1
|
McNeill R, Marshall R, Fernando SA, Harrison O, Machado L. COVID-19 may Enduringly Impact Cognitive Performance and Brain Haemodynamics in Undergraduate Students. Brain Behav Immun 2024; 125:58-67. [PMID: 39709062 DOI: 10.1016/j.bbi.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 11/19/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024] Open
Abstract
To date, 770 million people worldwide have contracted COVID-19, with many reporting long-term "brain fog". Concerningly, young adults are both overrepresented in COVID-19 infection rates and may be especially vulnerable to prolonged cognitive impairments following infection. This calls for focused research on this population to better understand the mechanisms underlying cognitive impairment post-COVID-19. Addressing gaps in the literature, the current study investigated differences in neuropsychological performance and cerebral haemodynamic activity following COVID-19 infection in undergraduate students. 94 undergraduates (age in years: M = 20.58, SD = 3.33, range = 18 to 46; 89 % female) at the University of Otago reported their COVID-19 infection history before completing a neuropsychological battery while wearing a multichannel near-infrared spectroscopy (NIRS) device to record prefrontal haemodynamics. We observed that 40 % retrospectively self-reported cognitive impairment (brain fog) due to COVID-19 and 37 % exhibited objective evidence of cognitive impairment (assessed via computerised testing), with some suggestion that executive functioning may have been particularly affected; however, group-level analyses indicated preserved cognitive performance post COVID-19, which may in part reflect varying compensatory abilities. The NIRS data revealed novel evidence that previously infected students exhibited distinct prefrontal haemodynamic patterns during cognitive engagement, reminiscent of those observed in adults four decades older, and this appeared to be especially true if they reported experiencing brain fog due to COVID-19. These results provide new insights into the potential neuropathogenic mechanisms influencing cognitive impairment following COVID-19.
Collapse
Affiliation(s)
- Ronan McNeill
- Department of Psychology, and Brain Health Research Centre, University of Otago, William James Building, 275 Leith Walk, Dunedin 9054, New Zealand
| | - Rebekah Marshall
- Department of Psychology, and Brain Health Research Centre, University of Otago, William James Building, 275 Leith Walk, Dunedin 9054, New Zealand
| | - Shenelle Anne Fernando
- Department of Psychology, and Brain Health Research Centre, University of Otago, William James Building, 275 Leith Walk, Dunedin 9054, New Zealand
| | - Olivia Harrison
- Department of Psychology, and Brain Health Research Centre, University of Otago, William James Building, 275 Leith Walk, Dunedin 9054, New Zealand; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Translational Neuromodeling Unit, University of Zurich and ETHZ Zurich, Zurich, Switzerland
| | - Liana Machado
- Department of Psychology, and Brain Health Research Centre, University of Otago, William James Building, 275 Leith Walk, Dunedin 9054, New Zealand.
| |
Collapse
|
2
|
Sullivan O, Sie C, Ng KM, Cotton S, Rosete C, Hamden JE, Singh AP, Lee K, Choudhary J, Kim J, Yu H, Clayton CA, Carranza Garcia NA, Voznyuk K, Deng BD, Plett N, Arora S, Ghezzi H, Huan T, Soma KK, Yu JPJ, Tropini C, Ciernia AV. Early-life gut inflammation drives sex-dependent shifts in the microbiome-endocrine-brain axis. Brain Behav Immun 2024; 125:117-139. [PMID: 39674560 DOI: 10.1016/j.bbi.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/13/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024] Open
Abstract
Despite recent advances in understanding the connection between the gut microbiota and the adult brain, significant knowledge gaps remain regarding how gut inflammation affects brain development. We hypothesized that gut inflammation during early life would negatively affect neurodevelopment by disrupting microbiota communication to the brain. We therefore developed a novel pediatric chemical model of inflammatory bowel disease (IBD), an incurable condition affecting millions of people worldwide. IBD is characterized by chronic intestinal inflammation, and is associated with comorbid symptoms such as anxiety, depression and cognitive impairment. Notably, 25% of patients with IBD are diagnosed during childhood, and the effects of chronic inflammation during this critical developmental period remain poorly understood. This study investigated the effects of early-life gut inflammation induced by DSS (dextran sulfate sodium) on a range of microbiota, endocrine, and behavioral outcomes, focusing on sex-specific impacts. DSS-treated mice exhibited increased intestinal inflammation and altered microbiota membership, which correlated with changes in microbiota-derived circulating metabolites. The majority of behavioral measures were unaffected, with the exception of impaired mate-seeking behaviors in DSS-treated males. DSS-treated males also showed significantly smaller seminal vesicles, lower circulating androgens, and decreased intestinal hormone-activating enzyme activity compared to vehicle controls. In the brain, DSS treatment led to chronic, sex-specific alterations in microglial morphology. These results suggest that early-life gut inflammation causes changes in gut microbiota composition, affecting short-chain fatty acid (SCFA) producers and glucuronidase (GUS) activity, correlating with altered SCFA and androgen levels. The findings highlight the developmental sensitivity to inflammation-induced changes in endocrine signalling and emphasize the long-lasting physiological and microbiome changes associated with juvenile IBD.
Collapse
Affiliation(s)
- Olivia Sullivan
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Claire Sie
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| | - Katharine M Ng
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| | - Sophie Cotton
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| | - Cal Rosete
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Jordan E Hamden
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Ajay Paul Singh
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Kristen Lee
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Jatin Choudhary
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Jennifer Kim
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Huaxu Yu
- Department of Chemistry, University of British Columbia, Vancouver, Canada
| | - Charlotte A Clayton
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| | | | - Kateryna Voznyuk
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Brian D Deng
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| | - Nadine Plett
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Sana Arora
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Hans Ghezzi
- Department of Bioinformatics, University of British Columbia, Vancouver, Canada
| | - Tao Huan
- Department of Chemistry, University of British Columbia, Vancouver, Canada
| | - Kiran K Soma
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada; Department of Psychology, University of British Columbia, Vancouver Canada
| | - John-Paul J Yu
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Carolina Tropini
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, Canada; Humans and the Microbiome Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Canada.
| | - Annie Vogel Ciernia
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
3
|
O'Sullivan M. Cognition and maps of injury in small vessel disease: time to move on from the black and white era. Brain 2024; 147:3979-3981. [PMID: 39546624 DOI: 10.1093/brain/awae377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
This scientific commentary refers to ‘Enhancing cognitive performance prediction by white matter hyperintensity connectivity assessment’ by Petersen et al. (https://doi.org/10.1093/brain/awae315).
Collapse
Affiliation(s)
- Michael O'Sullivan
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
4
|
Ballout AA, Liebeskind DS, Jovin TG, Najjar S. The Imaging-Neuropathological Gap in Acute Large Vessel Occlusive Stroke. Stroke 2024; 55:2909-2920. [PMID: 39234750 DOI: 10.1161/strokeaha.124.047384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
While imaging has traditionally played a fundamental role in the selection of patients undergoing endovascular thrombectomy, recent thrombectomy trials involving patients with large ischemic strokes demonstrated a consistent benefit of endovascular thrombectomy across all imaging strata, suggesting that reperfusion benefit may exist independent of current imaging constructs. Although these findings attest to the uniformly beneficial effects of reperfusion, they also shed doubt on the accuracy and utility of our imaging modalities in defining reversible versus irreversible ischemia and challenge the premise of imaging-based selection. We aimed to review the histopathologic studies and clinical trials that have shaped our understanding of current imaging constructs aiming to outline the existing imaging-neuropathological gap that may be far wider than previously perceived.
Collapse
Affiliation(s)
- Ahmad A Ballout
- Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, NY (A.A.B., S.N.)
- Department of Neurology, Cooper University Hospital, Cooper Medical School at Rowan University, Camden, NJ (A.A.B., T.G.J.)
| | - David S Liebeskind
- Department of Neurology, University of California in Los Angeles (D.S.L.)
| | - Tudor G Jovin
- Department of Neurology, Cooper University Hospital, Cooper Medical School at Rowan University, Camden, NJ (A.A.B., T.G.J.)
| | - Souhel Najjar
- Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, NY (A.A.B., S.N.)
| |
Collapse
|
5
|
Cheng CH, Guan Y, Chiplunkar VP, Mortazavi F, Medalla ML, Sullivan K, O'Callaghan JP, Koo BB, Kelly KA, Michalovicz LT. Nerve agent exposure and physiological stress alter brain microstructure and immune profiles after inflammatory challenge in a long-term rat model of Gulf War Illness. Brain Behav Immun Health 2024; 42:100878. [PMID: 39430882 PMCID: PMC11489046 DOI: 10.1016/j.bbih.2024.100878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/23/2024] [Accepted: 09/29/2024] [Indexed: 10/22/2024] Open
Abstract
Gulf War Illness (GWI) is a disorder experienced by many veterans of the 1991 Gulf War, with symptoms including fatigue, chronic pain, respiratory and memory problems. Exposure to toxic chemicals during the war, such as oil well fire smoke, pesticides, physiological stress, and nerve agents, is thought to have triggered abnormal neuroinflammatory responses that contribute to GWI. Previous studies have examined the acute effects of combined physiological stress and chemical exposures using GWI rodent models and presented findings related to neuroinflammation and changes in diffusion magnetic resonance imaging (MRI) measures, suggesting a neuroimmune basis for GWI. In the current study, using ex vivo MRI, cytokine mRNA expression, and immunohistological analyses of brain tissues, we examined the brain structure and immune function of a chronic rat model of GWI. Our data showed that a combination of long-term corticosterone treatment (to mimic high physiological stress) and diisopropyl fluorophosphate exposure (to mimic sarin exposure) primed the response to subsequent systemic immune challenge with lipopolysaccharide resulting in elevations of multiple cytokine mRNAs, an increased activated glial population, and disrupted brain microstructure in the cingulate cortex and hippocampus compared to control groups. Our findings support the critical role of neuroinflammation, dysregulated glial activation, and their relationship to disrupted brain microstructural integrity in the pathophysiology of GWI and highlight the unique consequences of long-term combined exposures on brain biochemistry and structural connectivity.
Collapse
Affiliation(s)
- Chia-Hsin Cheng
- Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Yi Guan
- Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Vidhi P. Chiplunkar
- Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Farzad Mortazavi
- Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Maria L. Medalla
- Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Kimberly Sullivan
- Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
- School of Public Health, Boston University, Boston, MA, USA
| | - James P. O'Callaghan
- Guest Researcher, Health Effects Laboratory Division, Centers for Disease Control and Prevention – National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Bang-Bon Koo
- Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Kimberly A. Kelly
- Health Effects Laboratory Division, Centers for Disease Control and Prevention – National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Lindsay T. Michalovicz
- Health Effects Laboratory Division, Centers for Disease Control and Prevention – National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
6
|
Loggia ML. "Neuroinflammation": does it have a role in chronic pain? Evidence from human imaging. Pain 2024; 165:S58-S67. [PMID: 39560416 DOI: 10.1097/j.pain.0000000000003342] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/06/2024] [Indexed: 11/20/2024]
Abstract
ABSTRACT Despite hundreds of studies demonstrating the involvement of neuron-glia-immune interactions in the establishment and/or maintenance of persistent pain behaviors in animals, the role (or even occurrence) of so-called "neuroinflammation" in human pain has been an object of contention for decades. Here, I present the results of multiple positron emission tomography (PET) studies measuring the levels of the 18 kDa translocator protein (TSPO), a putative neuroimmune marker, in individuals with various pain conditions. Overall, these studies suggest that brain TSPO PET signal: (1) is elevated, compared to healthy volunteers, in individuals with chronic low back pain (with additional elevations in spinal cord and neuroforamina), fibromyalgia, migraine and other conditions characterized by persistent pain; (2) has a spatial distribution exhibiting a degree of disorder specificity; (3) is parametrically linked to pain characteristics or comorbid symptoms (eg, nociplastic pain, fatigue, depression), as well as measures of brain function (ie, functional connectivity), in a regionally-specific manner. In this narrative, I also discuss important caveats to consider in the interpretation of this work (eg, regarding the cellular source of the signal and the complexities inherent in its acquisition and analysis). While the biological and clinical significance of these findings awaits further work, this emerging preclinical literature supports a role of neuron-glia-immune interactions as possible pathophysiological underpinnings of human chronic pain. Gaining a deeper understanding of the role of neuroimmune function in human pain would likely have important practical implications, possibly paving the way for novel interventions.
Collapse
Affiliation(s)
- Marco L Loggia
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
7
|
Geloso MC, Zupo L, Corvino V. Crosstalk between peripheral inflammation and brain: Focus on the responses of microglia and astrocytes to peripheral challenge. Neurochem Int 2024; 180:105872. [PMID: 39362496 DOI: 10.1016/j.neuint.2024.105872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
A growing body of evidence supports the link between peripheral inflammation and impairment of neurologic functions, including mood and cognitive abilities. The pathogenic event connecting peripheral inflammation and brain dysfunction is represented by neuroinflammation, a pathogenic phenomenon that provides an important contribution to neurodegeneration and cognitive decline also in Alzheimer's, Parkinson's, Huntington's diseases, as well as in Multiple Sclerosis. It is driven by resident brain immune cells, microglia and astrocytes, that acquire an activated phenotype in response to proinflammatory molecules moving from the periphery to the brain parenchyma. Although a huge progress has been made in clarifying cellular and molecular mechanisms bridging peripheral and central inflammation, a clear picture has not been achieved so far. Therefore, experimental models are of crucial relevance to clarify knowledge gaps in this regard. Many findings demonstrate that systemic inflammation induced by pathogen-associated molecular patterns, such as lipopolysaccharide (LPS), is able to trigger neuroinflammation. Therefore, LPS-administration is widely considered a useful tool to study this phenomenon. On this basis, the present review will focus on in vivo studies based on acute and subacute effects of systemic administration of LPS, with special attention on the state of art of microglia and astrocyte response to peripheral challenge.
Collapse
Affiliation(s)
- Maria Concetta Geloso
- Department of Neuroscience, Section of Human Anatomy, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy; Gemelli Science and Technology Park (GSTeP)-Organoids Research Core Facility, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy.
| | - Luca Zupo
- Department of Neuroscience, Section of Human Anatomy, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy
| | - Valentina Corvino
- Department of Neuroscience, Section of Human Anatomy, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy
| |
Collapse
|
8
|
Chen YY, Chang CJ, Liang YW, Tseng HY, Li SJ, Chang CW, Wu YT, Shao HH, Chen PC, Lai ML, Deng WC, Hsu R, Lo YC. Utilizing diffusion tensor imaging as an image biomarker in exploring the therapeutic efficacy of forniceal deep brain stimulation in a mice model of Alzheimer's disease. J Neural Eng 2024; 21:056003. [PMID: 39230033 DOI: 10.1088/1741-2552/ad7322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
Objective.With prolonged life expectancy, the incidence of memory deficits, especially in Alzheimer's disease (AD), has increased. Although multiple treatments have been evaluated, no promising treatment has been found to date. Deep brain stimulation (DBS) of the fornix area was explored as a possible treatment because the fornix is intimately connected to memory-related areas that are vulnerable in AD; however, a proper imaging biomarker for assessing the therapeutic efficiency of forniceal DBS in AD has not been established.Approach.This study assessed the efficacy and safety of DBS by estimating the optimal intersection volume between the volume of tissue activated and the fornix. Utilizing a gold-electroplating process, the microelectrode's surface area on the neural probe was increased, enhancing charge transfer performance within potential water window limits. Bilateral fornix implantation was conducted in triple-transgenic AD mice (3 × Tg-AD) and wild-type mice (strain: B6129SF1/J), with forniceal DBS administered exclusively to 3 × Tg-AD mice in the DBS-on group. Behavioral tasks, diffusion tensor imaging (DTI), and immunohistochemistry (IHC) were performed in all mice to assess the therapeutic efficacy of forniceal DBS.Main results.The results illustrated that memory deficits and increased anxiety-like behavior in 3 × Tg-AD mice were rescued by forniceal DBS. Furthermore, forniceal DBS positively altered DTI indices, such as increasing fractional anisotropy (FA) and decreasing mean diffusivity (MD), together with reducing microglial cell and astrocyte counts, suggesting a potential causal relationship between revised FA/MD and reduced cell counts in the anterior cingulate cortex, hippocampus, fornix, amygdala, and entorhinal cortex of 3 × Tg-AD mice following forniceal DBS.Significance.The efficacy of forniceal DBS in AD can be indicated by alterations in DTI-based biomarkers reflecting the decreased activation of glial cells, suggesting reduced neural inflammation as evidenced by improvements in memory and anxiety-like behavior.
Collapse
Affiliation(s)
- You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, 12F., Education & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., New Taipei City 23564, Taiwan, Republic of China
| | - Chih-Ju Chang
- Department of Neurosurgery, Cathay General Hospital, No. 280, Sec. 4, Renai Rd., Taipei 10629, Taiwan, Republic of China
- School of Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd., New Taipei City 242062, Taiwan, Republic of China
| | - Yao-Wen Liang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
| | - Hsin-Yi Tseng
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, 12F., Education & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., New Taipei City 23564, Taiwan, Republic of China
| | - Ssu-Ju Li
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
| | - Ching-Wen Chang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
| | - Yen-Ting Wu
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
| | - Huai-Hsuan Shao
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
| | - Po-Chun Chen
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan, Republic of China
| | - Ming-Liang Lai
- Graduate Institute of Intellectual Property, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan, Republic of China
| | - Wen-Chun Deng
- Departments of Neurosurgery, Keelung Chang Gung Memorial Hospital, Chang Gung University, No.222, Maijin Rd., Keelung 20400, Taiwan, Republic of China
| | - RuSiou Hsu
- Department of Ophthalmology, Stanford University, 1651 Page Mill Rd., Palo Alto, CA 94304, United States of America
| | - Yu-Chun Lo
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, 12F., Education & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., New Taipei City 23564, Taiwan, Republic of China
| |
Collapse
|
9
|
Armstrong RC, Sullivan GM, Perl DP, Rosarda JD, Radomski KL. White matter damage and degeneration in traumatic brain injury. Trends Neurosci 2024; 47:677-692. [PMID: 39127568 DOI: 10.1016/j.tins.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/17/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024]
Abstract
Traumatic brain injury (TBI) is a complex condition that can resolve over time but all too often leads to persistent symptoms, and the risk of poor patient outcomes increases with aging. TBI damages neurons and long axons within white matter tracts that are critical for communication between brain regions; this causes slowed information processing and neuronal circuit dysfunction. This review focuses on white matter injury after TBI and the multifactorial processes that underlie white matter damage, potential for recovery, and progression of degeneration. A multiscale perspective across clinical and preclinical advances is presented to encourage interdisciplinary insights from whole-brain neuroimaging of white matter tracts down to cellular and molecular responses of axons, myelin, and glial cells within white matter tissue.
Collapse
Affiliation(s)
- Regina C Armstrong
- Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Military Traumatic Brain Injury Initiative (MTBI(2)), Bethesda, MD, USA.
| | - Genevieve M Sullivan
- Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Military Traumatic Brain Injury Initiative (MTBI(2)), Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Daniel P Perl
- Pathology, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Department of Defense - Uniformed Services University Brain Tissue Repository, Bethesda, MD, USA
| | - Jessica D Rosarda
- Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Kryslaine L Radomski
- Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
10
|
Cohen JS, Radhakrishnan H, Olm CA, Das SR, Cook PA, Wolk DA, Weintraub D, Irwin DJ, McMillan CT. Microstructural changes in the inferior tuberal hypothalamus correlate with daytime sleepiness in Lewy body disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.16.24312102. [PMID: 39185524 PMCID: PMC11343243 DOI: 10.1101/2024.08.16.24312102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Background Excessive daytime sleepiness (EDS) is a disabling symptom of Lewy body disorders (LBD). The hypothalamus is a key sleep-wake regulator, but its contribution to EDS in LBD remains unclear. Objectives Use diffusion MRI to evaluate the relationship of hypothalamic microstructure to EDS symptoms in LBD. Methods We studied 102 patients with clinically-defined LBD (Parkinson's disease, n=93; Parkinson's disease dementia, n=4; and dementia with Lewy bodies, n=5) and Epworth Sleepiness Scale (ESS) within 2 years of MRI. Mean diffusivity (MD) was compared between EDS+ (ESS≥10, n=37) and EDS- (ESS<10, n=65) groups in the whole hypothalamus and three subregions, covarying for age and sex. Secondary analyses tested correlations between subregion MD and continuous ESS, global cognition, and motor scores; and between subregion volume and continuous ESS. Results MD was increased in EDS+ compared to EDS- only in the inferior tuberal subregion (Cohen's d=0.43, p=0.043, β=0.117±0.057), with trend level differences in the whole hypothalamus (Cohen's d=0.39, p=0.064, β=0.070±0.037) and superior tuberal subregion (Cohen's d=0.38, p=0.073, β=0.063±0.035). No difference was seen in the posterior subregion (Cohen's d=0.1, p=0.628, β=0.019±0.038). Significant correlations with continuous ESS were seen in MD of whole hypothalamus (r2=0.074, p=0.0057), superior tuberal (r2=0.081, p=0.0038), and inferior tuberal (r2=0.073, p=0.0059) subregions. There was no correlation of hypothalamic MD with global cognition or motor scores, and no correlation of whole/subregional hypothalamic volumes with ESS. Conclusions Daytime sleepiness associates with increased MD in the inferior tuberal hypothalamus in an LBD cohort. This suggests degeneration within this region could contribute to EDS symptoms.
Collapse
|
11
|
Ahmed S, Polis B, Kaffman A. Microglia: The Drunken Gardeners of Early Adversity. Biomolecules 2024; 14:964. [PMID: 39199352 PMCID: PMC11353196 DOI: 10.3390/biom14080964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Early life adversity (ELA) is a heterogeneous group of negative childhood experiences that can lead to abnormal brain development and more severe psychiatric, neurological, and medical conditions in adulthood. According to the immune hypothesis, ELA leads to an abnormal immune response characterized by high levels of inflammatory cytokines. This abnormal immune response contributes to more severe negative health outcomes and a refractory response to treatment in individuals with a history of ELA. Here, we examine this hypothesis in the context of recent rodent studies that focus on the impact of ELA on microglia, the resident immune cells in the brain. We review recent progress in our ability to mechanistically link molecular alterations in microglial function during a critical period of development with changes in synaptic connectivity, cognition, and stress reactivity later in life. We also examine recent research showing that ELA induces long-term alterations in microglial inflammatory response to "secondary hits" such as traumatic brain injury, substance use, and exposure to additional stress in adulthood. We conclude with a discussion on future directions and unresolved questions regarding the signals that modify microglial function and the clinical significance of rodent studies for humans.
Collapse
Affiliation(s)
| | | | - Arie Kaffman
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT 06511, USA; (S.A.); (B.P.)
| |
Collapse
|
12
|
Hédouin R, Roy JC, Desmidt T, Robert G, Coloigner J. Microstructural brain assessment in late-life depression and apathy using diffusion MRI multi-compartments models and tractometry. Sci Rep 2024; 14:18193. [PMID: 39107406 PMCID: PMC11303796 DOI: 10.1038/s41598-024-67535-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Late-life depression (LLD) is both common and disabling and doubles the risk of dementia onset. Apathy might constitute an additional risk of cognitive decline but clear understanding of its pathophysiology is lacking. While white matter (WM) alterations have been assessed using diffusion tensor imaging (DTI), this model cannot accurately represent WM microstructure. We hypothesized that a more complex multi-compartment model would provide new biomarkers of LLD and apathy. Fifty-six individuals (LLD n = 35, 26 females, 75.2 ± 6.4 years, apathy evaluation scale scores (41.8 ± 8.7) and Healthy controls, n = 21, 16 females, 74.7 ± 5.2 years) were included. In this article, a tract-based approach was conducted to investigate novel diffusion model biomarkers of LLD and apathy by interpolating microstructural metrics directly along the fiber bundle. We performed multivariate statistical analysis, combined with principal component analysis for dimensional data reduction. We then tested the utility of our framework by demonstrating classically reported from the literature modifications in LDD while reporting new results of biological-basis of apathy in LLD. Finally, we aimed to investigate the relationship between apathy and microstructure in different fiber bundles. Our study suggests that new fiber bundles, such as the striato-premotor tracts, may be involved in LLD and apathy, which bring new light of apathy mechanisms in major depression. We also identified statistical changes in diffusion MRI metrics in 5 different tracts, previously reported in major cognitive disorders dementia, suggesting that these alterations among these tracts are both involved in motivation and cognition and might explain how apathy is a prodromal phase of degenerative disorders.
Collapse
Affiliation(s)
- Renaud Hédouin
- Univ Rennes, INRIA, CNRS, INSERM, IRISA UMR 6074, Empenn ERL U 1228, 35000, Rennes, France
| | - Jean-Charles Roy
- Univ Rennes, INRIA, CNRS, INSERM, IRISA UMR 6074, Empenn ERL U 1228, 35000, Rennes, France
- CIC 1414, CHU de Rennes, INSERM, Rennes, France
- Adult University Psychiatry Department, Guillaume Régnier Hospital, Rennes, France
| | - Thomas Desmidt
- CHU de Tours, Tours, France
- UMR 1253, iBrain, Université de Tours, INSERM, Tours, France
- CIC 1415, CHU de Tours, INSERM, Tours, France
| | - Gabriel Robert
- Univ Rennes, INRIA, CNRS, INSERM, IRISA UMR 6074, Empenn ERL U 1228, 35000, Rennes, France
- CIC 1414, CHU de Rennes, INSERM, Rennes, France
- Adult University Psychiatry Department, Guillaume Régnier Hospital, Rennes, France
| | - Julie Coloigner
- Univ Rennes, INRIA, CNRS, INSERM, IRISA UMR 6074, Empenn ERL U 1228, 35000, Rennes, France.
| |
Collapse
|
13
|
Al-Aly Z, Davis H, McCorkell L, Soares L, Wulf-Hanson S, Iwasaki A, Topol EJ. Long COVID science, research and policy. Nat Med 2024; 30:2148-2164. [PMID: 39122965 DOI: 10.1038/s41591-024-03173-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/02/2024] [Indexed: 08/12/2024]
Abstract
Long COVID represents the constellation of post-acute and long-term health effects caused by SARS-CoV-2 infection; it is a complex, multisystem disorder that can affect nearly every organ system and can be severely disabling. The cumulative global incidence of long COVID is around 400 million individuals, which is estimated to have an annual economic impact of approximately $1 trillion-equivalent to about 1% of the global economy. Several mechanistic pathways are implicated in long COVID, including viral persistence, immune dysregulation, mitochondrial dysfunction, complement dysregulation, endothelial inflammation and microbiome dysbiosis. Long COVID can have devastating impacts on individual lives and, due to its complexity and prevalence, it also has major ramifications for health systems and economies, even threatening progress toward achieving the Sustainable Development Goals. Addressing the challenge of long COVID requires an ambitious and coordinated-but so far absent-global research and policy response strategy. In this interdisciplinary review, we provide a synthesis of the state of scientific evidence on long COVID, assess the impacts of long COVID on human health, health systems, the economy and global health metrics, and provide a forward-looking research and policy roadmap.
Collapse
Affiliation(s)
- Ziyad Al-Aly
- VA St. Louis Health Care System, Saint Louis, MO, USA.
- Washington University in St. Louis, Saint Louis, MO, USA.
| | - Hannah Davis
- Patient-led Research Collaborative, Calabasas, CA, USA
| | | | | | | | - Akiko Iwasaki
- Yale University, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Eric J Topol
- Scripps Institute, San Diego, California, CA, USA
| |
Collapse
|
14
|
Baynat L, Yamamoto T, Tourdias T, Zhang B, Prevost V, Infante A, Klein A, Caid J, Cadart O, Dousset V, Gatta Cherifi B. Quantitative MRI Biomarkers Measure Changes in Targeted Brain Areas in Patients With Obesity. J Clin Endocrinol Metab 2024; 109:1850-1857. [PMID: 38195765 DOI: 10.1210/clinem/dgae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/14/2023] [Accepted: 01/08/2024] [Indexed: 01/11/2024]
Abstract
CONTEXT Obesity is accompanied by damages to several tissues, including the brain. Pathological data and animal models have demonstrated an increased inflammatory reaction in hypothalamus and hippocampus. OBJECTIVE We tested whether we could observe such pathological modifications in vivo through quantitative magnetic resonance imaging (MRI) metrics. METHODS This prospective study was conducted between May 2019 and November 2022. The study was conducted in the Specialized Center for the Care of Obesity in a French University Hospital. Twenty-seven patients with obesity and 23 age and gender-paired normal-weight controls were prospectively recruited. All participants were examined using brain MRI. Anthropometric and biological data, eating behavior, anxiety, depression, and memory performance were assessed in both groups. The main outcome measure was brain MRI with the following parametric maps: quantitative susceptibility mapping (QSM), mean diffusivity (MD), fractional anisotropy (FA), magnetization transfer ratio map, and T2 relaxivity map. RESULTS In the hypothalamus, patients with obesity had higher FA and lower QSM than normal-weight controls. In the hippocampus, patients with obesity had higher FA and lower MD. There was no correlation between imaging biomarkers and eating behavior or anxiety. CONCLUSION Our findings are consistent with the presence of neuroinflammation in brain regions involved in food intake. In vivo brain biomarkers from quantitative MRI appear to provide an incremental information for the assessment of brain damages in patients with obesity.
Collapse
Affiliation(s)
- Louise Baynat
- University of Bordeaux, INSERM U1215, Neurocentre Magendie, 33000 Bordeaux, France
- CHU Bordeaux, Hôpital Haut Lévêque Service Endocrinologie, Diabétologie, Nutrition, 33600 Pessac, France
| | - Takayuki Yamamoto
- University of Bordeaux, INSERM U1215, Neurocentre Magendie, 33000 Bordeaux, France
| | - Thomas Tourdias
- University of Bordeaux, INSERM U1215, Neurocentre Magendie, 33000 Bordeaux, France
- CHU Bordeaux, Hôpital Pellegrin, Service de Neuroimagerie diagnostique et thérapeutique, 33000 Bordeaux, France
| | - Bei Zhang
- Magnetic Resonance, Canon Medical Systems Europe, 2718 Zoetermeer, Netherlands
| | - Valentin Prevost
- CT-MR Solution Planning Department, Canon Medical Systems Corporation, Tochigi, Japan
| | - Asael Infante
- CHU Bordeaux, Hôpital Haut Lévêque Service Endocrinologie, Diabétologie, Nutrition, 33600 Pessac, France
| | - Achille Klein
- CHU Bordeaux, Hôpital Haut Lévêque Service Endocrinologie, Diabétologie, Nutrition, 33600 Pessac, France
| | - Julien Caid
- CHU Bordeaux, Hôpital Haut Lévêque Service Endocrinologie, Diabétologie, Nutrition, 33600 Pessac, France
| | - Olivier Cadart
- Endocrinology, Centre Hospitalier d'Angoulême, Endocrinolology, Rond point Girac, 16000 Angouleme, France
| | - Vincent Dousset
- University of Bordeaux, INSERM U1215, Neurocentre Magendie, 33000 Bordeaux, France
- CHU Bordeaux, Hôpital Pellegrin, Service de Neuroimagerie diagnostique et thérapeutique, 33000 Bordeaux, France
| | - Blandine Gatta Cherifi
- University of Bordeaux, INSERM U1215, Neurocentre Magendie, 33000 Bordeaux, France
- CHU Bordeaux, Hôpital Haut Lévêque Service Endocrinologie, Diabétologie, Nutrition, 33600 Pessac, France
| |
Collapse
|
15
|
Karat BG, Köhler S, Khan AR. Diffusion MRI of the Hippocampus. J Neurosci 2024; 44:e1705232024. [PMID: 38839341 PMCID: PMC11154849 DOI: 10.1523/jneurosci.1705-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/22/2024] [Accepted: 04/06/2024] [Indexed: 06/07/2024] Open
Abstract
The hippocampus is a brain structure that plays key roles in a variety of cognitive processes. Critically, a wide range of neurological disorders are associated with degeneration of the hippocampal microstructure, defined as neurons, dendrites, glial cells, and more. Thus, the hippocampus is a key target for methods that are sensitive to these microscale properties. Diffusion MRI is one such method, which can noninvasively probe neural architecture. Here we review the extensive use of diffusion MRI to capture hippocampal microstructure in both health and disease. The results of these studies indicate that (1) diffusion tensor imaging is sensitive but not specific to the hippocampal microstructure; (2) biophysical modeling of diffusion MRI signals is a promising avenue to capture more specific aspects of the hippocampal microstructure; (3) use of ultra-short diffusion times have shown unique laminar-specific microstructure and response to hippocampal injury; (4) dispersion of microstructure is likely abundant in the hippocampus; and (5) the angular richness of the diffusion MRI signal can be leveraged to improve delineation of the internal hippocampal circuitry. Overall, extant findings suggest that diffusion MRI offers a promising avenue for characterizing hippocampal microstructure.
Collapse
Affiliation(s)
- Bradley G Karat
- Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 3K7, Canada
- Neuroscience Graduate Program, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Stefan Köhler
- Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 3K7, Canada
- Department of Psychology, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Ali R Khan
- Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 3K7, Canada
- Western Institute for Neuroscience, University of Western Ontario, London, Ontario N6A 3K7, Canada
| |
Collapse
|
16
|
Green TRF, Rowe RK. Quantifying microglial morphology: an insight into function. Clin Exp Immunol 2024; 216:221-229. [PMID: 38456795 PMCID: PMC11097915 DOI: 10.1093/cei/uxae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/17/2024] [Accepted: 03/06/2024] [Indexed: 03/09/2024] Open
Abstract
Microglia are specialized immune cells unique to the central nervous system (CNS). Microglia have a highly plastic morphology that changes rapidly in response to injury or infection. Qualitative and quantitative measurements of ever-changing microglial morphology are considered a cornerstone of many microglia-centric research studies. The distinctive morphological variations seen in microglia are a useful marker of inflammation and severity of tissue damage. Although a wide array of damage-associated microglial morphologies has been documented, the exact functions of these distinct morphologies are not fully understood. In this review, we discuss how microglia morphology is not synonymous with microglia function, however, morphological outcomes can be used to make inferences about microglial function. For a comprehensive examination of the reactive status of a microglial cell, both histological and genetic approaches should be combined. However, the importance of quality immunohistochemistry-based analyses should not be overlooked as they can succinctly answer many research questions.
Collapse
Affiliation(s)
- Tabitha R F Green
- Department of Integrative Physiology, The University of Colorado Boulder, Boulder, CO, USA
| | - Rachel K Rowe
- Department of Integrative Physiology, The University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
17
|
Barsoum S, Latimer CS, Nolan AL, Barrett A, Chang K, Troncoso J, Keene CD, Benjamini D. Resiliency to Alzheimer's disease neuropathology can be distinguished from dementia using cortical astrogliosis imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592719. [PMID: 38766087 PMCID: PMC11100587 DOI: 10.1101/2024.05.06.592719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Despite the presence of significant Alzheimer's disease (AD) pathology, characterized by amyloid β (Aβ) plaques and phosphorylated tau (pTau) tangles, some cognitively normal elderly individuals do not inevitably develop dementia. These findings give rise to the notion of cognitive 'resilience', suggesting maintained cognitive function despite the presence of AD neuropathology, highlighting the influence of factors beyond classical pathology. Cortical astroglial inflammation, a ubiquitous feature of symptomatic AD, shows a strong correlation with cognitive impairment severity, potentially contributing to the diversity of clinical presentations. However, noninvasively imaging neuroinflammation, particularly astrogliosis, using MRI remains a significant challenge. Here we sought to address this challenge and to leverage multidimensional (MD) MRI, a powerful approach that combines relaxation with diffusion MR contrasts, to map cortical astrogliosis in the human brain by accessing sub-voxel information. Our goal was to test whether MD-MRI can map astroglial pathology in the cerebral cortex, and if so, whether it can distinguish cognitive resiliency from dementia in the presence of hallmark AD neuropathological changes. We adopted a multimodal approach by integrating histological and MRI analyses using human postmortem brain samples. Ex vivo cerebral cortical tissue specimens derived from three groups comprised of non-demented individuals with significant AD pathology postmortem, individuals with both AD pathology and dementia, and non-demented individuals with minimal AD pathology postmortem as controls, underwent MRI at 7 T. We acquired and processed MD-MRI, diffusion tensor, and quantitative T 1 and T 2 MRI data, followed by histopathological processing on slices from the same tissue. By carefully co-registering MRI and microscopy data, we performed quantitative multimodal analyses, leveraging targeted immunostaining to assess MD-MRI sensitivity and specificity towards Aβ, pTau, and glial fibrillary acidic protein (GFAP), a marker for astrogliosis. Our findings reveal a distinct MD-MRI signature of cortical astrogliosis, enabling the creation of predictive maps for cognitive resilience amid AD neuropathological changes. Multiple linear regression linked histological values to MRI changes, revealing that the MD-MRI cortical astrogliosis biomarker was significantly associated with GFAP burden (standardized β=0.658, pFDR<0.0001), but not with Aβ (standardized β=0.009, p FDR =0.913) or pTau (standardized β=-0.196, p FDR =0.051). Conversely, none of the conventional MRI parameters showed significant associations with GFAP burden in the cortex. While the extent to which pathological glial activation contributes to neuronal damage and cognitive impairment in AD is uncertain, developing a noninvasive imaging method to see its affects holds promise from a mechanistic perspective and as a potential predictor of cognitive outcomes.
Collapse
|
18
|
Barakovic M, Weigel M, Cagol A, Schaedelin S, Galbusera R, Lu PJ, Chen X, Melie-Garcia L, Ocampo-Pineda M, Bahn E, Stadelmann C, Palombo M, Kappos L, Kuhle J, Magon S, Granziera C. A novel imaging marker of cortical "cellularity" in multiple sclerosis patients. Sci Rep 2024; 14:9848. [PMID: 38684744 PMCID: PMC11059177 DOI: 10.1038/s41598-024-60497-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
Pathological data showed focal inflammation and regions of diffuse neuronal loss in the cortex of people with multiple sclerosis (MS). In this work, we applied a novel model ("soma and neurite density imaging (SANDI)") to multishell diffusion-weighted MRI data acquired in healthy subjects and people with multiple sclerosis (pwMS), in order to investigate inflammation and degeneration-related changes in the cortical tissue of pwMS. We aimed to (i) establish whether SANDI is applicable in vivo clinical data; (ii) investigate inflammatory and degenerative changes using SANDI soma fraction (fsoma)-a marker of cellularity-in both cortical lesions and in the normal-appearing-cortex and (iii) correlate SANDI fsoma with clinical and biological measures in pwMS. We applied a simplified version of SANDI to a clinical scanners. We then provided evidence that pwMS exhibited an overall decrease in cortical SANDI fsoma compared to healthy subjects, suggesting global degenerative processes compatible with neuronal loss. On the other hand, we have found that progressive pwMS showed a higher SANDI fsoma in the outer part of the cortex compared to relapsing-remitting pwMS, possibly supporting current pathological knowledge of increased innate inflammatory cells in these regions. A similar finding was obtained in subpial lesions in relapsing-remitting patients, reflecting existing pathological data in these lesion types. A significant correlation was found between SANDI fsoma and serum neurofilament light chain-a biomarker of inflammatory axonal damage-suggesting a relationship between SANDI soma fraction and inflammatory processes in pwMS again. Overall, our data show that SANDI fsoma is a promising biomarker to monitor changes in cellularity compatible with neurodegeneration and neuroinflammation in the cortex of MS patients.
Collapse
Affiliation(s)
- Muhamed Barakovic
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Matthias Weigel
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Alessandro Cagol
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Sabine Schaedelin
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Riccardo Galbusera
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Po-Jui Lu
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Xinjie Chen
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Lester Melie-Garcia
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Mario Ocampo-Pineda
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Erik Bahn
- Institute of Neuropathology, University Medical Center, Göttingen, Germany
| | | | - Marco Palombo
- School of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
- School of Computer Science and Informatics, Cardiff University, Cardiff, UK
| | - Ludwig Kappos
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Stefano Magon
- Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland.
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland.
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland.
| |
Collapse
|
19
|
Martínez-Tazo P, Santos A, Selim MK, Espinós-Soler E, De Santis S. Sex matters: The MouseX DW-ALLEN Atlas for mice diffusion-weighted MR imaging. Neuroimage 2024; 292:120573. [PMID: 38521211 DOI: 10.1016/j.neuroimage.2024.120573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/25/2024] Open
Abstract
Overcoming sex bias in preclinical research requires not only including animals of both sexes in the experiments, but also developing proper tools to handle such data. Recent work revealed sensitivity of diffusion-weighted MRI to glia morphological changes in response to inflammatory stimuli, opening up exciting possibilities to characterize inflammation in a variety of preclinical models of pathologies, the great majority of them available in mice. However, there are limited resources dedicated to mouse imaging, like those required for the data processing and analysis. To fill this gap, we build a mouse MRI template of both structural and diffusion contrasts, with anatomical annotation according to the Allen Mouse Brain Atlas, the most detailed public resource for mouse brain investigation. To achieve a standardized resource, we use a large cohort of animals in vivo, and include animals of both sexes. To prove the utility of this resource to integrate imaging and molecular data, we demonstrate significant association between the mean diffusivity from MRI and gene expression-based glia density. To demonstrate the need of equitable sex representation, we compared across sexes the warp fields needed to match a male-based template, and our template built with both sexes. Then, we use both templates for analysing mice imaging data obtained in animals of different ages, demonstrating that using a male-based template creates spurious significant sex effects, not present otherwise. All in all, our MouseX DW-ALLEN Atlas will be a widely useful resource getting us one step closer to equitable healthcare.
Collapse
Affiliation(s)
| | - Alexandra Santos
- Instituto de Neurociencias de Alicante, CSIC-UMH, San Juan de Alicante, Spain
| | - Mohamed Kotb Selim
- Instituto de Neurociencias de Alicante, CSIC-UMH, San Juan de Alicante, Spain
| | - Elena Espinós-Soler
- Instituto de Neurociencias de Alicante, CSIC-UMH, San Juan de Alicante, Spain
| | - Silvia De Santis
- Instituto de Neurociencias de Alicante, CSIC-UMH, San Juan de Alicante, Spain.
| |
Collapse
|
20
|
Spotorno N, Strandberg O, Stomrud E, Janelidze S, Blennow K, Nilsson M, van Westen D, Hansson O. Diffusion MRI tracks cortical microstructural changes during the early stages of Alzheimer's disease. Brain 2024; 147:961-969. [PMID: 38128551 PMCID: PMC10907088 DOI: 10.1093/brain/awad428] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/02/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023] Open
Abstract
There is increased interest in developing markers reflecting microstructural changes that could serve as outcome measures in clinical trials. This is especially important after unexpected results in trials evaluating disease-modifying therapies targeting amyloid-β (Aβ), where morphological metrics from MRI showed increased volume loss despite promising clinical treatment effects. In this study, changes over time in cortical mean diffusivity, derived using diffusion tensor imaging, were investigated in a large cohort (n = 424) of non-demented participants from the Swedish BioFINDER study. Participants were stratified following the Aβ/tau (AT) framework. The results revealed a widespread increase in mean diffusivity over time, including both temporal and parietal cortical regions, in Aβ-positive but still tau-negative individuals. These increases were steeper in Aβ-positive and tau-positive individuals and robust to the inclusion of cortical thickness in the model. A steeper increase in mean diffusivity was also associated with both changes over time in fluid markers reflecting astrocytic activity (i.e. plasma level of glial fibrillary acidic protein and CSF levels of YKL-40) and worsening of cognitive performance (all P < 0.01). By tracking cortical microstructural changes over time and possibly reflecting variations related to the astrocytic response, cortical mean diffusivity emerges as a promising marker for tracking treatments-induced microstructural changes in clinical trials.
Collapse
Affiliation(s)
- Nicola Spotorno
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, 223 62 Lund, Sweden
| | - Olof Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, 223 62 Lund, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, 223 62 Lund, Sweden
- Memory Clinic, Skåne University Hospital, 214 28 Malmö, Sweden
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, 223 62 Lund, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 80 Mölndal, Sweden
| | - Markus Nilsson
- Diagnostic Radiology, Institution for Clinical Sciences, Lund University, 221 85 Lund, Sweden
| | - Danielle van Westen
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, 223 62 Lund, Sweden
- Diagnostic Radiology, Institution for Clinical Sciences, Lund University, 221 85 Lund, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, 223 62 Lund, Sweden
- Memory Clinic, Skåne University Hospital, 214 28 Malmö, Sweden
| |
Collapse
|
21
|
Selim MK, Harel M, De Santis S, Perini I, Sommer WH, Heilig M, Zangen A, Canals S. Repetitive deep TMS in alcohol dependent patients halts progression of white matter changes in early abstinence. Psychiatry Clin Neurosci 2024; 78:176-185. [PMID: 38085120 PMCID: PMC11488632 DOI: 10.1111/pcn.13624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/04/2023] [Accepted: 11/15/2023] [Indexed: 03/13/2024]
Abstract
AIM Alcohol use disorder (AUD) is the most prevalent form of addiction, with a great burden on society and limited treatment options. A recent clinical trial reported significant clinical benefits of deep transcranial magnetic stimulations (Deep TMS) targeting midline frontocortical areas. However, the underlying biological substrate remained elusive. Here, we report the effect of Deep TMS on the microstructure of white matter. METHODS A total of 37 (14 females) AUD treatment-seeking patients were randomized to sham or active Deep TMS. Twenty (six females) age-matched healthy controls were included. White matter integrity was evaluated by fractional anisotropy (FA). Secondary measures included brain functional connectivity and self-reports of craving and drinking units in the 3 months of follow-up period. RESULTS White matter integrity was compromised in patients with AUD relative to healthy controls, as reflected by the widespread reduction in FA. This alteration progressed during early abstinence (3 weeks) in the absence of Deep TMS. However, stimulation of midline frontocortical areas arrested the progression of FA changes in association with decreased craving and relapse scores. Reconstruction of axonal tracts from white-matter regions showing preserved FA values identified cortical regions in the posterior cingulate and dorsomedial prefrontal cortices where functional connectivity was persistently modulated. These effects were absent in the sham-stimulated group. CONCLUSIONS By integrating brain structure and function to characterize the alcohol-dependent brain, this study provides mechanistic insights into the TMS effect, pointing to myelin plasticity as a possible mediator.
Collapse
Affiliation(s)
- Mohamed Kotb Selim
- Instituto de NeurocienciasConsejo Superior de Investigaciones Científicas (CSIC) and Universidad Miguel Hernández (UMH)Sant Joan d'AlacantSpain
| | - Maayan Harel
- Department of Life SciencesBen‐Gurion UniversityBeer ShevaIsrael
- Zlotowski Center for NeuroscienceBen‐Gurion UniversityBeer ShevaIsrael
| | - Silvia De Santis
- Instituto de NeurocienciasConsejo Superior de Investigaciones Científicas (CSIC) and Universidad Miguel Hernández (UMH)Sant Joan d'AlacantSpain
| | - Irene Perini
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical SciencesLinköping University HospitalLinköpingSweden
| | - Wolfgang H. Sommer
- Department of Addiction Medicine, Department of Clinical PsychologyMedical Faculty Mannheim, Central Institute of Mental Health, University of HeidelbergMannheimGermany
| | - Markus Heilig
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical SciencesLinköping University HospitalLinköpingSweden
| | - Abraham Zangen
- Department of Life SciencesBen‐Gurion UniversityBeer ShevaIsrael
- Zlotowski Center for NeuroscienceBen‐Gurion UniversityBeer ShevaIsrael
| | - Santiago Canals
- Instituto de NeurocienciasConsejo Superior de Investigaciones Científicas (CSIC) and Universidad Miguel Hernández (UMH)Sant Joan d'AlacantSpain
| |
Collapse
|
22
|
Ganesan K, Rentsch P, Langdon A, Milham LT, Vissel B. Modeling sporadic Alzheimer's disease in mice by combining Apolipoprotein E4 risk gene with environmental risk factors. Front Aging Neurosci 2024; 16:1357405. [PMID: 38476659 PMCID: PMC10927790 DOI: 10.3389/fnagi.2024.1357405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
Introduction Developing effective treatment for Alzheimer's disease (AD) remains a challenge. This can be partially attributed to the fact that the mouse models used in preclinical research largely replicate familial form of AD, while majority of human cases are sporadic; both forms differ widely in the onset and origin of pathology, therefore requiring specific/targeted treatments. Methods In this study, we aimed to model sporadic AD in mice by combining two of the many risk factors that are strongly implicated in AD: ApoE4, a major genetic risk factor, together with an inflammatory stimuli. Accordingly, we subjected ApoE4 knock in (KI) mice, expressing humanized ApoE4, to low doses of Lipopolysaccharide (LPS) injections (i.p, weekly, for 4 months). Results We assessed these animals for behavioral impairments at 6 months of age using Open Field, Y-maze, and Barnes Maze Test. LPS induced hypoactivity was observed in the Open Field and Y-maze test, whereas spatial learning and memory was intact. We then quantified differences in dendritic spine density, which is a strong correlate of AD. ApoE4KI mice showed a significant reduction in the number of spines after treatment with LPS, whereas there were no obvious differences in the total number of microglia and astrocytes. Discussion To conclude, in the current study the APoEe4 risk gene increases the vulnerability of hippocampal neurons to inflammation induced spine loss, laying a foundation for an early sporadic AD mouse model.
Collapse
Affiliation(s)
- Kiruthika Ganesan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Peggy Rentsch
- Centre for Neuroscience and Regenerative Medicine, St. Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
- UNSW St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Alexander Langdon
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Luke T. Milham
- Centre for Neuroscience and Regenerative Medicine, St. Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
- UNSW St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Bryce Vissel
- Centre for Neuroscience and Regenerative Medicine, St. Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
- UNSW St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
23
|
Bobotis BC, Halvorson T, Carrier M, Tremblay MÈ. Established and emerging techniques for the study of microglia: visualization, depletion, and fate mapping. Front Cell Neurosci 2024; 18:1317125. [PMID: 38425429 PMCID: PMC10902073 DOI: 10.3389/fncel.2024.1317125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/15/2024] [Indexed: 03/02/2024] Open
Abstract
The central nervous system (CNS) is an essential hub for neuronal communication. As a major component of the CNS, glial cells are vital in the maintenance and regulation of neuronal network dynamics. Research on microglia, the resident innate immune cells of the CNS, has advanced considerably in recent years, and our understanding of their diverse functions continues to grow. Microglia play critical roles in the formation and regulation of neuronal synapses, myelination, responses to injury, neurogenesis, inflammation, and many other physiological processes. In parallel with advances in microglial biology, cutting-edge techniques for the characterization of microglial properties have emerged with increasing depth and precision. Labeling tools and reporter models are important for the study of microglial morphology, ultrastructure, and dynamics, but also for microglial isolation, which is required to glean key phenotypic information through single-cell transcriptomics and other emerging approaches. Strategies for selective microglial depletion and modulation can provide novel insights into microglia-targeted treatment strategies in models of neuropsychiatric and neurodegenerative conditions, cancer, and autoimmunity. Finally, fate mapping has emerged as an important tool to answer fundamental questions about microglial biology, including their origin, migration, and proliferation throughout the lifetime of an organism. This review aims to provide a comprehensive discussion of these established and emerging techniques, with applications to the study of microglia in development, homeostasis, and CNS pathologies.
Collapse
Affiliation(s)
- Bianca Caroline Bobotis
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology, Victoria, BC, Canada
| | - Torin Halvorson
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Micaël Carrier
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec City, QC, Canada
- Axe neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology, Victoria, BC, Canada
- Axe neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
| |
Collapse
|
24
|
Paternina-Die M, Martínez-García M, Martín de Blas D, Noguero I, Servin-Barthet C, Pretus C, Soler A, López-Montoya G, Desco M, Carmona S. Women's neuroplasticity during gestation, childbirth and postpartum. Nat Neurosci 2024; 27:319-327. [PMID: 38182834 PMCID: PMC10849958 DOI: 10.1038/s41593-023-01513-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 11/01/2023] [Indexed: 01/07/2024]
Abstract
Pregnancy is a unique neuroplastic period in adult life. This longitudinal study tracked brain cortical changes during the peripartum period and explored how the type of childbirth affects these changes. We collected neuroanatomic, obstetric and neuropsychological data from 110 first-time mothers during late pregnancy and early postpartum, as well as from 34 nulliparous women evaluated at similar time points. During late pregnancy, mothers showed lower cortical volume than controls across all functional networks. These cortical differences attenuated in the early postpartum session. Default mode and frontoparietal networks showed below-expected volume increases during peripartum, suggesting that their reductions may persist longer. Results also pointed to different cortical trajectories in mothers who delivered by scheduled C-section. The main findings were replicated in an independent sample of 29 mothers and 24 nulliparous women. These data suggest a dynamic trajectory of cortical decreases during pregnancy that attenuates in the postpartum period, at a different rate depending on the brain network and childbirth type.
Collapse
Affiliation(s)
- María Paternina-Die
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- CIBER de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| | - Magdalena Martínez-García
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- CIBER de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| | - Daniel Martín de Blas
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- CIBER de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Bioingeniería, Universidad Carlos III de Madrid, Madrid, Spain
| | - Inés Noguero
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Camila Servin-Barthet
- Unitat de Recerca en Neurociéncia Cognitiva, Departament de Psiquiatria i Medicina Legal, Universidad Autònoma de Barcelona, Barcelona, Spain
- Fundació IMIM, Barcelona, Spain
| | | | - Anna Soler
- Unitat de Recerca en Neurociéncia Cognitiva, Departament de Psiquiatria i Medicina Legal, Universidad Autònoma de Barcelona, Barcelona, Spain
- Fundació IMIM, Barcelona, Spain
| | - Gonzalo López-Montoya
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Faculty of Health Science, Universidad Internacional de La Rioja (UNIR), La Rioja, Spain
| | - Manuel Desco
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- CIBER de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Bioingeniería, Universidad Carlos III de Madrid, Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Susana Carmona
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.
- CIBER de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
25
|
Cerdán Cerdá A, Toschi N, Treaba CA, Barletta V, Herranz E, Mehndiratta A, Gomez-Sanchez JA, Mainero C, De Santis S. A translational MRI approach to validate acute axonal damage detection as an early event in multiple sclerosis. eLife 2024; 13:e79169. [PMID: 38192199 PMCID: PMC10776086 DOI: 10.7554/elife.79169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 12/05/2023] [Indexed: 01/10/2024] Open
Abstract
Axonal degeneration is a central pathological feature of multiple sclerosis and is closely associated with irreversible clinical disability. Current noninvasive methods to detect axonal damage in vivo are limited in their specificity and clinical applicability, and by the lack of proper validation. We aimed to validate an MRI framework based on multicompartment modeling of the diffusion signal (AxCaliber) in rats in the presence of axonal pathology, achieved through injection of a neurotoxin damaging the neuronal terminal of axons. We then applied the same MRI protocol to map axonal integrity in the brain of multiple sclerosis relapsing-remitting patients and age-matched healthy controls. AxCaliber is sensitive to acute axonal damage in rats, as demonstrated by a significant increase in the mean axonal caliber along the targeted tract, which correlated with neurofilament staining. Electron microscopy confirmed that increased mean axonal diameter is associated with acute axonal pathology. In humans with multiple sclerosis, we uncovered a diffuse increase in mean axonal caliber in most areas of the normal-appearing white matter, preferentially affecting patients with short disease duration. Our results demonstrate that MRI-based axonal diameter mapping is a sensitive and specific imaging biomarker that links noninvasive imaging contrasts with the underlying biological substrate, uncovering generalized axonal damage in multiple sclerosis as an early event.
Collapse
Affiliation(s)
| | - Nicola Toschi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
- Department of Biomedicine and Prevention, University of Rome Tor VergataRomeItaly
| | - Constantina A Treaba
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| | - Valeria Barletta
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| | - Elena Herranz
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| | - Ambica Mehndiratta
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| | - Jose A Gomez-Sanchez
- Instituto de Neurociencias de Alicante, CSIC-UMHSan Juan de AlicanteSpain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL)AlicanteSpain
- Millennium Nucleus for the Study of Pain (MiNuSPain)SantiagoChile
| | - Caterina Mainero
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| | - Silvia De Santis
- Instituto de Neurociencias de Alicante, CSIC-UMHSan Juan de AlicanteSpain
| |
Collapse
|
26
|
Filho AMC, Gomes NS, Lós DB, Leite IB, Tremblay MÈ, Macêdo DS. Microglia and Microbiome-Gut-Brain Axis. ADVANCES IN NEUROBIOLOGY 2024; 37:303-331. [PMID: 39207699 DOI: 10.1007/978-3-031-55529-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The mammalian gut contains a community of microorganisms called gut microbiome. The gut microbiome is integrated into mammalian physiology, contributing to metabolism, production of metabolites, and promoting immunomodulatory actions. Microglia, the brain's resident innate immune cells, play an essential role in homeostatic neurogenesis, synaptic remodeling, and glial maturation. Microglial dysfunction has been implicated in the pathogenesis of several neuropsychiatric disorders. Recent findings indicate that microglia are influenced by the gut microbiome and their derived metabolites throughout life. The pathways by which microbiota regulate microglia have only started to be understood, but this discovery has the potential to provide valuable insights into the pathogenesis of brain disorders associated with an altered microbiome. Here, we discuss the recent literature on the role of the gut microbiome in modulating microglia during development and adulthood and summarize the key findings on this bidirectional crosstalk in selected examples of neuropsychiatric and neurodegenerative disorders. We also highlight some current caveats and perspectives for the field.
Collapse
Affiliation(s)
- Adriano Maia Chaves Filho
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Nayana Soares Gomes
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Deniele Bezerra Lós
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Isabel Bessa Leite
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Department of Molecular Medicine, Université de Laval, Québec City, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
| | - Danielle S Macêdo
- Department of Physiology and Pharmacology, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil.
- National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, SP, Brazil.
| |
Collapse
|
27
|
Lynch KM, Cabeen RP, Toga AW. Spatiotemporal patterns of cortical microstructural maturation in children and adolescents with diffusion MRI. Hum Brain Mapp 2024; 45:e26528. [PMID: 37994234 PMCID: PMC10789199 DOI: 10.1002/hbm.26528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/10/2023] [Accepted: 10/19/2023] [Indexed: 11/24/2023] Open
Abstract
Neocortical maturation is a dynamic process that proceeds in a hierarchical manner; however, the spatiotemporal organization of cortical microstructure with diffusion MRI has yet to be fully defined. This study characterized cortical microstructural maturation using diffusion MRI (fwe-diffusion tensor imaging [DTI] and neurite orientation dispersion and density imaging [NODDI] multicompartment modeling) in a cohort of 637 children and adolescents between 8 and 21 years of age. We found spatially heterogeneous developmental patterns broadly demarcated into functional domains where NODDI metrics increased, and fwe-DTI metrics decreased with age. By applying nonlinear growth models in a vertex-wise analysis, we observed a general posterior-to-anterior pattern of maturation, where the fwe-DTI measures mean diffusivity and radial diffusivity reached peak maturation earlier than the NODDI metrics neurite density index. Using non-negative matrix factorization, we found occipito-parietal cortical regions that correspond to lower order sensory domains mature earlier than fronto-temporal higher order association domains. Our findings corroborate previous histological and neuroimaging studies that show spatially varying patterns of cortical maturation that may reflect unique developmental processes of cytoarchitectonically determined regional patterns of change.
Collapse
Affiliation(s)
- Kirsten M. Lynch
- Laboratory of Neuro Imaging (LONI)USC Mark and Mary Stevens Institute for Neuroimaging and Informatics, USC Keck School of MedicineLos AngelesCaliforniaUSA
| | - Ryan P. Cabeen
- Laboratory of Neuro Imaging (LONI)USC Mark and Mary Stevens Institute for Neuroimaging and Informatics, USC Keck School of MedicineLos AngelesCaliforniaUSA
| | - Arthur W. Toga
- Laboratory of Neuro Imaging (LONI)USC Mark and Mary Stevens Institute for Neuroimaging and Informatics, USC Keck School of MedicineLos AngelesCaliforniaUSA
| |
Collapse
|
28
|
McKenna F, Gupta PK, Sui YV, Bertisch H, Gonen O, Goff DC, Lazar M. Microstructural and Microvascular Alterations in Psychotic Spectrum Disorders: A Three-Compartment Intravoxel Incoherent Imaging and Free Water Model. Schizophr Bull 2023; 49:1542-1553. [PMID: 36921060 PMCID: PMC10686346 DOI: 10.1093/schbul/sbad019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
BACKGROUND AND HYPOTHESIS Microvascular and inflammatory mechanisms have been hypothesized to be involved in the pathophysiology of psychotic spectrum disorders (PSDs). However, data evaluating these hypotheses remain limited. STUDY DESIGN We applied a three-compartment intravoxel incoherent motion free water imaging (IVIM-FWI) technique that estimates the perfusion fraction (PF), free water fraction (FW), and anisotropic diffusion of tissue (FAt) to examine microvascular and microstructural changes in gray and white matter in 55 young adults with a PSD compared to 37 healthy controls (HCs). STUDY RESULTS We found significantly increased PF, FW, and FAt in gray matter regions, and significantly increased PF, FW, and decreased FAt in white matter regions in the PSD group versus HC. Furthermore, in patients, but not in the HC group, increased PF, FW, and FAt in gray matter and increased PF in white matter were significantly associated with poor performance on several cognitive tests assessing memory and processing speed. We additionally report significant associations between IVIM-FWI metrics and myo-inositol, choline, and N-acetylaspartic acid magnetic resonance spectroscopy imaging metabolites in the posterior cingulate cortex, which further supports the validity of PF, FW, and FAt as microvascular and microstructural biomarkers of PSD. Finally, we found significant relationships between IVIM-FWI metrics and the duration of psychosis in gray and white matter regions. CONCLUSIONS The three-compartment IVIM-FWI model provides metrics that are associated with cognitive deficits and may reflect disease progression.
Collapse
Affiliation(s)
- Faye McKenna
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA
| | - Pradeep Kumar Gupta
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Yu Veronica Sui
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA
| | - Hilary Bertisch
- Northwell Health, Zucker Hillside Hospital, New York, NY, USA
| | - Oded Gonen
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA
| | - Donald C Goff
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Mariana Lazar
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
29
|
Lao Y, Li Z, Bai Y, Li W, Wang J, Wang Y, Li Q, Dong Z. Glial Cells of the Central Nervous System: A Potential Target in Chronic Prostatitis/Chronic Pelvic Pain Syndrome. Pain Res Manag 2023; 2023:2061632. [PMID: 38023826 PMCID: PMC10661872 DOI: 10.1155/2023/2061632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/24/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023]
Abstract
Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is one of the most common diseases of the male urological system while the etiology and treatment of CP/CPPS remain a thorny issue. Cumulative research suggested a potentially important role of glial cells in CP/CPPS. This narrative review retrospected literature and grasped the research process about glial cells and CP/CPPS. Three types of glial cells showed a crucial connection with general pain and psychosocial symptoms. Microglia might also be involved in lower urinary tract symptoms. Only microglia and astrocytes have been studied in the animal model of CP/CPPS. Activated microglia and reactive astrocytes were found to be involved in both pain and psychosocial symptoms of CP/CPPS. The possible mechanism might be to mediate the production of some inflammatory mediators and their interaction with neurons. Glial cells provide a new insight to understand the cause of complex symptoms of CP/CPPS and might become a novel target to develop new treatment options. However, the activation and action mechanism of glial cells in CP/CPPS needs to be further explored.
Collapse
Affiliation(s)
- Yongfeng Lao
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Zewen Li
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Yanan Bai
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Weijia Li
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jian Wang
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Yanan Wang
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Qingchao Li
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Zhilong Dong
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
30
|
Kim E, Carreira Figueiredo I, Simmons C, Randall K, Rojo Gonzalez L, Wood T, Ranieri B, Sureda-Gibert P, Howes O, Pariante C, Nima Consortium, Pasternak O, Dell'Acqua F, Turkheimer F, Cash D. Mapping acute neuroinflammation in vivo with diffusion-MRI in rats given a systemic lipopolysaccharide challenge. Brain Behav Immun 2023; 113:289-301. [PMID: 37482203 DOI: 10.1016/j.bbi.2023.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/19/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023] Open
Abstract
It is becoming increasingly apparent that neuroinflammation plays a critical role in an array of neurological and psychiatric disorders. Recent studies have demonstrated the potential of diffusion MRI (dMRI) to characterize changes in microglial density and morphology associated with neuroinflammation, but these were conducted mostly ex vivo and/or in extreme, non-physiological animal models. Here, we build upon these studies by investigating the utility of well-established dMRI methods to detect neuroinflammation in vivo in a more clinically relevant animal model of sickness behavior. We show that diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) indicate widespread increases in diffusivity in the brains of rats given a systemic lipopolysaccharide challenge (n = 20) vs. vehicle-treated controls (n = 12). These diffusivity changes correlated with histologically measured changes in microglial morphology, confirming the sensitivity of dMRI to neuroinflammatory processes. This study marks a further step towards establishing a noninvasive indicator of neuroinflammation, which would greatly facilitate early diagnosis and treatment monitoring in various neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Eugene Kim
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.
| | - Ines Carreira Figueiredo
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.
| | - Camilla Simmons
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Karen Randall
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Loreto Rojo Gonzalez
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Tobias Wood
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.
| | - Brigida Ranieri
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Paula Sureda-Gibert
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.
| | - Oliver Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Carmine Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.
| | - Nima Consortium
- The Wellcome Trust Consortium for the Neuroimmunology of Mood Disorders and Alzheimer's Disease (NIMA), United Kingdom
| | - Ofer Pasternak
- Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Flavio Dell'Acqua
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.
| | - Diana Cash
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.
| |
Collapse
|
31
|
Rios-Carrillo R, Ramírez-Manzanares A, Luna-Munguía H, Regalado M, Concha L. Differentiation of white matter histopathology using b-tensor encoding and machine learning. PLoS One 2023; 18:e0282549. [PMID: 37352195 PMCID: PMC10289327 DOI: 10.1371/journal.pone.0282549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/02/2023] [Indexed: 06/25/2023] Open
Abstract
Diffusion-weighted magnetic resonance imaging (DW-MRI) is a non-invasive technique that is sensitive to microstructural geometry in neural tissue and is useful for the detection of neuropathology in research and clinical settings. Tensor-valued diffusion encoding schemes (b-tensor) have been developed to enrich the microstructural data that can be obtained through DW-MRI. These advanced methods have proven to be more specific to microstructural properties than conventional DW-MRI acquisitions. Additionally, machine learning methods are particularly useful for the study of multidimensional data sets. In this work, we have tested the reach of b-tensor encoding data analyses with machine learning in different histopathological scenarios. We achieved this in three steps: 1) We induced different levels of white matter damage in rodent optic nerves. 2) We obtained ex vivo DW-MRI data with b-tensor encoding schemes and calculated quantitative metrics using Q-space trajectory imaging. 3) We used a machine learning model to identify the main contributing features and built a voxel-wise probabilistic classification map of histological damage. Our results show that this model is sensitive to characteristics of microstructural damage. In conclusion, b-tensor encoded DW-MRI data analyzed with machine learning methods, have the potential to be further developed for the detection of histopathology and neurodegeneration.
Collapse
Affiliation(s)
- Ricardo Rios-Carrillo
- Instituto de Neurobiologia, Universidad Nacional Autónoma de Mexico, Querétaro, México
| | | | - Hiram Luna-Munguía
- Instituto de Neurobiologia, Universidad Nacional Autónoma de Mexico, Querétaro, México
| | - Mirelta Regalado
- Instituto de Neurobiologia, Universidad Nacional Autónoma de Mexico, Querétaro, México
| | - Luis Concha
- Instituto de Neurobiologia, Universidad Nacional Autónoma de Mexico, Querétaro, México
| |
Collapse
|
32
|
Pérez-Cervera L, De Santis S, Marcos E, Ghorbanzad-Ghaziany Z, Trouvé-Carpena A, Selim MK, Pérez-Ramírez Ú, Pfarr S, Bach P, Halli P, Kiefer F, Moratal D, Kirsch P, Sommer WH, Canals S. Alcohol-induced damage to the fimbria/fornix reduces hippocampal-prefrontal cortex connection during early abstinence. Acta Neuropathol Commun 2023; 11:101. [PMID: 37344865 PMCID: PMC10286362 DOI: 10.1186/s40478-023-01597-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/30/2023] [Indexed: 06/23/2023] Open
Abstract
INTRODUCTION Alcohol dependence is characterized by a gradual reduction in cognitive control and inflexibility to contingency changes. The neuroadaptations underlying this aberrant behavior are poorly understood. Using an animal model of alcohol use disorders (AUD) and complementing diffusion-weighted (dw)-MRI with quantitative immunohistochemistry and electrophysiological recordings, we provide causal evidence that chronic intermittent alcohol exposure affects the microstructural integrity of the fimbria/fornix, decreasing myelin basic protein content, and reducing the effective communication from the hippocampus (HC) to the prefrontal cortex (PFC). Using a simple quantitative neural network model, we show how disturbed HC-PFC communication may impede the extinction of maladaptive memories, decreasing flexibility. Finally, combining dw-MRI and psychometric data in AUD patients, we discovered an association between the magnitude of microstructural alteration in the fimbria/fornix and the reduction in cognitive flexibility. Overall, these findings highlight the vulnerability of the fimbria/fornix microstructure in AUD and its potential contribution to alcohol pathophysiology. Fimbria vulnerability to alcohol underlies hippocampal-prefrontal cortex dysfunction and correlates with cognitive impairment.
Collapse
Affiliation(s)
- Laura Pérez-Cervera
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Sant Joan d'Alacant, Alicante, Spain
| | - Silvia De Santis
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Sant Joan d'Alacant, Alicante, Spain
| | - Encarni Marcos
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Sant Joan d'Alacant, Alicante, Spain
| | - Zahra Ghorbanzad-Ghaziany
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Sant Joan d'Alacant, Alicante, Spain
- Radiation Science and Biomedical Imaging, University of Sherbrooke, Sherbrooke, Québec, Canada
| | - Alejandro Trouvé-Carpena
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Sant Joan d'Alacant, Alicante, Spain
| | - Mohamed Kotb Selim
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Sant Joan d'Alacant, Alicante, Spain
| | - Úrsula Pérez-Ramírez
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain
| | - Simone Pfarr
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Patrick Bach
- Department of Addiction Medicine, Department of Clinical Psychology, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Patrick Halli
- Department of Psychology, University of Heidelberg, Heidelberg, Germany
| | - Falk Kiefer
- Department of Addiction Medicine, Department of Clinical Psychology, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - David Moratal
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain
| | - Peter Kirsch
- Department of Psychology, University of Heidelberg, Heidelberg, Germany
| | - Wolfgang H Sommer
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical faculty Mannheim, University of Heidelberg, Mannheim, Germany.
- Department of Addiction Medicine, Department of Clinical Psychology, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany.
| | - Santiago Canals
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Sant Joan d'Alacant, Alicante, Spain.
| |
Collapse
|
33
|
Xia W, Singh N, Goel S, Shi S. Molecular Imaging of Innate Immunity and Immunotherapy. Adv Drug Deliv Rev 2023; 198:114865. [PMID: 37182699 DOI: 10.1016/j.addr.2023.114865] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/17/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
The innate immune system plays a key role as the first line of defense in various human diseases including cancer, cardiovascular and inflammatory diseases. In contrast to tissue biopsies and blood biopsies, in vivo imaging of the innate immune system can provide whole body measurements of immune cell location and function and changes in response to disease progression and therapy. Rationally developed molecular imaging strategies can be used in evaluating the status and spatio-temporal distributions of the innate immune cells in near real-time, mapping the biodistribution of novel innate immunotherapies, monitoring their efficacy and potential toxicities, and eventually for stratifying patients that are likely to benefit from these immunotherapies. In this review, we will highlight the current state-of-the-art in noninvasive imaging techniques for preclinical imaging of the innate immune system particularly focusing on cell trafficking, biodistribution, as well as pharmacokinetics and dynamics of promising immunotherapies in cancer and other diseases; discuss the unmet needs and current challenges in integrating imaging modalities and immunology and suggest potential solutions to overcome these barriers.
Collapse
Affiliation(s)
- Wenxi Xia
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, United States
| | - Neetu Singh
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, United States
| | - Shreya Goel
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, United States; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, United States; Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84112, United States
| | - Sixiang Shi
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, United States; Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84112, United States.
| |
Collapse
|
34
|
Lynch KM, Cabeen RP, Toga AW. Spatiotemporal patterns of cortical microstructural maturation in children and adolescents with diffusion MRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.31.534636. [PMID: 37034810 PMCID: PMC10081273 DOI: 10.1101/2023.03.31.534636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Neocortical maturation is a dynamic process that proceeds in a hierarchical manner; however, the spatiotemporal organization of cortical microstructure with diffusion MRI has yet to be fully defined. This study characterized cortical microstructural maturation using diffusion MRI (fwe-DTI and NODDI multi-compartment modeling) in a cohort of 637 children and adolescents between 8 and 21 years of age. We found spatially heterogeneous developmental patterns broadly demarcated into functional domains where NODDI metrics increased and fwe-DTI metrics decreased with age. Using non-negative matrix factorization, we found cortical regions that correspond to lower-order sensory regions mature earlier than higher-order association regions. Our findings corroborate previous histological and neuroimaging studies that show spatially-varying patterns of cortical maturation that may reflect unique developmental processes of cytoarchitectonically-determined regional patterns of change.
Collapse
Affiliation(s)
- Kirsten M. Lynch
- Laboratory of Neuro Imaging (LONI), USC Mark and Mary Stevens Institute for Neuroimaging and Informatics, USC Keck School of Medicine, Los Angeles, CA, USA
| | - Ryan P. Cabeen
- Laboratory of Neuro Imaging (LONI), USC Mark and Mary Stevens Institute for Neuroimaging and Informatics, USC Keck School of Medicine, Los Angeles, CA, USA
| | - Arthur W. Toga
- Laboratory of Neuro Imaging (LONI), USC Mark and Mary Stevens Institute for Neuroimaging and Informatics, USC Keck School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
35
|
DiPiero M, Rodrigues PG, Gromala A, Dean DC. Applications of advanced diffusion MRI in early brain development: a comprehensive review. Brain Struct Funct 2023; 228:367-392. [PMID: 36585970 PMCID: PMC9974794 DOI: 10.1007/s00429-022-02605-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/21/2022] [Indexed: 01/01/2023]
Abstract
Brain development follows a protracted developmental timeline with foundational processes of neurodevelopment occurring from the third trimester of gestation into the first decade of life. Defining structural maturational patterns of early brain development is a critical step in detecting divergent developmental trajectories associated with neurodevelopmental and psychiatric disorders that arise later in life. While considerable advancements have already been made in diffusion magnetic resonance imaging (dMRI) for pediatric research over the past three decades, the field of neurodevelopment is still in its infancy with remarkable scientific and clinical potential. This comprehensive review evaluates the application, findings, and limitations of advanced dMRI methods beyond diffusion tensor imaging, including diffusion kurtosis imaging (DKI), constrained spherical deconvolution (CSD), neurite orientation dispersion and density imaging (NODDI) and composite hindered and restricted model of diffusion (CHARMED) to quantify the rapid and dynamic changes supporting the underlying microstructural architectural foundations of the brain in early life.
Collapse
Affiliation(s)
- Marissa DiPiero
- Department of Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | | | - Alyssa Gromala
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Douglas C Dean
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
36
|
Oka N, Sakoh M, Hirayama M, Niiyama M, Gjedde A. Relationship between manual dexterity and left-right asymmetry of anatomical and functional properties of corticofugal tracts revealed by T2-weighted brain images. Sci Rep 2023; 13:2738. [PMID: 36792678 PMCID: PMC9932061 DOI: 10.1038/s41598-023-29557-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
The corticofugal tracts (CFT) are key agents of upper limb motor function. Although the tracts form high-intensity regions relative to surrounding tissue in T2-weighted magnetic resonance images (T2WI), the precise relations of signal intensities of the left and right CFT regions to hand function are unknown. Here, we tested the hypothesis that the different signal intensities between the left and right CFT signify clinically important differences of hand motor function. Eleven right-handed and eleven left-handed healthy volunteers participated in the study. Based on horizontal T2WI estimates, we confirmed the relationship between the signal intensity ratios of the peak values of each CFT in the posterior limbs of the internal capsules (right CFT vs. left CFT). The ratios included the asymmetry indices of the hand motor functions, including grip and pinch strength, as well as the target test (TT) that expressed the speed and accuracy of hitting a target ([right-hand score - left-hand score]/[right-hand score + left-hand score]), using simple linear regression. The signal intensity ratios of each CFT structure maintained significant linear relations with the asymmetry index of the speed (R2 = 0.493, P = 0.0003) and accuracy (R2 = 0.348, P = 0.004) of the TT. We found no significant association between left and right CFT structures for grip or pinch strengths. The findings are consistent with the hypothesis that the different signal intensities of the left and right CFT images captured by T2WI serve as biological markers that reflect the dominance of manual dexterity.
Collapse
Affiliation(s)
- Noriyuki Oka
- Convalescent Rehabilitation Center, Nerima Ken-Ikukai Hospital, 7-3-28, Ooizumigakuen-chou, Nerima-ku, Tokyo, 178-0061, Japan.
| | - Masaharu Sakoh
- Convalescent Rehabilitation Center, Nerima Ken-Ikukai Hospital, 7-3-28, Ooizumigakuen-chou, Nerima-ku, Tokyo, 178-0061 Japan ,grid.154185.c0000 0004 0512 597XDepartment of Nuclear Medicine and PET Center, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Misato Hirayama
- Convalescent Rehabilitation Center, Nerima Ken-Ikukai Hospital, 7-3-28, Ooizumigakuen-chou, Nerima-ku, Tokyo, 178-0061 Japan
| | - Mayu Niiyama
- Convalescent Rehabilitation Center, Nerima Ken-Ikukai Hospital, 7-3-28, Ooizumigakuen-chou, Nerima-ku, Tokyo, 178-0061 Japan
| | - Albert Gjedde
- grid.7048.b0000 0001 1956 2722Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Universitetsbyen 13, Building 2B, 8000 Aarhus C, Denmark ,grid.5254.60000 0001 0674 042XDepartment of Neuroscience, University of Copenhagen, 3 Blegdamsvej, 2200 Copenhagen, Denmark ,grid.14709.3b0000 0004 1936 8649McConnell Brain Imaging Center, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, 3801 Rue University, Montreal, QC H3A 2B4 Canada
| |
Collapse
|
37
|
Costa-Pereira JT, Oliveira R, Guadilla I, Guillén MJ, Tavares I, López-Larrubia P. Neuroimaging uncovers neuronal and metabolic changes in pain modulatory brain areas in a rat model of chemotherapy-induced neuropathy - MEMRI and ex vivo spectroscopy studies. Brain Res Bull 2023; 192:12-20. [PMID: 36328144 DOI: 10.1016/j.brainresbull.2022.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
Chemotherapy-induced neuropathy (CIN) is one of the most common complications of cancer treatment with sensory dysfunctions which frequently include pain. The mechanisms underlying pain during CIN are starting to be uncovered. Neuroimaging allows the identification of brain circuitry involved in pain processing and modulation and has recently been used to unravel the disruptions of that circuitry by neuropathic pain. The present study evaluates the effects of paclitaxel, a cytostatic drug frequently used in cancer treatment, at the neuronal function in the anterior cingulate cortex (ACC), hypothalamus and periaqueductal gray (PAG) using manganese-enhanced magnetic resonance imaging (MEMRI). We also studied the metabolic profile at the prefrontal cortex (PFC) and hypothalamus using ex vivo spectroscopy. Wistar male rats were intraperitoneal injected with paclitaxel or vehicle solution (DMSO). The evaluation of mechanical sensitivity using von Frey test at baseline (BL), 21 (T21), 28 (T28), 49 (T49) and 56 days (T56) after CIN induction showed that paclitaxel-injected rats presented mechanical hypersensitivity from T21 until T56 after CIN induction. The evaluation of the locomotor activity and exploratory behaviors using open-field test at T28 and T56 after the first injection of paclitaxel revealed that paclitaxel-injected rats walked higher distance with higher velocity at late point of CIN accompanied with a sustained exhibition of anxiety-like behaviors. Imaging studies performed using MEMRI at T28 and T56 showed that paclitaxel treatment increased the neuronal activation in the hypothalamus and PAG at T56 in comparison with the control group. The analysis of data from ex vivo spectroscopy demonstrated that at T28 paclitaxel-injected rats presented an increase of N-acetyl aspartate (NAA) levels in the PFC and an increase of NAA and decrease of lactate (Lac) concentration in the hypothalamus compared to the control group. Furthermore, at T56 the paclitaxel-injected rats presented lower NAA and higher taurine (Tau) levels in the PFC. Together, MEMRI and metabolomic data indicate that CIN is associated with neuroplastic changes in brain areas involved in pain modulation and suggests that other events involving glial cells may be happening.
Collapse
Affiliation(s)
- José Tiago Costa-Pereira
- Department of Biomedicine, Unit of Experimental Biology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; IBMC-Institute of Molecular and Cell Biology, University of Porto, Portugal; I3S, Institute of Investigation and Innovation in Health, University of Porto, Portugal; Faculty of Nutrition and Food Sciences, University of Porto, Portugal
| | - Rita Oliveira
- Department of Biomedicine, Unit of Experimental Biology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; IBMC-Institute of Molecular and Cell Biology, University of Porto, Portugal; I3S, Institute of Investigation and Innovation in Health, University of Porto, Portugal
| | - Irene Guadilla
- Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain
| | - Maria Jose Guillén
- Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain
| | - Isaura Tavares
- Department of Biomedicine, Unit of Experimental Biology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; IBMC-Institute of Molecular and Cell Biology, University of Porto, Portugal; I3S, Institute of Investigation and Innovation in Health, University of Porto, Portugal
| | - Pilar López-Larrubia
- Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain.
| |
Collapse
|
38
|
Vezzani A, Ravizza T, Bedner P, Aronica E, Steinhäuser C, Boison D. Astrocytes in the initiation and progression of epilepsy. Nat Rev Neurol 2022; 18:707-722. [PMID: 36280704 PMCID: PMC10368155 DOI: 10.1038/s41582-022-00727-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2022] [Indexed: 11/09/2022]
Abstract
Epilepsy affects ~65 million people worldwide. First-line treatment options include >20 antiseizure medications, but seizure control is not achieved in approximately one-third of patients. Antiseizure medications act primarily on neurons and can provide symptomatic control of seizures, but do not alter the onset and progression of epilepsy and can cause serious adverse effects. Therefore, medications with new cellular and molecular targets and mechanisms of action are needed. Accumulating evidence indicates that astrocytes are crucial to the pathophysiological mechanisms of epilepsy, raising the possibility that these cells could be novel therapeutic targets. In this Review, we discuss how dysregulation of key astrocyte functions - gliotransmission, cell metabolism and immune function - contribute to the development and progression of hyperexcitability in epilepsy. We consider strategies to mitigate astrocyte dysfunction in each of these areas, and provide an overview of how astrocyte activation states can be monitored in vivo not only to assess their contribution to disease but also to identify markers of disease processes and treatment effects. Improved understanding of the roles of astrocytes in epilepsy has the potential to lead to novel therapies to prevent the initiation and progression of epilepsy.
Collapse
Affiliation(s)
- Annamaria Vezzani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy.
| | - Teresa Ravizza
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Peter Bedner
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam, Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
39
|
Kor DZL, Jbabdi S, Huszar IN, Mollink J, Tendler BC, Foxley S, Wang C, Scott C, Smart A, Ansorge O, Pallebage-Gamarallage M, Miller KL, Howard AFD. An automated pipeline for extracting histological stain area fraction for voxelwise quantitative MRI-histology comparisons. Neuroimage 2022; 264:119726. [PMID: 36368503 PMCID: PMC10933753 DOI: 10.1016/j.neuroimage.2022.119726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
The acquisition of MRI and histology in the same post-mortem tissue sample enables direct correlation between MRI and histologically-derived parameters. However, there still lacks a standardised automated pipeline to process histology data, with most studies relying on manual intervention. Here, we introduce an automated pipeline to extract a quantitative histological measure for staining density (stain area fraction, SAF) from multiple immunohistochemical (IHC) stains. The pipeline is designed to directly address key IHC artefacts related to tissue staining and slide digitisation. Here, the pipeline was applied to post-mortem human brain data from multiple subjects, relating MRI parameters (FA, MD, RD, AD, R2*, R1) to IHC slides stained for myelin, neurofilaments, microglia and activated microglia. Utilising high-quality MRI-histology co-registrations, we then performed whole-slide voxelwise comparisons (simple correlations, partial correlations and multiple regression analyses) between multimodal MRI- and IHC-derived parameters. The pipeline was found to be reproducible, robust to artefacts and generalisable across multiple IHC stains. Our partial correlation results suggest that some simple MRI-SAF correlations should be interpreted with caution, due to the co-localisation of other tissue features (e.g., myelin and neurofilaments). Further, we find activated microglia-a generic biomarker of inflammation-to consistently be the strongest predictor of high DTI FA and low RD, which may suggest sensitivity of diffusion MRI to aspects of neuroinflammation related to microglial activation, even after accounting for other microstructural changes (demyelination, axonal loss and general microglia infiltration). Together, these results show the utility of this approach in carefully curating IHC data and performing multimodal analyses to better understand microstructural relationships with MRI.
Collapse
Affiliation(s)
- Daniel Z L Kor
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Headington, Oxford OX3 9DU, , United Kingdom.
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Headington, Oxford OX3 9DU, , United Kingdom
| | - Istvan N Huszar
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Headington, Oxford OX3 9DU, , United Kingdom
| | - Jeroen Mollink
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Headington, Oxford OX3 9DU, , United Kingdom
| | - Benjamin C Tendler
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Headington, Oxford OX3 9DU, , United Kingdom
| | - Sean Foxley
- Department of Radiology, University of Chicago, Chicago, IL, United States of America
| | - Chaoyue Wang
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Headington, Oxford OX3 9DU, , United Kingdom
| | - Connor Scott
- Academic Unit of Neuropathology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Adele Smart
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Headington, Oxford OX3 9DU, , United Kingdom; Academic Unit of Neuropathology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Olaf Ansorge
- Academic Unit of Neuropathology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Menuka Pallebage-Gamarallage
- Academic Unit of Neuropathology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Karla L Miller
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Headington, Oxford OX3 9DU, , United Kingdom
| | - Amy F D Howard
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Headington, Oxford OX3 9DU, , United Kingdom
| |
Collapse
|