1
|
Kavle P, Ross AM, Kp H, Meisenheimer P, Dasgupta A, Yang J, Lin CC, Pan H, Behera P, Parsonnet E, Huang X, Zorn JA, Shao YT, Das S, Liu S, Muller DA, Ramesh R, Chen LQ, Martin LW. Highly Responsive Polar Vortices in All-Ferroelectric Heterostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2410146. [PMID: 39535845 DOI: 10.1002/adma.202410146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/03/2024] [Indexed: 11/16/2024]
Abstract
The discovery of polar vortices and skyrmions in ferroelectric-dielectric superlattices [such as (PbTiO3)n/(SrTiO3)n] has ushered in an era of novel dipolar topologies and corresponding emergent phenomena. The key to creating such emergent features has generally been considered to be related to counterpoising strongly polar and non-polar materials thus creating the appropriate boundary conditions. This limits the utility these materials can have, however, by rendering (effectively) half of the structure unresponsive to applied stimuli. Here, using advanced thin-film deposition and an array of characterization and simulation approaches, polar vortices are realized in all-ferroelectric trilayers, multilayers, and superlattices built from the fundamental building block of (PbTiO3)n/(PbxSr1- xTiO3)n wherein in-plane ferroelectric polarization in the PbxSr1- xTiO3 provides the appropriate boundary conditions. These superlattices exhibit substantially enhanced electromechanical and ferroelectric responses in the out-of-plane direction that arise from the ability of the polarization in both layers to rotate to the out-of-plane direction under field. In the in-plane direction, the layers are found to be strongly coupled during switching and when heterostructured with ferroelectric-dielectric building blocks, it is possible to produce multistate switching. This approach expands the realm of systems supporting emergent dipolar texture formation and does so with entirely ferroelectric materials thus greatly improving their responses.
Collapse
Affiliation(s)
- Pravin Kavle
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Aiden M Ross
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Harikrishnan Kp
- Department of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
| | - Peter Meisenheimer
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Arvind Dasgupta
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Jiyuan Yang
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Ching-Che Lin
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Hao Pan
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Piush Behera
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Eric Parsonnet
- Department of Physics, University of California, Berkeley, CA, 94720, USA
| | - Xiaoxi Huang
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Jacob A Zorn
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yu-Tsun Shao
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, USA
| | - Sujit Das
- Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India
| | - Shi Liu
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - David A Muller
- Department of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, 14853, USA
| | - Ramamoorthy Ramesh
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
- Department of Physics, University of California, Berkeley, CA, 94720, USA
- Departments of Materials Science and NanoEngineering and Physics and Astronomy, Rice University, Houston, TX, 77005, USA
- Rice Advanced Materials Institute, Rice University, Houston, TX, 77005, USA
| | - Long-Qing Chen
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Lane W Martin
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
- Departments of Materials Science and NanoEngineering and Physics and Astronomy, Rice University, Houston, TX, 77005, USA
- Rice Advanced Materials Institute, Rice University, Houston, TX, 77005, USA
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| |
Collapse
|
2
|
Yin C, Li Y, Zatterin E, Rusu D, Stylianidis E, Hadjimichael M, Aramberri H, Iñiguez-González J, Conroy M, Zubko P. Mimicking Antiferroelectrics with Ferroelectric Superlattices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403985. [PMID: 39318084 DOI: 10.1002/adma.202403985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/30/2024] [Indexed: 09/26/2024]
Abstract
Antiferroelectric oxides are promising materials for applications in high-density energy storage, solid-state cooling, and negative capacitance devices. However, the range of oxide antiferroelectrics available today is rather limited. In this work, it is demonstrated that antiferroelectric properties can be electrostatically engineered in artificially layered ferroelectric superlattices. Using a combination of synchrotron X-ray nanodiffraction, scanning transmission electron microscopy, macroscopic electrical measurements, and lateral and vertical piezoresponse force microscopy in parallel-plate capacitor geometry, a highly reversible field-induced transition is observed from a stable in-plane polarized state to a state with in-plane and out-of-plane polarized nanodomains that mimics, at the domain level, the nonpolar to polar transition of traditional antiferroelectrics, with corresponding polarization-voltage double hysteresis and comparable energy storage capacity. Furthermore, it is found that such superlattices exhibit large out-of-plane dielectric responses without involving flux-closure domain dynamics. These results demonstrate that electrostatic and strain engineering in artificially layered materials offers a promising route for the creation of synthetic antiferroelectrics.
Collapse
Affiliation(s)
- Chunhai Yin
- Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
| | - Yaqi Li
- Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
- London Centre for Nanotechnology, 17-19 Gordon Street, London, WC1H 0HA, UK
| | - Edoardo Zatterin
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, Grenoble, 38000, France
| | - Dorin Rusu
- London Centre for Nanotechnology, 17-19 Gordon Street, London, WC1H 0HA, UK
| | - Evgenios Stylianidis
- Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
| | - Marios Hadjimichael
- London Centre for Nanotechnology, 17-19 Gordon Street, London, WC1H 0HA, UK
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - Hugo Aramberri
- Luxembourg Institute of Science and Technology (LIST), Avenue des Hauts-Fourneaux 5, Esch/Alzette, L-4362, Luxembourg
| | - Jorge Iñiguez-González
- Luxembourg Institute of Science and Technology (LIST), Avenue des Hauts-Fourneaux 5, Esch/Alzette, L-4362, Luxembourg
- Department of Physics and Materials Science, University of Luxembourg, Rue du Brill 41, Belvaux, L-4422, Luxembourg
| | - Michele Conroy
- Department of Materials, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Pavlo Zubko
- Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
- London Centre for Nanotechnology, 17-19 Gordon Street, London, WC1H 0HA, UK
| |
Collapse
|
3
|
Rijal S, Nahas Y, Prokhorenko S, Bellaiche L. Dynamics of Polar Vortex Crystallization. PHYSICAL REVIEW LETTERS 2024; 133:096801. [PMID: 39270196 DOI: 10.1103/physrevlett.133.096801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/07/2023] [Accepted: 07/09/2024] [Indexed: 09/15/2024]
Abstract
Vortex crystals are commonly observed in ultrathin ferroelectrics. However, a clear physical picture of origin of this topological state is currently lacking. Here, we show that vortex crystallization in ultrathin Pb(Zr_{0.4},Ti_{0.6})O_{3} films stems from the softening of a phonon mode and can be described as a Z_{2}×SU(1) symmetry-breaking transition. This result sheds light on the topology of the polar vortex patterns and bridges polar vortices with smectic phases, spin spirals, and other modulated states. Finally, we predict a resonant switching of the vortex tube orientation driven by midinfrared laser light which could enable new technologies.
Collapse
Affiliation(s)
- S Rijal
- Smart Ferroic Materials Center, Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Y Nahas
- Smart Ferroic Materials Center, Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | | | - L Bellaiche
- Smart Ferroic Materials Center, Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
- Department of Materials Science and Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
| |
Collapse
|
4
|
Gómez-Ortiz F, Graf M, Junquera J, Íñiguez-González J, Aramberri H. Liquid-Crystal-Like Dynamic Transition in Ferroelectric-Dielectric Superlattices. PHYSICAL REVIEW LETTERS 2024; 133:066801. [PMID: 39178455 DOI: 10.1103/physrevlett.133.066801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/08/2024] [Indexed: 08/25/2024]
Abstract
Nanostructured ferroelectrics display exotic multidomain configurations resulting from the electrostatic and elastic boundary conditions they are subject to. While the ferroelectric domains appear frozen in experimental images, atomistic second-principles studies suggest that they may become spontaneously mobile upon heating, with the polar order melting in a liquidlike fashion. Here, we run molecular dynamics simulations of model systems (PbTiO_{3}/SrTiO_{3} superlattices) to study the unique features of this transformation. Most notably, we find that the multidomain state loses its translational and orientational orders at different temperatures, resembling the behavior of liquid crystals and yielding an intermediate hexaticlike phase. Our simulations reveal the mechanism responsible for the melting and allow us to characterize the stochastic dynamics in the hexaticlike phase: we find evidence that it is thermally activated, with domain reorientation rates that grow from tens of gigahertzs to terahertzs in a narrow temperature window.
Collapse
|
5
|
Lee J, Woo G, Cho J, Son S, Shin H, Seok H, Kim MJ, Kim E, Wang Z, Kang B, Jang WJ, Kim T. Free-standing two-dimensional ferro-ionic memristor. Nat Commun 2024; 15:5162. [PMID: 38890313 PMCID: PMC11189491 DOI: 10.1038/s41467-024-48810-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
Two-dimensional (2D) ferroelectric materials have emerged as significant platforms for multi-functional three-dimensional (3D) integrated electronic devices. Among 2D ferroelectric materials, ferro-ionic CuInP2S6 has the potential to achieve the versatile advances in neuromorphic computing systems due to its phase tunability and ferro-ionic characteristics. As CuInP2S6 exhibits a ferroelectric phase with insulating properties at room temperature, the external temperature and electrical field should be required to activate the ferro-ionic conduction. Nevertheless, such external conditions inevitably facilitate stochastic ionic conduction, which completely limits the practical applications of 2D ferro-ionic materials. Herein, free-standing 2D ferroelectric heterostructure is mechanically manipulated for nano-confined conductive filaments growth in free-standing 2D ferro-ionic memristor. The ultra-high mechanical bending is selectively facilitated at the free-standing area to spatially activate the ferro-ionic conduction, which allows the deterministic local positioning of Cu+ ion transport. According to the local flexoelectric engineering, 5.76×102-fold increased maximum current is observed within vertical shear strain 720 nN, which is theoretically supported by the 3D flexoelectric simulation. In conclusion, we envision that our universal free-standing platform can provide the extendable geometric solution for ultra-efficient self-powered system and reliable neuromorphic device.
Collapse
Affiliation(s)
- Jinhyoung Lee
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon-si, Gyeonggi-do, 16419, Republic of Korea
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul, 03760, Republic of Korea
| | - Gunhoo Woo
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Jinill Cho
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Sihoon Son
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Hyelim Shin
- Department of Semiconductor Convergence Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Hyunho Seok
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Min-Jae Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Eungchul Kim
- AVP Process Development Team, Samsung Electronics, Chungcheongnam-do, Cheonan-si, 31086, Republic of Korea
| | - Ziyang Wang
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Boseok Kang
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
- Department of Nano Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Won-Jun Jang
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul, 03760, Republic of Korea
- Department of Physics, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Taesung Kim
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon-si, Gyeonggi-do, 16419, Republic of Korea.
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon-si, Gyeonggi-do, 16419, Republic of Korea.
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon-si, Gyeonggi-do, 16419, Republic of Korea.
- Department of Semiconductor Convergence Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do, 16419, Republic of Korea.
- Department of Nano Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
6
|
Cheema SS, Shanker N, Hsu SL, Schaadt J, Ellis NM, Cook M, Rastogi R, Pilawa-Podgurski RCN, Ciston J, Mohamed M, Salahuddin S. Giant energy storage and power density negative capacitance superlattices. Nature 2024; 629:803-809. [PMID: 38593860 DOI: 10.1038/s41586-024-07365-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
Dielectric electrostatic capacitors1, because of their ultrafast charge-discharge, are desirable for high-power energy storage applications. Along with ultrafast operation, on-chip integration can enable miniaturized energy storage devices for emerging autonomous microelectronics and microsystems2-5. Moreover, state-of-the-art miniaturized electrochemical energy storage systems-microsupercapacitors and microbatteries-currently face safety, packaging, materials and microfabrication challenges preventing on-chip technological readiness2,3,6, leaving an opportunity for electrostatic microcapacitors. Here we report record-high electrostatic energy storage density (ESD) and power density, to our knowledge, in HfO2-ZrO2-based thin film microcapacitors integrated into silicon, through a three-pronged approach. First, to increase intrinsic energy storage, atomic-layer-deposited antiferroelectric HfO2-ZrO2 films are engineered near a field-driven ferroelectric phase transition to exhibit amplified charge storage by the negative capacitance effect7-12, which enhances volumetric ESD beyond the best-known back-end-of-the-line-compatible dielectrics (115 J cm-3) (ref. 13). Second, to increase total energy storage, antiferroelectric superlattice engineering14 scales the energy storage performance beyond the conventional thickness limitations of HfO2-ZrO2-based (anti)ferroelectricity15 (100-nm regime). Third, to increase the storage per footprint, the superlattices are conformally integrated into three-dimensional capacitors, which boosts the areal ESD nine times and the areal power density 170 times that of the best-known electrostatic capacitors: 80 mJ cm-2 and 300 kW cm-2, respectively. This simultaneous demonstration of ultrahigh energy density and power density overcomes the traditional capacity-speed trade-off across the electrostatic-electrochemical energy storage hierarchy1,16. Furthermore, the integration of ultrahigh-density and ultrafast-charging thin films within a back-end-of-the-line-compatible process enables monolithic integration of on-chip microcapacitors5, which can unlock substantial energy storage and power delivery performance for electronic microsystems17-19.
Collapse
Affiliation(s)
- Suraj S Cheema
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA.
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Nirmaan Shanker
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | - Shang-Lin Hsu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | - Joseph Schaadt
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Nathan M Ellis
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | - Matthew Cook
- Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA, USA
| | - Ravi Rastogi
- Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA, USA
| | | | - Jim Ciston
- National Center for Electron Microscopy Facility, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mohamed Mohamed
- Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA, USA
| | - Sayeef Salahuddin
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
7
|
Yang M, Guo M, Xu E, Ren W, Wang D, Li S, Zhang S, Nan CW, Shen Y. Polymer nanocomposite dielectrics for capacitive energy storage. NATURE NANOTECHNOLOGY 2024; 19:588-603. [PMID: 38172431 DOI: 10.1038/s41565-023-01541-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/10/2023] [Indexed: 01/05/2024]
Abstract
Owing to their excellent discharged energy density over a broad temperature range, polymer nanocomposites offer immense potential as dielectric materials in advanced electrical and electronic systems, such as intelligent electric vehicles, smart grids and renewable energy generation. In recent years, various nanoscale approaches have been developed to induce appreciable enhancement in discharged energy density. In this Review, we discuss the state-of-the-art polymer nanocomposites with improved energy density from three key aspects: dipole activity, breakdown resistance and heat tolerance. We also describe the physical properties of polymer nanocomposite interfaces, showing how the electrical, mechanical and thermal characteristics impact energy storage performances and how they are interrelated. Further, we discuss multi-level nanotechnologies including monomer design, crosslinking, polymer blending, nanofiller incorporation and multilayer fabrication. We conclude by presenting the current challenges and future opportunities in this field.
Collapse
Affiliation(s)
- Minzheng Yang
- School of Materials Science and Engineering, State Key Lab of New Ceramics and Fine Processing, Tsinghua University, Beijing, China
| | - Mengfan Guo
- School of Materials Science and Engineering, State Key Lab of New Ceramics and Fine Processing, Tsinghua University, Beijing, China
| | - Erxiang Xu
- School of Materials Science and Engineering, State Key Lab of New Ceramics and Fine Processing, Tsinghua University, Beijing, China
| | - Weibin Ren
- School of Materials Science and Engineering, State Key Lab of New Ceramics and Fine Processing, Tsinghua University, Beijing, China
| | - Danyang Wang
- School of Materials Science and Engineering, The University of New South Wales, Sydney, Australia
| | - Sean Li
- School of Materials Science and Engineering, The University of New South Wales, Sydney, Australia
| | - Shujun Zhang
- Institute for Superconducting and Electronic Materials, AIIM, University of Wollongong, Wollongong, Australia.
| | - Ce-Wen Nan
- School of Materials Science and Engineering, State Key Lab of New Ceramics and Fine Processing, Tsinghua University, Beijing, China.
| | - Yang Shen
- School of Materials Science and Engineering, State Key Lab of New Ceramics and Fine Processing, Tsinghua University, Beijing, China.
| |
Collapse
|
8
|
Aramberri H, Íñiguez-González J. Brownian Electric Bubble Quasiparticles. PHYSICAL REVIEW LETTERS 2024; 132:136801. [PMID: 38613274 DOI: 10.1103/physrevlett.132.136801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/27/2024] [Indexed: 04/14/2024]
Abstract
Recent works on electric bubbles (including the experimental demonstration of electric skyrmions) constitute a breakthrough akin to the discovery of magnetic skyrmions some 15 years ago. So far research has focused on obtaining and visualizing these objects, which often appear to be immobile (pinned) in experiments. Thus, critical aspects of magnetic skyrmions-e.g., their quasiparticle nature, Brownian motion-remain unexplored (unproven) for electric bubbles. Here we use predictive atomistic simulations to investigate the basic dynamical properties of these objects in pinning-free model systems. We show that it is possible to find regimes where the electric bubbles can present long lifetimes (∼ns) despite being relatively small (diameter <2 nm). Additionally, we find that they can display stochastic dynamics with large and highly tunable diffusion constants. We thus establish the quasiparticle nature of electric bubbles and put them forward for the physical effects and applications (e.g., in token-based probabilistic computing) considered for magnetic skyrmions.
Collapse
Affiliation(s)
- Hugo Aramberri
- Materials Research and Technology Department, Luxembourg Institute of Science and Technology (LIST), Avenue des Hauts-Fourneaux 5, L-4362 Esch/Alzette, Luxembourg
| | - Jorge Íñiguez-González
- Materials Research and Technology Department, Luxembourg Institute of Science and Technology (LIST), Avenue des Hauts-Fourneaux 5, L-4362 Esch/Alzette, Luxembourg
- Department of Physics and Materials Science, University of Luxembourg, Rue du Brill 41, L-4422 Belvaux, Luxembourg
| |
Collapse
|
9
|
Kumar P, Lee JH. Interface engineering for facile switching of bulk-strong polarization in Si-compatible vertical superlattices. Sci Rep 2024; 14:6811. [PMID: 38514740 PMCID: PMC10958034 DOI: 10.1038/s41598-024-56997-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
Ferroelectric thin films incorporating different compositional layers have emerged as a promising approach for enhancing properties and performance of electronic devices. In recent years, superlattices utilizing various interactions between their constituent layers have been used to reveal unusual properties, such as improper ferroelectricity, charged domain walls, and negative capacitance in conventional ferroelectrics. Herein, we report a symmetry scheme based on the interface engineering in which the inherent cell-doubling symmetry allowed atomic distortions (phonons) in any vertically aligned superlattice activate novel interface couplings among atomic distortions of different symmetries and fundamentally improve the ferroelectric properties. In a materialized case, the ionic size difference between Hf4+ and Ce4+ in the HfO2/CeO2 (HCO) ferroelectric/paraelectric superlattice leads to these couplings. These couplings mitigate the phase boundary between polar and non-polar phases, and facilitate polarization switching with a remarkably low coercive field ( E c ) while preserving the original magnitude of the bulk HfO2 polarization and its scale-free ferroelectric characteristics. We show that the cell-doubled distortions present in any vertical superlattice have unique implications for designing low-voltage ferroelectric switching while retaining bulk-strong charge storing capacities in Si-compatible memory candidates.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jun Hee Lee
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
- Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
10
|
Behera P, Parsonnet E, Gómez-Ortiz F, Srikrishna V, Meisenheimer P, Susarla S, Kavle P, Caretta L, Wu Y, Tian Z, Fernandez A, Martin LW, Das S, Junquera J, Hong Z, Ramesh R. Emergent Ferroelectric Switching Behavior from Polar Vortex Lattice. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208367. [PMID: 36930962 DOI: 10.1002/adma.202208367] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/08/2023] [Indexed: 06/09/2023]
Abstract
Topologically protected polar textures have provided a rich playground for the exploration of novel, emergent phenomena. Recent discoveries indicate that ferroelectric vortices and skyrmions not only host properties markedly different from traditional ferroelectrics, but also that these properties can be harnessed for unique memory devices. Using a combination of capacitor-based capacitance measurements and computational models, it is demonstrated that polar vortices in dielectric-ferroelectric-dielectric trilayers exhibit classical ferroelectric bi-stability together with the existence of low-field metastable polarization states. This behavior is directly tied to the in-plane vortex ordering, and it is shown that it can be used as a new method of non-destructive readout-out of the poled state.
Collapse
Affiliation(s)
- Piush Behera
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Eric Parsonnet
- Department of Physics, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Fernando Gómez-Ortiz
- Department of Earth Sciences and Condensed Matter Physics, Universidad de Cantabria, Cantabria Campus Internacional, 39005, Santander, Spain
| | - Vishantak Srikrishna
- Department of Physics, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Peter Meisenheimer
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Sandhya Susarla
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Pravin Kavle
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Lucas Caretta
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Yongjun Wu
- Cyrus Tang Center for Sensor Materials and Applications, State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Zishen Tian
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Abel Fernandez
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Lane W Martin
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Sujit Das
- Materials Research Centre, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Javier Junquera
- Department of Earth Sciences and Condensed Matter Physics, Universidad de Cantabria, Cantabria Campus Internacional, 39005, Santander, Spain
| | - Zijian Hong
- Cyrus Tang Center for Sensor Materials and Applications, State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Ramamoorthy Ramesh
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Physics, University of California Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|