36484795 DOI: 10.1021/acsnano.2c11689] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
All-inorganic cesium lead bromide (CsPbBr3) nanocrystals are one of the prominent members of the metal halide perovskite family of semiconductor materials, which possess considerable stability and excellent optoelectronic properties leading to a multitude of their potential applications in solar cells, light-emitting devices, photodetectors, and lasers. Hot-injection strategy is a popular method used to synthesize CsPbBr3 nanocrystals, which provides a convenient route to produce them in the shape of rather monodisperse nanocubes. As in any synthetic procedure, there are different factors like temperature, surface ligands, precursor concentration, as well as necessary postpreparation purification steps. Herein, we provide a comprehensive hot-injection synthesis protocol for CsPbBr3 nanocrystals, outlining intrinsic and extrinsic factors that affect its reproducibility and elucidating in detail the precursor solution preparation, nanocrystal formation and growth, and postpreparative purification and storage conditions to allow for the fabrication of high-quality green-emitting material.
Collapse
Affiliation(s)
- Kunnathodi Vighnesh
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong S.A.R., P.R. China 999077
| | - Shixun Wang
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong S.A.R., P.R. China 999077
| | - Haochen Liu
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong S.A.R., P.R. China 999077
| | - Andrey L Rogach
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong S.A.R., P.R. China 999077
| |
Collapse
|
45
|
Guo Q, Wang L, Yang L, Duan J, Du H, Ji G, Liu N, Zhao X, Chen C, Xu L, Gao L, Luo J, Tang J. Spectra stable deep-blue light-emitting diodes based on cryolite-like cerium(III) halides with nanosecond d-f emission. SCIENCE ADVANCES 2022; 8:eabq2148. [PMID: 36525491 PMCID: PMC9757739 DOI: 10.1126/sciadv.abq2148] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 11/14/2022] [Indexed: 06/03/2023]
Abstract
Next-generation wide color gamut displays require the development of efficient and toxic-free light-emitting materials meeting the crucial Rec. 2020 standard. With the rapid progress of green and red perovskite light-emitting diodes (PeLEDs), blue PeLEDs remain a central challenge because of the undesirable color coordinates and poor spectra stability. Here, we report Cs3CeBrxI6-x (x = 0 to 6) with the cryolite-like structure and stable and tunable color coordinates from (0.17, 0.02) to (0.15, 0.04). Further encouraged by the short exciton lifetime (26.1 ns) and high photoluminescence quantum yield (~76%), we construct Cs3CeBrxI6-x-based rare-earth LEDs via thermal evaporation. A seed layer strategy is conducted to improve the device's performance. The optimal Cs3CeI6 device achieves a maximum external quantum efficiency of 3.5% and a luminance of 470 cd m-2 with stable deep-blue color coordinates of (0.15, 0.04). Our work opens another avenue to achieving efficient and spectrally stable deep-blue LEDs.
Collapse
Affiliation(s)
- Qingxun Guo
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, P. R. China
| | - Liang Wang
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, P. R. China
| | - Longbo Yang
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, P. R. China
| | - Jiashun Duan
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, P. R. China
| | - Hainan Du
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, P. R. China
| | - Guoqi Ji
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, P. R. China
| | - Nian Liu
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, P. R. China
| | - Xue Zhao
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, P. R. China
| | - Chao Chen
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, P. R. China
| | - Ling Xu
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, P. R. China
| | - Liang Gao
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, P. R. China
- Optics Valley Laboratory, 1037 Luoyu Road, Wuhan, P. R. China
| | - Jiajun Luo
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, P. R. China
- Optics Valley Laboratory, 1037 Luoyu Road, Wuhan, P. R. China
| | - Jiang Tang
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, P. R. China
- Optics Valley Laboratory, 1037 Luoyu Road, Wuhan, P. R. China
| |
Collapse
|
46
|
Abstract
Perovskite light-emitting diodes (PeLEDs) with an external quantum efficiency exceeding 20% have been achieved in both green and red wavelengths1-5; however, the performance of blue-emitting PeLEDs lags behind6,7. Ultrasmall CsPbBr3 quantum dots are promising candidates with which to realize efficient and stable blue PeLEDs, although it has proven challenging to synthesize a monodispersed population of ultrasmall CsPbBr3 quantum dots, and difficult to retain their solution-phase properties when casting into solid films8. Here we report the direct synthesis-on-substrate of films of suitably coupled, monodispersed, ultrasmall perovskite QDs. We develop ligand structures that enable control over the quantum dots' size, monodispersity and coupling during film-based synthesis. A head group (the side with higher electrostatic potential) on the ligand provides steric hindrance that suppresses the formation of layered perovskites. The tail (the side with lower electrostatic potential) is modified using halide substitution to increase the surface binding affinity, constraining resulting grains to sizes within the quantum confinement regime. The approach achieves high monodispersity (full-width at half-maximum = 23 nm with emission centred at 478 nm) united with strong coupling. We report as a result blue PeLEDs with an external quantum efficiency of 18% at 480 nm and 10% at 465 nm, to our knowledge the highest reported among perovskite blue LEDs by a factor of 1.5 and 2, respectively6,7.
Collapse
|
47
|
Chen W, Chen J, Gu L, Huang Z, Ma P, Zhang Y, Liu H, Zhou H, Wang N, Wang J, Xiao Z. Overcoming the Outcoupling Limit of Perovskite Light-Emitting Diodes with Artificially Formed Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2207180. [PMID: 36189875 DOI: 10.1002/adma.202207180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The external quantum efficiency (EQE) of state-of-the-art planar-structure perovskite light-emitting diodes (PeLEDs) is mainly limited by the outcoupling efficiency, which is around 20% and decreases significantly with the perovskite thickness. Here, an approach to artificially form textured perovskite films to boost the outcoupling limit of the PeLEDs is reported. By manipulating the dwell time of antisolvents, the perovskite phase precipitation mechanism, film-forming process, and surface texture can be finely controlled. The film surface roughness can be tuned from 15.3 to 241 nm, with haze increasing accordingly from 6% to >90% for films with an average thickness of 1.5 µm. The light outcoupling limit increases accordingly from 11.7% for the flat PeLEDs to 26.5% for the textured PeLEDs due to photon scattering at the interface. Consequently, the EQE is boosted significantly from around 10% to 20.5% with an extraordinarily thick emissive layer of 1.5 µm. This study provides a novel way of forming light-extraction nanostructures for perovskite optoelectronic devices.
Collapse
Affiliation(s)
- Wenjing Chen
- Department of Physics, CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jia Chen
- Department of Physics, CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Lianghui Gu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing, Jiangsu, 211816, China
| | - Zongming Huang
- Department of Physics, CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Pingchuan Ma
- Department of Physics, CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yihan Zhang
- Department of Physics, CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hui Liu
- Department of Physics, CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hongmin Zhou
- Instruments Center for Physical Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Nana Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing, Jiangsu, 211816, China
| | - Jianpu Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing, Jiangsu, 211816, China
| | - Zhengguo Xiao
- Department of Physics, CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
48
|
Shi J, Wang M, Wang H, Zhang C, Ji Y, Wang J, Zhou Y, Bhatti AS. Preparation of ultra-stable and environmentally friendly CsPbBr 3@ZrO 2/PS composite films for white light-emitting diodes. NANOSCALE 2022; 14:16548-16559. [PMID: 36314647 DOI: 10.1039/d2nr04255j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The working stability of perovskite light-emitting diodes (LEDs) has become an urgent bottleneck to be solved in the process of commercialization. Although lead halide perovskite CsPbX3 (X = Br, I, Cl) quantum dots (QDs) are considered rising stars in the lighting market owing to their excellent optoelectronic properties, they suffer from fluorescence quenching under thermal conditions. Unfortunately, the surfaces of electronic devices inevitably warm up under long-term energization, which is extremely detrimental to the appropriate functioning of CsPbX3 QDs. Based on the above discussion, the relationship function between the energization time and surface temperature of electronic devices was analyzed, after which a strategy for the preparation of dual-encapsulating perovskites using organic (polystyrene (PS)) and inorganic (ZrO2) materials was proposed, and the change in optical stability before and after encapsulation was investigated. The results show that the thermal stability of CsPbBr3@ZrO2/PS composite films (CFs) after the dual encapsulation was remarkably enhanced, and the assembled white LEDs still retain the initial emission intensity under prolonged high-power operation. In addition, the double encapsulation layer completely suppresses the ion leakage in CsPbBr3 and avoids damage to the ecosystem. It can be seen that this encapsulation strategy was capable of imparting excellent working stability to the perovskite material, which would clear the obstacles to commercial conversion.
Collapse
Affiliation(s)
- Jindou Shi
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, Xi'an Jiaotong University, 710049 Xi'an, China.
| | - Minqiang Wang
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, Xi'an Jiaotong University, 710049 Xi'an, China.
| | - Hao Wang
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, Xi'an Jiaotong University, 710049 Xi'an, China.
| | - Chen Zhang
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, Xi'an Jiaotong University, 710049 Xi'an, China.
| | - Yongqiang Ji
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, Xi'an Jiaotong University, 710049 Xi'an, China.
| | - Junnan Wang
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, Xi'an Jiaotong University, 710049 Xi'an, China.
| | - Yun Zhou
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, Xi'an Jiaotong University, 710049 Xi'an, China.
| | - Arshad Saleem Bhatti
- Centre for Micro and Nano Devices, Department of Physics, COMSATS Institute of Information Technology, Islamabad, 44500, Pakistan
| |
Collapse
|
49
|
Kwon JI, Park G, Lee GH, Jang JH, Sung NJ, Kim SY, Yoo J, Lee K, Ma H, Karl M, Shin TJ, Song MH, Yang J, Choi MK. Ultrahigh-resolution full-color perovskite nanocrystal patterning for ultrathin skin-attachable displays. SCIENCE ADVANCES 2022; 8:eadd0697. [PMID: 36288304 PMCID: PMC9604611 DOI: 10.1126/sciadv.add0697] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
High-definition red/green/blue (RGB) pixels and deformable form factors are essential for the next-generation advanced displays. Here, we present ultrahigh-resolution full-color perovskite nanocrystal (PeNC) patterning for ultrathin wearable displays. Double-layer transfer printing of the PeNC and organic charge transport layers is developed, which prevents internal cracking of the PeNC film during the transfer printing process. This results in RGB pixelated PeNC patterns of 2550 pixels per inch (PPI) and monochromic patterns of 33,000 line pairs per inch with 100% transfer yield. The perovskite light-emitting diodes (PeLEDs) with transfer-printed active layers exhibit outstanding electroluminescence characteristics with remarkable external quantum efficiencies (15.3, 14.8, and 2.5% for red, green, and blue, respectively), which are high compared to the printed PeLEDs reported to date. Furthermore, double-layer transfer printing enables the fabrication of ultrathin multicolor PeLEDs that can operate on curvilinear surfaces, including human skin, under various mechanical deformations. These results highlight that PeLEDs are promising for high-definition full-color wearable displays.
Collapse
Affiliation(s)
- Jong Ik Kwon
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Gyuri Park
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Gwang Heon Lee
- Graduate School of Semiconductor Materials and Devices Engineering, Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jae Hong Jang
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Nak Jun Sung
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Seo Young Kim
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jisu Yoo
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kyunghoon Lee
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Hyeonjong Ma
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Minji Karl
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Tae Joo Shin
- Graduate School of Semiconductor Materials and Devices Engineering, Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- UNIST Central Research Facilities, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Myoung Hoon Song
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Graduate School of Semiconductor Materials and Devices Engineering, Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jiwoong Yang
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- Energy Science and Engineering Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Moon Kee Choi
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Graduate School of Semiconductor Materials and Devices Engineering, Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| |
Collapse
|
50
|
Wang D, Hermes M, Najmr S, Tasios N, Grau-Carbonell A, Liu Y, Bals S, Dijkstra M, Murray CB, van Blaaderen A. Structural diversity in three-dimensional self-assembly of nanoplatelets by spherical confinement. Nat Commun 2022; 13:6001. [PMID: 36224188 PMCID: PMC9556815 DOI: 10.1038/s41467-022-33616-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 09/26/2022] [Indexed: 11/08/2022] Open
Abstract
Nanoplatelets offer many possibilities to construct advanced materials due to new properties associated with their (semi)two-dimensional shapes. However, precise control of both positional and orientational order of the nanoplatelets in three dimensions, which is required to achieve emerging and collective properties, is challenging to realize. Here, we combine experiments, advanced electron tomography and computer simulations to explore the structure of supraparticles self-assembled from nanoplatelets in slowly drying emulsion droplets. We demonstrate that the rich phase behaviour of nanoplatelets, and its sensitivity to subtle changes in shape and interaction potential can be used to guide the self-assembly into a wide range of different structures, offering precise control over both orientation and position order of the nanoplatelets. Our research is expected to shed light on the design of hierarchically structured metamaterials with distinct shape- and orientation- dependent properties.
Collapse
Affiliation(s)
- Da Wang
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands.
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| | - Michiel Hermes
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands
| | - Stan Najmr
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nikos Tasios
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands
| | - Albert Grau-Carbonell
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands
| | - Yang Liu
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands
- Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD, Utrecht, The Netherlands
- Monash Centre for Electron Microscopy, Monash University, Clayton, VIC, 3800, Australia
| | - Sara Bals
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Marjolein Dijkstra
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands
| | - Christopher B Murray
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alfons van Blaaderen
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands.
| |
Collapse
|