1
|
Tang H, Zhang S, Yang B, Qiu X, Wang H, Li Y. Metal-Organic Framework Sub-Nanochannels within the Confined Micropipettes: Precise Construction Makes It a Universal Aptamer-Based Sensing Platform. Anal Chem 2024; 96:17649-17656. [PMID: 39437322 DOI: 10.1021/acs.analchem.4c03620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
It is crucial to precisely construct metal-organic framework (MOF) sub-nanochannels at the tip of micro/nanopipettes for fundamental research and sensing applications. The quality of the MOF modification plays a significant role in influencing subsequent research, particularly in sensing applications. In this work, we present a precise method of constructing MOF sub-nanochannels at the tip of glass micropipettes, which serve as a universal aptamer-based sensing platform for the selective detection of proteins. In situ scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS) mapping, and fluorescence microscopy results demonstrate that the synthesized MOF (UiO-66) nanocrystals fully block the orifice of glass micropipettes (UiO-66-GMs) without forming any nanometer-scale cracks and remain confined within the geometric boundaries of the orifice. The terminal phosphate-modified aptamer readily binds to the surface of UiO-66-GMs through metal (Zr)-phosphate coordination, ultimately forming the aptamer sensor (Apt-UiO-66-GMs). The selective quantification of proteins is achieved via a decrease in current resulting from protein binding to the aptamer. Our results indicate that the precisely constructed Apt-UiO-66-GMs sensor enables highly selective and sensitive detection of SARS-CoV-2 nucleocapsid protein and holds potential for real sample detection. Furthermore, given the sharp tip of the micropipets and the external sensing interface we have constructed, our aptamer-based sensing platform also opens avenues for single-cell analysis and in vivo sensing.
Collapse
Affiliation(s)
- Haoran Tang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Anhui Key Laboratory of Synthetic Chemistry and Applications, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, P. R. China
| | - Shuai Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Anhui Key Laboratory of Synthetic Chemistry and Applications, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, P. R. China
| | - Binbin Yang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Anhui Key Laboratory of Synthetic Chemistry and Applications, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, P. R. China
| | - Xia Qiu
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Hao Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Anhui Key Laboratory of Synthetic Chemistry and Applications, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, P. R. China
| | - Yongxin Li
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| |
Collapse
|
2
|
Wang Q, Li J, Zhang Z, Amini R, Derdall A, Gu J, Xia J, Salena BJ, Yamamura D, Soleymani L, Li Y. Fighting Mutations with Mutations: Evolutionarily Adapting a DNA Aptamer for High-Affinity Recognition of Mutated Spike Proteins of SARS-CoV-2. Angew Chem Int Ed Engl 2024:e202415226. [PMID: 39256966 DOI: 10.1002/anie.202415226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/12/2024]
Abstract
An on-going challenge with COVID-19, which has huge implications for future pandemics, is the rapid emergence of viral variants that makes diagnostic tools less accurate, calling for rapid identification of recognition elements for detecting new variants caused by mutations. We hypothesize that we can fight mutations of the viruses with mutations of existing recognition elements. We demonstrate this concept via rapidly evolving an existing DNA aptamer originally selected for the spike protein (S-protein) of wildtype SARS-CoV-2 to enhance the interaction with the same protein of the Omicron variants. The new aptamer, MBA5SA1, has acquired 22 mutations within its 40-nucleotide core sequence and improved its binding affinity for the S-proteins of diverse Omicron subvariants by >100-fold compared to its parental aptamer (improved from nanomolar to picomolar affinity). Deep sequencing analysis reveals dynamic competitions among several MBA5SA1 variants in response to increasing selection pressure imposed during in vitro selection, with MBA5SA1 being the final winner of the competition. Additionally, MBA5SA1 was implemented into an enzyme-linked aptamer binding assay (ELABA), which was applied for detecting Omicron variants in the saliva of infected patients. The assay produced a sensitivity of 86.5 % and a specificity of 100 %, which were established with 83 clinical samples.
Collapse
Affiliation(s)
- Qing Wang
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Jiuxing Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Zijie Zhang
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Ryan Amini
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Abigail Derdall
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Jimmy Gu
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Jianrun Xia
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Bruno J Salena
- Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Deborah Yamamura
- Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
- Michael G. DeGroote Institute of Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Leyla Soleymani
- Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
- Michael G. DeGroote Institute of Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
- Michael G. DeGroote Institute of Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|
3
|
Dong Y, Guo C, Wang J, Ye C, Min Q. Recent Advances in DNA Nanotechnology-Based Sensing Platforms for Rapid Virus Detection. Chembiochem 2024; 25:e202400230. [PMID: 38825565 DOI: 10.1002/cbic.202400230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/25/2024] [Accepted: 05/31/2024] [Indexed: 06/04/2024]
Abstract
Several major viral pandemics in history have significantly impacted the public health of human beings. The COVID-19 pandemic has further underscored the critical need for early detection and screening of infected individuals. However, current detection techniques are confronted with deficiencies in sensitivity and accuracy, restricting the capability of detecting trace amounts of viruses in human bodies and in the environments. The advent of DNA nanotechnology has opened up a feasible solution for rapid and sensitive virus determination. By harnessing the designability and addressability of DNA nanostructures, a range of rapid virus sensing platforms have been proposed. This review overviewed the recent progress, application, and prospect of DNA nanotechnology-based rapid virus detection platforms. Furthermore, the challenges and developmental prospects in this field were discussed.
Collapse
Affiliation(s)
- Yuxiang Dong
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Cheng Guo
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Jialing Wang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Changqing Ye
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Qianhao Min
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
4
|
Akmal Shukri AM, Wang SM, Feng C, Chia SL, Mohd Nawi SFA, Citartan M. In silico selection of aptamers against SARS-CoV-2. Analyst 2024. [PMID: 39221970 DOI: 10.1039/d4an00812j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Aptamers are molecular recognition elements that have been extensively deployed in a wide array of applications ranging from diagnostics to therapeutics. Due to their unique properties as compared to antibodies, aptamers were also largely isolated during the COVID-19 pandemic for multiple purposes. Typically generated by conventional SELEX, the inherent drawbacks of the process including the time-consuming, cumbersome and resource-intensive nature catalysed the move to adopt in silico approaches to isolate aptamers. Impressive performances of these in silico-derived aptamers in their respective assays have been documented thus far, bearing testimony to the huge potential of the in silico approaches, akin to the traditional SELEX in isolating aptamers. In this study, we provide an overview of the in silico selection of aptamers against SARS-CoV-2 by providing insights into the basic steps involved, which comprise the selection of the initial single-stranded nucleic acids, determination of the secondary and tertiary structures and in silico approaches that include both rigid docking and molecular dynamics simulations. The different approaches involving aptamers against SARS-CoV-2 were illuminated and the need to verify these aptamers by experimental validation was also emphasized. Cognizant of the need to continuously improve aptamers, the strategies embraced thus far for post-in silico selection modifications were enumerated. Shedding light on the steps involved in the in silico selection can set the stage for further improvisation to augment the functionalities of the aptamers in the future.
Collapse
Affiliation(s)
- Amir Muhaimin Akmal Shukri
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia.
- Institute of Medical Molecular Biotechnology (IMMB), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Seok Mui Wang
- Institute of Medical Molecular Biotechnology (IMMB), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia.
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
- Non-Destructive Biomedical and Pharmaceutical Research Center, Smart Manufacturing Research Institute (SMRI), Universiti Teknologi MARA, Puncak Alam Campus, Selangor, Malaysia
| | - Chaoli Feng
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia.
| | - Suet Lin Chia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, Kajang, Selangor, Malaysia
| | - Siti Farah Alwani Mohd Nawi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia.
| | - Marimuthu Citartan
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia.
| |
Collapse
|
5
|
Hu C, Yang S, Li S, Liu X, Liu Y, Chen Z, Chen H, Li S, He N, Cui H, Deng Y. Viral aptamer screening and aptamer-based biosensors for virus detection: A review. Int J Biol Macromol 2024; 276:133935. [PMID: 39029851 DOI: 10.1016/j.ijbiomac.2024.133935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Virus-induced infectious diseases have a detrimental effect on public health and exert significant influence on the global economy. Therefore, the rapid and accurate detection of viruses is crucial for effectively preventing and diagnosing infections. Aptamer-based detection technologies have attracted researchers' attention as promising solutions. Aptamers, small single-stranded DNA or RNA screened via systematic evolution of ligands by exponential enrichment (SELEX), possess a high affinity towards their target molecules. Numerous aptamers targeting viral marker proteins or virions have been developed and widely employed in aptamer-based biosensors (aptasensor) for virus detection. This review introduces SELEX schemes for screening aptamers and discusses distinctive SELEX strategies designed explicitly for viral targets. Furthermore, recent advances in aptamer-based biosensing methods for detecting common viruses using different virus-specific aptamers are summarized. Finally, limitations and prospects associated with developing of aptamer-based biosensors are discussed.
Collapse
Affiliation(s)
- Changchun Hu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shuting Yang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Shuo Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Xueying Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Yuan Liu
- Institute for Future Sciences, University of South China, Changsha, Hunan 410000, China; Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Hui Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Nongyue He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Haipo Cui
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China; Institute for Future Sciences, University of South China, Changsha, Hunan 410000, China; Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
6
|
Wiswedel R, Bui ATN, Kim J, Lee MK. Beta-Barrel Nanopores as Diagnostic Sensors: An Engineering Perspective. BIOSENSORS 2024; 14:345. [PMID: 39056622 PMCID: PMC11274599 DOI: 10.3390/bios14070345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/13/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024]
Abstract
Biological nanopores are ultrasensitive and highly attractive platforms for disease diagnostics, including the sequencing of viral and microbial genes and the detection of biomarkers and pathogens. To utilize biological nanopores as diagnostic sensors, they have been engineered through various methods resulting in the accurate and highly sensitive detection of biomarkers and disease-related biomolecules. Among diverse biological nanopores, the β-barrel-containing nanopores have advantages in nanopore engineering because of their robust structure, making them well-suited for modifications. In this review, we highlight the engineering approaches for β-barrel-containing nanopores used in single-molecule sensing for applications in early diagnosis and prognosis. In the highlighted studies, β-barrel nanopores can be modified by genetic mutation to change the structure; alter charge distributions; or add enzymes, aptamers, and protein probes to enhance sensitivity and accuracy. Furthermore, this review discusses challenges and future perspectives for advancing nanopore-based diagnostic sensors.
Collapse
Affiliation(s)
- Rani Wiswedel
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (R.W.); (A.T.N.B.); (J.K.)
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Anh Thi Ngoc Bui
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (R.W.); (A.T.N.B.); (J.K.)
| | - Jinhyung Kim
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (R.W.); (A.T.N.B.); (J.K.)
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Mi-Kyung Lee
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (R.W.); (A.T.N.B.); (J.K.)
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
7
|
Allegretto JA, Laucirica G, Huamani AL, Wagner MF, Albesa AG, Toimil-Molares ME, Rafti M, Marmisollé W, Azzaroni O. Manipulating Ion Transport Regimes in Nanomembranes via a "Pore-in-Pore" Approach Enabled by the Synergy of Metal-Organic Frameworks and Solid-State Nanochannels. ACS NANO 2024; 18:18572-18583. [PMID: 38941562 DOI: 10.1021/acsnano.4c04435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Solid-state nanochannels (SSNs) have emerged as promising platforms for controlling ionic transport at the nanoscale. SSNs are highly versatile, and this feature can be enhanced through their combination with porous materials such as Metal-Organic Frameworks (MOF). By selection of specific building blocks and experimental conditions, different MOF architectures can be obtained, and this can influence the ionic transport properties through the nanochannel. Herein, we study the effects of confined synthesis of Zr-based UiO-66 MOF on the ion transport properties of single bullet-shaped poly(ethylene terephthalate) (PET) nanochannels. We have found that emerging textural properties from the MOF phase play a determinant role in controlling ionic transport through the nanochannel. We demonstrate that a transition from ion current saturation regimes to diode-like regimes can be obtained by employing different synthetic approaches, namely, counterdiffusion synthesis, where MOF precursors are kept separate and forced to diffuse through the nanochannel, and one-pot synthesis, where both precursors are placed at both ends of the channel. Also, by considering the dependence of the charge state of the UiO-66 MOF on the protonation degree, pH changes offered a mechanism to tune the iontronic output (and selectivity) among different regimes, including anion-driven rectification, cation-driven rectification, ion current saturation, and ohmic behavior. Furthermore, Poisson-Nernst-Planck (PNP) simulations were employed to rationalize the different iontronic outputs observed experimentally for membranes modified by different methods. Our results demonstrate a straightforward tool to synthesize MOF-based SSN membranes with tunable ion transport regimes.
Collapse
Affiliation(s)
- Juan A Allegretto
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata B1904DPI, Argentina
- Laboratory for Life Sciences and Technology (LiST), Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, 3500 Krems, Austria
| | - Gregorio Laucirica
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata B1904DPI, Argentina
- UCAM-SENS, Universidad Católica San Antonio de Murcia, UCAM HiTech, 30107 Murcia, Spain
| | - Angel L Huamani
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata B1904DPI, Argentina
- 3IA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad, Campus Miguelete, 25 de Mayo y Francia, San Martín CP1650, Buenos Aires, Argentina
| | - Michael F Wagner
- Materials Research Department, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
| | - Alberto G Albesa
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata B1904DPI, Argentina
| | - Maria Eugenia Toimil-Molares
- Materials Research Department, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
- Department of Materials and Geosciences, Technical University of Darmstadt, 64291 Darmstadt, Germany
| | - Matías Rafti
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata B1904DPI, Argentina
| | - Waldemar Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata B1904DPI, Argentina
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata B1904DPI, Argentina
| |
Collapse
|
8
|
Kuo YA, Chen YI, Wang Y, Korkmaz Z, Yonas S, He Y, Nguyen TD, Hong S, Nguyen AT, Kim S, Seifi S, Fan PH, Wu Y, Yang Z, Liu HW, Lu Y, Ren P, Yeh HC. Fluorogenic Aptamer Optimizations on a Massively Parallel Sequencing Platform. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.07.602435. [PMID: 39026723 PMCID: PMC11257435 DOI: 10.1101/2024.07.07.602435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
F luorogenic ap tamers (FAPs) have become an increasingly important tool in cellular sensing and pathogen diagnostics. However, fine-tuning FAPs for enhanced performance remains challenging even with the structural details provided by X-ray crystallography. Here we present a novel approach to optimize a DNA-based FAP (D-FAP), Lettuce, on repurposed Illumina next-generation sequencing (NGS) chips. When substituting its cognate chromophore, DFHBI-1T, with TO1-biotin, Lettuce not only shows a red-shifted emission peak by 53 nm (from 505 to 558 nm), but also a 4-fold bulk fluorescence enhancement. After screening 8,821 Lettuce variants complexed with TO1-biotin, the C14T mutation is found to exhibit an improved apparent dissociated constant ( vs. 0.82 µM), an increased quantum yield (QY: 0.62 vs. 0.59) and an elongated fluorescence lifetime (τ: 6.00 vs. 5.77 ns), giving 45% more ensemble fluorescence than the canonical Lettuce/TO1-biotin complex. Molecular dynamic simulations further indicate that the π-π stacking interaction is key to determining the coordination structure of TO1-biotin in Lettuce. Our screening-and-simulation pipeline can effectively optimize FAPs without any prior structural knowledge of the canonical FAP/chromophore complexes, providing not only improved molecular probes for fluorescence sensing but also insights into aptamer-chromophore interactions.
Collapse
|
9
|
Mi Z, Chen X, Zhao X, Tang H, Wang W, Shan X, Lu X. High-precision high-speed nanopore ping-pong control system based on field programmable gate array. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:073202. [PMID: 39016698 DOI: 10.1063/5.0213543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024]
Abstract
"Molecular ping-pong," emerging as a control strategy in solid-state nanopore technology, presents a highly promising approach for repetitive measurements of single biomolecules, such as DNA. This paper introduces a high-precision, high-speed nanopore molecular ping-pong control system consisting of a home-built trans-impedance amplifier (TIA), a control system based on a Field Programmable Gate Array (FPGA), and a LabVIEW program operating on the host personal computer. Through feedback compensation and post-stage boosting, the TIA achieves a high bandwidth of about 200 kHz with a gain of 100 MΩ, along with low input-referred current noise of 1.6 × 10-4 pA2/Hz at 1 kHz and 1.1 × 10-3 pA2/Hz at 100 kHz. The FPGA-based control system demonstrates a minimum overall response time (tdelay) of 6.5 μs from the analog input current signal trigger to the subsequent reversal of the analog output drive voltage signal, with a control precision of 1 μs. Additionally, a LabVIEW program has been developed to facilitate rapid data exchange and communication with the FPGA program, enabling real-time signal monitoring, parameter adjustment, and data storage. Successful recapture of individual DNA molecules at various tdelay, resulting in an improvement in capture rate by up to 2 orders of magnitude, has been demonstrated. With unprecedented control precision and capture efficiency, this system provides robust technical support and opens novel research avenues for nanopore single-molecule sensing and manipulation.
Collapse
Affiliation(s)
- Zhuang Mi
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoyu Chen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xinjia Zhao
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Haitao Tang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Wenyu Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xinyan Shan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xinghua Lu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
10
|
Stoufer S, Soorneedi AR, Kim M, Moore MD. Sample Processing and Concentration Methods for Viruses from Foods and the Environment Prior to Detection. Annu Rev Food Sci Technol 2024; 15:455-472. [PMID: 38277693 DOI: 10.1146/annurev-food-072023-034431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Viruses are the leading cause of foodborne illness globally. Concentration of viruses from samples is important for detection because viral contamination of foods often occurs at low levels. In general, virus concentration methods can be classified as either nonspecific, exploiting the relatively homogeneous physicochemical properties of the virus to separate/concentrate it from the sample matrix, or specific, relying on recognition elements such as antibodies to specifically capture and separate viruses from foods. Numerous nonspecific and specific techniques for virus concentration have been reported, each with its own advantages and limitations. Factors to consider can include reagent and equipment costs, time-to-result, ease of use, and potential to eliminate matrix-associated inhibitors. The purpose of this review is to survey the different foodborne virus concentration techniques and their efficacy in various food and environmental matrices as well as discuss some emerging techniques for purification and concentration of viral pathogens from food samples.
Collapse
Affiliation(s)
- Sloane Stoufer
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA;
| | - Anand R Soorneedi
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA;
| | - Minji Kim
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA;
| | - Matthew D Moore
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA;
| |
Collapse
|
11
|
Eigenfeld M, Lupp KFM, Schwaminger SP. Role of Natural Binding Proteins in Therapy and Diagnostics. Life (Basel) 2024; 14:630. [PMID: 38792650 PMCID: PMC11122601 DOI: 10.3390/life14050630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
This review systematically investigates the critical role of natural binding proteins (NBPs), encompassing DNA-, RNA-, carbohydrate-, fatty acid-, and chitin-binding proteins, in the realms of oncology and diagnostics. In an era where cancer continues to pose significant challenges to healthcare systems worldwide, the innovative exploration of NBPs offers a promising frontier for advancing both the diagnostic accuracy and therapeutic efficacy of cancer management strategies. This manuscript provides an in-depth examination of the unique mechanisms by which NBPs interact with specific molecular targets, highlighting their potential to revolutionize cancer diagnostics and therapy. Furthermore, it discusses the burgeoning research on aptamers, demonstrating their utility as 'nucleic acid antibodies' for targeted therapy and precision diagnostics. Despite the promising applications of NBPs and aptamers in enhancing early cancer detection and developing personalized treatment protocols, this review identifies a critical knowledge gap: the need for comprehensive studies to understand the diverse functionalities and therapeutic potentials of NBPs across different cancer types and diagnostic scenarios. By bridging this gap, this manuscript underscores the importance of NBPs and aptamers in paving the way for next-generation diagnostics and targeted cancer treatments.
Collapse
Affiliation(s)
- Marco Eigenfeld
- Otto-Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Kilian F. M. Lupp
- Otto-Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Sebastian P. Schwaminger
- Otto-Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|
12
|
Laucirica G, Toum-Terrones Y, Cayón VM, Toimil-Molares ME, Azzaroni O, Marmisollé WA. Advances in nanofluidic field-effect transistors: external voltage-controlled solid-state nanochannels for stimulus-responsive ion transport and beyond. Phys Chem Chem Phys 2024; 26:10471-10493. [PMID: 38506166 DOI: 10.1039/d3cp06142f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Ion channels, intricate protein structures facilitating precise ion passage across cell membranes, are pivotal for vital cellular functions. Inspired by the remarkable capabilities of biological ion channels, the scientific community has ventured into replicating these principles in fully abiotic solid-state nanochannels (SSNs). Since the gating mechanisms of SSNs rely on variations in the physicochemical properties of the channel surface, the modification of their internal architecture and chemistry constitutes a powerful strategy to control the transport properties and, consequently, render specific functionalities. In this framework, both the design of the nanofluidic platform and the subsequent selection and attachment of different building blocks gain special attention. Similar to biological ion channels, functional SSNs offer the potential to finely modulate ion transport in response to various stimuli, leading to innovations in a variety of fields. This comprehensive review delves into the intricate world of ion transport across stimuli-responsive SSNs, focusing on the development of external voltage-controlled nanofluidic devices. This kind of field-effect nanofluidic technology has attracted special interest due to the possibility of real-time reconfiguration of the ion transport with a non-invasive strategy. These properties have found interesting applications in drug delivery, biosensing, and nanoelectronics. This document will address the fundamental principles of ion transport through SSNs and the construction, modification, and applications of external voltage-controlled SSNs. It will also address future challenges and prospects, offering a comprehensive perspective on this evolving field.
Collapse
Affiliation(s)
- G Laucirica
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET - CC 16 Suc. 4, 1900 La Plata, Argentina.
| | - Y Toum-Terrones
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET - CC 16 Suc. 4, 1900 La Plata, Argentina.
| | - V M Cayón
- Department of Materials- and Geosciences, Technical University of Darmstadt, Darmstadt, Germany
| | - M E Toimil-Molares
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- Department of Materials- and Geosciences, Technical University of Darmstadt, Darmstadt, Germany
| | - O Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET - CC 16 Suc. 4, 1900 La Plata, Argentina.
| | - W A Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET - CC 16 Suc. 4, 1900 La Plata, Argentina.
| |
Collapse
|
13
|
Ma Y, Guo W, Mou Q, Shao X, Lyu M, Garcia V, Kong L, Lewis W, Ward C, Yang Z, Pan X, Yi SS, Lu Y. Spatial imaging of glycoRNA in single cells with ARPLA. Nat Biotechnol 2024; 42:608-616. [PMID: 37217750 PMCID: PMC10663388 DOI: 10.1038/s41587-023-01801-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/24/2023] [Indexed: 05/24/2023]
Abstract
Little is known about the biological roles of glycosylated RNAs (glycoRNAs), a recently discovered class of glycosylated molecules, because of a lack of visualization methods. We report sialic acid aptamer and RNA in situ hybridization-mediated proximity ligation assay (ARPLA) to visualize glycoRNAs in single cells with high sensitivity and selectivity. The signal output of ARPLA occurs only when dual recognition of a glycan and an RNA triggers in situ ligation, followed by rolling circle amplification of a complementary DNA, which generates a fluorescent signal by binding fluorophore-labeled oligonucleotides. Using ARPLA, we detect spatial distributions of glycoRNAs on the cell surface and their colocalization with lipid rafts as well as the intracellular trafficking of glycoRNAs through SNARE protein-mediated secretory exocytosis. Studies in breast cell lines suggest that surface glycoRNA is inversely associated with tumor malignancy and metastasis. Investigation of the relationship between glycoRNAs and monocyte-endothelial cell interactions suggests that glycoRNAs may mediate cell-cell interactions during the immune response.
Collapse
Affiliation(s)
- Yuan Ma
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Weijie Guo
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, USA
| | - Quanbing Mou
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Xiangli Shao
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Mingkuan Lyu
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Valeria Garcia
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, USA
| | - Linggen Kong
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, USA
| | - Whitney Lewis
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, USA
| | - Carson Ward
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Zhenglin Yang
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Xingxin Pan
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - S Stephen Yi
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, USA
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Oden Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, TX, USA
| | - Yi Lu
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA.
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
14
|
Park KS, Park TI, Lee JE, Hwang SY, Choi A, Pack SP. Aptamers and Nanobodies as New Bioprobes for SARS-CoV-2 Diagnostic and Therapeutic System Applications. BIOSENSORS 2024; 14:146. [PMID: 38534253 DOI: 10.3390/bios14030146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
The global challenges posed by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic have underscored the critical importance of innovative and efficient control systems for addressing future pandemics. The most effective way to control the pandemic is to rapidly suppress the spread of the virus through early detection using a rapid, accurate, and easy-to-use diagnostic platform. In biosensors that use bioprobes, the binding affinity of molecular recognition elements (MREs) is the primary factor determining the dynamic range of the sensing platform. Furthermore, the sensitivity relies mainly on bioprobe quality with sufficient functionality. This comprehensive review investigates aptamers and nanobodies recently developed as advanced MREs for SARS-CoV-2 diagnostic and therapeutic applications. These bioprobes might be integrated into organic bioelectronic materials and devices, with promising enhanced sensitivity and specificity. This review offers valuable insights into advancing biosensing technologies for infectious disease diagnosis and treatment using aptamers and nanobodies as new bioprobes.
Collapse
Affiliation(s)
- Ki Sung Park
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Tae-In Park
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Jae Eon Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Seo-Yeong Hwang
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Anna Choi
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
15
|
Fucetola CP, Wang JT, Bolonduro OA, Lieber CM, Timko BP. Single-Crystal Silicon Nanotubes, Hollow Nanocones, and Branched Nanotube Networks. ACS NANO 2024; 18:3775-3782. [PMID: 38227976 DOI: 10.1021/acsnano.3c11841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
We report a general approach for the synthesis of single-crystal silicon nanotubes, involving epitaxial deposition of silicon shells on germanium nanowire templates followed by removal of the germanium template by selective wet etching. By exploiting advances in the synthesis of germanium nanowires, we were able to rationally tune the nanotube internal diameters (5-80 nm), wall thicknesses (3-12 nm), and taper angles (0-9°) and additionally demonstrated branched silicon nanotube networks. Field effect transistors fabricated from p-type nanotubes exhibited a strong gate effect, and fluid transport experiments demonstrated that small molecules could be electrophoretically driven through the nanotubes. These results demonstrate the suitability of silicon nanotubes for the design of nanoelectrofluidic devices.
Collapse
Affiliation(s)
- Corey P Fucetola
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Justin T Wang
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Olurotimi A Bolonduro
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Charles M Lieber
- Lieber Research Group, Lexington, Massachusetts 02420, United States
| | - Brian P Timko
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
16
|
Niogret G, Bouvier-Müller A, Figazzolo C, Joyce JM, Bonhomme F, England P, Mayboroda O, Pellarin R, Gasser G, Tucker JHR, Tanner JA, Savage GP, Hollenstein M. Interrogating Aptamer Chemical Space Through Modified Nucleotide Substitution Facilitated by Enzymatic DNA Synthesis. Chembiochem 2024; 25:e202300539. [PMID: 37837257 DOI: 10.1002/cbic.202300539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/15/2023]
Abstract
Chemical modification of aptamers is an important step to improve their performance and stability in biological media. This can be performed either during their identification (mod-SELEX) or after the in vitro selection process (post-SELEX). In order to reduce the complexity and workload of the post-SELEX modification of aptamers, we have evaluated the possibility of improving a previously reported, chemically modified aptamer by combining enzymatic synthesis and nucleotides bearing bioisosteres of the parent cubane side-chains or substituted cubane moieties. This method lowers the synthetic burden often associated with post-SELEX approaches and allowed to identify one additional sequence that maintains binding to the PvLDH target protein, albeit with reduced specificity. In addition, while bioisosteres often improve the potency of small molecule drugs, this does not extend to chemically modified aptamers. Overall, this versatile method can be applied for the post-SELEX modification of other aptamers and functional nucleic acids.
Collapse
Affiliation(s)
- Germain Niogret
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR 3528, 28, rue du Docteur Roux, 75015, Paris, France
| | - Alix Bouvier-Müller
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Chiara Figazzolo
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Jack M Joyce
- CSIRO Manufacturing, Clayton, VIC, 3168, Australia
- School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
| | - Frédéric Bonhomme
- Institut Pasteur, Université Paris Cité, Department of Structural Biology and Chemistry, Unité de Chimie Biologique Epigénétique UMR CNRS 3523, 28, rue du Docteur Roux, CEDEX 15, 75724, Paris, France
| | - Patrick England
- Plateforme de Biophysique Moléculaire, C2RT, Institut Pasteur, CNRS UMR 3528, Paris, France
| | - Olena Mayboroda
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR 3528, 28, rue du Docteur Roux, 75015, Paris, France
| | - Riccardo Pellarin
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR 3528, 28, rue du Docteur Roux, 75015, Paris, France
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| | - James H R Tucker
- School of Chemistry, University of Birmingham, Birmingham, B15 2TT, UK
| | - Julian A Tanner
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | | | - Marcel Hollenstein
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| |
Collapse
|
17
|
Li D, Sun C, Zhuang P, Mei X. Revolutionizing SARS-CoV-2 omicron variant detection: Towards faster and more reliable methods. Talanta 2024; 266:124937. [PMID: 37481886 DOI: 10.1016/j.talanta.2023.124937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
The emergence of the highly contagious Omicron variant of SARS-CoV-2 has inflicted significant damage during the ongoing COVID-19 pandemic. This new variant's significant sequence changes and mutations in both proteins and RNA have rendered many existing rapid detection methods ineffective in identifying it accurately. As the world races to control the spread of the virus, researchers are urgently exploring new diagnostic strategies to specifically detect Omicron variants with high accuracy and sensitivity. In response to this challenge, we have compiled a comprehensive overview of the latest reported rapid detection techniques. These techniques include strategies for the simultaneous detection of multiple SARS-CoV-2 variants and methods for selectively distinguishing Omicron variants. By categorizing these diagnostic techniques based on their targets, which encompass protein antigens and nucleic acids, we aim to offer a comprehensive understanding of the utilization of various recognition elements in identifying these targets. We also highlight the advantages and limitations of each approach. Our work is crucial in providing a more nuanced understanding of the challenges and opportunities in detecting Omicron variants and emerging variants.
Collapse
Affiliation(s)
- Dan Li
- College of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, China.
| | - Cai Sun
- AECC Shenyang Liming Aero-Engine Co., Ltd., Shenyang, China
| | - Pengfei Zhuang
- College of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, China
| | - Xifan Mei
- Key Laboratory of Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning, China.
| |
Collapse
|
18
|
Xing Y, Zhang Y, Zhu X, Wang C, Zhang T, Cheng F, Qu J, Peijnenburg WJGM. A highly selective and sensitive electrochemical sensor for tetracycline resistant genes detection based on the non-covalent interaction of graphene oxide and nucleobase. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167615. [PMID: 37806581 DOI: 10.1016/j.scitotenv.2023.167615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
Antibiotic resistance genes (ARGs) are causing worldwide environmental problems, however, the traditional analytical methods and test equipment for them are time-consuming and expensive. The electrochemical sensor using the non-covalent bond between graphene oxide (GO) and single-stranded tet (ss-tet) was established for specific tetracycline resistance genes (tet, composed of ss-tet and complementary ss-tet (ss-tet') in water) detection, which preparation time was only 35 min and far less than most reported sensors based on covalent bond. As the result of the detection for tet, the developed sensor not only had the low detection limit of 50.0 pM (8.1 × 102 copies·mL-1), the short detection time within 42 min, but also had satisfactory stability, excellent reproducibility, and highly selectivity (RSD < 4.43 %). Besides, it also had acceptable accuracy comparing to the real-time quantitative polymerase chain reaction (RT-qPCR) and PCR array in tet detection. Noticeably, it also had been successfully applied to tetA detection in different water samples. In brief, the prepared non-covalent bond sensor is simple, rapid, and suitable for highly selective and sensitive detection of the ARGs in actual water.
Collapse
Affiliation(s)
- Yi Xing
- School of Environment, Northeast Normal University, Changchun 130117, China
| | - Yanan Zhang
- School of Environment, Northeast Normal University, Changchun 130117, China
| | - Xiaolin Zhu
- School of Environment, Northeast Normal University, Changchun 130117, China
| | - Chengzhi Wang
- Center for Water Research, Beijing Normal University, Beijing 100875, China
| | - Tingting Zhang
- School of Environment, Northeast Normal University, Changchun 130117, China
| | - Fangyuan Cheng
- School of Environment, Northeast Normal University, Changchun 130117, China
| | - Jiao Qu
- School of Environment, Northeast Normal University, Changchun 130117, China.
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, Bilthoven, the Netherlands
| |
Collapse
|
19
|
Zhang Y, Li Y. Clinical Translation of Aptamers for COVID-19. J Med Chem 2023; 66:16568-16578. [PMID: 37880142 DOI: 10.1021/acs.jmedchem.3c01607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
The COVID-19 etiologic agent, SARS-CoV-2, continues to be one of the leading causes of death on a global scale. Although efficient methods for diagnosis and treatment of COVID-19 have been developed, new methods of battling SARS-CoV-2 variants and long COVID are still urgently needed. A number of aptamers have demonstrated tremendous potential to be developed into diagnostic and therapeutic agents for COVID-19. The translation of the aptamers for clinical uses, however, has been extremely slow. Overcoming the difficulties faced by aptamers would advance this technology toward clinical use for COVID-19 and other serious disorders.
Collapse
Affiliation(s)
- Yang Zhang
- College of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Yongen Li
- College of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| |
Collapse
|
20
|
Chang D, Li J, Liu R, Liu M, Tram K, Schmitt N, Li Y. A Colorimetric Biosensing Platform with Aptamers, Rolling Circle Amplification and Urease-Mediated Litmus Test. Angew Chem Int Ed Engl 2023; 62:e202315185. [PMID: 37903738 DOI: 10.1002/anie.202315185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/01/2023]
Abstract
Here we report on an ultra-sensitive colorimetric sensing platform that takes advantage of both the strong amplification power of rolling circle amplification (RCA) and the high efficiency of a simple urease-mediated litmus test. The presence of a target triggers the RCA reaction, and urease-labelled DNA can hybridize to the biotinylated RCA products and be immobilized onto streptavidin-coated magnetic beads. The urease-laden beads are then used to hydrolyze urea, leading to an increase in pH that can be detected by a simple litmus test. We show this sensing platform can be easily integrated with aptamers for sensing diverse targets via the detection of human thrombin and platelet-derived growth factor (PDGF) utilizing structure-switching aptamers as well as SARS-CoV-2 in human saliva using a spike-binding trimeric DNA aptamer. Furthermore, we demonstrate that this colorimetric sensing platform can be integrated into a simple paper-based device for sensing applications.
Collapse
Affiliation(s)
- Dingran Chang
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4 K1, Canada
| | - Jiuxing Li
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4 K1, Canada
| | - Rudi Liu
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4 K1, Canada
| | - Meng Liu
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4 K1, Canada
| | - Kha Tram
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4 K1, Canada
| | - Natalie Schmitt
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4 K1, Canada
| | - Yingfu Li
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4 K1, Canada
| |
Collapse
|
21
|
Wang F, Ma X, Ye J, Shi C, Chen Y, Yu Z, Li T, Yang D, Li M, Wang P. Precise Detection of Viral RNA by Programming Multiplex Rolling Circle Amplification and Strand Displacement. Anal Chem 2023; 95:17699-17707. [PMID: 37971750 DOI: 10.1021/acs.analchem.3c03548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Detection of viral infections (e.g., SARS-CoV-2) with high precision is critical to disease control and treatment. There is an urgent need to develop point-of-care detection methods to complement the gold standard laboratory-based PCR assay with comparable sensitivity and specificity. Herein, we developed a method termed mCAD to achieve ultraspecific point-of-care detection of SARS-CoV-2 RNA while maintaining high sensitivity by programming multiplex rolling circle amplification and toehold-mediated strand displacement reactions. RCA offers sufficient amplification of RNA targets for subsequent detection. Most importantly, a multilayer of detection specificity is implemented into mCAD via sequence-specific hybridization of nucleic acids across serial steps of this protocol to fully eliminate potential false-positive detections. Using mCAD, we demonstrated a highly specific, sensitive, and convenient visual detection of SARS-CoV-2 RNA from both synthetic and clinical samples, exhibiting performance comparable to qPCR. We envision that mCAD will find its broad applications in clinical prospects for nucleic acid detections readily beyond SARS-CoV-2 RNA.
Collapse
Affiliation(s)
- Fukai Wang
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200233, China
| | - Xiaowei Ma
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jing Ye
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chenzhi Shi
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yun Chen
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zhicai Yu
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Tianming Li
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Donglei Yang
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Min Li
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Pengfei Wang
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
22
|
Qin Z, Zhang K, He P, Zhang X, Xie M, Fu Y, Gu C, Zhu Y, Tong A, Wei H, Zhang C, Xiang Y. Discovering covalent inhibitors of protein-protein interactions from trillions of sulfur(VI) fluoride exchange-modified oligonucleotides. Nat Chem 2023; 15:1705-1714. [PMID: 37653229 DOI: 10.1038/s41557-023-01304-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/24/2023] [Indexed: 09/02/2023]
Abstract
Molecules that covalently engage target proteins are widely used as activity-based probes and covalent drugs. The performance of these covalent inhibitors is, however, often compromised by the paradox of efficacy and risk, which demands a balance between reactivity and selectivity. The challenge is more evident when targeting protein-protein interactions owing to their low ligandability and undefined reactivity. Here we report sulfur(VI) fluoride exchange (SuFEx) in vitro selection, a general platform for high-throughput discovery of covalent inhibitors from trillions of SuFEx-modified oligonucleotides. With SuFEx in vitro selection, we identified covalent inhibitors that cross-link distinct residues of the SARS-CoV-2 spike protein at its protein-protein interaction interface with the human angiotensin-converting enzyme 2. A separate suite of covalent inhibitors was isolated for the human complement C5 protein. In both cases, we observed a clear disconnection between binding affinity and cross-linking reactivity, indicating that direct search for the aimed reactivity-as enabled by SuFEx in vitro selection-is vital for discovering covalent inhibitors of high selectivity and potency.
Collapse
Affiliation(s)
- Zichen Qin
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China
| | - Kaining Zhang
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China
| | - Ping He
- CAS Key Laboratory of Special Pathogens and Biosafety, Centre for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xue Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, China
| | - Miao Xie
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, China
| | - Yucheng Fu
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunmei Gu
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China
- Beijing Institute of Collaborative Innovation (BICI), Beijing, China
| | - Yiying Zhu
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China
| | - Aijun Tong
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China
| | - Hongping Wei
- CAS Key Laboratory of Special Pathogens and Biosafety, Centre for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Chuan Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Xiang
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China.
| |
Collapse
|
23
|
Cong W, Pike A, Gonçalves K, Shisler JL, Mariñas BJ. Inactivation Kinetics and Replication Cycle Inhibition of Coxsackievirus B5 by Free Chlorine. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18690-18699. [PMID: 36946773 DOI: 10.1021/acs.est.2c09269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The kinetics of coxsackievirus serotype B5 (CVB5) inactivation with free chlorine is characterized over a range of pH and temperature relevant to drinking water treatment with the primary goal of selecting experimental conditions used for assessing inactivation mechanisms. The inactivation kinetics identified in our study is similar to or slower than experimental data reported in the literature and thus provides a conservative representation of the kinetics of CVB5 inactivation for free chlorine that could be useful in developing future regulations for waterborne viral pathogens including adequate disinfection treatment for CVB5. Untreated and free chlorine-treated viruses, and host cells synchronized-infected with these viruses, are analyzed by a reverse transcription-quantitative polymerase chain reaction (RT-qPCR) method with the goal of quantitatively investigating the effect of free chlorine exposure on viral genome integrity, attachment to host cell, and viral genome replication. The inactivation kinetics observed results from a combination of hindering virus attachment to the host cell, inhibition of one or more subsequent steps of the replication cycle, and possibly genome damage.
Collapse
|
24
|
Zhu X, Kim TY, Kim SM, Luo K, Lim MC. Recent Advances in Biosensor Development for the Detection of Viral Particles in Foods: A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15942-15953. [PMID: 37862248 DOI: 10.1021/acs.jafc.3c05166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Viral foodborne diseases cause serious harm to human health and the economy. Rapid, accurate, and convenient approaches for detecting foodborne viruses are crucial for preventing diseases. Biosensors integrating electrochemical and optical properties of nanomaterials have emerged as effective tools for the detection of viruses in foods. However, they still face several challenges, including substantial sample preparation and relatively poor sensitivity due to complex food matrices, which limit their field applications. Hence, the purpose of this review is to provide an overview of recent advances in biosensing techniques, including electrochemical, SERS-based, and colorimetric biosensors, for detecting viral particles in food samples, with emerging techniques for extraction/concentration of virus particles from food samples. Moreover, the principle, design, and advantages/disadvantages of each biosensing method are comprehensively described. This review covers the recent development of rapid and sensitive biosensors that can be used as new standards for monitoring food safety and food quality in the food industry.
Collapse
Affiliation(s)
- Xiaoning Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, People's Republic of China
| | - Tai-Yong Kim
- Research Group of Food Safety and Distribution, Korea Food Research Institute (KFRI), Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Se-Min Kim
- Research Group of Food Safety and Distribution, Korea Food Research Institute (KFRI), Wanju-gun, Jeollabuk-do 55365, Republic of Korea
- Department of Food Science and Technology, Jeonbuk National University, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Ke Luo
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, People's Republic of China
| | - Min-Cheol Lim
- Research Group of Food Safety and Distribution, Korea Food Research Institute (KFRI), Wanju-gun, Jeollabuk-do 55365, Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon-si 34113, Republic of Korea
| |
Collapse
|
25
|
Zhou L, Eden A, Chou KH, Huber DE, Pennathur S. Nanofluidic diodes based on asymmetric bio-inspired surface coatings in straight glass nanochannels. Faraday Discuss 2023; 246:356-369. [PMID: 37462093 DOI: 10.1039/d3fd00074e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
In this study, we present nanofluidic diodes fabricated from straight glass nanochannels and functionalized using bio-inspired polydopamine (PDA) and poly-L-lysine (PLL) coatings. The resulting PDA coatings are shown to be asymmetric due to a combination of transport considerations which can be leveraged to provide a measure of control over the effective channel geometry. By subsequently introducing a layer of amine-bearing PLL chains covalently bound to the PDA, we enhance heterogeneities in the charge and ion distributions within the channel and enable significant current rectification between forward-bias and reverse-bias modes; our PDA-PLL-coated channels yielded a rectification ratio greater than 1000 in a 100 nm channel filled with 0.01× phosphate-buffered saline solution (PBS). We further demonstrated that at higher ionic strength conditions, reducing the solution pH increased the number of protonated amines within the PLL layer, amplifying the charge disparities along the channel and leading to greater rectification. As nanofluidic diodes with bipolar surface charge distributions tend to provide superior performance compared to those with a single wall charge polarity, we imposed a more bipolar charge distribution in our devices by partially coating our PDA-PLL-coated channels with negatively charged polyacrylic acid (PAA). These enhanced bipolar channels exhibited greater current rectification than the PDA-PLL-coated channels, reaching rectification ratios in excess of 100 even in more physiologically-relevant 1× PBS solutions. Our fabrication approach and the results herein provide a promising platform from which the scientific community can build upon in the relentless endeavor for improved sensitivity in biosensors and other analytical devices.
Collapse
Affiliation(s)
- Lingyun Zhou
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, California 93101, USA.
| | - Alexander Eden
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, California 93101, USA.
| | - Kuang-Hua Chou
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, California 93101, USA.
| | - David E Huber
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, California 93101, USA.
| | - Sumita Pennathur
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, California 93101, USA.
| |
Collapse
|
26
|
Wu HB, Wang CH, Chung YD, Shan YS, Lin YJ, Tsai HP, Lee GB. Highly-specific aptamer targeting SARS-CoV-2 S1 protein screened on an automatic integrated microfluidic system for COVID-19 diagnosis. Anal Chim Acta 2023; 1274:341531. [PMID: 37455073 DOI: 10.1016/j.aca.2023.341531] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
Variants of the severe acute respiratory syndrome coronavirus (SARS-CoV-2) have evolved such that it may be challenging for diagnosis and clinical treatment of the pandemic coronavirus disease-19 (COVID-19). Compared with developed SARS-CoV-2 diagnostic tools recently, aptamers may exhibit some advantages, including high specificity/affinity, longer shelf life (vs. antibodies), and could be easily prepared. Herein an integrated microfluidic system was developed to automatically carry out one novel screening process based on the systematic evolution of ligands by exponential enrichment (SELEX) for screening aptamers specific with SARS-CoV-2. The new screening process started with five rounds of positive selection (with the S1 protein of SARS-CoV-2). In addition, including non-target viruses (influenza A and B), human respiratory tract-related cancer cells (adenocarcinoma human alveolar basal epithelial cells and dysplastic oral keratinocytes), and upper respiratory tract-related infectious bacteria (including methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae), and human saliva were involved to increase the specificity of the screened aptamer during the negative selection. Totally, all 10 rounds could be completed within 20 h. The dissociation constant of the selected aptamer was determined to be 63.0 nM with S1 protein. Limits of detection for Wuhan and Omicron clinical strains were found to be satisfactory for clinical applications (i.e. 4.80 × 101 and 1.95 × 102 copies/mL, respectively). Moreover, the developed aptamer was verified to be capable of capturing inactivated SARS-CoV-2 viruses, eight SARS-CoV-2 pseudo-viruses, and clinical isolates of SARS-CoV-2 viruses. For high-variable emerging viruses, this developed integrated microfluidic system can be used to rapidly select highly-specific aptamers based on the novel SELEX methods to deal with infectious diseases in the future.
Collapse
Affiliation(s)
- Hung-Bin Wu
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Hung Wang
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Da Chung
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yan-Shen Shan
- Institute of Clinical Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan; Division of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ying-Jun Lin
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Huey-Pin Tsai
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Gwo-Bin Lee
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan; Institute of NanoEngineering and Microsystems, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
27
|
Liu YL, Yu SY, An R, Miao Y, Jiang D, Ye D, Xu JJ, Zhao WW. A Fast and Reversible Responsive Bionic Transmembrane Nanochannel for Dynamic Single-Cell Quantification of Glutathione. ACS NANO 2023; 17:17468-17475. [PMID: 37602689 DOI: 10.1021/acsnano.3c05825] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Biological channels can rapidly and continuously modulate ion transport behaviors in response to external stimuli, which play essential roles in manipulating physiological and pathological processes in cells. Here, to mimic the biological channels, a bionic nanochannel is developed by synergizing a cationic silicon-substituted rhodamine (SiRh) with a glass nanopipette for transmembrane single-cell quantification. Taking the fast and reversible nucleophilic addition reaction between glutathione (GSH) and SiRh, the bionic nanochannel shows a fast and reversible response to GSH, with its inner-surface charges changing between positive and negative charges, leading to a distinct and reversible switch in ionic current rectification (ICR). With the bionic nanochannel, spatiotemporal-resolved operation is performed to quantify endogenous GSH in a single cell, allowing for monitoring of intracellular GSH fluctuation in tumor cells upon photodynamic therapy and ferroptosis. Our results demonstrate that it is a feasible tool for in situ quantification of the endogenous GSH in single cells, which may be adapted to addressing other endogenous biomolecules in single cells by usage of other stimuli-responsive probes.
Collapse
Affiliation(s)
- Yi-Li Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Si-Yuan Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ruibing An
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yinxing Miao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
28
|
Huang Y, Zhang J, Wang W, Yang C, Song Y. Diverse SARS-CoV-2 aptamers overcome variant antigenic shift. Chem Commun (Camb) 2023; 59:9766-9769. [PMID: 37483145 DOI: 10.1039/d3cc02102e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
SARS-CoV-2 mutates rapidly as evidenced by the emergence of Omicron which causes changes in the recognition epitopes of most current neutralizing antibodies and immune evasion. Although aptamers are potential neutralizing agents for SARS-CoV-2 due to their unique molecular properties, it is difficult to compare their performances as assay conditions vary greatly, and their activity levels against variants remain unknown. Here, we evaluated the performances of 14 SARS-CoV-2 aptamers and provided a comprehensive analysis them, which we expect will improve the development of aptamer tools for SARS-CoV-2 diagnostics and therapeutics.
Collapse
Affiliation(s)
- Yihao Huang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China.
| | - Jialu Zhang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China.
| | - Wencheng Wang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China.
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China.
- Department Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China.
| |
Collapse
|
29
|
Zhang J, Zhu A, Mei M, Qu J, Huang Y, Shi Y, Xue M, Zhang J, Zhang R, Zhou B, Tan X, Zhao J, Wang Y. Repurposing CRISPR/Cas to Discover SARS-CoV-2 Detecting and Neutralizing Aptamers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300656. [PMID: 37204115 PMCID: PMC10401102 DOI: 10.1002/advs.202300656] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/07/2023] [Indexed: 05/20/2023]
Abstract
RNA aptamers provide useful biological probes and therapeutic agents. New methodologies to screen RNA aptamers will be valuable by complementing the traditional Systematic Evolution of Ligands by Exponential Enrichment (SELEX). Meanwhile, repurposing clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated systems (Cas) has expanded their utility far beyond their native nuclease function. Here, CRISmers, a CRISPR/Cas-based novel screening system for RNA aptamers based on binding to a chosen protein of interest in a cellular context, is presented. Using CRISmers, aptamers are identified specifically targeting the receptor binding domain (RBD) of the spike glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Two aptamer leads enable sensitive detection and potent neutralization of SARS-CoV-2 Delta and Omicron variants in vitro. Intranasal administration of one aptamer, further modified with 2'-fluoro pyrimidines (2'-F), 2'-O-methyl purines (2'-O), and conjugation with both cholesterol and polyethylene glycol of 40 kDa (PEG40K), achieves effective prophylactic and therapeutic antiviral activity against live Omicron BA.2 variants in vivo. The study concludes by demonstrating the robustness, consistency, and potential broad utility of CRISmers using two newly identified aptamers but switching CRISPR, selection marker, and host species.
Collapse
Affiliation(s)
- Ju Zhang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Beijing Institute for Stem Cell and Regenerative MedicineBeijing100005China
- College of Life Sciences and OceanographyShenzhen UniversityShenzhen518060China
| | - Airu Zhu
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510120China
| | - Miao Mei
- Tsinghua‐Peking Center for Life SciencesBeijing Advanced Innovation Center for Structural BiologyBeijing Frontier Research Center for Biological StructureMOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologySchool of Pharmaceutical SciencesCenter for infectious Disease ResearchSchool of MedicineTsinghua UniversityBeijing100084China
| | - Jing Qu
- Institute of Pathogenic OrganismsShenzhen Center for Disease Control and PreventionShenzhen518055China
| | - Yalan Huang
- Institute of Pathogenic OrganismsShenzhen Center for Disease Control and PreventionShenzhen518055China
| | - Yongshi Shi
- College of Life Sciences and OceanographyShenzhen UniversityShenzhen518060China
| | - Meiying Xue
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Beijing Institute for Stem Cell and Regenerative MedicineBeijing100005China
| | - Jingfang Zhang
- College of Life Sciences and OceanographyShenzhen UniversityShenzhen518060China
- School of Life SciencesBeijing University of Chinese MedicineBeijing100105China
| | - Renli Zhang
- Institute of Pathogenic OrganismsShenzhen Center for Disease Control and PreventionShenzhen518055China
| | - Bing Zhou
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Beijing Institute for Stem Cell and Regenerative MedicineBeijing100005China
| | - Xu Tan
- Tsinghua‐Peking Center for Life SciencesBeijing Advanced Innovation Center for Structural BiologyBeijing Frontier Research Center for Biological StructureMOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologySchool of Pharmaceutical SciencesCenter for infectious Disease ResearchSchool of MedicineTsinghua UniversityBeijing100084China
| | - Jincun Zhao
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510120China
| | - Yu Wang
- College of Life Sciences and OceanographyShenzhen UniversityShenzhen518060China
| |
Collapse
|
30
|
Mahmoudi A, Hoda Alavizadeh S, Atefeh Hosseini S, Meidany P, Doagooyan M, Abolhasani Y, Saadat Z, Amani F, Kesharwani P, Gheybi F, Sahebkar A. Harnessing aptamers against COVID-19: a therapeutic strategy. Drug Discov Today 2023:103663. [PMID: 37315763 PMCID: PMC10266562 DOI: 10.1016/j.drudis.2023.103663] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023]
Abstract
The novel coronavirus crisis caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) was a global pandemic. Although various therapeutic approaches were developed over the past 2 years, novel strategies with more efficient applicability are required to target new variants. Aptamers are single-stranded (ss)RNA or DNA oligonucleotides capable of folding into unique 3D structures with robust binding affinity to a wide variety of targets following structural recognition. Aptamer-based theranostics have proven excellent capability for diagnosing and treating various viral infections. Herein, we review the current status and future perspective of the potential of aptamers as COVID-19 therapies.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Atefeh Hosseini
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Pouria Meidany
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maham Doagooyan
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Yasaman Abolhasani
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Zakieh Saadat
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Fatemeh Amani
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India
| | - Fatemeh Gheybi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
31
|
Moshref ZS, Jalali T, Rezaei Adriani R, Soltati E, Mousavi Gargari SL. Aptamer-based diagnosis of various SARS-CoV2 strains isolated from clinical specimens. Heliyon 2023; 9:e16458. [PMID: 37251485 PMCID: PMC10204341 DOI: 10.1016/j.heliyon.2023.e16458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023] Open
Abstract
The emergence of the SARS-CoV-2 virus, an unknown strain of coronavirus, has resulted in severe acute respiratory syndrome with high mortality rates worldwide. Due to the possibility of asymptomatic carriers, late diagnosis of infected individuals can lead to uncontrollable transmission of the disease, making early and accurate detection crucial in controlling the spread of the virus. In this study we identified high-binding-affinity aptamers targeting various strains of the SARS-CoV2 (COVID-19) virus, using the GO-Cell-SELEX (Graphene Oxide- Systematic Evolution of Ligands by Exponential Enrichment) strategy. A total of 96 aptamers were developed through 11 rounds of GO-Cell-SELEX from a random 40 nucleotide single-strand DNA (ssDNA) aptamer library. Using the surface plasmon resonance (SPR) method, the dissociation constant (Kd) values of all aptamers were calculated and two aptamers 52 and 91 with Kd 50 and 61 were selected for enzyme-linked apta-sorbent assay (ELASA). Aptamer 91 could detect various strains of the virus in above 97% of clinical samples obtained from nasopharyngeal swaps (NPS) specimens kept in viral transport media (VTM), confirmed by real-time PCR assay at COVID-19 Reference Diagnostic Laboratory of Iran, Pasture Institute. Aptamer 52 could detect the SARS-CoV2 virus in a competitive lateral flow assay (LFA) to be considered for a future designed kit. These two simple, specific, and sensitive tests can be used in combination for rapid and early diagnosis of various strains of the COVID-19 virus. Our results suggest that these two discovered aptamers present an opportunity for developing a new rapid aptamer-based coronavirus diagnostic kit.
Collapse
Affiliation(s)
| | - Tahmineh Jalali
- Department of Arboviruses and Viral Hemorrhagic Fever (National Reference Laboratory), Pasteur Institute of Iran, Tehran, Iran
| | | | - Elahe Soltati
- Faculty of Converging Science and Technologies, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | |
Collapse
|
32
|
Yang LF, Ling M, Kacherovsky N, Pun SH. Aptamers 101: aptamer discovery and in vitro applications in biosensors and separations. Chem Sci 2023; 14:4961-4978. [PMID: 37206388 PMCID: PMC10189874 DOI: 10.1039/d3sc00439b] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/14/2023] [Indexed: 05/21/2023] Open
Abstract
Aptamers are single-stranded nucleic acids that bind and recognize targets much like antibodies. Recently, aptamers have garnered increased interest due to their unique properties, including inexpensive production, simple chemical modification, and long-term stability. At the same time, aptamers possess similar binding affinity and specificity as their protein counterpart. In this review, we discuss the aptamer discovery process as well as aptamer applications to biosensors and separations. In the discovery section, we describe the major steps of the library selection process for aptamers, called systematic evolution of ligands by exponential enrichment (SELEX). We highlight common approaches and emerging strategies in SELEX, from starting library selection to aptamer-target binding characterization. In the applications section, we first evaluate recently developed aptamer biosensors for SARS-CoV-2 virus detection, including electrochemical aptamer-based sensors and lateral flow assays. Then we discuss aptamer-based separations for partitioning different molecules or cell types, especially for purifying T cell subsets for therapeutic applications. Overall, aptamers are promising biomolecular tools and the aptamer field is primed for expansion in biosensing and cell separation.
Collapse
Affiliation(s)
- Lucy F Yang
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington Seattle Washington USA
| | - Melissa Ling
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington Seattle Washington USA
| | - Nataly Kacherovsky
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington Seattle Washington USA
| | - Suzie H Pun
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington Seattle Washington USA
| |
Collapse
|
33
|
Liu L, Tibbs J, Li N, Bacon A, Shepherd S, Lee H, Chauhan N, Demirci U, Wang X, Cunningham BT. A photonic resonator interferometric scattering microscope for label-free detection of nanometer-scale objects with digital precision in point-of-use environments. Biosens Bioelectron 2023; 228:115197. [PMID: 36905862 PMCID: PMC10072782 DOI: 10.1016/j.bios.2023.115197] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/27/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023]
Abstract
Label-free detection and digital counting of nanometer-scaled objects such as nanoparticles, viruses, extracellular vesicles, and protein molecules enable a wide range of applications in cancer diagnostics, pathogen detection, and life science research. Here, we report the design, implementation, and characterization of a compact Photonic Resonator Interferometric Scattering Microscope (PRISM) designed for point-of-use environments and applications. The contrast of interferometric scattering microscopy is amplified through a photonic crystal surface, upon which scattered light from an object combines with illumination from a monochromatic source. The use of a photonic crystal substrate for interferemetric scattering microscopy results in reduced requirements for high-intensity lasers or oil-immersion objectives, thus opening a pathway toward instruments that are more suitable for environments outside the optics laboratory. The instrument incorporates two innovative elements that facilitate operation on a desktop in ordinary laboratory environments by users that do not have optics expertise. First, because scattering microscopes are extremely sensitive to vibration, we incorporated an inexpensive but effective solution of suspending the instrument's main components from a rigid metal framework using elastic bands, resulting in an average of 28.7 dBV reduction in vibration amplitude compared to an office desk. Second, an automated focusing module based on the principle of total internal reflection maintains the stability of image contrast over time and spatial position. In this work, we characterize the system's performance by measuring the contrast from gold nanoparticles with diameters in the 10-40 nm range and by observing various biological analytes, including HIV virus, SARS-CoV-2 virus, exosome, and ferritin protein.
Collapse
Affiliation(s)
- Leyang Liu
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Joseph Tibbs
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Nantao Li
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Amanda Bacon
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Skye Shepherd
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hankeun Lee
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Neha Chauhan
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Utkan Demirci
- Canary Center at Stanford for Cancer Early Detection, Stanford School of Medicine, Stanford University, Palo Alto, CA, 94304, USA
| | - Xing Wang
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Brian T Cunningham
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Cancer Center at Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|
34
|
Chen X, Zhou S, Wang Y, Zheng L, Guan S, Wang D, Wang L, Guan X. Nanopore Single-molecule Analysis of Biomarkers: Providing Possible Clues to Disease Diagnosis. Trends Analyt Chem 2023; 162:117060. [PMID: 38106545 PMCID: PMC10722900 DOI: 10.1016/j.trac.2023.117060] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Biomarker detection has attracted increasing interest in recent years due to the minimally or non-invasive sampling process. Single entity analysis of biomarkers is expected to provide real-time and accurate biological information for early disease diagnosis and prognosis, which is critical to the effective disease treatment and is also important in personalized medicine. As an innovative single entity analysis method, nanopore sensing is a pioneering single-molecule detection technique that is widely used in analytical bioanalytical fields. In this review, we overview the recent progress of nanopore biomarker detection as new approaches to disease diagnosis. In highlighted studies, nanopore was focusing on detecting biomarkers of different categories of communicable and noncommunicable diseases, such as pandemic Covid-19, AIDS, cancers, neurologic diseases, etc. Various sensitive and selective nanopore detecting strategies for different types of biomarkers are summarized. In addition, the challenges, opportunities, and direction for future development of nanopore-based biomarker sensors are also discussed.
Collapse
Affiliation(s)
- Xiaohan Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, China
| | - Shuo Zhou
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, China
| | - Yunjiao Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, China
| | - Ling Zheng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, China
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Sarah Guan
- Hinsdale Central High School, Hinsdale, IL 60521, USA
| | - Deqiang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, China
| | - Liang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, China
- Chongqing Key Laboratory of Intelligent Medicine Engineering for Hepatopancreatobiliary Diseases, University of Chinese Academy of Sciences, Chongqing 401147, China
| | - Xiyun Guan
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, 60616, USA
| |
Collapse
|
35
|
Salahandish R, Hyun JE, Haghayegh F, Tabrizi HO, Moossavi S, Khetani S, Ayala‐Charca G, Berenger BM, Niu YD, Ghafar‐Zadeh E, Nezhad AS. CoVSense: Ultrasensitive Nucleocapsid Antigen Immunosensor for Rapid Clinical Detection of Wildtype and Variant SARS-CoV-2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206615. [PMID: 36995043 PMCID: PMC10214237 DOI: 10.1002/advs.202206615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/31/2023] [Indexed: 05/27/2023]
Abstract
The widespread accessibility of commercial/clinically-viable electrochemical diagnostic systems for rapid quantification of viral proteins demands translational/preclinical investigations. Here, Covid-Sense (CoVSense) antigen testing platform; an all-in-one electrochemical nano-immunosensor for sample-to-result, self-validated, and accurate quantification of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid (N)-proteins in clinical examinations is developed. The platform's sensing strips benefit from a highly-sensitive, nanostructured surface, created through the incorporation of carboxyl-functionalized graphene nanosheets, and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) conductive polymers, enhancing the overall conductivity of the system. The nanoengineered surface chemistry allows for compatible direct assembly of bioreceptor molecules. CoVSense offers an inexpensive (<$2 kit) and fast/digital response (<10 min), measured using a customized hand-held reader (<$25), enabling data-driven outbreak management. The sensor shows 95% clinical sensitivity and 100% specificity (Ct<25), and overall sensitivity of 91% for combined symptomatic/asymptomatic cohort with wildtype SARS-CoV-2 or B.1.1.7 variant (N = 105, nasal/throat samples). The sensor correlates the N-protein levels to viral load, detecting high Ct values of ≈35, with no sample preparation steps, while outperforming the commercial rapid antigen tests. The current translational technology fills the gap in the workflow of rapid, point-of-care, and accurate diagnosis of COVID-19.
Collapse
Affiliation(s)
- Razieh Salahandish
- BioMEMS and Bioinspired Microfluidic LaboratoryDepartment of Biomedical EngineeringUniversity of CalgaryCalgaryABT2N 1N4Canada
- Department of Mechanical and Manufacturing EngineeringUniversity of CalgaryCalgaryABT2N 1N4Canada
- Laboratory of Advanced Biotechnologies for Health Assessments (LAB‐HA)Department of Electrical Engineering and Computer ScienceLassonde School of EngineeringYork UniversityTorontoM3J 1P3Canada
| | - Jae Eun Hyun
- Department of Ecosystem and Public HealthFaculty of Veterinary MedicineUniversity of CalgaryCalgaryABT2N 1N4Canada
| | - Fatemeh Haghayegh
- BioMEMS and Bioinspired Microfluidic LaboratoryDepartment of Biomedical EngineeringUniversity of CalgaryCalgaryABT2N 1N4Canada
- Department of Mechanical and Manufacturing EngineeringUniversity of CalgaryCalgaryABT2N 1N4Canada
| | - Hamed Osouli Tabrizi
- Biologically Inspired Sensors and Actuators (BioSA)Department of Electrical Engineering and Computer ScienceLassonde School of EngineeringYork UniversityTorontoM3J 1P3Canada
| | - Shirin Moossavi
- BioMEMS and Bioinspired Microfluidic LaboratoryDepartment of Biomedical EngineeringUniversity of CalgaryCalgaryABT2N 1N4Canada
- Department of Physiology and PharmacologyUniversity of CalgaryCalgaryABT2N 1N4Canada
- International Microbiome CentreCumming School of MedicineHealth Sciences CentreUniversity of CalgaryCalgaryABT2N 1N4Canada
| | - Sultan Khetani
- BioMEMS and Bioinspired Microfluidic LaboratoryDepartment of Biomedical EngineeringUniversity of CalgaryCalgaryABT2N 1N4Canada
| | - Giancarlo Ayala‐Charca
- Biologically Inspired Sensors and Actuators (BioSA)Department of Electrical Engineering and Computer ScienceLassonde School of EngineeringYork UniversityTorontoM3J 1P3Canada
| | - Byron M. Berenger
- Alberta Public Health LaboratoryAlberta Precision Laboratories3330 Hospital DriveCalgaryABT2N 4W4Canada
- Department of Pathology and Laboratory MedicineFaculty of MedicineUniversity of CalgaryCalgaryABT2N 1N4Canada
| | - Yan Dong Niu
- Department of Ecosystem and Public HealthFaculty of Veterinary MedicineUniversity of CalgaryCalgaryABT2N 1N4Canada
| | - Ebrahim Ghafar‐Zadeh
- Biologically Inspired Sensors and Actuators (BioSA)Department of Electrical Engineering and Computer ScienceLassonde School of EngineeringYork UniversityTorontoM3J 1P3Canada
| | - Amir Sanati Nezhad
- BioMEMS and Bioinspired Microfluidic LaboratoryDepartment of Biomedical EngineeringUniversity of CalgaryCalgaryABT2N 1N4Canada
- Department of Mechanical and Manufacturing EngineeringUniversity of CalgaryCalgaryABT2N 1N4Canada
- Biomedical Engineering Graduate ProgramUniversity of CalgaryCalgaryABT2N 1N4Canada
| |
Collapse
|
36
|
Sen P, Zhang Z, Li P, Adhikari BR, Guo T, Gu J, MacIntosh AR, van der Kuur C, Li Y, Soleymani L. Integrating Water Purification with Electrochemical Aptamer Sensing for Detecting SARS-CoV-2 in Wastewater. ACS Sens 2023; 8:1558-1567. [PMID: 36926840 PMCID: PMC10042147 DOI: 10.1021/acssensors.2c02655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/02/2023] [Indexed: 03/18/2023]
Abstract
Wastewater analysis of pathogens, particularly SARS-CoV-2, is instrumental in tracking and monitoring infectious diseases in a population. This method can be used to generate early warnings regarding the onset of an infectious disease and predict the associated infection trends. Currently, wastewater analysis of SARS-CoV-2 is almost exclusively performed using polymerase chain reaction for the amplification-based detection of viral RNA at centralized laboratories. Despite the development of several biosensing technologies offering point-of-care solutions for analyzing SARS-CoV-2 in clinical samples, these remain elusive for wastewater analysis due to the low levels of the virus and the interference caused by the wastewater matrix. Herein, we integrate an aptamer-based electrochemical chip with a filtration, purification, and extraction (FPE) system for developing an alternate in-field solution for wastewater analysis. The sensing chip employs a dimeric aptamer, which is universally applicable to the wild-type, alpha, delta, and omicron variants of SARS-CoV-2. We demonstrate that the aptamer is stable in the wastewater matrix (diluted to 50%) and its binding affinity is not significantly impacted. The sensing chip demonstrates a limit of detection of 1000 copies/L (1 copy/mL), enabled by the amplification provided by the FPE system. This allows the integrated system to detect trace amounts of the virus in native wastewater and categorize the amount of contamination into trace (<10 copies/mL), medium (10-1000 copies/mL), or high (>1000 copies/mL) levels, providing a viable wastewater analysis solution for in-field use.
Collapse
Affiliation(s)
- Payel Sen
- Department of Engineering Physics,
McMaster University, Hamilton L8S 4K1,
Canada
| | - Zijie Zhang
- Department of Biochemistry and Biomedical Sciences,
McMaster University, Hamilton L8S 4K1,
Canada
| | - Phoebe Li
- Department of Physics, McMaster
University, Hamilton L8S 4K1, Canada
| | - Bal Ram Adhikari
- Department of Engineering Physics,
McMaster University, Hamilton L8S 4K1,
Canada
| | - Tianyi Guo
- Forsee Instruments, Ltd.,
Hamilton L8P0A1, Canada
| | - Jimmy Gu
- Department of Biochemistry and Biomedical Sciences,
McMaster University, Hamilton L8S 4K1,
Canada
| | | | | | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences,
McMaster University, Hamilton L8S 4K1,
Canada
- School of Biomedical Engineering, McMaster
University, Hamilton L8S 4K1, Canada
- Michael G. DeGroote Institute for Infectious Disease
Research, McMaster University, Hamilton L8S 4K1,
Canada
| | - Leyla Soleymani
- Department of Engineering Physics,
McMaster University, Hamilton L8S 4K1,
Canada
- School of Biomedical Engineering, McMaster
University, Hamilton L8S 4K1, Canada
- Michael G. DeGroote Institute for Infectious Disease
Research, McMaster University, Hamilton L8S 4K1,
Canada
| |
Collapse
|
37
|
Aptamers targeting SARS-COV-2: a promising tool to fight against COVID-19. Trends Biotechnol 2023; 41:528-544. [PMID: 35995601 PMCID: PMC9340053 DOI: 10.1016/j.tibtech.2022.07.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 12/02/2022]
Abstract
SARS-CoV-2, the causative agent of COVID-19, remains among the main causes of global mortality. Although antigen/antibody-based immunoassays and neutralizing antibodies targeting SARS-CoV-2 have been successfully developed over the past 2 years, they are often inefficient and unreliable for emerging SARS-CoV-2 variants. Novel approaches against SARS-CoV-2 and its variants are therefore urgently needed. Aptamers have been developed for the detection and inhibition of several different viruses such as HIV, influenza viruses, Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV. Aptamers targeting SARS-CoV-2 represent a promising tool in the fight against COVID-19, which is of paramount importance for the current and any future pandemics. This review presents recent advances and future trends in the development of aptamer-based approaches for SARS-CoV-2 diagnosis and treatment.
Collapse
|
38
|
Bošković F, Zhu J, Tivony R, Ohmann A, Chen K, Alawami MF, Đorđević M, Ermann N, Pereira-Dias J, Fairhead M, Howarth M, Baker S, Keyser UF. Simultaneous identification of viruses and viral variants with programmable DNA nanobait. NATURE NANOTECHNOLOGY 2023; 18:290-298. [PMID: 36646828 PMCID: PMC10020084 DOI: 10.1038/s41565-022-01287-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/07/2022] [Indexed: 05/31/2023]
Abstract
Respiratory infections are the major cause of death from infectious disease worldwide. Multiplexed diagnostic approaches are essential as many respiratory viruses have indistinguishable symptoms. We created self-assembled DNA nanobait that can simultaneously identify multiple short RNA targets. The nanobait approach relies on specific target selection via toehold-mediated strand displacement and rapid readout via nanopore sensing. Here we show that this platform can concurrently identify several common respiratory viruses, detecting a panel of short targets of viral nucleic acids from multiple viruses. Our nanobait can be easily reprogrammed to discriminate viral variants with single-nucleotide resolution, as we demonstrated for several key SARS-CoV-2 variants. Last, we show that the nanobait discriminates between samples extracted from oropharyngeal swabs from negative- and positive-SARS-CoV-2 patients without preamplification. Our system allows for the multiplexed identification of native RNA molecules, providing a new scalable approach for the diagnostics of multiple respiratory viruses in a single assay.
Collapse
Affiliation(s)
- Filip Bošković
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Jinbo Zhu
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Ran Tivony
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | | | - Kaikai Chen
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | | | - Milan Đorđević
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Niklas Ermann
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Joana Pereira-Dias
- University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Hills Road, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Hills Road, Cambridge, UK
| | | | - Mark Howarth
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Stephen Baker
- University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Hills Road, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Hills Road, Cambridge, UK
| | - Ulrich F Keyser
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| |
Collapse
|
39
|
Chen J, Li Y, Liu Z. Functional nucleic acids as potent therapeutics against SARS-CoV-2 infection. CELL REPORTS. PHYSICAL SCIENCE 2023; 4:101249. [PMID: 36714073 PMCID: PMC9869493 DOI: 10.1016/j.xcrp.2023.101249] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The COVID-19 pandemic has posed a severe threat to human life and the global economy. Although conventional treatments, including vaccines, antibodies, and small-molecule inhibitors, have been broadly developed, they usually fall behind the constant mutation of SARS-CoV-2, due to the long screening process and high production cost. Functional nucleic acid (FNA)-based therapeutics are a newly emerging promising means against COVID-19, considering their timely adaption to different mutants and easy design for broad-spectrum virus inhibition. In this review, we survey typical FNA-related therapeutics against SARS-CoV-2 infection, including aptamers, aptamer-integrated DNA frameworks, functional RNA, and CRISPR-Cas technology. We first introduce the pathogenesis, transmission, and evolution of SARS-CoV-2, then analyze the existing therapeutic and prophylactic strategies, including their pros and cons. Subsequently, the FNAs are recommended as potent alternative therapeutics from their screening process and controllable engineering to effective neutralization. Finally, we put forward the remaining challenges of the existing field and sketch out the future development directions.
Collapse
Affiliation(s)
- Jingran Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ying Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
40
|
Electrical biosensing system utilizing ion-producing enzymes conjugated with aptamers for the sensing of severe acute respiratory syndrome coronavirus 2. SENSING AND BIO-SENSING RESEARCH 2023; 39:100549. [PMID: 36686588 PMCID: PMC9847365 DOI: 10.1016/j.sbsr.2023.100549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/28/2022] [Accepted: 01/17/2023] [Indexed: 01/19/2023] Open
Abstract
Viral outbreaks, which include the ongoing coronavirus disease 2019 (COVID-19) pandemic provoked by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), are a major global crisis that enormously threaten human health and social activities worldwide. Consequently, the rapid and repeated treatment and isolation of these viruses to control their spread are crucial to address the COVID-19 pandemic and future epidemics of novel emerging viruses. The application of cost-efficient, rapid, and easy-to-operate detection devices with miniaturized footprints as a substitute for the conventional optic-based polymerase chain reaction (PCR) and immunoassay tests is critical. In this context, semiconductor-based electrical biosensors are attractive sensing platforms for signal readout. Therefore, this study aimed to examine the electrical sensing of patient-derived SARS-CoV-2 samples by harnessing the activity of DNA aptamers directed against spike proteins on viral surfaces. We obtained rapid and sensitive virus detection beyond the Debye length limitation by exploiting aptamers coupled with alkaline phosphatases, which catalytically generate free hydrogen ions which can readily be measured on pH meters or ion-sensitive field-effect transistors. Furthermore, we demonstrated the detection of the viruses of approximately 100 copies/μL in 10 min, surpassing the capability of typical immunochromatographic assays. Therefore, our newly developed technology has great potential for point-of-care testing not only for SARS-CoV-2, but also for other types of pathogens and biomolecules.
Collapse
|
41
|
Yang T, Li D, Yan Y, Ettoumi FE, Wu RA, Luo Z, Yu H, Lin X. Ultrafast and absolute quantification of SARS-CoV-2 on food using hydrogel RT-LAMP without pre-lysis. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130050. [PMID: 36182888 PMCID: PMC9507997 DOI: 10.1016/j.jhazmat.2022.130050] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/12/2022] [Accepted: 09/21/2022] [Indexed: 05/13/2023]
Abstract
With rapid growing of environmental contact infection, more and more attentions are focused on the precise and absolute quantification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus on cold chain foods via point-of-care test (POCT). In this work, we propose a hydrogel-mediated reverse transcription loop-mediated isothermal amplification (RT-LAMP) for ultrafast and absolute quantification of SARS-CoV-2. Cross-linked hydrogel offers opportunities for digital single molecule amplification in nanoconfined spaces, facilitating the virus lysis, RNA reverse transcription and amplification process, which is about 3.4-fold faster than conventional bulk RT-LAMP. Ultrafast quantification of SARS-CoV-2 is accomplished in 15 min without virus pre-lysis and RNA extraction. The sensitivity can accurately quantify SARS-CoV-2 down to 0.5 copy/μL. Furthermore, the integrated system has an excellent specificity, reproducibility and storage stability, which can be also used to test SARS-CoV-2 on various cold chain fruits. The developed ultrafast and simple hydrogel RT-LAMP will be an enormous potential for surveillance of virus or other hazardous microbes in environmental, agricultural and food industry.
Collapse
Affiliation(s)
- Tao Yang
- College of Biosystems Engineering & Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, 310058, China
| | - Dong Li
- College of Biosystems Engineering & Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, 310058, China
| | - Yuhua Yan
- College of Biosystems Engineering & Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, 310058, China
| | - Fatima-Ezzahra Ettoumi
- College of Biosystems Engineering & Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, 310058, China
| | - Ricardo A Wu
- College of Biosystems Engineering & Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, 310058, China
| | - Zisheng Luo
- College of Biosystems Engineering & Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, 310058, China; Ningbo Research Institute, Zhejiang University, 310058, China
| | - Hanry Yu
- Critical Analytics for Manufacturing Personalized Medicine Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 138602, Singapore
| | - Xingyu Lin
- College of Biosystems Engineering & Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, 310058, China; Ningbo Research Institute, Zhejiang University, 310058, China.
| |
Collapse
|
42
|
Discovery and translation of functional nucleic acids for clinically diagnosing infectious diseases: Opportunities and challenges. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
43
|
Li R, Zhao Y, Fan H, Chen M, Hu W, Zhang Q, Jin M, Liu GL, Huang L. Versatile nanorobot hand biosensor for specific capture and ultrasensitive quantification of viral nanoparticles. Mater Today Bio 2022; 16:100444. [PMID: 36204214 PMCID: PMC9531290 DOI: 10.1016/j.mtbio.2022.100444] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
Abstract
Accurate determination of the concentration and viability of the viral vaccine vectors is urgently needed for preventing the spread of the viral infections, but also supporting the development and assessment of recombinant virus-vectored vaccines. Herein, we describe a nanoplasmonic biosensor with nanoscale robot hand structure (Nano RHB) for the rapid, direct, and specific capture and quantification of adenovirus particles. The nanorobot allows simple operation in practical applications, such as real-time monitoring of vaccine quantity and quality, and evaluation of vaccine viability. Modification of the Nano RHB with branched gold nanostructures allow rapid and efficient assessment of human adenovirus viability, with ultrahigh detection sensitivity of only 100 copies/mL through one-step sandwich method. Nano RHB detection results were consistent with those from the gold standard median tissue culture infectious dose and real-time polymerase chain reaction assays. Additionally, the Nano RHB platform showed high detection specificity for different types of viral vectors and pseudoviruses. Altogether, these results demonstrate that the Nano RHB platform is a promising tool for efficient and ultrasensitive assessment of vaccines and gene delivery vectors.
Collapse
|
44
|
Laucirica G, Allegretto JA, Wagner MF, Toimil-Molares ME, Trautmann C, Rafti M, Marmisollé W, Azzaroni O. Switchable Ion Current Saturation Regimes Enabled via Heterostructured Nanofluidic Devices Based on Metal-Organic Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2207339. [PMID: 36239253 DOI: 10.1002/adma.202207339] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/27/2022] [Indexed: 06/16/2023]
Abstract
The use of track-etched membranes allows further fine-tuning of transport regimes and thus enables their use in (bio)sensing and energy-harvesting applications, among others. Recently, metal-organic frameworks (MOFs) have been combined with such membranes to further increase their potential. Herein, the creation of a single track-etched nanochannel modified with the UiO-66 MOF is proposed. By the interfacial growth method, UiO-66-confined synthesis fills the nanochannel completely and smoothly, yet its constructional porosity renders a heterostructure along the axial coordinate of the channel. The MOF heterostructure confers notorious changes in the transport regime of the nanofluidic device. In particular, the tortuosity provided by the micro- and mesostructure of UiO-66 added to its charged state leads to iontronic outputs characterized by an asymmetric ion current saturation for transmembrane voltages exceeding 0.3 V. Remarkably, this behavior can be easily and reversibly modulated by changing the pH of the media and it can also be maintained for a wide range of KCl concentrations. In addition, it is found that the modified-nanochannel functionality cannot be explained by considering just the intrinsic microporosity of UiO-66, but rather the constructional porosity that arises during the MOF growth process plays a central and dominant role.
Collapse
Affiliation(s)
- Gregorio Laucirica
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata, B1904DPI, Argentina
| | - Juan A Allegretto
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata, B1904DPI, Argentina
| | - Michael F Wagner
- GSI Helmholtzzentrum für Schwerionenforschung, 64291, Darmstadt, Germany
| | | | - Christina Trautmann
- GSI Helmholtzzentrum für Schwerionenforschung, 64291, Darmstadt, Germany
- Technische Universität Darmstadt, Materialwissenschaft, 64287, Darmstadt, Germany
| | - Matías Rafti
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata, B1904DPI, Argentina
| | - Waldemar Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata, B1904DPI, Argentina
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata, B1904DPI, Argentina
| |
Collapse
|
45
|
Flores-Contreras EA, González-González RB, González-González E, Melchor-Martínez EM, Parra-Saldívar R, Iqbal HMN. Detection of Emerging Pollutants Using Aptamer-Based Biosensors: Recent Advances, Challenges, and Outlook. BIOSENSORS 2022; 12:1078. [PMID: 36551045 PMCID: PMC9775161 DOI: 10.3390/bios12121078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
The synergistic potentialities of innovative materials that include aptamers have opened new paradigms in biosensing platforms for high-throughput monitoring systems. The available nucleobase functional moieties in aptamers offer exclusive features for bioanalytical sensing applications. In this context, compared to various in-practice biological recognition elements, the utilization of aptamers in detection platforms results in an extensive range of advantages in terms of design flexibility, stability, and sensitivity, among other attributes. Thus, the utilization of aptamers-based biosensing platforms is extensively anticipated to meet unaddressed challenges of various in-practice and standard analytical and sensing techniques. Furthermore, the superior characteristics of aptasensors have led to their applicability in the detection of harmful pollutants present in ever-increasing concentrations in different environmental matrices and water bodies, seeking to achieve simple and real-time monitoring. Considering the above-mentioned critiques and notable functional attributes of aptamers, herein, we reviewed aptamers as a fascinating interface to design, develop, and deploy a new generation of monitoring systems to aid modern bioanalytical sensing applications. Moreover, this review aims to summarize the most recent advances in the development and application of aptasensors for the detection of various emerging pollutants (EPs), e.g., pharmaceutical, and personal care products (PPCPs), endocrine-disrupting chemicals (EDCs), pesticides and other agricultural-related compounds, and toxic heavy elements. In addition, the limitations and current challenges are also reviewed, considering the technical constraints and complexity of the environmental samples.
Collapse
Affiliation(s)
- Elda A. Flores-Contreras
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Nuevo León, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Nuevo León, Mexico
| | - Reyna Berenice González-González
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Nuevo León, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Nuevo León, Mexico
| | - Everardo González-González
- Laboratorio de Fisiología Molecular y Estructural, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66455, Nuevo León, Mexico
| | - Elda M. Melchor-Martínez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Nuevo León, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Nuevo León, Mexico
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Nuevo León, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Nuevo León, Mexico
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Nuevo León, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Nuevo León, Mexico
| |
Collapse
|
46
|
Pawel GT, Ma Y, Wu Y, Lu Y, Peinetti AS. Binding Affinity Measurements Between DNA Aptamers and their Virus Targets Using ELONA and MST. Bio Protoc 2022; 12:e4548. [PMID: 36505027 PMCID: PMC9709635 DOI: 10.21769/bioprotoc.4548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/28/2022] [Accepted: 09/04/2022] [Indexed: 11/06/2022] Open
Abstract
Aptamers have been selected with strong affinity and high selectivity for a wide range of targets, as recently highlighted by the development of aptamer-based sensors that can differentiate infectious from non-infectious viruses, including human adenovirus and SARS-CoV-2. Accurate determination of the binding affinity between the DNA aptamers and their viral targets is the first step to understanding the molecular recognition of viral particles and the potential uses of aptamers in various diagnostics and therapeutic applications. Here, we describe protocols to obtain the binding curve of the DNA aptamers to SARS-CoV-2 using Enzyme-Linked Oligonucleotide Assay (ELONA) and MicroScale Thermophoresis (MST). These methods allow for the determination of the binding affinity of the aptamer to the infectious SARS-CoV-2 and the selectivity of this aptamer against the same SARS-CoV-2 that has been rendered non-infectious by UV inactivation, and other viruses. Compared to other techniques like Electrophoretic Mobility Shift Assay (EMSA), Surface Plasmon Resonance (SPR), and Isothermal Titration Calorimetry (ITC), these methods have advantages for working with larger particles like viruses and with samples that require biosafety level 2 facilities.
Collapse
Affiliation(s)
- Gregory T. Pawel
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Yuan Ma
- Department of Chemistry, University of Texas at Austin, Austin, Texas, United States
| | - Yuting Wu
- Department of Chemistry, University of Texas at Austin, Austin, Texas, United States
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
- Department of Chemistry, University of Texas at Austin, Austin, Texas, United States
| | - Ana Sol Peinetti
- INQUIMAE (CONICET), Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
47
|
Chen J, Zhou J, Peng Y, Xie Y, Xiao Y. Aptamers: A prospective tool for infectious diseases diagnosis. J Clin Lab Anal 2022; 36:e24725. [PMID: 36245423 PMCID: PMC9701868 DOI: 10.1002/jcla.24725] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 12/05/2022] Open
Abstract
It is well known that people's health is seriously threatened by various pathogens (such as Mycobacterium tuberculosis, Treponema pallidum, Novel coronavirus, HIV, Mucor, etc.), which leads to heavy socioeconomic burdens. Therefore, early and accurate pathogen diagnosis is essential for timely and effective therapies. Up to now, diagnosing human contagious diseases at molecule and nano levels is remarkably difficult owing to insufficient valid probes when it comes to determining the biological markers of pathogens. Aptamers are a set of high‐specificity and high‐sensitivity plastic oligonucleotides screened in vitro via the selective expansion of ligands by exponential enrichment (SELEX). With the advent of aptamer‐based technologies, their merits have aroused mounting academic interest. In recent years, as new detection and treatment tools, nucleic acid aptamers have been extensively utilized in the field of biomedicine, such as pathogen detection, new drug development, clinical diagnosis, nanotechnology, etc. However, the traditional SELEX method is cumbersome and has a long screening cycle, and it takes several months to screen out aptamers with high specificity. With the persistent development of SELEX‐based aptamer screening technologies, the application scenarios of aptamers have become more and more extensive. The present research briefly reviews the research progress of nucleic acid aptamers in the field of biomedicine, especially in the diagnosis of contagious diseases.
Collapse
Affiliation(s)
- Jiayi Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jiahuan Zhou
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yunchi Peng
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yafeng Xie
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yongjian Xiao
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
48
|
Zhang J, Qi H, Wu J, Guan X, Hu Z, Zheng L. Promising on-site and rapid SARS-CoV-2 detection via antigens. Front Public Health 2022; 10:978064. [PMID: 36299753 PMCID: PMC9589338 DOI: 10.3389/fpubh.2022.978064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/22/2022] [Indexed: 01/25/2023] Open
Affiliation(s)
- Jian Zhang
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, China,School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Haochen Qi
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, China,School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jayne Wu
- Department of Electrical Engineering and Computer Science, The University of Tennessee, Knoxville, TN, United States,*Correspondence: Jayne Wu
| | - Xiaochun Guan
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, China
| | - Zhiwen Hu
- School of Computer and Information Engineering, Zhejiang Gongshang University, Hangzhou, China
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China,Lei Zheng
| |
Collapse
|
49
|
Li H, Lu H, Tang Y, Wang H, Xiao Y, Li B. A Rebuilding‐Free Nucleic Acid Detection Strategy Enables Ultrasensitive Genotyping, N‐in‐1 Logic Screening and Accurate Multiplex Assay of Dangerous Pathogens. Angew Chem Int Ed Engl 2022; 61:e202209496. [DOI: 10.1002/anie.202209496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Huan Li
- State Key Lab of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin, 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Huiying Lu
- School of Life Sciences Northeast Normal University Changchun Jilin, 130024 China
| | - Yidan Tang
- State Key Lab of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin, 130022 China
| | - Huaning Wang
- State Key Lab of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin, 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Yao Xiao
- State Key Lab of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin, 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Bingling Li
- State Key Lab of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin, 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
50
|
Trivedi M, Gupta R, Nirmalkar N. Electroosmotic transport and current rectification of viscoelastic electrolyte in a conical pore nanomembrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|